
Shadow Internet
A censorship-free communication infrastructure

Mark van Beusekom
Nicolaas Herckenrath

Te
ch

ni
sc

he
Un

iv
er

sit
eit

D
elf

t

SHADOW INTERNET
A CENSORSHIP-FREE COMMUNICATION INFRASTRUCTURE

by

Mark van Beusekom
Nicolaas Herckenrath

in partial fulfillment of the requirements for the degree of

Bachelor of Science
in Computer Science

at the Delft University of Technology,

Coach: Ir. Egbert Bouman TU Delft
Client: Dr. Ir. Johan Pouwelse TU Delft
Bachelor Coordinator: Dr. Martha A. Larson TU Delft

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

PREFACE

This report details the development done during the ’Shadow Internet’ project for the course: TI3806 Bach-
elorproject. It was commissioned by the Tribler Team at the Parallel and Distributed Systems group (PDS) at
the faculty of Electrical Engineering, Mathematics and Computer Science (EEMCS) at the Delft University of
Technology.

The report documents the 9-10 weeks that were spent developing the Shadow Internet application, an
Android application capable of recording videos and sharing them without the need of an internet connec-
tion. A large part of the project was to make Python code properly run on Android. The goal of the report is
to show the reader the workings of the application, the process and choices that lead to the final product and
to give recommendations for further developments.

We would like to thank the Tribler team for making the Tribler code available and for assisting us whenever
we had questions. We would also like to thank the Anonymous HD Video Streaming for Android bachelor
project group for compiling most of Tribler for Android and assistance with questions regarding this effort.

Special thanks goes out to our client Johan Pouwelse for his enthusiasm and vision for the project, to our
coach Egbert Bouman for assisting us during the project process and to Jaap van Touw for his help in setting
up Jenkins.

Mark van Beusekom
Nicolaas Herckenrath

Delft, June 2015

iii

ABSTRACT

Due to the rise of smartphone technology, numerous citizens carry Internet-enabled recording equipment
with them at all times. Should atrocities be committed by the the government, they would have a hard time
to cover-up the truth without blocking the Internet. Governments have demonstrated their ability to restrict
access to the Internet during events like the Arab spring.

The Shadow Internet bachelor project aimed to create an application that thwarts government censorship
by allowing the spread of incriminating footage without the use of the Internet. This way, a video could be
passed around until an enterprising journalist can smuggle the footage out of a censored region. When in a
safe area, he would be able to spread the footage to the world.

Our application implements this functionality by using Android Beam to transfer videos. Android Beam
is Google’s implementation of Bluetooth file transfer that is started through NFC. As the Google Play Store
will not be available during an Internet blackout, it also supports installing itself on other phones through
the same mechanism. This will allow the spread of both our application and the video without the use of the
Internet. In order to facilitate the spread of evidence we have implemented Tribler support. This allows the
anonymous uploading of videos into the Tribler network.

The project was divided into 3 Scrum cycles lasting two weeks each. Each cycle iterated upon the existing
application, with a focus on adding additional functionality. The first cycle focused on creating the first pro-
totype and getting used to the Kivy framework. The second cycle saw the addition of the core features such
as NFC file transfer and the video recording. The final cycle focused on improving the user experience and
adding Tribler support for uploading videos. This cycle was plagued with a number of problems that delayed
progress, but were eventually resolved.

As of this writing, the application supports video recording and allows for file transfer through Bluetooth,
along with the application itself, to another phone through the use of Android Beam. Sadly, Tribler support
has not yet been fully implemented.

v

CONTENTS

1 Introduction 1

2 Problem Description 3
2.1 Current Situation . 3
2.2 Project Goals . 3
2.3 Use Cases . 3

3 Research Phase 5
3.1 Related Work . 5
3.2 A comparison of possible technologies . 6

3.2.1 File Transfer . 7
3.2.2 Graphical User Interface . 9
3.2.3 Upload . 10
3.2.4 Android Version . 10

3.3 Chosen Technologies . 11
3.3.1 File Transfer . 11
3.3.2 Upload . 11
3.3.3 GUI . 11
3.3.4 Android version . 11

4 Design Phase 13
4.1 Requirements (MoSCoW) . 13

4.1.1 Must have(s) . 13
4.1.2 Should have(s) . 13
4.1.3 Could have(s) . 14
4.1.4 Would have(s) . 14

5 Implementation Phase 15
5.1 Implementation process . 15
5.2 Sprint 1: Research and Orientation . 15

5.2.1 Kivy . 15
5.2.2 PyJnius. 15
5.2.3 Camera functionality . 16
5.2.4 NFC functionality . 16
5.2.5 Thumbnail and File support . 17

5.3 Sprint 2: Polished Prototype. 17
5.3.1 Threading . 17
5.3.2 Thumbnail Improvements . 18
5.3.3 User Interface . 18
5.3.4 Single Button Camera . 19
5.3.5 NFC integration . 21

5.4 Sprint 3: Product Release Sprint. 21
5.4.1 SIG Feedback . 21
5.4.2 Integration Day . 21
5.4.3 Buildozer and Android SDK trouble . 22
5.4.4 GUI . 22
5.4.5 Tribler Integration . 22
5.4.6 NFC File Relocation . 22
5.4.7 File Scanning . 23
5.4.8 Own Storage . 23
5.4.9 Jenkins . 23

vii

viii CONTENTS

5.5 The Shadow Internet Experiment . 24

6 Conclusions 25
6.1 Conclusion . 25
6.2 Future Work and Recommendations . 26
6.3 Reflections . 26

6.3.1 Mark van Beusekom . 26
6.3.2 Nicolaas Herckenrath . 27

A Original Project Description 29
A.1 Project description . 29
A.2 Company description . 29
A.3 Auxiliary information . 29

B Project Plan 31
B.1 Introduction . 31
B.2 Project Assignment . 31

B.2.1 Project Environment . 31
B.2.2 Project Goals . 31
B.2.3 Project Description . 31
B.2.4 Deliverables . 31
B.2.5 Requirements . 32
B.2.6 Conditions . 32

B.3 Approach and Planning . 32
B.3.1 Research Phase . 32
B.3.2 Design Phase. 32
B.3.3 Implementation Phase . 32

B.4 Project Design . 32
B.4.1 Organization . 32
B.4.2 Personnel . 32
B.4.3 Administrative Procedures . 33
B.4.4 Reporting . 33

B.5 Quality Control . 33

C SIG Feedback 35

D Shadow Internet Infosheet 37

Bibliography 39

1
INTRODUCTION

The project is issued by Dr. Ir. Johan Pouwelse of the Parallel and Distributed Systems group (PDS), a section
of the Department of Software and Computer Technology (SCT) at the Faculty Electrical Engineering, Math-
ematics, and Computer Science (EEMCS) of the Delft University of Technology. The Parallel and Distributed
Systems group focuses on research into the fields of P2P systems and online social networks, massively mul-
tiplayer online games, grids and clouds, multi-core architectures and parallel programming. This project
is part of the realization of the ’Shadow Internet’, which is an attempt to make it impossible to censor the
Internet, as it is an important place for free and innovative ideas. [1]

These days it has become harder than ever to cover up wartime atrocities. Due to the rise of smartphone
technology, numerous citizens carry Internet-enabled recording equipment with them at all times. So if a
government wants to keep crimes under wraps, monitoring or blocking the Internet is one of the options
they might have to use. A number of governments, for instance, Egypt [2] and Syria [3], have used various
methods to severely cripple communication and international involvement. For instance, during the Arab
spring, Egypt forced the telecommunication companies to sever their broadband and mobile connections,
effectively disabling the internet in Egypt [1]

Our Shadow Internet project focuses on making these kinds of blocks ineffective by creating an applica-
tion that enables the spread of incriminating material without the use of the Internet. This way, the material
could find it’s way to a front-line reporter who can smuggle it to safety. When in a safer region, the application
would allow the evidence to be spread anonymously via the Tribler network [4]. This way, the whistle-blower’s
identity will not be compromised.

Our application builds upon the work of previous thesis projects such as Tribler Play and AT3 , but does
not directly extend the existing applications. This was done in order to create a more direct implementation
of Tribler instead of the current server-based version.

This report is structured as follows: First we cover the project description, along with it’s goals. The subse-
quent chapter researches and compares the various technologies the application would need to use. During
the implementation chapter the report details how each feature was implemented, along with it’s pitfalls

1

2
PROBLEM DESCRIPTION

The Shadow Internet is an envisioned alternative communication infrastructure. It’s been actively developed
to be resilient to sniffing, blocking, filtering and shutdown. This project focuses on creating a smartphone
solution that uses the internet only when available and capable of using direct smartphone-to-smartphone
communication when internet usage is blocked or dangerous.

2.1. CURRENT SITUATION
Whilst a significant amounts of work has gone into several projects that are related to the Shadow Internet
project, most of the former work has been focused around Tribler, a BitTorrent compatible social media shar-
ing application, currently being developed at the PDS research group at the TU Delft. Tribler does offer vari-
ous means to share media, it requires an Internet connection to do so. Another project done at the TU Delft,
DroidStealth, is an application that enables its users to record videos, safely encrypt and store those files and
to hide the application itself on your device. It also features a method to spread the application through the
use of Android Beam, a NFC and Bluetooth connection native to Android. For a more detailed explanation of
how these projects were used within this project, see 3.

2.2. PROJECT GOALS
The original assignment as found in appendix A has been redefined by the client. The project team is to
create an application to be released on the Google play Store. The main focus of the application will be to
facilitate the transfer of video files and the application itself to another device without needing an Internet
connection. In order to provide a single integrated user-experience, the application should be able to use the
device’s video camera from within the application itself. This core functionality will allow for the recording
and spreading of, for instance, war crimes in areas where the Internet is unsafe or impossible to use.

In order to increase the speed at which these videos will spread around the world, the application will sup-
port Tribler in order to upload videos in areas where the Internet is available and relatively safe to use. Tribler
is a specialized Bittorrent client with a heavy focus on anonymity. The use of Tribler allows for anonymous
seeding of the sensitive video material. By reducing the chance of identification, the application stimulates
the creation and spreading of vital evidence.

Additionally, the project team will be working together with a team of bachelor students working on the
project “Anonymous HD video streaming for Android”. This project focuses on porting Tribler’s streaming
functionality to Android. This port will produce a number of libraries that are vital for the integration of
Tribler in our Shadow Internet application. Their streaming functionality makes for an excellent addition to
the user-experience, so one of the goals is to integrate both projects into a single application.

2.3. USE CASES
To better understand how the application would be used, several use cases were explored to understand the
usage of the final product. The following use cases were explored: sharing the application, creating and shar-
ing videos and downloading, viewing and sharing videos. We spoke to a potential end-user from a censored

3

4 2. PROBLEM DESCRIPTION

internet region, who confirmed that the second and third case currently occur in regions where the govern-
ment monitors and censors the Internet.

