
 
 

Delft University of Technology

Thickness optimization algorithm to improve multilayer diffractive optical elements
performance

Laborde, Victor ; Loicq, J.J.D.; Hastanin, Juriy ; Habraken, Serge

DOI
10.1364/AO.474107
Publication date
2023
Document Version
Final published version
Published in
Applied Optics

Citation (APA)
Laborde, V., Loicq, J. J. D., Hastanin, J., & Habraken, S. (2023). Thickness optimization algorithm to
improve multilayer diffractive optical elements performance. Applied Optics, 62(3), 836-843.
https://doi.org/10.1364/AO.474107

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1364/AO.474107
https://doi.org/10.1364/AO.474107


Green Open Access added to TU Delft Institutional Repository 

'You share, we take care!' - Taverne project  
 

https://www.openaccess.nl/en/you-share-we-take-care 

Otherwise as indicated in the copyright section: the publisher 
is the copyright holder of this work and the author uses the 
Dutch legislation to make this work public. 

 
 



836 Vol. 62, No. 3 / 20 January 2023 / Applied Optics Research Article

Thickness optimization algorithm to improve
multilayer diffractive optical elements
performance
Victor Laborde,1,* Jérôme Loicq,1,2 Juriy Hastanin,1 AND Serge Habraken1

1Centre Spatial de Liege, Avenue du Pré-Aily, 4031 Angleur, Belgium
2Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, 2629HSDelft, The Netherlands
*Corresponding author: victor.laborde@uliege.be

Received 25 August 2022; revised 12 December 2022; accepted 19 December 2022; posted 20 December 2022; published 20 January 2023

The diffractive zone thicknesses of conventional diffractive optical elements (DOEs) are generally obtained using
the thin element approximation (TEA). However, the TEA yields inaccurate results in the case of thick multilayer
DOEs (MLDOEs). The extended scalar theory (EST) is an alternative thickness optimization method that depends
on the diffractive order and the optimization wavelength. We developed an algorithm to research suitable EST
input parameters. It combines ray-tracing and Fourier optics to provide a performance estimate for each EST
parameter pair. The resulting “best” MLDOE designs for three different material combinations are analyzed using
rigorous finite-difference time-domain. Compared to the TEA, the proposed algorithm can provide performing
zone thicknesses. ©2023Optica PublishingGroup

https://doi.org/10.1364/AO.474107

1. INTRODUCTION

For monitoring purposes in the thermal infrared (IR) domain,
dual-band instruments are often sufficient [1,2], provided they
offer daily revisit time. This is achievable using constellations
of small satellites, which sets the need for compact dual-band
IR imagers. Two IR wave bands are considered, defined by the
atmospheric IR windows: mid-wave IR (MWIR) from 3 to
5 µm and long-wave IR (LWIR) from 8 to 12 µm. The MWIR
band is often shortened (4.4–5 µm) to avoid solar albedo
contributions.

Refractive systems are rendered more compact when com-
bined with extremely thin diffractive lenses. In addition, these
diffractive optical elements (DOEs) very well compensate
for the chromatic and thermal defocuses of refractive lenses.
However, conventional monolayer DOEs cannot be used for
dual-band IR applications since they can operate only within a
narrow spectral band. High-order DOEs are a potential solu-
tion, considering the first diffractive order in LWIR and the
second diffractive order in MWIR. Nevertheless, this causes a
discontinuous chromatic focal shift, rendering the longitudinal
chromatic aberration (LCA) correction difficult.

Another solution studied in this paper consists of an extended
dual-band DOE called multilayer DOE (MLDOE). This
optical component has been studied since 1997 [3]. As for
monolayer DOEs, the thin element approximation (TEA)
provides an analytical scalar approximation to describe an
MLDOE’s diffractive behavior, predicting very high perform-
ance [4–6]. Nonetheless, this approximation does not hold

for thick elements [7]. By design, an MLDOE has a typical
groove thickness 100 times higher than conventional DOEs,
rendering the TEA inaccurate.

