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Summary

The ongoing demand for better performing designs, has resulted in an increase in the com-
plexity of topology optimization problems. Traditionally, the majority of the corresponding
computational cost comes from solving the analysis equations using linear �nite elements
(FE). In this thesis a topology optimization method is presented, that is based on the �-
nite cell method (FCM). This higher-order �ctitious domain method is, due to its decoupled
geometry-, integration-, and analysis-mesh well suited for large-scale topology optimization,
and reducing its corresponding computational cost.

A topology optimization model using the FCM is developed, which performs density based
topology optimization, and includes the well-known SIMP method for material interpolation.
Gradient based optimization is performed using the method of moving asymptotes (MMA).
The use of the decoupled density and analysis mesh, requires regularization using mesh-
independent �ltering. Furthermore, this decoupling allows a wide variety in analysis systems,
ranging from very simple to highly accurate analysis. Di�erent values for the polynomial
degree, and the corresponding amount of density voxels per cell have been tested, to identify
for which settings topology optimization could be performed in a reliable and accurate fashion.

It is observed that the use of a decoupled density and analysis mesh greatly reduced the com-
putational cost of topology optimization compared to linear FEM. Especially in 3D topology
optimization examples, the computational has been decreased by more than a factor 10,
while maintaining a high-resolution in the density �eld. The use of a larger length-scale can
reduce the computational cost even more, which is especially bene�cial for robust topology
optimization.

For the relatively simple optimization examples used in this thesis, no setting could be identi-
�ed as being the best, regarding accuracy and computational cost. The choice of the analysis
system completely depends on the complexity of the optimization problem. The simple op-
timization problems showed great increase in computational e�ciency using relatively low
polynomial degree p = 1, 2, 3, hence a bene�t for higher-polynomial degrees was not identi-
�ed. For more di�cult topology optimization examples, such as stress-constrained topology
optimization, or examples with multiple weak boundary conditions, a more accurate analysis
system is required, hence a larger polynomial degree should be used.
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Chapter 1

Introduction

In all disciplines of engineering there is the ever-increasing desire for better performing de-
signs. In structural engineering this is usually translated into a demand for sti�er and lighter
structures, hence the increased use of composite materials in automotive and aerospace ap-
plications. Apart from new materials and production processes, the computational analysis
tools have advanced rapidly. Nowadays, structural engineers rely heavily on these tools, of
which the �nite element method (FEM) is the most renowned.

The increasing availability of computational power, and maturation of analysis methods has
also initiated a new design �eld called: structural optimization. The core idea is to translate
design requirements into a constrained optimization problem, which is solved by a computer
program. Structural optimization encompasses three di�erent methods, of which topology
optimization is the most fundamental. It dictates the location and connectivity of material
in a design domain [23]. Topology optimization therefore seems the ideal structural design.
Given a design domain and boundary conditions, a computer program will come up with the
ideal design as can be seen in Figure 1.1.

Figure 1.1: Example of topology optimization on a MBB beam, the top �gure denotes the
design domain Ω with the applied loads and boundary conditions, and the bottom
�gure shows the corresponding optimized structure [60]

The demand for better performing designs, also has resulted in a dramatic increase in the
complexity of topology optimization problems. Large-scale topology optimization requires

1
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enormous computational e�ort, and is only possible using parallel computation [2]. For
topology optimization to become a fully mature design tool, more complex load conditions,
boundary conditions, and buckling criteria have to be incorporated, as well [40]. Despite the
large amount of studies performed on improving topology optimization, the vast majority of
methods still makes use lower-order �nite elements [53], which are known to be less accurate
compared to higher-order shape functions [13, 71].

In the research reported in this thesis, the e�ect of higher-order shape functions for topology
optimization applications was investigated using the �nite cell method (FCM) introduced by
Parvizian, Düster and Rank [31, 52]. This higher-order �ctitious domain method is, due to its
decoupled geometry-, integration-, and analysis-mesh well suited for topology optimization.

1.1 Research objective

The research objective was: "To investigate the potential of the FCM for large scale, high

resolution topology optimization problems, compared to the use of �nite elements (FE) with

linear shape functions in terms of reliability, e�ciency, and accuracy." Hence, the goal was
to develop a method to perform topology optimization with the FCM and identify in which
cases it can be more bene�cial to use FCM than classical FEM.

To reach this objective, a topology optimization model based on the FCM had to be derived,
and validated. This validation process was an extremely di�cult task, since topology opti-
mization problems are generally non-convex, but, it de�nes the accuracy and reliability of the
developed model. The most feasible way to tackle the validation process was to compare the
optimized structures to well known examples, such as the MBB-Beam or the force-inverter.
At the end of this process the parameters were identi�ed at which the developed model is
able to perform topology optimization in a stable fashion.

Afterwards, the developed model was compared to a topology optimization model using linear
FEM for di�erent optimization experiments. The goal of these experiments was to identify
di�erences in e�ciency between both methods and to determine which methods are the most
e�ective for which conditions. Furthermore, the optimization model using the FCM is able
to enforce boundary conditions in the weak sense, such that more interesting optimization
examples have been used.

1.2 Context of research

In this section a brief introduction will be given on the history and applications of topol-
ogy optimization, and, the advancement in analysis methods will be discussed. Finally the
research reported in this thesis is put into context with respect to the current studies on
topology optimization.

1.2.1 Topology optimization

The introduction of topology optimization by Bendsøe and Kikuchi marked the starting point
of a rapidly growing and very active research �eld [15, 27, 64]. Within a couple of years the
�eld divided into a number of di�erent sub�elds. The research reported in this thesis is
focused on the most mature and most used method: the continuous density method using
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the solid isotropic material with penalization (SIMP) method for the material interpolation.
The reader who is interested in a more detailed literature study on topology optimization
should turn to Appendix A.

In the SIMP method the design domain is split into small elements, the density of which
can vary between 0 and 1, where 0 corresponds to an element containing no material (void),
and where 1 corresponds to an element consisting of material (solid). The density a�ects
the element sti�ness in a similar fashion to that of �ctitious domain methods. To steer the
element densities towards a crisp solid-void solution, the intermediate densities are penalized
using the SIMP method. This method which was independently developed by Bendsøe, and
Zhou and Rozvany is sometimes referred to as power-law approach [14, 87].

Despite the fact that topology optimization is a relatively new technique it already found
applications in various industries such as the aerospace and automotive industries [86, 90].
Furthermore, the method has given very promising results for the biomedical industry and
the development of micro electro-mechanical systems (MEMS) [17].

1.2.2 Advancements in analysis methods

Since its introduction in the late 1950's, the FEM has been the most used method for struc-
tural analysis. Originally, this method made use of lower-order shape functions, however,
the p-version of the �nite element method introduced by Babu²ka, Szabó, and Katz shows
superior convergence towards the exact solution [13]. In FE-analysis the physical domain has
to be discretized into a mesh. Advancements in meshing and powerful mesh generators allow
for e�cient meshing of most domains, but, for highly complex geometries the meshing process
can still prove to be a time consuming process [58]. To cope with this problem Hughes et
al. introduced isogeometric analysis [25]. Here the same functions that are used to represent
the geometry in computer aided design (CAD) tools are used to describe the solution �eld.
The FCM goes one step further and is also able to omit the time consuming meshing process
even when no CAD model is available.

The FCM is a �ctitious domain method, where the embedding domain consists of a physical
and �ctitious part. Since the boundaries of the physical domain do not necessarily conform
with the element boundaries, boundary conditions (BCs) have to be applied in the weak sense.
The use of higher-order shape functions and a composed integration scheme make this method
very e�cient, especially for image based-models such as human femur analysis [57, 58, 83].

Topology optimization can be seen as a �ctitious domain method. Therefore the FCM shows
great potential for topology optimization examples. The higher-order shape functions and
the composed integration scheme have demonstrated the FCM's advantage over linear FEM,
and the application of boundaries in the weak sense allows very interesting optimization
examples.

In nested topology optimization e�cient assembly of the sti�ness matrix is required. There-
fore, all elements generally have the exact same properties, such that the integration only
has to be performed once. The cells in the FCM can all have the same dimensions and
shape functions, such that the same bene�t can be exploited. Finally, it has to be noted that
the developers of the FCM have implemented a heuristic optimization method to show the
topology optimization possibilities using the FCM [53].
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1.2.3 New developments within topology optimization

Despite the large availability of computational facilities, topology optimization still comes
with high computational cost. Research on reducing this cost can be split into three as-
pects: reducing the complexity of the model, reducing the FE-analysis time, and making the
optimization process more e�cient.

Model complexity involves the number of degrees of freedom in the sti�ness matrix. To
reduce this number Stainko proposed a method where the mesh is adaptively re�ned along
the interface between solid and void [66]. Another, more interesting method to reduce the
complexity of the model is multi-resolution topology optimization (MTOP) described by
Nguyen et al [47]. In a more recent paper an adaptive-MTOP method is introduced in which
the design variable and density �elds can be adjusted and re�ned [48]. Similar to the FCM,
a composed integration scheme is used to map the density distribution on the �nite element
mesh. The multi-resolution methods only include linear shape functions, and imposes a large
length-scale, hence, the full potential of the increased resolution is not yet employed.

Several researchers have focused on reducing the analysis time. They have performed stud-
ies on recycling parts of the previous sti�ness matrix [80], and on approximations of the
displacement vector [7, 8].These advanced methods can be implemented together with the
FCM.

The overall optimization time can be decreased by using parallel computations. Borvall
and Petersson were the �rst to describe topology optimization using parallel computing tech-
niques [18]. To utilize the computational facilities to the fullest, the code has to be completely
parallelized [2, 1]. The FCM can be parallelized, but, that was beyond the scope of this thesis
work [58].

1.3 Thesis structure

A very important part of the reported research was to develop a topology optimization
program using the FCM. To do this the Finite Cell Method Topology Optimization Program
(FCMTOP) was created. The corresponding theory will be discussed in Chapter 2. First, the
FCM used to calculate the displacement �eld will be introduced, second, the theory behind
topology optimization using the SIMP method will be discussed. Chapter 2 is concluded
with an overview of how the program works.

The limitations of the model will be demonstrated in Chapter 3, where the focus will be on
the accuracy and the stability of the developed method. The research into the e�ciency of the
developed topology optimization method will discussed in Chapter 4. Theoretical aspects re-
garding e�cient matrix storage and Cholsesky decomposition will be discussed, furthermore,
the performance of the model will be compared to a topology optimization model using linear
FEM. The performance of the developed topology optimization program using the FCM, will
be discussed in chapter 5. This thesis is concluded in Chapter 6. The work performed is
summed up and the most important results will be emphasized. Recommendations regarding
the use of the method in future studies are given.



Chapter 2

Methodology

The development of the topology optimization method based on the �nite cell method (FCM)
will be discussed in this chapter. First the FCM, used to obtain the displacement �eld is
introduced, second, the theory behind topology optimization is described. Both methods will
be combined into the �nite cell method topology optimization program (FCMTOP), which
will be discussed in the last section.

2.1 The �nite cell method

The FCM can be seen as an extension of the classical �nite element method (FEM). The
FEM will be introduced in Section 2.1.1, subsequently, higher-order shape functions will
be discussed in Section 2.1.2. The theoretical background of the FCM and its integration
scheme will be shown in Section 2.1.3. This section will be concluded by a discussion on the
enforcement of the boundary conditions in the weak sense.

2.1.1 From variational formulation to the �nite element method

Consider a deformable body with domain Ω , at which a body force b is acting. The boundary
of the domain consists of a Neumann boundary ΓN , a Dirichlet boundary ΓD, and a free
boundary. The total potential energy Πtot of this domain is at a stationary point,

Πtot = Πin + Πext (2.1)

The foundation of the �nite element equations is the virtual work principle (VWP), with
which this stationary point can be found [45]. The VWP states that for any kinematic
admissible displacement �eld δu the change in the total potential energy should be equal to
zero:

δΠtot = δΠin(u, δu) + δΠext(δu) = 0 ∀ x ∈ Ω, ∀ δu ∈ u (2.2)

5
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where δΠin and δΠext denote the internal and external work on Ω. For linear elastic behavior,

δΠin(u, δu) = −
∫

Ω
σ : δε dV ∀ x ∈ Ω (2.3)

δΠext(δu) =

∫
Ω
b · δu dV +

∫
ΓN

t · δu dΓN ∀ x ∈ Ω (2.4)

σ = C : ε ∀ x ∈ Ω (2.5)

ε =
1

2
[∇u+ (∇u)T ] ∀ x ∈ Ω (2.6)

t = tN ∀ x ∈ ΓN (2.7)

u = uD ∀ x ∈ ΓD (2.8)

where σ denotes the stress tensor, subsequently ε denotes the strain tensor, C is the elasticity
tensor, tN is the prescribed traction, and uD is the prescribed displacement.

Substituting all expressions in Equation 2.2 gives:

−
∫

Ω
δε : σ dV +

∫
Ω
b · δu dV +

∫
ΓN

tN · δu dΓN = 0 (2.9)

Using the Bubnov-Galerkin method this continuum equation can be discretized into small
elements for which the unknown displacement u can be approximated [24]. Using shape
functionsNe and unknown coe�cients de, the displacement at any point x within the element
of interest e can be obtained,

u(x) = Ne(ξ(x))de (2.10)

where the global position vector x = (x, y, z) is mapped on the element coordinate system
ξ = (ξ, η, ζ). Since the displacement gradient is symmetric there exists a relation between
the strain variation and the variation in unknown coe�cients:

δε = Beδde (2.11)

where Be is called the strain displacement matrix,

Be = ∇Ne (2.12)

Discretization of Equation 2.9 yields,

−
∑
e

∫
Ωe

δdTe B
T
eCBede dVe +

∑
e

∫
Ωe

δdTeN
T
e b dVe

+
∑
e

∫
ΓN,e

δdTeN
T
e tN,e dΓN,e = 0

(2.13)

For now, the enforcement of both the boundary conditions (BCs) is not considered. These
conditions will be discussed in detail in Section 2.1.4. Furthermore, the element unknowns
de are constant and can therefore be taken out of the integral. Equation 2.12 has to hold for
any kinematic admissible variation in unknowns and can therefore be written as:

−
∑
e

∫
Ωe

BT
eCBe dVe D+

∑
e

∫
Ωe

NT
e b dVe = 0 (2.14)

where D is the vector with containing all unknowns. This problem can be written into the
�nite element equation as:

KD = F (2.15)
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where K is the global sti�ness matrix assembled from the element sti�ness matrices ke, while
load vector F can be assembled from the element load vector fe.

ke =

∫
Ωe

BT
eCBe dVe (2.16)

fe =

∫
Ωe

NT
e b dVe (2.17)

2.1.2 Higher-order shape functions

The shape functions required to interpolate the displacement are not unique, i.e. di�erent
sets of basis functions can be used. In classical FEM low-order Lagrange polynomials were
used as shape functions, where the unknown coe�cients D, corresponded to the nodal dis-
placements [72]. These lower order shape functions cannot resemble complex displacement
�elds within an element. To cope with this two options exist: either more smaller elements
can be used, or more complex basis functions have to be utilized.

The �rst option is called the h-version of FEM. In this method the error in strain energy
converges converges linearly with increasing degrees of freedom [24]. In the latter method, the
p-version of the �nite element method, the element size is kept constant and the polynomial
degree is increased. Compared to the linear convergence of the h-version of FEM, the p-
version shows exponential convergence towards the exact solution for increasing degrees of
freedom [13, 71].

The FCM includes the p-version of FEM. The higher order basis functions used in this
method are integrated Legendre polynomials. Contrary to Lagrange polynomials, Legendre
polynomials are hierarchic, i.e. the shape functions for polynomial degree p are also included
when degree p+1 is used as can be seen in Figure 2.1. This property results in a more empty
sti�ness matrix, allowing an e�cient solution of the analysis equations.

Figure 2.1: "Set of one-dimensional standard and hierarchic shape function for p = 1, 2, 3" [30]

The one dimensional set of shape functions can be de�ned as:

N1(ξ) =
1

2
(1− ξ)

N2(ξ) =
1

2
(1 + ξ)

Ni(ξ) = φi−1(ξ), i = 3, 4, ..., p+ 1

(2.18)

where φ corresponds to the integrated Legendre polynomial,

φj(ξ) =

√
2j − 1

2

∫ ξ

−1
Lj−1(t)dt =

1√
4j − 2

Lj(ξ)− Lj−2(ξ), j = 2, 3, ... (2.19)
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where Lj(ξ) are the Legendre polynomials. The �rst two shape functions are the nodal
modes corresponding to FEM using linear shape functions. With the integrated Legendre
polynomials as basis functions, the displacement can be interpolated:

u(ξ) = N1(ξ)d1 +N2(ξ)d2 +

p+1∑
i=3

Ni(ξ)di (2.20)

The orthogonality property of the Legendre polynomials can be demonstrated for the shape
functions where i ≥ 3:∫ 1

−1

dNi

dξ

dNj

dξ
dξ = δij , i ≥ 3 and j ≥ 1, or i ≥ 1 and j ≥ 3 (2.21)

The shape functions can be used in two- or three-dimensional problems, by combining two
lower order bases using the tensor product [85]:

N2D
i,j (ξ, η) = N1D

i (ξ)N1D
j (η)

N3D
i,j,k(ξ, η, ζ) = N2D

i,j (ξ, η)N1D
k (ζ)

(2.22)

On a standard quadrilateral elements, three di�erent types of modes can be distinguished
shown in Figure 2.2 [85].

Figure 2.2: 2-Dimensional mode types [85]

• Nodal Modes

These standard bi-linear shape functions make sure that the shape function is exactly
1, at the corresponding edge node, and zero at the other edge node, the corresponding
mode can be written as,

Nn1
1 (ξ, η) =

1

4
(1− η)(1− ξ) (2.23)

• Edge Modes

These modes have a �nite value along the corresponding edge and are zero at all other
edges. The corresponding mode can be written as,

N e1
i (ξ, η) =

1

2
(1− η)φi(ξ) for i ≥ 2 (2.24)

• Internal Modes

This mode purely gives �nite values at the interior of the element, and is zero at all
edges. The corresponding mode can be written as,

N int
i,j (ξ, η) = φi(ξ)φj(η) for i, j ≥ 2 (2.25)



2.1 The �nite cell method 9

Next to the full tensor product basis, there is another basis called the trunk space. In this
basis the internal behavior is described using less shape functions, resulting in a limited
number of unknowns [71, 72]. Finally, it should be noted that the FCM can be extended
to use other higher-order approximation bases, such as B-splines and non-uniform rational
B-splines (NURBS) [58].

2.1.3 The �ctitious domain approach

Similar to density based topology optimization methods, the FCM is a �ctitious domain
approach. This means that the embedding domain Ω consists of a physical domain of interest
Ωphys and a �ctitious domain Ωfict. A graphical illustration of this method can be seen in
Figure 2.3 [58].

Figure 2.3: "The �ctitious domain approach: the physical domain Ωphys is extended by the
�ctitious domain Ωfict into an embedding domain Ω to allow easy meshing of
complex geometries. The in�uence of Ωfict is penalized by α" [58]

The main advantage of the FCM is that the embedded domain can be discretized into axis-
aligned rectangular cells. Since the boundary of the physical domain can cut a cell, the
boundary conditions have to be applied in the weak sense, as will be discussed in Section 2.1.4.
The analysis is performed on the solution mesh consisting of the cells, while a separate
integration mesh and the higher order basis functions will allow for an accurate solution [58].

To take the �ctitious domain into account the constitutive matrix as well as the body force
vector are multiplied with a material indicator α:

α(x) =

{
1
0
∀ x ∈ Ωphys

∀ x ∈ Ωfict
(2.26)

kc =

∫
Ωc

BT
c αCBc dVc (2.27)

fc =

∫
Ωc

NT
c αb dVc (2.28)

To avoid ill conditioning α is chosen to be not exactly 0 but rather 10−10 [31, 52].

In the FCM a composed integration scheme is applied to cope with the non-uniform material
distribution within a cell. Each cell is divided into rectangular sub-cells with constant material
properties. The sti�ness matrix and load vector are integrated in the sub-cells and then
mapped on the cells. Since both cells and sub-cells are rectangular, the geometry can be
interpolated using only linear shape functions, resulting in a constant Jacobian matrix [58, 31].

kc =

nsc∑
i=1

ki fc =

nsc∑
i=1

fi (2.29)
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A bene�t of this integration method is that it is well-suited for voxel-based models, such
as qCT-scan data or density distributions used in topology optimization [58, 83]. Each of
the voxels e can be represented by a sub-cell, containing (p + 1)3 integration points. The
simplicity of the FCM is that each cell has exactly the same dimensions and amount of
sub-cells. Therefore, the amount of voxels ne can be calculated as:

ne = ncnsc (2.30)

where nc, and nsc correspond to the amount of cells, and sub-cells respectively. Topology
optimization application makes use voxel-based models, so in the remainder of this thesis the
word voxel is used instead of the word sub-cell. The topology of a cell is therefore de�ned
by the amount of voxels it contains (nsc), which depends on the number of voxels in each
direction of a cell (nvoxel),

nsc = ndimvoxel (2.31)

where dim corresponds to the dimension of the problem. Hence, each cell has the same
amount of voxels in each direction. In case of isotropic material, with a constant Poisson's
ratio ν, and a voxel dependent Young's modulus Ei the elasticity matrix can be written as:

Ci = EiC
0 (2.32)

where C0 is independent of the voxel. The cell sti�ness can then be de�ned as follows:

kc =

nsc∑
i=1

αiEik
0
i (2.33)

The voxel matrices k0
i are independent of the voxel-wise material properties, and all cells have

the same size and voxel distribution, therefore, the integrands k0
i have to be pre-computed for

just one cell. Afterwards, the cell sti�ness matrix can be assembled e�ciently by multiplying
the precomputed matrices with the material constants. These cell matrices can then be
mapped into the global sti�ness matrix K.

2.1.4 Enforcement of boundary conditions in the weak formulation

In the FCM the complicated meshing process is shifted to a more complex enforcement of
the BCs. Since the BCs not necessarily have to coincide with the cell edges, they have to be
applied in the weak sense.

Weak enforcement of Neumann boundary conditions

Homogeneous Neumann BCs are always satis�ed in the FCM. The sti�ness penalization in
the �ctitious domain makes sure that the stresses cannot be transfered beyond Ωphys [52, 31].

Non-zero Neumann BCs can be simply enforced by integrating over the traction boundary.
This only requires an explicit representation of the load surface or an approximation based
on small parameterized surface elements. For now consider a parameter dependent surface
description (Γt), with parametric coordinates u and v [58]. The in�uence of the traction load
on the load vector can be written as:

Ft =
∑
e

∫
Γt,e

NT
e te ‖x,u × x,v‖ dΓt,e (2.34)

where x(u, v) is the location on the parameterized surface, and ‖x,u × x,v‖ is the vector
normal to the surface plane at point (u, v).
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Weak enforcement of Dirichlet boundary conditions

For the application of the essential BCs the potential energy is augmented with a constraint
potential Πc, resulting in a new potential:

Π̃tot = Πin + Πext + Πc (2.35)

Three methods will be considered for the application of Dirichlet BCs in the weak sense.
These are the penalty method, the method using identi�ed Lagrange multipliers and Nitsche's
method. This is because Nitsche's method, which has been used for the research in this thesis,
can be seen as a combination of the �rst two methods. Just as in the case of the Neumann
BCs all methods require an explicit boundary representation on which:

u− uD = 0 ∀ x ∈ ΓD (2.36)

Using the penalty method the constraint potential can be written as:

Πc =

∫
ΓD

1

2
τP

(
u− uD

)2
dΓD (2.37)

where τP is the penalization value. For the augmented total potential energy (Π̃tot) a sta-
tionary point has to be found. The variation in the constraint potential can be written as:

δΠc =

∫
ΓD

τP

(
u− uD

)
· δu dΓD (2.38)

The stationary point can be found by �nding the variation of the augmented total potential
energy and setting it equal to zero:

−
∫

Ω
δε : σ dV +

∫
Ω
b ·δu dV +

∫
ΓN

tN ·δu dΓN +τP

∫
ΓD

u ·δu dΓD−τP
∫

ΓD

uD ·δu dΓD = 0

(2.39)

In case identi�ed identi�ed Lagrange multipliers are used, the constraint potential can be
written as:

Πc =

∫
ΓD

λ ·
(
u− uD

)
dΓD (2.40)

where λ corresponds to the Lagrange multipliers. The Lagrange multipliers can be identi�ed
as:

λ = −σ · n (2.41)

where n is the normal pointing out of the surface. The variation of the constraint potential
can then be de�ned as follows:

δΠc = −
∫

ΓD

δσ · n ·
(
u− uD

)
dΓD −

∫
ΓD

σ · n · δu dΓD (2.42)

The variation in the augmented total potential energy becomes:

−
∫

Ω
δε : σ dV+

∫
Ω
b·δu dV+

∫
ΓN

tN ·δu dΓN−
∫

ΓD

δσ·n·
(
u−uD

)
dΓD−

∫
ΓD

σ·n·δu dΓD = 0

(2.43)

The �nal method that will be considered is developed by Nitsche [49]. This method can be
seen as an extension of the identi�ed Lagrange multiplier method using a stabilization term
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similar to the penalization method. The corresponding constraint potential can be written
as:

Πc =

∫
ΓD

−σ · n ·
(
u− uD

)
dΓD +

∫
ΓD

1

2
τN

(
u− uD

)2
dΓD (2.44)

where τN is the stabilization parameter. Numerical experiments have shown that a value
in the range of 100 to 1000 gives an accurate boundary representation. The corresponding
variation of the constraint potential then becomes:

δΠc = −
∫

ΓD

δσ ·n ·
(
u−uD

)
dΓD −

∫
ΓD

σ ·n · δu dΓD +

∫
ΓD

τN

(
u−uD

)
· δu dΓD (2.45)

which can be substituted in the total variation of potential energy and be solved for the
stationary point.