• Sharing the Application
In some areas, for instance Syria, the Google Play Store is blocked. To spread our application, users can
bump phones while no video is selected. This will bring up the Android Beam prompt. Pressing this
will transfer and install the application on the target phone.

• Creating and Sharing Videos
A user can record a video by pressing the camera button. This will bring up the camera application.
Pressing record will start the recording, and pressing it again will save the recording.

After a user has recorded a video, he may want to share it. He could share all of his videos by pressing on
the Tribler button. Alternatively, he could open up the triple dot menu of a video and select to beam this
file. When he holds his phone against another, this will bring up the Android Beam prompt. Pressing
the prompt will transfer the file to the other phone using Bluetooth.

• Downloading, Viewing and Sharing Videos
A user can also download a video from the Tribler network. To accomplish this, he would have to press
on the search button. This will bring up the search menu. After inputting a search term into the search
bar, a number of files will show up. Pressing on the download button will start the download. After the
download the user can press the video file and the media player will open.

3
RESEARCH PHASE

This chapter describes the research performed such as a review of previous work and similar programs. This
will give further insight into the proper approach of certain elements of our final product and into solutions
that could be used to create all requested functionalities.

In section 3.1, we will review earlier projects and released products that could be used in our project. In
section 3.2, we will discuss the solutions that are available for the various goals we have set for our project.
Finally, we will discuss our chosen solutions in section 3.3.

3.1. RELATED WORK
This section reviews earlier work that has been done and is both related and can be used to further pursue
the goals of ’the Shadow Internet’. These works are:

• Tribler Play & Android Tor Tribler Tunneling
In the previous year, two groups of students have created two applications for the Parallel and Dis-
tributed Systems (PDS) research group at the TU Delft, Tribler Play [5, 6] and AT3 [7, 8]. Tribler Play is
an Android application that is able to use Tribler to search for and play video’s through torrents. AT3 is
an Android application that is able to set up an anonymous tunnel to the internet in order to download
files anonymously. Parallel to our project, another group of students will combine these two applica-
tions and we will provide a hook for the resulting application in order to gain the anonymous tunnel
functionality to upload media files anonymously[9].

• DroidStealth
DroidStealth [10, 11] is an application created by the Hacking Lab course IN4253ET, which enables
users to save files on their devices and hide them. The application currently uses a flawed method of
’morphing’ in order to hide the application from device inspections by transforming its assets to mimic
another application, but it can still be found in the list of installed applications. A master student at
the TU Delft is currently working on integrating a better form of morphing to remove this weakness.
This project should be able to use the upgraded Droidstealth functionality to increase the application’s
safety by allowing the user to successfully hide the application from device inspections.

• Python-for-Android
Python-for-Android [12] is a framework that allows for developers to run Python code on Android,
whose development environment is based on both Java and XML. It is based on the Scripting Layer
for Android project. The original Python-for-Android project is not being supported as of August 2012,
but a forked version that is part of the Kivy GUI framework is still being supported by its developers.
This forked version also includes support for Kivy and a program called Buildozer, that can package
Python application for Android.

• SuperBeam
SuperBeam [13] is a freemium Android application that extends the core Android Beam functionality of
Android for file transfer. SuperBeam is capable of transferring files by using Wi-Fi Direct after starting a

5

6 3. RESEARCH PHASE

link between two devices through either Android Beam or a QR-code scan and can fall back to a normal
Wi-Fi connection if a Wi-Fi Direct connection fails. Due to its freemium nature, the application itself is
a closed source project.

• FireChat
FireChat [14] is a communication application for Android that uses Bluetooth to message people around
you in a similar fashion as current SMS applications. Messaging works with user-created groups, which
are broadcast and can be joined by others (shown in 3.1. FireChat also supports multi-hopping to allow
chats to reach farther than the standard Bluetooth range. Due to using Bluetooth, FireChat is still avail-
able even if the internet or telephone connections are unavailable. It is because of this feature that the
application gained widespread fame during the 2014 Hong Kong protests (also known as the Umbrella
Revolution/Movement). The application was used by the protesters, as the telephone connection dur-
ing the protests became strained due to the amount of people present, but protesters did realize that
it could be used to organize the protests, should the government have decided to cut both the internet
and telephone lines [15].

Figure 3.1: FireChat’s message group screen.

Source: https://play.google.com/store/apps/details?id=com.opengarden.firechat

• eyewitness & eyeWitness to Atrocities
Both eyewitness [16] and eyeWitness to Atrocities [17] are Android applications that enable the user to
document events near them as either a picture, a sound recording or a video and to share these files.
Whilst the applications both have the same concept, the resulting approach differs. eyewitness focuses
on daily crime and enables users to create and file reports to the proper authorities (including some
resources to determine if something is or isn’t a criminal act), whereas eyeWitness to Atrocities focuses
on (war) crimes occurring in more troubled regions in the world. To do this, it provides features to
increase the user’s safety and the ability to encrypt and anonymously report witnessed crimes.

• Anonymous Streaming
During the course of this project, another team of three bachelor students will be working on the
Anonymous HD video streaming for Android project, in which they will combine two earlier projects,
Tribler Play for Android (or formerly known as Tribler Streaming Android Project (TSAP)) and Android
Tor Tribler Tunneling (AT3), into a single unified project that is capable of using tunneling to remain
anonymous whilst streaming videos from Tribler. Should both projects progress without issue, we will
attempt to merge parts of these projects to create a video sharing service that can spread files without
the use of the internet.

3.2. A COMPARISON OF POSSIBLE TECHNOLOGIES
This chapter discusses the different kinds of technologies that are currently available and could be used to
develop our application. Considering our problem definition, we identified the following key features that we

3.2. A COMPARISON OF POSSIBLE TECHNOLOGIES 7

cover in this chapter: the file transfer, the application’s Graphical User Interface (GUI), the upload of media
and the version of Android itself. We will discuss several technologies per feature and give an insight on both
the positive and negative aspects of these technologies, after which we will discuss our final choices on the
used technologies, also taking into account the preferences of our client.

3.2.1. FILE TRANSFER
The key part of the application will be its ability to share both the application itself and video files wire-
lessly without relying on the internet for connection purposes. For our application we reviewed the following
methods of wireless file transfer: Near Field Communication (NFC), Quick Response (QR) codes, Bluetooth
and Wi-Fi Direct.

• Near Field Communication
Near Field Communication (NFC) is a specification for contact-less communication between two de-
vices based on technology used for Radio-frequency Identification (RFID) [18]. NFC communication is
limited to 10 centimeters and is currently used primarily to make small transactions, exchange digital
content and connect devices with each other. NFC in smart-phones functions via NFC chips which
can both send and receive data from other NFC chips. NFC supports two methods of communication,
namely active communication, which requires both chips to generate their own electric fields to com-
municate, and passive communication, in which only the sender creates an electric field which is then
imitated by the receiver. In order to activate any kind of transfer between two NFC enabled devices, it
is therefore only necessary to hold both chips near each other as shown in figure 3.2.

Figure 3.2: A schematic example of an NFC transfer

Image Source: http://thecorda.com/what-is-nfc/

Due to the short range of NFC communication, it is not as easy to eavesdrop or intercept the commu-
nication itself. Whilst it it certainly possible to tap the communication using an antenna, due to the
signal strength of NFC, the effective range for this is either up to 10 meters when the NFC chip is broad-
casting in its active state or up to 1 meter when it sends data whilst in its passive state. So even though
NFC communication is not fully safe from third parties attempting to spy on the file transfer, the short
intercept range makes it nearly impossible to be wiretapped without the users knowledge.

According to a 2014 analysis by IHS Inc. 18.2 percent of all shipped smart-phones in 2013 where
equipped with NFC capabilities [19]. Whilst this is a low percentage the analysis also concluded that
this number would grow to 64 percent by 2018. This increase it attributed towards a global push to use
smart-phones to make small monetary transactions. Due to this, it is very likely that as the amount of
NFC enabled smart-phones increases, that so too will NFC become more familiar to the Android user
base.

The transfer speed of NFC is lacking in comparison to its competitors. NFC supports multiple data
rates, but none higher than 848 Kbit/s [18]. Seeing as most video files will typically reach sizes of several
tens or hundreds of megabytes, this would result in file transfers that can take up to two or three hours
to complete.

Another problem is that the communication that takes place during an NFC transfer is not encrypted.
Considering this, if the file transfer was successfully tapped then the party engaged in the wiretapping
would be able to access all the sent data, which would undermine the safety of the application.

• QR-Code
A QR-Code is a 2 dimensional bar-code capable of storing small amounts of data [20]. QR codes are

8 3. RESEARCH PHASE

used by applications to send small files by parsing the transferred file into a QR code, which is then
scanned by the receiver using a camera, which allows the receiver’s device to recreate the original file.

As the method of communication requires a line of sight which a camera enabled device, it is impossible
to eavesdrop on this form of communication without being physically present during the file transfer.
QR-codes are also widely accessible hardware wise, as the only requirement for a smart-phone is that
it has a camera to record the QR-code with.

QR-codes do have a rather large downsize to them. The largest version of QR code can store up to
2,953 bytes [21]. Due to this size limitation, it is impractical to use a QR-code to transfer any size-able
file. Additionally, QR-codes are a one-way method of communication, which makes setting up a secure
communication environment challenging. As Android does not have native QR-code support for our
use cases, this would need to be implemented by our application

• Bluetooth
Bluetooth is a wireless technology standard that allows for the exchange of data over short distances,
using short wavelength Ultra High Frequency (UHF) radio waves. Bluetooth operates with a master-
slave structure, which allows a single ’master’ unit to connect to up to seven different ’slave’ units. The
process in which two or more Bluetooth devices connect to each other is called ’pairing’. Pairing is
usually done manually by turning on the Bluetooth adapter, scanning for other Bluetooth devices and
then selecting the device(s) one wishes to connect with.

Bluetooth has three classes that indicate the range, which is around 10 meters for most mobile devices
[22]. The available transfer speed of Bluetooth is dependent on the version and is 1.0 Mbit/s or 0.125
MB/s for version 1.2, 3.0 Mbit/s or 0.375 MB/s for version 2.0 and 24.0 Mbit/s or 4.0 MB/s for versions
3.0 and 4.0. According to predictions from ABI [23], around 75% of all Bluetooth shipped devices run
version 4.0, as seen in figure 3.3 Security for Bluetooth connection consists of a modified version of the
SAFER+ algorithm [24]. This algorithm is used by Bluetooth to generate the keys for encryption for both
the pairing and the transfer process. It can be successfully attacked through a brute force approach, but
this approach does rely on the Bluetooth connection being instantiated long enough for it to deduce
the current keys in use.

