
D
el

ft
U

n
iv

er
si

ty
o

fT
ec

h
n

o
lo

gy

Learned equivariance in Convolutional
Neural Networks
Tomasz Motyka

Learned equivariance in Convolutional Neural
Networks

by

Tomasz Motyka
to obtain the degree of Master of Science

at the Delft University of Technology
to be defended publicly on Wednesday January 12, 2022 at 9:00 AM

Student number: 5146844
Project duration: November 15, 2020 - January 12, 2022
Thesis committee: dr. J. C. van Gemert TU Delft, supervisor

Dr. M.M. de Weerdt TU Delft, External thesis committee member

An electronic version of this dissertation is available at http://repository.tudelft.
nl/.

http://repository.tudelft.nl/
http://repository.tudelft.nl/

Preface

The current report "Learned Equivariance in Convolutional Neural Networks” presents
work done for my master’s graduation project. The research was conducted within Com-
puter Vision Lab at TU Delft, under the supervision of Dr. J.C. van Gemert as the main
supervisor and Robert-Jan Bruintjes as the daily supervisor.

I would like to thank Jan for the support in brainstorming research ideas, pointing di-
rections and showing how to ask the right questions. Additionally, I would like to thank
Robert-Jan for his tremendous support in our weekly meetings and motivation in times
of doubt. It was priceless, particularly in the time of online work, to have someone un-
derstanding your subject with whom I could always have a valuable discussion when
necessary. I am also thankful for giving me access to the TU Delft computing cluster,
which was extremely useful for conducting the experiments.

I would like to thank Dr. M.M. de Weerdt, for his interest in my thesis and evaluation
of my work.

I would like to thank my parents for their emotional and financial support in the
last two years. Time spent in Delft wouldn’t be possible without them. I would also like
to thank my fiance for her immense support, patience and motivation on a daily basis
throughout my time in Delft. Finally, I would also like to thank my friends for valuable
discussions and mutual support.

Tomasz Motyka
Delft, January 2022

iii

Contents

Preface iii

1 Research Paper 1

2 Background on Deep Learning 13
2.1 What is Deep Learning? . 13
2.2 Deep Neural Networks . 13

2.2.1 Perceptron. 13
2.2.2 Multi-Layer Perceptron . 13
2.2.3 Activation Function . 14

2.3 Convolutional Neural Networks. 15
2.3.1 Pooling. 16

2.4 How to train neural networks . 17
2.4.1 Forward pass. 18
2.4.2 Back propagation . 18
2.4.3 Updating the parameters . 18

2.5 Tuning neural networks . 19
2.5.1 Regularization . 20

References . 22

3 Equivariance In Convolutional Neural Networks 23
3.1 Translation equivariance in Convolutional Neural Networks 23

3.1.1 Violating translation equivariance 24
3.2 Equivariance to other transformations 25

3.2.1 Group Equivariant Convolutional Networks 26
References . 29

v

1
Research Paper

1

Learned equivariance in Convolutional Neural Networks

Tomasz Motyka
Computer Vision Lab

Delft University of Technology
t.t.motyka@student.tudelft.nl

Abstract

Aside from developing methods to embed the equivari-
ant priors into the architectures, one can also study how the
networks learn equivariant properties. In this work, we con-
duct a study on the influence of different factors on learned
equivariance. We propose a method to quantify equivari-
ance and argue why using the correlation to compare in-
termediate representations may be a better choice as op-
posed to other commonly used metrics. We show that impos-
ing equivariance or invariance into the objective function
does not influence learning more equivariant features in the
early parts of the network. We also study how different data
augmentations influence translation equivariance. Further-
more, we show that models with lower capacity learn more
translation equivariant features. Lastly, we quantify trans-
lation and rotation equivariance in different state-of-the-art
image classification models and analyse the correlation be-
tween the amount of equivariance and accuracy.

1. Introduction
Neural network f(x) is invariant to the transformation T

if applying T to the input x does not change the network
output. In other words, f(T (x)) = f(x). Alternatively,
a network is equivariant to transformation T if its output
changes predictably when x is transformed by T. Formally,
we can define it as f(T (x)) = T (f(x)). Invariance in the
predictions of machine learning models is important as it
ensures predictable response with respect to different trans-
formations of the input and helps to perform well on unseen
and potentially out-of-distribution samples. The equivari-
ance property, on the other hand, is more powerful as be-
sides giving us a predictable representation for different in-
put transformations it also contains the information about
the transformation itself (Figure 1).

Deep Neural Networks (DNNs) have benefited greatly
from the incorporation of different equivariant priors. Such
prior knowledge can provide certain properties [4, 8] or
it can greatly improve the data efficiency [4, 8, 13]. The

Figure 1: Difference between invariance and equivariance.
On the left function f has the equivariance property w.r.t. to
transformation T . On the left the function f has the invari-
ance property w.r.t. to transformation T .

most notable example of such a prior is the introduction
of the convolution operation into DNNs. Convolutional
Neural Networks (CNNs) [4], thanks to their (approximate
[18, 20, 44]) translation equivariance, have proven to be
very powerful models for the data types such as images
or audio [4, 8]. Other works on equivariant architectures
have gone even further to ensure equivariance to other
affine transformations [8, 12, 28, 36]. However, explicit
equivariant priors are not the only source of equivariance.
Namely, CNNs can learn these properties themselves if cer-
tain symmetries are present in the data [5, 19, 24, 26, 27].
Studying learned equivariance can tell us which factors of
the experiment e.g. model architecture, data augmentations
or objective function, do affect equivariance or it can give
insights on how to design equivariant priors. However,
most of the works that study learned equivariance focus on
investigating invariant properties at the final layer, meaning
that they measure whether different input transformations
do influence the prediction [5, 19, 25]. There are few
works that study equivariant properties of intermediate
representations but they usually focus on showing how
translation equivariance, which should be given by the
model, is violated. What’s missing in the literature is more
comprehensive study on how various factors affect the
equivariance of intermediate representations. In this work
we analyze how to quantify equivariance of the internal
representations. We study how symmetries that are in
the data influence learning equivariance. We investigate

1

how translation equivariance is affected by different data
augmentations and by model capacity. Additionally, we
quantify equivariance in few large scale state-of-the art
seminal models and correlate the accuracy with equivari-
ance.

Our contributions are:

• We show why the commonly used cosine similarity
[44] may not be the best choice to compare feature
maps and argue for the use of correlation.

• We show that encoding equivariance directly into
the objective function does not induce learning more
equivariant features in the early and middle layers of
the network.

• We show that random crops and cutmix data augmen-
tations increase translation equivariance while some
other augmentations do not have discernible effect.

• We show that smaller models learn more equivariance.

• We give a summary of the amount of equivariance
learned by different large scale seminal models and
show that out of all the layers, it is mostly the equiv-
ariance in the final layer that correlates with accuracy.

2. Background & Related Work
2.1. Embedding Equivariance

A lot of works on equivariance focus on designing ar-
chitectures that ensure the equivariance property over dif-
ferent transformations. Most notable is the work of [8, 12]
where the authors give the theory on how to embed equivari-
ance over any discrete symmetry group (e.g. rotation) with
Group Equivariant Convolution. This work has a number
of follow-ups where the Group Equivariant Convolutions is
extended to other discrete or continuous groups [3, 2, 7, 36]
or applied to self-attention models [31, 32, 33]. Another
interesting branch of equivariant models are steerable filter
networks [6, 14, 28, 41] There are also methods that, un-
like the previously mentioned works, do not embed certain
equivariant priors upfront but instead develop architectures
that aim to automatically learn needed symmetries from the
data [34, 45]. Lastly, the CNN can learn equivariant inter-
mediate representations by itself, without explicit equivari-
ant prior, which was hinted by [24, 26, 27]. In our work we
focus on the analysis of the equivariant properties that are
being learned by the network.

2.2. Measuring equivariance

Another branch of research on equivariance is the anal-
ysis of the equivariant or invariant properties of learned
network representations. In [16], the authors measure the

invariance of Deep Belief Networks by comparing magni-
tudes of activations. [19] studies the source of translation
invariance of CNNs using Euclidean distance to compare
final layer embeddings and find that data augmentation has
a bigger effect on translation invariance than the network
architecture. [25] replaces Euclidean distance with cosine
similarity as a similarity measure and shows the impact
of different kernel and padding size on translation invari-
ance at the final layer. [5] explores the sources of invari-
ance in models trained on ImageNet [10], and how these
invariances relate to the factors of variation of ImageNet
[10]. They compared the impact of different transforma-
tions (e.g. translation, scaling, rotations), architectural bias
and the data itself. In [1] the authors showed that learned
invariances do not transfer across classes. All the afore-
mentioned works focus only on the invariance in the final
layer of the network, whereas we focus on the intermediate
representations as well.

