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1 Introduction

Figure 1: Cropped section of
ICESat-2 Ground Track

In digital elevation modelling, there are many tech-
niques for modelling terrain, such as Inverse Dis-
tance Weighted (IDW) Interpolation, kriging, and
other linear spatial interpolation techniques. It is
common to have a limited number of measure-
ments and observations within the region of in-
terest. Therefore, spatial interpolation methods
are used to estimate values within the data gaps
where measurements are not available. This re-
search is going to explore how would random for-
est machine learning algorithm improve the exist-
ing techniques, particularly when space-borne Li-
DAR datasets are sparse. Some terms are used in-
terchangeably to represent the ’bare earth’ model
that measures from the vertical datum. For the
purpose of this research, Digital Elevation Model
(DEM) will be used mainly for the bare earth
model.

Space-borne satellite missions like ICESat-21 and GEDI2 are launched to detect changes
and measure the Earth’s land, ice, and vegetation surfaces with high precision. The
datasets from these missions allow scientists to monitor changes in the Earth through-
out its many orbits around Earth. The satellite orbits at an angle at certain intervals, and
a ground track pattern is designed to cover the earth as much as possible. The ground
track pattern of strong beams and weak beams of ICESat-2 is illustrated in Figure 1. More
information on the ICESat-2 mission can be seen in subsection 2.1.

The altimetry data from the ICESat-2 mission will be used in this thesis to produce a
digital terrain model (DTM) of several places, namely New Zealand, the Netherlands
and the USA. This thesis aims to find the minimum number of features to interpolate the
sparse measurements of the ICESat-2 mission using Random Forest as the main Machine
Learning Algorithm, and to compare the results against the ground truth using DEM
data from each of the respective mapping agencies.

Study Area and Data Sources

Three areas will be the main study area for comparison for this thesis. They are chosen
to show the range of terrain features the random forest algorithm is expected to handle,
namely hill, saddle, valley, ridge, and depression. The areas chosen are as follows:

• Mount Taranaki, New Zealand

• South Limburg, Netherlands

• Grand Canyon, USA

Mount Taranaki is a volcano situated in North Island, New Zealand. It demonstrates one
large hill (in this case a volcano) with a height of over 2500 metres. By contrast, South
Limburg, Netherlands has more terrain features with the highest peak at 300 metres.
Grand Canyon, USA can show a variety of terrain features within the area.

1Ice, Cloud and land Elevation Satellite
2Global Ecosystem Dynamics Investigation
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ICESat-2 data will come from the NASA Earthdata (www.earthdata.nasa.gov), and the
ground truth data from the mapping agency for each country. They are Land Information
New Zealand (LINZ) (www.linz.govt.nz), Het Kadaster (www.kadaster.nl, and USGS
(www.usgs.gov) respectively.

2 Background and Related Work

The terrain is the surface of the Earth. This thesis is going to model an area of Earth using
spatial interpolation, and the model is a representation of a 2-dimensional surface in a
3-dimensional space. Since the Earth is round, the terrain model would represent poorly
on a large scale. (de Berg et al., 2008) Hence, a smaller-scale representation will be imple-
mented. There are many spatial interpolation methods, and each has their characteristic.
This section will highlight existing works on spatial interpolation and their results and
accuracy metrics.

2.1 Technical Information about ICESat-2

Figure 2: ICESat-2 mission beam pattern (Smith et al., 2019)

ICESat-2 is a satellite launched by NASA (2023) to monitor the land, sea, and ice elevation
measurement in the Earth’s polar regions. The satellite’s orbit covers most of the Earth’s
surface due to its orbital inclination of 92 degrees, with global coverage from 88 South
to 88 North latitudes. (Neumann et al., 2019) Its ground-track orbits around the polar
region. The satellite uses laser beams to measure Earth’s surface, and it uses three beam
pairs (one weak and one string beam in each pair) that are directed to the Earth’s surface
to measure the elevation of the Earth’s surface. This thesis will focus on data from ATL08
product 3 which has data on the along-track heights above the WGS84 ellipsoid on the
ground and canopy surfaces.