Figure 3.3: Market Split estimation

Image Source: [23]

• Wi-Fi
Wi-Fi (or WiFi) is a local area wireless computer networking technology, which enables devices to con-
nect to a network, most notably using the 2.4 and 5 GHz bands. Because the most used Wi-Fi standard,
IEEE 802.11, establishes a connection by using an access point (AP) to relay information to and from a
network, it is unsuitable for our application, as we intend to transfer files directly from one phone to
another. Wi-Fi does offer an additional Wi-Fi standard called Wi-Fi Direct (initially called Wi-Fi P2P).
Wi-Fi Direct allows for a direct connection between two Wi-Fi enabled devices without the need for an
AP [25].

3.2. A COMPARISON OF POSSIBLE TECHNOLOGIES 9

The transfer speed whilst using Wi-Fi Direct is dependent on the hardware (e.g. the wireless card and
the protocols it supports), but Wi-Fi Direct can handle speeds up to 250 Mbps [26]. SuperBeam, an
application that uses Wi-Fi Direct which was touched upon in 3.1, claims that the average transfer
speed lies around 20-40 Mbps in practice [13].

Wi-Fi Direct can reach up to 200 meters [27] which is much further than other wireless technologies.
Whilst Wi-Fi Direct employs Wi-Fi Protected Setup (WPS) to ensure security with Wi-Fi Protected Ac-
cess II (WPA2) security protocol, the long range makes it unable to properly verify if a third party is
attempting to tap into the communication.

3.2.2. GRAPHICAL USER INTERFACE
An essential part of any Android application is its Graphical user interface (GUI). This provides the user’s con-
trol over the application, so an intuitive design is key to understanding and using the application’s function-
ality. A number of frameworks can be used to design a GUI, so choosing one was a key decision early within
the project. can For this project, we considered the following GUI frameworks: the Android framework, the
Kivy framework and the Qt framework.

• Native Android
The first option for our GUI is to create one in the Android environment itself. Android supports the
creation of a GUI through XML. In these XML files it is possible to define GUI elements and to attach
variables and actions to these parts. It is then possible to make the GUI interact with the application’s
code by calling it through its identifier. The application itself is build with a program called Gradle,
which compiles the code into an APK that can be installed on Android.

As this method of creating a GUI is supported through the Android API itself, it is simple to create a
slick looking GUI for an application that conforms to Play Store prerequisites and to user expectations.

Using this approach would force us to use Java as our programming language for the application itself.
This could prove problematic, as certain features we would like to implement are not written in Java
(i.e. Tribler, which is written in Python). This would make implementing these features a harder and
most likely require workarounds.

• Kivy
Kivy [28] is an open source Python Library for the development of multi-platform applications that use
user interfaces. Kivy specializes in creating applications that use touch based input and uses OpenGL
to handle the graphical aspects of the GUI. Kivy comes bundled with the Python-for-Android project
[12], which makes it possible to port the resulting application from Python to Java, to enable it to be run
on Android. The Python-for-Android project also includes PyJnius, which is a library that is capable of
calling upon the Java API of Android, which allows Kivy to access Android specific functions. It also
comes with a (alpha) program called Buildozer, which is Kivy’s equivalent to Gradle.

As Kivy is a Python Library it is able to call upon the many Python libraries and use their functionalities.
This combined with the ability to call upon Java libraries through PyJnius gives Kivy a larger set of
libraries to work with to create the requested functionality.

Kivy is, however, unable to access the standard GUI functions that the native Android approach has and
this means that many standard GUI features must be recreated within Kivy. This will mean that it will
be harder to create the standard Android look and feel, as we need some workarounds to implement
standard functions (i.e. we will need to manually insert system icons).

• Qt
Qt [29] is a cross platform application and UI framework that uses C++, HTML5 and Qt Quick, a CSS
and Javascript like language, to create applications. It also features the PySide open source project [30],
which is a project that allows Python to create bindings to Qt, resulting in the ability to create a Qt
application in Python. Qt has platform specific frameworks and the Qt for Android framework features
the ability to create a native Android look and feel since Qt 5.4.

Whilst Qt is usually run with C++, it should be possible to use PySide in combination with Python-
for-Android in order to directly access Android, should the built-in access through Qt for Android’s
own QuickQt not be sufficient enough. The GUI not be difficult to create and adjust to be like typical
Android GUI’s. The Qt documentation for Python-for-Android does lead to the inactive version from

10 3. RESEARCH PHASE

September 2012 [31]. This would mean that possible problems with the framework will have to be
solved by ourselves.

3.2.3. UPLOAD
After passing along footage from phones to other phones using file transfer method that doesn’t rely on the
internet and reaching a safe haven, it is essential that users have a method to upload their recorded footage
onto the internet in order for it to spread globally. For this uploading functionality, we considered the follow-
ing methods: uploading via Tribler and leaving the uploading to the user (e.g. via Dropbox or Youtube).

• Tribler
Tribler [4] is an open source resource project of the TU Delft that allows its users to search for, down-
load and upload files anonymously to the internet. Tribler achieves this anonymity by using an onion
routing network, which routs all the Tribler traffic through several proxies that encrypt the data and
ensures that only the intended receiver can correctly decrypt the received data. Though experimental,
currently Tribler uses three layers of proxies to protect the user whilst downloading and has support for
the same three layer proxy protection for users that upload files.

While Tribler supports the ability to anonymously upload files, these files are not yet encrypted, which
makes it possible for a third party to read the content and possibly retrace the content to the user
through the content itself. It does make it harder to do so, as the anonymity prevents a third party
from simply checking the users IP address. As Tribler is a BitTorrent client with around 4000 monthly
users and can interact with non-Tribler Bittorrent swarms (giving access to more than 150 million peo-
ple [32]), so uploaded content can have a potential global reach.

• User uploading
Another option for uploading would be to make the files accessible to the user in a way that the files
can be easily retrieved from the application, so that the user can use an uploading method they are
comfortable using. This does place a heavy responsibility on the user, as the entire process of safely
and anonymously spreading the content globally will lie in his choice of uploading.

3.2.4. ANDROID VERSION
Choosing an appropriate target platform is an important part of creating a potential user base. In the case of
Android, this means targeting an API version that has a high degree of penetration. Luckily, Google provides
such information to it’s developers.

Figure 3.4: Data collected during a 7-day period ending on May 4, 2015. Any versions with less than 0.1% distribution are not shown.

Image Source: https://developer.android.com/about/dashboards/index.html?utm_source=suzunone

According to figure 3.4, a significant portion of telephones run Android version 4 and higher as of May 4th

3.3. CHOSEN TECHNOLOGIES 11

2015. As Android is built to be backwards compatible; applications that target a lower API level than that a de-
vice is running does not create serious problems. Running an application that targets a higher API level than
the device is not possible, as higher API levels usually implement new features which cause incompatibility
in this scenario. Thus whilst targeting a lower API level increases the amount of supported devices, targeting
a higher API level gives access to more and better Android functions.

3.3. CHOSEN TECHNOLOGIES
This chapter reviews our choices for the application with a detailed explanation of our final choices out of the
considered options presented in 3.2.

3.3.1. FILE TRANSFER
For the file transfer functionality, our client pushed for the usage of Android Beam, which means that we
combine both NFC and Bluetooth in our solution. Android Beam is a native Android function for Android
devices that support NFC. By holding the backs of two Android devices against each other while this function
is enabled, the two devices will perform a NFC handshake. If one of the users then taps his device’s screen,
it will start a Bluetooth transfer between the two devices. What kind of file is sent through this exchange is
dependent on this context of the sending device and the file can encompass a simple file such as a single
contact number to a large video file.

3.3.2. UPLOAD
For the upload functionality of the application, our client requested that we integrate parts of Tribler. With
Tribler the application will be able to preserve the user’s identity when the file is uploaded to the internet. In
order to implement Tribler, we will use code that will be created by the Anonymous HD video streaming for
Android bachelor project group later in the project’s time line. To prepare our application for this integration
we set up our code base so that the GUI already has the proper functions to call upon Tribler code.

3.3.3. GUI
For the application’s GUI, we decided to use Kivy. While we lose the ability to easily define a proper layout to
the application, we decided that the ability to use Python outweighed this aspect due to the requested Tribler
integration. In an earlier bachelor project, Tribler Play [5], the team went with the native Java GUI which
caused some issues when they had to access Tribler which they solved by implementing Tribler as a service
which was accessible through a XMLRPCServer. We intend to avoid similar problems by using Kivy, as it will
be possible to call upon Tribler functionality by accessing it as a Python library.

3.3.4. ANDROID VERSION
For the application’s Android version we considered the following criteria: Android function requirements
and the size of the user base. As we determined that we will be supporting Android Beam for the file transfer,
this meant that the lowest API level that we could target was level 16, or Android 4.1.x Jelly Bean, as this was
the first version of Android to support file transfer for Android Beam (which was introduced in API level 15,
or Android 4.0.3 Ice Cream Sandwich). Luckily, as shown in 3.4, this API level can support 88.7% of the total
amount of Android enabled devices. Thus by targeting Android API level 16, we fulfill both our criteria of
being able to implement our application’s functionality and reaching a large user base.

4
DESIGN PHASE

This chapter will highlight the design process of the project as well as the final choices made about the design
of the product application. In section 4.1 the requirements of the final product will be discussed.

4.1. REQUIREMENTS (MOSCOW)
This section lists all identified requirements for the final product. As the final project has several requirements
the MoSCoW method was used to add priority to all these requirements. This will help in keeping track of the
importance of requirements, which will help in the planning of the development.

4.1.1. MUST HAVE(S)
• Shadow Internet File Transfer

The user should be able to send and receive files through the application without the need for an inter-
net connection. The files types that must be supported must at least include the application’s own APK
and video files.

• File List
The user should be able to easily browse through their recorded videos in order to find the videos that
are going to be sent through the application. The user should also be able to rename the files in the file
list and have the option to delete them.

• Production Ready User Interface
The application should have an user interface that is easy to understand and is similar to other major
Android applications in look and feel. This will make is easier for users to properly navigate through
the application.

• Video Recording
The user should be able to record videos with the application.

4.1.2. SHOULD HAVE(S)
• Tribler File Upload and Seeding

In order to make the process of spreading the video to the internet easier for the user, the application
should be able to create a torrent file of the video and be able to upload this torrent to the internet
through Tribler.

• Tribler Torrent Search
The application should support the Tribler torrent search in order for users to easily find the videos that
are uploaded by other users.

• Private Storage
For a better user experience it is useful if the application has its own storage folder and can redirect
received files from Android Beam to this folder.

13

14 4. DESIGN PHASE

• Google Play Release
The application should be made with a possible release onto the Google Play Store and this should play
a role during development choices.

• Single Button Recording
For a smoother user experience, it’s important that the camera is fully integrated into the application
and can be called upon with a single button press.