There are very few works that study equivariant proper-
ties of intermediate representations and they mostly focus
on showing how translation equivariance in CNN is vio-
lated. [44] measured the translation equivariance by com-
puting cosine similarity between feature maps to show how
pooling operation violates translation equivariance prop-
erty. Other works like [18, 20], also study how transla-
tion equivariance property in CNNs is violated, although
they measure it primarily by looking at accuracy achieved
in some specific settings. [35] measure the invariance of
intermediate representations using normalized cosine simi-
larity to study the effect of pooling on deformation stability.
In [26, 27] the authors performed a huge qualitative study
by visualizing what kind of features the early layers of In-
ceptionV1 [37] learn to detect. Alongside visualizing fea-
tures, they also searched for certain patterns of relationship
between features, which they called circuits, and showed
that CNN learns equivariant representations. Although they
showed the existence of different circuits, these were ex-
amples among thousands of features, which does not nec-
essarily represent the behaviour of the whole network in a
quantitative way.

In our works we take a quantitative approach to what
[26, 27] do. We derive a measure for quantifying equivari-
ance and show why cosine similarity used in e.g. [35, 44]
may not be the preferred measure. We complement most
of the works that study the invariance in the final layers
[5, 19, 25] by studying the effect of different factors on the
equivariance of intermediate representations.

3. Analysis

3.1. Embedded vs Learned equivariance

First, we want to highlight the difference between
learned and embedded equivariance. Discrete convolution

2

operation is known to be translation equivariant:

[[∆(I)] ? ψ](x) = [∆[I ? ψ]](x), (1)

meaning that applying translation ∆ to the image I and con-
volving it with the filter ψ has the same effect as convolving
I with ψ and applying ∆ to the output. Since the transla-
tion equivariance property comes from translating the filter
ψ over the image, it will hold regardless of the content of the
learned filter ψ. We also point out that, in practice, CNNs
are not perfectly translation equivariant. [44] shows how
pooling over a discrete grid can deteriorate the translation
equivariance. [20] shows that CNN can learn filters that ex-
ploit border effects which results in the lack of equivariance.
Therefore, in our work on the learned equivariance, we also
study translation equivariance since the network can learn
filters that strengthen or weaken the aforementioned effects.

Convolution does not assure equivariance to affine trans-
formations other than translations. In those cases, the
learned weights determine the equivariance property. Al-
though in measuring the equivariance we look at the acti-
vations, also called feature maps, rather than the learned
weights, we want to first analyze what properties the
weights need to have for the convolution to be equivariant.
It gives us a better interpretation of the results and intuition
about how to measure equivariance.

Why not study the weights directly? If the goal is
to detect equivariant or invariant features learned by the
CNNs, one may want to look directly at the learned weights.
There are, however, potential issues with this approach. The
main one is that the activations at a certain layer are not only
dependent on the weights at that particular layer but are de-
termined by a complex superposition of all the weights from
the previous layers, which can be difficult to capture in the
analysis. By looking at the feature maps instead of the fil-
ters we omit this issue and still can reason about the feature
that is being detected.

3.2. Learned equivariance in a single convolution

Here, we analyze what properties the weights have to fol-
low for the single convolution operation to achieve equivari-
ance to other affine transformations like rotations or mirror-
ing. In [8] the authors derive the following equation:

[[T (I)] ? ψ](x) = [T [I ? T−1(ψ)]](x), (2)

which denotes the conditions under which the convolution
is equivariant to transformation T . Comparing this with
Eq. 1, one can see that the only difference is that on the
right hand side we have T−1(ψ) instead of ψ. Having that
in mind, we now identify 2 ways in which the CNN can
achieve equivariance:

1. When the single filter ψ follows property ψ =
T−1(ψ), which means it is invariant to transformation

Figure 2: Convolution with rotationally invariant kernel,
ψ = T−1(ψ) (e.g. 2D isotropic Gaussian) is rotation equiv-
ariant. Convolving the image with filter ψ (red border) gives
a feature map with the same content as rotating the image
and then convolving it with the filter ψW (blue border).

Figure 3: Convolving image with two filters following the
property ψn = T−1(ψm) (blue border) results in the stack
of feature maps with the same content as the stack of fea-
ture maps resulting from convolving the rotated image with
those filters (red border). The difference is that the feature
maps within the stack are ordered differently.

T−1, the convolution becomes equivariant. We call
this channel equivariance. In Figure. 2 we show an
example where T is a 90◦ rotation.

2. In a single layer of a CNN, we have a set of mul-
tiple filters Ψ and so it also might be the case that
there are filters ψn, ψm ∈ Ψ that follow the property
ψn = T−1(ψm). In such case the stack of resulting
feature maps could be called equivariant whereas indi-
vidual feature maps are not. We call this layer equiv-
ariance. In Figure. 3 we show an example where T is
a 90◦ rotation.

3.3. Capturing equivariance

Measuring equivariance of intermediate representation
requires comparing intermediate feature maps. In this sec-
tion, we analyze how to compare feature maps in order to
capture equivariance. Starting from the definition of the
equivariance, we can simply compute the exact equality be-
tween the feature maps:

T (f(x)) = f(T (x)) (3)

However, such formulation gives us a binary decision
problem, where we either consider something equivariant
or not. In the case of learned equivariance, it can rarely

3

be the case that we will see exact equivariance with pixel-
wise precision. That would require most of the filters to be
either perfectly symmetric or different filters to be perfect
rotated copies of one another. With random initialization of
weights and non-uniform gradients, this is very improbable.
What we would prefer instead is a continuous measure that
would give us a score reflecting the approximate amount of
equivariance, i.e.:

Equivariance(T (f(x)), f(T (x))) ∈ [0, 1] (4)

A measure quite commonly used in the literature [5,
25, 44], is the cosine similarity which is based on the dot-
product. The value of cosine similarity ranges between -1
and 1 where -1 stands for inverse similarity, 0 stands for
no similarity/orthogonality, and 1 stands for perfect similar-
ity. In our case, we are only interested in positive similarity
since we want the feature maps to have the same content in
case of equivariance and so we apply ReLU() function on
top of the score.

3.4. Method

So far, we have analyzed the difference between em-
bedded and learned equivariance and showed how a single
convolutional layer can achieve equivariance. Here, we de-
scribe our method for measuring equivariance in multi-layer
CNNs.

We consider a CNN composed of a set of L convolu-
tional blocks where each block consists of the convolution
operation followed by non-linearity and often a batch nor-
malization. Output of each convolutional block fl(x),∀ l ∈
L has Kl channels. We compute the equivariance of in-
termediate representations fl(x) using the output of such
blocks since we consider a whole block as a feature detector
and that is what the layer l+1 learns upon. Doing otherwise
may lead to considering information that is irrelevant to the
next layer since it is removed by non-linearity. It is also
the case that different models may have different orderings
of the operations within the block e.g. batch-norm happens
before or after non-linearity. In principle, we measure:

• Channel equivariance, where for each channel in-
dex k ∈ Kl at layer l ∈ L we com-
pute the similarity score between the feature maps:
Equivariance(T (fkl (x), fk

′

l (T (x)) (Figure 4a) and av-
erage the scores over all channels in a layer. We also
point out that after the global pooling operation, which
is usually present in the neural networks, the transfor-
mation T becomes the identity transformation since
the feature maps have size 1× 1. That means that after
the global pooling, the channel equivariance measures
invariance.

• Layer equivariance of a network f where for each
channel index k ∈ Kl at layer l ∈ L, we compute:

maxk′∈Kl Equivariance(T (fkl (x), fk
′

l (T (x)) (Figure
4b) and average the scores over all channels in a layer.

4. Experiments
4.1. Method verification

4.1.1 Choosing a proper similarity measure

Cosine similarity has been a common similarity measure
used to compute invariance or equivariance of the networks
representations [5, 25, 44]. Here, we show why it may not
be the proper choice.

Activations at different layers of the CNN may have dif-
ferent means. Cosine similarity is sensitive to the mean
values of its input vectors. This behaviour is depicted in
Figure 5a. Pearson correlation [15], also called centered
cosine similarity, is a measure that alleviates this issue as
it captures the similarity of the patterns between two input
vectors. It is also the basis of many methods for comparing
network representations [21, 23, 30]. For the same reason
as in the case of cosine similarity, we apply the ReLU()
function on top of the score.