The ICESat-2 operates at a pulse of 10 kHz, which means that the laser fires 10,000 times
per second. This high repetition rate enables dense sampling of the Earth’s surface and al-
lows for accurate measurements of surface elevation changes. As seen from Figure 2, the
gap between each track between each strong-weak beams is 3.3 kilometres and around 90
metres along each track. The ground track follows a near-polar orbit that completes the
orbit around the Earth in 90 minutes. The satellite repeats itself every 91 days that covers
the same ground track, and the data from repeated ground tracks enables temporal data
for monitoring of changes of land, sea and ice on Earth. (Neumann et al., 2019)

Furthermore, the density of data points varies depending on the latitude of the orbit. In
high-latitude polar regions, for instance, ground tracks are closely spaced, resulting in a

3Land and Vegetation Height Product. url: https://nsidc.org/data/atl08/versions/5
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higher density of measurement points, whereas at mid-latitude and at the equator results
are wider in spacing and thus lower the density of measurement points.

For the extent of this research, all points from the ATL08 data product will be used from
the beginning of the satellite mission up until May 2023 within a predefined bounding
box. In terms of the density of points, three areas will be chosen with similar sizes and
density of points in order to find the interpolation method for such density of ICESat-2
data points.

In terms of the density and sparseness of the measurement points, this thesis aims to
utilise ICESat-2 data and apply Random Forest Regression to fill in the missing areas
represented as a digital elevation model raster. Specifically, this thesis will use a range of
features to train the model and then evaluate its performance in predicting the missing
areas, with bounding boxes having a similar density of measurements.

2.2 Existing Spatial Interpolation Methods

(a) South Limburg, Netherlands

(b) ICESat-2 Points

Figure 3: Area of Interest in the
Netherlands

There are different types of interpolation meth-
ods to estimate the terrain height between the
measurement points and the target points using a
deterministic approach or geostatistical approach.
The deterministic approach takes account of the
properties of the measurement points and their
neighbourhood to determine the height of the tar-
get points—these include Inverse Distance Weight-
ing (IDW), Triangulated Irregular Network (TIN),
and splines. The geostatistical approach takes ac-
count of the entire dataset to find their spatial
autocorrelation—these include simple kriging and
ordinary kriging.

These techniques all result in a DEM, a 2.5-
dimensional representation of the terrain surface.
2.5-dimension refers to the terrain surface that only
has one z value for each xy point in a 2-dimensional
plain. Shapes such as overhanging structures are
not permitted in 2.5D. In a DEM, surface features
such as trees, buildings, and other structures are
omitted, leaving the remaining surface to represent
the continuous surface of the bare earth. Inverse
Distance Weighting (IDW), Triangulated Irregular
Network (TIN), Kriging, Splines etc. have been
used extensively in previous research to produce a
DEM.

Methods such as Inverse Distance Weighting (IDW), Triangulated Irregular Network
(TIN), Natural Neighbour Interpolation (NNI), and Lapalce Interpolation are determin-
istic interpolation methods that are able to calculate points that are in between measure-
ment points. These methods are widely in use because they are relatively simple to im-
plement, and can result in a relatively accurate representation of the ground truth data,
provided that the data points are equally distributed with sufficient density to recognise
terrain features in the sampled data.

Existing deterministic interpolation techniques may not function as expected on sparse
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datasets. In the case of ICESat-2 data, the region of South Limburg, Netherlands is used
for the region of interest to illustrate the interpolation. The bounding box (seen in Fig-
ure 3a and Figure 3b) covers most of the south part of Limburg, Netherlands, and the
border regions of Germany and Belgium.

Figure 4: Delaunay triangulation

Since TIN, NNI and Laplace interpolation are built upon on Delaunay triangulation. The
representation of triangles in Figure 4 shows that the triangles are constructed following
the points of the ICESat-2 points with long thin triangles along the path of the satellite
ground track. The shape of the ground track can also be seen clearly in the Delaunay
triangulation within the convex hull as illustrated in Figure 4.

Traditional interpolation methods have their drawbacks too. Figure 5 shows different
interpolation methods and their results show that some details of terrain features are
smoothed and using a 30m resolution cannot be able to interpolate a good terrain feature
since the space between the satellite ground track is too wide to be able to determine
smaller details in between. There are techniques such as random forest algorithms to
use machines to learn auxiliary datasets as features such that terrain features can also be
recovered, which is discussed in subsection 2.4

Inverse Distance Weighting (IDW)

IDW puts weight to measurements that are closer to the nearby measurement points.
This method is easy to implement since all data points apply a power parameter, thus
the area closer to the data point is inversely proportional to the power of its distance.
Closer points have a greater weighting than areas further from the data point. IDW can,
however, produce sharp peaks depending on the power parameter, due to the decaying
factor that influences the area surrounding the data point.