• Viewing videos
The user should be able to view their recording and downloaded videos.

4.1.3. COULD HAVE(S)
• Advanced Tribler Support

Tribler also features support for Channels that refer to all files uploaded by a certain user. The applica-
tion could integrate these features to extend searching and uploading of videos.

• File Encryption
File encryption would give plausible deniability, stopping third parties from viewing any files the user
has collected.

• Wi-Fi Direct Support
Wi-Fi Direct support is considerably faster than Android Beam, which uses Bluetooth. File transfer over
Bluetooth takes a long time, as video files are generally large.

4.1.4. WOULD HAVE(S)
• Detailed Video Information

Once Tribler torrent search has been implemented, we could retrieve additional data about down-
loaded video files such as the video length. We could also allow the user to add such data to their
own recorded videos.

• DroidStealth Morphing
DroidStealth’s morphing capability allows the application to hide itself from casual inspection. This
capability would be useful in highly censored regions.

• Full Tribler support
Besides the features mentioned in both 4.1.2 and 4.1.3, the application could integrate the entirety of
Tribler to have access to all the features that Tribler offers for creating, downloading and uploading
torrents.

5
IMPLEMENTATION PHASE

This chapter describes the project’s progression throughout it’s duration. In 5.1 the implementation process
of the project will be discussed. In sections 5.2, 5.3 and 5.4 the actual development is discussed. Section 5.5
features an experiment to test the speed of the Shadow Internet File Transfer.

5.1. IMPLEMENTATION PROCESS
Development is planned using Scrum [33], an agile development strategy that divides planning into specified
durations called sprints. The team used sprints that lasted two weeks, which allowed some time to be spent
on other tasks such as integrating into the GitHub fork, or preparing for SIG. Scrum is designed to allow for
changes in requirements. This made us quick to adapt to changes brought up during weekly meetings or
informal status updates.

In order to make code collaboration easier, the project’s code has been made available on GitHub. This
open source versioning tool allows the team to work independently on code base and merge their changes
into a single branch. GitHub also lets developers make a copy of an existing GitHub repository, make changes
to it, and request it to be added back into the original. This would let future developers iterate upon our work.
GitHub supports code branching, which allowed us to develop new functionality in separate branches. This
meant that we always had a working build, regardless of any mishaps during development.

5.2. SPRINT 1: RESEARCH AND ORIENTATION
The first sprint of our implementation phase is characterized by research and trial. The objective of this
sprint was to get a feel for Kivy, a Python based GUI library suggested by the client, by implementing camera
functionality and the ability to transfer files through NFC.

5.2.1. KIVY
Kivy is a Python based GUI library that was suggested to us. It’s multi-platform, and runs on Android devices
through the use of python4android. Kivy uses a CSS-like language to easily define GUI elements. Communi-
cation with android is done through the use of PyJnius, further discussed in chapter 5.2.2. Kivy comes with a
number of easy to use libraries for oft-used functionality. Sadly, these libraries don’t always work on Android,
in which case the Android SDK will need to be used. In certain cases, objects returned by the Android SDK
are incompatible with Kivy and will need to be converted. Kivy has painfully little documentation required to
accomplish this.

5.2.2. PYJNIUS
As mentioned in the above section about Kivy, calling upon code from a different language (in this case,
calling Java code from Python 2.7) is something that is not natively supported by Python 2.7. The Python for
Android project solves this by a part of the project that is called Pyjnius. Pyjnius is a Python module that can
access Java classes using the Java Native Interface (JNI). JNI is a framework within Java that was created to
allow programmers to write native methods in case the standard Java class library did not support platform-
specific features or libraries. In this case, it is used by PyJnius to easily implement existing Java classes in a

15

16 5. IMPLEMENTATION PHASE

Kivy based application.

The main feature of PyJnius is the autoclass function. Using this function allows a specific Java class to
be bound to a Python variable, from which it is then possible to create instances of said class and use the
available Java methods of the class. The procedure used for assigning these ’autoclasses’ looks similar to the
way one would import classes in Java and the behavior of the autoclass is similar to a Java import. PyJnius
also hosts several specific autoclass i.e. PythonActivity, which is a class that autoclasses the Android Activity
class, but also adds in some additional functions to make the access to several key features of the Activity
class a bit easier.

PyJnius also has a way to create a Java class within Python code. This feature is present in case a program-
mer needs to either extend or implement already existing parts of the Android API and wishes to use Python
based modules and functions to fulfill parts of the class’ workload. To do this, PyJnius features both a Java-
Class and a PythonJavaClass module. With the JavaClass module, it is possible to reflect an exising Java class
and it’s methods, which makes a reflected Python function call the corresponding Java code. Using JavaClass,
it is possible to extend an existing Java class within the class itself, rather than building a seperate class that
calls upon the existing Java Class. The PythonJavaClass module is used to implement Java interfaces. The
difference between this method of implementing an interface and creating a pure Java class is the ability to
use Python modules within the overridden methods. When using the PythonJavaClass approach, methods
are overridden by defining the methods (unlike Java, which uses @override). Both JavaClass and PythonJava-
Class use Java signatures to identify which classes and methods are accessed or overridden. These signatures
were obtained by the ’javap -s’ command on the needed classes and methods.

5.2.3. CAMERA FUNCTIONALITY

Initially, adding camera functionality to the application seemed incredibly easy by use of Kivy’s library. Kivy’s
camera functions are easy and straightforward, costing only a few minutes to get to work under Linux. Sadly,
the camera did not function on an Android device. This meant that Android SDK would need to be used.
There are two main ways to accomplish this. The first way would be to integrate a camera into the GUI, which
requires calling the camera directly. According to a forum post online (which incidentally is about as good
as documentation gets), there is a texture incompatibility between Android’s camera output and Kivy’s input.
This quickly led to the discovery of the second way. It is possible to open the Android camera application,
and let it do the heavy lifting. Sure enough, once the team figured out how PyJnius worked, implementing
this was quick.

5.2.4. NFC FUNCTIONALITY

In this first sprint, we wanted to implement basic NFC support for Android Beam that allowed us to send
files between devices by using our application. In order to understand and properly implement the Android
Beam interface, we looked at the Android developer training database, the NFC API and several additional
examples from both earlier projects (such as DroidStealh) and similar projects from the internet.

The first attempt at implementing NFC was by using purely Python and a few autoclassed Android classes
in order to send a single file Universal Resource Identifier (URI) to another device. Whilst this approach did
give us some insights in how Android processed the several calls that were needed to properly send a file
through Android Beam, this approach would not be usable to send multiple files and react to user input
regarding which files should be sent.

This led to our second attempt, which was to use the built-in Android Beam function that required a
Callback interface. Using this method, it would be possible to first create a list of file URI’s that the application
should send within the callback class. Once the device would start an Android Beam whilst the application
was in the foreground, it would then refer to the callback class instead of the default behaviour of the device
(which is to send a link to the application in the Google Play Store). Using PyJnius’ PythonJavaClass, we
were able to properly implement the CreateBeamUrisCallback interface from the Android API, except for
one critical point. The callbackmethod in question (CreateBeamUris()) should return an array of the type
Uri. Whilst it was possible to return a List of type Uri, Python for Android and PyJnius would cast this to a
generic Object array, which Android was unable to cast to an Uri array. Upon realizing the cast limitation, we
converted the PythonJavaClass to an actual Java class, in which we were able to create an Uri array, which we
filled with the requested file Uris, circumventing the need for casting.

5.3. SPRINT 2: POLISHED PROTOTYPE 17

5.2.5. THUMBNAIL AND FILE SUPPORT
While not originally part of the sprint, the ability to see and choose video files is an important aspect of the
NFC functionality. It is after all convenient if the user does not need to recompile the application in order to
send a specific video file. Setting up the list of files was relatively easy. Android’s SDK nicely delivers the loca-
tion of the video files, which can be explored natively with python. Thumbnails can be generated by Android
as well, so that a developer can easily use it in their application.

Figure 5.1: Loading the thumbnails noticably slowed down the ap-
plication.

Except it’s not that easy, because of course it isn’t.
Kivy does not support Android’s Bitmap class. Luck-
ily the Bitmap class allows itself to be compressed
into PNG or JPEG, which Kivy does support. Sadly,
after doing a number of tricks to get Android to write
the thumbnail file into memory in a way that Kivy
could easily access it, Kivy still claimed an incom-
patibility error.

The final solution was to create an array of pixel
colors, and using that as the source for kivy’s tex-
ture. This was not without it’s own problem, as An-
droid’s colors are in ARGB format while Kivy only ac-
cepts RGBA. A relatively simple byte-swap fixed that,
though that is sadly harder in python than in C.

Lastly, the thumbnail functionality is slow to the
point of freezing the application for several seconds
per thumbnail, as shown in figure 5.1. This behavior
happens even on the Nexus 6, so it is vital to create
a multi-threaded solution in the upcoming sprint so
that the user experience will not be impacted.

5.3. SPRINT 2: POLISHED PROTO-
TYPE

This second sprint of the implementation phase focused on polishing the features from the first sprint into
a presentable product. This involved improving camera functionality, load times and redesigning the user
interface for an overall better user experience.

5.3.1. THREADING
As noted in chapter 5.2.5, the loading of thumbnails was very slow and froze the application. During a test
with the client’s phone we also noticed that a sufficiently large video database would seemingly stop the
application from loading up. The reason for this was a simple one: the application tried generating every
thumbnail within it’s first frame.

The first approach on multi-threading was straightforward. The application would create a separate
thread for each video file, create a thumbnail and close the thread. This is slightly more complicated than
it sounds, as Kivy requires it’s UI data to be kept in the control thread. As such, a timer needs to be created to
schedule the required interface commands.

There were two problems with this approach. Firstly, it would crash the HTC Desire Z. This was fixed
by locking access to the Android thumbnail database to a single thread only. This however, proved to be
a temporary fix, as this problem resurfaced when the Android Views were used to load thumbnails (refer
to chapter 5.3.2). The other problem was that this approach used 100% CPU power, which meant that the
application became slow and unresponsive.

During a test with the client’s phone we also noticed that a sufficiently large video database would seem-
ingly stop the application from loading up. The reason for this was simple; the application tried generating
every thumbnail within it’s first frame.

In order to fix the two main problems, the implementation was changed to make use of a single thread
that handles the thumbnails sequentially. The thread makes use of a Python Queue object, which blocks
the thread until the Queue is filled. Due to it’s nature, the thread needs to be closed down manually upon
application shutdown. This is accomplished through entering a manual "finished" object into the queue,

18 5. IMPLEMENTATION PHASE

after which the thread proceeds to closing down. In this implementation we also fixed the loading problem
by limiting the amount of files that are loaded in a single frame to 10. By using 10 as a limit we ensure ourselves
that the user is not made aware of the loading mechanism because the screen will be drawn in full when the
application opens.