We visualize the difference between using cosine sim-
ilarity and correlation for capturing equivariance in the
following example. We train ResNet-44 [17] model on
CIFAR-10 [22] dataset and compute channel equivariance
w.r.t to 90◦ rotation after each residual block. In Figure
5 we show the qualitative comparison between the scores,
computed using cosine similarity and correlation, and the
mean of the activations. Additionally, we compute a corre-
lation between the magnitude of the activations and equiv-
ariance scores computed with cosine similarity (0.63) and
correlation (0.11). Scores computed using cosine similar-
ity correlate visibly with the mean of the activation while,
for the scores computed using correlation, this effect is less
prevalent. In our experiments, we use correlation as a mea-
sure to quantify equivariance since it enables us to reliably
compare the scores between layers.

4.1.2 Does the method capture equivariance

To verify, that our method captures equivariance, we apply
it to the artificially created scenarios. We create two 3-layer
CNN with hand-crafted weights such that we expect perfect
channel and layer equivariance. In the first scenario, we
set all the weights to be rotationally symmetric, using 2D
isotropic Gaussian, and measure the channel equivariance
after each layer (Fig. 6a). In the second scenario, we cut
different corners of the filters from the previous setting such
that all the filters are rotations of one another (Fig. 6b).
This time we measure layer equivariance. In both cases,
our method gives perfect scores confirming that it captures
equivariance.

4

(a) Channel equivariance
(b) Layer equivariance

Figure 4: Channel equivariance is measured between the corresponding channels while in case of layer equivariance we take
the maximum from the scores computed between channel k from one representation and all the channels from the other
representations .

(a) Comparison of different similarity measures on random feature
maps. Feature maps on the bottom are shifted by 0.5 with respect
to the top ones. Cosine similarity is sensitive to such shifts while
correlation is invariant.

(b) Comparison between magnitude of the activations (red) and
equivariance computed using correlation (blue) and cosine simi-
larity (orange). We compute correlation between the magnitude of
the activations and equivariance scores computed with correlation
(0.11) and cosine similarity (0.63).

Figure 5: Analysis of the influence of magnitude of weights
on different similarity measures.

(a) Rotationally symmetric filters result in perfect channel equiv-
ariance.

(b) When each layer consists of the same rotated filters, out meth-
ods gives perfect layer equivariance.

Figure 6: We create 3 layer CNN with handcrafted weights,
such that it has perfect equivariance, to test if our method
gives the highest scores.

4.2. Influence of hyperparameters on learning
equivariance

4.2.1 Imposing symmetries in the data.

In this experiment we study how the equivariance changes if
we impose symmetries in the data and therefore into the ob-
jective function. We also study whether there is a difference
if the objective is invariant or equivariant with respect to in-
troduced symmetries. We train a 7-layer CNN with 7 layers
of 3×3 convolutions, 20 channels in each layer, ReLU acti-

5

vation functions, batch normalization, and max-pooling af-
ter layer 2, taken from [8], on 3 different datasets. The first
dataset is MNIST6, which is the regular MNIST[11] without
{0, 1, 6, 8} classes, to get rid of rotational symmetries that
these classes have. For example, digit 8 is very similar to
its 180◦ rotation, so, by default, we have some rotation in-
variance. Second is the MNIST6-Rot-Inv where every digit
in MNIST6 is randomly rotated by r ∈ {0, 90, 180, 270}
upfront. This dataset imposes invariance into the objective
function as, for every transformation, the output has to be
the same. The last dataset, MNIST6-Rot-Eq, is created in
the same way as MNIST6-Rot-Inv but now we are also pre-
dicting the rotation alongside the digit. This dataset im-
poses equivariance into the objective function. We compute
channel and layer equivariance using 2000 images from the
validation set. We average the score over 90◦, 180◦, 270◦

rotations. Each experiment is repeated three times using
different random seed. The training setting used for this
experiment is in Table 1.

Figure 7: Channel (left) and layer (right) rotation equiv-
ariance for different objective functions. Equivariance or
invariance in the task does not induce learning more equiv-
ariant features up until the late part of the network. Also
there is no visible difference, up until the late part of the
network, in the learned equivariance between equivariant
and invariant task.

In Figure 7 we show the average channel and layer rota-
tion equivariance. Firstly, we can observe that the amount of
both channel and layer equivariance is decreasing with the
depth, up to the final part after global pooling regardless of
the task. For the tasks where the equivariance or invariance
is imposed in the objective, we can see a spike in the final
part, which may suggest that global pooling plays a signifi-
cant role in achieving invariance or equivariance. Secondly,
we do not see any significant differences between MNIST6,
MNIST6-Rot-Inv and MNIST6-Rot-Eq, up to a later stage,
which may hint that, in practice, early convolutional layers
learn features with some amount of equivariance regardless
of the invariance of the objective function. Finally, we ob-
serve that layer equivariance is much larger then the channel
equivariance in the early and middle layers, which shows
that CNNs do learn more rotated versions of the same fea-
ture in different channel rather then learning invariant, sym-

Figure 8: Translation equivariance for different parts of the
Resnet44 trained on Cifar10 with no data augmentations.
Feature maps in the Middle part of the networks are 2 times
smaller and feature maps in the Late part of the networks
are 4 times smaller. Such discrete reduction in size results
in periodic violation of translation equivariance.

metrical features in a single channel.

4.2.2 Data augmentation for translation equivariance

By duplicating input samples under some transformation,
data augmentation induces invariance in the prediction. The
question is what is the source of invariance. Does data aug-
mentation result in more equivariant intermediate feature or
the invariance is learned in some other way? For example,
we know that random crops, which is essentially a trans-
lation transformation, do increase the model performance
and translation invariance at the last layer [19], but do they
increase the equivariance of learned features or just enable
the CNN to exploit the border effects to a larger extent as
shown in [20]? In this experiment we study how translation
equivariance is affected by different data augmentations.

We train ResNet-44[17], adapted for CIFAR-10[22], on
the CIFAR-10 datatset using one of the following augmen-
tations: random crops, horizontal flips, CutMix [42], Ran-
dAugment [9]. In a single experiment we compute channel
and layer equivariance using 2000 images from the valida-
tion set and average the score over diagonal shifts from 1
to 16 pixels. Each experiment is repeated 3 times using
the network trained with different random seed. In prin-
ciple we expect the layer and channel equivariance to be
the same since translation equivariance should be provided
by the convolution and so the maximum equivariance score
should happen between the corresponding channels. How-
ever, we include layer equivariance in our experiments since
there are works showing that the information about location
can be encoded in different channels [18, 20]. The hyper
parameters used for training are in the Table 2.

In Figure 8, we point out the effect of the reduction of the
spatial dimension on the translation equivariance. If, for ex-
ample, the intermediate representation is half the height and
width of the input image and we shifted the input image by
5 pixels, then when measuring equivariance, we should shift

6

the intermediate representation by 2.5 pixels to account for
the reduction. Such operation does not exist on a 2D dis-
crete grid. Thus, when translating the intermediate feature
map, we resort to rounding down the shift size. None of the
data augmentation methods solve this problem but rather
shift the values up.

In Figure 9 we show the average translation channel and
layer equivariance scores for different data augmentations.
Random crops and RandAugment increase the equivariance
of learned features in the middle, late and final parts while
the other methods do not have any significant effect with cut
mix even having less equivariance in the middle part. Fur-
thermore, we complement the finding of [19] by showing
that random crops increase not only translation invariance
but also translation equivariance in the intermediate layers.
Also, we do not see any difference between channel and
layer equivariance for any data augmentation, which means
that, in all cases, the network does not explicitly learn to
represent different translations in different channels.

Figure 9: Channel (left) and layer (right) translation equiv-
ariance on CIFAR-10 for different data augmentation strate-
gies. Random crops and RandAugment increase channel
equivariance the most, while other strategies have no dis-
cernible improvements.

4.2.3 Model capacity for translation equivariance

Property of equivariance to transformation T gives us an
efficient representation since we have a consistent represen-
tation when T is applied to any input. In this experiment,
we study whether model capacity influences learning equiv-
ariant representations. We hypothesize that a smaller model
in principle needs more efficient representation and hence
may learn more equivariant features. To test this hypothesis
we employ the family of WideResNet [43] models, where
we scale the number of channels in each layer. We train 4
WideResnet40 models with 4 scale factors s ∈ {1, 2, 4, 8}
on Cifar10 dataset and measure channel and layer transla-
tion equivariance. The hyperparameters used for training
are the same as in the data augmentation experiment of Sec
5.2 (Table 2).

