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Design
of Fibre Reinforced Composite Panels
for Aerospace Applications

P.G. van Bladel

1. Onder drukbelasting zal de knikvorm van een rechthoekig, opgelegd,
orthotroop paneel in een van de hoofdrichtingen altijd één halve golf hebben.

2. Een ontwerp van een sandwichpaneel voor drukbelasting waarbij de (stijve)
buitenlagen net niet bezwijken, en waarbij de (lichtgewicht) kern net dik genoeg
is om knik te voorkomen, is niet altijd het lichtste ontwerp.

3. Bij optimalisatie van composietpanelen is het nodig rekening te houden met
de standaarddiktes van de materialen waaruit deze gemaakt zullen worden.

4. Discrete optimalisatie van laminaten en sandwichpanelen op de wijze zoals
dat in dit proefschrift wordt uiteengezet, kan vele gelijkwaardige optima
opleveren. Derhalve hoeft een ontwerper vaak geen toevlucht te nemen tot een
"exotische" laminaatopbouw om een goed ontwerp te realiseren; een "gewoon"
laminaat (0°,£245° en 90°) zal dan volstaan.

5. Discrete optimalisatie van gegolfde platen geeft in het algemeen geen
gelijkwaardige optima. Wel kunnen lokale optima optreden die het moeilijk
maken voor het optimalisatieproces om het globale optimum te vinden.

6. Naast geavanceerde rekenmodellen, die rekenintensief zijn en
gedetailleerde resultaten geven, hebben ook eenvoudiger modellen
bestaansrecht. Deze sluiten beter aan op de behoeften van de ontwerper die aan
het begin van het ontwerptraject staat, en geven inzicht in de verschillende
aspecten die een rol spelen bij het ontwerpen.

7. Donovan, Goland en Goodier stellen (in o of Appl Mech X1I(1), March 1945)
dat theoretische optimalisatie zin heeft. Weliswaar, zo stellen zij, worden er
enkel theoretisch ideale resultaten mee bereikt, maar het is nuttig deze
bovengrenzen, het maximaal haalbare te vinden. De hier beschreven
computerprogramma’s SAPANO en COPANO houden echter veel meer rekening
met de concrete technische randvoorwaarden en hun resultaten hebben
daarmee ook praktische waarde.

8. "La machine elle-méme, plus elle se perfectionne, plus elle s’efface derriere
son role. Il semble que tout I'effort industriel de 'homme, tous ses calculs,
toutes ses nuits de veille sur les épures, n’aboutissent, comme signes visibles,
qu’a la seule simplicité, comme s’il fallait 'expérience de plusieurs générations
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pour dégager peu i peu la courbe d’'une colonne, d'une caréne, ou d'un fuselage
d’avion, jusqu'a leur rendre la pureté élémentaire de la courbe d’'un sein ou
d’une épaule (...}, jusqu'a ce qu'on ne la remarque plus (...} Il semble que la
perfection soit atteinte non quand il n’y a plus rien a ajouter, mais quand il n’y
a plus rien & retrancher. Au terme de son évolution, la machine se dissimule.”
A. de Saint Exupéry, Terre des hommes, Eds. Gallimard 1939, p. 59-60

(vertaling: zie onderaan)

9. Met het Internet is het als met de tv: het medium zelf heeft geen grenzen.
Die moeten dus in de gebruiker aanwezig zijn.

10. Waar de christenen de sociale consequenties van het geloof dat God drie-één
is, beseffen en weten te incarneren, zal een gemeenschapsleven ontstaan zoals
dat van de eerste christenen beschreven staat, en dat verder gaat dan de privé
sfeer.

11. De functie y=1/x wordt groter naarmate x vanuit het positieve naar nul
gaat. Zo verwezenlijkt de mens zich meer naarmate hij zich in zelfgave
ontledigt.

Vertaling van stelling 8: "Hoe meer een machine zich perfectioneert, des te meer vervaagt zij achter
haar functie. Het Iijkt of alle industriéle inzet van de mens, alle berekeningen, alle nachten gebogen
over projectietekeningen, als enig zichtbaar resultaat de eenvoud zelf opleveren. Het is alsof we de
ervaring van verschillende generaties nodig hebben gehad om beetje bij beetje de kromming van een
pilaar, van een stroomlijn of van een vliegtuigromp te bevrijden, tot ze de elementaire zuiverheid
hebben van de kromming van een borst of van een schouder {...), zodat men ze niet eens meer
opmerkt (...) Het lijkt erop dat de perfectie niet bereikt wordt wanneer er niets meer toe te voegen
valt, maar wanneer er niets meer af kan. In de limiet van zijn evolutie verbergt de machine
zichzelf."
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Notation

a [mm]
a;, 2 [

Ay [N/mm]
A,  [N/mm]
A" [N/mm]
AA_, [mm]
b [mm]
b,  [mm]
By NI
Cij  [mm?*N]
d [mm]
Dij [Nmm}
Djjqg [(Nmm]
D;"  [Nmm]
D" [Nmm]
e [mm]
EE, ([MPa)
E/  [MPa]
Elpng [MPa]
Eyoi [MPal
f (-]
g(z) [N]
ny [MPa]
G,G,, [MPa]
h [mm]

length of panel in x-direction

coefficients in interpolations [i,j:O,l,Z]Jr

submatrix of ABD-matrix of classical laminate theory [i,j=1,2,6]
elementary transverse shear stiffness [i=4,5]

elementary transverse shear stiffness assuming constant
transverse shear stress [i=4,5]

out-of-plane deformation amplitude

width of panel in y-direction

width of faces of corrugated panel [i=1,2]

submatrix of ABD-matrix of classical laminate theory [i,j=1,2,6]
compliance matrix of classical laminate theory [i,j=1,2,6]
corrugation depth

submatrix of ABD-matrix of classical laminate theory [i,j=1,2,6]
Dij-matrix of face k [k=1,2]

reduced bending stiffness matrix [i,j=1,2,6]

alternative reduced bending stiffness matrix (assuming cylindrical
bending) [i,j=1,2,6]

eccentricity

Young’s modulus [i=x,y]

reduced Young’s modulus of sandwich panel

laminate modulus of corrugated panel, perpendicular to corrugation
laminate modulus of corrugated panel, parallel to corrugation
sandwich knock-down factor for shear load buckling

function describing distribution of 1;, across the cross-section [i=x,y]
in-plane shear modulus

transverse shear modulus [i=x,y]

overall height of corrugated panel

T text between square brackets indicates possible values of the suffixes
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k (-]

k; (-]

kg [-]

m [g/cmz]
m [-]

n [-]

M, [N]

M, [N]

M,, [N]

N, [N/mm]
Ny [N/mm]
N,, [N/mm]
N;,, [N/mm]
p [mm]
pP; [N/mm]
Pits [N/mm]
q [N/mm]
9 [(N/mm]
dQ [N/mm]

Q;* [MPa]
Q;(k) [MPa]

R (-]

s (-1

S;, [N/mm)]
t [mm]

U [Nmm]
W [mm)]
wb;, [mm]
WS, [mm]

Notation

buckling coefficient

shear correction factor of the transverse shear stiffness [i=x,y]
shear load buckling coefficient, without transverse shear effect
mass of panel per unit of surface

number of half waves in out-of-plane deformation, in x-direction
number of half waves in out-of-plane deformation, in y-direction
applied bending moment in x-direction

applied bending moment in y-direction

applied torsion moment

applied direct in-plane load, in x-direction

applied direct in-plane load, in y-direction

applied in-plane shearing load

applied transverse shear load [i=x,y]

pitch of corrugation

compressive buckling load [i=x,y]

compressive buckling load in transverse shear [i=x,y]

shear buckling load

shear buckling load of a panel (including transverse shear
deformation)

shear buckling load of a plate (no transverse shear deformation)
reduced in-plane stiffness of layer k of a laminate [i,j=1,2,6]
transverse shear stiffness of layer k with respect to plate axes
[i=4,5]

ratio of equivalent thickness to laminate thickness, for corrugated
panel

transverse shear stiffness parameter

transverse shear stiffness of panel [i=x,y]

thickness

strain energy

out of plane deformation

partial out of plane deformation, in bending [i=x,y]

partial out of plane deformation, in transverse shear [i=x,y]
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Q

[Nmm]
[mm]
[mm]
[mm]
fmm]

[-]

[deg]
[mm®]
[-]

[-]

[-]

[-]

(-]

[-]
[1/mm]

[1/mm]

Notation 9

work of applied load

lengthwise in-plane coordinate

transverse in-plane coordinate

thickness coordinate

z-coordinate of neutral axis [i=x,y]

coefficient in skewed sine wave out-of-plane deformation (local
buckling of corrugated panel)

corrugation angle

warping restraint parameter, (overall buckling of corrugated panels)
direct strain, in x-direction

direct strain, in x-direction

in-plane shear strain

transverse shear strain [i=x,y]

efficiency

shear buckling stiffness parameter (laminate)

bending curvature, in x-direction [i=x,y]

torsion deformation

half-wavelength of the out-of-plane deformation (corrugated panel)
Poisson’s factor of corrugated panel (= Ly Vo)

Poisson’s ratio of corrugated panel in bending [i=x,y]

Poisson’s ratio

overall buckling stffness parameter (corrugated panel)

radius of gyration of corrugated panel

specific density \

direct stress [i=1,2]
allowable direct stress [i=c,t]

in-plane shear stress
transverse shear stress [i=x,y]
allowable shear stress

orientation of a layer with respect to the laminate axes

shear buckling stiffness parameter



) [-]

sub-/superscripts:
b

c,f

c,t

cr

Notation

dimensionless radius of gyration (corrugated panel)

bending

core, face of sandwich panel
compression, tension

critical, associated with buckling
eccentricity

layer i of laminate

layer k of a laminate

local buckling of a corrugated panel
overall buckling of a corrugated panel
transverse shear

wrinkling

with respect to coordinate axes
equivalent (for stress or thickness)

very long (infinitely long) panel

optimum




Introduction

This thesis is a contribution to the design of fibre composite panels, in
particular for aerospace applications. Rapid scientific progress is being made
these days in the field of composite structures; for structural analysis many
computer codes (i.e. finite element packages) allow fibre composite materials to
be used. As composite structures are increasingly used in practice, experience is
also gained in manufacture, maintenance and repair. However, the preliminary
design of these structures, where only the loading and general requirements on
the structure are given while the actual form and layup have yet to be defined,
has not received as much attention. This has prompted the research leading to
this thesis. Two specific types of panels are chosen as subjects of the research:
sandwich panels and corrugated panels. As part of this work two computer
programs have been developed as software tools for the designer: SAPANO for
sandwich panels and COPANO for corrugated panels. This thesis can be seen as
the theoretical manual for the programs, while separate user’s manuals are
available to assist in their use [Bladel94a, Bladel94b]. The aerospace
application provides a frame work for the results and the computer programs.
Still, these remain valid for other fields of engineering as well.

Composites are joining the standard range of materials used for aerospace
structures. While in military aircraft composites were introduced during the
second world war [Middleton92], introduction in commercial aircraft has
happened more gradually from 1970 onwards [Walden90]. In space applications
composite sandwich panels and corrugated panels are often used as central load
carrying structures for satellites [ESA94]. The main differences compared to
metallic materials are the pronounced anisotropy and inhomogeneity. This
requires a totally different approach to design, which was not readily
understood by the first designers that used composites. This resulted not
infrequently in ’black metal’ structures (a nickname for carbon fibre composite
structures made according to design practice for metallic materials). The
application of composite materials in aerospace structures reflects their strong
points, such as high stiffness, resulting low structural weight and reduction in
the total number of parts. On the other hand, composites have their own
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specific problems, such as sensitivity to impact damage and a high degree of
quality control required in manufacture. Composite materials will probably
never entirely replace metallic materials but will rather be used alongside
metals, each type having its own field of application.

In aerospace applications the composite generally consists of long fibres
orientated in specific directions, embedded in a matrix material. Different forms
of composite are available, ranging from dry fibres and dry cloths or weaves (to
be drenched with matrix material at the manufacturing stage) to pre-
impregnated fibre layers (to be stacked in a mould and cured in an autoclave).
In this thesis composite panels are considered for which dry cloths or pre-
impregnated fibres (so-called prepreg) are the most suited. A sandwich panel, or
each individual flat part of a corrugated panel, is a laminate, i.e. a stack of fibre
layers each having a specific thickness, fibre orientation and mechanical
properties. The thickness and orientation are typically discrete variables; the
panel can only be built up of an integer number of fibre layers, and in the
manufacturing process the orientation can be defined only up to limited
precision. Because of the relatively small loading intensity in aerospace
applications, the panel is a thin-walled structure for which buckling is an
essential failure mode. Unfortunately the stability analysis of a composite panel
is more complicated than that of a panel made of isotropic material. Further
relevant failure modes are material failure, both static failure and failure
associated with delamination growth after impact damage.

As mentioned above, this thesis considers two specific types of composite panels:
sandwich panels and corrugated panels. In a sandwich panel the laminate has a
lightweight layer in the middle (the core), increasing the bending and torsional
stiffnesses of the panel, but simultaneously introducing significant transverse
shear deflections. (Because of the low mass of the core, it has low stiffness as
well.) On the other hand, in the corrugated panel considered here, the laminate
is in effect folded to form a series of narrow strips running from top to bottom
of the panel. This increases its bending stiffness in one direction by some
factors of ten. Note that the use of composite materials, as opposed to metallic
materials, favours the occurrence of non-negligible transverse shear deflections
anyhow (see chapter 3). The design of composite panels is more complicated
than the design of similar panels of isotropic material because not only the
shape of the cross-section and the wall thickness have to be defined, but also
the laminate has many design variables that must be defined in the design
process. With these two types of panels, the structural box of an aircraft wing
can be defined, i.e. using the sandwich panel as top and bottom cover (with a
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smooth outside surface exposed to the air flow) carrying mainly normal loads
and using the corrugated panel as the web of the front and rear spar, carrying
mainly shear loads.

Because preliminary design is the first phase of the design process, the key
issue is to appreciate the design problem, and not extreme accuracy of the
analysis. Refinements of the structure and of the analysis will be made at a
later stage anyway. This is reflected in all elements of this thesis; it is not, for
example, devoted to the development of analysis methods that extend the level
of accuracy currently available; rather the existing analysis methods are used in
a design environment. Still, many existing formulae and models had to be
improved. The computer programs developed are especially tailored to the
design task; they are interactive and allow a rapid assessment of the influence
of all the parameters involved (loads, material selection, etc.). As mentioned
above, many variables are present in the design problem, too many for the
designer to determine by hand. A numerical optimization scheme is therefore
included in the computer programs to assist the user in defining a good design
by searching for the feasible design with the lowest mass. In the optimization
discrete variables are used to obtain optimum composite panels for practical
use.

The thesis is divided into four parts; the first part presents the various aspects
of mechanical analysis required for the design of sandwich panels and
corrugated panels. In increasing complexity the early chapters present formulae
and results from the literature, elaborated and adapted to the scope of the
present work. Chapter 2 presents basic concepts of laminate analysis. Most of
these (classical laminate theory, material failure criterion, buckling of
laminates) are taken from the literature and included as reference for later
chapters. The cylindrical bending assumption (used in the derivation of reduced
bending stiffnesses for asymmetric laminates) is worth mentioning, as it is also
used in the following chapter for the calculation of transverse shear stiffness.
Chapter 3 examines the effect of transverse shear, important for all composite
structures and for sandwich panels in particular. This effect is modelled with
first order shear theory, i.e. the panel is regarded as homogeneous and global
out-of-plane stiffnesses are used in the various analyses. Due to this approach,
some aspects of sandwich panel behaviour are neglected; chapter 4 presents
additional analyses to compensate for inadequacy of the first order shear
theory. A separate chapter on the buckling of composite corrugated panels in
shear concludes the first part of the thesis. In the second part different aspects
of the design of composite panels are presented; first, in chapter 6 the design of
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composite sandwich panels and corrugated panels is examined in an analytical
way. Next, chapter 7 presents the numerical method used for optimization. The
use of discrete variables in the design presents the greatest challenge here. In
the third part of the thesis, chapters 8 and 9, the computer codes SAPANO and
COPANO are described. The fourth part presents in chapter 10 some relevant
results obtained with the programs on the performance of optimum sandwich
panels and corrugated panels. Chapter 11 draws some general conclusions on
the results of the research.

o



part |

Composite Panel Analysis




Laminate Analysis

This chapter presents various formulae related to the analysis of flat laminates.
A laminate is a thin plate composed of several individual layers, commonly used
as the basic form of many fibre composite structures in aerospace applications,
such as stiffened panels or sandwich panels. Then prepregs (thin layers of fibre
pre-impregnated with a resin) or mats of fibres (to be impregnated during
production) are used in the laminate to produce the various parts of the panel.
Here only rectangular laminates without taper (i.e. of constant thickness) are
considered, as illustrated in Figure 1.