Despite its shortcomings, IDW is a popular method for interpolation in Geographic In-
formation Systems (GIS) software packages. A comparative study between different in-
terpolation methods, Arun (2013) observed that IDW is a good interpolation method for
morphologically smooth areas as the study has kept the study area of 4 km2.
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(a) IDW interpolation (b) TIN interpolation

(c) NNI Interpolation (d) Laplace Interpolation

Figure 5: Traditional Interpolation Techniques

Triangulated Irregular Network (TIN)

Another popular interpolation method, TIN interpolation follows the shape of the ter-
rain based on the data points using Delaunay Triangulation. The values are based on the
network of the triangles, each vertex connecting to the data points with known heights.
Each triangle represents a small portion of the terrain and the elevation values are de-
termined within the triangles at any point within itself. This is normally represented by
terrain with triangles covered throughout the terrain. TIN and Delaunay Triangulation
is then also used in other interpolations such as Laplace and NNI.

Kriging

Kriging is a geostatistical method used in spatial data analysis. It predicts unknown
values for a target variable at unsampled locations based on observed values at nearby
sampled locations. The technique is based on the assumption that the spatial correlation
between the target variable at different locations can be described by statistics. The vari-
ogram shows the spatial relationship between the point pairs–the pair of points that are
closer to each other are more related. The drawback of kriging is that

For large data gaps or holes, Luedeling et al. (2007) used other external datasets to fill
the void in between the SRTM (https://gedi.umd.edu/) data. Before 2010, The second
version of SRTM DEM data contained voids in the mountainous terrains. The author
extracted the voids into polygon and used data from Russian topographic survey maps as
proxy data and filled the data gaps. Both maps were then converted to a refined TIN and
voids were filled such that it has a continuous surface. The characteristic of this approach
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(a) IDW interpolation (b) TIN interpolation

(c) NNI Interpolation (d) Laplace Interpolation

Figure 6: Traditional Interpolation against Ground Truth

however would lead to inconsistencies and borders in the gap-filled areas.

2.3 Forest And Buildings removed Copernicus DEM (FABDEM)

FABDEM is a DEM that is derived based on the Copernicus GLO-30 DEM distributed by
the European Space Agency. Fundamentally, Copernicus DEM falls towards DSM, which
is a terrain model that includes both natural and man-made features—meaning building
and vegetation height existing within the raster dataset. FABDEM, hence, MLA aims to
create a global DEM that represents the ’bare earth’ version of Copernicus DEM.

The creation of FABDEM, according to Hawker et al. (2022), uses random forest regres-
sion to remove buildings and vegetation from Copernicus DEM. Key datasets such as
forest cover, building footprint, and forest height, are used to remove building and veg-
etation separately. The creation of FABDEM, is compared against other globalDEM to
maintain good accuracy.

2.4 Interpolation Methods using Machine Learning

Machine learning algorithms (MLA) in the past decade has emerged as an alternative to
deterministic and geostatistic approaches to perform spatial interpolation. This is owing
to the advancement in virtual machines and servers, so complex operations can be per-
formed. Easier access to these computers also signifies that computationally expensive
operations can be outsourced to a high-performance computer. Delft High Performance
Computing Centre (DHPC) (2022), for instance, provides access to hardware capabilities
to perform machine learning and deep learning algorithms. Recent research, to a larger
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extent, now focuses on using machine learning to predict the height of the target points
in DEM, as well as other fields such as soil science and geology.

The fact that ICESat-2 data is sparser at locations close to the equator means determinis-
tic methods of interpolation are impossible to apply with the kilometre gaps. Similarly,
the geostatistical approach can also be very unreliable and computationally expensive.
Machine learning, therefore, is a feasible approach to develop a DEM with a selection of
auxiliary data as features.

3 Research Question

This project will primarily use Machine Learning algorithm to predict the height of each
pixel using auxiliary data from various sources. The raw data will be sourced from NASA
EarthData, auxiliary data for machine learning training will be sourced from OpenTopog-
raphy (2023) and the ground truth data sourced from New Zealand’s mapping agency,
LINZ. The main research question of this thesis reads:

• Is it possible that using random forest machine learning algorithm, is able to con-
struct DEM with sparse isotropic ICSat-2 satellite data?

• What is the minimum number of features that is able to reconstruct a DEM with
good accuracy?

• With 3 areas of interest of similar density of ICESat-2 data points, can the algorithm
reconstruct a DEM with good accuracy?