2.2 Topology optimization

In this section topology optimization using the solid isotropic material with penalization
(SIMP) method is discussed. This starts with the introduction of the topology optimization
problem in Section 2.2.1, subsequently, the optimization algorithm and the method to obtain
design sensitivities will be discussed. Finally, the need to control the quality of the solution
will be demonstrated, including the methods to do so.

2.2.1 Topology optimization using the SIMP method

Topology optimization can be seen as a material distribution problem. The goal is to �nd that
optimum material distribution ρ(x) that minimizes an objective function F̂ . This function
is subject to m constraints Ĝi, of which the �rst is generally a volume constraint. The
mathematical form of the topology optimization problem can be written as [64]:

min
ρ

: F̂ (ρ) = F (ρ,u(ρ)) =

∫
Ω
f(ρ,u(ρ))dV

s.t. : Ĝ1(ρ) =

∫
Ω
ρ(x)dV − Vmax ≤ 0

: Ĝi(ρ) = Gi(ρ,u(ρ)) ≤ 0, i = 2, ...,m

: 0 ≤ ρ(x) ≤ 1, ∀x ∈ Ω

(2.46)

where f is a local function, e.g. the strain energy density for minimum compliance problems.
The material distribution is allowed to vary between 0 and 1 for gradient based optimization,
and u is solved using the FCM in a separate step. This optimization problem is called a
nested topology optimization problem, since the total potential energy is at a stationary
point for each optimization step.

To solve Equation A.1, the design domain Ω is discretized into voxels, to which a density is as-
signed ρe. All voxel densities together form the design vector ρ. The discretized optimization



2.2 Topology optimization 13

problem can be written as:

min
ρ

: F̂ (ρ) = F (ρ,D)

s.t. : Ĝ1(ρ) = vTρ− Vmax ≤ 0

: Ĝi(ρ) = Gi(ρ,D) ≤ 0, i = 2, ...,m

: 0 ≤ ρ ≤ 1 ∀x ∈ Ω

(2.47)

Where v is the vector containing the element volumes, and Vmax is the maximum allowed
volume of the material in the design domain. A schematic way to solve this nested topology
optimization problem is:

1. Create an initial domain ρ(0), where the iteration index k = 0.

2. For a given iteration point ρ(k), calculate F̂ (ρ(k)), Ĝi(ρ(k)), and their corresponding
sensitivities for i = 1, ...,m .

3. Using an optimization algorithm to �nd the next iteration point ρ(k+1).

4. Check whether convergence criteria are met, and if not go back to step 2.

Even though the density distribution is allowed to vary between 0 and 1, crisp solid-void
structures are generally desired. This can be obtained by penalizing the the sti�ness of
voxels with intermediate densities using the SIMP method [61].

Ee = Emin + ρqe(E − Emin) (2.48)

where q is the penalization factor, where E is the sti�ness of a solid voxel, and where Emin is
a very small value (∼ E · 10−9) to avoid ill-conditioning of the sti�ness matrix. The choice of
the penalization factor (q) has a large in�uence on the optimization process. Choosing q too
low will result in a gray solution, i.e. a solution with a lot of intermediate densities. While a
q that is too high, will result in premature convergence to a local minimum. The 'best' value
for the penalization factor resulting in near 0− 1 solutions is 3 [64].

The FCM allows for material interpolation using the SIMP method. The sti�ness penalization
of the �ctitious domain using α is replaced by the SIMP interpolation, by slightly rewriting
Equation 2.33 into:

kc =

nsc∑
i=1

Emin + ρqi (E − Emin)ki (2.49)

2.2.2 Gradient based optimization

The discretized optimization problem can be solved using several gradient-based optimization
methods. Nowadays, the method of moving asymptotes (MMA) has become the standard for
density based topology optimization problems [27, 69]. In this section the use of the MMA
will be discussed, but, �rst a general method to obtain the gradient of the objective and
constraint functions will be shown.



14 Methodology

Sensitivity analysis using the adjoint analytical method

The adjoint analytical method is a general method to obtain the sensitivities of an objective
or constraint function in an e�cient manner [23]. Lets consider objective function F̂ , which
is dependent on the design vector ρ. The objective is also dependent on the coe�cient vector
D, which is dependent on the density distribution:

F̂ (ρ) = F (ρ,D) (2.50)

To obtain an analytical expression of the sensitivity the chain rule has to be applied:

∂F̂

∂ρe
=
∂F

∂ρe
+
∂F

∂D

∂D

∂ρe
(2.51)

The derivative of the displacement �eld with respect to the density can be obtained by
di�erentiating the �nite element equation:

∂K

∂ρe
D+K

∂D

∂ρe
=
∂F

∂ρe
(2.52)

which can be rewritten as:
∂D

∂ρe
= K−1

( ∂F
∂ρe
− ∂K

∂ρe
D
)

(2.53)

Substituting Equation 2.53 into Equation 2.51 yields:

∂F̂

∂ρe
=
∂F

∂ρe
+
∂F

∂D
K−1

( ∂F
∂ρe
− ∂K

∂ρe
D
)

(2.54)

Now lets introduce the adjoint vector ν:

νT =
∂F

∂D
K−1 (2.55)

In the adjoint method, one starts by solving the adjoint problem,

Kν =
(∂F
∂D

)T
(2.56)

afterwards, ν can be substituted into Equation 2.54 to obtain the desired sensitivity:

∂F̂

∂ρe
=
∂F

∂ρe
+ νT

( ∂F
∂ρe
− ∂K

∂ρe
D
)

(2.57)

In a similar fashion the sensitivity of constraint function Ĝi can be obtained.

The method of moving asymptotes (MMA)

The MMA optimization algorithm will be used to �nd the optimum material distribution for
a given displacement �eld. The optimization problem in Equation 2.47 is appended to make
sure there exists a feasible solution, even when a bad starting guess is chosen [69]:

min
ρ

: F̂ (ρ) + a0z +
m∑
i=1

(ciyi)

s.t. : Ĝi(ρ)− aiz − yi ≤ 0, i = 1, ...,m

: yi ≥ 0, i = 1, ...,m

: 0 ≤ ρ ≤ 1 ∀x ∈ Ω

(2.58)
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where yi, and z are 'arti�cial' optimization variables. Variables yi are zero when the con-
straints are satis�ed, and positive when the original optimization problem has no feasible
solution. The corresponding coe�cients ci have to be 'su�ciently large' to allow the opti-
mization algorithm to �nd a feasible solution, i.e. ci = 1000. Coe�cients ai are generally
set to zero, with a0 = 1, such that z becomes zero. In the case that min-max optimization
problems are considered, coe�cients ai have a �nite values [69].

In the MMA, a convex sub-problem is created for each design iteration k. This convex sub-
problem is an approximation of Equation 2.58 and is bounded by lower and upper asymptotes
which are updated for each iteration. These asymptotes still require a starting guess, there-
fore, the lower asymptotes are initially set to be 0.001 while the upper ones start as 1.

In the sub-problems the design vector will be bounded by ρ(k)
min and ρ(k)

max which are de�ned
as:

ρ
(k)
min = max(0,ρ(k) − ζ) ρ(k)

max = min(1,ρ(k) + ζ) (2.59)

where ζ is a move-limit of 0.2. This move-limit will prevent oscillations in the design vector,
thus making the optimization more stable.

Finally it has to be mentioned that both the objective and constraint functions have to be
normalized. The objective function will be normalized with the value of the �rst guess, while
the constraint is normalized with its constraint value.

2.2.3 Controlling the quality of the solution

It is well known that the continuous topology optimization problem de�ned in Equation A.1
lacks a solution [65]. In general, adding more holes to a structure will make it more e�cient,
hence reducing the objective function. In a similar fashion a �ne discretized domain will
include more holes than a coarse discretized domain. This problem is referred to as mesh-
dependence [64].

Another well known problem in topology optimization are the infamous checkerboard pat-
terns. The sti�ness of these are alternating solid-void patterns, shown in Figure 2.4, is
over-estimated by the �nite element model when linear shape functions are used [28]. These
arti�cially sti� structures are therefore preferred by the optimizer over more realistic struc-
tures. When higher-order shape functions are used the sti�ness can be calculated more
accurately and the checkerboard patterns are not observed.

Figure 2.4: Arti�cially sti� checkerboard patterns on a MBB-beam optimization example

To cope with both mesh-dependence and checkerboard patterns di�erent regularization meth-
ods exist. These methods have to somehow restrict the local or global variation of density.
This can either be done by perimeter control, a gradient constraint or mesh-independent
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�ltering [65]. Mesh-independent �ltering is the most e�cient solution, as well as the most
easy to implement, and most used method.

In this thesis �ve well-known mesh-independent �ltering schemes are considered. These are:
the sensitivity �lter, the density �lter, the density �lter using Heaviside projection, the density
�lter using a modi�ed Heaviside projection, and robust topology optimization. For the theory
and implementation of morphology-based �lters the reader is referred to [61].

Sensitivity �ltering

The sensitivity �lter introduced by Sigmund [59] modi�es the voxel sensitivity based on the
sensitivities of the surrounding voxels within a mesh-independent radius rmin. These �ltered
sensitivities are then used to update the design vector:

∂̃F̂

∂ρe
=

1

max(ρe, 0.001)
∑ne

i=1Hei

ne∑
i=1

Heiρi
∂F̂

∂ρi
(2.60)

where ne is the number of voxel, and Hei is a linear decaying weighting function. The small
number is put in the denominator to avoid division by zero. Hei depends on the distance
between the voxel center, and the center of the surrounding voxel, as well as the �lter radius
rmin:

Hei = rmin − dist(e, i) (2.61)

Density �ltering

An alternative to the sensitivity �lter is the density �lter [19, 22]. The physical density of
a voxel ρ̃e is de�ned as the weighted average of the design variables of neighboring voxels in
rmin:

ρ̃e =
1∑ne

i=1Hei

ne∑
i=1

Heiρi (2.62)

Using this �lter method, ρ̃ is referred to as the physical densities, used to interpolate the voxel
sti�ness. Whilst ρ is referred to as the design vector. Using the chain rule the sensitivities
with respect to the design variables can be obtained:

∂̃F̂

∂ρe
=

ne∑
i=1

∂F̂

∂ρ̃i

∂ρ̃i
∂ρe

(2.63)

which can be written as:

∂̃F̂

∂ρe
=

ne∑
i=1

∂F̂

∂ρ̃i

Hei∑ne
j=1Hji

(2.64)

Density �ltering with Heaviside projection

A disadvantage of both the sensitivity and density �lter is that they introduce regions with
intermediate densities. To cope with this a projection scheme base on a smoothened Heaviside
function has been introduced by Guest et al [35]. In this approach the �ltered densities (ρ̃) are
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now referred to as the 'intermediate design vector'. The physical density ρ̄e can be calculated
using:

ρ̄e = 1− e−βρ̃e + ρ̃ee
−β (2.65)

where β controls the smoothness of the Heaviside function. For β = 0 the �lter gives exactly
the same output as the density �lter, when β goes towards in�nity the Heaviside function is
approximated. The sensitivity of the objective function w.r.t. a design variable ρe can be
written as:

∂̃F̂

∂ρe
=

ne∑
i=1

∂F̂

∂ρ̄i

∂ρ̄i
∂ρ̃i

∂ρ̃i
∂ρe

(2.66)

Density �ltering with a modi�ed Heaviside projection

It has to be noted that the Heaviside projection provides a length-scale only on the solid
material, but no length-scale on the void. This means that the physical density is very
sensitive to a change in the design vector. To cope with this problem, Sigmund introduced
the modi�ed Heaviside �lter, in which a length-scale is applied on the void [61]. The physical
density can then be calculated as:

ρ̄e = e−β(1−ρ̃e) − (1− ρ̃e)e−β (2.67)

Robust topology optimization

Robust topology optimization is somewhat di�erent from the �lter methods described above.
It has been introduced by Sigmund as a method to perform manufacturing tolerant topol-
ogy optimization [62]. Small changes in manufacturing should not lead to large changes in
functionality. Another positive e�ect of this method is that it is able to put a length-scale
on both the solid and the void material, eliminating the longstanding problem of one-node
connected hinges [78].

Instead of using the smoothened Heaviside projection either on solid or void, a threshold
projection is used:

ρ̄e =
tanh(βη) + tanh(β(ρ̃e − η))

tanh(βη) + tanh(β(1− η))
(2.68)

where η is the threshold parameter. All �ltered densities ρ̄e above η are projected to 1, and
all densities below to 0. It is important to note that for η = 0, the projection corresponds to
the Heaviside projection, while η = 1 corresponds to the modi�ed Heaviside projection.

In robust topology optimization three di�erent designs are formulated based on the same
design vector. These are a dilated (ρ̄d), intermediate (ρ̄i), and eroded (ρ̄e) design, with
thresholds η, 0.5, and 1−η, respectively. The optimization problem is now reformulated as a
min-max problem. The sensitivities can be obtained using Equation 2.66. Analogous to [78]
the volume constraint is imposed on the dilated design, and updated every 20 iterations.

The three optimized designs will get similar topologies, such that the intermediate design is
robust towards manufacturing errors. It is very important to note that in robust topology
optimization an actual length-scale will be enforced on the �nal design (ρ̄i). The size of the
length-scale depends on the choice of η. When η = 0.25, the length-scale exactly corresponds
to the �lter diameter [78].
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2.3 FCMTOP: the Finite Cell Method Topology Optimization

Program

The FCM and topology optimization methods described above are combined in FCMTOP.
This program is based on FCMLab: A Finite Cell Research Toolbox for MATLAB, developed
by Zander et al [85]. FCMLab is programmed in an object-oriented manner, making it easy to
extend while maintaining the structure of the program. FCMTOP continues on this object-
oriented set-up, allowing it to model very diverse topology optimization problems, speci�ed
by well-de�ned parameters.

This section will start by a description of the capabilities of FCMTOP to model diverse
optimization examples, followed by a description of the two most important optimization
examples. The section will be concluded by a schematic overview of the how topology opti-
mization is performed by FCMTOP.

2.3.1 Capabilities of FCMTOP

The capabilities of FCMTOP to de�ne an optimization example are shown in Table 2.1. For
minimum compliance problems multiple load-cases can be present, when this is the case, ei-
ther a Pareto optimum is found, or min-max optimization is performed. All other important
parameters, such as the discretization (ne,x, ne,y, ne,z), mesh dimensions (Lx, Ly, Lz), penal-
ization factor (q), volume fraction (Vmax), polynomial degree (p), and the number of voxels
per cell in each direction (nvoxel) have to be de�ned by the user.

Table 2.1: Overview of the capabilities of FCMTOP

Three di�erent objectives Minimum compliance
Minimum displacement
Maximum displacement

Two types of constraints Volume constraint (mandatory)
Displacement constraints

Five di�erent �lters Sensitivity �lter
Density �lter
Density �lter with Heaviside projection
Density �lter with modi�ed Heaviside projection
Robust topology optimization

Three constitutive relations Plane stress
Plane strain
3D

Dirichlet BCs Strong sense, using penalty method
Weak sense, using Nitsche's method

Neumann BCs Strong sense, applied on cell boundary
Weak sense, using boundary parameterization

Nodal springs Added to cell nodes
Passive elements Both solid and void
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2.3.2 Optimization problems

In the research in this thesis two optimization problems will be used extensively. These are
the are the MBB-beam, and the compliant force inverter. In this section the parameterization
of these problems will be discussed.

MBB-beam

The optimization problem for the MBB-beam example is written as:

min
ρ

: F̂ (ρ) = DtKD

s.t. : Ĝ1(ρ) =

∑
ρ

neVmax
− 1 ≤ 0

: 0 ≤ ρ ≤ 1 ∀x ∈ Ω

(2.69)

The corresponding design domain and its dimensions are shown in Figure 2.5, due to symme-
try only half of the design domain is used. The material properties of steel are used, E = 210
GPa, and ν = 0.3, and the load has a magnitude of 1 MN. Plane stress conditions are as-
sumed where domain thickness t = 1 mm. For the optimization a penalization factor q = 3,
while the maximum allowable volume fraction Vmax = 0.4. The discretization (ne,x, ne,y), the
polynomial degree p, the number of voxels per cell in each direction (nvoxel), and the �lter
method are now the only parameters that can be varied in the upcoming experiments.

Figure 2.5: Design domain an boundary conditions for the MBB-beam problem

Using the adjoint analytical method the un�ltered sensitivity of the objective can easily be
determined:

νT = FTK−1 = DT (2.70)

∂F̂

∂ρe
= −dTc

(∂kc
∂ρe

dc

)
(2.71)

where,
∂kc
∂ρe

= q(E − Emin)ρq−1
e k0

e (2.72)



20 Methodology

The un�ltered sensitivity of the volume constraint is de�ned as:

∂Ĝ1

∂ρe
=

1

neVmax
(2.73)

Finally, it has to be noted that both the objective and its corresponding sensitivities are
normalized by the compliance of the �rst iteration.

Compliant force inverter

The compliant force inverter introduced by Sigmund [59] is a compliant mechanism. Here
the goal is to transfer work from an input actuator to an output spring. Due to its strong
local minimum at uout = 0 the force inverter is a very interesting optimization example. The
optimization problem for the force inverter is written as:

min
ρ

: F̂ (ρ) = LTD

s.t. : Ĝ1(ρ) =

∑
ρ

neVmax
− 1 ≤ 0

: 0 ≤ ρ ≤ 1 ∀x ∈ Ω

(2.74)

where L is a vector with zeros at all degrees of freedom except at the output point, where its
value is one. The corresponding design domain and its dimensions are shown in Figure 2.6,
due to symmetry only half of the design domain is used.

Finding the right settings for this optimization problem proved to be more di�cult than
expected. The reason is the weak Dirichlet boundary conditions in the bottom left corner of
the design domain. Its enforcement requires integration over a parameterized boundary using
the same shape functions as the FE system, resulting in large di�erences between p = 1, and
p = 5. To get a fair comparison between the experiments for di�erent nvoxel, and p, the
in�uence of di�erent p on the boundary condition should be as small as possible. By trial
and error, values for ΓD, τN , E, and F , have been found that have the least in�uence on the
optimized structures.

Figure 2.6: Design domain an boundary conditions for the compliant force inverter problem

The Young's modulus E = 100 Pa, ν = 0.3, the load has a magnitude of 1 N, and the
stability parameter τN = 500. Plane stress conditions are assumed with a unit domain
thickness. The input spring sti�ness kin = 100, and the output spring sti�ness kout = 0.1.
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For the optimization a penalization factor q = 3, while the maximum allowable volume
fraction Vmax = 0.3. The discretization (ne,x, ne,y), the polynomial degree p, the number of
voxels per cell in each direction (nvoxel), and the �lter method are now the only parameters
that can be varied in the upcoming experiments.

Using the adjoint analytical method the un�ltered sensitivity of the objective can easily be
determined:

νT = LTK−1 (2.75)

∂F̂

∂ρe
= −νTc

(∂kc
∂ρe

dc

)
(2.76)

Contrary to the MBB-beam both the objective and its corresponding sensitivities are not
normalized by the output displacement of the �rst iteration. A computational trick is applied
where the objective and sensitivities are normalized by the output displacement at each
iteration. By doing so, the sub-problem in the MMA becomes highly sensitive to small
changes when the output displacement is close to zero. Experiments performed have shown
that this trick makes sure that the optimizer gets past the strong local minimum at uout = 0.

Finally, it has to be noted that when robust topology optimization is applied, only the
intermediate design (ρ̄i) will be used for the objective. This is done in order to prevent
instabilities when the hinge is created. After 50 iterations min-max optimization is applied
to obtain a robust design.

2.3.3 The optimization process

A schematic overview of how topology optimization works with FCMTOP can be seen in
Figure 2.7. The implementation of the optimization loop is based on the 88-line MATLAB
code by Andreassen et al [10], such that the core parts of FCMTOP are the optimization
functions. This is where the most of the time of the optimization is spend.

Define input

parameters

System

prepar on / ini l

guess for ρ

Assembly of K and F,

and solve for D

Calculate objec e,

constraints and

corresponding

sens vi s

Apply filter
Op iz on using

MMA

Change in ρ <

stop criter n

Perform post-

processing
Output

Figure 2.7: Schematic overview of the optimization process

An optimization starts by parameterization of the problem. FCMTOP then prepares the op-
timization, all functions and values that can be pre-computed before the actual optimization
starts will be de�ned. The starting guess is de�ned such that all ρi = Vmax. It is well known
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that a di�erent starting guess can have a large in�uence on the optimization, however, this
is not considered in the research in this thesis.

The optimization is performed in a while loop until the stopping criterion is satis�ed. Here
the stopping criterion is de�ned as:

max(‖ρ(k) − ρ(k−1)‖) ≤ 0.01 or k > 1000 (2.77)

Despite the fact that this stopping criterion does not say anything about the optimality of
the objective, it is widely used [10, 60]. The reason for this is the stability as well as the ease
of implementation.

When the stopping criterion is satis�ed the post-processing is performed. In the �rst part of
the post-processing the objective is re-calculated in a more accurate analysis. This is done to
obtain a fair comparison between optimized structures at di�erent settings, and to identify
over-estimation of the sti�ness as will be discussed in the next Chapter. In the second part
of the post-processing process, the optimized structure, and its corresponding stress and
displacement �elds are visualized.



Chapter 3

The validity of topology

optimization using the FCM

In this chapter the validity of the Finite Cell Method Topology Optimization Program (FCM-
TOP) regarding reliability and accuracy will be discussed. The focus of the research is put
on the number of voxels per cell in each direction (nvoxel), the polynomial degree (p), and
the �lter method. Speci�c bounds on these variables have to be found ensuring general
applicability of the optimization method.

First the limits of the FCM will be demonstrated, and, the need for a minimum length-scale
will be shown. In the remainder of this chapter the numerical experiments with the MBB-
beam and compliant force inverter will be discussed to �nd nvoxel, p and the �lter methods
that produce stable results.

3.1 The limits of FCMTOP

It is well known that a su�cient polynomial degree is required to model the variations within
a cell. To demonstrate this, the MBB-beam example will be used with no �lter, 5 by 5
voxels per cell (nvoxel = 5), a polynomial degree of 3, and a discretization of 360 by 120
voxels. In Figure 3.1, the corresponding density distribution, can be seen, where the gray
lines correspond to the cell boundaries.

These settings produce even worse results than checkerboard-like patterns. The shape func-
tions are not able to capture the variations within a cell, making the cells arti�cially sti�.
The corresponding sensitivities are not correct resulting in an unrealistic 'optimized' design.
To cope with this a higher polynomial degree is required, but, even when this is done it is
very di�cult to avoid these patterns, when no �lter method is used.

To demonstrate this problem, consider the clamped beam shown in Figure 3.2, where a single
layer of voxels has to represent a gap of void material. A uniform pressure load of 10 MN/m is
applied at the right edge of the domain. Plane stress conditions are assumed, with a domain
thickness of 1 cm. The material properties of steel are used with E = 210 GPa, the Young's
modulus corresponding to the void is 210 Pa. A discretization of in total 200 by 100 voxels
is used.