Alternative scalar theories have recently been researched to
fill the gap between the TEA and rigorous numerical methods.
The effective-area method applies geometric optics to sawtooth
MLDOEs to model the “shadowing effect” and perform more
accurate computations of diffraction efficiency [8,9]. The
extended scalar theory (EST), introduced in [10] and recently
applied to MLDOEs [11], combines the grating equation and
Snell’s law to optimize the profile of a DOE (reducing the shad-
owing effect). Finally, ray-tracing and Fourier optics have been
combined to estimate MLDOE’s optical performance at the
focal plane [12] and provide a material selection method [13].
This concept is not new and has been used for the modeling and
design of hybrid optical systems [14,15]. The optical perform-
ance of many MLDOE examples has been accurately retrieved
using the finite-difference time-domain (FDTD) method
[12,13]. It has been proven that these MLDOEs, designed with
TEA thickness equations, had much lower performance than
expected.

In this paper, we propose an algorithm to find suitable groove
thickness for any MLDOE. This process is based on the EST
(Section 2) and combines a ray-based phase model (called “ray
model”) with Fourier optics. According to the EST, the thick-
ness of each MLDOE layer depends only on the diffractive order
p and optimization wavelength λopt. Since there is no optimal
way of choosing these parameters, to the authors’ knowledge,
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without using the TEA, the algorithm performs a parametric
study to estimate an optimal pair (p, λopt). An MLDOE’s
optical performance is computed at its “best” focal plane and
evaluated over the MWIR-LWIR wave bands using the Strehl
ratio metric. The latter is retrieved using a free space Fourier
optics propagator and a reliable scalar approximation of the
MLDOE near field: the ray model (Section 3). This algorithm
is applied in Section 5 for three MLDOE combinations, ensu-
ing from the MLDOE material selection process introduced
in [13]. As a result, a suitable EST input pair (p, λopt) allows
for generating an “optimal” MLDOE profile design for each
material combination. In Section 6, the validity of the proposed
algorithm is analyzed by comparing the predicted optical per-
formance with accurate FDTD simulations. The results are
finally discussed in Section 7.

2. MLDOE EST DESIGN

This section recalls the EST, introduced in [10], and its applica-
tion to MLDOEs [11]. The EST uses Snell’s law of refraction
to compute the so-called “shadowing factor” for a diffraction
blazed grating. In opposition to the TEA, the EST considers
finite DOE thickness, allowing to model the negative impact of
the shadowing factor on diffraction efficiency. Consequently,
a method to optimize any DOE’s thickness based on its period
and working order is described in [10]. By combining Snell’s law
of refraction and the grating equation, this method provides a
grating thickness that reduces the shadowing effect.

Following this reasoning, alternative MLDOE layer thickness
equations have been proposed [11]. They are based on the layout
depicted in Fig. 1.

Following the Fig. 1 layout, we define n1, ng , and n2 as the
refractive indices of layer 1, the gap, and layer 2, respectively.
Similar to a diffractive lens, the mth zone’s aperture radius rm

and period size Tm are classically defined by{
r 2

m =mr 2
1 = 2m f λd ,

Tm = rm+1 − rm,
(1)

where λd represents one of the two design wavelengths, and
f is the associated MLDOE focal length. α1 = H1/Tm and

Fig. 1. Extended scalar theory applied to an MLDOE (adapted
from [11]). The deviation angle θd is obtained using the local grating
equation, while θr results from Snell’s law. Initially, the layer heights H1

and H2 are constant, given by the TEA. EST alternative profile heights
are obtained when θd = θr for both layers. Tm is the mth zone period.
The light trajectory is displayed in red.

α2 = H2/Tm , with H1 and H2 the microstructure heights of
layer 1 and 2, respectively. H1 and H2 are initially computed
using the TEA, as described in [11,12]:

H1 =
λ2 A(λ1)− λ1 A(λ2)

B(λ1)A(λ2)− B(λ2)A(λ1)
,

H2 =
λ1 B(λ2)− λ2 B(λ1)

B(λ1)A(λ2)− B(λ2)A(λ1)
,

(2)

where A(λ)= n2(λ)− ng (λ), and B(λ)= n1(λ)− ng (λ).
The wavelengths λ1 and λ2 are MLDOE design wavelengths,
defined in two distinct wave bands. The EST height calculation
for the first layer is detailed in the following.