In Figure 10 we show the average layer and channel
translation equivariance for different scale factors. We ob-

Figure 10: Channel (left) and layer (right) translation equiv-
ariance on CIFAR-10 for different model widths. Smaller
models learn more equivariance although the amount of in-
variance in the end is similar.

serve that the amount of translation equivariance is lower
for the wider models even though the amount of invariance
in the final part is the same. This confirms the hypothesis
that translation equivariance in the intermediate representa-
tions, which should be given by the model, improves when
the model capacity is lower.

4.3. Equivariance in large scale seminal models

So far, we’ve done the experiments on a small scale set-
ting. In this experiment we want to study the amount of
equivariance in the state of the art models from the recent
years, trained on the ImageNet [10] dataset. In our ex-
periment we are interested to what extent large scale mod-
els learn equivariance in the presence (translation) and ab-
sence (rotation) of equivariant prior and whether there are
any substantial differences between the models. We will
also look if the higher equivariance in the early layers in-
duces higher invariance in the final layer. Finally, for rota-
tion equivariance we want to see the difference between the
layer and channel equivariance. This can tell us if the net-
work learns to represent rotations in the same or different
channels. We measure both translation and rotation equiv-
ariance on 2000 images from the validation set. We do not
train the models ourselves but instead use available check-
points from torchvison [29] or timm [40]. We divide
each model into parts and report average score over cer-
tain part in order to enable comparison between the models
as they do have different depths. Representations from the
beginning until the global pooling are equally divided be-
tween Early, Middle, Late parts. Pool is the representation
after the global pooling and Final is the output represen-
tation. We discriminate between the Pool part and the Fi-
nal part to identify what role in achieving equivariance the
global pooling and final classifier have. We measure trans-
lation equivariance over diagonal shifts of size 1 to 32 and
rotation equivariance for 90◦, 180◦, 270◦ rotations.

Aside from the couple of state of the art CNNs we also
measure the equivariance of the networks not relying di-

7

rectly on convolutional layers such as the ViT [13] and
MLP-Mixer [38]. In case of CNNs the concept of a fea-
ture map is easily defined but in case of the others it may
not be so clear. In ViT we first compute strided convolution
with d output channels and stride 16. This results in d fea-
ture maps, where each ”pixel” of size d is considered as a
token. Next, such representation goes into 12 consecutive
blocks consisting of a multi-head self-attention module, in-
troduced by [39]. Self-attention computes the interaction
between the tokens preserving the structure of the feature
map therefore we can use our method at each layer of the
network. The MLP-Mixer has very similar structure to the
ViT, but instead of self-attention module, each block con-
sists of the consecutive fully-connected linear layers. Each
linear layer simply compute the mapping of each feature
map separately and so we can identify feature maps in the
same way as in ViT.

As for the equivariance property in these two architec-
tures, the self-attention module in ViT is permutation equiv-
ariant, however, the division of the image into patches,
the additional positional encoding that each patch gets and
the linear layers can deteriorate the equivariance property.
In MLP-Mixer, the self-attention is replaced by additional
fully-connected linear layers, which by default do not have
any equivariant properties.

4.3.1 Translation equivariance

Figure 11: Channel (left) and layer (right) translation equiv-
ariance for different seminal models trained on ImageNet.
CNNs exhibit more equivariance in the intermediate repre-
sentation then models without strong equivariant prior like
ViT or MLP-Mixer. Global pooling seems to play an im-
portant role in achieving invariance.

In Figure 11 we present the results for translation equiv-
ariance. We can see that ViT and MLP-Mixer have the
least amount of translation equivariance although both of
these models, in the Final part, achieve translation invari-
ance comparable to CNNs. Lower translation equivariance
can be the reason for the poor data efficiency of ViT and

MLP-Mixer [13, 38] since we know that translation equiv-
ariance improves data-efficiency [13, 20]. We also see that
EfficientNets have the highest amount of translation equiv-
ariance throughout all the layers, which may be the rea-
son for their success among the convolutional architectures.
Additionaly, we can observe that higher translation equiv-
ariance in throughout early, middle and late parts reults in
higher invariance in the final layer. Finally, we see that layer
and channel equivariance are the same meaning that these
networks do not learn to represent different translations in
different channels.

4.3.2 Rotation equivariance

In Figure 12 we report average equivariance for different
parts of the seminal models. Again we can observe that the
ViT and MLP-Mixer do not have a lot of channel or layer
rotation equivariance although after the global pooling the
ViT exhibits the most rotation invariance out of all the mod-
els. Secondly, we can see that the difference between chan-
nel and layer equivariance is the highest in the early parts
of the network, particularly for Resnext101 and Inception
v3. It also diminishes with the depth and in the late part be-
comes almost identical. In contrast to translation equivari-
ance, we can see that models with low rotation equivariance
throughout early, middle and late parts (ViT, Efficient-Net
B6/B7) have the highest rotation invariance in the final part
while model with highest equivariance in early, middle and
late parts (Inception v3) has the least invariance in the final
part. This can tell us that in case of learned rotation equiv-
ariance, high invariance in the prediction, doesn’t have to
result from high equivariance in the intermediate represen-
tations.

Figure 12: Channel (left) and layer (right) rotation equiv-
ariance for different seminal models trained on ImageNet.
CNNs exhibit more equivariance in the intermediate repre-
sentation then models without strong equivariant prior like
ViT or MLP-Mixer. Early and Middle layer seem to have
more layer than channel equivariance.

8

4.3.3 Does equivariance improve accuracy

In the final experiment we are interested what is the corre-
lation between the validation accuracy and the amount of
equivariance in the large scale models. For each part of the
network we compute Spearman’s rank correlation between
the amount of equivariance and accuracy.

In Figure 13 we show the results for translation and ro-
tation equivariance. Correlation between translation equiv-
ariance and accuracy grows steadily with the depth of the
network, achieving almost perfect correlation in the final
part. In case of rotation equivariance, there is no correla-
tion between the equivariance in the representation before
global pooling and the accuracy. Only after the global pool-
ing the correlation becomes very high. This tells us that
the invariance in the prediction is the most beneficial for
higher accuracy. We also see that equivariance in the repre-
sentation before global pooling is much more important for
higher accuracy in case of embedded equivariance, ranging
from 04 to 0.8, than learned equivariance, which oscilates
around 0.1.

Figure 13: Correlation between the amount of translation
(left) or rotation (right) equivariance and the accuracy for
different parts of the network. Correlations for translation
channel and layer equivariance are the same.

5. Conclusion
In this work, we conduct a study on learned equivariance

in CNNs. First, we show why correlation may be a
better option to compare feature maps than commonly
used cosine similarity. Then, we explore how different
factors of variation influence learning equivariant features.
We show that imposing invariance or equivariance into
the objective function does not induce learning more
equivariant features and that equivariance or invariance in
such cases is achieved in the final part of the network. We
study how different data augmentation influence translation
equivariance and find out that random crops and RandAug-
ment increase translation equivariance of the network. We
also show that smaller model capacity induces learning
more translation equivariant features. Lastly, we quantify
translation and rotation equivariance in different state of
the art image classification models and showed that CNNs

exhibit more translation and rotation equivariance than
non-convolutional models like ViT or MLP-Mixer. We also
find that only equivariance in the final part correlates highly
with the classification accuracy.

Weaknesses and limitations One of the limitations of
our method is that it allows to measure equivariance to
affine transformations only. The reason for that is the trans-
formation has to be defined in the Z2 space so that we can
apply it on both the input image and the feature map. That
disqualifies any transformation that for example changes the
colors of the image.

Future work Applying equivariant priors usually adds
additional cost in terms of memory or computation. A pos-
sible direction of future work could be to study whether one
can apply equivariant priors only partially based on what
the network learns. Another direction to explore is the rela-
tionship between learned equivariance and data efficiency.