5.3.2. THUMBNAIL IMPROVEMENTS
When the first version of the multi-threading solution was implemented, it became apparent that loading
thumbnails remained unacceptably slow. While the solution did allow the user to keep control of the appli-
cation, it took up so much resources that the entire phone visibly slowed down. For a proper user experience,
this would really need to be improved upon.

During implementation of the single button camera (subsection 5.3.4) it became clear that the Android
interface could be displayed directly into the Kivy interface through the use of Views. This meant that an-
droid’s bitmaps could be used directly, thus bypassing the costly conversion functions.

Implementation of the View functionality was, aside from the threading problem, relatively straightfor-
ward. Fully integrating the Views into the Kivy UI however proved to be a bigger problem. As Kivy does not
have direct access to these Views, it became impossible to place the thumbnails within the scroll-able portion
of the interface. This was a disappointment, as the thumbnails loaded extremely fast with this solution.

The final solution is a relatively simple one. Initially, the application requests android to save the thumb-
nail to local storage. While this isn’t incredibly fast, it’s very acceptable even on the HTC Desire Z. After con-
version, Kivy can load the thumbnails quickly using it’s own functions. This means that thumbnail loading is
only slightly slower during the first run of the application, and very quick every subsequent start-up.

5.3.3. USER INTERFACE
The user interface was initially designed around Kivy’s internal look and feel. This was done mostly from a
practical aspect in order to allow the developers to access the application’s functionality. This was a workable
design but somewhat clunky and would not provide the user experience the client was looking for.

Prior to redesigning the interface, it was important to become acquainted with the android look and feel.
As it turns out, there is very little consistency between popular applications and many of them use wildly
different interfaces.

Figure 5.2: Two examples of android interfaces: Circleof6 and Tumblr

Image Sources: https://play.google.com/store/apps/details?id=com.circleof6.williamsuniversity
and https://play.google.com/store/apps/details?id=com.tumblr

Evidently, the design of these interfaces have very little in common. Both interfaces rely heavily on iconog-
raphy and large touch-screen friendly buttons.

The two interfaces our application’s interface is inspired on are Google Hangouts and Textsecure, both
chat applications. Their monochrome and clean look makes the functionality easy to recognize and use.

5.3. SPRINT 2: POLISHED PROTOTYPE 19

Figure 5.3: Inspirations for the interface: Google Hangouts and Textsecure

Image Sources: https://play.google.com/store/apps/details?id=com.google.android.talk
and https://play.google.com/store/apps/details?id=org.thoughtcrime.securesms

These applications feature, like the applications featured in figure 5.2, heavy use of iconography. Unlike those
applications, they do not use text labels to accompany those icons making for a cleaner look and feel.

Figure 5.4 showcases the current design of our application. It keeps in line with the heavy usage of android
specific iconography. This way, a user can easily recognize the functionality he or she is already familiar with.
The monochrome design makes for a clean look, with almost no unused space. The current exception to this
rule are the widgets used to display the files. These need to be updated with the appropriate meta-info of the
video, instead of just their name.

Improving the user interface is an ongoing process. For instance, the triple dot menu is an outdated style
that may get replaced by a hamburger menu in the next sprint. Additionally, improvements on the camera’s
interface needs to be made. Lastly, the video details and playback screen will need to be designed when that
functionality gets implemented into the application.

5.3.4. SINGLE BUTTON CAMERA

A major part of this sprint was implementing a built-in camera within the application that could start with a
single press of a button. In the first sprint, we had implemented a camera by using the Android MediaStore
API to call the default camera application from within our application. While this allowed us to quickly and
simply access the camera, it turned out that instantly turning on video recording in this manner was not
supported by Android. To create the requested single button recording functionality, we searched the Android
API and found that in order to implement this functionality, we needed to firstly create a Camera object, a
PreviewSurface object for the camera preview and finally a MediaRecorder object to handle the recording
and storage of the video.

Creating a surface for the camera preview turned out to be a challenge. In Android, creating a preview
surface is not that difficult. You need to create a View object (or a subclass of View, i.e. Surface- or Texture-
View) and attach this View to the chosen Camera object as it’s preview output screen. It is then possible to
adjust aspects of the preview and the preview screen by calling various methods of both the Camera and
View classes to accommodate for issues such as the device’s screen size and orientation. In our case it was a
different story, because we used Kivy as our GUI language instead of the native Java supported by Android.
Whilst Kivy supports a similar approach as Android for Kivy native camera, this approach was incompatible
with Android. Two major issues were that the Android camera would not accept a different surface then an
Android View as its preview output and the Kivy equivalent of the Android View did not accept the output
of the camera due to its encoding. After searching around on the Kivy and Python for Android help forums,
we found an application for a built-in Camera that found a way to circumvent these issues surrounding the
camera preview.

20 5. IMPLEMENTATION PHASE

Figure 5.4: The homescreen of our application

The solution was to trick both Android and Kivy. For Kivy, this meant tricking it into believing that the
Android View was a Widget and encapsulate this within a Kivy Widget whose only task is to display the View.
For Android, we had to trick it to believe that the View was part of an Java GUI, whilst, in practice, it was
part of the Kivy GUI. In order to do this, we made a Kivy Widget called ’AndroidWidgetHolder’. This Widget
contains an Android View and places this inside a Kivy Widget which we are able to resize and move within
the Kivy GUI. As the Widget does not interact with the camera or the preview itself in any way, it can be re-
used in other parts of the application should we need to use a different kind of Android View in the future. In
order to properly provide a SurfaceView to our camera to use for the preview output, we created a ’fake’ Sur-
faceView from our main Activity. Once the camera start outputting the preview onto this View, it will call the
SurfaceHolder of the View in order to update it. To handle this call, we implemented the SurfaceHolderCall-
back interface from the Android API and ’hotwired’ it, so that the callback refers to a function that we created,
instead of its normal behavior. Thus, if the camera updates the preview, we manually supply the correct data
to the correct View. By doing this, we are able to show the preview within Kivy without having to decode the
preview data (which would increase the start-up time of the camera and potentially make the preview hang
up at times), whilst providing the Android camera with the View it requires. The preview itself is converted
from the received data using the standard decoding presented in the Android camera API.

Implementing the Camera and MediaRecorder were much easier compared to the PreviewSurface. Creat-
ing a camera object is done with a single method, which opens the camera corresponding to the input given
(we chose to default to the rear camera). The MediaRecorder took a bit more time to understand, as it was
more of a manager class. Whilst to commands to start and stop recording were simple, it took a bit of time to
fully understand which parts of the MediaRecorder had to be set up. For our application we chose to go for the
highest available quality of recording that the device supports, so that the recording are as good as possible.
Afterwards, we must link the recording camera and the output path of the file, so that the video is properly
stored. Storing the recording revealed a long-standing bug within Android to us (first recorded around 2012),
namely that files created in this manner are not automatically added to the internal MediaStore and are there-
fore invisible to everything in Android but the application that created the file. Luckily, a workaround exists by

5.4. SPRINT 3: PRODUCT RELEASE SPRINT 21

using the Android MediaScanner to add the new file to the internal MediaStore. Because the MediaRecorder
features a explicit method to both start and stop the recording, it is possible to create the instant recording
functionality, as we can make a button that both opens the preview and starts recording at the same time and,
once finished, can stop recording and return to the main screen with a single button as well.

5.3.5. NFC INTEGRATION
The original plan for the NFC integration was to activate the ability to select and send one or several videos
and to make the application able to retrieve the beamed files and store these in its own storage. Due to
the difficulty of implementing the Single Button Camera, we did not have enough time to do all of these
things. We were able to activate and test the additional file transfer functionality, as the essential functions
were already written in the previous sprint. At the start of the application, it checks if NFC is available, to
avoid crashing by accessing non-existing hardware. After setting up the callback, as described in Sprint 1, it
keeps track of an array which is filled the Android Package (APK) of the application, so that it can send the
application to another device. Once the user begins adding files, the application removes the APK from the
array and adds the corresponding file Uris. Should no video files by selected for the Android Beam transfer,
the application will re-insert the APK, so that the application will always send its APK if the Android Beam
transfer is started without any files selected.

5.4. SPRINT 3: PRODUCT RELEASE SPRINT
The final sprint focuses on making a marketable product, this includes creating the text for the Google Play
store, polishing the GUI, and adding Tribler integration. This sprint also had integration day, where the code
from our team was merged with the code from the Anonymous HD video streaming for Android team. Addi-
tionally, this sprint was plagued by a number of incidents that severely impaired productivity.

5.4.1. SIG FEEDBACK
The software improvement group (SIG), was kind enough to provide us with feedback regarding the main-
tainability of our code. While they couldn’t calculate a reliable score for it, on account of the code base being
too small, they did bring up two points of improvement.

The first of this was that most of our code, namely all python code, resided in a single file. This would
become a problem when multiple developers work on it simultaneously. While subversion systems like svn
or git mitigate this problem somewhat, it will still be a huge cause of merge errors. We improved this by
putting the code’s denser sections into separate files. This required some reprogramming, which took longer
than anticipated.

SIG also pointed out that our code lacks unit tests. Having unit tests would allow a higher degree of
maintainability as it will help prevent existing functionality from breaking when other sections of the code are
modified. The team looked into this for a full day, but Kivy’s documentation is extremely lacking on the topic
of testing. It does have some support for it, but this did not seem compatible with an android application. It
appears that it’s possible to run unit tests on a desktop, but our application can not be run on a desktop, due
to it’s reliance on android’s functionality and libraries. In the end, we chose not to look into it further, and
instead focus our efforts into other important aspects of the project.

5.4.2. INTEGRATION DAY
The client wishes to create a single application capable of housing all of Tribler’s functionality, so creating
two applications that implement different aspects of it is at odds with that wish. Integration day was created
in order to merge our code with that of the Anonymous HD video streaming for Android team. This is one
of the general programming tasks that can take an extreme amount of time, depending on the code bases
involved. In our case we got off extremely light. Our application, although planned, did not have any Tribler
functionality yet. Likewise, the other team’s project existed mainly of the libraries we would need to use and
some throwaway code to test if the libraries performed. Merging this is as simple as gaining access to the
libraries, importing them into our code and providing the other team access to our repository. In practice
this took more time than anticipated for third reasons. Firstly, slight delays were caused due to incomplete
build-requirements. This meant that the code base needed to be recompiled several times as those problems
were discovered and fixed.

Buildozer, in combination with Android, was the cause of the second problem. Google had updated the
Android SDK to version 24.3.2, which Buildozer eagerly updated to. This update made Buildozer entirely

22 5. IMPLEMENTATION PHASE

unable to build either the new or the old version of the code. We had seen similar errors this week related to
the SDK updates. Google had changed their version numbering from a simple number to appending “_rc01”
or “_rc02” to it, and Buildozer could not parse this. Luckily this was a known issue, and both a workaround
and a buildozer update existed.