Equating the refractive and diffractive deviation angles leads
to the layer height values HEST

1 (Tm) and HEST
2 (Tm), for each

zone m of layers 1 and 2, respectively [11]:
HEST

1 (Tm)=
p1λopt

n1 cos θi −

√
n2

g −

(
p1λopt

Tm
+ n1 sin θi

)2
,

HEST
2 (Tm)=

p2λopt√
n2

2 −

(
(p1 + p2)λopt

Tm
+ n1 sin θi

)2
−

√
n2

g −

(
p1λopt

Tm
+ n1 sin θi

)2
.

(3)
The resulting MLDOE layer heights HEST

1 (Tm) and
HEST

2 (Tm) depend on the chosen “optimization” wavelength
λopt and on the chosen operating orders p1 and p2. Refractive
indices in Eq. (3) are defined at λopt. Since this paper focuses
on the on-axis MLDOE design and performance, θi = 0◦ is
assumed in the following.

A major difference with the TEA arises since the EST heights
are now period dependent. Consequently, each MLDOE
diffractive zone m will have a unique thickness HEST(Tm).
Equation (3) supposes that p1 + p2 = 1, which is imposed in
this whole paper to ensure that the studied MLDOE designs are
converging (first order).

The diffractive orders p1 and p2 are expressed in [11], based
on the harmonic DOEs (HDOEs) theory [16,17]:

p1 =
H1
λopt
[n1(λopt)− ng (λopt)],

p2 =
H2
λopt
[n2(λopt)− ng (λopt)]

⇒ p1 + p2 = 1.

(4)

The relation p1 + p2 = 1 is ensured using the TEA heights
definition of Eq. (2). Since Eq. (4) is based on HDOE’s design
equations, and therefore relies on the TEA, it might provide
unreliable results (see Section 6).

3. MONOCHROMATIC STREHL RATIO
SIMULATION

In this section, we recall a procedure to retrieve the Strehl ratio
and the focal length of any MLDOE design. In the whole
paper, the Strehl ratio at the best focal plane is used as the main
MLDOE optical performance metric. This simulation process
has been introduced in [12] and is depicted in Fig. 2.

The Strehl ratio retrieval procedure depicted in Fig. 2 com-
bines near-field modeling (step 1) and free-space optical
propagation (step 2). The latter revolves around the angular
spectrum (AS) of plane waves [18,19]. Step 1 consists of mod-
eling an MLDOE near field, using either the scalar approach
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Fig. 2. Diagram showing the hybrid procedure used in this paper to retrieve the Strehl ratio and the focal length of any MLDOE design. This pro-
cedure is divided into two steps: (1) modeling the MLDOE near field and (2) using Fourier optics (angular spectrum, AS) in free space to retrieve the
two above-mentioned outputs. Step 1 MLDOE field modeling involves two approaches: one is scalar (top black), based on ray-tracing and called “ray
model” [12], while the other is vectorial (bottom red), based on the finite-difference time-domain method (FDTD).

named ray model [12] or the rigorous vectorial electromagnetic
approach called the FDTD method.

The ray model uses ray-tracing to compute optical path
differences, taking refraction effects into account. The impact
of an MLDOE on a monochromatic plane wave is obtained
in the near field through the calculation of an amplitude loss
Aray and a phase mask 8ray using the professional ray-tracing
software ASAP NextGen [20]. The ray model provides a fast and
tunable near-field phase and amplitude computation method.
Consequently, it is used as an optimization tool in this paper.
The ray model is a scalar approximation; therefore, this paper
uses FDTD as a reference. Furthermore, this rigorous electro-
magnetic calculation method will serve as a verification tool
since it requires high computation effort.

FDTD wave simulation is performed using OptiFDTD
software [21]. Starting from a plane wave, a complex electric
field is propagated numerically through the MLDOE. The
circular symmetry of the problem is used to reduce the sam-
pling effort needed. Adequate sampling has been studied in the
worst-case scenario [12]: low f -number ( f /10), high material
index (germanium), and low wavelength (λ= 4.4 µm). Figure 3
shows the sampling convergence curve, obtained by computing
the Strehl ratio at the focal plane, based on the built-in FDTD
far-field calculator, for each sampling trial.

As a result of Fig. 3, the following sampling is selected:
Nx = 20000 and Nt = 5000, which is sufficient even in a worst-
case scenario. All FDTD simulations performed in this paper are
therefore considered exact.