References
[1] Anonymous. Do deep networks transfer invariances across

classes? In Submitted to The Tenth International Conference
on Learning Representations, 2022. under review. 2

[2] E. J. Bekkers. B-spline cnns on lie groups. CoRR,
abs/1909.12057, 2019. 2

[3] E. J. Bekkers, M. W. Lafarge, M. Veta, K. A. J. Eppenhof,
J. P. W. Pluim, and R. Duits. Roto-translation covariant
convolutional networks for medical image analysis. CoRR,
abs/1804.03393, 2018. 2

[4] Y. Bengio and Y. Lecun. Convolutional networks for images,
speech, and time-series. 11 1997. 1

[5] D. Bouchacourt, M. Ibrahim, and A. S. Morcos. Ground-
ing inductive biases in natural images:invariance stems from
variations in data, 2021. 1, 2, 4

[6] J. Bruna and S. Mallat. Invariant scattering convolution net-
works, 2012. 2

[7] T. S. Cohen, M. Geiger, J. Köhler, and M. Welling. Spherical
cnns. CoRR, abs/1801.10130, 2018. 2

[8] T. S. Cohen and M. Welling. Group equivariant convolu-
tional networks. In Proceedings of the 33rd International
Conference on International Conference on Machine Learn-
ing - Volume 48, ICML’16, page 2990–2999. JMLR.org,
2016. 1, 2, 3, 6

[9] E. D. Cubuk, B. Zoph, J. Shlens, and Q. V. Le. Randaug-
ment: Practical automated data augmentation with a reduced
search space. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR) Work-
shops, June 2020. 6

[10] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-
Fei. Imagenet: A large-scale hierarchical image database.
In 2009 IEEE Conference on Computer Vision and Pattern
Recognition, pages 248–255, 2009. 2, 7

[11] L. Deng. The mnist database of handwritten digit images for
machine learning research. IEEE Signal Processing Maga-
zine, 29(6):141–142, 2012. 6

9

[12] S. Dieleman, J. De Fauw, and K. Kavukcuoglu. Exploit-
ing cyclic symmetry in convolutional neural networks. In
Proceedings of the 33rd International Conference on In-
ternational Conference on Machine Learning - Volume 48,
ICML’16, page 1889–1898. JMLR.org, 2016. 1, 2

[13] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn,
X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer,
G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby. An image
is worth 16x16 words: Transformers for image recognition
at scale, 2021. 1, 8

[14] C. Esteves, C. Allen-Blanchette, A. Makadia, and K. Dani-
ilidis. 3d object classification and retrieval with spherical
cnns. CoRR, abs/1711.06721, 2017. 2

[15] D. Freedman, R. Pisani, and R. Purves. Statistics (interna-
tional student edition). Pisani, R. Purves, 4th edn. WW Nor-
ton & Company, New York, 2007. 4

[16] I. Goodfellow, Q. Le, A. Saxe, H. Lee, and A. Ng. Measuring
invariances in deep networks. pages 646–654, 01 2009. 2

[17] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition, 2015. 4, 6

[18] M. A. Islam, M. Kowal, S. Jia, K. G. Derpanis, and N. D. B.
Bruce. Global pooling, more than meets the eye: Position
information is encoded channel-wise in cnns, 2021. 1, 2, 6

[19] E. Kauderer-Abrams. Quantifying translation-invariance in
convolutional neural networks, 2017. 1, 2, 6, 7

[20] O. S. Kayhan and J. C. van Gemert. On translation invariance
in cnns: Convolutional layers can exploit absolute spatial lo-
cation, 2020. 1, 2, 3, 6, 8

[21] S. Kornblith, M. Norouzi, H. Lee, and G. Hinton. Similarity
of neural network representations revisited, 2019. 4

[22] A. Krizhevsky. Learning multiple layers of features from
tiny images. 2009. 4, 6

[23] M. Kuss. The geometry of kernel canonical correlation anal-
ysis. 06 2003. 4

[24] K. Lenc and A. Vedaldi. Understanding image represen-
tations by measuring their equivariance and equivalence.
CoRR, abs/1411.5908, 2014. 1, 2

[25] J. C. Myburgh, C. Mouton, and M. H. Davel. Tracking trans-
lation invariance in cnns, 2021. 1, 2, 4

[26] C. Olah, N. Cammarata, L. Schubert, G. Goh, M. Petrov, and
S. Carter. An overview of early vision in inceptionv1. Distill,
2020. https://distill.pub/2020/circuits/early-vision. 1, 2

[27] C. Olah, N. Cammarata, C. Voss, L. Schubert, and G. Goh.
Naturally occurring equivariance in neural networks. Distill,
2020. https://distill.pub/2020/circuits/equivariance. 1, 2

[28] E. Oyallon and S. Mallat. Deep roto-translation scattering
for object classification, 2015. 1, 2

[29] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury,
G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga,
A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison,
A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and
S. Chintala. Pytorch: An imperative style, high-performance
deep learning library. In Advances in Neural Information
Processing Systems 32, pages 8024–8035. Curran Asso-
ciates, Inc., 2019. 7

[30] M. Raghu, J. Gilmer, J. Yosinski, and J. Sohl-Dickstein.
Svcca: Singular vector canonical correlation analysis for
deep learning dynamics and interpretability, 2017. 4

[31] D. W. Romero, E. J. Bekkers, J. M. Tomczak, and
M. Hoogendoorn. Attentive group equivariant convolutional
networks, 2020. 2

[32] D. W. Romero and J.-B. Cordonnier. Group equivariant
stand-alone self-attention for vision, 2021. 2

[33] D. W. Romero and M. Hoogendoorn. Co-attentive equivari-
ant neural networks: Focusing equivariance on transforma-
tions co-occurring in data, 2020. 2

[34] D. W. Romero and S. Lohit. Learning equivariances and par-
tial equivariances from data, 2021. 2

[35] A. Ruderman, N. C. Rabinowitz, A. S. Morcos, and D. Zo-
ran. Pooling is neither necessary nor sufficient for appropri-
ate deformation stability in cnns, 2018. 2

[36] I. Sosnovik, M. Szmaja, and A. Smeulders. Scale-equivariant
steerable networks, 2020. 1, 2

[37] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,
D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.
Going deeper with convolutions, 2014. 2

[38] I. Tolstikhin, N. Houlsby, A. Kolesnikov, L. Beyer, X. Zhai,
T. Unterthiner, J. Yung, A. Steiner, D. Keysers, J. Uszkor-
eit, M. Lucic, and A. Dosovitskiy. Mlp-mixer: An all-mlp
architecture for vision, 2021. 8

[39] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,
A. N. Gomez, L. Kaiser, and I. Polosukhin. Attention is all
you need. CoRR, abs/1706.03762, 2017. 8

[40] R. Wightman. Pytorch image models. https://github.
com/rwightman/pytorch-image-models, 2019. 7

[41] D. E. Worrall, S. J. Garbin, D. Turmukhambetov, and G. J.
Brostow. Harmonic networks: Deep translation and rotation
equivariance, 2017. 2

[42] S. Yun, D. Han, S. J. Oh, S. Chun, J. Choe, and Y. Yoo. Cut-
mix: Regularization strategy to train strong classifiers with
localizable features, 2019. 6

[43] S. Zagoruyko and N. Komodakis. Wide residual networks,
2017. 7

[44] R. Zhang. Making convolutional networks shift-invariant
again. CoRR, abs/1904.11486, 2019. 1, 2, 3, 4

[45] A. Zhou, T. Knowles, and C. Finn. Meta-learning symme-
tries by reparameterization, 2021. 2

10

6. Appendix
6.1. Training settings

Parameter Value

Epochs 100
Learning rate 0.01
Optimizer Adam
L2 reg. 0.0005
Weight Decay epochs 25, 50
Weight Decay factor 10.0
Batch size 128

Table 1: CNN training parameters.

Parameter Value

Epochs 200
Learning rate 0.1
Optimizer SGD
Momentum 0.9
L2 reg. 0.0001
Weight Decay epochs 100, 150
Weight Decay factor 10.0
Batch size 128

Table 2: Resnet44 training parameters.

11

2
Background on Deep Learning

2.1. WHAT IS DEEP LEARNING?
The success of Machine Learning techniques was due to their ability to acquire knowl-
edge by extracting patterns from raw data. However, the performance of these algo-
rithms depends heavily on the representation of the data they are presented with. Such
an algorithm can, for example, discover the correlation of certain data features with dif-
ferent outcomes, however, it cannot create features themselves. This burden lies on the
person who uses the algorithm.

The solution to this problem is to use an algorithm that, by itself, can discover the fea-
tures from the data. Such an approach is called representational learning. Deep Learn-
ing is a representation learning technique that learns to represent complex features by
combining different, simpler, learned features.

2.2. DEEP NEURAL NETWORKS

2.2.1. PERCEPTRON.
The basic building block of Neural Network is the algorithm called Perceptron [1]. It’s
a very simple algorithm that works as follows. Given a sample vector x ∈ Rd , we define
learnable parameters W ∈ Rd , b ∈ R. In a forward pass we compute y =σ(W ∗x+b) ∈ R,
where σ is a certain non-linearity function. Such process is presented in Figure 2.1. It is
usually referred to as a single neuron.