23
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Figure 3.1: Arti�cially sti� 'optimized' MBB-Beam, no �lter is used, nvoxel = 5, p = 3, and
Vmax = 0.4

Figure 3.2: Split domain experiment to show the error in the displacement �eld, when a low
polynomial degree is used

In Figure 3.3, the displacement in x-direction can be seen at the location of the gap. The
�rst �gure, is created using nvoxel = 1, and p = 1. Here, the model is able to identify a large
discontinuity in the displacement. In the right �gure with nvoxel = 5, and p = 5 the shape
functions cannot describe this discontinuity, hence, the cell is arti�cially sti�.
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Figure 3.3: The displacement in x-direction at the location of the void

Experiments with nvoxel > 1, and di�erent polynomial degrees have shown that the FCM is
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not able to calculate the jump in displacement over a single layer of void material. For a wider
strip of void material, the discontinuity in displacement can be identi�ed at a reasonably low
polynomial degree. Thus, a length-scale has to be applied on both the solid and void material.
To indicate this e�ect, the jump in displacement is shown for a 3 voxel-wide strip of void
material, in Figure 3.4, where p = 3, and nvoxel = 5. In the �rst case, the void is located at
the �rst three columns of a cell. This allows the shape functions to describe a large jump in
displacement. In the second case the void is located at the second, third and fourth column
of the cell. Here, the jump in displacement is signi�cantly smaller.
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Figure 3.4: The displacement in x-direction at the location of the three voxel wide strip of void
nvoxel = 5, and p = 3

Despite the fact that the discontinuity in displacement in the second �gure is small, it is
signi�cant enough to a�ect the compliance. It is very important to realize that for topology
optimization the analysis of an arti�cially sti� cell does not have to be exact, but, su�cient
enough such that changes in cell sti�ness are detected. This will make sure that the optimizer
will go to more realistic cell topologies. It is well known that for smooth structures with
realistic cell topologies, analysis with the FCM has a higher accuracy than classical FEM
with linear shape functions [31, 52, 58].

A length scale imposed using mesh-independent �lters can prevent these undesired cell topolo-
gies. To show this, the sensitivity �lter is applied to the MBB-beam example, shown in Fig-
ure 3.1. If a �lter radius (rmin) of two voxel lengths is chosen the obtained topology is exactly
the same as when linear FEM is used. Both optimized structures can be seen in Figure 3.5.
It is very important to note that the objective in both optimizations is calculated using a
di�erent analysis mesh. To allow a fair comparison all optimized objectives are recalculated
using nvoxel = 1, and p = 3.

When the �lter radius is increased, even lower polynomial degrees can be used. For linear
shape functions and a su�cient �lter radius the obtained results become similar to the multi-
resolution topology optimization (MTOP) method, developed by Nguyen et al [47, 48]. It
is very important to know that this decrease in computational complexity comes at a cost.
A larger �lter radius will introduce a length-scale spanning of at least one cell-width, hence,
the gain in resolution is not exploited to the fullest.

In the remainder of this chapter, the parameters (nvoxel, and p) which produce stable results,
are found for all implemented �lters, with rmin = 2 voxel-widths.
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(a) nvoxel = 5, p = 3, and C = 1.152 MJ (b) nvoxel = 1, p = 1, and C = 1.150 MJ

Figure 3.5: The MBB-Beam example for two di�erent settings, both values of the compliance
C are obtained with nvoxel = 1, and P = 3. A discretization of 360 by 120 voxels
is used, and sensitivity �ltering is applied with rmin = 2 voxel widths

3.2 Stable parameters for minimum compliance problems

IThe MBB-beam example will be used to obtain the relations between nvoxel and p for which
the method produces stable results in minimum compliance optimization. To do so, di�erent
experiments have been performed for two di�erent discretizations, (180 by 60), and (240
by 80). This allows experiments for di�erent nvoxel (1, 2, 3, 4, 5, 6, 8 and 10), at polynomial
degrees ranging from 1 to 5. All these experiments are performed for the �ve di�erent �lters,
using rmin = 2 voxel widths, resulting in a total amount of 325 optimizations. The �lter
radius is not mesh-independent, but, the goal is not to get the exact same topologies, it is to
�nd which settings FCMTOP produces realistic density distributions.

The results of all these experiments, which are the number of iterations (niter), objective
(F̂ (ρ)), compliance (C), and measure of non-discreteness (Mnd) can be found in Appendix B.
The measure of non-discreteness has been introduced by Sigmund to quantify the amount of
gray material in the optimized design [61], and can be calculated using:

Mnd =

∑
ne

4ρ̄e(1− ρ̄e)
ne

× 100% (3.1)

Due to the large number of combinations of parameters not all experiments have produced
stable results. An optimized structure is regarded as valid when the following three conditions
hold:

• No arti�cially sti� cells should be present, i.e. all cells should have a smooth topology

• The di�erence between the objective, and the post-processed compliance should be
small

• The di�erence in density distribution between the optimized structure, and the known
optimum should be small

All settings that produce any sort of arti�cially sti� cell will be regarded as not valid. This is
also the case in the optimization example with nvoxel = 5, and p = 2, shown in Figure 3.7. At
two locations the structure seems to be disconnected. Due to the gray material the structure
is not completely disconnected, hence the di�erence between compliance and the objective is
relatively small. Nevertheless, structures with visual �aws will be regarded as not valid.

The over-estimation of the cell sti�ness, actually shows that the underlying optimization
algorithm works well. Consider four di�erent experiments (nvoxel = 1, nvoxel = 3, nvoxel = 4,
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Figure 3.6: The MBB-Beam example, nvoxel = 5, p = 2, F̂ (ρ) = 1.11MJ,and C = 1.20MJ.
A discretization of 180 by 60 voxels is used, and sensitivity �ltering is applied with
rmin = 2 voxel widths

and nvoxel = 10) shown in Figure 3.6, where the gray lines correspond to the cell boundaries.
The optimized structure at nvoxel = 3 is not valid due to the arti�cially sti� cell, but, overall
the optimized topology looks similar to the one of nvoxel = 1. If the optimizer is performing
an optimization using the FCM with nvoxel = 3 and p = 1, the objective can become lower
using these arti�cial sti� cells. If a smooth structure is modeled using the same analysis mesh
(nvoxel = 3 and p = 1) the corresponding objective is slightly higher.

(a) nvoxel = 1, p = 1, F̂ (ρ) = 1.13MJ, and
C = 1.18MJ

(b) nvoxel = 3, p = 1, F̂ (ρ) = 1.09MJ,and
C = 1.71MJ

(c) nvoxel = 4, p = 1, F̂ (ρ) = 1.08MJ,and
C = 23.2MJ

(d) nvoxel = 10, p = 1, F̂ (ρ) = 0.92MJ,and
C = 174GJ

Figure 3.7: The MBB-Beam example for di�erent settings. A discretization of 180 by 60 voxels
is used, and sensitivity �ltering is applied with rmin = 2 voxel widths

It is interesting to see that for nvoxel = 10, and p = 1, the cell nodes which a�ect the sti�ness
the most contain material. Due to the linear shape functions only 4 nodes a�ect the sti�ness
therefore placing material in the middle of a cell is not bene�cial.

The di�erent experiments with the sensitivity �lter are summarized in Table 3.1. The green
cells correspond to parameters that produce smooth structures, while the red cells correspond
to invalid structures. The compliances (C) are shown, and it can be seen that for the
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settings producing valid structures, the corresponding compliance is almost constant. Some
experiments are modeled at both discretizations, in this case, the compliance of the worst
performing experiment is shown. Finally, it has to be noted that the experiments for nvoxel =
1 & p > 2 are not performed, the corresponding Finite Cell mesh is very large, hence, the
optimization will take too much time.

Table 3.1: Results of the stability experiments using sensitivity �ltering, the compliance (C) is
shown

p = 1 p = 2 p = 3 p = 4 p = 5

nvoxel = 1 1.18 MJ 1.19 MJ
nvoxel = 2 1.18 MJ 1.19 MJ 1.18 MJ 1.19 MJ 1.19 MJ
nvoxel = 3 1.71 MJ 1.18 MJ 1.18 MJ 1.18 MJ 1.18 MJ
nvoxel = 4 23.2 MJ 1.18 MJ 1.18 MJ 1.18 MJ 1.19 MJ
nvoxel = 5 37.3 MJ 1.20 MJ 1.18 MJ 1.18 MJ 1.18 MJ
nvoxel = 6 165 MJ 2.03 MJ 1.19 MJ 1.18 MJ 1.19 MJ
nvoxel = 8 308 MJ 36.8 MJ 1.16 MJ 1.16 MJ 1.16 MJ
nvoxel = 10 174 GJ 38.6 MJ 1.76 MJ 1.23 MJ 1.19 MJ

The results in this table are not de�nitive, i.e. not all the settings indicated as stable (green)
will be stable in any case. Topology optimization is still a very complex process, depending
on numerous parameters, therefore, the settings at which it is performed are highly problem
dependent. It is interesting to note that the combination p = 3, and nvoxel = 8 produces a
smooth structure while the corresponding sti�ness matrix is signi�cantly smaller than p = 1
and nvoxel = 1. There is a high probability that these settings (p = 3, and nvoxel = 8)
will fail to produce stable results in an optimization example with more complex boundary
conditions.

Similar tables have been created for the other four types of �lters, they can be found in
Tables 3.2- 3.5.

Table 3.2: Results of the stability experiments using density �ltering, the compliance (C) is
shown

p = 1 p = 2 p = 3 p = 4 p = 5

nvoxel = 1 1.22 MJ 1.21 MJ
nvoxel = 2 1.22 MJ 1.22 MJ 1.21 MJ 1.21 MJ 1.21 MJ
nvoxel = 3 1.58 MJ 1.22 MJ 1.22 MJ 1.21 MJ 1.21 MJ
nvoxel = 4 46.8 MJ 1.22 MJ 1.22 MJ 1.22 MJ 1.21 MJ
nvoxel = 5 54.8 MJ 1.21 MJ 1.22 MJ 1.22 MJ 1.21 MJ
nvoxel = 6 64.9 MJ 3.68 MJ 1.21 MJ 1.22 MJ 1.21 MJ
nvoxel = 8 74.3 MJ 64.1 MJ 1.23 MJ 1.19 MJ 1.19 MJ
nvoxel = 10 141 GJ 52.7 MJ 37.5 MJ 1.26 MJ 1.21 MJ

As has been said it is very important to remind that the distinction between stable (green),
and unstable (red) settings, has to be interpreted as a recommendation on which settings to
use. Nevertheless, some important conclusions can be drawn based on the experiments with
the MBB-beam example. The �rst is that for each �lter method, the optimized structures
that are regarded as stable, look visually almost identical. This might be due to the simplicity
of the optimization example, however, it shows the general applicability of the method when
di�erent settings are used.
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Table 3.3: Results of the stability experiments using density �ltering with Heaviside projection,
the compliance (C) is shown

p = 1 p = 2 p = 3 p = 4 p = 5

nvoxel = 1 1.18 MJ 1.12 MJ
nvoxel = 2 1.16 MJ 1.19 MJ 1.12 MJ 1.17 MJ 1.15 MJ
nvoxel = 3 47.7 MJ 1.44 MJ 1.16 MJ 1.18 MJ 1.15 MJ
nvoxel = 4 43.2 MJ 1.20 MJ 1.14 MJ 1.18 MJ 1.16 MJ
nvoxel = 5 39.1 MJ 18.7 MJ 1.20 MJ 1.15 MJ 1.17 MJ
nvoxel = 6 53.9 MJ 44.5 MJ 1.48 MJ 1.16 MJ 1.17 MJ
nvoxel = 8 51.4 MJ 49.6 MJ 16.0 MJ 1.11 MJ 1.13 MJ
nvoxel = 10 27.7 GJ 41.0 MJ 49.3 MJ 3.32 MJ 1.44 MJ

Table 3.4: Results of the stability experiments using density �ltering with modi�ed Heaviside
projection, the compliance (C) is shown

p = 1 p = 2 p = 3 p = 4 p = 5

nvoxel = 1 1.15 MJ 1.15 MJ
nvoxel = 2 1.16 MJ 1.15 MJ 1.15 MJ 1.15 MJ 1.15 MJ
nvoxel = 3 3.05 MJ 1.16 MJ 1.15 MJ 1.14 MJ 1.14 MJ
nvoxel = 4 36.2 MJ 1.18 MJ 1.15 MJ 1.15 MJ 1.14 MJ
nvoxel = 5 29.1 MJ 1.48 MJ 1.16 MJ 1.15 MJ 1.15 MJ
nvoxel = 6 30.5 MJ 40.5 MJ 1.17 MJ 1.15 MJ 1.15 MJ
nvoxel = 8 27.0 MJ 30.9 MJ 1.61 MJ 1.20 MJ 1.15 MJ
nvoxel = 10 860 GJ 30.7 MJ 39.3 MJ 1.82 MJ 1.22 MJ

Table 3.5: Results of the stability experiments using robust topology optimization (η = 0.2),
the compliance (C) is shown

p = 1 p = 2 p = 3 p = 4 p = 5

nvoxel = 1 1.21 MJ 1.20 MJ
nvoxel = 2 1.23 MJ 1.21 MJ 1.21 MJ 1.21 MJ 1.22 MJ
nvoxel = 3 1.39 MJ 1.20 MJ 1.21 MJ 1.21 MJ 1.22 MJ
nvoxel = 4 1.76 MJ 1.21 MJ 1.20 MJ 1.20 MJ 1.20 MJ
nvoxel = 5 59.0 MJ 1.33 MJ 1.22 MJ 1.21 MJ 1.20 MJ
nvoxel = 6 55.2 MJ 17.1 MJ 1.19 MJ 1.21 MJ 1.20 MJ
nvoxel = 8 413 GJ 53.5 MJ 1.23 MJ 1.26 MJ 1.26 MJ
nvoxel = 10 3.53 TJ 60.9 MJ 1.57 MJ 1.41 MJ 1.20 MJ

As is expected the modi�ed Heaviside projection method is more stable for a less complex
analysis mesh than the Heaviside projection method. Density and sensitivity �ltering both
can perform stable topology optimization for even less complex analysis system. These two
�ltering methods, allow the use of material with intermediate density at locations in the
structure where the need for solid elements is not required. An example can be seen in
Figure 3.8, where the density �lter is applied on the MBB-beam using nvoxel = 4, and p = 2.
The majority of the thin structural members does not consist of solid elements. The penalized
intermediate densities are more e�cient than using solid elements, or even not using these
structural members at all.

The projection �lters suppress this gray material. This is done by making structural members
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either completely solid or void, or in case a relatively simple FCA is used, the optimizer can
exploit the arti�cially sti� cells. This e�ect can be seen in the right part of Figure 3.8, where
a density �lter using Heaviside projection is used.

(a) Density �ltering (b) Density �ltering with Heaviside projec-
tion

Figure 3.8: The MBB-Beam example for two di�erent �lter settings, with nvoxel = 4, and
P = 2. A discretization of 180 by 60 voxels is used, and rmin = 2 voxel widths

Applying robust topology optimization creates crisp black and white structures, with a
slightly higher compliance than when the projection methods are used. The reason for this
is the imposed length-scale and the manufacturing tolerance. As is discussed by Sigmund,
the self-adjoint nature of the minimum compliance problem makes sure that the eroded de-
sign always has the highest compliance, hence the e�ect of the robust formulation is not
fully exploited [62]. The main advantage of using robust topology optimization in minimum
compliance problems is the imposed length-scale on both solid and void compared to the
projection methods.

3.3 Stable parameters for minimum displacement problems

In this section the compliant force inverter example will be used to obtain the relations
between nvoxel and p for which the method produces stable results. This more challenging
optimization example has been tested at two di�erent discretizations, (120 by 60) and (160
by 80). The same range of p and nvoxel has been used as for the MBB-beam resulting in
325 di�erent optimizations. The corresponding details of the optimizations can be found in
Appendix C.

Compared to the MBB-beam example the results of the compliant force inverter example are
more diverse, making it even more di�cult to give conclusive remarks about the validity of the
method for di�erent settings. The discussion here should therefore be seen as a demonstration
of what the capabilities of FCMTOP regarding minimum displacement problems, and not as
a validation process. In this case the results of the experiments are regarded stable when the
following two conditions hold:

• No arti�cially sti� cells should be present, i.e. all cells should have a smooth topology

• The di�erence between the objective, and the post-processed compliance should be
small

In almost all performed experiments, hinges are created such that the objective becomes neg-
ative. The location of these hinges depends on the polynomial degree of the shape functions.
When p = 1, or p = 2, the hinges are mostly located at cell nodes, such that the linear shape
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functions will allow a hinge like deformation between the cells. Higher p will also allow the
formation of hinges within a cell, which can be more e�cient. For three di�erent polynomial
degrees, the optimized structures, and a closeup of the corresponding hinges can be seen in
Figure 3.9.

(a) nvoxel = 4, p = 2, F̂ (ρ) = −0.026, and uout = −0.0038 m (b) nvoxel = 4, p = 2,
closeup of the hinge

(c) nvoxel = 4, p = 4, F̂ (ρ) = −0.0242, and uout = −0.0231 m (d) nvoxel = 4, p = 4,
closeup of the hinge

(e) nvoxel = 4, p = 5, F̂ (ρ) = −0.0246, and uout = −0.0230 m (f) nvoxel = 4, p = 5,
closeup of the hinge

Figure 3.9: The compliant inverter example for three settings. A discretization of 120 by 60
voxels is used, and sensitivity �ltering is applied with rmin = 2 voxel widths
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The optimized structure with nvoxel = 4 and p = 2, looks visually valid, however, it is not
regarded as stable. A small disconnection in the upper right corner leads to a low output
displacement, when recalculated using nvoxel = 1 and p = 3. It can also be seen that the
structure optimized with p = 4, and the structure optimized with p = 5 look visually di�erent,
while their corresponding output displacements uout are almost the same.

Similar to the MBB-beam example, tables have been created which summarize the minimum
displacement experiments. These tables for all �ve implemented �lter methods can be found
in Tables 3.6- 3.10. In the case that an experiment is performed by 2 di�erent discretizations,
the results of the experiment that describes the behavior of the method best, will be shown.

Table 3.6: Results of the stability experiments using sensitivity �ltering, the values for the
output displacement uout are shown

p = 1 p = 2 p = 3 p = 4 p = 5

nvoxel = 1 −2.16 cm −1.99 cm
nvoxel = 2 −1.14 cm −2.26 cm −2.33 cm −2.30 cm −2.28 cm
nvoxel = 3 −1.04 cm −2.27 cm −2.33 cm −1.32 cm −2.35 cm
nvoxel = 4 −1.54 cm −0.38 cm −2.28 cm −2.31 cm −2.30 cm
nvoxel = 5 0.00 cm −1.85 cm −2.28 cm −2.32 cm −2.13 cm
nvoxel = 6 0.00 cm −1.3 cm −2.25 cm −2.28 cm −2.11 cm
nvoxel = 8 0.00 cm 0.00 cm 0.00 cm −2.35 cm −2.30 cm
nvoxel = 10 0.00 cm −0.06 cm −0.52 cm 0.00 cm −2.43 cm

The experiment with nvoxel = 3, and p = 4 is indicated with a di�erent color (yellow).
Nothing is wrong with the optimized structure, a negative displacement is obtained, and no
arti�cially sti� cells are present, however, the output displacement is much smaller compared
to other experiments. The reason for this is an instability at the beginning of the optimization
leading to a connection between the input spring, and the weak boundary. As a result the
optimized structure still consists partly of this connection as can be seen in Figure 3.10.

(a) nvoxel = 3, p = 4, F̂ (ρ) = −0.0175, and
uout = −0.0132 m

(b) nvoxel = 2, p = 1, F̂ (ρ) = −0.0099, and
uout = −0.0114 m

Figure 3.10: The compliant inverter for two settings where an instability at the beginning of the
optimization causes a connection between the input spring and the weak boundary.
A discretization of 120 by 60 voxels is used, and sensitivity �ltering is applied with
rmin = 2 voxel widths

This e�ect is not unique to these settings and has occurred in other experiments as well.
In the experiment with p = 1, and nvoxel = 2, the same instability occurred, but, here the
optimizer failed to get rid of this connection. Finally, it has to be noted that the occurrence
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of this instability seems random, and that a small change in parameters or discretization will
omit this e�ect.

Table 3.7: Results of the stability experiments using density �ltering, the values for the output
displacement uout are shown

p = 1 p = 2 p = 3 p = 4 p = 5

nvoxel = 1 −2.19 cm −1.99 cm
nvoxel = 2 −2.14 cm −2.21 cm −1.87 cm −2.20 cm −2.19 cm
nvoxel = 3 −0.076 cm −2.18 cm −2.18 cm −1.74 cm −2.19 cm
nvoxel = 4 −1.76 cm −2.11 cm −2.16 cm −2.19 cm −2.18 cm
nvoxel = 5 0.00 cm −2.15 cm −2.22 cm −2.21 cm −2.14 cm
nvoxel = 6 0.00 cm −1.96 cm −2.18 cm −2.18 cm −2.19 cm
nvoxel = 8 0.00 cm −2.15 cm −2.29 cm −2.15 cm −2.28 cm
nvoxel = 10 0.00 cm −1.52 cm −1.31 cm −2.15 cm −2.20 cm

Table 3.8: Results of the stability experiments using density �ltering with Heaviside projection,
the values for the output displacement uout are shown

p = 1 p = 2 p = 3 p = 4 p = 5

nvoxel = 1 −2.12 cm −1.76 cm
nvoxel = 2 −2.25 cm −2.28 cm −2.38 cm −2.26 cm −2.16 cm
nvoxel = 3 −1.52 cm −2.26 cm −2.28 cm −2.19 cm −2.17 cm
nvoxel = 4 0.00 cm 0.00 cm −2.25 cm −2.28 cm −2.24 cm
nvoxel = 5 0.00 cm 0.00 cm 0.00 cm 0.00 cm 0.00 cm
nvoxel = 6 0.00 cm −1.27 cm 0.00 cm −2.13 cm 0.00 cm
nvoxel = 8 0.00 cm 0.00 cm 0.00 cm 0.00 cm −2.30 cm
nvoxel = 10 0.00 cm 0.00 cm 0.00 cm 0.00 cm −1.46 cm

Table 3.9: Results of the stability experiments using density �ltering with modi�ed Heaviside
projection, the values for the output displacement uout are shown

p = 1 p = 2 p = 3 p = 4 p = 5

nvoxel = 1 −1.83 cm −1.82 cm
nvoxel = 2 −1.88 cm −2.15 cm −1.83 cm −1.88 cm −2.13 cm
nvoxel = 3 −1.96 cm −2.02 cm −1.98 cm −1.53 cm −2.09 cm
nvoxel = 4 0.00 cm −1.21 cm −2.13 cm −2.00 cm −2.09 cm
nvoxel = 5 0.00 cm −0.30 cm −2.13 cm −1.98 cm −1.77 cm
nvoxel = 6 −0.66 cm −1.21 cm −2.10 cm −2.09 cm −2.00 cm
nvoxel = 8 0.00 cm 0.00 cm −2.02 cm −2.12 cm −1.74 cm
nvoxel = 10 0.00 cm 0.00 cm −1.55 cm −2.07 cm −2.10 cm

Despite the fact that this optimization problem is more complex than the minimum com-
pliance problem it can be seen that the FCMTOP produces stable results for similar ranges
of settings. This emphasizes the general applicability of the method. It is interesting to
see that in some cases settings where p 6= 1, and nvoxel 6= 1, the optimized structure has a
higher uout than when p = 1, and nvoxel = 1, are used. This makes these settings not better,
however, it shows the complexity of the problem and the larger number of local minima at
which the optimizer can get stuck. The main goal of this test example is to see whether the
optimization method is able to create hinges, in which FCMTOP has succeeded.
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Table 3.10: Results of the stability experiments using robust topology optimization (η = 0.2),
the values for the output displacement uout are shown

p = 1 p = 2 p = 3 p = 4 p = 5

nvoxel = 1 −1.95 cm −1.60 cm
nvoxel = 2 −1.81 cm −1.97 cm −1.35 cm −1.79 cm −1.88 cm
nvoxel = 3 0.00 cm −2.03 cm −1.62 cm −1.70 cm −1.90 cm
nvoxel = 4 0.00 cm −2.00 cm −1.88 cm −1.78 cm −1.81 cm
nvoxel = 5 0.00 cm −1.87 cm −2.13 cm −1.98 cm −1.77 cm
nvoxel = 6 −0.66 cm −1.79 cm −1.93 cm −1.39 cm −1.78 cm
nvoxel = 8 0.00 cm 0.00 cm −2.10 cm −1.62 cm −1.78 cm
nvoxel = 10 0.00 cm −1.42 cm −1.82 cm −1.83 cm −1.85 cm

Most of the invalid structures have some sort of disconnection. The density �lter with Heav-
iside projection �lter is particularly prone to this e�ect. The projection method puts a
length-scale on the solid material, therefore, one-node connected hinges are characteristic for
this method. In case arti�cially sti� cells can be exploited this results in disconnected hinges,
of which two examples can be seen in Figure 3.11. Especially in the experiments performed
with the �ner discretization (160 by 80) these disconnected hinges occur.