The final problem was more serious, and caused notably more delay. Integration day was performed on
the oldest laptop in the office, and while it had not been an issue up to this point, it suddenly became one.
LibTorrent is a huge library, needing six gigabytes worth of memory to compile. Said laptop only had two
gigabytes worth of ram and another two as cache. This resulted in the system slowing down until eventually
freezing. We finished the merge on another laptop once we came to the conclusion that it was a hardware
problem. The laptop was upgraded in order to be able to meet the memory demands.

5.4.3. BUILDOZER AND ANDROID SDK TROUBLE

One of the Tribler developers asked us to move our code into a fork of the Tribler repository, instead of it’s
own. He felt this was important in order to avoid that this project, like others before it, would be abandoned.
This was a good argument and should have been no trouble to implement, so we eagerly obliged.

Murphy’s law states that if something can go wrong, it will. Moving the code into another repository
means moving the code into another folder and letting Buildozer recreate it’s .buildozer folder so that it can
compile. Ordinarily this is no problem as it reuses the existing Python-for-Android packages, updating them
where needed, and it will be building the application again in a few moments. This all sounds easy enough,
so obviously it took a huge turn for the worse. Google had updated the Android SDK to version 24.3.2, which
Buildozer eagerly updated to. This update made Buildozer entirely unable to build either the new or the
old version of the code. We had seen similar errors this week related to the sdk updates. So we thought
it was the same issue as described in section 5.4.2. This versioning problem was supposed to be fixed in
Buildozer 0.29, but we couldn’t be sure as Google had started using yet another naming standard, this time
appending “preview”. There existed a workaround for the version problem in earlier versions of Buildozer, so
we downgraded to it and modified the workaround to be sure. This didn’t work, so we concluded that it must
be a Buildozer problem, and issued a support ticket at their GitHub repository. This yielded one potential fix,
which proved ineffective.

As we still had no fix, it was time to dig into the inner workings of Buildozer and Android. The other
team managed to get their code to work by disabling Buildozer’s update functionality and reverting to an old
version of the SDK. This fix, while effective, would lead to other problems and would not solve the core issue.
This meant that later developers would not be able to build our code, so a proper fix was preferred. The team
started to suspect it was not a Buildozer problem but rather an Android problem. Upon inspection of the error
codes it seemed to have been a problem with locating the Android Interface Definition Language (AIDL). It’s
location should have been given by ANT, the java build tool android uses. Hard-coding it’s location into ANT
successfully fixed fix one error but led to another, more cryptic, error. Replacing ANT with a version from
a previous sdk worked, and Buildozer did not update it automatically. This meant we had a working build
environment. After updating the support ticket with our workaround, a more targeted fix was discovered by
the community; crucial variables were completely undefined in this version of android, and redefining them
fixed it.

5.4.4. GUI
The client was not yet happy with the look of the interface, so it’s in the process of being overhauled. We will
be basing our design on Youtube’s application for Android, which can be seen in figure /reffig:youtube

5.4.5. TRIBLER INTEGRATION

As previously mentioned in section 3.3.2, the client wishes for us to implement Tribler support. Implementing
Tribler support takes a significant amount of time, previously being dedicated bachelor projects. Thankfully,
there is a lot of existing code in both Tribler Play and in the Anonymous HD Video Streaming project which
can be reused. This should make it easier to reimplement the Tribler functionality into our code.

5.4.6. NFC FILE RELOCATION

Files that were sent by through Android Beam would be deposited in the default ’beam’ folder in the Android
storage. In order to properly receive these files, an Intent filter for the ’ACTION_VIEW’ intent was created.
This filter triggers once the user accesses the Android Beam notification after the transfer is complete while

5.4. SPRINT 3: PRODUCT RELEASE SPRINT 23

Figure 5.5: Youtube’s look on android

Image Source: https://play.google.com/store/apps/details?id=com.google.android.youtube

the application is running. By accessing this intent it is possible to access the file’s location in the default
beam folder. Then it is possible to move the file to a different location and delete the file from the default
beam folder.

5.4.7. FILE SCANNING

A problem of the second sprint (section 5.3) was that newly created files were not correctly added to the
Android MediaStore, which resulted in the files being ’hidden’ from the Android system (after forcefully shut-
ting down the MediaStore (e.g. a system reboot), these files were properly added to the MediaStore). With a
FileScanner object, it is possible to manually add the new files to the MediaStore, solving this issue.

5.4.8. OWN STORAGE

The application was using the standard output folder for media files created by the camera (DCIM) for testing
purposes. In order to make it easier for users to identify which files were created by the application, the code
was changed so that the video files created by the application’s own camera are stored in a folder specific to
the application. This change will also affect the Tribler download functionality, as it will now point towards
this newly implemented folder structure.

5.4.9. JENKINS

During the final parts of the sprint, the Jenkins server was finally made available for use for the project. With
Jenkins, it is possible to build the application and then deploy it on several Android devices on the same

24 5. IMPLEMENTATION PHASE

time for testing purposes. Jenkins can see whether or not a testing suite and run it accordingly. Jenkins also
support several methods to create graphs to indicate which tests succeed and fail.

5.5. THE SHADOW INTERNET EXPERIMENT
This section describes an experiment to determine the speed of the file transfer speed. It was performed with
a Google Nexus 6 phone as a host. It would transfer a file to a Google Nexus 10 tablet while in close proximity
of each other. This was to simulate the phones being left on a table.

We chose to transfer the application itself, as it had a nice size of 10.9MB. This transfer cost 3 minutes
and 43 seconds to complete. This puts the speed of our Shadow Internet at 391Kbit/s or 48KB/s. 100MB is
a reasonable size for a small video, and would take roughly 34 minutes to complete. Future development
could consider alternative methods like Wi-Fi Direct in order to improve the speed of our Shadow Internet
implementation.

6
CONCLUSIONS

This chapter presents the conclusion of the project and addresses whether or not the goals and requirements
of the final project are fulfilled by the final product. This will be done in section 6.1. In section 6.2 recom-
mendations and further work to the project will be presented. In section 6.3 the team will each individually
present their opinion on the project.

6.1. CONCLUSION
The goal of this project was to create an application that is able to record videos and spread these videos
without the use of the Internet, in order to make it impossible for the government to censor these videos (as
they control such public services). To produce an application to fulfill this goal, research was performed to
investigate potential solutions together with a planning of the development.

Afterwards, key requirements were identified and specified to be: wireless file transfer, the uploading of
videos and the user interface with a corresponding programming framework. For the wireless file transfer,
Android Beam was chosen, as it is easy to use. For the uploading of videos Tribler was chosen, per the client’s
request. For the User Interface and programming framework, Kivy was chosen. This would allow for easy
access to Tribler.

As of writing, most of the main requirements are implemented in the final product. With the new Shadow
Internet application, users can record videos, store them and, if both devices support Android Beam, use
it to send videos to each other. All of these features are accessible through simple button presses from the
main screen of the application. The last major requirement, being able to upload videos to the Internet using
Tribler, is currently unavailable due to time constraints, but the team will attempt to incorporate this last
feature in the week leading up to the final presentation of this project as described in section 5.4.

The greatest challenge the team faced was that the Kivy framework combined with PyJnius had little to
no documentation. This resulted in increased development time of certain features such as the ’single button
camera’, as it took more time to either find a proper solution or create one ourselves. Another challenge
resulted from incompatibilities between Kivy and Android for media output, as both frameworks accepted
different kinds of encoding for similar features. This was solved through the use of Android Views. These
View objects could be displayed as though they were a Kivy Widget, which made it possible to display various
media outputs without having to convert these to a proper Android format.

These challenges were introduced through our choice of using Kivy to develop the application. Whilst
these problems did result in an inability to implement all of our should have requirements, the final applica-
tion still has the intended benefit of being written in Python. This makes it simple to access Tribler, which is
a feature heavily requested by the client.

The team believes that the future use of the application depends on two factors: Google Play Store access
and continued integration of Tribler. Should the application be accepted to be published on the Google Play
Store, it will be able to spread quicker and gain enough online presence to be considered for use by those
who would need the application. The application is currently stable, but the Tribler integration may result
in unexpected behavior. Furthermore, Google has a history of banning bittorrent clients from the Play Store,
which could happen to our application due to the Tribler access. As section 3.1 showed, there is a market for
an application that can spread media and cannot be easily censored and we hope that this application will be

25

26 6. CONCLUSIONS

considered a good alternative to similar existing applications.

6.2. FUTURE WORK AND RECOMMENDATIONS
As mentioned in section 6.1, the application still has features that could be implementation to further en-
hance the capabilities and user experience of the application. These additional features include the follow-
ing:

• Advanced Tribler Support
Due to time constraints, Tribler features such as MyChannel and Channel search were not implemented
in the application. These features can be implemented to increase the options the user has while us-
ing the Tribler portion of the application to search for other videos and reviewing their own uploaded
videos. To make this process easier, the GitHub repository of the project was setup in a manner so that
it could be added to the main Tribler GitHub repository.

• Camera Improvements
While the application currently has a camera that can be started with the press of a button, it does not
have all features that a camera application can have on Android. Some users may want to have these
additional features (e.g. auto-focus).

• DroidStealth Morphing
The application may be able to avoid the censorship that occurs on the Internet, it can still be cen-
sored in a more physical way through device inspections. Once the DroidStealth morphing engine is
completed, it could be integrated into the application to provide the user with the option to hide the ap-
plication altogether, thus preventing someone from confiscating the device when they see the presence
of the application on said device.

• File Encryption
To increase the safety of the user, file encryption could be implemented in the application. With en-
cryption, it will become harder for a third party, e.g. a government hacker, to access the video files made
by the application.

• Testing Suite
As mentioned in section 5.4, the SIG evaluation was negative about the lack of a proper testing suite for
the application. This suite was not incorporated due to a lack of information of the workings of testing
for a Kivy application for Android and a lack of time to properly investigate such a setup. While the
application was continuously tested on several Android devices during development, to properly aid
the continued development of the application a testing suite must be added to the project.

• Wi-Fi Direct
Currently, the application uses Android Beam to transfer files from one device to another. Users testing
has indicated that the current transfer speed lies around 391 Kbit/s or 48 KB/s. It is possible to use
Android Beam to setup a Wi-Fi Direct connection instead of transferring the files with Bluetooth. This
would allow the application to send files faster, which can improve the user experience.

6.3. REFLECTIONS
This section contains the personal reflections of the project team members on the project as a whole. These
reflections contain thoughts on the project including thoughts on the team’s progress during the project, all
participating actors of the project and the final product itself.