2.2.2. MULTI-LAYER PERCEPTRON
The main idea of neural networks is to stack single perceptrons together. Firstly, we can
stack the neurons horizontally to obtain a Single Layer Neural Network. The formula-
tion barely changes, but now given a sample vector x ∈ Rd , the learnable parameters are
W ∈ Rd×n , b ∈ Rn and the output y ∈ Rn , where n is the number of horizontally stacked
neurons also called the width of a layer.

At this point, there is nothing deep about Single Layer Network. To obtain a Deep
Neural Network we have to stack Single layer Neural Networks on top of each other.

13

2

14 2. BACKGROUND ON DEEP LEARNING

Figure 2.1: Single Perceptron.

For example, we might have three functions (layers) f (1), f (2), and f (3) connected in
a chain, to form:

f (x) = f (3)(f (2)(f (1)(x))) (2.1)

In this case, f (1) is called the first layer of the network, f (2) is called the second layer, and
f (3) is the output layer of the network. Such a network is called Multi-Layer Perceptron
(MLP).

2.2.3. ACTIVATION FUNCTION
The crucial part of the construction of the single neuron are non-linearities, also called
activation functions. If we were to throw away the non-linearity from each neuron, the
whole network becomes a linear model and, regardless of the number of layers, could
be represented as y = W ∗ x . The power of such a linear model is significantly limited
as it requires the target classes to be linearly separable to be effective. There are many
possible choices of activation functions. Among the most popular are:

• Sigmoid - One of the earliest activation functions was the Sigmoid function. How-
ever, it suffers from the dying gradient problem. Input values above 5 and below
-5 results in the same value 2.2, which results in very small gradients. That’s why
the Sigmoid is very sensitive to network initialization.

f (x) = 1

1+e−x (2.2)

• tanh - Another function used in the ’early days’ is hyperbolic tangent. It has a
similar characteristic to Sigmoid but it has the advantage that it allows also for
negative values. Similarly to Sigmoid, it suffers from dying gradient problem on
both ends.

f (x) = si nh

cosh
(2.3)

• ReLU - Rectified Linear Unit (ReLU) is currently the most widely used activation
function in Deep Learning for Computer Vision. However, it still suffers from the
dying gradient problem for input values below 0.

f (x) = max(0, x) (2.4)

2.3. CONVOLUTIONAL NEURAL NETWORKS

2

15

• LeakyRelu - To alleviate ReLU’s dying gradient issue, Leaky ReLU allows for small
negative values.

f (x) =
{

0.01x, if x < 0.

x, otherwise.
(2.5)

Figure 2.2: Different activation functions.

2.3. CONVOLUTIONAL NEURAL NETWORKS
MLPs, although very powerful, have some limitations in their basic form. In the presence
of sensory data such as images, video, or audio the spatio-temporal context is introduced
in the data. What that means is that in our data we can have the same reoccurring pat-
terns but in a different time or spatial locations. The MLP is by design not aware of
the existence of a spatio-temporal context and thus has to learn different parameters
to learn the same patterns in different locations. To alleviate this issue [2] introduced a
translation equivariance property into the MLP and proposed the Convolutional Neural
Networks.

In a single layer of the CNN, each neuron, instead of simply computing y =W ∗x+b,
computes a discrete convolution

y(i , j) = (x⋆W)(i , j)+b =
(∑

m

∑
n

x[i +m, j +n]∗W [m,n]

)
+b (2.6)

, where the learnable parameters W are so-called filters or kernels. In case of images,
discrete convolution is equivalent to sliding the filter over every location in the image
and at each location computing the dot-product with the local neighbourhood. This
process is depicted in Figure 2.3. Learnable weights can be seen as feature detectors,
where by sliding the filter over the image we are essentially detecting the presence of a
certain feature (Figure 2.4).

In a multilayer CNN, a typical layer of a convolutional network consists of three
stages. In the first stage, the input of the layer is convolved with multiple filters, which
results in a stack of feature maps, where a single feature map represents a presence of
a certain feature. In the second stage, each linear activation is run through a nonlinear
activation function, such as the ReLU function. In the third stage, a pooling function is
used to reduce the spatial extent of the feature maps (Figure 2.5).

2

16 2. BACKGROUND ON DEEP LEARNING

Figure 2.3: 2D discrete convolution. For every position (x,y) in the image, a dot-product is computed between
the filter W and the local neighborhood of (x,y).

Figure 2.4: Convolution serves as a feature detector. Learning weights can be interpreted as learning features.

Figure 2.5: A simple visualization of a CNN. Convolutional layer results in the stack of feature maps and
pooling layer reduces the spatial size of these feature maps. Usually at the end a global pooling is computed,

which reduces each feature map to a single value.

2.3.1. POOLING
Pooling function replaces the output of the network at a certain spatial location with
a summary statistic of the nearby outputs (Figure 2.6). In general, such an operation
makes the representation invariant to local transformations. There are many examples

2.4. HOW TO TRAIN NEURAL NETWORKS

2

17

of different pooling functions:

• Average-pooling - Computes the average of the local neighborhood.

• Max-pooling - Computes the maximum of the local neighborhood.

• Strided Convolution - Instead of directly encoding what operation over the local
neighbourhood should be computed into architecture, we can leave it for the net-
work to learn by itself using strided convolution. In strided convolution, instead
of shifting the filter by 1 pixel, we simply shift it by multiple pixels, which results in
reduced size of the output. The filters, which determine the aggregating function,
are learned by the network [3].

• Blur-pooling - The sub-sampling is preceded by the gaussian blurring to improve
the translation equivariance property, which deteriorates due to sub-sampling [4].

Figure 2.6: Pooling operation. A certain aggregating function is computed over a local neighborhood, reducing
the spatial size of a feature map.

2.4. HOW TO TRAIN NEURAL NETWORKS
The difference between the linear models and neural networks is that the non-linearity
of a neural network causes the loss functions to become non-convex. That means the
neural networks are usually trained by using iterative, gradient-based optimizers that,
instead of using convex optimization solvers as is the case with e.g. SVMs, just drive the
cost function to a very low value. That means that we iteratively update the model’s pa-
rameters in order to minimize the cost function. The process of updating the parameters
can be divided into three parts: forward pass, backpropagation, updating the parame-
ters.

2

18 2. BACKGROUND ON DEEP LEARNING

2.4.1. FORWARD PASS
In the forward pass, the input is passed through the network, and the cost function is
computed. In the case of the classification problem output of the network is a vector
y ∈ Rc , where c is the number of classes. Each element of that vector denotes the proba-
bility of a particular class. The cost function in classification tasks is most commonly the
Cross-Entropy Loss:

J (Θ) =−(t ∗ l og (y))+ (1− t)∗ log (1− y), (2.7)

where t is the ground truth and y is the output of the network. Having the value of the
cost function we can now proceed to compute the gradients.

2.4.2. BACK PROPAGATION
Once we have the value of the cost function, computing the gradient of the parameters
∂J (Θ)
∂Θ may seem straightforward. However, considering the depth and the number of pa-

rameters in the neural network, it would be computationally expensive to compute the
gradient of every single parameter separately. That’s where the backpropagation algo-
rithm [5], often simply called backprop, comes to use. Backprop uses the chain rule of
calculating the derivatives of nested functions. In a simple univariate case the chain rule
looks as follows:

d

d x
f (g (x)) = ∂ f

∂g

d g

d x
(2.8)

Such a rule allows us to reuse gradient computed at layer l +1 to compute gradients at
layer l .