3.1 Datasets and tools used

ICESat-2 dataset

The dataset for ICESat-2 is available from NASA Earthdata, and the ATL08 along-track
data product is the main data source for the space-borne LiDAR. Neuenschwander et al.
(2021) provides a quick look at the ATL08 product, and the icepyx python library, made
available by the National Snow & Ice Data Center (NSIDC) provides the main access
portal for ICESat-2 data. (Scheick, 2019)

Features Dataset

The auxiliary data will be sourced from Copernicus DEM. This dataset, however, is a
DSM that is freely available from OpenTopography (2023). This will be used as auxil-
iary data for machine learning training. Derived datasets from Copernicus DEM such
as Aspect and Slope will be used as features in the machine learning algorithm in this
project. In addition, land use and land cover data will be accessed from Copernicus Land
Monitoring Service for the land use information in the set of auxiliary data. The full list
of features dataset can be found in Table 1

Dataset for Assessment

Since there are three regions of interest in this project, the datasets for accuracy assess-
ment will be DEM from LINZ (New Zealand), Het Kadaster (Netherlands), and USGS
(United States) respectively. These mapping agencies from their respective countries
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will provide the dataset for ground truth assessment for verification of the data results.

4 Methodology

The objective for this thesis project is to model a DEM from ICESat-2 data points obtained
from the ICESat-2 mission from NSIDC. To obtain the desired interpolation, random for-
est regression is used to model the data points. Random forest regression is the process
of predicting continuous numerical values using multiple decision trees. Their outputs
are then averaged in order to predict the height of the spaces between the data points. A
random forest provides improved accuracy and robustness compared to individual deci-
sion trees, and this thesis will use this to model a DEM. The diagram of the workflow is
illustrated in Figure 7.

Figure 7: Workflow for this project

For the random forest regression model of the DEM, various auxiliary data are needed
as inputs into the regression model. The dataset from Copernicus DEM, land use and
land cover, slope, and aspect will be used as auxiliary data for the regression. These
auxiliary data are the inputs to the random forest regression. Using the auxiliary data, the
random forest will generate decision trees and produce a regression analysis, resulting in
a prediction of the height for each pixel in the DEM raster.

4.1 The Region of Interest

The region of interest shown in a red box in Figure 8a is located on the North Island of
New Zealand. The volcano, Mount Taranaki, is situated in the Taranaki Peninsula on the
west coast of New Zealand’s North Island, and the peninsula extends out into the Tasman
Sea. The region of Egmont National Park provides a good range of terrain features. The
lower slopes of the volcano are covered in dense forest, while the higher elevations are
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(a) Region of Interest

(b) ICESat-2 transects over the ROI

Figure 8: Region of Interest

more rocky and barren. Since New Zealand is also one of the geologically active regions
in the world, Mount Taranaki is chosen to be the region of interest in this research.

At the end of 2022, LINZ has uploaded a LiDAR dataset that covers this region—including
DEM and DSM at 1-meter resolution and an aerial LiDAR dataset provided by LINZ that
can be accessed through OpenTopography (www.opentopography.org). This 1-metre res-
olution DEM will be used for accuracy assessment after producing the random forest
regression DEM model.

4.2 Obtaining ICESat-2 ATL08 Data

Throughout this project, Python will be the programming language along with numpy,
pandas, geopandas etc. libraries for additional functions. The icepyx python library is the
data portal provided from Scheick (2019) so that ICESat-2 data can be downloaded. With
the icepyx, only HDF5 data can be downloaded with the download methods with the
bounding box as input.

The downloaded HDF5 data contains a large amount of data. Each of the data points ob-
tained from ICESat-2 mission is embedded with data including the name of the granule,
each of the beams, longitude, latitude, photon rate etc. As the scope of this project fo-
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cuses on terrain information, ground information is used primarily. The ALT08 land and
vegetation product contains the dataset that is needed for this project. Within the ATL08
product, the estimated best fit, ’h_te_best_fit’, which is the estimated photon ground
points from the centre of each 100m step Neuenschwander and Pitts (2019), the ’latitude’
and ’longitude’ are used as the essential dataset.