(a) nvoxel = 4, p = 4, F̂ (ρ) = −0.0240, and
uout = −0.0228 m

(b) nvoxel = 6, p = 5, F̂ (ρ) = −0.0234, and
uout = 0.00 m

Figure 3.11: The compliant inverter for two settings where the hinges are either connected by
one node, or are completely disconnected. A discretization of 120 by 60 voxels
is used, and density �ltering with Heaviside projection is applied with rmin = 2
voxel widths

It is interesting to note that in the left �gure, the top right hinge consists of some gray
material. In a few optimization examples with Heaviside projection hinges with intermediate
density have appeared. The reason is again an arti�cially sti� cell, the density distribution,
moves towards a disconnected hinge, but, a completely disconnected hinge has a negative
e�ect on the objective. Therefore, the hinge will consist of intermediate densities.

In a similar fashion the modi�ed Heaviside projection creates one-node connected hinges
or disconnected hinges. So far the optimized results using this projection method seem to
be performing worse than the optimized structures using the normal Heaviside projection
method. Most optimized density distributions still show a connection between the weak
boundary and the input spring, two examples of this can be seen in Figure 3.12. As has
been discussed this is caused by an instability in the �rst iterations, after which it is hard to
recover. The reason why this instability occurs more using the modi�ed Heaviside projection
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method is yet to be determined.

(a) nvoxel = 3, p = 3, F̂ (ρ) = −0.0207, and
uout = −0.0198 m

(b) nvoxel = 3, p = 4, F̂ (ρ) = −0.0150, and
uout = −0.0153 m

Figure 3.12: The compliant inverter for two settings where the connection between the weak
boundary and input spring negatively in�uenced the objective. A discretization of
120 by 60 voxels is used, and density �ltering with modi�ed Heaviside projection
is applied with rmin = 2 voxel widths

Robust topology optimization is well suited for minimum displacement examples. The length-
scale it imposes locally on both solid, and void material ensures no one-node connected hinges
will be created. These thicker hinges result in a lower but more realistic output displacement.
The manufacturing tolerant black and white structures, are created in a more stable manner
than when a single projection method is used. The method seems to perform well for less
complex analysis system compared to projection methods. This alleviates a part of the
increased computational cost of having to solve the analysis equations three times.

A problem with robust topology optimization is that it seems to perform worse when �ner
discretizations are used, in combination with the small �lter radius (rmin = 2). A �ne
discretization will result in more structural members, and the small �lter radius will make sure
that these members are extremely thin in the eroded design, hence making the optimization
unstable.

3.4 Concluding remarks on the accuracy, and the stability of

FCMTOP

From the experiments presented in this chapter it can be concluded that the FCMTOP is
a stable and general applicable method. All experiments have been performed under the
same conditions, to get a fair comparison. Better results can be achieved by tweaking the
optimization parameters, e.g. the penalization factor, and move limit, per problem, however,
that was not the goal of this study.

The optimized values for the compliance and the output displacement, di�er per �lter, p and
nvoxel, these di�erences are small and no clear conclusion can be drawn on which setting is
the best. In minimum compliance optimization the optimized structures regarded as stable
look visually similar. In minimum displacement problems, the density distributions all end
up at a slightly di�erent local minima, however, the fact that hinges are created shows the
capabilities of FCMTOP to handle complex optimization problems.

Finally, a very important aspect of the stability of the method is the amount of iterations
niter required to reach convergence. A high number of iterations is not regarded as stable
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since the optimization stops after 1000 iterations. This number is generally not reached,
especially not when projection �lters are used. The experiments have shown that a relation
between the number of iterations, p and nvoxel is not apparent. Similar to the objective the
amount of iterations di�ers per �lter, p and nvoxel, and can be tweaked per problem. Most
values of niter are in the same range, e.g. 300 − 450. It is impossible to say which setting
produces the lowest number of iterations. An overview of the number of iterations required
for di�erent p and nvoxel can be seen in Table 3.11. For the other experiments the required
number of iterations can be seen in the corresponding appendices.

Table 3.11: The amount of iterations per optimization of the MBB-beam for di�erent settings.
A discretization of 180 by 60 voxels is used, and sensitivity �ltering is applied with
rmin = 2 voxel widths

p = 1 p = 2 p = 3 p = 4 p = 5

nvoxel = 1 408 412 - - -
nvoxel = 2 422 210 509 437 330
nvoxel = 3 287 392 325 383 410
nvoxel = 4 289 649 378 365 285
nvoxel = 5 352 286 441 434 439
nvoxel = 6 194 339 349 388 273
nvoxel = 10 136 188 489 241 366



Chapter 4

E�cient topology optimization

using the FCM

In this chapter the computational cost of performing topology optimization using the Finite
Cell Method (FCM) is discussed. More importantly, this cost is compared to the computa-
tional cost of performing topology optimization using classical FEM. Based on this compari-
son, the values for p and nvoxel are identi�ed for which topology optimization using the FCM
can result in an increase of the e�ciency for topology optimization applications.

4.1 Drivers of computational cost in topology optimization

A topology optimization process consists of 3 steps: initialization, optimization, and post-
processing. In this study on computational e�ciency, only the optimization module will be
considered. Although the computational cost of the initialization is highly dependent on p,
and nvoxel, it should be only a fraction of the total computational cost. The time spent
in the post-processor is independent of p, and nvoxel, and therefore will be left out of this
discussion. The amount of iterations, niter, spent in the optimization module has a large
in�uence on the computational cost of an optimization example. As has been discussed in
the previous chapter, no relation could be found between niter, p, and nvoxel. The research
on computational cost is therefore shifted to the time spent per design iteration.

4.1.1 The computational cost of one design iteration

A design iteration consists of:

1. Assembly of the sti�ness matrix

2. Solving the analysis equations

3. Sensitivity analysis

4. Mesh-independent �ltering

37
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5. Design update using the MMA

Experiments performed with FCMTOP are in agreement with the theory that solving the
analysis equations requires most computational e�ort [7]. The assembly of the sti�ness matrix
K comes second regarding computational e�ort. The design update using the MMA uses a
signi�cant part of the computational cost as well, but, it is independent of p and nvoxel,
therefore the corresponding computational e�ort will not be considered.

Assembly of the sti�ness matrix

The assembly of the sti�ness matrix includes: the mapping of the penalized sti�ness on
the pre-integrated cells, storage of the sti�ness matrix, and the application of the boundary
conditions. The most time consuming part of this process is storing the sti�ness matrix using
the sparse command in MATLAB. A relation exists between the memory required to store
K, and the corresponding time Tassembly. The required memory to store K depends on both
the number of non-zero elements nnz and the size of the sti�ness matrix, ndof ,

bytes = (8 + 8)× nnz + 8× (ndof + 1) (4.1)

Solving the analysis equations

The unknown vector D, is obtained using Cholesky decomposition. If a full matrix decom-
posed the computational cost is O(n3

dof ), however, this is not the case since K is sparse. The
corresponding computational cost is therefore di�cult to predict. It is known that this cost
depends on both the haf-bandwidth of the sti�ness matrix (nbw) and the degrees of freedom
(ndof ) [26]. To keep the computational cost down, both the size of the sti�ness matrix, and
the bandwidth have to be kept small.

4.1.2 The size and shape of the sti�ness matrix

Rudimentary relations have been identi�ed for the computational cost of both the assembly
of K, and the corresponding Cholesky decomposition. It should be noted that these relations
are simple and not completely accurate, however, they can give a decent overview on how the
size and shape of K in�uence the computational cost. Three parameters have been identi�ed
that drive this cost, that are the size of the sti�ness matrix (ndof ), the half-bandwidth (nbw),
and the amount of non-zero elements (nnz).

The size of the sti�ness matrix

The size of K, depends on p, and the number of cells nc. For a cell with a given set of basis
functions, the amount of corresponding unknowns can be determined. In a similar fashion
the size of the unknown vector D, which corresponds to ndof , can be calculated. This size,
as a function of p, and nvoxel can be seen in Table 4.1. In this example a discretization of 120
by 120 voxels is used, however, the relative di�erences hold for any type of discretization.

It is very interesting to see that ndof is constant for all p = nvoxel, as well as for all p = nvoxel/i,
where i can be any integer. This means that a higher polynomial degree does not necessarily
have to leave to more degrees of freedom in the analysis system. Furthermore, these exact
same relations hold when a 3D optimization example is considered.
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Table 4.1: The size of the sti�ness matrix (ndof ), for di�erent polynomial degrees (p), and
di�erent cell topologies. A discretization of 120 by 120 voxels is used

p = 1 p = 2 p = 3 p = 4 p = 5

nvoxel = 1 29,282 116,162 260,642 462,722 722,402
nvoxel = 2 7,442 29,282 65,522 116,162 181,202
nvoxel = 3 3,362 13,122 29,282 51,842 80,802
nvoxel = 4 1,922 7,442 16,562 29,282 45,602
nvoxel = 5 1,250 4,802 10,658 18,818 29,282
nvoxel = 6 882 3,362 7,442 13,122 20,402
nvoxel = 8 512 1,992 4,232 7,442 11,552
nvoxel = 10 338 1,250 2,738 4,802 7,442

The number of non-zero elements

Similar to ndof , the number of non-zero elements in the sti�ness matrix (nnz) depends on
both p, and nc. By experiment this number of non-zero elements as a function of p and nvoxel
is obtained, which can be seen in Table 4.2. Contrary to the degrees of freedom, no simple
relation exists between nnz, p and nvoxel, however, a higher polynomial degree will result in
more non-zero indices even when a similar sized sti�ness matrix is used.

Table 4.2: The number of non-zero elements (nnz), for di�erent polynomial degrees (p), and
di�erent cell topologies. A discretization of 120 by 120 voxels is used

p = 1 p = 2 p = 3 p = 4 p = 5

nvoxel = 1 521,284 3,319,204 12,888,004 32,048,404 70,506,964
nvoxel = 2 131,044 925,444 3,247,204 8,305,924 17,656,804
nvoxel = 3 58,564 412,164 1,444,804 3,694,084 7,851,204
nvoxel = 4 33,124 232,324 813,604 2,079,364 4,418,404
nvoxel = 5 21,316 148,996 521,284 1,331,716 2,829,124
nvoxel = 6 14,884 103,684 362,404 925,444 1,965,604
nvoxel = 8 8,464 58,564 204,304 521,284 1,106,704
nvoxel = 10 5,476 37,636 131,044 334,084 708,964

The half-bandwidth of the sti�ness matrix

The shape of the sti�ness matrix depends on the numbering scheme, the dimension of the
problem, and the polynomial degree p. FCMTOP encompasses the numbering schemes that
are present in FCMLab, which are polynomial degree sorting, and topological sorting. For
the experiments in this thesis the polynomial degree sorting scheme is used. Two examples of
the shape of a sti�ness matrix, ordered using this sorting scheme can be seen in Figure 4.1.

The half-bandwidth (nbw) of both matrices is larger than half the size of the sti�ness matrix.
The numbering scheme sorts D into the dimensions of the problem. The top half of D,
corresponds to the shape functions in x-direction, while the bottom half corresponds to the
shape functions in y-direction. When a 3D example is modeled the bandwidth is thus larger
than 2/3× ndof .
After the dimensions are ordered, the numbering scheme divides the coe�cients into the cor-
responding polynomial degrees. The �rst set of coe�cients, corresponding to the x-direction,
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(a) nvoxel = 1, p = 1, nbw = 11223 (b) nvoxel = 4, p = 4, nbw = 21393

Figure 4.1: Overview of the non-zero indices of sti�ness matrix K, when a polynomial degree
sorting scheme is used. The matrix corresponds to the MBB-beam example, where
a discretization of 180 by 60 voxels is used

belongs to p = 1, the second set of coe�cients belongs to p = 2, and so on. The topological
sorting scheme divides the coe�cients into the dimensions as well, and then orders them into
the di�erent modes, hence a reduction in bandwidth is not achieved using this numbering
scheme.

4.1.3 The e�ect of p and nvoxel on computational cost

A relation has been shown using the memory requirement to store K, and ndof and nnz.
Using the data from Tables 4.1, and 4.2 the memory requirement can be determined as a
function of p and nvoxel, which is shown in Table 4.3

Table 4.3: The required memory to store the sti�ness matrix, for di�erent polynomial degrees
(p) and di�erent cell topologies. A discretization of 120 by 120 voxels is used

p = 1 p = 2 p = 3 p = 4 p = 5

nvoxel = 1 8.18 MB 51.53 MB 198.64 MB 492.55 MB 1081.36 MB
nvoxel = 2 2.06 MB 14.34 MB 50.05 MB 127.62 MB 270.80 MB
nvoxel = 3 0.92 MB 6.53 MB 22.27 MB 56.76 MB 120.42 MB
nvoxel = 4 0.52 MB 3.60 MB 12.54 MB 31.95 MB 67.77 MB
nvoxel = 5 0.33 MB 2.31 MB 8.04 MB 20.46 MB 43.39 MB
nvoxel = 6 0.23 MB 1.61 MB 5.59 MB 14.22 MB 30.15 MB
nvoxel = 8 0.13 MB 0.91 MB 3.15 MB 8.01 MB 16.98 MB
nvoxel = 10 0.09 MB 0.58 MB 2.02 MB 5.13 MB 10.87 MB

It can be seen that the memory requirements are drastically a�ected by the complexity of the
analysis mesh. For p > nvoxel, the memory requirement is much larger compared to classical
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FEM with linear shape functions, hence these settings are not recommended. Furthermore,
it can be seen that even for a small discretization (120 by 120), the memory requirement
to store K is already signi�cant. For large-scale 3D optimization examples, the memory
requirement to store K will become leading. Performing topology optimization on examples
with ne ≥ 106, p = 2 and nvoxel = 1, is not possible on a computer containing 8GB of RAM,
due to shortage of memory. More e�cient storage algorithms exist to mitigate this problem,
however, that is beyond the scope of this thesis.

The computational cost required to obtain the unknown vector D using Cholesky decom-
position, is even more critical than the assembly cost. From Table 4.1 it can be seen that
for p > nvoxel the size of K becomes larger than when classical FEM is used, hence these
settings are not recommended. What is actually more alarming is that compared to the use
of linear shape functions, the half-bandwidth (nbw) is larger when higher polynomial degrees
are used. The ordering scheme for the global sti�ness matrix dictates nbw, hence a smart
ordering scheme can greatly in�uence the computational e�ciency by reducing nbw.

The bandwidth of a matrix can actually be using the reverse Cuthill-McKee algorithm [26].
MATLAB, contains a function to �nd the ordered indices using the symrcm command. Since
K has the same shape at every loop, the reverse Cuthill-McKee algorithm has to be applied
only once, before the optimization loop. Using a smart reordering algorithm K can now be
assembled in bandwidth optimized form, without adding extra computational cost. The sti�-
ness matrices shown in Figure 4.1, have been reordered, resulting in the bandwidth optimized
matrices shown in Figure 4.2.

(a) nvoxel = 1, p = 1, nbw = 245 (b) nvoxel = 4, p = 4, nbw = 945

Figure 4.2: Overview of the non-zero indices of sti�ness matrix K, when the reverse Cuthill-
McKee algorithm is used to optimize the bandwidth. The matrix corresponds to
the MBB-beam example, where a discretization of 180 by 60 voxels is used
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4.1.4 Concluding remarks on the computational cost of one design itera-

tion

Based on the relations between p and nvoxel, and the computational cost it can be seen that
topology optimization cannot be performed e�cient when p > nvoxel, Using these settings,
both the memory required for the assembly ofK, and the cost of solving the analysis equations
are always larger than when classical FEM is used.

In the next section numerical experiments will be performed to identify for which settings
topology optimization using the FCM can be more e�cient than topology optimization us-
ing classical FEM. Settings for p, and nvoxel, with p > nvoxel, will thus not have to be
considered. Furthermore, there are settings for nvoxel, and p, which have been identi�ed as
unstable. These settings will also not result in a better topology optimization process com-
pared to classical FEM, and can be disregarded as well. The settings that will be tested to
identify whether topology optimization using the FCM can be more e�cient than topology
optimization with classical FEM are indicated by the green cells in Table 4.4.

Table 4.4: The setting that will be used for the numerical experiments on e�ciency are indicated
by the green cells, the settings marked purple are computationally too expensive,
while the red cells correspond to unstable settings

p = 1 p = 2 p = 3 p = 4 p = 5

nvoxel = 1

nvoxel = 2

nvoxel = 3

nvoxel = 4

nvoxel = 5

nvoxel = 6

nvoxel = 8

nvoxel = 10

4.2 Experiments on computational e�ciency

In the previous section the relations between the computational cost and the parameters
nvoxel and p have been discussed. In this section the results of numerical experiments will be
shown to identify whether these relations hold. For these experiments two large-scale topology
optimization examples were used, a 2D Michell truss example using a discretization of 240
by 240 voxels, and a 3D MBB-beam example using a discretization of 120 by 40 by 40 voxels.
Both optimization examples were modeled twice, once with bandwidth optimization, and
once without, to identify whether bandwidth optimization results in an increase in e�ciency.
Sensitivity �ltering was applied using a �lter radius (rmin) of 2 voxel widths. The goal of
these experiments has been to �nd the time to assemble the sti�ness matrix (Tassembly) and
the time to solve the analysis equations (Tchol).

The 2D Michell truss optimization examples have been performed on a HP ZBook 15, with
an Intel Core i7-4700MQ processor, 8 GB memory, Windows 8.1, and MATLAB R2014b.
Due to memory restrictions the 3D MBB-beam examples have been performed on a Linux
cluster using 192 GB RAM. Other processes will be running on both computational systems,
making both Tassembly and Tchol subject to small variations in every design iteration. Despite
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these variations, both Tassembly and Tchol are assumed constant, by taking the mean value of
all design iterations. This can be done since the variations are small, and close to the mean
value as can be seen in Figure 4.3.

(a) nvoxel = 2, p = 2, Tchol = 93.24 s (b) nvoxel = 4, p = 4, Tassembly = 23.24 s

Figure 4.3: Indication of the variations in Tchol, and Tassembly for every design iteration, in the
3D MBB-beam example

4.2.1 Michell truss

The �rst example that will be used to test the numerical e�ciency of the method is the Michel
truss [46]. The Michell truss is widely regarded as the �rst example of structural optimization,
and one of the few examples for which an analytical optimum can be determined. The design
domain and its corresponding dimensions are di�erent, and can be seen in the left part of
Figure 4.4.

(a) Design domain an boundary condi-
tions

(b) p = 2, nvoxel = 3

Figure 4.4: The Michell truss topology optimization example, problem formulation, and opti-
mized design
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This minimum compliance optimization problem has a similar problem formulation and sensi-
tivity analysis as the MBB-beam example. The material properties of steel are used, E = 210
GPa, and ν = 0.3, and the load has a magnitude of 1 MN. Plane stress conditions are as-
sumed with domain thickness t = 1 cm. For the optimization a penalization factor q = 3,
while the maximum allowable volume fraction Vmax = 0.2. A discretization of 240 by 240
voxels is used, and sensitivity �ltering is applied with a �lter radius of 2 voxel widths. The
polynomial degree (p), and the number of voxels in each direction of a cell (nvoxel), are varied
in the experiments.

The experiments have been performed for all settings described in Table 4.4, and it is inter-
esting to note that all optimized density distributions look visually similar to the analytical
optimum described by Michell [46]. For the settings p = 3, and nvoxel = 5 the optimized
density distribution can be seen in the right part of Figure 4.4. Despite the fact that all
experiments produce stable structures, the goal of these experiments is di�erent. The nu-
merical cost of these experiments, described by Tassembly, Tchol, and the total time for one
design iteration (Tloop) can be seen in Table 4.5.

Table 4.5: The results on numerical cost for di�erent p, and nvoxel, using the Michell truss
optimization example. A discretization of 240 by 240 voxels is used, and sensitivity
�ltering is applied

p [-] nvoxel [-] niter [-] ndof [-] nbw [-] Size K [MB] Tchol [s] Tassembly [s] Tloop [s]
1 1 358 116162 58323 32.60 0.89 0.42 1.89
1 2 264 29282 14763 8.17 0.18 0.10 0.76
2 2 292 116162 101762 57.24 1.19 0.60 2.45
2 3 287 51842 45442 25.47 0.43 0.25 1.23
2 4 290 29282 25682 14.34 0.22 0.13 0.86
3 3 288 116162 109683 88.92 1.43 0.84 3.07
3 4 281 65522 61863 50.05 0.71 0.46 1.85
3 5 270 42050 39699 32.05 0.43 0.29 1.32
3 6 273 29282 27643 22.27 0.27 0.20 1.06
4 4 270 116162 112503 127.62 1.60 1.08 3.57
4 5 289 74498 72147 81.71 0.91 0.65 2.27
4 6 296 51842 50203 56.76 0.60 0.45 1.67
4 8 373 29282 28353 31.95 0.29 0.24 1.08
5 5 345 116162 113811 173.36 1.82 1.36 4.15
5 6 301 80802 79163 120.42 1.20 0.93 2.96
5 8 294 45602 44673 67.77 0.64 0.50 1.80
5 10 410 29282 28683 43.39 0.39 0.32 1.33

Topology optimization can be performed in a more e�cient fashion than for p = 1, and
nvoxel = 1. The settings for linear shape functions, combined with nvoxel = 2, are most
e�cient for this example, however, for all nvoxel = 2p, topology optimization can be performed
with an increase in computational e�ciency compared to classical FEM with linear shape
functions.

The time required for Cholesky factorization seems to scale with both nbw, and ndof . A
smaller sized sti�ness matrix reduces Tchol, however the increased half-bandwidth can com-
pensate this reduction in time, as can be seen for p = 5, and nvoxel = 6. Furthermore, the
time required to assemble the sti�ness matrix, does not completely depend on its memory
requirement. A smaller sized sti�ness matrix reduces seems to reduce Tassembly.
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The same experiments have been performed, but now bandwidth optimization is performed.
The results of these experiments can be seen in Table 4.6.

Table 4.6: The results on numerical cost for di�erent p, and nvoxel, using the Michell truss
optimization example, including bandwidth optimization. A discretization of 240 by
240 voxels is used, and sensitivity �ltering is applied

p [-] nvoxel [-] niter [-] ndof [-] nbw [-] Size K [MB] Tchol [s] Tassembly [s] Tloop [s]
1 1 358 116162 963 32.60 1.04 0.42 2.02
1 2 264 29282 483 8.17 0.22 0.11 0.78
2 2 292 116162 1921 57.24 1.52 0.54 2.64
2 3 287 51842 1281 25.47 0.50 0.24 1.27
2 4 290 29282 961 14.34 0.26 0.13 0.90
3 3 292 116162 2875 88.92 1.71 0.75 3.15
3 4 281 65522 2155 50.05 0.82 0.40 1.83
3 5 270 42050 1723 32.05 0.49 0.26 1.31
3 6 273 29282 1435 22.27 0.28 0.18 1.00
4 4 270 116162 3825 127.62 1.35 0.99 3.14
4 5 289 74498 3057 81.71 0.84 0.63 2.13
4 6 296 51842 2545 56.76 0.55 0.44 1.59
4 8 373 29282 1905 31.95 0.26 0.24 1.05
5 5 278 116162 4771 173.36 1.60 1.33 3.84
5 6 301 80802 3971 120.42 1.07 0.92 2.76
5 8 294 45602 2971 67.77 0.56 0.48 1.69
5 10 408 29282 2371 43.39 0.35 0.32 1.29

It is very interesting to observe that the bandwidth optimization, does not necessarily lead to
a more e�cient Cholesky decomposition. Only when p = 4 or p = 5 are used the bandwidth
optimization result in a slightly more e�cient optimization. The reason for this is still un-
known. Furthermore, it can be noted that some experiments show a di�erence in the number
of iterations between the bandwidth optimized case, and the non-bandwidth optimized case.
The reason can be a small di�erence in D due to di�erent conditioning errors after reorder-
ing K. This di�erence can then accumulate over the number of iterations, hence a slightly
di�erent optimization is performed.