Many of the formulae of this chapter are well known from the literature, but
are presented here to build a reference frame for later chapters and for use in
the computer programs to be developed in part three. The first paragraph
presents the basic formulae of the classical laminate theory, introducing the
nearly standard notation. The second and third paragraphs examine the subject

; Figure 1 A typical laminate
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of material failure, with a stress criterion and a criterion associated with
delamination, respectively. The last paragraph deals with the buckling of
rectangular laminated plates, both in compression and in shear.

Classical laminate theory

The classical laminate theory (CLT) is a simple framework providing the
relationship between applied loads and overall deformations of a laminate,
assuming plane stress and Kirchhoff-Love type deformation (i.e. a cross-section
normal to the mid-plane of the laminate remains normal when load is ap-
plied)[Whitney87]. As such, CLT applies to thin plates. Note that, to apply the
Kirchhoff-Love assumption, a composite laminate must have a greater length to
thickness ratio than a metal plate, due to its reduced transverse shear stiffness.
This is examined in the next chapter.

Formulation

Classical laminate theory defines a relation between the loads on the mid-plane
of the laminate and the deformations based on the generalized Hooke’s law in a
state of plane stress. In this way the following set of linear equations is
obtained:

_ ) T
wa Aj1 A A | Byy Big Byg Ex
N, Ajg Agg Agg | Byg Bag Bog | | &
Nyy Ag Agg Agg | Big Bag Bes | |Tay

_ _ (1)

MX
M, Bjg Bgg Bgg | Dijg Dag Dog | | X
M,y | | Big Bag Bgg | Dig Dag Des | [Kyy)

By the reciprocal theorem the order of the subscripts in (1) is independent, e.g.
A;9=A,;. The submatrices Al-)-, Bij and Dij are defined by a summation through
the thickness of the stiffness properties Qij(k) of every layer (with respect to the
laminate axes):
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2 - (c K
Ay = _WQi(j ‘4z = Y Qi(j (CREEN)
k=1

v2 () ®)
Bij = ) 292 = E Qi (2,12 @)
k= 1

_ (2 ~(k) 2 k), 3 3
Dij - _t/zQij z%dz E Q (k+1~zk)
k= 1
where z is the thickness coordinate, measured with respect to the mid-plane of

the laminate. The Aij submatrix contains the in-plane stiffnesses, the Dij
submatrix the out-of-plane stiffnesses, and B is a coupling matrix. For every
layer k, the stiffness Q (o) depends on the 1n -plane material stiffnesses Q )
and the orientation ¢ (deﬁned positive when rotating from the laminate axes to
the material axes), as follows:

Q(k) Q’(k) os4¢ + Q’g;) sin ¢ 2(Q’(k) Q’(k)) sin?¢. cos?0

Q(k) Q’(k) nto + Q’(k) cos?p + 2(Q’(k) ZQ’(k)) sinZ¢. cosZ

Q(k) = (Q’(k) Q’(k) Q’(k)) sin%p. cos2¢+Q’(k) (sino +cos*9)

Q(k) = (Q’(k) Q’(k)—2Q’(k)—2Q’(k>) sin%6. cos ¢+Q’(k).(sin4¢ +costd)
Qup = @5 -Q1Y -2Q69).cosd.sin’p~(@T; - QY ~2Qgg). cos% sing
Que = Q4 -Q1Y -2Q59).cos®.sing -(@QY - QY -2QE) - coso sin%

(3)

For every layer, the material stiffnesses Qij’(k) are written in terms of the
engineering constants E, G and v as follows:
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With the help of the elements of the 6x6-matrix of (1) - the so-called ABD-
matrix - a unique definition of the terms orthotropic and symmetric (which will
be used frequently further on) is easily made. Both are related to the existence
of a plane of symmetry in the laminate, and can be associated with a number of
zeros in the ABD-matrix. A laminate is symmetric if the mid-plane is such a
plane of symmetry, see Figure 2a. Then all Bﬁ-elements in (1) are zero;
examining the equation it appears that no coupling exists between in-plane
loads and out-of-plane deformations and vice versa. A laminate is called
orthotropic if a plane of symmetry exists perpendicular to the xy-plane, see

a. symmetric laminate

Figure 2 Orthotropy and symmetry of laminates

b. orthotropic laminate
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Figure 2b. In the literature the term specially orthotropic is reserved for
laminates where this plane of symmetry coincides with the body axes of a
rectangular plate, but here this situation will be called simply orthotropic. Then
all elements with suffixes 16 and 26 in the ABD-matrix are zero. In literature
the term balanced also exists; then there are as many layers in the laminate
oriented at an angle +¢ as there are at -¢. Then at least the terms A;; and Ay
in the ABD-matrix are zero.

Analysis of asymmetric laminates

Formula (1) is derived with the mid-plane of the laminate as datum. If the
laminate is not symmetric about the mid-plane, some elements of the coupling
matrix Bij are not zero. Coupling will then occur between bending and
stretching when a load is applied at the mid-plane of the laminate. However, in
these cases as well, one would like to use the (buckling) formulae for symmetric
laminates, that only apply Dij. A reduced bending stiffness matrix D* is then
often used [Ashton69] (by introducing an approximation). D* represents the
relation between the moments M; and the curvatures x; in the absence of
normal loads; it is defined by a matrix algebra manipulation of (1) which can be
rewritten as:

N;
M

Aj-g + Byj.x; 5)
i = Bj-g + Dy.x

Substituting g from the first row into the second yields the following:

- AL -1
g = Ay Ny - (A7 B)y.x; ©)

M; = (B.A™Y),.N; + (D-B.ALB);.«;
In (6) the reduced bending stiffness matrix D*ij is visible as the factor of Kt
D; = (D-B.A"LB); (M

Clearly, in (6) the coupling is removed when the in-plane loads N; are zero;
then, D*ij is indeed the relationship between M; and .

However, sometimes significant errors arise when D*ij is used in buckling
analyses ([Ewing88], [Leissa87]); in special cases even the main elements of D*l-j
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are less than zero.

An alternative is to derive another type of bending stiffness D**ij, assuming
cylindrical bending. For example, assuming cylindrical bending in x-direction,

the following conditions are imposed:

N,=0., e ,=v,,=0., x =x_=0. (8)

X

Substitution in (1) yields:

9

MX
My Big Bgg Bgg | Dyg Doy Dgg | |0
Myy

Compare this to the derivation of the reduced bending stiffness D*ij; the basic
assumption is there to set the in-plane loads N;=0. Substitution in (5) yields:

0. = Ay.g + Byj.x (10)
Mi = BngJ + DUKJ

In both cases sufficient zeroes are introduced to eliminate some parameters
from the set of equations. In particular, (9) leads to the following set of
equations:

ta2 layer laminate with fibres at 0° and +45° typically has D*,;, D*y, and D*}, all
less than zero; see also Figure 3.
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(11)

in which the equations for M,, My and Mxy yield the first column of a new
Dcyllb_-matrix. Similar cylindrical bending assumptions in y-direction and in the
xy-direction (the latter perhaps more mathematical than practical) yield the

second and third columns of this matrix; the complete Dcylib_-matrix is then:

B, B Bes
Dy - Dig-Big—= D16‘B16T
2 66
B Byo Bgs
[Dijleyip. = |D12-Bia——  Dgg-—=2-  Dog-Byg—=
e Ap Agy Agg
By B Bgg”
Dyg-Big— Dgg-Bogg——  Dgg-
| Ap Agg Ags

(12}

Unfortunately, this matrix is not symmetric. However, by averaging the non-

diagonal elements the following symmetric D**-matrix is obtained:

Dy, - By Dyy- B1a(B11Age ~BaaAAn) - B1(B11Ags +Bgs A1)
A 2A114A9 2A11 A6
D* =| (SYM) Dy - 12222 Dig - B26(32221‘:‘661;: BggAgo)
22 22866
_ Bgg?
_ 5 A |
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The cylindrical bending assumption for the x- and y-direction is equivalent to
bending with respect to the neutral axis in that direction. Therefore the
associated bending stiffnesses (D**;; and D**,;) will never be less than zero,
unlike the diagonal elements of D*ij.

To assess the validity of D*ij and D**ii’ for several cases bending stiffnesses and
buckling loads are compared. For an anisotropic two layer laminate [0°/¢] (every
layer 1.mm thick) the bending stiffnesses D*;; and D**,; are given in
Figure 3a, while Figure 3b presents these stiffnesses for an antisymmetric
angle-ply [¢/-¢] (every layer 1.mm thick). In both cases D**;; is larger than
D*,; (in the second case D**;; is even equal to Dy;). In the first case for some
values of the layer angle ¢ the bending stiffness D*;; is less than zero (as
mentioned before). In the paper by Ewing et al. [Ewing88] the validity of the
reduced bending stiffness D*ij is examined for asymmetric cross-ply and angle-
ply laminates, because for these two types of laminates exact solutions
(considering the full ABD-matrix, and not only bending stiffnesses) exist. The
obtained buckling loads for cross-ply laminates are of great accuracy (within
1%), while for angle-ply laminates large errors can occur (above 20%). The
obtained buckling loads are always conservative. When the cylindrical bending
stiffnesses D**Ij are used for the buckling calculation, for cross-ply laminates
equally good results are obtained. For asymmetric angle-ply laminates (as
mentioned above) D**]-J- is equal to Dij? with respect to the exact solutions of
[Ewing88], unconservative buckling loads are obtained.

Concluding, from the few cases considered, we can expect the traditional
reduced bending stiffnesses D*ij to give conservative buckling loads, but for
some cases negative stiffnesses occur on the diagonal of the D*-matrix (giving

& [deg)

’E‘ 100 - - 'E 100
Z N a. Asymmetric z : b. Antisymmetric
sor % S laminate [0/ 8o - -
g ;‘\a [0/0] 2 angle-ply [+9/-9]
£ 60 k \\’\‘_ f;’ 60
= “ S | = LA
G 40 -, b1 B aof N Di1=D
o , ) 2 . 11
5 20 115 DA e £ 20 D -
8 .“ ..... ’E 11 el .
9] S, B 2
D o T P : o : —
30 45 (1] 78 90 16 0 45 60 78 90

& [deg]

Figure 3 Reduced bending stiffnesses for two types of asymmetric laminates
(2 layers of equal thickness t=1.mm)
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negative buckling loads). The cylindrical bending reduced bending stiffnesses
D**lj on the other hand may give unconservative buckling loads, but negative
stiffnesses will never occur. This last advantage makes D**ij more suitable for
application in the envisaged computer program, even if it is unconservative'.
Whichever method is selected, it must not be forgotten that in the end, both

reduced bending stiffness methods remain approximations to the real situation.

Material failure

Failure of composite materials is a complex matter because of its heterogeneous
composition. This is reflected in the large number of failure criteria available.
However, these can be grouped into failure criteria covering what might be
called static failure and other criteria covering failure following impact damage
of the laminate. For both types of failure modes an appropriate criterion is
presented.

Static failure

This concerns the static over-stressing of the laminate, causing either fibre or
matrix failure. Here the Tsai-Hill criterion is used, in a modified form [Jong84].
It is an extension of the von Mises yield criterion for isotropic materials. Failure
occurs if the following inequality in terms of the stress components is satisfied:

Suye_ O11-%22 (022)2+(_T£)22 1 (14)
X XY

where X, Y and S are the appropriate material strength values obtained from
tests (i.e. for X the tensile value for the strength in x-direction is substituted if
017 18 larger than zero, etc.). The modification is in the denominator of the cross
term in G4.099, which is here X.Y and not Xz, as in the original formulation of
the Tsai-Hill criterion. The main advantage of this criterion is that it agrees
well with test data, while the disadvantage is that it does not reflect a true
failure mechanism, being simply an analogy of the isotropic yield criterion of
von Mises.

T For cross-ply laminates, for example, the error is very small; whether the

approximation is then conservative or not, is of small influence.
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Impact damage

Damage caused by the impact of foreign objects on a composite is often
delamination. This decreases the strength of the laminate, without necessarily
causing immediate failure. However, under cyclic loading the damage can grow
to a level that does cause failure of the laminate. There is a certain level of
impact energy above which this damage becomes visible. It has to be assumed
that structures exposed to impact of foreign objects do have damage below this
threshold of barely visible damage. Tests have shown that if the compressive
strain in the laminate remains below a certain value (typically 0.4% for carbon
fibre composites), then the delamination associated with barely visible impact
damage will not cause progressive delamination and subsequent failure. An
engineering approach is therefore to limit the compressive strain level in the
structure to a certain value. Here this is done on a ply by ply basis in the
reference direction of each ply.

Stability of rectangular orthotropic simply-supported laminates

The buckling of rectangular orthotropic plates is a well-documented subject
[Leissa87). Here the basic formulae are presented in terms of an energy
method, as a reference for further chapters. The energy method is based on the
formulae for strain energy U and the work of the applied load W during the
buckling deformation. Both U and W are functions of the out-of-plane
displacement function w:

"a(b 1 2 2 2
U= JO L E(Dllw,xx+2D12w,XXw,yy+D22w,yy+4D66w,xy) dxdy (15)

_ fafb1 2 2
W= [2( E(wa,x+Nyw’y+2nyw,xw’y> dxdy

where the comma denotes partial differentiation with respect to the parameter
or parameters following the comma. The structure is in a state of equilibrium
(although not necessarily stable equilibrium) if the total energy (U-W) is
stationary with respect to the deflection parameters. Therefore, setting the
partial derivative of the total energy (U-W) with respect to the deflection
parameters equal to zero yields the buckling equation. Equations for
compression and shear buckling are defined separately below. Unfortunately
there are different approaches to the two problems. Therefore a single equation
for the combined compression and shear buckling cannot be found. However, a
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parabolic interaction formula exists for combined compression and shear
[Bleich52] for long isotropic plates. In chapter 3 it will be shown that the same
formula is also valid for orthotropic plates as well.

For all buckling formulae of this and subsequent chapters the plate is
considered simply-supported on all four sides. For the applications considered
(design computer programs for composite sandwich panels and corrugated
panels) this is an appropriate boundary condition, because in these applications
the edges cannot introduce bending moments into the structure.