2.4.3. UPDATING THE PARAMETERS
By updating the parameters using the gradient, we gradually move the cost function to-
wards local or global minimum. A very important part of this process is the learning rate
ϵ, which determines how big are the updates of the learning parameters. There are dif-
ferent algorithms for updating the parameters, which are commonly called optimizers:

• Gradient Descent - Gradient descent algorithm is the basis of most of the optimiz-
ers used in Deep Learning. First we compute the gradient for all the samples in the
training dataset:

ĝ ← 1

N
∇θ

∑
i

J (f (x(i);θ))y i) (2.9)

and then update the parameters using the fixed learning rate ϵ:

θ← θ−ϵĝ (2.10)

• Stochastic Gradient Descent (SGD) [6] - It is often the case that we cannot process
our whole dataset in one go and have to do this in a batched manner. In such a
case, we are computing the gradient and updating the weights based on randomly
sampled m training examples. This variation is called Stochastic Gradient Descent
(SGD). Sampling m training examples introduce noise into our optimization pro-
cess that does not disappear even when we arrive at a minimum. To mitigate that,

2.5. TUNING NEURAL NETWORKS

2

19

it is necessary to gradually decrease the learning rate over time. Now at iteration
k, the algorithm is as follows:

ĝ ← 1

m
∇θ

m∑
i=1

J (f (x(i);θ))y i)

θ← θ−ϵk ĝ

(2.11)

• SGD with Momentum - One way to deal with the noisy gradients is to smooth out
the average gradient. In this case, we will not use the direct gradient to update the
parameters but instead, we will use the exponentially weighted moving average of
the gradients.

v̂k ← v̂k−1ρ+ (1−ρ)
1

m
∇θ

m∑
i=1

J (f (x(i);θ))y i)

θ← θ−ϵk v̂k

(2.12)

• SGD with RMSProp - The momentum only makes the mean gradient change smoothly,
however, the mean does not tell the full story. It can happen that the variance of the
gradients is very high in the directions orthogonal to the direction of the conver-
gence of the mean gradient. So, even though the mean is converging in a certain
direction it can still do so in a noisy way.

r̂k ← r̂k−1ρ+ (1−ρ)
1

m
∇2
θ

m∑
i=1

J (f (x(i);θ))y i)

θ← θ−ϵk
∇θ√

r̂k

(2.13)

• SGD with Adam [7] - Adaptive Moment Estimation (Adam) combines Momentum
with RMSProp.

vk ← v̂k−1ρ1 + (1−ρ1)
1

m
∇θ

v̂k = vk

1−ρk
1

θ← θ−ϵk
v̂k√

r̂k

rk ← r̂k−1ρ2 + (1−ρ2)
1

m
∇2
θ

r̂k = rk

1−ρk
2

2.5. TUNING NEURAL NETWORKS
Having the model and the data is not enough to obtain a properly working algorithm.
Similarly to other machine learning models, neural networks need to be trained properly.
The main challenge in training machine learning models is that our algorithm has to

2

20 2. BACKGROUND ON DEEP LEARNING

perform well not only on the data samples it was trained on but also on a new, previously
unseen data. The ability to perform well on previously unobserved samples is called
generalization. Training a machine learning model is usually done on a training set for
which we can compute training error and throughout the training we aim to reduce it.
However, the performance of a model is typically evaluated not by it’s training error but
rather a test error, which we can also be called a generalization error. This test error is
the performance of the model on a test set consisting of examples that were collected
separately from the training set. The factors determining how well a machine learning
algorithm will perform are its ability to: a) Make the training error small; b) Make the
gap between training and test error small. These requirements correspond to 2 main
challenges when training machine learning models:

• Underfitting - Occurs when both the training error and the test error are too high.
It usually means that our model is too simple and therefore cannot create complex
enough representation to discriminate between classes.

• Overfitting - Occurs when the training error is small but the test error is high. Most
often the reason for that is our model being too complex, which facilitates simply
remembering the training dataset instead of learning more general representation.

2.5.1. REGULARIZATION
Regularization, generally speaking, can be seen as any modification in our model or the
training process, that leads to smaller generalization error but not training error. These
are the common regularization techniques used in training CNNs.

PENALTY IN THE OBJECTIVE

Commonly in machine learning models, one can add an additional term to the cost func-
tion that penalizes certain behaviours of the model. One of the most common penalizing
terms are:

• L2-norm of the weights - This term makes the model prefer weights with the smaller
L2-norm, where parameter λ controls how punishing we want the additional term
to be.

Ω(θ) =λθT θ (2.14)

• L1-norm of the weights - The idea here is similar as in case of the L2-regularization,
however, in this case we get the additional property of feature selection.

Ω(θ) =λ|θ| (2.15)

EARLY STOPPING

Early stopping is quite simple idea to prevent overfitting. When training the model, aside
from giving the model access to the training set we also give it access to so called vali-
dation set. During training, we additionally evaluate the model’s performance on the
validation set. After observing that the validation error start to increase while the train-
ing error is decreasing we simply stop the training. This way we hope that the model will
generalize on the unseen test set.

2.5. TUNING NEURAL NETWORKS

2

21

DROPOUT

Dropout [8] is a regularization technique specific to neural networks. During each train-
ing step, dropout randomly select fraction p of all the neurons and mutes their output.
This process can be repeated every batch or every epoch and leads to significantly lower
generalization error rates, as the presence of neurons is made unreliable. It can also be
seen as training an ensemble of models.

During testings we cannot just randomly turn off neurons and so what is being done
is that we retain all the activations but the output is scaled by 1−p.

BATCH NORMALIZATION

When dealing with machine learning problems, we assume that our data, both train-
ing and testing, follow a distribution that is constant for a particular task. That is quite
an important requirement since a discrepancy between training and testing distribu-
tion can lead to poor generalization. A similar argument can be made with regards not
only to the input data but also to the intermediate representations. However, because
throughout the training the weights are constantly updated, the input distribution of the
intermediate layers is constantly changing. This process is known as an internal covari-
ate shift. It makes the training slow, requires a small learning rate and a good parameter
initialization, which makes the network difficult to train. This problem is alleviated by
normalizing the layer’s inputs over a mini-batch. This process is therefore called Batch
Normalization [9]. It work as follows:

1. Calculate the mean of the mini-batch for output feature k of every neuron

µ(k)
b = 1

m

m∑
i=0

x(k)
i (2.16)

2. Calculate the variance of the mini batch

σ2(k)
b = 1

m

m∑
i=0

(x(k)
i −µ(k)

b)2 (2.17)

3. Normalize the representation to 0 mean and unit variance

x̂i
(k) = x(k)

i −µ(k)
B√

σ2(k)
B ϵ

(2.18)

4. Scale and shift the normalized mini-batch to set the new mean and variance.

yi = γxi +β (2.19)

DATA AUGMENTATION

Another common way of improving the generalization is data augmentation. Data aug-
mentation is a technique of applying transformations, usually randomly parametrized,
to the input of the neural network. Such a process incentives a network to learn invari-
ance to different input transformations. In Figure 2.7 we show examples of very common
data augmentations.

2

22 REFERENCES

Figure 2.7: Examples of common data augmentation techniques.

REFERENCES
[1] S. Shalev-Shwartz, Perceptron algorithm, in Encyclopedia of Algorithms, edited by

M.-Y. Kao (Springer US, Boston, MA, 2008) pp. 642–644.

[2] Y. Bengio and Y. Lecun, Convolutional networks for images, speech, and time-series,
(1997).

[3] K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learning for image recognition,
(2015), arXiv:1512.03385 [cs.CV] .

[4] R. Zhang, Making convolutional networks shift-invariant again, CoRR
abs/1904.11486 (2019), arXiv:1904.11486 .

[5] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Learning representations by back-
propagating errors, Nature 323, 533 (1986).

[6] S. Ruder, An overview of gradient descent optimization algorithms, arXiv preprint
arXiv:1609.04747 (2016).

[7] D. P. Kingma and J. Ba, Adam: A method for stochastic optimization, CoRR
abs/1412.6980 (2015).

[8] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, Dropout:
A simple way to prevent neural networks from overfitting, J. Mach. Learn. Res. 15,
1929–1958 (2014).

[9] S. Ioffe and C. Szegedy, Batch normalization: Accelerating deep network training by
reducing internal covariate shift, CoRR abs/1502.03167 (2015), 1502.03167 .

http://dx.doi.org/10.1007/978-0-387-30162-4_287
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1904.11486
http://arxiv.org/abs/1904.11486
http://arxiv.org/abs/1904.11486
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1502.03167

3
Equivariance In Convolutional

Neural Networks

3.1. TRANSLATION EQUIVARIANCE IN CONVOLUTIONAL NEU-
RAL NETWORKS

Function f : X ⇒ Y is commonly considered to be equivariant with respect to transfor-
mations T if it commutes with this transformation:

f (T (x)) = T (f (x)) ∀x ∈ X . (3.1)

In other words, it means that we can apply a transformation to the input or to the output
and obtain the same result. Convolution is translation equivariant, which is depicted in
Figure 3.1.

Figure 3.1: Translation equivariance property of the convolution. One can either translate the image and then
convolve it with the filter or first convolve the image and then translate the output.

23

3

24 3. EQUIVARIANCE IN CONVOLUTIONAL NEURAL NETWORKS

3.1.1. VIOLATING TRANSLATION EQUIVARIANCE

There are several factors that deprecate the translation equivariance property of the con-
volutional neural networks.

SAMPLING

In [1] the author shows how different forms of subsampling currently used in CNNs like
max-pooling and strided convolution can deteriorate translation equivariance property.
In principle, he shows that these methods introduce heavy aliasing, which can result in
large output changes for the small input changes. To alleviate this issue, he precedes
the subsampling operation with a blurring operation reducing the aliasing effect and
improving the translation equivariance property (Figure 3.1).