4.2.2 3D MBB-Beam example

The second optimization example that is considered is the 3D MBB-beam example, with
a discretization of 120 by 40 by 40 voxels. The boundary conditions of this optimization
example are almost similar to the boundary conditions and the dimensions shown for the
2D MBB-beam example shown in Figure 2.5. The di�erence is the third dimension, where
the domain has a length of 1 m in the z-direction. The edge BC becomes a face BC, and
the nodal BCs become edge BCs. A volume fraction (Vmax) of 0.2 is used, while all other
properties are similar to the 2D MBB-beam example.

The optimization experiments have been performed for all settings described in Table 4.4.
The numerical cost of these experiments, described by Tassembly, Tchol and (Tloop) can be
seen in Table 4.7. Similar to the Michell truss example a valid density distribution has been
achieved for all settings. The optimized density distribution for the settings p = 2 and
nvoxel = 4 can be seen in Figure 4.5.
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Table 4.7: The results on numerical cost for di�erent p, and nvoxel, using the 3D MBB-beam
optimization example. A discretization of 120 by 40 by 40 voxels is used, and
sensitivity �ltering is applied

p [-] nvoxel [-] niter [-] ndof [-] Size K [MB] Tchol [s] Tassembly [s] Tloop [s]
1 1 223 610203 730.49 133.04 11.34 149.36
1 2 224 80703 93.11 2.96 1.29 6.88
2 2 212 610203 1716.87 93.24 16.10 118.60
2 4 299 80703 217.76 3.24 1.85 8.03
3 4 199 262353 1414.19 16.40 10.46 33.69
3 5 226 136875 726.88 6.29 5.56 16.38
4 4 208 610203 5755.50 85.38 46.04 152.28
4 5 203 316899 2953.99 30.63 23.24 65.50
4 8 235 80703 726.45 8.99 5.51 19.65
5 5 223 610203 9124.16 98.72 75.32 205.37
5 8 219 154128 2238.71 26.82 19.63 56.92
5 10 234 80703 1150.05 6.15 9.90 22.04

The cost of performing an optimization p = 1, and nvoxel = 1 is higher, compared to the cost
for p = 2 and nvoxel = 2. This is not expected due to the lower bandwidth and fewer non-
zero elements. The di�erence cannot be explained, but it is assumed that another program
running on the same node might have caused this di�erence. Apart from this it can be seen
that a separate density and analysis mesh can reduce the optimization time by a factor 10!
This very large di�erence, shows the bene�ts of performing topology optimization using the
FCM.

The settings for linear shape functions combined with nvoxel = 2, are the most e�cient. For
all nvoxel = 2p, topology optimization can be performed with an increase in computational
e�ciency compared to classical FEM with linear shape functions. Furthermore, it can be seen
that the required memory to store K drastically increases when higher-order shape functions
are used. In 3D examples the amount of introduced degrees of freedom grows at a much faster
rate compared to 2D analysis. Therefore, its important to consider the memory requirement
to store K in 3D topology optimization applications, using higher-order shape functions.

Similar to the Michell truss bandwidth optimization is applied, however, in this case that did
not result in a more e�cient optimization, hence the corresponding results will not be shown
here.

4.3 Concluding remarks

In this chapter the relations, between the size and shape of the sti�ness matrix, and the com-
putational cost of performing topology optimization has been discussed. A relation between
p, nvoxel and the time required to solve the analysis equations has been identi�ed, where the
higher-order shape functions increase the bandwidth, and thus the corresponding computa-
tional cost. To reduce the computational cost bandwidth optimization has been implemented
using the reverse Cuthill-McKee algorithm, however, this did not seem to reduce the anal-
ysis time, sometimes the analysis time even increased. A reason for this might be that the
function to perform Cholesky decomposition in MATLAB uses a more e�cient re-ordering
scheme.



4.3 Concluding remarks 47

Figure 4.5: The optimized density distribution for the 3D MBB-beam optimization example,
with p = 2 and nvoxel = 4. A discretization of 120 by 40 by 40 voxels is used, and
sensitivity �ltering is applied

Furthermore, a relation between p, nvoxel and the required memory to store the sti�ness
matrix has been identi�ed. The use of higher-order shape functions introduces more non-zero
elements in the sti�ness matrix, thus increases the required memory to store K. Especially
in 3D optimization examples this memory requirement can become a limiting factor for the
size of optimization problems that can be modeled.

The most important conclusion that can be drawn from the experiments in this chapter, is
that topology optimization using a separate density and analysis mesh can greatly reduce the
computational cost. In 2D examples an increase in numerical e�ciency of a factor 2 can be
identi�ed, without compromising the optimization objective. In 3D topology optimization
examples the computational cost can be decreased by more than a factor 10.



48 E�cient topology optimization using the FCM



Chapter 5

Discussion on the potential of

topology optimization using the

FCM

In the previous chapters, the stability, accuracy, and e�ciency of performing topology opti-
mization using the FCM have been identi�ed. In this chapter the performance of topology
optimization using the FCM is compared to the performance of topology optimization us-
ing classical FEM with linear shape functions. To �nd when the use of the FCM is more
bene�cial than classical FEM in topology optimization applications.

5.1 The performance of topology optimization using the FCM

In this section the results of the previous two chapters will be summarized. Topology opti-
mization examples with a larger length-scale will be shown to emphasize the potential of using
a separate density and analysis mesh. Furthermore, the use of higher-order shape functions
will be discussed.

5.1.1 The reliability, e�ciency and accuracy experiments

From the experiments presented in the previous chapters it can be seen that topology opti-
mization using the FCM can be performed in a stable fashion. The need for a length-scale
imposed using mesh-independent �ltering is shown, but, this length-scale is small and does
not violate the required high resolution. Furthermore, the settings are shown for p and nvoxel
for which topology optimization can be performed in a stable fashion. More importantly, it
is shown that these di�erent analysis systems may all result in a di�erent local optimum,
however, the corresponding di�erences in post-processed objectives are small. It is very im-
portant that this post-processing of the objective is done. It may show arti�cially sti� cells,
which otherwise would have been overlooked. Furthermore, it allows for a fair comparison
between the di�erent settings of p, and nvoxel.
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More interesting to note is that the use of a decoupled density and analysis mesh can greatly
reduce the computational cost of topology optimization, without compromising the optimiza-
tion objective. Especially in 3D topology optimization examples the computational cost can
be decreased by more than a factor 10. The 3D experiments are performed on a cluster,
which may lead to variations in the time measurements. Nevertheless, the bene�t of a sep-
arate density and analysis mesh is shown. In the 2D optimization example large reductions
in the optimization time can be seen as well.

So far, no setting for p, and nvoxel can be identi�ed as being the best setting. A higher-order
shape function does not seem to be mandatory when multi-resolution topology optimization
is performed. This observation will be discussed in more detail later in this chapter. First, a
further reduction in computational cost using a larger length-scale will be discussed.

5.1.2 Topology optimization examples with a larger length-scale

High-resolution large-scale topology optimization can only be performed using a small �lter
radius (rmin). A �ne discretization combined with a large �lter radius, will make sure the
boundary of structural members becomes smooth, however, the size of these members needs to
have a minimum length-scale, hence a truly high-resolution cannot be achieved. Nevertheless,
most optimization examples use a mesh-independent �lter radius, which is larger than 2 voxel
widths.

This larger length-scale, means that the analysis mesh can become less complex, hence the
computational cost can be decreased. To demonstrate this, consider the compliant force
inverter example, with a �ne discretization of 240 by 120. Robust topology optimization is
applied with a �lter radius of 4 voxel widths. The corresponding optimization time per loop
Tloop, for di�erent settings of p, and nvoxel can be seen in Table 5.1.

Table 5.1: The results on numerical cost for di�erent p, and nvoxel, using the compliant force
inverter example. A discretization of 240 by 120 voxels is used, robust topology
optimization is applied (η = 0.2), with rmin = 4 voxel widths

p [-] nvoxel [-] ndof [-] Tloop [s] uout [cm]
1 1 58322 5.10 -1.64
1 4 3782 0.94 -1.82
1 5 2450 0.97 -2.13
2 8 3782 1.02 -2.19
2 10 2450 0.96 -2.21
2 12 1722 0.86 -1.86
3 10 5402 1.14 -2.18
3 12 3782 1.06 -2.13
3 15 2450 0.90 -1.79
4 12 6642 1.22 -1.82
4 15 4290 1.01 -1.60
4 20 2450 0.96 -2.08
5 15 6642 1.49 -1.77
5 20 3782 1.09 -1.90

Compared to the �lter radius of 2 voxel widths the computational e�ciency can be reduced
even more. It is very interesting to see that the time spent in the optimization loop can
be reduced more than �ve times compared to the use of classical FEM with linear shape
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functions. This means that the additional cost for robust topology optimization using p = 1
and nvoxel = 1 can be alleviated using a separated density and analysis mesh.

Contrary to the previous experiments, there is no setting which is clearly more e�cient
than another one. The quality of the analysis mesh also does not seem to a�ect the output
displacement. The variation in this output displacement seems random, and is just the result
of optimizations getting stuck at local minima. The highest output displacement −2.21 cm,
is achieved using a very simple analysis mesh p = 2 and nvoxel = 10, so no highly accurate
displacement �eld is required to solve this type of problems.

5.1.3 The use of higher-order shape functions

Almost all experiments performed so far, have shown that topology optimization using p = 1
and nvoxel > 1 is the most, or among the most e�cient settings to perform computationally
e�cient topology optimization. This polynomial degree results in the most diagonal sti�ness
matrix, hence the cost for solving the analysis equations is low. Nguyen et al [47, 48] already
have proposed a multi-resolution approach using linear shape functions, similar to topology
optimization using the FCM with p = 1. This raises the question whether higher-order shape
functions should be used at all.

The optimized density distributions using p = 1 are similar to the density distributions
obtained using higher-order shape functions. After post-processing the corresponding values
for the compliance or output displacement are similar as well. It seems that the optimization
problems discussed so far, do not require a highly accurate displacement �eld to perform
topology optimization. An error in the displacement �eld is not bad, as long as this error
is approximately similar for the whole analysis system. This seems the case, when a simple
analysis mesh is used with p = 1, and nvoxel = 2. This means that multi-resolution topology
optimization using p = 1 is very well suited for relatively simple topology optimization
problems. The simple analysis mesh will greatly reduce the computational cost of performing
topology optimization. The amount of voxels per cell can be scaled up with the applied length-
scale to prevent the occurrence of the arti�cial sti� cells, yet reducing the computational cost.

It is very important to remember that topology optimization problems, where the boundary
is enforced in the weak sense, require an accurate displacement �eld. Recall the topology
optimization example of the Michell truss, where the circular boundary has been applied
in the weak sense. The optimized density distributions in this example are all regarded as
stable, however, the di�erences between the objective and the post-processed compliances
are very large as can be seen in Table 5.2.

The values for the post-processed compliance (C) are almost similar, while di�erences in
the objectives are alarming. The reason is the application of the weak Dirichlet BC, which
requires an integration over a parameterized boundary using the shape functions present in
the analysis system. For a very simple analysis system, the BCs are therefore not applied
correctly. In the Michell truss example, this did not cause large problems, since only one BC
was used. The corresponding sti�ness of the boundary is estimated wrong, but this error is
constant in the whole analysis mesh, hence the sensitivity analysis is still correct. But if a
strong BC is added to the system, the corresponding analysis would be completely wrong.

An optimization problem with multiple weak BCs therefore requires a much more complex
analysis system, than an optimization problem with strong BCs. This is where the higher-
order shape functions can be bene�cial over linear FEM, since these higher-order functions
are able to describe a more complex displacement �eld for similar ndof [58, 72]. A detailed
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Table 5.2: The objective and post-processed compliance, for di�erent p, and nvoxel, using the
Michell truss optimization example. A discretization of 240 by 240 voxels is used,
and sensitivity �ltering is applied

p [-] nvoxel [-] niter [-] ndof [-] F̂ (ρ) [-] C [J]
1 1 358 116162 1.80E+09 9.05E+04
1 2 264 29282 1.17E+05 8.49E+04
2 2 292 116162 8.41E+04 8.62E+04
2 3 287 51842 1.02E+05 8.64E+04
2 4 290 29282 7.64E+04 8.56E+04
3 3 288 116162 1.80E+05 8.68E+04
3 4 281 65522 3.23E+05 8.56E+04
3 5 270 42050 8.69E+04 8.56E+04
3 6 273 29282 8.44E+04 8.62E+04
4 4 270 116162 2.40E+05 8.55E+04
4 5 289 74498 7.85E+04 8.52E+04
4 6 296 51842 7.98E+04 8.53E+04
4 8 373 29282 7.64E+04 8.55E+04
5 5 345 116162 8.65E+04 8.57E+04
5 6 301 80802 8.13E+04 8.58E+04
5 8 294 45602 7.77E+04 8.52E+04
5 10 410 29282 1.75E+05 8.60E+04

study into which settings of p and nvoxel should be used for correct enforcement of the BC is
not performed in this thesis. However, it is strongly recommended to perform this study in
the future.

Other topology optimization problems that require an accurate representation of the dis-
placement �eld, are optimization problems with displacement constraints, problems with
non-linear strain, but most importantly optimization problems with a stress-constraint. As
the name implicates stress-constrained topology optimization is constrained by a maximum
allowable stress [42]. The higher-order shape functions are much better in describing an
accurate stress �eld than lower order shape functions. Unfortunately, the post-processor in
FCMTOP is not able to show these highly accurate stress distribution for di�erent p and
nvoxel. Therefore the potential of higher-order shape functions for stress-constrained opti-
mization cannot be demonstrated.

To conclude this discussion it is important to consider that the use of higher-order shape
functions completely depends on the type of optimization problem. For relatively simple
optimization problems the use of a relatively low polynomial degree p = 1, 2, 3 is su�cient to
perform very e�cient topology optimization using a separate density and analysis mesh. For
more di�cult topology optimization examples a more accurate analysis system is required.
For both types of problems the FCM is well suited. Due to its general applicability this
method can be used in a wide range of problems, where the settings can be tweaked for every
problem to keep the computational cost as low as possible.

Finally, it has to be mentioned that the computational cost of topology optimization using
higher-order shape functions can be further reduced using static condensation of the sti�ness
matrix.
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Reducing the degrees of freedom using static condensation

A high polynomial degree introduces a large number of internal modes and corresponding
coe�cients, especially in the product space, which is used in FCMTOP. These higher order
internal modes are local to the element and can be condensed out of the sti�ness matrix,
drastically reducing its size. Several studies have shown that this does not a�ect the accuracy
of the displacement �eld, and even can lower the condition number of the sti�ness matrix [44,
71].

Static condensation has not been applied in FCMTOP, however, the use of it may have a
signi�cant impact on the computational cost using a high p. It is strongly recommended that
this method should be implemented in the future, and tested on various topology optimization
examples.

5.2 Large-scale topology optimization using FCMTOP

Large-scale topology optimization examples requires the use of a separate density and analysis
mesh to keep the computational cost low. When multiple voxels per cell are used, a smart
way of boundary enforcement has to be considered, for which higher-order shape functions are
best suited. Hence, the FCM is well suited to be used for large-scale topology optimization
applications. To demonstrate this, a large scale minimum compliance optimization of a
clamped wing will be shown with a discretization of 200 by 40 by 400 voxels.

For the shape of the wing a NACA 0020 airfoil is used, with a chord length of 1 m, and a
wingspan 2.2 m. The corresponding domain dimensions are 1.1 by 0.44 by 2.2 m, with Vmax =
0.25. The outer shape of the wing is modeled in FCMTOP using passive elements. The
aerodynamic load will be applied on the wing surface using weak enforcement of the Neumann
boundaries. The discussion in the previous section indicated that a high p is preferred in
case weak BCs are applied. To do this a polynomial degree of 4 is used, with nvoxel = 8. The
wing is made up of aluminum 7075-T6, which is commonly used in aerospace applications,
E = 71.7 GPa and ν = 0.33. Density �ltering with modi�ed Heaviside projection is applied
for rmin = 2.2 cm, to achieve a high-resolution design.

The aerodynamic loading on the wing is calculated using XFOIL, which is a panel code
developed by Drela [29]. A viscous analysis is performed at sea-level conditions (ρair = 1.225
kg/m3, T = 291.25 K). The wing is �ying at Mach = 0.2, at an angle of attack (α = 5◦).
In Figure 5.1 a cross-section of the wing is shown as well as the corresponding pressure
distribution. The lines pointing into the wing correspond to a pressure compressive force at
the surface, while the lines pointing outward correspond to a tensile force.

This pressure distribution is applied at ten span-wise positions of the wing. At these positions
the pressure is integrated, over 140 di�erent parameterized lines that form the outer shape
of the airfoil. The elements outside of the airfoil are set to be passive with no density at
all, and the wing is clamped at the root. The corresponding optimized wing can be seen in
Figure 5.2, where four di�erent cross-sections are shown to give an overview of the internal
structure of the wing.

It is very interesting to see that the optimized density distribution provides bending-sti�ness
to the wing, in a similar fashion as in done by using a wing-box. The optimizer goes to
an optimum which is known to be the best, and applied in almost all structural designs of
wings. Close to the root the bending moment caused by the pressure load is the largest,
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Figure 5.1: The shape of a NACA 0020 airfoil, and the corresponding pressure distribution
obtained in XFOIL using a viscous analysis is performed at sea-level conditions
(ρair = 1.225 kg/m3, T = 291.25 K), Mach = 0.2, and (α = 5◦)

(a) Cross-section close to the root-section (b) Cross-section at 1/4 of the wing span

(c) Cross-section at 1/2 of the wing span (d) Cross-section at the wing tip

Figure 5.2: Di�erent cross-sections of the clamped wing example. A discretization of 200 by 40
by 400 voxels is used, density �ltering with modi�ed Heaviside projection is applied,
with rmin = 2 voxel widhts

hence the structural members are thickest. Close to the tip, the corresponding stresses are
small resulting in a thin structure.

This optimization example shows the great potential of topology optimization. Despite the
fact that the density distribution is very coarse, the optimizer is able to create a structure
that can be recognized to one used in engineering practice. The 3.2 million design elements
used in this example, are close to the maximum that FCMTOP can handle. Even with p = 4,
and nvoxel = 8, the optimization process lasted more than 2 days. If p = 1 and nvoxel = 1
would have been used, this optimization would not have been possible, hence a separated
density and analysis mesh is extremely bene�cial when large-scale topology optimization is
considered.



Chapter 6

Final remarks

6.1 Conclusions

The research objective of this thesis was: "To investigate the potential of the FCM for large

scale, high resolution topology optimization problems, compared to the use of �nite elements

(FE) with linear shape functions in terms of reliability, e�ciency and accuracy.". The �rst
step of reaching this objective has been to develop a method to perform topology optimization
using the FCM. To fully exploit the properties of the FCM, density based optimization is
performed using the SIMP method for material interpolation. The theory used to develop
this model, called the Finite Cell Method Topology Optimization Program (FCMTOP) is
discussed in Chapter 2.

In Chapter 3 the need for a length-scale imposed using mesh-independent �ltering is shown.
This prevents the formation of arti�cially sti� cells, in a similar fashion as a checkerboard
pattern is prevented. Furthermore, values for the polynomial degree p, and the number of
voxels in each cell direction nvoxel, are shown that ensure stable topology optimization. It
was very interesting to see that these di�erent settings all produced visually similar looking
topologies. The di�erent analysis systems led to di�erent values for the objectives, however,
when all results are post-processed using a highly accurate mesh the corresponding objectives
are very similar.

The use of a decoupled density and analysis mesh can greatly reduce the computational cost
of topology optimization as has been discussed in Chapter 4. Especially in 3D topology
optimization examples the computational cost can be decreased by more than a factor 10,
while maintaining a high-resolution in the density �eld. The use of a larger length-scale can
reduce the computational cost even more, which is especially bene�cial for robust topology
optimization.

It is important to consider that the use of higher-order shape functions completely depends
on the type of optimization problem. For relatively simple optimization problems the use of
a relatively low polynomial degree p = 1, 2, 3 is su�cient to perform very e�cient topology
optimization. For more di�cult topology optimization examples, such as stress-constrained
topology optimization, or examples with multiple weak boundary conditions, a more accurate
analysis system is required, hence a larger polynomial degree should be used.
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To conclude, the FCM is very well suited to adapt its analysis system to the complexity of
the topology optimization problem. The experiments done so far, show the superiority of
a separate density and analysis mesh, over topology optimization using classical FEM with
linear shape functions. The use of the FCM is therefore strongly recommended to keep the
computational cost of topology optimization low.

6.2 Recommendations

• When topology optimization is performed with a separate density and analysis mesh, it
is very important to realize that a relatively simple analysis method is used. To make
sure that the optimized density distribution is really optimal, post-processing with a
more advanced analysis system has to be performed. This post-processing may show
arti�cially sti� cells, which otherwise would have been overlooked. Furthermore, it
allows for a fair comparison between the di�erent settings of p, and nvoxel.

• So far, optimization problems using relatively simple boundary conditions are consid-
ered. The enforcement of weak boundary conditions require a highly accurate displace-
ment �eld, hence the use of higher order shape functions is required. A study into which
settings of p and nvoxel should be used for correct enforcement has to be performed.
Furthermore, this study should include a comparison on the computational cost of this
process with respect to classical FEM with linear shape functions.

• The use of higher-order shape functions, and a separate density and analysis mesh is
at the moment not considered for stress-constrained topology optimization. The FCM
shows great potential for this, since it can not only reduce the computational cost, but
also increase the accuracy of the stress �eld. A research study to identify this potential
is therefore highly recommended.

• A high polynomial degree introduces a large number of internal modes and correspond-
ing coe�cients. These higher order internal modes are local to the element and can be
condensed out of the sti�ness matrix, drastically reducing its size. It is recommended
that this method is applied in FCMTOP to identify its e�ect on the accuracy, stability,
and numerical e�ciency when used in combination with topology optimization.

• FCMTOP is programmed in MATLAB, and is therefore not very e�cient. The de-
veloped topology optimization could therefore be programmed in a more e�cient en-
vironment such as PETsC [1], to identify its capabilities in very large-scale topology
optimization examples.
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Appendix A

A literature review on topology

optimization methods

This appendix will give the reader an elaborate literature review on structural topology opti-
mization. First, the de�nition and applications of topology optimization will be mentioned.
Secondly, the di�erent methods used for topology optimization will be discussed. Thirdly,
the developments in large-scale topology optimization will be discussed.

A.1 Applications of structural optimization

The de�nition of structural optimization as de�ned by Christensen, and Klarbring [23] states:
"Structural optimization is the subject of making an assemblage of materials to sustain loads
in the best way". The de�nition of "best" depends completely on the view-point of the opti-
mization problem. It can mean as light-weight as possible, as sti� as possible, or specify a de-
sired deformation, etc. The optimization problem is most of the times, if not always, bounded
by constraints. One can for example look for the sti�est design, for a given mass. Further-
more, it is also possible to have multiple objectives and �nd a so-called Pareto-optimum [23],
which is a weighted sum of the di�erent objective functions.

Structural optimization can be de�ned in three classes [17][23]:

• Sizing optimization

In a sizing problem the goal is to �nd the optimum of a design variable while the domain
of the design is already known. An example of a sizing problem can be �nding optimum
thickness distribution of a sheet.

• Shape optimization

In a shape optimization problem the goal is to �nd the optimum shape of the domain.
So the domain is now the design variable.

• Topology optimization

Topology optimization is the most general form of structural optimization. It involves
the location and connectivity of the material in the domain.
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An example of topology optimization on a continuum structure can be found in Figure A.1 [60],
here one sees the load and boundary conditions applied on domain Ω, in the bottom �gure
one can see the optimized structure for minimum compliance.

Figure A.1: Example of topology optimization on a MBB beam, the top �gure denotes the
design domain Ω with the applied loads and boundary conditions, and the bottom
�gure shows the corresponding optimized structure [60]

Despite the fact that topology optimization is a relatively new technique it already found
applications in various industries such as the aerospace and automotive industries [86, 90].
Furthermore, the method has given very promising results for the biomedical industry and
the development of Micro ElectroMechanical Systems (MEMS) [17].

A.2 Problem formulation in topology optimization

Since the original paper on topology optimization by Bendsøe and Kikuchi [?], the research
�eld has grown, and it is at the moment one of the most active research area's in structural
and multidisciplinary optimization [27]. The development on topology optimization is split
up into di�erent directions [64], which will be discussed in more detail later, however the
general problem formulation is the same.