6.3.1. MARK VAN BEUSEKOM
Project Shadow internet was an interesting project which allowed me to hone my old skillset as a designer.
While at times it was hard to translate my vision of the interface into Kivy, it is considerably easier to use than
QT or CSS. The client’s regular informal meetings helped tremendously in keeping the project on track as
adaptations could be made according to the feedback.

Time management was the biggest challenge during the course of this project. The team was understaffed
and forced to work under a tighter deadline than is the norm. This meant that often a choice between func-
tionality and documentation had to be made. We also saw this with the testing suite, as we could not justify
the time needed to implement it.

6.3. REFLECTIONS 27

6.3.2. NICOLAAS HERCKENRATH
The Shadow Internet project has, while not progressing as smoothly as it should have at times, been quite
successful. The final application fulfills the main requirement of being able to share videos without the use
of an Internet connection and it does so without requiring users to have extra knowledge of the application,
as it uses the standard Android Beam method. There are of course area’s of the application that could see im-
provement. The GUI still needs some tweaking to fully resemble a native Android interface and the buffering
process of the camera preview could benefit from some optimization (it currently uses an implementation
suggested by the official Android API, but it should be possible to optimize it further as other existing appli-
cations are faster).

While we believed that the coding itself would not be as challenging as it should be, it did turn out to pose
a difficult challenge. Both Mark and me knew the basics of programming in Python, but a lack of documenta-
tion for both Kivy, Python-for-Android and PyJnius made it difficult to implement several features. At several
point, we had to look into the source code of the Python-for-Android and PyJnius in order to understand
what functions did and if they were usable for our project. I believe the project could have been much easier
to complete if we had used the source code of Tribler Play, but our approach will, if the Tribler Team is to be
believed, be easier to maintain in the future, as they intend to transform Tribler into a full fledged Python
module (in the current situation, a lot of the setup steps of Tribler are handled in the GUI).

It is regrettable that we started with a delay of about a week. Around the last third of the project we noticed
that while the development of the code for functionality the application was on schedule, we were only able
to keep track on that front by sacrificing time that were originally planned for other parts of the project, such
as the final report. A feature that is sorely missed is the (unit) testing suite, which was not implemented due
to the fact that it was unclear how to properly implement tests for a Kivy application for Android and how
to build this test version with Buildozer. There simply was not enough time to investigate these issues (but I
will try to make an attempt, should the Tribler integration for the demo go smoothly). I believe these issues
would have been much less severe if we had managed to find a third student, as these tasks could have been
properly addressed with by a third team member.

A
ORIGINAL PROJECT DESCRIPTION

A.1. PROJECT DESCRIPTION
The shadow Internet is an alternative communication infrastructure. Under active development for several
years, it’s specifically crafted to be resilient to sniffing, blocking, filtering and shutdown. A place for free
expression and innovation. Censorship is a key threat to The Internet, with the Shadow Internet this project
will start to protect you. Android-based smartphones, the TOR protocol, Bittorrent and a novel reputation
system form the Internet-deployed technical foundations. For the past years we worked hard with a group
of dozens of scientists and engineers to realize this vision (including 3 phd-level cryptographers). The team
have come a long way and with additional support we can make this project self-sustainable and ready for
release. Your BEP assignment is to contribute to this work and build a fully usable Android prototype from
existing pieces of code and publish this on the Android Market.

A.2. COMPANY DESCRIPTION
Tribler Team. Read about the team at these URLs:

http://www.reddit.com/r/tribler, http://www.ee.princeton.edu/events/anonymous-hd-video-streaming-
and-reputations, http://news.harvard.edu/gazette/story/2007/08/creating-a-computer-currency, http://tweakers.net/nieuws/98175/torrentclient-
tribler-gebruikt-onderdelen-tor-voor-anonieme-downloads.html, http://github.com/Tribler/tribler/issues/1066

A.3. AUXILIARY INFORMATION
WARNING: this project is challenging and recommended for students experienced in software development
and/or honor students.

The smartphone app you will develop enables people to distribute videos by copying them from phone
to phone wirelessly. So even without an Internet connection you can share videos and other content. This
is specifically targeted for recording and spreading of protest videos. Work on easy-to-use cryptography for
protecting content on your phone and masquerading it as innocent content is ongoing. The Shadow Internet
ensures people no longer are reliant on websites like YouTube or Facebook to view and share content with
friends. Many smartphones have data limits and these deter people from uploading video files. We will let
you share content with friends simply by holding your phones against each other. The existing foundations
you can use for you work can be found here:

29

B
PROJECT PLAN

B.1. INTRODUCTION

B.2. PROJECT ASSIGNMENT

B.2.1. PROJECT ENVIRONMENT

The project is issued by Dr. Ir. Johan Pouwelse of the Parallel and Distributed Systems group, a section of the
Department of Software and Computer Technology (SCT) at the Faculty Electrical Engineering, Mathematics,
and Computer Science (EEMCS) of the Delft University of Technology. The Parallel and Distributed Systems
group focuses on research into the fields of P2P systems and online social networks, massively multiplayer
online games, grids and clouds, and multi-core architectures and parallel programming. This project is part
of the realization of the ’Shadow Internet’, which is an attempt to make it impossible to censor the Internet,
as it is an important place for free and innovative ideas.

B.2.2. PROJECT GOALS

The Tribler Team/Distributed Systems group requested an Android application that is able to distribute me-
dia files (i.e. pictures and videos) between Android enabled phones wirelessly, so that the user is not depen-
dent on existing sites as Facebook or YouTube. This is important, as the core concept of this project is sup-
porting amateur-journalism in areas where internet is either heavily monitored or shut off entirely. Therefore,
the goal of this project is to create an Android application that allows file sharing over a short range by using
existing knowledge and projects. The application should preferably be able to be launched on the Android
Play store.

B.2.3. PROJECT DESCRIPTION

This project extends an existing Android application named ’DroidStealth’. DroidStealth is an application
that is able to hide the presence of both itself and multimedia files on your phone. Additionally, it is capable
of using Near Field Communication (NFC) to install itself onto another Android phone, but cannot do the
same for multimedia files. The client wishes for the project team to extend this application with the ability to
also transfer media files between two phones that have Droidstealth installed. This project will aim to extend
Droidstealth to include file sharing capabilities, whilst retaining the concealing nature of the application.

B.2.4. DELIVERABLES

During the course of the project, The team will deliver the following number of artifacts:

Project plan
This document intended to define the approach and scope of this project

Research document
Wherein the project team will explore the possible solutions to the assignment as defined in section
B.2.3

31

32 B. PROJECT PLAN

Implemented Solution
The source code and compiled android application which addresses the assignment as defined in sec-
tion B.2.3

SIG feedback
The Project team will need to submit the project’s code to the Software Improvement group, and discuss
their feedback.

Final Report
The last artifact which will detail the entire will be detailed in this report

B.2.5. REQUIREMENTS
The goal of this project is extending an Android application, DroidStealth, with ad-hoc file transfer function-
ality. It is pivotal that this functionality is both secure and independent of internet access. Further Project
requirements will be detailed within the research document.

B.2.6. CONDITIONS
All project documents and code must be handed in by June 19th, 2015. This is one week prior to the presen-
tations scheduled on June 26th.

B.3. APPROACH AND PLANNING
This chapter describes how the project team will approach the assignment as described in section B.2, and
provides a rough planning of each phase. A more detailed version of the planning can be found within the
research document.

B.3.1. RESEARCH PHASE
During the research phase, the team will explore the possible solutions to the assignment defined in section
B.2. This phase will take approximately one week of time.

B.3.2. DESIGN PHASE
The team will focus on the system design during this phase. To assist in this, the team will create a MoSCoW
[34] planning of the desired functionality, as well as a Scrum [35] planning detailing the project. The Design
Phase will take approximately one week.

B.3.3. IMPLEMENTATION PHASE
The Implementation phase will be characterized by weekly Scrum[35] cycles. At the end of every Scrum cycle,
the team will dedicate some time for the reporting process. This phase will take approximately four weeks of
time.

B.4. PROJECT DESIGN

B.4.1. ORGANIZATION
The members within this project do not have any specific roles during the span of the project. The client is
Johan Pouwelse, Associate Professor of the Parallel and Distributed Systems group. Raynor Vliegendhart is
the coach during the project.

B.4.2. PERSONNEL
The project team consists of two Bachelor students in Computer Science at the TU Delft. The members will
work full time on the project to ensure both its quality and completion. Both members of the project group
have experience with Java programming, but not with Android programming. The contact information of the
group is provided below:
Mark van Beusekom
m.l.j.vanbeusekom@student.tudelft.nl
Nicolaas Herckenrath
n.c.herckenrath@student.tudelft.nl

B.5. QUALITY CONTROL 33

B.4.3. ADMINISTRATIVE PROCEDURES
The Project Team will branch the existing DroidStealth GitHub repository and will use it to expand Droid-
Stealth’s functionality. After each Scrum cycle, an evaluation will be recorded for use in the final report.

B.4.4. REPORTING
The project team will regularly schedule meetings with the client, and arrange a meeting with the Coach
whenever an artifact has made sufficient progress in order to receive feedback.

B.5. QUALITY CONTROL
In order to assure a high degree of quality within the project’s code, the team will make use of Jenkins, a
continuous-integration server. Additionally, in order to test the functionality, the team will use jUnit Tests.
Lastly, to improve maintainability, the code will be submitted to the Software Improvement Group for feed-
back.

C
SIG FEEDBACK

The first SIG feedback is as follows:
"Met 197 regels code is deze code-base te klein om een betrouwbare score voor onderhoudbaarheid uit te

rekenen.
Wat opvalt in de code is dat vrijwel alle code en logica in ’main.py’ zit. Zodra het systeem gaat groeien

is het verstandig om de verschillende functionaliteiten onder te brengen in aparte bestanden om ervoor te
zorgen dat verschillende ontwikkelaars elkaar niet in de weg gaan zitten.

Als laatste nog de opmerking dat er geen (unit)test-code is gevonden in de code-upload. Het is sterk aan
te raden om in ieder geval voor de belangrijkste delen van de functionaliteit automatische tests gedefinieerd
te hebben om ervoor te zorgen dat eventuele aanpassingen niet voor ongewenst gedrag zorgen. "

During the third sprint, we received another set of feedback:
In de tweede upload zien we dat het codevolume is gestegen, van ongeveer 200 regels code in de vorige

upload tot 700 regels nu. Dat is in vergelijking met de andere groepjes nog steeds erg weinig, maar we kunnen
nu in ieder geval een score voor onderhoudbaarheid uitrekenen. Jullie zitten op 4 sterren. Dat is bovengemid-
deld, maar we maken daarbij de kanttekening dat het onderhoudbaar houden bij zo’n klein systeem redelijk
eenvoudig is.

Daarnaast hebben jullie nog steeds geen unit test-code geschreven. Jullie benutten de voordelen van
test-driven werken hierdoor niet, waardoor het onderhoud en de betrouwbaarheid van het systeem onnodig
worden beperkt.