Compression buckling

If only direct loads are acting on the laminate, the term in the shear load ny in
(15) vanishes. For a plate which is simply-supported on all four sides, a double
sine wave with amplitude A (and with m half waves in the x-direction and n
half waves in the y-direction) is a suitable buckling deflection that satisfies
rigorously the boundary conditions:

mmnx nny ( 16)

w = A sin sin—
a

Using (16) the integrals of (15) can be evaluated; this yields the following
formulae for U and W;

U = Az.an’ [Dn( Ty - Dgo( BT )4+(2D12+4D66)(mn)2(ﬂ)2]

(17
W = A2 ab ( mn N ( )2)
8
Putting:
dU-W) _ ¢ (18)
dA
gives:
ab (Du( Ty L Dgo( BT )4+(2D12+4D66)(ﬂ)2( T2 N (B2 N (mt)z
(19)

This condition is satisfied if either A=0. (the trivial solution, implying no
buckling deformation) or else if:
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Py ()2 4y (B1)2 = Dy () 4+ Dy (204 4 2(Dyg + 2 Dgg) (R )2( 22
a b a b a b

(20)

This is the required buckling equation; if it is satisfied a non-zero buckling
amplitude A exists. Note that the integer parameters m and n, indicating the
number of half waves, remain undefined; the buckling load is obtained by
calculating the loads py, p, with (20) for different m and n. The lowest set of
loads will be the actual buckling loads. In paragraph 3.2.3 possible
combinations of m and n are investigated, proving the well-known assumption
that always either m=1 or n=1. Note the use of p,, Py for buckling loads to
distinguish these from simply the applied loads N,, Ny.

For anisotropic plates (D;g, Dgyg # 0.) there is no exact solution. Moreover
various investigations have resulted in conflicting results [Leissa87]. For
moderate values of D Dy the effect of anisotropy on the compression
buckling load p, can be evaluated by the approximation developed by
Wiedeman, reported by Wiggenraad [Wiggenraad77]; good results are obtained
for aspect ratio’s a/b over 2 or 3.

Shear buckling

For buckling of a simply-supported rectangular laminate in shear a double sine
wave (16) does not adequately represent the buckling deformation, because of
the skew nature of the buckling mode. A truncated Fourier series, which can
represent any type of deformation, is generally used. However, for sufficient
accuracy many terms are needed in the Fourier series. Solving the buckling
equation for the buckling load q, would then require much computation time.
Therefore this approach is discarded (in view of the application of the formulae,
see chapter 1). Another approach is the use of a skewed sine wave buckling
deformation, as suggested by Lekhnitskii [Lekhnitskii68] and others. While this
approach works well for very long plates, it is less good for rectangular plates,
because the skewed sine wave does not adequately represent the buckling mode
at the edges in that case. Furthermore, this approach gives a buckling equation
in which the skew angle and the wavelength are variable, like m and n in (20).
But while m and n are parameters that can take only integer values (1,2,... ),
the skew angle and wavelength are real variables and minimization of qm with
respect to these variables is again a lengthy process.

Therefore, an interpolation scheme has been devised [Bladel88] on the basis of
the results given in the ESDU data item 80023, which uses a truncated Fourier
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series deformation (with 36 displacement terms). The results given in the ESDU
item are presented in graphical form, as a function of two orthotropic stiffness
parameters ¥ and 6. By suitable curve fitting procedures the following formula
in these two parameters is obtained:

(Dyq Dgg)12
ab

1121 -699 3.828 |[
ko = {i 1 1} -4.829 11.109 15.260 || ¢
v

2
hd 3.200 34.110 29.008|L1
21)
_ aD22 /
¥ bDy;
g = D12+2Dgg
(D13 Dgg)V2

The accuracy of (21) is apparent in Figure 4, where the results of formula (21)
are compared with its source [ESDUS80] and with results of NASA TN D-7996
[Housner75] which applies a radically different approach (a finite difference
scheme especially devised for the buckling of orthotropic plates). Note that (21)
(which is derived for rectangular laminates) is accurate for length to width
ratio’s of up to 5 ([Bladel88], by comparison with the approach of Lekhnitskii
mentioned above [Lekhnitskii68] for very long panels).

For moderate values of Dj4 Dy the reference [Wiggenraad77] provides an
approximation to include the effect of the anisotropy (in the same way as for
compression buckling).
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Figure 4 Shear buckling coefficient k, of rectangular orthotropic plates as a
function of the orthotropic stiffness parameters y and 6. Comparison of
developed formula (dotted line) with literature (marked points)



Transverse Shear Effects

The analysis of the previous chapter supposed the Kirchhoff-Love assumption to
hold (a cross-section of the laminate, normal to the mid-plane in the
undeformed state, remains normal in the deformed state). However, because
composite materials have much lower transverse shear stiffnesses (G,, and G,,)
than metals, even for relatively thin composite panels this assumption may no
longer hold ([Whitney69], [Noor92]). Accordingly a distinction will be made
between the words plate and panel; plate is used when transverse shear effects
are disregarded, and panel when these are included. To illustrate the different
behaviour, in Figure 5 the buckling load of a panel (calculated by a formula that
will be derived in 3.2.1) is compared with the buckling load of a plate, showing
that only if a/t>30. is the error in compressive buckling load less than 10%. For
metal plates, on the other hand, the Kirchhoff-Love assumption already holds
for a/t>10. For composite materials it is generally necessary, therefore, to use

. Plate
10000 N
 px=Sxz=4167. AN
E
£
~
Z
a8 1000
transverse number of
shear m=2 half waves
mode m=1
| | i
100 ' —— ——
1 10 100
a [mm]

Figure 5 Influence of the transverse shear stiffness on the compressive buckling
load of a simply-supported square CFRP +45° panel of 2.mm thickness
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analysis methods that include transverse shear effects.

In the literature, several models that include transverse shear effects are
available (for a review see [Noor89]). Because the present application deals with
the gross response characteristics of a composite panel (in particular the
buckling load) a first order shear theory is sufficiently accurate, if appropriate
transverse shear stiffnesses are used [Noor89]. A first order shear theory
implies the Reissner-Bollé-Mindlin assumption: a cross-section, normal to the
mid-plane in the undeformed state, remains straight but not necessarily normal
in the deformed state (see Figure 6b). The composite panel is treated as
homogeneous and overall transverse shear stiffnesses S, and Sy, are calculated
(just as in the previous chapter the ABD-matrix was defined in terms of the in-
plane stiffness properties of the layers).

Note that in this chapter transverse shear effects for composite panels in
general are considered, not focusing in particular on sandwich panels.
Nevertheless, a sandwich panel can very conveniently be modelled as a
laminate that contains a thick and light, but very flexible, layer somewhere
near the middle, so the formulae of this chapter do apply to sandwich panels as
well. Behaviour specific to the sandwich panel (for example, the effect of
bending of the faces) will be dealt with in the following chapter.

a. no transverse b. first order c¢. higher order
shear effect shear theory shear theory

Figure 6 Plate theories with and without transverse shear
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Transverse shear stiffnesses S,, and Syz are first defined based on the laminate
stiffness parameters and then buckling formulae for composite panels in
compression and shear are deduced. Finally, the interaction between
compression and shear buckling for panels with transverse shear effects is
examined.

Transverse shear stiffness definition

Many different approaches are available for the definition of transverse shear
stiffnesses (T'SS). These approaches differ in the assumptions on the transverse
shear strains (y,,, sz) and the transverse shear stresses (T4p Tyz); for example,
often either the transverse shear strains or the transverse shear stresses are
assumed constant through the thickness (see Figure 7). Here, another approach
is used, based on the assumption of cylindrical bending of the panel; the TSS
are then deduced from the internal deformation energy in the process. But first,
for comparison purposes, well-known transverse shear stiffnesses Ay and Ay
are calculated following the constant shear strain approach.
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Figure 7 Elementary transverse shear stiffness definitions
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Elementary transverse shear stiffnesses A, and Az

The elementary TSS Ay, and Agg are calculated with a summation similar to
that of the classical laminate theory for the in-plane stiffnesses A]-j (1,j=1,2,6)
(this is, of course, the reason for using the same symbol A). A, is the relation
between an applied transverse shear load N,, and the resulting overall
transverse shear strain Y,,:

NXZ = AME (22)
N,, is associated with the transverse shear stress in the layer 'rxz(k), as follows:
n
Nyz = 2 t(k)"r’g(l;) (23)
k=1
where superscript '(k)’ denotes ’of 1ayer k’. For every txz(k):
-y, (24)
Substitution of (24) and (23) in (22) ylelds:
Ay Vg = E £, Q(k) Yz (25)
k=1
or, simplified:
s k
Ay = E t(k)-Q:§,4) (26)

k=1

In (26) the shear stiffness A, is given in terms of the layer stiffness Q44(k>.
This layer stiffness is defined with respect to the panel axes x and y. Because
the various layers in the laminate may have different orientations, Q44(k) i
defined in terms of the material shear moduli G, (k) and G (k), and the
orientation q><k) of that layer with respect to the panel axes. Matmx algebra
yields:

S —
cosz(q)) sin2(¢)
G(k) G(k)
27
(k) 1
s - cos2(¢) sin2(¢)
G(k) G(l;)
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3.1.2 Improved transverse shear stiffnesses S,;, and S,

With a model similar to that used by other researchers ([Vlachoutsis92],
[Chow71]) improved TSS S, and S, are derived based on equivalent shear
strain energy in cylindrical bending. Only the derivation for S, is given below,
the derivation of Syz being similar.

A state of cylindrical bending in the x-direction implies no deformation in the y-
direction. If the classical shear stress formula of engineering bending theory is
applied, t,, is given by the following formula, where the standard parameters
are substituted by stiffness parameters of classical laminate theory:

Tye,(2Z) = :N;Z*g:’& (28)
Dll
where:
gx() = [2, Q.27 Yz

2
B
* 11
Dy = Du‘—All (29)
Bny
YA a =
na x All

The variable z,, , is the z-coordinate of the neutral axis in a cross-section
perpendicular to the x-axis. For a homogeneous laminate, (28) yields a parabolic
shear stress distribution through the thickness. Note that in (29), because of the
integral sign, Q;;(z) is written as a function of z (actually, its value is constant
in every layer of the laminate; therefore Qy1(z) and Qn(k) are two notations
identifying the same quantity). The variable z_, , and D11**, the latter taken
from 2.1.2, both confirm the cylindrical bending assumption, because these
parameters (together with Qq,(z)) are used when Poisson’s effects (saddle
bending etc.) are restrained. The use of (28), with T,, varying through the
thickness, is the essential difference of this approach with respect to the
elementary TSS calculation of 3.1.1. Here T,, satisfies elementary mechanical
conditions, such as zero shear stress at the top and bottom (free) surfaces of the
laminate, and maximum shear stress at the position of the neutral axis, see
Figure 8.

With this assumption for the deformations, the transverse shear stiffness S,
can be derived. First, the internal deformation energy in transverse shear U is
given in terms of the transverse shear load N, and the overall transverse shear
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strain Y,

U - % Ny, Ve (30)
S,, can be introduced with the following formula:
Ny, = sz-?; 1)
Substitution of y,, of (31) in (30) yields:
2
U = Ny (32)
2S,,
Solving for S, , yields:
2
s - Na (33)
XZ 2U
1.00
0.50
0.00
oo | AL
-1.00 : L L
-1.00 -0.50 0.00 0.50 1.00 1.50

T/Nxz [1/mm]

Figure 8 Transverse shear stress distribution through the thickness of a
symmetric CFRP 0°/90° laminate of 1.mm thickness
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For U, the strain energy in transverse shear, the following holds:

2
1 (u2 1 (2 @ (34)
U=_ Te(2) Yyz(2)dz = = —_dz
2 —t/2 XZ YXZ 2 _t/2 Q44(Z)
Substituting 1, from (28) yields:
NZ 2
U _—m e B, (35)

20572 T Qu(2)

Substituting of U into (33) yields:

*%2
D11

XZ

2 (36)
ft/2 gx(z) dz

-v2 Q44(Z)

Equation (36) gives the transverse shear stiffness S,, in terms of the laminate
parameters. It can be related to the elementary TSS A, with a well-known
shear correction factor k, ([Vlachoutsis92], [Chow71], [Whitney70]), as follows:

kx.A44 = sz (37)

Note that for homogeneous isotropic laminates a value k,=5/6 is obtained.

Overall buckling under compressive load

In chapter 2 the energy method was used to derive the stability equation of a
rectangular simply-supported orthotropic plate under compressive load. This
method is used again here, now including transverse shear effects. First the
buckling equation is derived, then the results are compared with results from
the literature.
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Derivation of the buckling equation

To include transverse shear effects means introducing more flexibility into the
system. Extra deformations, the transverse shear deformations ws, and WSy,
are defined, acting in addition to the bending deformations wb, and wby. These
four ’partial deformations’ relate to the total out-of-plane deformation w as
follows:

w = why+ws, = why+ws, (38)

The out-of-plane deformation w and its components wb,, ws,, wby, ws, are all
defined as double sine waves for a given number of half waves m and n along
and across the panel, to satisfy rigorously the boundary conditions of simple

support:

w = A sin™X gin MY
a
wb, = Ab, sin®"¥ &in O
X X a b (39)
ws, = Asy -
Wby = Aby
wsy = Asy Py

With (38) and (39) two of the five unknowns A, Ab,, As,, Aby, Asy can be
eliminated:

A = Aby+As, = Aby +As, (40)

In chapter 2 the plate had only bending strain energy Ub, expressed in terms of
w. Now Ub is written in terms of wb, and wby:

m _ f(a(b 1 2 2
Lrb = LL E<D11be,xx+D22Wby,yy+ (41>

+2D 1o why Wby oy +Dgg (wbx,xy+wby'xy)2) dxdy

Furthermore, the transverse shear strain energy Us is introduced (see
[Libove48] and [Plantema66]):

a(b 1 2 2
Us = [*f E(SXZWSX’X*-SYZWSY,Y dxdy (42)
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For the work of the applied loads W (15) still holds.

The solution to the problem, i.e. values for the remaining three deflection
parameters A, As,, Asy, is found by the theorem of stationary total potential.
This states that in a state of equilibrium the change in total potential of the
system (Ub+Us-W) is zero:

o(Ub+Us-W) _ 0. . d(Ub+Us-W) _ 0. | d(Ub+Us-W) _ 0. (43)
0A OAs, dAsy
A condensed notation is introduced, as follows:
D16 = 1(_)4 + Dgg(Z2E )%‘L")
D26 = 22(T) + Dgg(2T )2< T y2
D126 = (D12+D66)(ﬂ) (ﬁ)2
a b (44)

SX = sxz(m“)2

SY = syz( T)2

PXY = p,(X)2 +py(——-)2

a

Evaluation of (43) yields the following set of three linear equations in A, As,,
As

:
D16+D26+2.D126-PXY -(D16+D126) -(D26+D126)| [ o |

~(D16+D126) D16+SX D126 |.|Asy|= o} (45)
~(D26-D126) D126 D26+8Y | [Asy] 10

This homogeneous set of equations has a non-zero solution only if the
determinant of the coefficient matrix is zero. This condition yields the buckling
equation:

pxy - (SX+SY).(D16.D26-D126%) + SX.SY.(D16+D26 +2.D126)
(SX+D16).(SY +D26) - D1262

(46)

As in chapter 2, the integer parameters m and n, representing the number of
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half waves in each direction, have to be varied to obtain the smallest critical
load. Figure 5 shows the buckling load for unidirectional compression; in that
case always n=1, while the value of m depends on the parameters of the
problem. When the size of the panel is decreased, larger m are found. At a
certain size the number of half-waves m increases without limit, while p,
decreases asymptotically to S,,. This is explained in detail below.

An interesting phenomenon occurs when the transverse shear stiffnesses S,
and Syz are small compared with the ratio of bending stiffnesses to panel
dimensions. Then the panel will buckle in a 'transverse shear mode’, for which
the waveform is undefined and, if compression is applied in only one direction,
the buckling load is equal to the transverse shear stiffness in the direction of
the applied load. Figure 5 shows this clearly for the case of uniaxial compres-
sion; as the panel becomes smaller, the buckling load diverts from that of a
plate (without transverse shear deformation) towards the transverse shear
stiffness S,,. This is also recognizable in (46); when D16, D26 and D126 are
large compared with SX and SY, and taking py=0., (46) simplifies to:

PXY = SX+SY
pm( )2 = sxz( T)2+8, (“")2
47)
Pxts = Sxz » M — oo, n=1

where p, .. is the compression buckling load in transverse shear mode.