Topology optimization can be seen as a material distribution problem. The goal is to �nd that
optimum material distribution ρ(x) that minimizes an objective function F̂ . This function
is subject to m constraints Ĝi, of which the �rst is generally a volume constraint. The
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mathematical form of the topology optimization problem can be written as [64]:

min
ρ

: F̂ (ρ) = F (ρ,u(ρ)) =

∫
Ω
f(ρ,u(ρ))dV

s.t. : Ĝ1(ρ) =

∫
Ω
ρ(x)dV − Vmax ≤ 0

: Ĝi(ρ) = Gi(ρ,u(ρ)) ≤ 0, i = 2, ...,m

: ρ(x) = 0 or 1, ∀x ∈ Ω

(A.1)

where f is a local function, e.g. the strain energy density for minimum compliance problems.
The material distribution ρ(x), is either 0 or 1, and u is solved using the FCM in a separate
step. This optimization problem is called a nested topology optimization problem, since the
total potential energy is at a stationary point for each optimization step. There exist other
approaches where both the displacement and the optimum material distribution are found
at the same time, however, this form of optimization will not be considered in this study. It
has to be noted that the volume constraint is not necessarily a constraint in all optimization
problems, hence the volume can also be an objective that has to be minimized. However,
in most academic optimization formulations an optimum topology has to be found, which
satis�es this volume constraint.

Various approaches exist to solve the optimization problem speci�ed above, which can be
categorized in two main approaches. In the density approach a nodal or element wise den-
sity distribution is used to specify the geometry. In the second approach the shape of the
design domain is optimized. This shape optimization approach has to allow the possibility of
introducing new holes in the material domain to be di�erent from normal shape optimization.

Using the density approach the domain is generally discretized into a large number of elements
where the density is described using nodal or element wise design variables. A problem with
this discretization is that the density can only be either 0 or 1. This does not allow the use of
a gradient based optimization algorithm. This discrete optimization problem can be solved
using several approaches as will be discussed in Section A.6. But, when speaking about
density approaches, which is the most popular method in topology optimization, it is general
to assume that the design variables are continuous. These continuous design variables allow
the optimizer to make use of gradient information to solve the problem in an e�cient manner.

In the approach where the boundary of the structure is varied the formulation of new holes
in the design domain has to be allowed. This can be done with topological derivatives such
as the bubble-method introduced by Eschenauer et al [32]. Level set and phase �eld topology
optimization approaches are the most well known methods in which the boundary is varied.
However, as is discussed by Sigmund and Maute most of these methods can also be written
as a density approach, where the main di�erence is the way the gradients are calculated [64].

A.3 Topology optimization using a continuous density distri-

bution

In density methods the design domain Ω is prede�ned and discretized in small elements e.
The goal of the optimization is to create the optimum structure Ωmat within Ω. As a design
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vector the constitutive tensor C is chosen, which de�nes the sti�ness per element on the
design domain, this means that elements containing solid material get normal sti�ness while
void elements get zero sti�ness. In other words the density based methods decide whether an
element should contain material or not. The constitutive matrix is therefore multiplied by a
element density (ρ(x)), which is allowed to vary between ρmin and ρmax. The optimization
algorithm then tries to �nd the most optimum density distribution for the set optimization
problem.

Generally one wants an optimum structure where the material in the density distribution is
either void or solid. Therefore the density has to be penalized to steer the solution towards
0-1 solution. Multiple methods exist for the penalization of the density of which the Solid
Isotropic Material with Penalization (SIMP) method is the most well known. This method
which was independently developed by Bendsøe [14], and Zhou and Rozvany [87] is some-
times referred to as power-law approach as well. In this method intermediate densities are
penalized using a penalization factor (q) which makes it unfavorable for the optimizer since
only little sti�ness is obtained by adding more material [17]. An illustration of the e�ect of
the penalization factor (q) on the density can be seen in Figure A.2. A physical justi�cation
for SIMP has been provided by Bendsøe and Sigmund where the penalization factor of the
SIMP should ful�ll [16],

q ≥ max
{

2
1−ν0 ,

4
1+ν0

}
(in 2-D),

q ≥ max
{

15 1−ν0
7−5ν0

, 3
2

1−ν0
1−2ν0

}
(in 3-D),

(A.2)

Using the penalized density of the SIMP method and substituting it in the sti�ness tensor
yields,

C(x) = ρ(x)qC0 (A.3)

Where C0 denotes the sti�ness tensor for the isotropic material.

Figure A.2: This �gure shows the e�ect of the di�erent penalization factors q on the density of
the material, it can be seen that a high penalty factor makes intermediate densities
uneconomical

Using this penalization factor the optimization problem can be solved using several ap-
proaches such as, Optimality Criteria (OC), Sequential Linear Programming (SLP), Sequen-
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tial Quadratic Programming (SQP), interior point method or the extremely popular Method
of Moving Asymptotes (MMA) [69].

Sigmund has introduced a slightly modi�ed version of the SIMP method in which a minimum
value for the sti�ness is used [61]. The formulation for the element sti�ness using the modi�ed
SIMP approach then becomes,

Ee(xe) = Emin + ρq(xe)(E0 − Emin) (A.4)

Where E0 is the sti�ness of the material, and Emin is a very small sti�ness to avoid sin-
gularities in the sti�ness matrix. This modi�ed version has a number of advantages over
the classical SIMP approach, which include a more straightforward implementation of �l-
ters [61, 10].

Apart from SIMP interpolation the Rational Approximation of Material Properties (RAMP)
method exists which has been proposed by Stolpe and Svanberg [67], where the main di�er-
ence that the RAMP method does not have a zero-gradient at ρ = 0. Furthermore Bruns
has developed the SINH method in which the volume of intermediate density material is
penalized [21].

Topology optimization using the density approach requires regularization to control the qual-
ity of the solution. The �rst reason is that the solution is dependent on the mesh. In general
the introduction of more holes will increase the e�ciency of the structures, therefore a �ner
mesh will result in a more optimum solution. The second reason is the the checkerboard
problem, in this case the optimum solution may consist of alternating solid void elements as
can be seen in Figure A.3. This is an unrealistic structure and it originates from the fact
that the FEM solution overestimates the sti�ness of these checkerboards [17, 28].

Figure A.3: Solution for a MBB beam to demonstrate the occurrence of the checkerboard
problem.

The checkerboard problem can be avoided when higher-order shape functions are used, or
when regularization techniques are used to ensure a mesh-independent solution. To ensure
mesh independent solutions two things are generally done, either the design variables or
sensitivities are �ltered, or a constraints can be used to limit the perimeter of the solution.
Filter methods remain the most popular methods used for regularization due to their ease of
application [27].

Among the �rst �lters that have been used is the sensitivity �lter that modi�es the element
sensitivity values based on the weighted average of the neighboring elements in a speci�ed
radius [59]. In a recent paper Sigmund and Maute have proven that the sensitivity �lter
has a physical basis for compliance minimization problems [63]. Another, very popular �lter
method is the density �lter. In this method the physical density of an element is based on the
weighted average of the design variables in neighboring elements in a speci�ed radius [22, 19].
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In a recent paper Lazarov and Sigmund developed e�cient variations to the density �lter
using Helmholtz-type di�erential equations [41].

The consequence of using �lters for the density and the sensitivity is formation of 'gray'
area's, while in most topology optimization problems a crisp solution is required. To cope
with this the density can be projected on a 0-1 solution using di�erent projection schemes,
such as the relaxed Heaviside function as proposed by Guest et al. [35], or morphology based
techniques as is proposed by Sigmund [61].

A.4 Topology optimization using the level-set method

The level-set method has been developed by Osher and Sethian to model moving bound-
aries [50], and has later been successfully implemented for topology optimization [51, 4, 79].
In the level-set method the boundaries are represented using the level-set function φ(x). The
boundary can be seen as the zero-level of the - set function,

ρ(x) =

{
0
1
∀ x ∈ Ω φ(x) < 0
∀ x ∈ Ω φ(x) ≥ 0

(A.5)

In most cases the level-set function (φ(x) is updated using the Hamilton-Jacobi equation,
which is normally augmented with di�usive and reactive terms to regularize the optimization
problem and to nucleate new holes in the design [64]. Using the level-set method a smooth
boundary representation can be achieved, however, most level-set method rely on �nite el-
ements therefore the boundaries must be discretized. In a recent paper by van Dijk et al.
three approaches are discussed to map the geometry on the �nite element mesh, which can
be seen in FigureA.4 [74].

Figure A.4: "Examplles of di�erent types of geometry mapping, (a) Conforming: Only the
material domain is discretized. (b) Immersed Boundary Technique: Boundary con-
ditions are enforced locally at the interface. (c) Density-based: In each �nite
element an element density indicates the amount of material" [74]

Using the density mapping the material is described by an intermediate density �eld, just as
in continuous density approaches. It can furthermore by noticed that the FCM is actually
an immersed boundary method, and that mapping the material on a design domain, would
be straightforward using the FCM.

A.5 Topology optimization using the phase �eld approach

The phase �eld method has been proposed for structural optimization by Bourdin and Cham-
bolle [20]. In this method the material in domain Ω consist of two phases, called A and B,



A.6 Topology optimization using discrete evolutionary approaches 71

which are speci�ed using the phase �eld function φ [27]. Phase A correspond to zero density
and phase B to the density of the material considered. The boundary between the phases is
a continuously varying region of �nite thickness ξ as can be seen in Figure A.5 [73].

Figure A.5: "Examples of the phase �eld function: (a) A 2D Example represented by the phase
�eld function, (b) A 1D illustration of the phase �eld function" [73]

In topology optimization using the phase �eld method the interface region is modi�ed using
the phase �eld equation. The objective that is minimized consists of a double well function
that penalizes the intermediate density values. Minimization of the function is obtained us-
ing the Cahn-Hilliard eqaution as is proposed by Whang and Zhou [89]. As is discussed by
Sigmund and Maute phase �eld approaches are known for slow convergence rates [64].

A.6 Topology optimization using discrete evolutionary approaches

Of the discrete approaches the most well known discrete approaches are the Evolutionary
Structural Optimization (ESO) and the Bi-directional ESO (BESO). The ESO approach
which has been proposed by Xie and Steven is a hard-kill method for topology optimiza-
tion [81, 82]. In this method material is gradually removed until an optimum solution is
obtained. In the BESO method proposed by Querrin et al. material can be added as
well [55, 84]. Although initially the method has been fully heuristic nowadays the meth-
ods use an adjoint gradient analysis and �ltering similar to density methods [11, 12, 36]. In
a recent review paper Sigmund and Maute discuss that these BESO methods should not be
treated as separate methods but rather as a discrete updated version of the standard SIMP
scheme [64].

ESO and BESO methods have received a lot of critiques. In an paper by Rozvany and
Zhou it is shown that ESO may result in a highly non-optimal design [88]. In a more recent
paper Rozvany gives an overview of all the critiques on the ESO methods and concludes
that the method can be seen as fully heuristic without any veri�cation [56]. Furthermore, a
major problem with ESO/BESO methods is the fact that it cannot take multiple non-linear
constraints into account.
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A.7 Topology optimization for large scale optimization prob-

lems

Large scale topology optimization comes with a high computational cost. Therefore it is
very important to perform this optimization as e�cient as possible. The computational
e�ort required for this optimization is driven by three di�erent aspect: the complexity of the
model, the FE-analysis and the optimization process [76].

In the past years a lot of research has been performed to decrease the computational e�ort
of these three aspects. The goal of this section is to give an overview of the current state
of research in large-scale topology optimization. Furthermore the use of parallel topology
optimization will be discussed since this technology can greatly reduce the solution time [2].

A.7.1 Reduction of model complexity

In terms of model complexity the amount of degrees of freedom in the model is most of
the times an indication of the computational cost involved in the analysis process since it
in�uences the size of the sti�ness matrix. However the topology of the structure has an
important e�ect on the size of the sti�ness matrix as well. A complex 3D structure usually
requires a larger bandwidth than a slender beam [76].

To reduce the complexity of the model Kim and Yoon suggested a multi-resolution multi-scale
topology optimization method using wavelet transforms [39]. In this method the optimization
is started at a low resolution, requiring less time to optimize. Afterwards this solution is used
as a starting point for optimization using a higher resolution. This process is repeated till
the desired resolution is reached. Instead of a design vector using the element densities,
wavelet-based design variables are used, which has several advantages in multi-resolution
multi-scale topology optimization, such as preventing the occurrence of checkerboard patterns
and geometry control as is discussed by Poulsen [54].

Instead of increasing the resolution of the whole design domain Stainko has proposed a method
where the mesh is adaptively re�ned along the interface between solid and void [66]. This
method results in a �ne-resolution design at a relatively low computational expense. Kim
and Kwak have developed a method in which the optimum design space has to be found [37].
This means that not only an optimum structure is found in a design space, but that the
design space evolves as well. The number of design variables is unknown in the beginning
and has to be obtained as well.

Another method to reduce the complexity of the model yet retaining a high resolution for the
solution is Multi-resolution Topology OPtimization (MTOP) described by Nguyen et al. [47].
In this method the density resolution is de�ned on a �ner mesh than the displacements as
can be seen in Figure A.6.

The e�ect of this �ner density mesh on the analysis mesh is included in the integration process.
In a more recent paper an Adaptive Multi-resolution Topology OPtimization (AMTOP)
method is introduced in which the design variable and density �elds can be adjusted and
re�ned [48]. It has to be noted that the MTOP can be implemented very simply using the
FCM since this method already consists of a separate geometry and analysis description.
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Figure A.6: Decoupling of the displacement mesh, and design variable mesh using MTOP. (a)
Displacement mesh, (b) Superposed meshes, (c) Design Variable mesh [47]

A.7.2 Reduction of the FE-analysis time

The solution of the FE-equation requires the most computational e�ort in nested topology
optimization [7], therefore numerous e�orts have been made to reduce the analysis time.
Wang et al. make use of the fact that the linear systems in the optimization procedure
change slowly during every step [80]. Therefore the solution time can be reduced by recycling
parts of the previous linear systems. Since an iterative solver is used it has the additional
advantage that it can be easily parallelized which is a great bene�t for larger problems.

Amir et al. reformulate the optimization problem using an approximation of the displacement
vector [7]. It is shown that even relatively rough approximations are acceptable, since the
errors are taken into account in the sensitivity analysis. In a later paper this approach has
been combined with a Krylov subspace solver reducing the computation time even further [9].
In a more recent paper Amir and Sigmund discussed an approach which required only one
matrix factorization during the whole design process [8]. This method uses a small number
of iterative corrections for each design cycle resulting in a reduction of computational cost
by one order of magnitude without a�ecting the outcome of the optimization process.

Furthermore, Amir et al. have shown that the use of a Multi-Grid Conjugate Gradients
method (MGCG) used for solving the nested analysis equations can greatly reduce the com-
putation time for topology optimization problem [6]. Furthermore they showed that a MAT-
LAB implementation of this method can solve a 3D topology optimization with 400.000
degres of freedom on a standard PC in less than 15 minutes.

A.7.3 Increase in optimization e�ciency

An increase in optimization e�ciency can be obtained using several methods, �rst of all the
design variables can be reformulated to make the problem more e�cient or the problem can
be formulated in a di�erent way. Guest et al. decouple the �nite element mesh and the
design variable mesh [34], where a Heaviside projection �lter is used to project the design
variables onto multiple elements. This means that a single design variable in�uences several
elements. The computational savings using this method are small for minimum compliance
problems with a low number of constraints. However, when many local constraints are used
this method substantially reduces the computational e�ort.
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Kim et al. have proposed the Reducible Design Variable Method (RDVM) which gradually
reduces the number of design variables over iterations [70]. In a �xed domain where the
number of design variables equal the number of elements the design variables are '�xed' for
element which have converged to a density value. This process is repeated until the number
of design variables is equal to zero. Suresh very recently proposed a method to generate
sets of pareto-optimal topologies in a single optimization process [68], making use of Matrix-
free Krylov iterations. The main advantage of this method is that the set of pareto-optimal
topologies allows the engineer to see the solution for multiple volume fractions using one
optimization process.

A.7.4 Parallel topology optimization

When applying large scale topology optimization the required computational e�ort is very
large. As is mentioned in [2]: "The only feasible way to obtain a solution within a reasonable
amount of time is to use parallel computations in order to speed up the solution process".
Borvall and Petersson are the �rst to describe topology optimization using parallel computing
techniques [18]. Other contributions to parallel topology optimization can be found in [38,
75, 43, 3, 33]. Furthermore, Wadbro and Berggren demonstrate the potential of GPU's for
parallel topology optimization in [77].

When applying parallel computation one should consider Amdahl's law [5]. Which states
that for a �xed problem the increase in speed is limited by the sequential part of the code.
This means that the code fully has to be parallelized to increase a linear increase in speed
with the number of CPU's. A depiction of Amdahl's law can be seen in Figure A.7 [2]. It can

Figure A.7: "Amdahl's law for parallel speedup" [2]

be seen that even when a small part of the code that is not parallelized a large limit on the
increase in speed is posed when a large number of CPU's are used. This means that not only
the FE-analysis equations have to be parallelized but the optimizer as well. In one of the
most recent papers on parallel topology optimization Aage and Lazarov have parallelized
the method of moving asymptotes [2].



Appendix B

Minimum compliance experiments

On the next pages, the results of the optimization examples using the MBB-beam are shown.
Two di�erent discretization are used (280 by 60 and 240 by 80), and �ve di�erent types of
�lter methods are used. The corresponding results are shown in Table B.1 - B.10.
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Table B.1: Results of the stability experiments on the MBB-beam example. A discretization
of 180 by 60 voxels is used, and sensitivity �ltering is applied with rmin = 2 voxel
widths

p [-] nvoxel [-] ndof [-] niter [-] V F̂ (ρ) [-] [-] C [J] Mnd [%]
1 1 22082 408 0.40 1.13E+06 1.18E+06 12.65
1 2 5642 422 0.40 1.12E+06 1.18E+06 12.71
1 3 2562 287 0.40 1.09E+06 1.71E+06 14.30
1 4 1472 289 0.40 1.08E+06 2.32E+07 18.57
1 5 962 352 0.40 1.05E+06 3.73E+07 21.46
1 6 682 194 0.40 1.03E+06 1.65E+08 23.05
1 10 266 136 0.40 9.18E+05 1.74E+11 14.94
2 1 87362 412 0.40 1.17E+06 1.19E+06 12.49
2 2 22082 210 0.40 1.15E+06 1.19E+06 12.49
2 3 9922 392 0.40 1.13E+06 1.18E+06 12.86
2 4 5642 649 0.40 1.12E+06 1.18E+06 12.86
2 5 3650 286 0.40 1.11E+06 1.20E+06 12.59
2 6 2562 339 0.40 1.10E+06 2.03E+06 15.14
2 10 962 188 0.40 1.02E+06 3.86E+07 17.30
3 2 49322 509 0.40 1.16E+06 1.18E+06 12.89
3 3 22082 325 0.40 1.15E+06 1.18E+06 12.76
3 4 12512 378 0.40 1.14E+06 1.18E+06 12.73
3 5 8066 441 0.40 1.13E+06 1.18E+06 12.72
3 6 5642 349 0.40 1.13E+06 1.19E+06 12.62
3 10 2090 489 0.40 1.10E+06 1.76E+06 13.98
4 2 87362 437 0.40 1.17E+06 1.19E+06 12.44
4 3 39042 383 0.40 1.16E+06 1.18E+06 12.73
4 4 22082 365 0.40 1.15E+06 1.18E+06 12.66
4 5 14210 434 0.40 1.14E+06 1.18E+06 12.81
4 6 9922 388 0.40 1.14E+06 1.18E+06 12.70
4 10 3650 241 0.40 1.13E+06 1.23E+06 13.24
5 2 136202 330 0.40 1.19E+06 1.19E+06 12.29
5 3 60802 410 0.40 1.17E+06 1.18E+06 12.85
5 4 34352 285 0.40 1.16E+06 1.19E+06 12.63
5 5 22082 439 0.40 1.15E+06 1.18E+06 12.77
5 6 15402 273 0.40 1.15E+06 1.19E+06 12.54
5 10 5642 366 0.40 1.13E+06 1.19E+06 12.72



77

Table B.2: Results of the stability experiments on the MBB-beam example. A discretization
of 240 by 80 voxels is used, and sensitivity �ltering is applied with rmin = 2 voxel
widths

p [-] nvoxel [-] ndof [-] niter [-] V F̂ (ρ) [-] [-] C [J] Mnd [%]
1 1 39042 601 4.00E-01 1.11E+06 1.16E+06 10.97
1 2 9922 637 4.00E-01 1.10E+06 1.16E+06 11.00
1 4 2562 455 4.00E-01 1.06E+06 8.65E+06 13.06
1 5 1666 559 4.00E-01 1.04E+06 3.16E+07 17.24
1 8 682 291 4.00E-01 9.89E+05 3.08E+08 18.93
1 10 450 245 4.00E-01 9.45E+05 8.06E+10 15.67
2 1 154882 562 4.00E-01 1.15E+06 1.16E+06 11.01
2 2 39042 556 4.00E-01 1.12E+06 1.16E+06 11.10
2 4 9922 647 4.00E-01 1.10E+06 1.16E+06 10.91
2 5 6402 458 4.00E-01 1.10E+06 1.17E+06 10.63
2 8 2562 288 4.00E-01 1.07E+06 3.68E+07 19.41
2 10 1666 548 4.00E-01 1.03E+06 3.88E+07 16.35
3 2 87362 528 4.00E-01 1.14E+06 1.16E+06 10.95
3 4 22082 552 4.00E-01 1.12E+06 1.16E+06 10.93
3 5 14210 498 4.00E-01 1.12E+06 1.16E+06 11.01
3 8 5642 649 4.00E-01 1.10E+06 1.16E+06 10.77
3 10 3650 368 4.00E-01 1.09E+06 2.28E+06 12.46
4 2 154882 571 4.00E-01 1.15E+06 1.16E+06 10.95
4 4 39042 487 4.00E-01 1.13E+06 1.16E+06 10.88
4 5 25090 484 4.00E-01 1.12E+06 1.16E+06 10.91
4 8 9922 482 4.00E-01 1.11E+06 1.16E+06 10.99
4 10 6402 501 4.00E-01 1.11E+06 1.17E+06 11.07
5 2 241602 591 4.00E-01 1.15E+06 1.16E+06 10.86
5 4 60802 531 4.00E-01 1.14E+06 1.16E+06 10.87
5 5 39042 544 4.00E-01 1.13E+06 1.16E+06 10.87
5 8 15402 512 4.00E-01 1.12E+06 1.16E+06 11.03
5 10 9922 488 4.00E-01 1.12E+06 1.16E+06 11.07