Uit deze observaties kunnen we concluderen dat de aanbevelingen van de vorige evaluatie nauwelijks zijn
meegenomen in het ontwikkeltraject.

35

D
SHADOW INTERNET INFOSHEET

Title
Shadow Internet

Organization
Tribler Team

Date of presentation
26 June 2015 at 14:30

Description
The Shadow Internet bachelor project focused on creating an Android application with peer-2-peer
video transferring through NFC to be released on the Google Play Store. Tribler functionality was also
implemented. In order to properly make use of Tribler libraries, the team made use of the Kivy GUI
framework. Due to a lack of documentation, it proved challenging to get the Python based Kivy frame-
work to communicate with the Java based Android functionality. Through several formalized meetings
and daily informal meetings, the look and feel of the application was constantly iterated upon un-
til release. Unexpected new releases of the Google SDK halted development a number of times, but
workarounds were found or created. The final application allows a user to record a video and share it
without the use of internet. This means that, for instance, valuable evidence can be passed around in
areas where the internet use is restricted or unsafe.

Members of the Project Team

Mark van Beusekom
Mark is an avid gamer and flash animator studying Computer Science at the TU Delft. As an old
student of Graphics design, Mark focused mainly on designing the user interface.

Nicolaas Herckenrath
Nicolaas is a Computer Science bachelor student at the TU Delft, who enjoys both puzzles and
video games in his spare time. Nicolaas was responsible for the connection between the applica-
tion and the Android environment.

Both team members have contributed to preparing the report and final project presentation.

Coach: Ir. Egbert Bouman TU Delft
Client: Dr. Ir. Johan Pouwelse TU Delft
Contact Person: Dr. Ir. Johan Pouwelse J.A.Pouwelse@tudelft.nl
Contact Person: Mark van Beusekom mark.vanbeusekom@gmail.com

The final report for this project can be found on: http://repository.tudelft.nl/.

37

http://repository.tudelft.nl/

BIBLIOGRAPHY

[1] J. Pouwelse, Moving toward a censorship-free internet, IETF Journal 8 (2012).

[2] C. Arthur, Egypt blocks social media websites in attempted clampdown on unrest,
http://www.theguardian.com/world/2011/jan/26/egypt-blocks-social-media-websites (2011).

[3] M. Chulov, Syria shuts off internet access across the country, http://www.theguardian.com/world/2012/nov/29/syria-
blocks-internet (2012).

[4] TU Delft Departement EWI/PDS/Tribler, Tribler website, http://tribler.org/.

[5] W. Sabée, N. Spruit, and D. Schut, Tribler play: decentralized media streaming on android using tribler,
(2014).

[6] wtud, Tribler play repository, https://github.com/wtud/tsap.

[7] M. De Vos, R. Jagerman, and L. Versluis, Android tor tribler tunneling (at3): Ti3800 bachelorproject,
(2014).

[8] rjagerman, Android tor tribler tunneling repository, https://github.com/rjagerman/AT3.

[9] C. van Bruggen, N. Feddes, and M. Vermeer, Ti3806 bachelorproject; anonymous hd video streaming for
android using tribler, (2015).

[10] O. Hokke, A. Kolpa, J. van den Oever, A. Walterbos, and J. Pouwelse, A Self-Compiling Android Data
Obfuscation Tool, ArXiv e-prints (2015), arXiv:1502.01625 [cs.CR] .

[11] droidstealth, Droidstealth github repository, https://github.com/droidstealth/droid-stealth/.

[12] kivy, Kivy python-for-android github repository, https://github.com/kivy/python-for-android.

[13] LiveQoS, Superbeam, http://superbe.am/.

[14] Open Garden, Firechat, https://play.google.com/store/apps/details?id=com.opengarden.firechat&hl=nl.

[15] N. Cohen, Hong kong protests propel firechat phone-to-phone app,
www.nytimes.com/2014/10/06/technology/hong-kong-protests-propel-a-phone-to-phone-app-.html
(2014).

[16] Eyewitness Technologies Ltd., eyewitness, https://play.google.com/store/apps/details?id=com.changeagency.eyewitness.

[17] eyeWitness, eyewitness to atrocities, https://play.google.com/store/apps/details?id=com.camera.easy&hl=en_GB.

[18] K. Curran, A. Millar, and C. Mc Garvey, Near field communication, International Journal of Electrical and
Computer Engineering (IJECE) 2, 371 (2012).

[19] IHS Inc., Nfc-enabled cellphone shipments to soar fourfold in next five years, http://press.ihs.com/press-
release/design-supply-chain/nfc-enabled-cellphone-shipments-soar-fourfold-next-five-years (2014).

[20] P. Kieseberg, M. Leithner, M. Mulazzani, L. Munroe, S. Schrittwieser, M. Sinha, and E. Weippl, Qr code
security, in Proceedings of the 8th International Conference on Advances in Mobile Computing and Mul-
timedia (ACM, 2010) pp. 430–435.

[21] Denso Wave Incorporated, Information capacity and versions of the qr code,
http://www.qrcode.com/en/about/version.html.

[22] Bluetooth SIG, Inc., Bluetooth basics, http://www.bluetooth.com/Pages/Basics.aspx.

39

http://www.theguardian.com/world/2011/jan/26/egypt-blocks-social-media-websites
http://www.theguardian.com/world/2011/jan/26/egypt-blocks-social-media-websites
http://www.theguardian.com/world/2012/nov/29/syria-blocks-internet
http://tribler.org/
https://github.com/wtud/tsap
https://github.com/rjagerman/AT3
http://arxiv.org/abs/1502.01625
https://github.com/droidstealth/droid-stealth/
https://github.com/kivy/python-for-android
http://superbe.am/
https://play.google.com/store/apps/details?id=com.opengarden.firechat&hl=nl
www.nytimes.com/2014/10/06/technology/hong-kong-protests-propel-a-phone-to-phone-app-.html
www.nytimes.com/2014/10/06/technology/hong-kong-protests-propel-a-phone-to-phone-app-.html
https://play.google.com/store/apps/details?id=com.changeagency.eyewitness
https://play.google.com/store/apps/details?id=com.camera.easy&hl=en_GB
http://press.ihs.com/press-release/design-supply-chain/nfc-enabled-cellphone-shipments-soar-fourfold-next-five-years
http://www.qrcode.com/en/about/version.html
http://www.qrcode.com/en/about/version.html
http://www.bluetooth.com/Pages/Basics.aspx

40 BIBLIOGRAPHY

[23] S. Carlaw, Emerging bluetooth verticals, https://www.bluetooth.org/ja-
jp/Documents/BW13_DayOne_Session3_BluetoothTrends.pdf.

[24] P. Chaudhari and H. Diwanji, Enhanced safer+ algorithm for bluetooth to withstand against key pair-
ing attack, in Advances in Computing and Information Technology, Advances in Intelligent Systems and
Computing, Vol. 176, edited by N. Meghanathan, D. Nagamalai, and N. Chaki (Springer Berlin Heidel-
berg, 2012) pp. 651–660.

[25] Wi-Fi Alliance, Wi-fi direct, http://www.wi-fi.org/discover-wi-fi/wi-fi-direct ().

[26] Wi-Fi Alliance, How fast is wi-fi direct? http://www.wi-fi.org/knowledge-center/faq/how-fast-is-wi-fi-
direct ().

[27] Wi-Fi Alliance, How far does a wi-fi direct connection travel? http://www.wi-fi.org/knowledge-
center/faq/how-far-does-a-wi-fi-direct-connection-travel ().

[28] Kivy Organization, Kivy website, http://kivy.org/#home.

[29] The Qt Company, Qt website, http://www.qt.io/ ().

[30] The Qt Company, Pyside on the qt wiki, http://wiki.qt.io/PySideDevelopment ().

[31] naranjomanuel, Python-for-android google code page, https://code.google.com/p/python-for-android/.

[32] BitTorrent, Bittorrent and µtorrent software surpass 150 million user milestone; announce new consumer
electronics partnerships, http://www.bittorrent.com/intl/es/company/about/ces_2012_150m_users.

[33] K. Schwaber and M. Beedle, Agilè software development with scrum, (2002).

[34] D. Clegg and R. Barker, Case method fast-track: a RAD approach (Addison-Wesley Longman Publishing
Co., Inc., 1994).

[35] K. Schwaber, Agile project management with Scrum (Microsoft Press, 2004).

https://www.bluetooth.org/ja-jp/Documents/BW13_DayOne_Session3_BluetoothTrends.pdf
http://dx.doi.org/10.1007/978-3-642-31513-8_66
http://www.wi-fi.org/discover-wi-fi/wi-fi-direct
http://www.wi-fi.org/knowledge-center/faq/how-fast-is-wi-fi-direct
http://www.wi-fi.org/knowledge-center/faq/how-far-does-a-wi-fi-direct-connection-travel
http://kivy.org/#home
http://www.qt.io/
http://wiki.qt.io/PySideDevelopment
https://code.google.com/p/python-for-android/
http://www.bittorrent.com/intl/es/company/about/ces_2012_150m_users
http://www.bittorrent.com/intl/es/company/about/ces_2012_150m_users

	Introduction
	Problem Description
	Current Situation
	Project Goals
	Use Cases

	Research Phase
	Related Work
	A comparison of possible technologies
	File Transfer
	Graphical User Interface
	Upload
	Android Version

	Chosen Technologies
	File Transfer
	Upload
	GUI
	Android version

	Design Phase
	Requirements (MoSCoW)
	Must have(s)
	Should have(s)
	Could have(s)
	Would have(s)

	Implementation Phase
	Implementation process
	Sprint 1: Research and Orientation
	Kivy
	PyJnius
	Camera functionality
	NFC functionality
	Thumbnail and File support

	Sprint 2: Polished Prototype
	Threading
	Thumbnail Improvements
	User Interface
	Single Button Camera
	NFC integration

	Sprint 3: Product Release Sprint
	SIG Feedback
	Integration Day
	Buildozer and Android SDK trouble
	GUI
	Tribler Integration
	NFC File Relocation
	File Scanning
	Own Storage
	Jenkins

	The Shadow Internet Experiment

	Conclusions
	Conclusion
	Future Work and Recommendations
	Reflections
	Mark van Beusekom
	Nicolaas Herckenrath

	Original Project Description
	Project description
	Company description
	Auxiliary information

	Project Plan
	Introduction
	Project Assignment
	Project Environment
	Project Goals
	Project Description
	Deliverables
	Requirements
	Conditions

	Approach and Planning
	Research Phase
	Design Phase
	Implementation Phase

	Project Design
	Organization
	Personnel
	Administrative Procedures
	Reporting

	Quality Control

	SIG Feedback
	Shadow Internet Infosheet
	Bibliography