For laminates this transverse shear buckling behaviour is well possible; for
sandwich panels it is less realistic, as will be shown in chapter 4, because then
the transverse shear mode is prevented by the bending stiffnesses of the
separate faces.

Verification of the buckling equation

In the previous paragraph a buckling equation is derived on the basis of the
energy method, using a first order shear theory model of the panel, with an
improved transverse shear stiffness definition. In this paragraph the validity of
this approach is examined by comparison with buckling loads obtained by more
refined analyses [Noor75]. This reference contains buckling results using 3-D
linear elasticity theory, for a large number of (symmetric and non-symmetric)
composite panels of unidirectional (UD) material in alternate layers at 0° and
90°. Material stiffness data are as follows:
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Table 1 Material data

E, Ey ny G,, Gyz Viy
[MPa] [MPa] [MPa] [MPa] [MPa] [-]

300000. 10000. 6000. 6000. 5000. 0.25

The buckling loads are compared below for various cases (all simply-supported),
identified by the quantity NL (taken from [Noor75]) indicating the number of
distinct layers in the laminate. Table 2 gives the laminate stacking associated
with the values of NL. Note that all the laminates have 60 plies at 0° and 60
plies at 90°, giving a constant total thickness of 120 plies (or 12.mm) in each
case.

Table 2 Laminate composition

NL laminate stacking

a) symmetric laminate

[0°55/90°5,], T
[0°15/90°3/0° 515
[0°1¢/90°15/0°1¢/90°15/0° 0l

b) non-symmetric laminate

[0°60/90°go; *
4 ‘ [0°30/90°30J¢
6 [0°15/90° 5144
10 [0°19/90%1 )54

T meaning of the notation: from the top to the mid-plane first 30 plies at 0° and then 30
plies at 90°; the ’s’ stands for ’symmetric’, and the number of plies is only given for the
upper half of the laminate.

1 from top to bottom first 60 plies at 0° and then 60 plies at 90°; the 't’ stands for ’total’.

First, the influence of orthotropy is examined by varying E, while the other
material data are held constant; the results, in terms of Ex/Ey, are given in
table 3. The main parts a) and b) of the table contain results for the present
(first order shear) theory and 3-D linear elasticity theory (results from
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[Noor75]). A third part c) of the table contains buckling coefficients for the
laminate NL=10 when the plate buckling formula of chapter 2 is used.

b2
Table 3 Buckling load coefficient Px of square plates in terms of Ex/Ey;

E;.t3
material data from table 1, except E, (modified to obtain the required value of
EJ/E)); b/t=10.
E/E,
NL 3. 10. 20. 30. 40.

a) first order shear theory

3 5.39 9.91 15.21 19.51 23.08
5 5.40 10.14 16.00 21.01 25.33
9 541 10.18 16.13 21.25 25.69
2 4.77 6.22 7.91 9.44 10.85
4 5.23 9.08 13.79 17.80 21.27
6 5.33 9.69 15.10 19.74 23.77
10 5.38 10.02 15.80 20.78 25.10

b) 3-D linear elasticity theory

3 5.30 9.76 15.02 19.30 22.88
5 5.33 9.96 15.65 20.47 24.59
9 5.34 10.04 15.92 20.96 25.34
2 4.69 6.12 7.82 9.37 10.82
4 5.17 9.02 13.74 17.78 21.28
6 5.27 9.61 15.00 19.64 26.67
10 5.32 9.91 15.67 20.63 24.96

¢) plate buckling theory
10 5.72 11.29 19.25 27.21 35.15

There is good agreement between parts a) and b) throughout; the difference is
in only four cases more than 2%, and never more than 3%. The plate buckling
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results for NL=10, on the other hand, are 7.5% to 41% higher than the results
of b).

Next, the influence of thickness is examined by comparing results for short,
thicker (square) panels. These are given in table 4.

b2
Table 4 Buckling load coefficient Px 3 for thick square panels (b/t=5.), with
E,.t
material data of table 1

NL first order shear theory 3-D el. theory

3 10.54 10.38

9 11.54 12.14

2 6.73 6.66

10 10.63 12.07

For some cases, considerable differences are found. Note that for some, but not

all, laminates the first order shear theory gives lower buckling loads than the
3-D theory.

Subsequently, the influence of the length to width ratio a/b is examined; results
of present first order shear theory and of the 3-D linear elasticity theory of
[Noor75] are given in table 5 (again for a thickness ratio of b/t=10.), showing a
good agreement throughout.
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b2
Table 5 Buckling load coefficient Px 3 for different length to width ratio’s;
Ey.t
material data of table 1; (b/t=10.)
a/b
NL 0.3 0.5 1.0 1.5 2.0 2.5 3.0

a) first order shear theory

2 21.60 13.91 9.435 10.07 9.435 9.616 9.435
4 28.78 22.37 17.80 18.18 17.80 17.70 17.80
10 3461 26.56 20.78 2133 20.78 . 20.71 20.78

b) 3-D linear elasticity theoryJr

2 22.2 13.9 9.5 10.0 9.3 9.3 9.3
4 30.0 22.3 17.6 18.2 17.7 17.4 17.4
10 34.8 26.5 20.6 211 20.3 20.6 20.4

+ only one decimal digit, because values are read from a graph

3.2.3 Possible values for waveform parameters m and n

In formula (46) for the direct buckling loads p, and Py the parameters m and n,
indicating the number of half-waves along and across the panel, have to be
varied to find the lowest possible combination of p, and Py Knowing which
combinations of values for m and n are feasible, and which combinations can be
excluded a priori, would eliminate several calculations and therefore shorten
computation time., In this respect, it is worth mentioning that in many
publications on direct buckling loads of orthotropic plates and panels the results
are always given for either m=1 or n=1 without, however, proving this (eg.
[Wittrick52]).

A solution is presented in two steps. In the first place, it is known from
literature that for every orthotropic plate an equivalent isotropic plate can be
defined with the same compression buckling load (reported in [Wittrick52)).
Next, below it is proved that isotropic panels (with finite transverse shear
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stiffness) will indeed buckle with m=1 or n=1. Combining the two cases it can
be assumed that this will hold for an orthotropic panel (with finite transverse
shear stiffness) as well.

Assuming isotropic bending and transverse shear behaviour of the panel the
parameters of formula (46) can be simplified as follows, introducing the stiffness
parameters D and S:

D = Djy = Dgy = Dy5+2Dgq

(48)
S = Sy, = Syz

Because the buckling wave form parameters m and n always appear in
connection with the panel dimensions a and b, the following parameters M and
N are introduced:

M = 7 N = BT (49)

which are considered real values for now (i.e. not integer, or discrete).
Substituting the introduced parameters D, S, M and N formula (46) can be
rewritten as:

Py = D(M2+N2)2 Cp N2
X -
M2(1+2(M2+N2)) yMz (50)

To prove that in buckling either m=1 or n=1, it is shown that the regions where
the partial derivatives of P, in (50) with respect to M and N are less than zero
do not overlap. If they would overlap, in that region higher values of M and N
would produce lower buckling loads; but they do not, and therefore the lowest
physically possible value of either M or N will yield the lowest value for Py

Partial derivation of p, in (50) with respect to M yields:
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2
dpx - 2pyN + 2D [(M2+N2)(M2—N2(1+2(M2+N2)))]
oM M3 1\/[3(1\»1§_(M2+N2))2 S (51)

And with respect to N:

apx - —2pyN . 2ND [—(M2+N2)(2+2(M2+N2>)j| (52)
oN MZ M2(1+]_J.(M2+N2))2 S
S

If the following two conditions were to hold:

oM (563)

the following condition would hold as well (with M, N>0):

(_aﬁi*M + apx

*N)< 0 (54)
oM oN

Substituting (51) and (52) into (54) yields the following condition in which terms
in py are eliminated:

2D(M2+N2)?
M2(1+Z (M2+N2)?

‘ With M, N, D, S all greater than zero the last inequality is never satisfied.
Returning to the basic assumption it is therefore proved that there do not exist
values for M and N for which both partial derivatives are less than zero.
Therefore taking either M or N at its minimum value will produce the lowest
buckling load in formula (50). The minimum values of M and N correspond, of
course, to m=1 and n=1 respectively, hence this traditional assumption is now

| proven.

-
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This is an interesting conclusion that allows all evaluations of the buckling load
for which both m and n are greater than 1 to be eliminated a priori.
Furthermore if the buckling loads p, for various values of m, while n=1,
produces a minimum p, for m>1, it is not anymore necessary to verify p, for
n>1 (m=1) because it has just been proved that if 3p,/dm<0, then always
0p,/dn>0 (here m and n are improperly used, as if these were real numbers).

Overall buckling under shear load

Similar to 3.2, a buckling formula is first derived, which is then compared to
results in literature.

Buckling formula

Unfortunately the plate buckling formula of 2.3.2 cannot be expanded to include
transverse shear flexibility, because this formula was obtained by interpolation
of graphical data. Therefore a knock-down factor f is defined, analogous to that
of Plantema [Plantema66]. That source refers to Kuenzi et al. [Kuenzi80] as the
origin of the knock-down formula. [Kuenzi60] applies an energy method to
obtain the buckling equation, using a truncated Fourier series for the out-of-
plane displacement w. Unfortunately, it appears that this method would require
a computing time beyond what can be allowed in the present application.
Therefore this method, and its resulting design curves, are left aside in favour
of the knock-down factor f, similar to that of Plantema (modified to allow for
orthotropic TSS):

qs = f.q

1

where: if [szl +(3)2} then: f=___ —
a ko-1-(2)?

and where: ky = (2)?

g = _b_)2 szsyz
T \|D11D22

(56)
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Figure 9 shows the buckling load obtained with (56); notice the similarity with
Figure 5 for compression buckling.

The difference between (56) and the knock-down factor of Plantema is in the
definition of s; in Plantema, restricted to isotropic TSS, this was defined as:

b S
Splantema = (‘E)z'_L (87

yD11D22

Then, as Plantema explains, for s<(1+(b/a)?), buckling occurs in a transverse
shear mode, with q;;=S,,. Here, on the other hand, with s defined as in (56), the
transverse shear mode yields the following buckling load:

Qs = sz~Syz (58)
(where ’ts’ stands for transverse shear).
This buckling load g is equal to the transverse shear buckling load g, for
infinitely long panels with orthotropic TSS, derived by the author [Bladel88]. In
[Bladel88] (58) is derived for infinitely long orthotropic panels with an energy
method and a skewed sine wave buckling displacement, applying only

10000 |

g8 [N/mm]

1000

300 ‘* L * * * —
S 10 100

a [mm]

Figure 9 Shear buckling of an orthotropic panel, including transverse shear
effects
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transverse shear deformation. The use of g, for rectangular panels as well is
justified by the fact that the equation (58) for q,,, in [Bladel88] is obtained
without any condition on the wavelength.

Comparison of results with literature

[Kuenzi60], previously referred to in 3.3.1, also gives some experimental results.
Although restricted to square isotropic panels, they are used here to validate
(56). Figure 10 compares the test results of [Kuenzi60] with the numerical
results of (56). Reasonable agreement is found, although there is considerable
scatter in the experimental results.

The bending stiffness of the faces (considered further in chapter 4) is not
included in the analysis. This results in conservative calculated buckling loads.
This might explain why, in Figure 10, in the region s<2. where transverse shear
mode buckling occurs (see (56)), the prediction is so conservative. Unfortunately,
Kuenzi does not report whether transverse mode shear buckling has in fact
occurred in any of the experiments.

20
[
15
¢ experiment
T ° °
o 10F + present PY
4 theory ® +
®
s + °
5 .‘! +
"
° d ?
o + +L 1 L L
0.1 1 10 100

Figure 10 Comparison of use of knock-down factor f with experimental results
of [Kuenzi60]
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Interaction of compression and shear loads

For isotropic plates a well-known interaction formula for buckling under
combined compression and shear loads exists [Bleich52]:

2
Ny +[ny) > 1. (59)

Px L 4

Buckling will occur if (59) is satisfied, in other words when the combination of
the applied loads N, and ny is such to make the left-hand side of (569) equal to
or higher than one. In [Bladel88] this formula was examined for use with
orthotropic plates, including transverse shear effects, showing it to be applicable
in this more general case as well.



Sandwich Panel Analysis

4.1

Two aspects of the compression buckling behaviour of sandwich panels, beyond
those dealt with in chapter three, are considered in this chapter: the effect of
bending of the faces, and the influence of an asymmetric layup. Shear load is
not covered, because the associated formulae of chapter three cannot be adapted
for these effects. It should be recalled that the analysis methods presented here
are intended for use in an interactive computer program for the designer;
therefore, while adequate accuracy must be achieved, the required calculations
should not be too elaborate or time consuming.

Effect of face bending on the compression buckling load

By the term face bending is meant bending of the faces as two independent
plates. Although the bending stiffnesses Dij do include the bending stiffnesses of
the faces with respect to their own mid-planes, in chapter three these
stiffnesses are only associated with the overall bending deformation of the panel
wb. In this chapter, on the other hand, the face bending effect is not associated
with the overall bending deformation wb, but rather with the total out-of-plane
deformation of the panel w, as illustrated in Figure 11. This figure presents on
the left-hand side the out-of-plane deformation of a panel according to the first

a. first order b. sandwich panel
shear theory with face bending

Figure 11 Face bending of sandwich panels
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order shear theory of chapter three, and on the right-hand side a more realistic
out-of-plane deformation of a sandwich panel where the face bending is
associated with the total out-of-plane deformation w. The two models presented
here to include face bending in the compression buckling load of rectangular,
orthotropic sandwich panels are approximations extending the first order shear
theory.

The influence of this effect on the compression buckling load will be large when
the faces of the sandwich panel are thick, and when the panel is short.

Face bending included in the energy formulation

A first method is similar to that of [Allen69]. It defines the strain energy
associated with bending of the faces separately and includes this in the energy
method of chapter three.

As mentioned above, the essence of this method is to associate the face bending
stiffnesses (written as Dijfl and Dijfz for faces 1 and 2, respectively) also with
the shear deformation ws, and not only with the bending deformation wb (as is
done implicitly in chapter three, through Dij). This is done by introducing the
strain energy contribution Uf, associated with bending of the faces, in terms in
Dy;¢ and ws. The strain energy U of the sandwich panel, including face bending,
is now given as the sum of Ub, Us and Uf;

U =Ub + Us + Uf
afb 1 2 2
Ub = LL E(DlleX,XX+D22Wby,yy+
+2D1gwby vy wby oo+ Dgg(why o +wby,xy)2) dxdy (60)

_ (a{b 1 2 2
Us = L L USeaws?, +8y,ws?, | dxdy

b 1 2 ,
Uf= Lajg E((anﬁDnm)st,xx *(Dagp1 *Daar) Wsy o +

+2(Dy9p1+D1arp) WSy xxWSy yy + (DBGfl +Dggra) (st,xy ‘LWSy,xy)2 dxdy

Note that the correct approach would be to subtract the face bending stiffnesses
from Dij in the formula for Ub and include terms in wb in the face bending
strain energy Uf. The terms in the bending stiffness D;; and related face
bending stiffnesses D,;5 and D;;p in (60) would then be:
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contribution to Ub: (Dq; - Dllfl_Dllfz)Wb
contribution to Uf: (Dqypy +D1yp) (Why xy + WSy xx)

X,XX (61)
2

The difference between (60) and (61) is only in the cross terms:

(Dllfl + Dllf‘Z) 2 be,xx WSy xx (62)

Because with (60) the resulting formula is simpler the representation of (60) is
retained here.