4.3 Obtaining auxiliary data as feature dataset

Table 1: Auxiliary Data used in this thesis
Auxiliary Data Data source

Land Based Dataset
World Settlement Footprint Deutsches Zentrum für Luft- und Raumfahrt (DLR)
Land Water Mask US Geological Survey
Global Land Cover Copernicus Global Land Service
Global High-Resolution Geomorphometric Layers OpenTopography

Geometry Based Dataset
100 closest ICESat-2 data to raster grid Using KD Tree on ICESat-2 data
Inverse Distance Weighting (IDW) Using ICESat-2 interpolation from Figure 5
Triangulated Irregular Network (TIN) Using ICESat-2 interpolation from Figure 5
Natural Neighbour Interpolation (NNI) Using ICESat-2 interpolation from Figure 5
Laplace Interpolation Using ICESat-2 interpolation from Figure 5

Random forest regression requires auxiliary data for its prediction. The main data source
will come from Copernicus DEM, as shown in Table 1. Copernicus DEM is a high resolu-
tion map of the Earth’s surface elevation–also called Digital Surface Model (DSM)–that is
an edited version of the WorldDEM product. The DSM is generated using data from the
TanDEM-X satellite mission in partnership with German State and Airbus. Some editing
has been done to coastlines, shorelines, and irregular terrain structures to enhance the
accuracy and reliability of the model.

For the purpose of this research, The ’GLO-30’ series will be used to cover the region of
interest. ’GLO-30’ is a raster that represents 30m resolution of the DSM product that is
near global coverage. This raster data will be the base computation of other auxiliary
data such as slope and aspect. The benefit of using this raster is that it is freely available
to download through the Copernicus Open Access Hub (European Space Agency, 2022).
The auxiliary data will also be the 100 closest ICESat-2 data point, by distance, between
each of the ICESat-2 data; and the 100 closest datasets between the raster grid mid-points
and the ICESat-2 data point.

4.4 Filtering Data

h_te_interp h_te_uncertainty

count 49796 49796
mean 233.108 7.452e+37
std 194.729 1.407e+38
min -134.360 0.013
25% 129.822 1.649
50% 201.958 5.162
75% 278.744 39.867
max 2421.418 3.403e+38

(a) Raw ICESat-2 Data

h_te_interp h_te_uncertainty

count 36019 36019
mean 205.772 4.677
std 136.335 5.119
min -55.160 0.013
25% 111.958 1.192
50% 195.907 2.677
75% 270.026 6.274
max 2374.881 24.991

(b) Cleaned ICESat-2 Data

Table 2: Statistics of ICESat-2 Data
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(a) Raw Data of h_te_interp (b) Cleaned Data of h_te_interp

Figure 9: Histogram of ICESat-2 Data

With such a large amount of data embedded in HDF5 format, there are a sizeable amount
of data that needed filtering down. In terms of the data, that are data that are considered
essential to this research, namely, the latitude and longitude and the best-fit height based
on the WGS84 ellipsoid. Additionally, the uncertainty of each ICESat-2 data point is also
needed to assess the quality of the data. Table 2a provided some basic statistics of the
raw data captured by the satellite and Table 2b shows the cleaned data.

As part of data cleaning, an assessment of data quality is required. This step involves
filtering out data points that are considered outliers. For height data, Table 2a shows
the height (h_te_interp) minimum at -134.36 metres and maximum at 2,421.42 metres.
The raw data with a negative height of 100 metres is considered unreasonable, espe-
cially when the standard deviation of uncertain at such an unrealistically large magni-
tude. Cleaning of the data, therefore, is a necessary step to ensure the data input into the
random forest has a good range.

With reference to the Algorithm Theoretical Basis Document (ATBD) of the ATL08 prod-
uct, the h_te_uncertainty parameter is the total uncertainly of ground height estimates
that includes "uncertainties such as geo-location, pointing angle, timing, radial orbit er-
ror" Neuenschwander et al. (2021). In the case of the ICESat-2 raw data for the region of
interest, h_te_uncertainty of more than 25 metres will be deleted, and outliers of more
than 3 standard deviations will also be deleted from the raw dataset.

4.5 Data normalisation

hnormalised =
h − min(h)

max(h)− min(h)

Data normalisation is to constrain the elevation values of the terrain to a consistent
scale or range. Since three areas of interest have different ranges in height, normalisa-
tion of height data to the ICESat-2 dataset will be performed such that the scale of the
h_te_interp data is within the range where the minimum value will be 0 and maximum
value will be 1.

4.6 Feature Selection and Ranking

The goal of feature selection is to identify the most informative and influential features
that contribute the most to the predictive performance of a model or the interpretability of
the data. The use of feature selection and ranking is to determine which of the features in
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the machine learning algorithm produces the most important and relevant dataset. Out
of the auxiliary datasets in ??, using feature selection and ranking can help determine
which of the feature datasets have a greater impact on the model’s performance.