78 Minimum compliance experiments

Table B.3: Results of the stability experiments on the MBB-beam example. A discretization of
180 by 60 voxels is used, and density �ltering is applied with rmin = 2 voxel widths

p [-] nvoxel [-] ndof [-] niter [-] V F̂ (ρ) [-] [-] C [J] Mnd [%]
1 1 22082 712 4.00E-01 1.17E+06 1.22E+06 15.49
1 2 5642 584 4.00E-01 1.16E+06 1.22E+06 15.47
1 3 2562 874 4.00E-01 1.16E+06 1.58E+06 17.74
1 4 1472 657 4.00E-01 1.16E+06 4.68E+07 25.55
1 5 962 973 4.00E-01 1.15E+06 5.48E+07 28.68
1 6 682 310 4.00E-01 1.14E+06 6.49E+07 31.85
1 10 266 243 4.00E-01 9.69E+05 1.41E+11 19.97
2 1 87362 1048 4.00E-01 1.19E+06 1.21E+06 13.15
2 2 22082 714 4.00E-01 1.18E+06 1.22E+06 15.39
2 3 9922 991 4.00E-01 1.17E+06 1.22E+06 15.44
2 4 5642 659 4.00E-01 1.17E+06 1.22E+06 15.52
2 5 3650 691 4.00E-01 1.15E+06 1.21E+06 15.12
2 6 2562 4222 4.00E-01 1.18E+06 3.68E+06 20.62
2 10 962 735 4.00E-01 1.11E+06 5.27E+07 25.18
3 2 49322 866 4.00E-01 1.19E+06 1.21E+06 13.86
3 3 22082 806 4.00E-01 1.19E+06 1.22E+06 15.45
3 4 12512 694 4.00E-01 1.18E+06 1.22E+06 15.44
3 5 8066 989 4.00E-01 1.17E+06 1.22E+06 14.96
3 6 5642 1440 4.00E-01 1.16E+06 1.21E+06 13.48
3 10 2090 1002 4.00E-01 1.18E+06 3.75E+07 22.19
4 2 87362 1319 4.00E-01 1.20E+06 1.21E+06 13.82
4 3 39042 1233 4.00E-01 1.19E+06 1.21E+06 13.82
4 4 22082 994 4.00E-01 1.19E+06 1.22E+06 15.41
4 5 14210 1077 4.00E-01 1.19E+06 1.22E+06 15.51
4 6 9922 968 4.00E-01 1.18E+06 1.22E+06 15.43
4 10 3650 641 4.00E-01 1.17E+06 1.26E+06 16.18
5 2 136202 960 4.00E-01 1.21E+06 1.21E+06 14.08
5 3 60802 914 4.00E-01 1.20E+06 1.21E+06 13.84
5 4 34352 1132 4.00E-01 1.19E+06 1.21E+06 13.88
5 5 22082 966 4.00E-01 1.19E+06 1.21E+06 13.87
5 6 15402 850 4.00E-01 1.18E+06 1.21E+06 13.97
5 10 5642 796 4.00E-01 1.17E+06 1.21E+06 14.97
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Table B.4: Results of the stability experiments on the MBB-beam example. A discretization
of 240 by 120 voxels is used, and density �ltering is applied with rmin = 2 voxel
widths

p [-] nvoxel [-] ndof [-] niter [-] V F̂ (ρ) [-] [-] C [J] Mnd [%]
1 1 39042 1000 4.00E-01 1.14E+06 1.18E+06 12.04
1 2 9922 1000 4.00E-01 1.13E+06 1.18E+06 12.02
1 4 2562 942 4.00E-01 1.15E+06 5.23E+07 23.64
1 5 1666 719 4.00E-01 1.15E+06 5.62E+07 27.63
1 8 682 448 4.00E-01 1.06E+06 7.43E+07 24.94
1 10 450 304 4.00E-01 1.01E+06 7.54E+08 22.19
2 1 154882 945 4.00E-01 1.17E+06 1.18E+06 12.01
2 2 39042 1000 4.00E-01 1.15E+06 1.18E+06 11.99
2 4 9922 1000 4.00E-01 1.13E+06 1.18E+06 12.28
2 5 6402 1000 4.00E-01 1.14E+06 1.20E+06 12.39
2 8 2562 1000 4.00E-01 1.16E+06 6.41E+07 25.24
2 10 1666 624 4.00E-01 1.11E+06 5.24E+07 22.66
3 2 87362 1000 4.00E-01 1.16E+06 1.18E+06 12.12
3 4 22082 1000 4.00E-01 1.15E+06 1.18E+06 11.96
3 5 14210 1000 4.00E-01 1.15E+06 1.18E+06 12.10
3 8 5642 830 4.00E-01 1.14E+06 1.23E+06 12.53
3 10 3650 1000 4.00E-01 1.17E+06 5.06E+06 20.05
4 2 154882 996 4.00E-01 1.17E+06 1.18E+06 12.17
4 4 39042 991 4.00E-01 1.16E+06 1.18E+06 12.03
4 5 25090 1000 4.00E-01 1.15E+06 1.18E+06 12.00
4 8 9922 1000 4.00E-01 1.15E+06 1.19E+06 11.92
4 10 6402 932 4.00E-01 1.14E+06 1.20E+06 12.42
5 2 241602 1000 4.00E-01 1.18E+06 1.18E+06 12.04
5 4 60802 1000 4.00E-01 1.17E+06 1.18E+06 12.03
5 5 39042 1000 4.00E-01 1.16E+06 1.18E+06 12.14
5 8 15402 936 4.00E-01 1.15E+06 1.19E+06 11.93
5 10 9922 1000 4.00E-01 1.15E+06 1.19E+06 12.38
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Table B.5: Results of the stability experiments on the MBB-beam example. A discretization of
180 by 60 voxels is used, and density �ltering with Heaviside projection is applied
with rmin = 2 voxel widths

p [-] nvoxel [-] ndof [-] niter [-] V F̂ (ρ) [-] [-] C [J] Mnd [%]
1 1 22082 383 4.00E-01 1.12E+06 1.18E+06 2.27
1 2 5642 406 4.00E-01 1.05E+06 1.16E+06 0.96
1 3 2562 374 4.00E-01 1.02E+06 4.77E+07 1.45
1 4 1472 403 4.00E-01 9.69E+05 4.32E+07 1.27
1 5 962 396 4.00E-01 9.35E+05 3.91E+07 1.47
1 6 682 367 4.00E-01 9.18E+05 5.39E+07 1.38
1 10 266 345 4.00E-01 8.39E+05 2.77E+10 0.95
2 1 87362 414 4.00E-01 1.11E+06 1.12E+06 1.95
2 2 22082 507 4.00E-01 1.14E+06 1.19E+06 1.75
2 3 9922 386 4.00E-01 1.06E+06 1.44E+06 1.45
2 4 5642 380 4.00E-01 1.05E+06 1.20E+06 1.25
2 5 3650 396 4.00E-01 1.03E+06 1.87E+07 1.27
2 6 2562 379 4.00E-01 1.01E+06 4.45E+07 1.37
2 10 962 330 4.00E-01 9.39E+05 4.10E+07 0.88
3 2 49322 367 4.00E-01 1.10E+06 1.12E+06 1.60
3 3 22082 528 4.00E-01 1.11E+06 1.16E+06 1.80
3 4 12512 377 4.00E-01 1.07E+06 1.14E+06 1.67
3 5 8066 443 4.00E-01 1.11E+06 1.20E+06 2.78
3 6 5642 383 4.00E-01 1.05E+06 1.48E+06 1.28
3 10 2090 384 4.00E-01 1.01E+06 4.93E+07 1.45
4 2 87362 517 4.00E-01 1.16E+06 1.17E+06 1.78
4 3 39042 493 4.00E-01 1.14E+06 1.18E+06 2.09
4 4 22082 443 4.00E-01 1.13E+06 1.18E+06 2.06
4 5 14210 380 4.00E-01 1.09E+06 1.15E+06 1.81
4 6 9922 582 4.00E-01 1.09E+06 1.16E+06 1.61
4 10 3650 422 4.00E-01 1.05E+06 3.32E+06 1.09
5 2 136202 538 4.00E-01 1.14E+06 1.15E+06 1.80
5 3 60802 503 4.00E-01 1.13E+06 1.15E+06 1.94
5 4 34352 496 4.00E-01 1.13E+06 1.16E+06 1.91
5 5 22082 471 4.00E-01 1.13E+06 1.17E+06 1.87
5 6 15402 473 4.00E-01 1.11E+06 1.17E+06 1.72
5 10 5642 369 4.00E-01 1.06E+06 1.44E+06 1.25
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Table B.6: Results of the stability experiments on the MBB-beam example. A discretization of
240 by 120 voxels is used, and density �ltering with Heaviside projection is applied
with rmin = 2 voxel widths

p [-] nvoxel [-] ndof [-] niter [-] V F̂ (ρ) [-] [-] C [J] Mnd [%]
1 1 39042 415 4.00E-01 1.06E+06 1.11E+06 2.14
1 2 9922 389 4.00E-01 1.04E+06 1.13E+06 1.40
1 4 2562 363 4.00E-01 9.75E+05 4.62E+07 2.07
1 5 1666 421 4.00E-01 9.43E+05 4.94E+07 2.10
1 8 682 348 4.00E-01 8.81E+05 5.14E+07 1.59
1 10 450 364 4.00E-01 8.61E+05 4.87E+09 1.26
2 1 154882 406 4.00E-01 1.10E+06 1.11E+06 2.01
2 2 39042 356 4.00E-01 1.07E+06 1.11E+06 1.81
2 4 9922 342 4.00E-01 1.05E+06 1.13E+06 1.49
2 5 6402 401 4.00E-01 1.04E+06 7.89E+06 1.54
2 8 2562 377 4.00E-01 9.62E+05 4.96E+07 1.69
2 10 1666 368 4.00E-01 9.45E+05 4.34E+07 1.38
3 2 87362 405 4.00E-01 1.09E+06 1.11E+06 1.96
3 4 22082 348 4.00E-01 1.07E+06 1.12E+06 2.11
3 5 14210 409 4.00E-01 1.06E+06 1.12E+06 1.44
3 8 5642 372 4.00E-01 1.04E+06 1.60E+07 1.66
3 10 3650 386 4.00E-01 1.01E+06 5.05E+07 2.32
4 2 154882 393 4.00E-01 1.10E+06 1.11E+06 1.95
4 4 39042 359 4.00E-01 1.08E+06 1.11E+06 2.12
4 5 25090 363 4.00E-01 1.07E+06 1.11E+06 1.75
4 8 9922 423 4.00E-01 1.05E+06 1.11E+06 1.42
4 10 6402 397 4.00E-01 1.05E+06 1.85E+06 1.62
5 2 241602 363 4.00E-01 1.11E+06 1.11E+06 2.15
5 4 60802 375 4.00E-01 1.09E+06 1.11E+06 2.24
5 5 39042 413 4.00E-01 1.08E+06 1.11E+06 1.76
5 8 15402 375 4.00E-01 1.07E+06 1.13E+06 2.34
5 10 9922 378 4.00E-01 1.05E+06 1.11E+06 1.38
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Table B.7: Results of the stability experiments on the MBB-beam example. A discretization of
180 by 60 voxels is used, and density �ltering with modi�ed Heaviside projection is
applied with rmin = 2 voxel widths

p [-] nvoxel [-] ndof [-] niter [-] V F̂ (ρ) [-] [-] C [J] Mnd [%]
1 1 22082 284 3.97E-01 1.10E+06 1.15E+06 0.94
1 2 5642 315 3.98E-01 1.07E+06 1.19E+06 0.93
1 3 2562 307 3.97E-01 1.05E+06 3.05E+06 0.92
1 4 1472 307 3.98E-01 9.92E+05 3.62E+07 0.97
1 5 962 257 3.91E-01 9.47E+05 2.91E+07 0.98
1 6 682 303 3.98E-01 9.04E+05 3.05E+07 0.93
1 10 266 303 3.99E-01 8.49E+05 8.60E+11 0.75
2 1 87362 279 3.98E-01 1.13E+06 1.15E+06 0.96
2 2 22082 304 3.98E-01 1.11E+06 1.15E+06 0.92
2 3 9922 304 3.98E-01 1.10E+06 1.16E+06 0.88
2 4 5642 307 3.97E-01 1.09E+06 1.18E+06 0.92
2 5 3650 308 3.97E-01 1.06E+06 1.48E+06 0.89
2 6 2562 311 3.98E-01 1.03E+06 4.05E+07 0.97
2 10 962 303 3.98E-01 9.48E+05 3.07E+07 0.88
3 2 49322 284 4.00E-01 1.12E+06 1.14E+06 1.00
3 3 22082 307 4.00E-01 1.11E+06 1.15E+06 0.94
3 4 12512 310 3.99E-01 1.10E+06 1.15E+06 0.94
3 5 8066 306 3.98E-01 1.10E+06 1.16E+06 0.90
3 6 5642 307 3.98E-01 1.09E+06 1.17E+06 0.88
3 10 2090 305 3.98E-01 1.01E+06 3.93E+07 0.98
4 2 87362 288 4.00E-01 1.13E+06 1.14E+06 1.11
4 3 39042 331 4.00E-01 1.12E+06 1.14E+06 1.22
4 4 22082 294 3.99E-01 1.11E+06 1.15E+06 0.97
4 5 14210 305 3.99E-01 1.11E+06 1.15E+06 0.95
4 6 9922 321 3.98E-01 1.10E+06 1.15E+06 0.94
4 10 3650 317 3.97E-01 1.07E+06 1.82E+06 1.00
5 2 136202 284 3.99E-01 1.14E+06 1.14E+06 1.00
5 3 60802 292 4.00E-01 1.13E+06 1.14E+06 1.14
5 4 34352 330 4.00E-01 1.12E+06 1.14E+06 1.25
5 5 22082 314 3.99E-01 1.12E+06 1.15E+06 1.00
5 6 15402 382 4.00E-01 1.11E+06 1.15E+06 1.09
5 10 5642 308 3.97E-01 1.09E+06 1.22E+06 0.98
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Table B.8: Results of the stability experiments on the MBB-beam example. A discretization of
240 by 120 voxels is used, and density �ltering with modi�ed Heaviside projection
is applied with rmin = 2 voxel widths

p [-] nvoxel [-] ndof [-] niter [-] V F̂ (ρ) [-] [-] C [J] Mnd [%]
1 1 39042 287 3.98E-01 1.11E+06 1.15E+06 1.42
1 2 9922 304 3.98E-01 1.09E+06 1.16E+06 1.31
1 4 2562 308 3.98E-01 1.01E+06 3.71E+07 1.58
1 5 1666 316 3.97E-01 9.69E+05 2.84E+07 1.47
1 8 682 303 3.97E-01 9.04E+05 2.70E+07 1.40
1 10 450 317 3.91E-01 8.91E+05 7.44E+11 1.28
2 1 154882 295 3.99E-01 1.13E+06 1.15E+06 1.46
2 2 39042 304 3.99E-01 1.12E+06 1.15E+06 1.46
2 4 9922 304 3.98E-01 1.09E+06 1.16E+06 1.41
2 5 6402 320 3.98E-01 1.09E+06 1.50E+06 1.42
2 8 2562 314 3.99E-01 9.84E+05 3.09E+07 1.49
2 10 1666 304 3.97E-01 9.67E+05 2.43E+07 1.44
3 2 87362 294 4.00E-01 1.13E+06 1.15E+06 1.71
3 4 22082 308 3.99E-01 1.11E+06 1.15E+06 1.48
3 5 14210 330 3.99E-01 1.10E+06 1.15E+06 1.36
3 8 5642 317 3.98E-01 1.08E+06 1.61E+06 1.44
3 10 3650 308 3.98E-01 1.05E+06 3.04E+07 1.54
4 2 154882 326 4.00E-01 1.14E+06 1.15E+06 2.01
4 4 39042 305 3.99E-01 1.12E+06 1.15E+06 1.46
4 5 25090 311 3.99E-01 1.11E+06 1.15E+06 1.49
4 8 9922 318 3.98E-01 1.10E+06 1.20E+06 1.43
4 10 6402 327 3.98E-01 1.08E+06 1.65E+06 1.43
5 2 241602 302 4.00E-01 1.15E+06 1.15E+06 1.81
5 4 60802 306 4.00E-01 1.13E+06 1.15E+06 1.48
5 5 39042 346 4.00E-01 1.12E+06 1.15E+06 1.56
5 8 15402 370 4.00E-01 1.11E+06 1.15E+06 1.45
5 10 9922 321 3.98E-01 1.10E+06 1.18E+06 1.37
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Table B.9: Results of the stability experiments on the MBB-beam example. A discretization
of 180 by 60 voxels is used, and robust topology optimization is applied (η = 0.2)
with rmin = 2 voxel widths

p [-] nvoxel [-] ndof [-] niter [-] V F̂ (ρ) [-] [-] C [J] Mnd [%]
1 1 22082 328 4.01E-01 1.16E+06 1.21E+06 0.85
1 2 5642 316 3.94E-01 1.16E+06 1.23E+06 1.32
1 3 2562 312 4.02E-01 1.12E+06 1.39E+06 0.99
1 4 1472 350 3.97E-01 1.11E+06 1.76E+06 1.76
1 5 962 312 4.01E-01 1.03E+06 5.90E+07 1.30
1 6 682 395 4.00E-01 9.69E+05 5.52E+07 2.59
1 10 266 418 4.08E-01 8.43E+05 3.53E+12 1.03
2 1 87362 310 4.01E-01 1.19E+06 1.20E+06 0.77
2 2 22082 319 4.00E-01 1.18E+06 1.21E+06 1.17
2 3 9922 315 4.00E-01 1.16E+06 1.20E+06 1.16
2 4 5642 315 3.99E-01 1.15E+06 1.21E+06 1.03
2 5 3650 327 4.00E-01 1.15E+06 1.33E+06 0.98
2 6 2562 309 3.99E-01 1.16E+06 1.71E+06 1.26
2 10 962 491 3.87E-01 1.06E+06 6.09E+07 5.54
3 2 49322 309 4.01E-01 1.19E+06 1.21E+06 0.85
3 3 22082 303 4.00E-01 1.18E+06 1.21E+06 0.92
3 4 12512 306 4.01E-01 1.17E+06 1.20E+06 0.79
3 5 8066 316 4.00E-01 1.17E+06 1.22E+06 1.02
3 6 5642 316 4.02E-01 1.14E+06 1.19E+06 0.86
3 10 2090 356 3.97E-01 1.17E+06 1.57E+06 1.66
4 2 87362 312 4.01E-01 1.20E+06 1.21E+06 0.73
4 3 39042 307 4.01E-01 1.19E+06 1.21E+06 0.75
4 4 22082 306 4.02E-01 1.17E+06 1.20E+06 0.79
4 5 14210 309 4.00E-01 1.18E+06 1.21E+06 0.98
4 6 9922 309 3.99E-01 1.17E+06 1.21E+06 0.99
4 10 3650 336 4.05E-01 1.16E+06 1.21E+06 1.10
5 2 136202 329 4.00E-01 1.21E+06 1.21E+06 0.83
5 3 60802 306 4.00E-01 1.20E+06 1.22E+06 0.75
5 4 34352 329 4.01E-01 1.19E+06 1.20E+06 0.70
5 5 22082 314 4.01E-01 1.18E+06 1.21E+06 0.77
5 6 15402 343 4.00E-01 1.17E+06 1.20E+06 0.74
5 10 5642 339 4.05E-01 1.16E+06 1.20E+06 0.91
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Table B.10: Results of the stability experiments on the MBB-beam example. A discretization
of 240 by 80 voxels is used, and robust topology optimization is applied (η = 0.2)
with rmin = 2 voxel widths

p [-] nvoxel [-] ndof [-] niter [-] V F̂ (ρ) [-] [-] C [J] Mnd [%]
1 1 39042 311 4.02E-01 1.18E+06 1.22E+06 0.73
1 2 9922 308 4.01E-01 1.19E+06 1.25E+06 0.98
1 4 2562 369 4.04E-01 1.11E+06 1.60E+06 1.35
1 5 1666 319 4.05E-01 1.07E+06 5.68E+07 1.97
1 8 682 315 4.06E-01 9.18E+05 4.13E+11 2.35
1 10 450 311 4.02E-01 8.85E+05 7.38E+11 1.87
2 1 154882 305 4.01E-01 1.23E+06 1.24E+06 0.80
2 2 39042 317 4.01E-01 1.19E+06 1.23E+06 0.97
2 4 9922 348 4.00E-01 1.20E+06 1.25E+06 1.13
2 5 6402 389 4.03E-01 1.16E+06 1.23E+06 0.86
2 8 2562 459 4.07E-01 1.09E+06 5.35E+07 1.33
2 10 1666 365 3.93E-01 1.07E+06 6.20E+07 5.41
3 2 87362 346 4.01E-01 1.22E+06 1.23E+06 1.05
3 4 22082 342 4.00E-01 1.21E+06 1.25E+06 1.13
3 5 14210 350 4.02E-01 1.20E+06 1.24E+06 0.93
3 8 5642 330 4.01E-01 1.17E+06 1.23E+06 1.24
3 10 3650 386 3.96E-01 1.19E+06 1.65E+06 1.90
4 2 154882 339 4.00E-01 1.25E+06 1.25E+06 1.00
4 4 39042 317 4.02E-01 1.20E+06 1.23E+06 0.63
4 5 25090 310 4.02E-01 1.19E+06 1.22E+06 0.88
4 8 9922 335 4.00E-01 1.22E+06 1.26E+06 1.15
4 10 6402 348 4.01E-01 1.18E+06 1.41E+06 1.08
5 2 241602 313 4.02E-01 1.23E+06 1.23E+06 0.90
5 4 60802 342 4.00E-01 1.24E+06 1.25E+06 0.83
5 5 39042 395 4.03E-01 1.21E+06 1.23E+06 0.93
5 8 15402 351 3.98E-01 1.23E+06 1.26E+06 1.32
5 10 9922 376 3.97E-01 1.22E+06 1.26E+06 1.31
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Appendix C

Minimum displacement

experiments

On the next pages, the results of the optimization examples using the compliant force inverter
example are shown. Two di�erent discretization are used (280 by 60 and 240 by 80), and �ve
di�erent types of �lter methods are used. The corresponding results are shown in Table C.1
- C.10.
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Table C.1: Results of the stability experiments on the compliant force inverter example. A
discretization of 120 by 60 voxels is used, and sensitivity �ltering is applied with
rmin = 2 voxel widths

p [-] nvoxel [-] ndof [-] niter [-] V F̂ (ρ) [-] uout [m] Mnd [%]
1 1 14762 1000 3.00E-01 -2.49E-02 -2.16E-02 12.67
1 2 3782 1000 2.98E-01 -9.90E-03 -1.14E-02 11.83
1 3 1722 1000 2.95E-01 -2.13E-02 -1.04E-02 15.96
1 4 992 1000 2.99E-01 -1.81E-02 -1.54E-02 12.11
1 5 650 1000 2.85E-01 6.17E-09 2.03E-09 19.64
1 6 462 1000 2.93E-01 -2.12E-03 1.43E-07 12.81
1 10 182 507 3.00E-01 -6.02E-03 2.46E-12 9.57
2 1 58322 1000 3.00E-01 -2.00E-02 -1.99E-02 10.27
2 2 14762 784 3.00E-01 -2.44E-02 -2.26E-02 8.69
2 3 6642 686 3.00E-01 -2.56E-02 -2.27E-02 9.89
2 4 3782 915 3.00E-01 -2.66E-02 -3.80E-03 8.70
2 5 2450 1000 3.00E-01 -2.76E-02 -1.85E-02 10.67
2 6 1722 1000 2.98E-01 -1.59E-02 -1.30E-02 12.95
2 10 650 378 2.99E-01 -2.74E-02 -6.40E-04 15.44
3 2 32942 1000 3.00E-01 -2.33E-02 -2.33E-02 11.19
3 3 14762 1000 3.00E-01 -2.45E-02 -2.33E-02 11.03
3 4 8372 793 3.00E-01 -2.48E-02 -2.28E-02 10.46
3 5 5402 516 3.00E-01 -2.51E-02 -2.28E-02 10.47
3 6 3782 854 3.00E-01 -2.54E-02 -2.25E-02 10.05
3 10 1406 1000 2.96E-01 -5.03E-02 -5.23E-03 17.33
4 2 58322 888 3.00E-01 -2.35E-02 -2.30E-02 9.15
4 3 26082 1000 3.00E-01 -1.75E-02 -1.32E-02 9.87
4 4 14762 1000 3.00E-01 -2.42E-02 -2.31E-02 8.31
4 5 9506 843 3.00E-01 -2.45E-02 -2.32E-02 8.18
4 6 6642 564 3.00E-01 -2.46E-02 -2.28E-02 9.32
4 10 2450 954 3.00E-01 -2.56E-02 -1.81E-07 9.95
5 2 90902 896 3.00E-01 -2.39E-02 -2.28E-02 9.28
5 3 40602 901 3.00E-01 -2.40E-02 -2.35E-02 8.74
5 4 22952 821 3.00E-01 -2.46E-02 -2.30E-02 10.11
5 5 14762 1000 3.00E-01 -2.17E-02 -2.13E-02 7.65
5 6 10302 1000 2.99E-01 -2.21E-02 -2.11E-02 9.33
5 10 3782 764 3.00E-01 -2.48E-02 -2.30E-02 10.26
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Table C.2: Results of the stability experiments on the compliant force inverter example. A
discretization of 160 by 80 voxels is used, and sensitivity �ltering is applied with
rmin = 2 voxel widths