The buckling equation is derived in the same way as in chapter three. After
substitution of double sine wave deformations for w, wb,, ws,, wby, ws, and
evaluation of integrals and derivatives, the buckling equation is the condition
for which the determinant of the set of equations in the coefficients A, As, and
Asy becomes zero. As in chapter three a condensed notation is defined:
D16 = 1(_>4 + Dgg( 2L )2( )2
D16F = (D11f1+D11m)(—) + (Dssf1+D66f‘z)( db G )2
D26 = 2(_)4 + Dgg( 2 )2( )2
D26F = (D22f1+D22f2)(—) + (D66f1+D66f2)( b fuis )2
D126 = (D12+D66)( Ty T )2 (63)

D126F = (D12f1+D12f‘2+D66f1+D66f‘2)(ﬂ)2(%7E)2
a

SX = sxz(m")2

SY = syz( T)2

PXY = px(ﬂ)z py( T2

The following buckling equation is then obtained, in which the stability
equation (46) can clearly be recognized:
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(SX +D16F +SY +D26F +2.D126F).(D16.D26 -D1262) +
+ ((SX+D16F).(SY +D26F) -D126F2).(D16+D26+2.D126) (64)

(SX +D16F +D16).(SY + D26F +D26) - (D126 + D126F)?

PXY =

As in chapter three, the number of half waves m and n are free variables in (64)
and have to be chosen to obtain the lowest buckling load. There is no reason to
believe that the comments on possible values of m and n (paragraph 3.2.3)
should not be applicable to the present case (including face bending) as well.

Figure 12 shows the effect of face bending on the compressive buckling load of a
square sandwich panel with +45°faces and a honeycomb core, by comparison
with the formula of chapter three. For large panels (large width to thickness
ratio a/t), the method described above and that of chapter three give the same
results, whereas for small panels the present method yields significantly higher
buckling loads. While the formula of chapter three, for small panels, yields a
transverse shear mode of buckling with a buckling load equal to the transverse
shear stiffness 5, (as discussed in chapter three), the present method does not.
This is because, for the transverse shear mode buckling to occur, the number of
half waves along the panel m has to grow towards infinity. This is prevented in
the present case by the strain energy associated with bending of the faces,
which would have to grow accordingly.

1000

—_ Sxz
£ A A Ty - — N — —— — — — ]
£
~
£
[ h— Sandwich panel buckling
‘; Face bending included
100
:““‘A‘“ Sandwich panel buckling
. Face bending NOT included \
30 e . : ——
30 100 1000

a [mm]

Figure 12 Effect of face bending on compression buckling load p, of sandwich
panels (square +45°CFRP panel; two 1.mm faceplates and a 10.mm honeycomb
core)
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4.1.2 Face bending included in equivalent transverse shear stiffnesses
Another approach to include the face bending stiffnesses in the compressive
buckling load of sandwich panels is described fully in [Bladel89al; the idea
behind the method is to use the buckling load in a transverse shear mode to
obtain equivalent S,, ;o and Sy, (¢ (ts stands for transverse shear), which can
then be used in Formula (46). This is explained briefly below.

First, a buckling load p, 4 is calculated in a particular transverse shear mode
where no overall bending of the panel, but only bending of the faces, is present,
see Figure 13; at the edges of the panel the mid-planes of the two faces and the
core in both undeformed and deformed states are constrained to lie in a vertical
plane. With the energy method a compression buckling load p, (. can be derived,
for every number of half waves m and n along and across the panel.
Substituting this buckling load in the transverse shear mode formula (47) of
chapter three, further assuming S,, = Syz te» defines the equivalent transverse
shear stiffnesses S,;, i and Sy, ;s for every m and n. This can be used in the
buckling equation (46) of chapter three. In this way, the buckling formula of
chapter three is improved by using equivalent transverse shear stiffnesses that
include the effect of fuce bending.

The results of this approach are similar to those of paragraph 4.1.1.
Nevertheless the method of paragraph 4.1.1 is to be preferred, because the
resulting equation (64) can be easily used when the face bending effect is not to
be included, simply by substituting zero face bending stiffnesses Dijfl and Djspa-
Furthermore, for every m and n only one buckling analysis is done in the
method of paragraph 4.1.1, while in paragraph 4.1.2 an extra transverse shear
buckling analysis is always performed.

Figure 13 Transverse shear mode buckling without overall bending deformation
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Effect of eccentricities in sandwich panels

In practice, eccentricities are hard to avoid in sandwich panels loaded in
compression. First, the panel itself might not be symmetric with respect to its
mid-plane; then even if the compressive load is applied on the mid-plane, in
effect an eccentricity will occur. Also, when the edges of the sandwich panel are
not built into a spacious fitting, but rather crushed to obtain flat, easily
fastened edges (see for example Figure 14), the in-plane loading will be applied
eccentrically. In this paragraph shear loads are not considered, because these
would make the analysis much more involved; then the contributions of all the
different waveforms (sine waves along and across the panel) to the total out-of-
plane deflection are coupled.

When an eccentricity is present, a compressive load will induce a bending
moment that can easily lead to premature failure of the panel. Two approaches
can be followed to prevent this from happening; first of all, one can simply try
to reduce the eccentricity itself by choosing a layup such that its neutral axis is
near to the plane of loading, perhaps creating a sandwich panel with one ’stiff’
face - where the load is applied - and one meant to provide stability. The
advantage of this approach is its simplicity, while the disadvantage is that it is
not possible to judge the influence of the possible remaining (small) eccentricity.
Therefore, additionally, the second approach defines the effect of the eccentricity
in terms of stresses in the laminate, checking whether these remain within
allowable bounds. This approach gives more information and defines a suitable
upper bound for the value of the eccentricity, but it is much more involved and
implemented here only in an approximate way. Below, the calculations required
to obtain the value of the eccentricity are given, and then the associated
stresses are calculated.

Figure 14 Sandwich panel with flattened edges creates an eccentricity
for compressive loads
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Definition of eccentricity

The value of the eccentricity e, and ey is the difference between the vertical
position of the applied load and the vertical position of the neutral axis in that
direction. Figure 14 shows this for the case of the sandwich panel with flattened
edges.

The vertical position of the applied load can be found by considering how the
load is applied to the panel at its edges; a compressive load will be introduced
here via fasteners or the adhesive layer with which the panel is attached to the
rest of the structure. This compressive load will be carried principally by the
layers of the laminate that are stiff in compression. A first approximation is
therefore to consider it to be applied at the middle of these ’stiff’ layers.

The vertical position of the neutral axis can easily be derived from the ABD-
matrix of the classical laminate theory, with the following result:

By Bag
Znax = A 3 Znay < A (65)
11 22

Note that the definition of neutral axes means adopting cylindrical bending
assumptions (recall that also in chapters two and three cylindrical bending is
used). Because a composite panel is generally not homogeneous or isotropic, the
position of the neutral axis in x- and y-directions may not coincide.

Evaluation of stresses associated with eccentricity

Stresses induced by eccentricity are defined in two steps; first, the out-of-plane
deformations are defined with the energy method, and then the classical
laminate theory (CLT) is used to calculate the stresses associated with these
deformations. A failure criterion can then be used to check against failure of the
structure. [Bladel89b] presents this method in detail; here, only the main
features are reported.

The energy method is used to obtain the out-of-plane deformation of the panel.
The formulation of the energy equation is similar to that of chapter three,
except that now there is an extra contribution to the work of the applied load,
associated with the eccentricity, We. This contribution can be derived with the
help of Figure 15; for a strip, infinitesimally narrow in the y-direction, the work
associated with the eccentricity dWe becomes:
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dWe = N, e, ( why,(x=a) - wb, +(x=0.) ) dy

dWe = N, e, ( : awbx,xxdx) dy (66)

The most accurate formulation would be to use a truncated Fourier series for
the out-of-plane displacement function w and its components wb, and wby:

w = > A sin(T™X) gin(BWY) 67
n a b

>

However, after substitution and evaluation of the integrals there is no coupling
between terms in different m and n. Therefore, it is possible simply to use a
double sine wave formulation for w for only one m and n (as is done in chapter
three). The actual out-of-plane deflection is then obtained by summing up all
partial deflections for specific m and n.

When w is defined by a double sine wave for a single waveform (m and n), after
integration over the whole panel, the work associated with the eccentricity
becomes:

yey(

We = %b Nye (mTy2_32 Ap N

nny2_ 32 pp, (68)
a  mnn? b 2

mnn

(where only odd m and n yield non-zero values of We).

The resulting deflection under a given load N, and Ny is that for which the
total energy (Ub+Us-W-We) is stationary. As in chapter three the derivatives
are taken with respect to the coefficients A, As, and Asy of the displacement

A
W
' Px-€x Px-Cx
& S——
abe owby
(—ax_)x= (T)x=a

Figure 15 Derivation of the work We of the eccentric compressive load



4.2.3

SANDWICH PANEL ANALYSIS 59

function. In addition to the condensed notation of (63) the following parameters
are defined:

y
E, = e (D% _16 (69)
a mnn
16
E, = e (I7)2
y y b mrmz

The following set of three equations is then obtained:

D16+D26+2.D126-NXY -(D16+D126) -(D26+D126)| [ A N,E,-N,.E,
-(D16+D126) D16+SX D126 . |Asg| = N,.E,
-(D26+D126) D126 D26+8Y | [ASy Ny.Ey

(70)

The left hand sides of the equations are identical to those of (46) of chapter 3.
But here, the set of equations is not homogeneous, hence for every given value
of the applied load, non-zero values for the displacement coefficients A, As, and
Asy are found (for the m and n in question) simply by solving the set of
equations. Note that when the applied load is increased to the buckling load,
the deflections will increase to infinity.

Just as in the buckling analysis it is interesting here to know a priori which
values for m and n are important. Although only odd m and n are feasible here,
the question is more complicated than in case of buckling because the analysis
requires curvatures rather than the plain deflections. This aspect is covered in
the paragraph below.

Selection of waveform parameters m and n

The selection of relevant values for m and n for the eccentricity analysis is more
involved than that for buckling. Because in the end the stresses associated with
the out-of-plane deflection are calculated, the curvatures rather than the plain
deflections have to be defined (see Equation (1)). These are defined as:
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= (- l)z (mnT A sin(™7 ) sin(2% b

mni{ a
Ky, = (-1) 2’:“ (nbn]z A sin(Z2% ) sin(2% > (7D
Kyy = E ITDT A cos(X2T ) cos(2X

mn “a b

where both m and n can only take odd values.

2 or m*n, which

Notice that in (71) the coefficient A appears multiplied by m?, n
is the reason the selection of important m and n is so involved. While the
coefficient A itself decreases rapidly as m or n increases (after possibly an
initial increase), because of the factors m?, n? or m*n the contribution of that
waveform to the total curvature does not decrease rapidly. As an example a
sandwich panel of Figure 12, with a=b=250.mm is analysed for a compressive
load N,=-250. N/mm applied at the bottom face; the deflection coefficients given

in Table 6 are obtained:

Table 6 Qut-of-plane deflection coefficients A (square CFRP+45° sandwich
panel; a=b=250.mm; two 1.mm faceplates and a 10.mm honeycomb core;
N,=-250.N/mm applied at the bottom face)

n=1 n=3 n=5 n="7 n=9
m=1 .6823 .0013 .0001 .0000 .0000
m=3 .0559 .0135 .0007 .0001 .0000
m=>5 .0116 .0044 .0019 .0003 .0001
m=T7 .0042 .0015 .0010 .0005 .0001
m=9 .0020 .0007 .0005 .0003 .0002

The contribution of the different deflections to the curvature «, at the middle of
the panel is then as given in Table 7:
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Table 7 Contribution to curvature x, at the middle of the panel (square
CFRP=45° sandwich panel; a=b=250.mm; two 1.mm faceplates and a 10.mm
honeycomb core; N,=-250.N/mm applied at the bottom face)

n=1 n=3 n=5 n="7 n=9
m=1 .6823 -.0013 .0001 -.0000 .0000
m=3 -.5032 1215 -.0065 .0007 -.0001
m=5 .2909 -.1113 .0463 -.0075 .0014
m="7 -.2053 .0744 -.0490 .0240 -.0066
m=9 .1588 -.0657 .0368 -.0269 .0146

Because of the alternating signs in the contributions (which makes the smaller
contributions cancel each other) and the decreasing contribution when both ms1
and n#l, here it is proposed, as in the buckling analysis, to include only
contributions of waveforms with either m=1 or n=1. In that case the additional
problem of defining the critical position in the panel where the eccentricity
effect is greatest, is made much easier as well, because if either m=1 or n=1,
these maximum locations all lie on the lines x=a/2 and y=b/2. A good reference
point is therefore the middle of the panel (a/2,b/2).

Even when only contributions with m=1 or n=1 are included, the total curvature
x, does not converge rapidly as the number of included waveforms increases, as
Figure 16 shows. Therefore instead of the total curvature, the average of the
last two computed curvatures is computed when an even number of (odd)
waveforms have been included (ie. at m=3,7,11 etc.). When this value is
adequately converged the procedure stops.

With the curvature and the in-plane strain known the total strain at any
through-the-thickness coordinate is known. With (1) the stresses can be
computed and a failure criterion can then be used to check whether failure will
occur. Notice that in the middle of the plate (x,y)=(a/2,b/2) the torsion K., 15
always zero.

_yl
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Wrinkling of sandwich panels

Wrinkling is & local form of instability, associated with compression of a stiff
face supported by a relatively flexible core. Being a local instability, the panel
dimensions can probably be neglected; as a matter of fact many formulae in
literature do so. The literature presents many models for the wrinkling analysis
of sandwich panels, from completely empirical to very theoretical
([Wiedemann86], [Allen69], [Stamm74], [Pearce72], [Zelst85], [Sullins69]). In
this context, the following well-known formula [Wiedemann86] is used:

3
oy = 0.5 VEf E, G, (72)

where the parameters with the subscript 'c’ refer to the core; E, is the
compressive modulus in z-direction and G, the core transverse shear modulus in
the panel direction of interest. E; is the Young’s modulus of the face in the
direction of interest; it is derived from the D-matrix of the face in question.

Because the nature of the deformation is local, with short waves, it can be
assumed that there is no interaction between wrinkling in x- and y-directions;
short waves in both x- and y-direction would produce very pronounced short

0.75

CFRP+45° sandwich panel
a=b=250.mm
two 1.mm faceplates
10.mm core
0.50 + Nx==-250.N/mm
) applied at bottom face
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waveform parameter m

Figure 16 Curvature x, of a square sandwich panel for an increasing number of
half waves m
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cups in a face, a situation unlikely to occur. Therefore when direct loads in x-
and y-direction are present, they are examined separately. When shear loads
are present, the applied load-case (given with respect to the panel axes) is
transformed into the principal load-case (at a certain angle with respect to the
panel axes) with only direct loads (the principal loads). These principal loads
are checked against the wrinkling loads in that direction.

Equation (72) only gives the wrinkling stress c,,; in order to check for wrinkling
the wrinkling load P, should be known. For symmetric sandwich panels, the
wrinkling load P is simply the wrinkling stress o, multiplied with twice the
face thickness. In asymmetric panels however, the load carried by any of the
two faces is inversely proportional to the vertical distance between that face
and the neutral axis in that direction. The position of the neutral axis is derived
from the cylindrical bending model, see paragraph 2.1.2. When the principal
loads are at an angle to the panel axes, this calculation is lengthier but
straightforward.
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This chapter presents analytical formulae for the shear buckling of composite
corrugated panels, of the type shown in Figure 17. The panel is defined by the
layup of the laminate (which is the same in every part of the cross-section), the
width of the two faces b; and b, (the term face is used here to denote the
separate flat surfaces of the panel) and the angle B between the faces. The
panel itself is of width h, and is assumed to be relatively long. It can be made of
isotropic or orthotropic material. When the material is orthotropic, it is
considered a laminate, as defined in chapter two.

The buckling analysis presented in this chapter considers two basic buckling
modes of a corrugated panel, see Figure 18: first, an overall mode with a
deformation pattern that largely ignores the presence of the corrugation. The
corrugation serves only to increase the bending stiffnesses of the panel. The
second buckling mode is a local one, where the deformation is confined to the
separate faces. The angle where the two faces meet then forms a nodal line for
the buckling deformation. Note in Figure 18 the distinct coordinate systems
(x0,¥0) and (x1,y;) for overall and local buckling respectively.