Figure 3.2: Anti-aliassing BlurPool. Pooling does not preserve translation equivariance. It is functionally equiv-
alent to densely-evaluated pooling, followed by subsampling, which loses translation equivariance. (Bottom)
Bluring filter is applied before subsampling. This keeps the first operation unchanged, while anti-aliasing the
appropriate signal. Figure courtesy of [1].

BORDER EFFECTS

In [2] the authors show how CNNs exploit the border effects to classify objects that are
close to the border, therefore, breaking the translation equivariance. The Same Convolu-
tion, which is the mode of the convolution that adds padding to retain the output image
size, has been the most common way to apply convolution in CNNs. However, this mode
allows for the scenarios where we have a filter detecting a certain feature and depend-
ing on at which border the feature is located in the image, it can be detected or not. To
alleviate this issue, the authors propose Full Convolution, which adds more padding to
enable the filter detect features at every position in the image. (Fig. 3.3)

3.2. EQUIVARIANCE TO OTHER TRANSFORMATIONS

3

25

Figure 3.3: Lack of translation equivariance due to the border effect. Blue square in the input represents pres-
ence of a certain feature and blue square in the output represents activation to that features. Same Convolution
adds not enough padding to capture features located at the border. Full Convolution solves that by adding ex-
tra padding.

3.2. EQUIVARIANCE TO OTHER TRANSFORMATIONS

Convolution operation is not equivariant to other affine transformations e.g. rotations
(Figure 3.4). There are number of works that introduce the equivariance property over
different transformations into the CNNs. Most notable is probably the work of [3], where
the authors show how to make convolution operation equivariant to any discrete trans-
formation symmetry group. Let’s analyze the mechanism behind such method as an
example of how one can achieve equivariance.

Figure 3.4: Lack of rotation equivariance in the convolution operation.

3

26 3. EQUIVARIANCE IN CONVOLUTIONAL NEURAL NETWORKS

3.2.1. GROUP EQUIVARIANT CONVOLUTIONAL NETWORKS
So far we’ve defined equivariance as a property of a function, where domain and codomain
commute with a particular transformation T . Here we need to introduce a subtle change
to our definition. More formally equivairance is the property of the function under a
transformation group G if it’s domain and codomain commute with the action of that
group:

f (Tg (x)) = Tg (f (x)) ∀(x, g) ∈ (X ,G). (3.2)

Group Equivariant Convolution (GConv), proposed in [3], allows making the convo-
lution operation equivariant to any transformation symmetry group. To explain how the
GConv works, we introduce some of the basic concepts of group theory.

SYMMETRY TRANSFORMATION & SYMMETRY GROUP

First, let’s define what a symmetry transformation is. Symmetry transformation is a
transformation that leaves the object invariant, meaning that the parts of the objects
might be permuted, but the object as a whole remains unchanged. An example of such
transformation can be a 90◦ rotation or a horizontal flip.

A symmetry group G is a set of symmetry transformations where for any transforma-
tions g , h and i ∈G the following conditions hold:

1. Composing g and h gives another symmetry transformation g h, which also be-
longs to the group G ∀g ,h ∈G .

2. The inverse transformation g−1 of any symmetry transformation is also symmetry
transformation and composing it with g give the identity transformation ∀g ∈G .

3. Elements of the group are associative meaning i (g h) = (i g)h ∀i , g ,h ∈G .

4. There exists an element e ∈G for which g e = eg = g ∀g ∈G .

An example of such group is a set of 2D integer translations Z 2, under which the reg-
ular convolution is already equivariant. One can verify that for any tuples of integers
(n,m), where n,m is the size of translation in x and y directions, the conditions stated
above hold. However, we want to get more than that. Here we show how we can make
the convolution equivariant under the p4 group, which consists of all compositions of
translations and rotations by 90 degrees. The rotations in p4 group is visualized in Figure
3.5.

GROUP EQUIVARIANCE

Having a basic notion of symmetry group and an example in the form of p4 group, let’s
analyze what properties the convolutions needs to have in order to be equivariant with
respect to the transformation symmetry group. We are concerned with rotations of the
2D images, so we introduce the following notation for a rotation r acting on a 2D grid.

[Tr I](x) = I (r−1x) (3.3)

This says that to get the value of the r rotated image Tr I at the point x, we need to do
a lookup in the original image I at the point r−1x, which is the unique point that gets
mapped to x by g.

3.2. EQUIVARIANCE TO OTHER TRANSFORMATIONS

3

27

Figure 3.5: Visualization of the p4 group.

Here, we show the derivation of the necessary conditions for the convolution to be
equivariant under a group action, originally done by [3].

[[Tr I]⋆ψ](x) = ∑
y∈Z 2

∑
k

Tr fk (y)ψ(y −x)

= ∑
y∈Z 2

∑
k

fk (r−1 y)ψ(y −x)

= ∑
y∈Z 2

∑
k

fk (y)ψ(r y −x)

= ∑
y∈Z 2

∑
k

fk (y)ψ(r (y − r−1x))

= ∑
y∈Z 2

∑
k

fk (y)Tr−1ψ(y − r−1x)

= f ⋆ [Tr−1ψ](r−1x)

= Tr [f ⋆ [Tr−1ψ]](x)

(3.4)

What the Equation 3.4 says is that the convolution of a rotated image Tr I with a filter ψ
is the same as rotating by r the image I convolved with the inverse-rotated filter Tr−1ψ.
It means that if the single filter is rotation invariant ψ= Tr−1ψ, the convolution is equiv-
ariant or if CNN learns rotated copies of the same filter, the stack of feature maps is
equivariant, although individual feature maps are not.

GROUP EQUIVARIANT CONVOLUTION

For the convolution to be equivatiant to the symmetry group we have to compute con-
volution for each element of the group. That means, instead of computing single convo-

3

28 3. EQUIVARIANCE IN CONVOLUTIONAL NEURAL NETWORKS

lution using filter ψ, we compute four convolutions with rotated versions of the filter ψ
(Figure 3.6). This is so-called P4Z 2 convolution. An important observation here is that,
although the input and the filter are functions on the plane Z 2, the output of such con-
volution is a function on p4 group. The consequence of that is we cannot apply the same
P4Z 2 convolution in the subsequent convolutional layer since the input to that layer is
a function on p4 group.

(a) P4Z2 convolution. In a single group convolution operation, four convolution are computed with
filter transformed by each element of the group.

(b) For single group element, a regular convolution is com-
puted.

Figure 3.6: P4Z2 convolution.

Since the input to the subsequent layer is the function on p4, the filter has to be
function on p4 as well. This adds one caveat to transformation of the filter. In case of the
P4Z 2 convolution we were simply rotating the filter. Now that our input is in p4 space
and hence the filter is, the transformation looks a bit different. Apart from rotating the
filter, elements of the filters are also permuted (Figure 3.7). This way, we can extend the
equivariance property to the subsequent layers and build fully equivariant networks.

REFERENCES

3

29

(a) P4P4 convolution. Transformation of the filter defined in p4 space is now not only the rotation but also a permutation of
individual channels.

(b) For single group element, a regular convolution is computed. The input
and the filter have 4 channels now.

Figure 3.7: P4P4 convolution.

REFERENCES
[1] R. Zhang, Making convolutional networks shift-invariant again, CoRR

abs/1904.11486 (2019), arXiv:1904.11486 .

[2] O. S. Kayhan and J. C. van Gemert, On translation invariance in cnns: Convolutional
layers can exploit absolute spatial location, (2020), arXiv:2003.07064 [cs.CV] .

[3] T. S. Cohen and M. Welling, Group equivariant convolutional networks, in Proceed-
ings of the 33rd International Conference on International Conference on Machine
Learning - Volume 48, ICML’16 (JMLR.org, 2016) p. 2990–2999.

http://arxiv.org/abs/1904.11486
http://arxiv.org/abs/1904.11486
http://arxiv.org/abs/1904.11486
http://arxiv.org/abs/2003.07064

	Preface
	Research Paper
	Background on Deep Learning
	What is Deep Learning?
	Deep Neural Networks
	Perceptron.
	Multi-Layer Perceptron
	Activation Function

	Convolutional Neural Networks
	Pooling

	How to train neural networks
	Forward pass
	Back propagation
	Updating the parameters

	Tuning neural networks
	Regularization

	titleReferences

	Equivariance In Convolutional Neural Networks
	Translation equivariance in Convolutional Neural Networks
	Violating translation equivariance

	Equivariance to other transformations
	Group Equivariant Convolutional Networks

	titleReferences