The procedure depicted in Fig. 2 takes an MLDOE design as
input (i.e., periods Tm and thicknesses HEST

Tm
for any zone m) and

is purely monochromatic. The loop, displayed in gray, allows to
precisely determine the best focal plane f (λ). The input wave-
lengthλ is called “simulation wavelength” and is unrelated to the
previously defined optimization wavelengthλopt.

The focal plane of an MLDOE is theoretically given by the
following law, whose expression is the same as for standard
DOEs [6]:

f j (λ)= D
F /#
jλ
, (5)

Fig. 3. FDTD sampling convergence curve. The metric associated
with each sampling trial is the Strehl ratio, computed at the “best” focal
plane. The sampling along the optical axis (Nz , δz), as well as radial
and time sampling steps δx and δt , are automatically computed by the
OptiFDTD software (“auto setup”). Nx is the number of samples in
the radial dimension (perpendicular to wave propagation direction z),
and Nt is the number of time steps.

where j is the diffractive order ( j = 1 is considered in this
paper).

However, since this law has been demonstrated using the
TEA, it might be inaccurate for thick MLDOEs. Consequently,
the best focal plane is considered unknown in this paper.
Concentrating on the loop, displayed in gray in Fig. 2, each
optical propagation to any plane z> 0 leads to a Strehl ratio.
Therefore, the best focal plane f (λ) is defined as the plane with
the highest Strehl ratio output and is determined iteratively.

Finally, the Fig. 2 simulation procedure will be referred to as
“monochromatic ray simulation” when the ray model is used or
as “monochromatic FDTD simulation” when FDTD is used
instead.
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4. MLDOE PROFILE OPTIMIZATION
ALGORITHM

In this section, an algorithm to determine suitable layer thick-
nesses for any MLDOE is developed. This algorithm researches
the “best” EST input pair (order p1 and optimization wave-
length λopt) that leads to the most performing MLDOE design.
According to Eqs. (2) and (3), the choice of the pair (p1, λopt)
greatly impacts the resulting MLDOE layer heights and the
output performance.

Recall that the diffractive orders of both layers are linked
(p1 + p2 = 1) and that Eq. (4) relates p1 to λopt. Since this
relation is based on the HDOE theory [16,17], which involves
the TEA, we perform two parametric studies. On one hand λopt

is the only design variable [p1 is defined according to Eq. (4)]
while, on the other hand, p1 andλopt vary independently.

We arbitrarily fix the design parameters used in the next sec-
tions of this paper. The aperture diameters are set to D= 10 mm
for a total of Nzones = 10 diffractive zones. The f -number is set
to 15 (at λ= 8 µm) and the design wavelengths are selected in
the middle of both MWIR and LWIR wave bands:λ1 = 4.7 µm
and λ2 = 10 µm. The period Tm of each zone m is defined
in Eq. (1). The algorithm is divided into two steps: choosing
an EST input pair (p1, λopt) leading to a certain MLDOE
thickness distribution and estimating its optical performance
using the monochromatic ray simulation at many wavelengths
(Fig. 2). For each pair (p1, λopt) (i.e., each EST MLDOE geom-
etries), the Strehl ratio is estimated using the ray model at the
best focal plane of each wavelength and then averaged to provide
the polychromatic Strehl ratio (PSR), defined in Eq. (6). Each
PSR value is tied to a certain MLDOE thickness design, and a
full PSR map is obtained by browsing over all potential values
of (p1, λopt). For each material combination, a PSR map is
retrieved and provides the “optimal” design pair (p1, λopt),
according to the ray model. Figure 4 describes the proposed
thickness optimization algorithm.

The procedure depicted in Fig. 4 provides a mapping of the
PSR. According to Eqs. (3) and (3), each pair (p1, λopt)provides
a specific MLDOE design (thicknesses HEST

2 and HEST
1 ) that

can be evaluated using the PSR. It is defined in this paper over a
wave band1λ:

PSR1λ(p1, λopt)=
1

λmax − λmin

∫ λmax

λmin

Strehl(λ; p1, λopt)dλ,

(6)
where λmax and λmin represent the boundary wavelengths of
the wave band1λ. The total IR PSR (called “PSR” in Fig. 4) is
the weighted sum of two PSRs, one calculated in MWIR and the
other in LWIR:

PSR(p1, λopt)=
1

2
[PSRMWIR(p1, λopt)+ PSRLWIR(p1, λopt)].