p [-] nvoxel [-] ndof [-] niter [-] V F̂ (ρ) [-] uout [m] Mnd [%]
1 1 26082 1000 3.00E-01 -2.46E-02 -2.23E-02 11.18
1 2 6642 1000 3.00E-01 -2.62E-02 -2.27E-07 6.11
1 4 1722 1000 2.84E-01 -1.97E-02 -8.08E-03 18.02
1 5 1122 1000 2.99E-01 -1.98E-02 -1.66E-02 10.30
1 8 462 1000 2.96E-01 1.96E-05 4.71E-09 12.04
1 10 306 1000 2.85E-01 7.18E-09 4.06E-10 20.46
2 1 103362 1000 3.00E-01 -2.46E-02 -2.43E-02 6.41
2 2 26082 1000 3.00E-01 -2.43E-02 -2.31E-02 9.41
2 4 6642 1000 3.00E-01 -2.68E-02 -2.07E-03 7.84
2 5 4290 958 3.00E-01 -2.70E-02 -2.32E-07 7.06
2 8 1722 1000 2.99E-01 -2.06E-02 -2.18E-05 12.85
2 10 1122 1000 2.99E-01 -9.13E-03 -6.88E-04 18.02
3 2 58322 952 3.00E-01 -2.49E-02 -2.45E-02 6.97
3 4 14762 747 3.00E-01 -2.56E-02 -2.44E-02 7.60
3 5 9506 843 3.00E-01 -2.52E-02 -2.24E-07 6.50
3 8 3782 909 3.00E-01 -2.61E-02 -2.10E-07 9.01
3 10 2450 677 3.00E-01 -2.83E-02 -1.97E-02 7.37
4 2 103362 662 3.00E-01 -1.97E-02 -1.95E-02 12.89
4 4 26082 1000 3.00E-01 -2.14E-02 -2.12E-02 7.96
4 5 16770 1000 3.00E-01 -2.47E-02 -2.41E-02 7.17
4 8 6642 1000 3.00E-01 -2.52E-02 -2.35E-02 7.02
4 10 4290 973 3.00E-01 -2.56E-02 -2.34E-02 8.26
5 2 161202 1000 3.00E-01 -2.38E-02 -2.40E-02 6.21
5 4 40602 925 3.00E-01 -2.45E-02 -2.45E-02 7.12
5 5 26082 1000 3.00E-01 -2.47E-02 -2.45E-02 6.98
5 8 10302 844 3.00E-01 -2.40E-02 -2.30E-02 8.15
5 10 6642 953 3.00E-01 -2.54E-02 -2.43E-02 7.64
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Table C.3: Results of the stability experiments on the compliant force inverter example. A
discretization of 120 by 60 voxels is used, and density �ltering is applied with rmin =
2 voxel widths

p [-] nvoxel [-] ndof [-] niter [-] V F̂ (ρ) [-] uout [m] Mnd [%]
1 1 14762 1000 3.00E-01 -2.47E-02 -2.19E-02 10.99
1 2 3782 1000 3.00E-01 -2.58E-02 -2.14E-02 12.22
1 3 1722 1000 2.96E-01 -1.90E-02 -7.62E-03 17.10
1 4 992 1000 3.00E-01 -2.48E-02 -1.76E-02 11.22
1 5 650 1000 3.00E-01 -1.10E-01 -6.89E-08 14.65
1 6 462 1000 2.99E-01 1.64E-06 4.26E-09 18.77
1 10 182 397 3.00E-01 -5.91E-03 1.35E-11 12.85
2 1 58322 905 3.00E-01 -2.03E-02 -1.99E-02 12.56
2 2 14762 1000 3.00E-01 -2.38E-02 -2.21E-02 11.78
2 3 6642 1000 3.00E-01 -2.38E-02 -2.18E-02 14.09
2 4 3782 1000 3.00E-01 -2.36E-02 -2.11E-02 14.49
2 5 2450 1000 3.00E-01 -2.47E-02 -2.15E-02 12.20
2 6 1722 1000 3.00E-01 -2.48E-02 -1.96E-02 14.65
2 10 650 485 2.99E-01 -2.14E-02 -1.52E-02 18.20
3 2 32942 1000 3.00E-01 -1.87E-02 -1.87E-02 17.65
3 3 14762 1000 3.00E-01 -2.31E-02 -2.18E-02 12.94
3 4 8372 1000 3.00E-01 -2.32E-02 -2.16E-02 12.61
3 5 5402 1000 3.00E-01 -2.40E-02 -2.22E-02 11.39
3 6 3782 1000 3.00E-01 -2.37E-02 -2.18E-02 11.95
3 10 1406 1000 3.00E-01 -2.33E-02 -1.31E-02 14.47
4 2 58322 1000 3.00E-01 -2.25E-02 -2.20E-02 10.46
4 3 26082 587 3.00E-01 -1.75E-02 -1.74E-02 20.61
4 4 14762 1000 3.00E-01 -2.29E-02 -2.19E-02 10.72
4 5 9506 1000 3.00E-01 -2.33E-02 -2.21E-02 10.50
4 6 6642 1000 3.00E-01 -2.32E-02 -2.18E-02 10.26
4 10 2450 1000 3.00E-01 -2.37E-02 -2.15E-02 12.73
5 2 90902 1000 3.00E-01 -2.30E-02 -2.19E-02 10.56
5 3 40602 1000 3.00E-01 -2.24E-02 -2.19E-02 10.41
5 4 22952 1000 3.00E-01 -2.32E-02 -2.18E-02 10.65
5 5 14762 1000 3.00E-01 -2.21E-02 -2.14E-02 12.70
5 6 10302 1000 3.00E-01 -2.29E-02 -2.19E-02 10.51
5 10 3782 1000 3.00E-01 -2.35E-02 -2.20E-02 12.36
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Table C.4: Results of the stability experiments on the compliant force inverter example. A
discretization of 160 by 80 voxels is used, and density �ltering is applied with rmin =
2 voxel widths

p [-] nvoxel [-] ndof [-] niter [-] V F̂ (ρ) [-] uout [m] Mnd [%]
1 1 26082 1000 3.00E-01 -2.41E-02 -2.25E-02 12.48
1 2 6642 1000 3.00E-01 -2.60E-02 -2.25E-02 10.99
1 4 1722 1000 3.00E-01 -3.01E-02 -1.79E-02 10.22
1 5 1122 1000 3.00E-01 -1.54E-02 -9.82E-03 14.76
1 8 462 1000 2.90E-01 -3.22E-06 -2.15E-09 19.28
1 10 306 1000 2.50E-01 -2.14E-05 -9.40E-09 23.15
2 1 103362 1000 3.00E-01 -2.32E-02 -2.27E-02 11.52
2 2 26082 1000 3.00E-01 -2.44E-02 -2.33E-02 10.87
2 4 6642 1000 3.00E-01 -2.46E-02 -2.27E-02 10.63
2 5 4290 1000 3.00E-01 -2.55E-02 -2.29E-02 10.07
2 8 1722 1000 3.00E-01 -2.67E-02 -2.15E-02 9.19
2 10 1122 1000 2.99E-01 -5.61E-02 -1.27E-02 10.25
3 2 58322 1000 3.00E-01 -2.30E-02 -2.24E-02 12.16
3 4 14762 1000 3.00E-01 -2.43E-02 -2.33E-02 9.09
3 5 9506 1000 3.00E-01 -2.41E-02 -2.28E-02 11.14
3 8 3782 1000 3.00E-01 -2.49E-02 -2.29E-02 9.60
3 10 2450 1000 3.00E-01 -2.49E-02 -2.14E-02 9.55
4 2 103362 207 3.00E-01 -1.86E-02 -1.82E-02 23.91
4 4 26082 786 3.00E-01 -1.90E-02 -1.89E-02 19.78
4 5 16770 1000 3.00E-01 -2.19E-02 -2.14E-02 8.88
4 8 6642 1000 3.00E-01 -2.24E-02 -2.15E-02 11.96
4 10 4290 1000 3.00E-01 -2.42E-02 -2.26E-02 10.35
5 2 161202 1000 3.00E-01 -2.24E-02 -2.25E-02 11.31
5 4 40602 1000 3.00E-01 -2.30E-02 -2.27E-02 12.47
5 5 26082 1000 3.00E-01 -2.36E-02 -2.30E-02 9.73
5 8 10302 1000 3.00E-01 -2.34E-02 -2.28E-02 10.22
5 10 6642 1000 3.00E-01 -2.38E-02 -2.29E-02 8.61
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Table C.5: Results of the stability experiments on the compliant force inverter example. A dis-
cretization of 120 by 60 voxels is used, and density �ltering with Heaviside projection
is applied with rmin = 2 voxel widths

p [-] nvoxel [-] ndof [-] niter [-] V F̂ (ρ) [-] uout [m] Mnd [%]
1 1 14762 463 3.00E-01 -2.49E-02 -2.12E-02 0.72
1 2 3782 398 3.00E-01 -2.84E-02 -2.25E-02 0.80
1 3 1722 1000 2.96E-01 -2.64E-02 -1.52E-02 7.35
1 4 992 607 3.00E-01 -3.57E-02 -1.39E-06 0.41
1 5 650 445 3.00E-01 -6.05E-02 -4.28E-09 0.22
1 6 462 348 2.95E-01 -6.28E-04 8.47E-13 9.55
1 10 182 384 3.00E-01 -7.45E-03 7.23E-11 0.87
2 1 58322 353 2.98E-01 -1.72E-02 -1.76E-02 5.99
2 2 14762 367 3.00E-01 -2.46E-02 -2.28E-02 0.66
2 3 6642 366 3.00E-01 -2.55E-02 -2.26E-02 0.63
2 4 3782 356 3.00E-01 -2.56E-02 -2.18E-02 0.59
2 5 2450 328 3.00E-01 -2.57E-02 -6.28E-07 1.05
2 6 1722 400 3.00E-01 -2.83E-02 -1.27E-02 0.37
2 10 650 1000 2.98E-01 -2.79E-02 -1.05E-05 5.52
3 2 32942 1000 2.99E-01 -2.25E-02 -2.38E-02 4.22
3 3 14762 418 3.00E-01 -2.41E-02 -2.28E-02 1.03
3 4 8372 325 3.00E-01 -2.45E-02 -2.25E-02 0.49
3 5 5402 380 3.00E-01 -2.50E-02 -2.28E-02 0.60
3 6 3782 373 3.00E-01 -2.42E-02 -5.10E-07 0.72
3 10 1406 378 3.00E-01 -2.55E-02 -1.47E-06 1.25
4 2 58322 393 3.00E-01 -2.32E-02 -2.26E-02 0.71
4 3 26082 450 3.00E-01 -2.27E-02 -2.19E-02 0.95
4 4 14762 426 3.00E-01 -2.40E-02 -2.28E-02 0.86
4 5 9506 432 3.00E-01 -2.41E-02 -1.69E-08 1.01
4 6 6642 422 3.00E-01 -2.40E-02 -2.13E-02 0.84
4 10 2450 383 3.00E-01 -2.40E-02 -2.15E-06 1.57
5 2 90902 372 3.00E-01 -2.25E-02 -2.16E-02 0.82
5 3 40602 515 3.00E-01 -2.22E-02 -2.17E-02 0.83
5 4 22952 434 3.00E-01 -2.41E-02 -2.24E-02 0.98
5 5 14762 374 3.00E-01 -2.12E-02 5.40E-07 3.24
5 6 10302 390 3.00E-01 -2.34E-02 -2.02E-06 0.85
5 10 3782 378 3.00E-01 -2.35E-02 -1.46E-02 1.59
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Table C.6: Results of the stability experiments on the compliant force inverter example. A dis-
cretization of 160 by 80 voxels is used, and density �ltering with Heaviside projection
is applied with rmin = 2 voxel widths

p [-] nvoxel [-] ndof [-] niter [-] V F̂ (ρ) [-] uout [m] Mnd [%]
1 1 26082 418 3.00E-01 -2.48E-02 -2.27E-02 0.97
1 2 6642 415 3.00E-01 -2.71E-02 -2.26E-02 0.86
1 4 1722 392 3.00E-01 -2.35E-02 -6.51E-03 1.00
1 5 1122 674 2.99E-01 -1.97E-02 -1.11E-02 6.15
1 8 462 832 2.80E-01 6.63E-03 1.51E-09 17.75
1 10 306 385 2.93E-01 -9.11E-03 1.19E-09 13.80
2 1 103362 448 3.00E-01 -2.30E-02 -2.22E-02 1.00
2 2 26082 687 3.00E-01 -2.43E-02 -2.29E-02 1.16
2 4 6642 464 3.00E-01 -2.48E-02 -2.21E-06 0.74
2 5 4290 398 3.00E-01 -2.54E-02 -1.97E-02 0.86
2 8 1722 356 3.00E-01 -2.73E-02 -3.27E-07 0.80
2 10 1122 387 3.00E-01 -3.03E-02 -3.98E-07 0.83
3 2 58322 533 3.00E-01 -2.25E-02 -2.21E-02 1.52
3 4 14762 463 3.00E-01 -2.36E-02 -2.28E-02 0.87
3 5 9506 405 3.00E-01 -2.42E-02 -1.46E-06 0.68
3 8 3782 461 3.00E-01 -2.54E-02 -4.51E-08 1.02
3 10 2450 363 3.00E-01 -2.57E-02 -1.28E-05 1.08
4 2 103362 402 3.00E-01 -2.26E-02 -2.37E-02 0.92
4 4 26082 1000 3.00E-01 -2.37E-02 -2.33E-02 1.88
4 5 16770 482 3.00E-01 -2.28E-02 -3.77E-04 0.87
4 8 6642 403 3.00E-01 -2.39E-02 -1.17E-02 1.01
4 10 4290 362 3.00E-01 -2.37E-02 -2.18E-02 0.94
5 2 161202 382 3.00E-01 -2.33E-02 -2.35E-02 1.23
5 4 40602 464 3.00E-01 -2.16E-02 -2.15E-02 1.06
5 5 26082 430 3.00E-01 -2.46E-02 -1.84E-02 1.06
5 8 10302 359 3.00E-01 -2.37E-02 -2.30E-02 0.90
5 10 6642 350 3.00E-01 -2.37E-02 -2.07E-02 0.96
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Table C.7: Results of the stability experiments on the compliant force inverter example. A dis-
cretization of 120 by 60 voxels is used, and density �ltering with modi�ed Heaviside
projection is applied with rmin = 2 voxel widths

p [-] nvoxel [-] ndof [-] niter [-] V F̂ (ρ) [-] uout [m] Mnd [%]
1 1 14762 306 2.98E-01 -1.99E-02 -1.83E-02 0.22
1 2 3782 305 2.98E-01 -2.16E-02 -1.88E-02 0.19
1 3 1722 306 2.99E-01 -2.49E-02 -1.96E-02 0.18
1 4 992 318 2.88E-01 -1.86E-02 -8.08E-09 1.67
1 5 650 315 2.80E-01 -1.74E-02 7.03E-09 2.83
1 6 462 351 2.99E-01 9.14E-02 -6.63E-03 0.09
1 10 182 308 2.99E-01 -7.50E-03 6.85E-12 0.21
2 1 58322 375 2.94E-01 -1.67E-02 -1.82E-02 4.53
2 2 14762 382 3.00E-01 -2.32E-02 -2.15E-02 0.25
2 3 6642 305 2.98E-01 -2.19E-02 -2.02E-02 0.19
2 4 3782 314 2.99E-01 -2.14E-02 -1.21E-02 0.28
2 5 2450 389 3.00E-01 -4.35E-02 -3.04E-03 0.41
2 6 1722 326 2.34E-01 -2.20E-02 -1.21E-02 10.34
2 10 650 333 2.86E-01 -2.09E-02 -1.17E-02 2.80
3 2 32942 327 2.92E-01 -1.81E-02 -1.83E-02 2.85
3 3 14762 428 3.00E-01 -2.07E-02 -1.98E-02 0.55
3 4 8372 351 2.98E-01 -2.30E-02 -2.13E-02 0.26
3 5 5402 329 2.97E-01 -2.29E-02 -2.13E-02 0.39
3 6 3782 305 2.98E-01 -2.32E-02 -2.10E-02 0.20
3 10 1406 486 2.99E-01 -2.20E-02 -1.55E-02 0.90
4 2 58322 398 3.00E-01 -1.92E-02 -1.88E-02 0.45
4 3 26082 353 2.88E-01 -1.50E-02 -1.53E-02 4.92
4 4 14762 308 3.00E-01 -2.07E-02 -2.00E-02 0.43
4 5 9506 418 3.00E-01 -2.12E-02 -1.98E-02 0.39
4 6 6642 336 2.98E-01 -2.32E-02 -2.09E-02 0.21
4 10 2450 320 2.98E-01 -2.27E-02 -2.07E-02 0.30
5 2 90902 317 3.00E-01 -2.22E-02 -2.13E-02 0.31
5 3 40602 348 3.00E-01 -2.15E-02 -2.09E-02 0.40
5 4 22952 372 3.00E-01 -2.28E-02 -2.09E-02 0.26
5 5 14762 330 2.83E-01 -1.84E-02 -1.77E-02 5.50
5 6 10302 311 2.99E-01 -2.09E-02 -2.00E-02 0.20
5 10 3782 349 2.98E-01 -2.35E-02 -2.14E-02 0.26
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Table C.8: Results of the stability experiments on the compliant force inverter example. A dis-
cretization of 160 by 80 voxels is used, and density �ltering with modi�ed Heaviside
projection is applied with rmin = 2 voxel widths

p [-] nvoxel [-] ndof [-] niter [-] V F̂ (ρ) [-] uout [m] Mnd [%]
1 1 26082 453 3.00E-01 -2.14E-02 -1.98E-02 0.42
1 2 6642 301 2.98E-01 -2.51E-02 -2.19E-02 0.21
1 4 1722 306 2.99E-01 -2.24E-02 -1.83E-02 0.22
1 5 1122 326 2.90E-01 -1.63E-02 -1.33E-02 1.74
1 8 462 372 3.00E-01 -7.58E-02 -1.45E-08 0.11
1 10 306 302 1.78E-01 2.89E-09 5.04E-10 4.77
2 1 103362 388 3.00E-01 -2.15E-02 -2.10E-02 0.47
2 2 26082 323 3.00E-01 -2.28E-02 -2.21E-02 0.24
2 4 6642 453 3.00E-01 -2.25E-02 -2.11E-02 0.35
2 5 4290 307 2.98E-01 -2.32E-02 -1.94E-02 0.23
2 8 1722 331 2.99E-01 -2.53E-02 -5.54E-08 0.22
2 10 1122 430 3.00E-01 -2.60E-02 -4.64E-08 0.33
3 2 58322 340 3.00E-01 -2.22E-02 -2.17E-02 0.41
3 4 14762 428 3.00E-01 -1.86E-02 -1.79E-02 0.37
3 5 9506 401 3.00E-01 -2.45E-02 -2.29E-02 0.35
3 8 3782 320 2.97E-01 -2.22E-02 -2.02E-02 0.41
3 10 2450 315 2.98E-01 -2.47E-02 -2.10E-02 0.45
4 2 103362 403 2.96E-01 -1.71E-02 -1.69E-02 2.03
4 4 26082 355 2.82E-01 -1.56E-02 -1.52E-02 5.15
4 5 16770 496 2.97E-01 -1.74E-02 -1.69E-02 1.61
4 8 6642 334 2.98E-01 -2.31E-02 -2.12E-02 0.26
4 10 4290 327 2.98E-01 -2.32E-02 -2.06E-02 0.31
5 2 161202 462 3.00E-01 -2.10E-02 -2.11E-02 0.53
5 4 40602 393 3.00E-01 -2.22E-02 -2.19E-02 0.33
5 5 26082 371 3.00E-01 -1.99E-02 -1.93E-02 0.43
5 8 10302 355 2.94E-01 -1.84E-02 -1.74E-02 2.76
5 10 6642 478 3.00E-01 -2.22E-02 -2.12E-02 0.41
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Table C.9: Results of the stability experiments on the compliant force inverter example. A
discretization of 120 by 60 voxels is used, and robust topology optimization is applied
(η = 0.2) with rmin = 2 voxel widths

p [-] nvoxel [-] ndof [-] niter [-] V F̂ (ρ) [-] uout [m] Mnd [%]
1 1 14762 386 2.99E-01 -2.08E-02 -1.95E-02 0.73
1 2 3782 383 2.97E-01 -1.94E-02 -1.81E-02 1.03
1 3 1722 538 2.99E-01 -1.63E-02 -2.98E-09 0.95
1 4 992 362 3.00E-01 -1.60E-02 -1.11E-08 1.09
1 5 650 555 3.05E-01 -1.98E-02 4.17E-13 0.92
1 6 462 369 2.96E-01 3.77E-02 -8.75E-10 0.64
1 10 182 478 3.01E-01 -6.29E-03 1.17E-10 1.00
2 1 58322 304 2.99E-01 -1.63E-02 -1.60E-02 0.49
2 2 14762 405 3.01E-01 -2.06E-02 -1.97E-02 1.01
2 3 6642 459 2.99E-01 -2.18E-02 -2.03E-02 1.13
2 4 3782 393 3.00E-01 -2.11E-02 -2.00E-02 0.86
2 5 2450 497 2.98E-01 -1.99E-02 -1.87E-02 1.14
2 6 1722 507 3.01E-01 -1.96E-02 -1.79E-02 0.98
2 10 650 466 3.00E-01 -1.93E-02 -1.42E-02 0.85
3 2 32942 255 3.01E-01 -1.66E-02 -1.63E-02 0.60
3 3 14762 475 2.98E-01 -1.66E-02 -1.62E-02 0.77
3 4 8372 433 2.98E-01 -1.93E-02 -1.88E-02 0.97
3 5 5402 379 2.99E-01 -2.22E-02 -2.13E-02 0.82
3 6 3782 399 3.00E-01 -2.03E-02 -1.93E-02 0.92
3 10 1406 414 3.00E-01 -2.08E-02 -1.82E-02 1.12
4 2 58322 372 3.00E-01 -1.82E-02 -1.79E-02 0.70
4 3 26082 304 2.99E-01 -1.62E-02 -1.70E-02 0.71
4 4 14762 391 3.00E-01 -1.81E-02 -1.78E-02 0.47
4 5 9506 399 2.99E-01 -1.98E-02 -1.92E-02 0.83
4 6 6642 379 2.99E-01 -1.41E-02 -1.39E-02 0.60
4 10 2450 372 2.99E-01 -1.90E-02 -1.83E-02 0.93
5 2 90902 356 3.00E-01 -1.95E-02 -1.88E-02 0.62
5 3 40602 381 3.00E-01 -1.93E-02 -1.90E-02 0.65
5 4 22952 362 3.00E-01 -1.92E-02 -1.81E-02 0.89
5 5 14762 353 2.99E-01 -1.88E-02 -1.85E-02 0.47
5 6 10302 367 3.00E-01 -1.79E-02 -1.78E-02 0.88
5 10 3782 400 2.98E-01 -1.89E-02 -1.85E-02 0.77
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Table C.10: Results of the stability experiments on the compliant force inverter example. A
discretization of 160 by 80 voxels is used, and robust topology optimization is
applied (η = 0.2) with rmin = 2 voxel widths

p [-] nvoxel [-] ndof [-] niter [-] V F̂ (ρ) [-] uout [m] Mnd [%]
1 1 26082 398 3.00E-01 -2.15E-02 -2.06E-02 0.79
1 2 6642 405 3.01E-01 -1.57E-02 -1.51E-02 0.65
1 4 1722 447 2.99E-01 -1.56E-02 9.83E-09 0.14
1 5 1122 647 3.00E-01 -1.42E-02 -6.40E-09 0.51
1 8 462 937 2.62E-01 -8.37E-09 7.22E-10 1.62
1 10 306 398 3.01E-01 -1.63E-02 9.39E-10 0.44
2 1 103362 359 3.00E-01 -1.41E-02 -1.36E-02 0.43
2 2 26082 378 3.01E-01 -1.23E-02 -1.23E-02 0.48
2 4 6642 366 3.00E-01 -2.20E-02 -2.04E-02 0.79
2 5 4290 429 2.99E-01 -1.81E-02 -1.75E-02 0.65
2 8 1722 490 2.92E-01 -1.71E-02 1.63E-08 0.54
2 10 1122 366 3.00E-01 -1.95E-02 -1.30E-02 0.13
3 2 58322 387 3.00E-01 -1.38E-02 -1.35E-02 0.34
3 4 14762 393 3.00E-01 -1.86E-02 -1.84E-02 0.58
3 5 9506 399 3.00E-01 -1.34E-02 3.28E-04 0.52
3 8 3782 506 2.99E-01 -2.20E-02 -2.10E-02 0.96
3 10 2450 374 2.98E-01 -1.76E-02 -1.68E-02 0.57
4 2 103362 304 2.99E-01 -1.25E-02 -1.28E-02 0.35
4 4 26082 205 1.92E-01 1.11E-09 5.63E-10 1.62
4 5 16770 348 3.00E-01 -1.45E-02 -1.46E-02 0.37
4 8 6642 373 2.99E-01 -1.64E-02 -1.62E-02 0.69
4 10 4290 413 2.99E-01 -2.14E-02 -1.94E-02 0.90
5 2 161202 370 3.00E-01 -1.37E-02 -1.38E-02 0.53
5 4 40602 393 3.01E-01 -1.41E-02 -1.41E-02 0.54
5 5 26082 397 3.00E-01 -1.40E-02 -1.36E-02 0.62
5 8 10302 477 2.99E-01 -1.77E-02 -1.78E-02 0.90
5 10 6642 665 3.00E-01 -1.79E-02 -1.76E-02 0.63
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