2
IO O t3

- J\UJJ A

Figure 17 Definition of the corrugated panel
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Because the resulting analytical formulae should be concise, these buckling
modes are considered separately. However, interaction between the two modes
might occur, especially if it is considered that the formulae will be used in a
design program that searches for an optimum form of the corrugated panel,
because this process favours corrugated panels with coincident local and overall
buckling loads. Therefore it is necessary to investigate to what extent
interaction of the two modes does occur. An additional paragraph presents the
results of such an investigation, with the help of a finite element program,
indicating that mode interaction does indeed occur for some panels. A
parameter is developed to distinguish those panels that do exhibit mode
interaction.

Finally, it is verified that the interaction formula for combined compression and
shear loads, as presented earlier, also holds for corrugated panels.
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a. Overall buckling b. Local buckling

Figure 18 Buckling modes of the corrugated panel under shear load
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Overall buckling of corrugated panels under shear load

For corrugated panels of isotropic material the overall buckling mode is
described in [Peterson60], [Timoshenko63] and other references. There is,
however, an essential difference between [Peterson60] and [Timoshenko63]; in
[Peterson60] the differential equation describing buckling contains a term for
the internal warping restraint that significantly increases the effective twisting
stiffness of corrugated sheet, whereas the formula of [Timoshenko63] does not.
Therefore [Peterson60] is considered more accurate. However, because here
orthotropic material can be used, some modifications are still necessary. In
[Bladel93] these are described, with a high quality approximation that
eliminates the use of graphs or the numerical procedure of [Peterson60]. The
following differential equation is considered in [Peterson60]:

4 — 4 — 24 6 2
D18w+2D12 d*w +D2aW—EI‘ °w +2q W _ 73)

axg xQdyy vy ixgayy ~ 9XoWo

where the term in EI" accounts for the internal warping restraint offered by the
corrugation. Note the use of the symbol D instead of D to indicate the bending
stiffness of the corrugated panel as a whole, not that of the laminate. In
[Peterson60] only isotropic material is considered, for which the stiffnesses are
given by:

- 3
Dl = EE_
12R
Dy =~ ERtp? (74)
_ D D- -
D12 - pX 2;]‘1}7 1 +ny
where:
by +by

e (75)
by +bgcosp

is a factor to represent the extra mass in the panel (per unit of running length)
due to the corrugation, as compared to a flat plate. Also:
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‘b3
sin?B (byb? +?2) (76)

p:

4(b1 +b2)

is the radius of gyration of the corrugated section. In [Peterson60] the stiffness
D,, is neglected compared with D; and D,; however, for orthotropic material

Dy, is best retained.

When orthotropic material is used, the bending stiffnesses are given by:

- Elongt’3
_ 12R 17)
DZ__z Eshorthp2
Dj2 = 2Dgg
where:
_ by+by
~ by +bzcosp

b3

sinzﬁ(blbz2 +_2)

p = 3 (78)
4(b1 +b2)

12
t3

Ejong = Ds2
1
11

Eghort = T

Note that the terms Elong and Eg . relate to the stiffnesses in the direction
perpendicular to the corrugation (in which the corrugated panel is very long)
and parallel to the corrugation {in which the panel is relatively short)
respectively. E, . is obtained from the laminate bending stiffness Dy, because
in this direction the stiffness of the panel is obtained from bending of the faces.
Egort> On the other hand, is obtained from the compliance C;; because in that
direction the stiffness is obtained from stretching of the separate faces.

A high quality approximation for the buckling load is developed in [Bladel93]; it
yields the following buckling formula:
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4z 1
4\[D1D2
do = kO—z‘—'

h

8.186 5.685 -.7429|[1.

where: kg = [1. & £2].| 12.94 -2.148 .02857 ||

-2.700 .3789 .2857 | [x*

4Eshortr
h2/D; D,

2D
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Vﬁlﬁz
r =d4t|.01/2 [ -.0476 P« 1366 2.0<P <46
d d d

p = 2(by +bycosp)
d = szinB

£ = 0.<£<1.0 (79)

The limits on &, ¥ and p/d include the common range of corrugated panels and
are associated with the definition of the coefficients in (79).

Local buckling of corrugaied panels under shear load

Local buckling is a buckling mode of the faces rather than of the panel as a
whole, see Figure 18b. The simplest model to analyse this mode would treat the
faces separately, as if they were independent long plates; a more accurate but
more complex model considers the faces to be linked together. The regular form
of the corrugated panel is such that local buckling of two linked faces is an
accurate model of the situation. In [Bladel93] an energy method is described for
the shear buckling of linked orthotropic plates. This method is, however,
abandoned because when one face becomes narrow the buckling load rises
sharply while actually, when a face becomes very narrow, the buckling load
should equal that of a single simply-supported strip. Therefore, also in
[Bladel93] another method is proposed, using the shear buckling loads (obtained
from the literature) of single long plates (in both simply-supported and clamped
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conditions) as limit cases for buckling of two linked strips. In fact, the buckling
load of two coupled strips that are equally wide is equal to that of a single strip
of the same width, simply-supported at its sides, because there is no mutual
stiffening. And when a face is narrower than the other, the narrow face will
provide some kind of edge support for the wider face, which is stiffer than
simple-support, but less stiff than the clamped condition. Therefore, initially the
buckling load will tend towards that of the wider strip, in the clamped
condition. As mentioned before, when a face becomes very narrow, the buckling
load will decrease again to that of a single, simply-supported strip.

In this way, the buckling load of a single, long plate in both simply-supported
and clamped condition is used in an interpolation scheme for the buckling of
two linked strips. A third condition (that improves the quality of the
interpolation), discussed in [Bladel93], is the gradient of the buckling load with
respect to the width ratio by/b; at by/b;=1.0. When the data from ESDU data
sheet 80023 (containing shear buckling loads of long orthotropic strips)
[ESDU80] are used for the buckling loads of the single faces, the following high
quality approximation can be obtained [Bladel93]:

(80)

4 3
yD11Dgy

b2

max

qr, = kg,

brin | bmi T
where: k; =|1. bm“‘ [ "““Jl -21.73 3.184 -.5010|| DDy

max max :
5730 -11.74 .8336 || (P12+2Dge)
D11Dgg

Note that b /b, .. is used instead of by/b; to limit the range of the

interpolation, i.e. it is no longer significant which face is of width b; and which

of width b,. As already mentioned, if b ; /b . decreases to near zero, (80) is no

longer valid; then the buckling load of a single simply-supported strip should be
obtained, while (80) (like the energy method tried at first) yields that of a single

clamped strip. However, this error only occurs near bninPmayx=0, and the

computer program for which (80) is developed is not likely to prefer panels with
b_. /b <0.6. Figure 19 compares the energy method referred to above and the

min’ “max
interpolation scheme (both applicable to orthotropic materials) with results of
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ESDU data sheet 74022 (for isotropic materials) [ESDU74]. For width ratios
bin/Pmax around 1.0 there is a good agreement. For b, /b . <0.6 (panels
probably discarded anyway, as mentioned before) the agreement is bad, and the
curve in Figure 19 is only drawn to show that it tends towards the buckling

coefficient of a single clamped strip for b ; /b .. —0.

Mode interaction of local and overall buckling

The overall and local buckling modes described above may interact with each
other, as mentioned in the introduction. A series of finite element (FEM)
analyses using the finite element package Abaqus is performed to examine this
possibility. In many cases a good agreement was found between the analytical
prediction and the finite element result, both in buckling load and in buckling
mode. However, for a number of panels buckling occurred in another mode, with
in some cases a considerable reduction in buckling load. Paragraph 5.3.1
describes the finite element analysis and the results.

The phenomenon of buckling mode interaction is too complex to be described by
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Figure 19 Local buckling coefficients of linked orthotropic strips made of
isotropic material; comparison with results of ESDU data sheet 74022
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a simple analytical formula; it therefore falls outside the scope of this research.
However, it is possible to define a parameter (based on the properties of the
corrugated panel) the value of which predicts whether mode interaction will or
will not occur. This is also covered in the next paragraph.

FEM analysis of corrugated panels

Figure 20 shows a finite element model, typical of that used in the current
investigation. It was made by a model generator (Patran); each face is modelled
with 9 shell elements (quadratic 9 node elements with 5 degrees of freedom)
and the complete model spans 7 complete corrugations. In this way a model
with 7000 degrees of freedom is obtained. All edges are simply-supported, as
shown in Figure 20. Shear load is applied by a prescribed edge displacement,
creating a uniform shear stress throughout the structure (this was one test to
check the results of the FEM analysis). An eigenvalue calculation is then
performed, and the first eight eigenvalues are calculated. No problems of
convergence were encountered. The buckling load of one corrugated panel has
been checked by mesh refinement, showing a decrease of 7% when a finer mesh
is used.

In total 82 corrugated panels were analysed, made of isotropic material. Table 8

describes all the panels and gives the results of the finite element analysis, and
also the local and overall buckling loads obtained by the analytical formulae of

—-= applied load

e—» boundary condition;
fixation in shown direction

Figure 20 Finite element model of the corrugated panel
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this chapter. In a number of cases the analytical formulae and the FEM
analysis give markedly different results. In particular, the analytical formulae
significantly underestimate the buckling load only when overall buckling is
critical (i.e. the overall buckling load is lower than the local buckling load), see
for example cases 5, 9 and 13 of Table 8. This phenomenon is also reported in
ESDU data sheet 74022 [ESDU74], where predicted overall buckling loads of
corrugated panels of isotropic material (using [Peterson60]) come out lower than
the experimental overall buckling loads. On the other hand, when local buckling
is critical (according to the analytical formulae), or when both modes occur
simultaneously (i.e. when the buckling loads of both modes differ by less than
10%), the analytical formulae sometimes significantly overestimate the buckling
load, as compared with the FEM result, see for example cases 11, 15 and 67 of
Table 8.

Figure 21 shows the three distinct buckling deformation patterns, resulting
from the FEM analyses: in Figure 21a an overall buckling mode is drawn,
clearly recognisable from the buckling pattern that crosses the separate faces of
the panel; in Figure 21b a local buckling mode is shown, recognisable from the
buckling pattern confined to the separate faces. Figure 21c finally shows an
interaction mode, clearly distinct from both the overall and local modes.

Stiffness parameter to restrict mode interaction

Mode interaction is a complex matter. It cannot therefore be treated as a third
buckling mode in the present research, which is aimed at finding accurate but
simple analytical formulae. However, a simple mechanical model can be
developed to examine whether the intersection of two faces of the corrugated
panel will act as a nodal line for the local buckling mode or whether it will not,
in the latter case causing a buckling mode that is neither local nor overall but
some kind of interaction mode.

There are two reasons underlying the association of the mechanical model with
the local buckling mode: first, the FEM analyses give lower buckling loads
(associated with the peculiar buckling mode of Figure 21¢) than predicted by the
analytical formulae of this chapter only in certain cases where the local
buckling mode is critical. Furthermore, a basic condition for the local buckling
mode to exist is precisely the existence of a nodal line at the intersection of two
faces. Therefore it is appropriate to define a mechanical model to examine the
possibility of ’'breakdown’ of the nodal line (as visible in the buckling
deformation of Figure 21c¢) in the local mode.
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The mechanical model assumes that the nodal line (and therefore the local
buckling mode) is maintained when the strain energy that would be required to
deform the smaller of the two faces is large enough compared with the strain
energy required to deform the wider face; in other words, the narrower face has
to be stiff enough in its plane to prevent the wider face (bending out of plane)
from causing nodal line breakdown. This model is illustrated in Figure 22; note
the assumed nodal line deformation (sinusoidal with half-wavelength 1) and the
associated deformations of the two adjacent faces, the smaller face bending in
plane, the wider face bending out of plane.

The strain energy Un in the smaller face bending in-plane is:

2a overall buckling mode

2b local buckling mode

2c interaction mode

Figure 21 Shear buckling deformation patterns, as obtained by FEM analysis
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1
Un =1 [ Bgporg; 92 dx (81)

where Eg . is the Young’s modulus of the plate in the x -direction, and where
L is the second moment of area of the narrow face, bending in-plane. In (81) the
specific bending curvature ¥ becomes:

5 - 92w i} —nzwmaxsine sin(ﬁ
0x2 A2 A (82)

)

where: w = (Wpa,Sind) sin(
Substitution of ¥ and evaluation of the integral yields for the strain energy Un:

3 . 9
Un = Eshort tPrin (Wmax sin®)” 4 (83)

A3 96

To obtain the strain energy Uw of the wider face bending out of plane first the
strain energy dUw in an infinitesimal strip dx is derived with the help of
bending theory:

w. sin(PB)

Figure 22 Model of nodal line break-down
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dUw = %Pw
p(lmaxy3
where: w =__ 2 _ (84)
3ElongIo
t3dx
1. =
° 12
Elimination of P and integration over a half-wavelength A yields:
Eonet®
Uw = J;* 1°;g (wmaxsin%x_)zdx
bmax (85)
Elongt 2 A
max
Prax 2

The stiffness parameter SP is now defined as the ratio of Un to Uw. SP
becomes, after omission of numerical constants:

3 3
sp - Eshort PminPmax sin?p 86)

Elong t2 A4

To eliminate the half-wavelength A it is related to the width of the faces. From
the results of the local buckling analysis with the energy method mentioned in
paragraph 5.2 (although the energy method is not used for the local buckling
load, it is used here for the wavelength), it can be deduced that the half-
wavelength A is related to the face widths b, and b, .:

A=C bminbmax 87

Substitution of (87) in (86) yields the final formula for SP:

SP = Eshort bminbmax sin2B (88)
Elong t2

The parameter SP can now be used to distinguish those panels for which
buckling mode interaction occurs, see Figure 23; the buckling load ratio (ratio of
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the analytically predicted load to the FEM buckling load), given in Table 8, is
plotted against the value of SP, for all 82 investigated panels. Note that it is
indeed possible to define a limiting value (SP=1500.) above which there is good
agreement between the analytical prediction and the FEM-analysis. From
Figure 23 it is also evident that below SP=1500. both the local and overall
buckling predictions are not accurate.

Interaction of compression and shear for corrugated panels

In addition to shear load, there may also be compressive load in the yo-direction
in a corrugated panel. In the formulae derived above (for overall and local
buckling) it was not possible to include the effect of compressive load. However,
there exists a well-known interaction formula for combined compression and
shear in long, flat plates (both isotropic and orthotropic) [Lekhnitskii68]:

_.N_x + [nyr > 1. (89)
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figure 23 Definition of a limit value for SP
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In paragraph 3.4 it is found that this formula, although originally intended for
plates, could also be applied to orthotropic sandwich panels. As discussed in
previous paragraphs, corrugated panels buckle in two modes: local and overall
buckling. For local buckling under combined shear and compression (89) may
readily be used because the individual buckling loads for both compression and
shear can be obtained for a local buckling mode. For overall buckling the
situation is different; the shear buckling analysis includes internal warping
restraint, while the compression buckling analysis does not. Nevertheless, a
simple check was performed with an orthotropic flat plate analysis [ESDU73]
(not including the internal warping restraint) to examine the overall buckling
behaviour of corrugated panels. Figure 24 gives the results of the analysis for
two corrugated panels, and the parabolic interaction formula (89). It shows that
(89) is conservative up to 10%.
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Figure 24 Interaction between compression and shear for corrugated panels
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Table 8 Analytical and numerical shear buckling load of corrugated panels

79

# h by | b, B FEM | Buckling formula {cucklingll Stiff.

ioad Param.