(7)
Considering an MLDOE design [i.e., a pair (p1, λopt)],

the PSR is obtained using the monochromatic ray simulation
(Fig. 2, ray model) for multiple MWIR-LWIR wavelengths
(green loop).

Fig. 4. Diagram describing the proposed MLDOE thickness
optimization algorithm. It is divided into two loops and searches the
“best” EST input doublet (p1, λopt). A set of layer materials and a pair
(p1, λopt) defines an “MLDOE design.” The green loop involves the
ray model and Fig. 2 diagram. It is performed over the MWIR-LWIR
wave bands. At the end of the loop, the polychromatic Strehl ratio
(PSR) is obtained for each pair (p1, λopt). This process is repeated in
the main loop (gray) for each value of (p1, λopt), resulting in either
a PSR curve [if Eq. (4) is applied] or a PSR two-dimensional map.
This output map (or curve) is specific for each MLDOE material
combination, given the above-mentioned global parameters.

5. RESULTS OF THE OPTIMIZATION
ALGORITHM

In this section, the proposed algorithm’s results (Fig. 4) are
detailed. This EST input selection process is applied to three
particular MLDOE combinations, ensuing from the MLDOE
material selection process introduced in [13]. The IRG24-air-
IRG27, ZnS-air-Ge, and IRG24-IRG27-AgCl combinations
have been selected regardless of their potential manufacturing
issues. The IRG24 and IRG27 materials belong to SCHOTT’s
chalcogenide family [22]. They are “softer” than ZnS and Ge,
with lower refractive indices and can potentially be molded.
Since two-layer DOEs (i.e., air-gap MLDOEs) are more likely
to be manufactured, we have selected an “all chalcogenide”
solution (IRG27-air-IRG27), a more “classical” solution
(ZnS-air-Ge) and finally, a three-layer solution (IRG24-IRG27-
AgCl) made of “soft” materials. It has been shown in [13] that
these MLDOE combinations performed relatively poorly (see
Section 6), especially for IRG24-air-IRG27 and ZnS-air-Ge.
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Fig. 5. PSR maps for the three selected MLDOE combinations: (a) IRG24-air-IRG27, (b) IRG24-IRG27-AgCl, and (c) ZnS-air-Ge. These maps
result from the application of Fig. 4 algorithm, with order p1 and wavelength λopt both variable and independent. A white cross displays the maximal
PSR value. λopt varies within the MWIR-LWIR wave bands, while |p1| is kept relatively small to obtain “thinner” layers.

Table 1. Algorithm Design Results Assuming Both (p1, λopt) Are Variable and Independent
a ,b

MLDOE p1 p2 λopt HEST
1 (T1) HEST

1 (T10) HTEA
1 HEST

2 (T1) HEST
2 (T10) HTEA

2 PSR
Unit - - µm µm µm µm µm µm µm %

IRG24-air-IRG27 −14 15 5.7 60 57 262 64 60 297 74
IRG24-IRG27-AgCl −8 9 5.7 247 237 255 110 112 115 95
ZnS-air-Ge −15 16 6.8 81 76 121 36 35 52 91

aTheir selected values correspond to the maximum PSR for all three MLDOE combinations in Fig. 5. HEST
1,2 (T1) and HEST

1,2 (T10) are the resulting layer heights, corre-
sponding, respectively, to the central zone (period T1) and extreme zone (period T10).

bThe TEA heights are computed for both layers, based on Eq. (2), for comparison.

Fig. 6. PSR and diffractive order p1 curves for various optimization wavelengths λopt, for the three selected MLDOE combinations: (a) IRG24-
air-IRG27, (b) IRG24-IRG27-AgCl, and (c) ZnS-air-Ge. The PSR curves (blue, left axis) result from the application of Fig. 4 algorithm, assuming
that the order p1 (black curves, right axis) is defined by Eq. (4). λopt varies within the MWIR-LWIR wave bands.

The result of the proposed optimization algorithm is dis-
played in Fig. 5, assuming that p1 and λopt are variable and
independent. The PSR maps depicted in Fig. 5 provide “opti-
mal” pairs (p1, λopt) for all three selected MLDOEs. The results
are shown in Table 1.