4.7 Random Forest Regression

The main toolkit used for random forest regression in this research will be to use the
Python library scikit-learn. Scikit-learn is a machine learning library for Python that sup-
ports both supervised and unsupervised machine learning. Using this library, random
forest regression of the terrain data can be placed in the random forest algorithm to pre-
dict the height value as a DEM. Using random forest regression as a spatial predictions
framework (RFsp) was based on the work by Hengl et al. (2018). Random forest data will
take into account the spatial correlation of the data points and the raster points of the re-
sulting DEM. Sekulić et al. (2020) added that the RFsp framework can work spatial data
and its correlation. These auxiliary data can improve the prediction and the predicted
result that is similar to kriging.

Figure 10: Geomorphons (Jasiewicz and Stepinski, 2013)

The auxiliary data used in this thesis will also incorporate various sources like. Geomor-
phons are classifications of landforms in the raster data (Jasiewicz and Stepinski, 2013).
Each of the terrain features is classified based on the neighbouring cells. The classifica-
tion, illustrated in Figure 10, is divided into 10 landforms representing flat, peak, ridge,
shoulder, spur, slope, hollow, footslope, valley and pit. The resulting raster file will then
be used as the auxiliary for the random forest algorithm.

4.8 Random Forest Algorithm

Random forest will use a lot of decision trees to decide the height of the terrain using
aggregation and bagging. The majority voting from the multiple trees from the result of
aggregation will determine the height of the spaces between the measured points.

The incorporation of auxiliary data as features during the training data means that the
parameters of each decision tree will be based on the feature data to decide whether the
decision goes left or right of the decision tree. Due to the data process, the resulting data
should produce a more accurate, closer result of the ground truth terrain.

In terms of the machine learning algorithms, there will be constrained to the Scikit Learn
library since it is supported by Python and also its ease of implementation of different
machine learning algorithms.
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4.9 Accuracy Assessment of Random Forest Regression

The random forest regression is comprised of the input of ICESat-2 data and an array
representing the raster. In order to ascertain the accuracy of random forest regression,
a test train split is done to ensure the training data and testing data perform within the
constraints of the machine learning algorithm. Mean Square Error and R2 are common
assessment criteria to perform accuracy assessment, and they are within the Scikit-learn
library. It is easily accessible within the library itself.

4.10 Accuracy Assessment of Resulting DEM Raster

In order to compare the results against the ground truth, there are assessment methods
that are used in this project. Firstly, due to the sparseness of the ICESat-2 dataset, the res-
olution of the ground truth raster file will match the resolution of the raster file to around
500m resolution. The comparison assessments that will be used are Median Absolute
Error (MAE) and Root Mean Square Error (RMSE). Both MAE and RMSE calculate the
magnitude of the differences between the ground truth and resulting DEM.

Mean Absolute Error (MAE)

MAE =
∑n

i=1 |hi − ĥi|
n

MAE is a measure of the average absolute difference between the height values of the
ground truth compared to the predicted height. This measurement is less sensitive to
outliers and is always a non-negative number. The lower value for MAE indicates higher
accuracy with the best being 0.

Root Mean Square Error

RMSE =

√
∑n

i=1(hi − ĥi)2

n

RMSE is a measure of the squared differences between the height of the resulting DEM
and the ground truth. It is used widely in terrain analysis. The lower value for MAE
indicates indicate higher accuracy and a better correlation between the resulting DEM
and the ground truth.
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5 Preliminary Results

Preliminary results in the random forest use Mount Taranaki as the region of interest, and
the model predicted has some differences between it and the ground truth. It shows some
straight lines that might be due to the decision trees making their decisions. The range of
deviation is quite large with the highest deviation from the ground truth between -866m
to 1003m.

(a) DEM generated from Random Forest

(b) Comparison to Grounth Truth

Figure 11: Preliminary Results of Random Forest Regression

The features used in the random forest regression are slope, aspect, roughness, and land
cover. The resulting model has some large deviations, but the peak of the volcano can still
be observed and illustrated in Figure 11 and the 3D visualised image in Figure 12

Figure 12: Random Forest Regression DEM

16



6 Time Planning

The Gantt chart below highlights the task that will be performed throughout the thesis
writing period.

Figure 13: Grantt Chart
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