Qer q, d5 ratio Sp
[mm] | [mm] | [mm] | [mm] | (deg] || [N/mm] | [N/mm] [N/mm] (-] [-]

1 415, 0.5 22.5 22.5 50. 73.8 87.4 74.5 0.%9 1188.
2 415. 0.5 22.5 28.1 50. 64.4 66.6 117. 0.97 1484
3 415, 0.5 22.5 37.5 50. 41.6 42.5 231. 0.98 1981.
4 415. 0.5 22.5 56.3 50. 19.5 20.8 557. 0.94 2973,
5 415, 0.5 22.5 22.5 40. 63.8 87.4 54.0 1.18 837.
6 415, 0.5 22.5 28.1 40. 55.9 66.6 82.0 0.84 1045.
7 415. 0.5 22.5 37.5 40. 41.2 42.5 153. 0.97 1394.
8 415, 0.5 22.5 56.3 40. 19.4 20.8 394. 0.93 2094.
9 415. 0.5 22.5 22.5 30. 52.1 87.4 35.3 1.48 506.
10 || 415. 0.5 22.5 28.1 30. 46.6 66.6 52.6 0.89 §32.
11| 415. 0.5 22.5 37.5 30. 36.2 42.5 94.0 0.85 844,
12 415, 0.5 22.5 56.3 30. 19.1 20.8 238. 0.82 1267.
13| 415. 0.5 22.5 22.5 20. 31.6 87.4 19.0 1.66 237.
14| 415. 0.5 22.5 28.1 20. 36.1 66.6 27.9 1.29 296.
154 415. 0.5 22.5 37.5 20. 28.2 42.5 48.7 0.66 395.
160l 415. 0.5 22.5 56.3 20. 17.0 20.8 120. 0.82 593.
17 || 415. 0.4 22.5 22.5 50. 44.5 44.8 56.3 0.99 1857.
18 415. 0.4 22.5 28.1 50. 35.5 34.1 90.2 1.04 2319.
19| 415. 0.4 22.5 37.5 50. 21.5 21.8 181. 0.99 3095.
20 415. 0.4 22.5 56.3 50. 10.0 10.6 398. 0.94 4646
21| 415. 0.4 22.5 22.5 40. 38.3 44.8 40.6 0.94 1307.
22 415. 0.4 22.5 28.1 40. 33.5 34.1 62.9 0.98 1633.
23| 415. 0.4 22.5 37.5 40. 21.3 21.8 120. 0.98 2179.
24 415. 0.4 22.5 56.3 40. 9.97 10.6 290. 0.94 3271.
25| 415. 0.4 22.5 22.5 30. 31.7 44.8 26.5 1.20 791.
26 415, 0.4 22.5 28.1 30. 27.8 34.1 40.1 0.82 988.
27 || 415. 0.4 22.5 37.5 30. 21.0 21.8 73.9 0.96 1319.
28 || 415. 0.4 22.5 56.3 30. 9.90 10.6 182. ¢.93 1979.
29| 415. 0.4 22.5 22.5 20. 22.1 44.8 14.2 1.56 370.
30 415. 0.4 22.5 28.1 20. 21.5 34.1 21.1 1.02 462,
314 415. 0.4 22.5 37.5 20. 16.7 21.8 37.7 0.78 617.
32 415. 0.4 22.5 56.3 20. 9.62 10.6 93.4 0.91 926.
33 415. 0.3 22.5 22.5 50. 20.3 18.9 39.8 1.07 3301.
34 415. 0.3 22.5 28.1 50. 15.1 14.4 65.3 1.05 4122.
35 415, 0.3 22.5 37.5 50. 9.10 9.18 132. 0.99 5501.
36 415. 0.3 22.5 56.3 50. 4.23 4,48 259. 0.94 8260 .
37| 415. 0.3 22.5 22.5 40. 19.8 18.9 28.6 1.05 2324.
38| 415. 0.3 22.5 28.1 40. 15.0 14.4 45,2 1.04 2903.
39 415. 0.3 22.5 37.5 40. 9.07 9.18 87.5 0.99 3874.
40 || 415. 0.3 22.5 56.3 40. 4.23 4.48 188. 0.94 5815.
41 415. 0.3 22.5 22.5 30. 16.3 18.9 18.5 .88 1406.
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Table 8 contd.
# h by b, B FEM Buckling formula [lbuckling| Stiff.
load Param.
qcr qL qo ratlo SP
[mm] | [mm] | (mm] | [mm] | [deg] || [N/mm] | [N/mm] [N/rmm] (-1 (-]
42 415. 0.3 22,5 28.1 30. 14.3 14.4 28.6 0.99 1756.
43| 415. 0.3 22.5 37.5 30. 9.01 9.18 53.6 0.98 2344.
44 415. 0.3 22.5 56.3 30. 4.21 4.48 124. 0.94 3519.
45 415. 0.3 22.5 22.5 20. 12.4 18.9 9.8 1.27 658.
46| 415. 0.3 22.5 28.1 20. 10.9 14.4 14.9 0.76 822.
47| 415. 0.3 22.5 37.5 20. 8.49 9.18 27.4 0.92 1097.
48 ) 415. 0.3 22.5 56.3 20. 4.15 4.48 66.1 0.93 1646.
49| 415. 0.2 22.5 22.5 50. 6.08 5.60 24.9 1.09 7427.
50 || 415. 0.2 22.5 28.1 50. 4.51 4.26 41.8 1.06 9275.
51 415. 0.2 22.5 37.5 50. 2.71 2.72 80.2 1.00 12378.
52|l 415. 0.2 22.5 56.3 50. 1.26 1.33 141. 0.95 18584.
53| 415. 0.2 22.5 22.5 40. 6.05 5.60 17.8 1.08 5229.
54| 415. 0.2 22.5 28.1 40. 4.50 4.26 28.8 1.06 6531.
55| 415. 0.2 22.5 37.5 40. 2.70 2.72 55.3 0.99 8715.
56| 415. 0.2 22.5 56.3 40. 1.26 1.33 102. 0.95 13085.
57| 415. 0.2 22.5 22.5 30. 6.01 5.60 11.4 1.07 3164.
58 | 415. 0.2 22.5 28.1 30. 4.48 4.26 18.2 1.05 3952,
59| 415. 0.2 22.5 37.5 30. 2.70 2.72 34.3 0.99 5273.
60 415. 0.2 22.5 56.3 30. 1.25 1.33 67.4 0.94 7917.
61 415. 0.2 22.5 22.5 20. 4.83 5.60 6.0 0.86 1480.
62| 415. 0.2 22.5 28.1 20. 4.27 4.26 9.4 1.00 1849.
6311 415. 0.2 22.5 37.5 20. 2.67 2.72 17.6 0.98 2467.
64| 415. 0.2 22.5 56.3 20. 1.25 1.33 37.1 0.95 3705.
65| 200. 0.5 22.5 37.5 20. 36.5 42,5 360. 0.86 395.
66 {| 300. 0.5 22.5 37.5 20. 31.5 42.5 119. 0.74 395.
67 400. 0.5 22.5 37.5 20. 28.5 42.5 53.8 0.67 395.
68| 500. 0.5 22.5 37.5 20. 27.1 42.5 29.9 0.91 395.
69{ 200. 0.5 22.5 37.5 30. 44, 42.5 671. 1.04 844 .
70 || 300. 0.5 22.5 37.5 30. 40.5 42.5 234. 0.95 844 .
71| 400. 0.5 22.5 37.5 30. 36.6 42.5 104. 0.86 844.
72 500. 0.5 22.5 37.5 30. 34.0 42.5 57.2 0.80 844.
73| 200. 0.5 22.5 37.5 40. 46, 42.5 1015. 1.08 1394.
74| 300. 0.5 22.5 37.5 40. 42. 42.5 381. V.99 1394.
75 400. 0.5 22.5 37.5 40. 41.2 42.5 170. 0.97 1394.
76 || 500. 0.5 22.5 37.5 40. 40.0 42.5 91.9 0.94 1394,
77| 200. 0.5 22.5 37.5 50. 47. 42.5 1384. 1.11 1981.
78 || 300. 0.5 22.5 37.5 50. 42.5 42.5 568. 1.00 1981.
79 400. 0.5 22.5 37.5 50. 41.6 42.5 257. 0.98 1981,
80 { 500. 0.5 22.5 37.5 50. 41.1 42.5 137. 0.97 1981.
81 1000. 0.8 47. 51. 44. 69.8 75.3 75.5 0.93 1807.
82| 1000 3.1 138. 120. 69. 634. 626. 6690. 1.01 1502,
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Composite Panel Design

In this chapter some expressions to be used in optimization are introduced, and
analytical formulae are obtained for the performance of composite sandwich
panels and corrugated panels.

Whether analytical or numerical, an optimization process searches for the
extreme (minimum or maximum) value of a target or objective function by
varying some properties (the variables) of the subject. This process can be
performed with or without conditions (constraints) that have to be satisfied. In
this research an optimization for least mass is performed. The variables used to
obtain the optimum are the cross-sectional dimensions; for sandwich panels
these are the thicknesses of the different layers in the laminate and their
orientation with respect to the laminate axes. For corrugated panels, as well as
the definition of the laminate, also the shape of the cross-section (lengths of the
two faces b; and b, and the corrugation angle B, see Figure 17) can be varied.
Typical constraints are material failure and buckling.

In this chapter optimization will be performed analytically, aimed at finding
formulae to define the performance of sandwich or corrugated panels satisfying
some selected constraints. Then the objective function is not explicitly present
in the process. Rather, it is implicitly assumed that by sizing the panel on the
basis of the selected constraints, an optimum panel is obtained. In other words,
the panels are designed by these constraints. For example, for a sandwich panel
one can suppose that by using a minimum thickness for face and core such that
material failure and buckling are marginally satisfied, an optimum panel will
be obtained. In fact, the results of this chapter show that this reasoning is not
always true. In the next chapter, on the other hand, optimization is performed
numerically. Then a numerical iteration process is used to find the optimum,
taking into account the constraints. Contrary to the analytical process of this
chapter, it is then not known at the beginning which constraints will define the
optimum configuration; the constraints merely serve as borders of a design
space that contains all feasible designs (i.e. the designs that satisfy all
constraints).
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Performance is quantified by the equivalent stress (¢’ for compression loaded
panels and t” for shear loaded panels). This is the applied load divided by an
equivalent thickness t”; a small equivalent thickness t” means a low mass and
results in a high equivalent stress and high performance. The two following
paragraphs obtain formulae for the equivalent stress for sandwich panels in
compression and corrugated panels in shear, in terms of the structural index (a
parameter indicating the intensity of the applied load) and material
parameters, but without the design variables. The formulae are derived taking
into account a number of constraints, such as buckling and material failure;
they provide insight into the behaviour of these composite panels and serve as a
reference for the computer results of part 4 of this work.

Performance of sandwich panels under compression

In the literature there are many references to the design of sandwich panels,
loaded in-plane, made of isotropic material ([Fligge51], [Bijlaard52],
[Kovaiik72]). For composite sandwich panels [Allen69] contains valuable
information and will be cited further on. Other interesting work
([Wiedemann89]), also cited below, compares many different structural types.
However, none of these references cover the subject in the detail required here.

In this paragraph two formulae are presented that describe the equivalent
stress ¢” of sandwich panels in compression. The panel is assumed symmetric,
with two equal faces (of thickness t;) and a core (of thickness t). To calculate ¢”
first the equivalent thickness t’ of a sandwich panel is defined; it is the
thickness of a (massive) plate, made of the face material, having the same mass
as the sandwich panel. Equating the two masses yields:

prt’ = 2pete + pe te

2pete + pete

t/ =
or (90)

t/ = 2t + Peg,
P

The equivalent, direct stress ¢” is then:
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of = Nx__ Nxpr (91

_tT Pcte + 2Pftf

Note that in this paragraph, for simplicity, a compressive load is considered
positive. The first formula for ¢’ to be derived considers only buckling of the
panel. It is obtained by maximizing the buckling load for a given mass, by a
suitable distribution of mass between faces and core. The two conditions that
serve to eliminate t; and t, are therefore buckling and the condition that the
buckling load is maximal for a given mass. For the buckling condition formula
(20) of chapter 2 is used, rewritten to introduce a buckling coefficient k,
independent of t; and t:

Py(E? = D1 (5% + Dog(T)* + (2.Dyg+4.Dgg)(T)2(F)2
a a b a b

D D 2.D5+4.D
pe = —Lln2cky . 222y, 271277 P66 a, (92)
ab a Dll b Dll b
* ab

Unfortunately, in this way transverse shear effects are neglected here.
However, if Equation (46) of chapter 3 were used to include these effects, the
buckling coefficient k could not be made independent of t; and t.. If only the
faces provide bending stiffness, Dy; is given by:

E te+t
D11 = X ) 2tf( f 0)2
~VxyVyx 2 (93)
1
= E Ef tf (tf+tc)2
where the reduced modulus Ef’ for the face material is:
E
Ef=_ "% (94)
1-VyyVyx

With (93), (92) can be written as:
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!/
p _ Ef tf (tf+tc)2 k (95)
x 2ab

The mass of the panel m (per unit area) is given by:

m = 2psby+pete (96)

Substituting (96) in (95) to eliminate t; yields:

Px =

/
Egk m-pete m-pete 97)
2ab  2pg 2ps ¢

The highest buckling load with respect to t, is that for which:

2o
dt,

= 0. (98)
This condition yields the following equation in t

m2(4pp-3py) + £2m(2pg-p)(2ps-3pe) + th(-3po)(2pg-po? = 0. (99

This is a second order equation with two solutions:

Ly = i
2pe-pe (100)
4pe-3
[tc]2 =m Pe=9P,

3pc(2pr-pe)

[t.]; is a negative root to be discarded here, leaving [t ], as the only physically
relevant solution; examination of (97) reveals that at [t ], p, is at a maximum,
therefore at [t ], we do have an optimum configuration. Eliminating m in (96)
with (100) yields:

Y P (101)
tc 4pf_3pc
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In other words, the panel with the highest buckling load for a given mass has a
thickness ratio of face to core as given in 101y, Combining (95) with (101)

gives for t; and t:
1 2
g = |Px @ bl P 3
2E{ k | |2PfPc

b 5 .

Px a 3 1

tC = (4pf"'3pc) x, 2 3
2Ef k Pe Pf=Pe

Combining (91) and (102) a formula for ¢” is obtained in terms of the structural
index, which in the case of a compression loaded member is given by N,/b, and
material parameters, without the variables t; and t,. Note that here p, can be
replaced by N, because the design condition is that the applied load N, equals
the buckling load p,:

(102)

1 N 2
o = n(E§)3[T"]§
(103)
1
2ak
where: 1 = _1_ E __25_\3
3 pc | b(2pr-po)

This formula is a so-called efficiency formula because it contains the
dimensionless efficiency n. In [Wiedemann89] a similar formula is obtained,
with the same powers for the equivalent Young’s modulus E; and for the
structural index N, /b, but without the efficiency 1 given explicitly here.

¥ In [Allen69] a formula similar to (101) is obtained, for (t; << t) (so that (t+t)% can
be simplified to tcz):

or: mg = 2my

The same result is also obtained by putting p <<pgin (101).
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Another formula for the equivalent stress ¢” is found when not only buckling,
but also material failure is considered. Then the following distinction in
function can be observed in the panel: the faces carry the applied normal load
with minimum thickness (and hence at the maximum allowable compressive
stress G.), while the core has a minimum thickness to provide the required
bending stiffness against buckling. This can be called a fully stressed design, as
all parts of the structure have the minimum allowed dimension in order to still
satisfy the constraints. Below, a formula for the equivalent stress ¢” indicating
the performance of such panels is derived.