The next study relies on Eq. (4) to define the diffractive order
p1 [11]. Only λopt is variable, leading to the one-dimensional
curve outputs of Fig. 6. The PSR curves shown in Fig. 6 provide
different (p1, λopt) pairs than in Fig. 5. The diffractive order
values obtained by Eq. (4) are rather different, especially for the
IRG24-air-IRG27 and ZnS-air-Ge combinations. For these
two designs, the maximal PSR output values, according to
the ray model, are also much lower than in Fig. 5, particularly
for IRG24-air-IRG27. The “optimal” results of the proposed
algorithm, in this case, are displayed in Table 2.

When p1 and λopt are variable, the proposed algorithm can
find profile heights that lead to high MLDOE PSRs for each
of the three studied MLDOEs. It is no more the case for the
IRG24-air-IRG27 and ZnS-air-Ge combinations when Eq. (4)
is applied. Their PSR values drop drastically, meaning that
the design in Eq. (4) is unreliable, at least according to the ray
model. Since the latter is a scalar approximation, a rigorous
electromagnetic method such as FDTD must be used to validate
the presented results.

6. FDTD RESULTS VALIDATION

In this section, the “optimal” EST input pairs (p1, λopt)
obtained in Section 5 are used. The term “map” optimiza-
tion refers to Fig. 5, considering independently variable order
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Table 2. Algorithm Design Results Assuming Variable λopt
a ,b ,c ,d

MLDOE p1 p2 λopt HEST
1 (T1) HEST

1 (T10) HTEA
1 HEST

2 (T1) HEST
2 (T10) HTEA

2 PSR
Unit - - µm µm µm µm µm µm µm %

IRG24-air-IRG27 −39 40 11 260 144 262 264 151 297 1.8
IRG24-IRG27-AgCl −13 14 4 253 242 255 115 118 115 93
ZnS-air-Ge −19 20 8 124 106 121 53 50 52 40

a p1 follows Eq. (4).
bThe selected (p1, λopt) values correspond to the maximum PSR for each of the three MLDOE combinations.
cHEST

1,2 (T1) and HEST
1,2 (T10) are the resulting layer heights, corresponding, respectively, to the central zone (period T1) and extreme zone (period T10).

dThe TEA heights are computed for both layers, based on Eq. (2), for comparison.

Fig. 7. Strehl ratio for various wavelengths in the MWIR-LWIR wave bands, considering the three studied MLDOE configurations: (a) IRG24-
air-IRG27, (b) IRG24-IRG27-AgCl, and (c) ZnS-air-Ge. For each combination, six curves are depicted: The continuous curves are made with the ray
model, whereas the dashed curves are obtained with FDTD (reference). The “map” optimization, “curve” optimization and “TEA profile” (no opti-
mization) results are displayed in blue, red, and black, respectively. The black curves originate from [13].

and wavelength, whereas “curve” optimization refers to Fig. 7,
where Eq. (4) is applied.

Each MLDOE design’s performance is retrieved over vari-
ous wavelengths in the MWIR-LWIR wave bands, using the
“monochromatic FDTD simulation” procedure described in
Fig. 2. This process is accurate since both FDTD and the AS
provide exact fields (as long as the sampling is fine enough).

Figure 7 refers to “Ray TEA” and “FDTD TEA” when the
Strehl ratio is, respectively, obtained by the ray model and
FDTD, assuming TEA MLDOE profile heights [Eq. (2)].
Similarly, Fig. 7 refers to “Ray EST map,” “FDTD EST map,”
“Ray EST curve,” and “FDTD EST curve” when the Strehl
ratio is obtained with the ray model or FDTD, assuming map or
curve optimization.

The results shown in Fig. 7 are very variable, depending
on the MLDOE combination. For example, in Fig. 7(a), the
proposed algorithm can significantly increase the Strehl ratio.
Inversely, the design in Eq. (4) is unreliable since it provides a
very low Strehl ratio.

The IRG24-IRG27-AgCl combination studied in Fig. 7(b)
already has a relatively high TEA Strehl ratio. The proposed
algorithm still finds a better design, though the ray model is
overly optimistic, especially in MWIR. If Eq. (4) is used to
define the order [Fig. 6(b)], the Strehl ratio increases to 90% (red
dashed curve).

Finally, Fig. 7(c) shows that the algorithm allows to reach
a 90% Strehl ratio in LWIR (blue dashed curve), but the ray
model does not predict the high MWIR Strehl ratio decrease.

Applying Eq. (4) provides an “average” design, with a Strehl ratio
higher than in the TEA case (although still very low in MWIR)
but lower than using the map [Fig. 5(c)].

The MWIR divergence between the ray model and FDTD is
displayed in Fig. 8 for the ZnS-air-Ge combination, using the
monochromatic MLDOE simulation process at λ= 4.4 µm
and recording the irradiance at many propagation planes z> 0.

In Fig. 8, the ray model cannot predict the second diffractive
order, degrading the best focal plane performance. As a result,
the ray model overestimates the Strehl ratio for this wavelength,
which impacts the EST parameter selection and leads to a
sub-optimal design choice.

Finally, the LCA is computed over the MWIR-LWIR wave
bands to provide a more design-oriented evaluation. Thereby,
in addition to the Strehl ratio, the monochromatic MLDOE
simulation (Fig. 2) also retrieves the best focal length f (λ). In
this paper, the LCA is defined as

LCA= f (λ)− f (λ= 8 µm), (8)

and the theoretical LCA is deduced from Eq. (5). The LCA is
displayed in Fig. 9 for all three MLDOE combinations and both
map and curve optimizations.

Considering the map optimization in Fig. 9, all three
MLDOEs have slowly varying LCAs with slopes different
from the theoretical one. The ray model and FDTD provide
near-identical LCA curves. In the case of curve optimization,
except for the IRG24-IRG27-AgCl design, the resulting LCA
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Fig. 8. Irradiance along the optical axis for the ZnS-air-Ge combination, using the setup given in Table 1 at a simulation wavelength of 4.4 µm.
This simulation is made with the “monochromatic MLDOE simulation” process considering the (a) ray model and (b) FDTD (reference). The focal
length (F ) and Strehl ratio (S) are displayed in yellow and correspond to the values obtained in Fig. 7 at this wavelength (blue curves). Only FDTD
can model the second diffractive order, generating a much lower Strehl ratio than the approximate ray model.

Fig. 9. LCA over the MWIR-LWIR wave bands, considering the three studied MLDOE configurations: (a) IRG24-air-IRG27, (b) IRG24-
IRG27-AgCl, and (c) ZnS-air-Ge. For each combination, five curves are depicted: continuous curves are made with the ray model, whereas the
dashed curves are obtained with FDTD (reference). The “map” optimization, “curve” optimization, and theoretical LCA are displayed in blue, red,
and black diamonds, respectively.

curves are much steeper, with high variations. FDTD and ray
model curves still have similar variations but display higher
divergences.

7. CONCLUSION

It is shown in Figs. 7 and 9 that curve optimization is unreliable.
Since Eq. (4) is based on the HDOE theory (i.e., TEA), it can-
not provide suitable MLDOE profile heights for every MLDOE
combination. Depending on the considered materials, it can
generate highly performing designs [Figs. 7(b) and 9(b)] as
well as poorly performing profiles [Figs. 7(a) and 9(a)]. For that
reason, the proposed algorithm must primarily be used with
independently variable order and optimization wavelength.

Based on the approximate ray model, the algorithm has
enhanced the optical performance of all three MLDOE designs
compared to their initial Strehl ratios (black curves in Fig. 7).

The resulting LCA curves are very accurate and slowly varying.
Consequently, the studied MLDOEs can be combined with
refractive systems to correct the chromatic focal shift, assuming
that the focal lengths are well selected.

However, as shown in Fig. 7(a)–7(c), the Strehl ratio accuracy
of the ray model, and, by extension, of the proposed algorithm,
is variable. For instance, it is relatively accurate in Fig. 7(a), but
highly overestimates the MWIR Strehl ratio of the ZnS-air-Ge
configuration in Fig. 7(c). As shown in Fig. 8, a second diffrac-
tive order that the ray model does not predict largely impacts the
beam shape and degrades the Strehl ratio of the first diffractive
order.

In addition, map optimization does not ensure that the EST
parameter choice is optimal since it provides a lower perform-
ance in Fig. 7(b) than in curve optimization. In conclusion,
at least for the presented MLDOE configurations, the pro-
posed algorithm can provide an MLDOE thickness design that
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enhances the TEA performance. The latter does not necessarily
provide the “best” solution and is less accurate than FDTD,
which must always be used for validation. The best focal plane
position determination is precise in all studied cases.
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