The material failure constraint associates the applied load with the face
thickness t; (the core is considered not to carry any load):

— N
O = —
2.t
N (104)
or: tp= 1
2.0,
For buckling (95) is again used. Solving for t, yields:
/
E:k
Px = Z_Bf.b- te (tf*'tc)2
9 b (105)
t2+ 2t tp+t7 - lp"a - 0.
This is a second order equation with two solutions:
1
2p,ab |2
[tcly = - p/x -t
(106)
1
2p,ab |2
[tcle = p/x - tf
Ertek

The first solution [t ]; is discarded because it is always negative. The remaining
solution [t ], becomes, after elimination of t; with (104):
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1
4c.ab 2 _ Ny (107)

Efk 20,

Note that the core thickness t, is decreasing as the load N, increases,
eventually becoming zero, when the load N, has grown to its limit value NX*:

-3
N: -4 |BPCC (108)
Efk

Hence there are two formulae for o7, one for NX<NX* and another for NszX*;
substituting t, from (107) or t,=0. respectively, and t; from (104), the equivalent
stress ¢” becomes:

for NX<N;(k : ol = 1
2pf_pc +( a ) pC 4b0—c
— t =) — 1
2p;5.  Nx Pr | aE/k (109)
for N,>N>: o =

At this point two alternative formulae (103) and (109) are available for the
equivalent stress ¢’ of sandwich panels in compression. As an example a
square sandwich panel (with a=b=500.mm) is considered, with faces of CFRP
0°/90° laminate and a light honeycomb core, with the following material data:

face: pp=  1.60 g/em® core: p,= 0.048 g/em?
By = 76430. MPa
G, = -304. MPa

Recall that the transverse shear deformation (covered in chapters 3 and 4),
typical for the behaviour of sandwich panels, is not considered here. The
following table gives the resulting face and core thicknesses t; and t, and the
equivalent stress ¢’ for a given applied comipressive load of N,=300. N/mm,
both when the sandwich panel is designed for highest buckling load, and when
it is a fully stressed design.
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Table 9 Performance of composite sandwich panels
designed for a compressive load of N,=300. N/mm
(two equal faces of CFRP 0°/90° laminate; core of light honeycomb)

Design rule te te m o’
[mm] [mm] [g/em?] [MPa]
highest buckling load 0.17 22.48 0.163 294.3
fully stressed design 0.49 12.90 0.220 218.4

Figure 25 shows the performance of sandwich panels designed according to the
two design rules considered above (the two panels of table 9 are marked with a
"X’ in Figure 25). Note that the design rule Aighest buckling load never yields a
lower performance than the design rule fully stressed design. Therefore
designing for ’highest buckling load’ would be advantageous, but this design
rule does not consider material failure and, as one can see in the table above,
for some loads yields a face thickness so small that material failure does occur.
This is confirmed by Figure 26 where the face thickness of sandwich panels
designed according to the two design rules given above is plotted against the
structural index. For a value of the structural index above N,/b~0.1 an optimum
fully stressed design has a larger face thickness than an optimum panel
considering only buckling; therefore, in that region of applied loads the faces of

highest buckling //
load -~
Square -
1000F | CFRP 0° -90° e
r ; pd
C sandwich -
i [ panel o
o
=
- 100 ¢
] s
. fully
10 - < stressed design
srnleinnnl I o1 a1l 1 141l i 11 1 vl 1
0.002 0.01 0.1 1 10

Nx/b [MPa]

Figure 25 Performance of sandwich panels in compression
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the buckling design will fail because of an excessive material stress. However,
for loads below the limit value of N,/b=~0.1, the face thickness of the buckling
design is larger than that of the fully stressed design, and hence material
failure will not occur. Because the performance of the buckling design is never
worse than that of the fully stressed design, in the region N /b<0.1 it is
therefore better to apply the design rule buckling.

The somewhat surprising conclusion is that, in order to design the lightest
possible panel considering buckling and material failure, for some loads it is
best not to consider material failure at all, but to just look at the highest
buckling load that can be achieved for a given mass. The same result can also
be obtained by comparing the face thicknesses of the two design rules. Equating
(102) (in which p, is replaced by N,) and (104) a numerical value for the limit
value of the applied load N, can be found, below which the duckling design has
a sufficient face thickness to resist the stresses:

[tf](buclding&mat.failufe) < [tf](highestbucklingload)

1 2
Ny - N,ab 3 Pe 3
25, ?.Egk 2pg-pe (110)

3 1
Nx < (2G_c)2 al: z 2 Pe
2E;k Pf=Pc

L .7
: Square (06?/
T [ | CFRP 0° -90° oo é(\
£E i sandwich o ,6’69\
° 1F panel %
g [
c
£ i
(3}
£ 0.1¢
- :
Q -’
& I /’
0.01 E ,/,
r/ il
0.001 ——— B ‘ ‘
0.002  0.01 0.1 1 10

Nx/b [MPa]
Figure 26 Sandwich panel face thickness for different design rules
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For the sandwich panel in the example this limit value, calculated from (110), is
N,=62.0 N/mm. In Figure 25 this is the value for N, at which the equivalent
stress ¢ of the two design rules is equal. Finally, Figure 25 shows the
performance of the lightest possible panel (choosing whichever design rule
yields the lightest panel that satisfies both buckling and material failure) with
a solid line.

Performance of corrugated panels under shear

From the point of view of buckling, a corrugated panel loaded in shear is
designed for coincident local and overall buckling. This condition is assumed to
vield an optimum panel; the validity of this assumption is checked in part 4.
The performance of the corrugated panel is given by the equivalent shear stress
1/, defined as:

=9-_9 (111)

The equivalent, thickness t” is here the thickness of a flat plate with the same
mass as the corrugated panel. The aim, as in the previous paragraph, is to
obtain a formula expressing the equivalent stress 17 in terms of the structural
index (here this is g/h, the applied load divided by the panel height) and
stiffness parameters, but not in terms of the laminate definition or the panel
dimensions by, by and .

For simply-supported corrugated panels of isotropic material under shear load,
[Rothwell85] has derived an efficiency formula based on coincident overall and
local buckling, using an elementary formula for both buckling modes:

= E75 (AP
h

(kiké)ll15
R

(112)

where: 1 =

A maximum value 1=1.73 was found by Rothwell.
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A similar efficiency formula is derived for composite corrugated panels, again
assuming coincident overall and local buckling, but now using the buckling
formulae of chapter 5. These can be rewritten as follows:

1/4 3/4
q = kg, EshortElong £3
LT T 2
2

L (113)

0 =

4ko _ 34 14 RV2 3/
19V4 Eshort long F (t(‘)b2)

where w.b, is the radius of gyration (replacing p of chapter 5) and where 1 is

the Poisson’s factor (u= 1'ny-Vyx)-

Substituting by from qy, of (113) and t from (111) into qg of (113) yields:

60
13 15

7/ _ Elong Eshort (QT/M
v =q |28 SR fc
3 h

[ (114)

5 4 15
4 ki k
where: 1 = 4 s L0

123 R13

Formula (114) is somewhat more complicated than (112) due to the more
elaborate buckling formulae, but its form is similar; note, for example, that the
power of the structural index is the same in (114) and (112). Also, if an isotropic
material is used (i.e. replacing E; . and Elong in (114) by E) the power of the
Young’s modulus E will be the same in (114) and (112). Unfortunately, unlike
(92) for compression buckling of sandwich panels, here ks and R depend on the
design variables by, b, and B. The parameters kg and R in (114) are therefore
not constant as g/h increases. Therefore 1 also depends, even if only to a small
extent, on g/h.

Figure 27 shows the performance of optimum composite corrugated panels,
made of CFRP+45° laminate, with the following material data (that will be used
in chapters 9 and 10 as well):

E, = E, = 11092. MPa Vyy = 79

The line in Figure 27 labelled coincident local & overall buckling represents
(114), using an efficiency value of n=1.73. This value is of course approximative,
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because it was obtained for isotropic material, while here orthotropic material is
used. A second line in Figure 27 is that for material failure, because 1’ can
never be greater than the maximum allowable shear stress T (in Figure 27 a
maximum allowable shear stress of T=566. MPa is used). In reality, the
intersection point will not be reached, because as t” reaches 1'=566. the curve

will deviate from the sloping line towards the horizontal line.

1000 [ e
T = 566. L7
0]
o e
2 100 e
® _-” coincident
_-” local & overall
s buckling
10 s voaaoaaaal L L1l Ll PR
0.01 0.1 1 10 100
a/h [MPa]

Figure 27 Performance of composite corrugated panels of CFRP+45°, with a

height of 500. mm
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In the computer programs developed in this research for the design of composite
panels, a numerical optimization method is provided to guide the user to an
efficient design. While the previous chapter considered the optimum panel
analytically, here an iterative, numerical procedure is used to locate the
optimum. More specifically, the design problem of a composite sandwich panel
or a corrugated panel is redefined here as a constrained, nonlinear optimization
problem with discrete variables. The nature of the problem is examined, and a
review is made of potentially suitable, discrete optimization methods. The
Complex method selected is explained in some detail.

Definition of the numerical optimization problem

In summary, optimization is a process that searches for the extreme value of an
objective function (in this case minimum mass) by varying some properties (the
variables) of the subject under consideration. In principle this process can be
performed with or without specified conditions (constraints) that have to be
satisfied. Here the variables are the cross-sectional dimensions of the panel; for
sandwich panels these are the thicknesses t; of the different layers in the panel
and their orientations ¢; with respect to the panel axes. For corrugated panels,
as well as the definition of the laminate, the shape of the cross-section (lengths
of the two faces b; and by and the corrugation angle B) can also be varied.
Typical constraints are material failure and buckling.

In contrast to the previous chapter, where the optimization was performed
analytically to find formulae that define the performance of sandwich or
corrugated panels satisfying some selected constraints, here the optimization is
performed numerically, with an iterative process that searches to improve the
quality of the solution (the panel) until an optimum (minimum mass) is found.
First, the nature of the objective function, constraints and variables will be
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examined. The objective function (the mass) of the sandwich panel is simply the
sum over all layers of the density p(k) (typically in [kg/m3]) multiplied by the
thickness t™

n
m= 3 p®t® (115)
k=1

Note that m is the mass of the panel per unit area, as can be confirmed by the
units [kg/m?] of m in (115). Note further that this objective function is linear in
the layer thickness t® but independent of the layer orientation ¢(k). For the
corrugated panel the objective function is similar, but with an additional factor
R representing the extra mass in the corrugated panel (per unit running length)
because of the corrugation:

n
R. = p(k).t(k)
k=1

m
(116)

by +bgcosf k-1

Here the mass m is linear in the layer thickness t®, independent of the layer
orientation ¢(k), and nonlinear in b; and B.
The constraints to be considered in the optimization are very different in
nature, and mostly nonlinear. For example, for the sandwich panel some of the
constraints are:
¢ material failure: this constraint is given by the Tsai-Hill criterion of
chapter 2 (Eq (14)), nonlinear in both layer thickness (but linear in the
reciprocal of the thickness) and orientation.
¢ buckling: given by the buckling equations of chapter 3 or 4, nonlinear in
both layer thickness and orientation.
¢ geometrical constraints (for example user-defined minimum thickness for
some layers, or a maximum total panel thickness): these are linear in layer
thickness and independent of the orientation.
For the corrugated panel, the constraints are similar.
The variables in sandwich panel optimization are different in character, as
mentioned in chapter 1; the thickness of the layers of a composite panel is
typically discrete (at least for aerospace applications) when prepreg material, i.e.
thin layers (plies) of fibres pre-impregnated with a resin, is used because an
integer number of plies have to be used. In theory, the orientation of the
different layers in the laminate is a continuous variable, but manufacturing
conditions limit the accuracy and the number of layer orientations in the
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laminate. Therefore, the layer orientations can be treated as discrete variables
as well, even if it would be perhaps more precise to consider the layer
orientations to be continuous variables with some degree of uncertainty. This is
an interesting matter, but not considered further here. For the corrugated
panel, the laminate variables have, of course, the same character as the
laminate variables of the sandwich panel. The shape variables b; and B, on the
other hand, are simple continuous variables.

The number of variables in the optimization depends on the complexity of the
laminate at hand but, because of the way in which the laminate is defined in
the following chapter, is generally small (say, five variables).

Numerical optimization methods for discrete variables

Structural optimization is a research area in its own right. However, discrete
variable problems such as those considered in the previous paragraph remain
part of this research area where high quality optimization methods for
nonlinear problems are not available. The most elementary approach is, of
course, to optimize with continuous variables, and afterwards to round the
variables to the nearest available discrete value. However, this often results in
a large increase in the objective function (especially when the ’grid’ of possible
discrete values is coarse in relation to the values themselves), so nullifying the
perhaps very sophisticated achievement of a continuous optimization method.
Moreover, when the grid is coarse, the true discrete optimum might not be
located adjacent to the continuous optimum; then the rounding process cannot
locate the true optimum of the original discrete problem. At first sight, the dual
method [Fleury80] which optimizes in the dual space (which is continuous even
for discrete variable problems) seems to eliminate this problem, but in the end
merely provides a numerical scheme to locate the continuous optimum and
perform the rounding within the optimization procedure. Yet another approach
with continuous variables is an external penalty function formulation such that
points not located on the ’grid’ of discrete possibilities are penalized [Shin88],
but even this method actually provides no more than an algorithm for rounding
the continuous optimum.

Alternatively, it is possible to apply methods that use discrete variables
directly. Many of these methods are heuristic by nature (i.e. a search method
based on simple logic but not associated with some proof of convergence). The
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Hooke and Jeeves’ routine [Walsh75] is a simple improvement method for
unconstrained optimization; hence the constrained problem has to be
reformulated into an unconstrained one, by means of penalty functions. The
method was initially developed for continuous variables, but can be used with
discrete variables as well. 'Genetic search’ [Hajela89] is a heuristic method
based on the principles of genetics and natural selection; it is a discrete method
by nature, able to overcome local minima and even disjoint design spaces. Its
principal drawback is a large increase in the number of iterations necessary to
locate an optimum, and it is not examined further. Other heuristic methods
’simulated annealing’ and ’tabu search’ [Glover93] share both the advantage
(overcoming local minima) and drawback (large number of iterations) of genetic
search, and are also rejected in favour of the Complex method described below.
The latter is again a heuristic method, that has been proved to work well in the
type of problem at hand (i.e. acceptable number of iterations, good convergence).

Note that in the discrete variable problems considered here (with a rather
coarse grid of discrete variables) often many equivalent optima exist; for
example [Bladel89c] reports a ten bar truss problem (10 variables, one
constraint) for which at least 50 different optima with the same mass exist.

The Complex method

This optimization method is a heuristic that can be modified to apply to discrete
value problems. It is a direct, zero order method (i.e. the constraints are not
included in the objective function via a penalty function and no derivative
information is required) first presented by Box [Box65] as a constrained simplex
method. It uses a set of feasible points (the so-called complex) to assess the
direction of improvement; repeatedly the worst point in the complex is moved to
a better position. Because of its heuristic nature, references to this method (see
[Bladel89c] for a comprehensive list) often present some modifications to the
basic approach of Box. This is also so here, although in the first place only those
modifications associated with the discrete nature of the variables are
introduced. In this way a discrete Complex optimization method is obtained
with good performance, especially for problems with few design variables (say,
up to five). Some modifications are then examined to decrease the number of
analyses involved.
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A report by the author [Bladel89c] describes the discrete Complex method and
its implementation in detail; here, its features are described by means of a
simple two-variable problem, a two-bar truss (see Figure 28). This is a discrete
optimization problem with linear objective function (minimum mass m) and one
nonlinear constraint (maximum allowed displacement 3). The cross-sectional
areas A; and A, of the bars are the variables. The problem is defined as follows:

Minimize m = IO]""”‘A1 + A,

subject to 5=29V10 . 1 o175
94, 94,

where A,, A, are integer variables

within the bounds A;e[1,50], A,e[1,50]

In Figure 29 the 2-dimensional design space is drawn. All trusses are
represented by points X in this design space, with coordinates (A;, A,).

The Complex method has two parts; first a setup phase in which the set of
feasible points (the complex) C is created, starting from a given feasible point,
and a move phase in which the complex moves towards the optimum. Here, the
starting point X; (40,20) (note that the subscript of X indicates its position in
the set C and not the serial number within the optimization) is selected as

’

3L

Figure 28 Two-bar truss optimization problem
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starting point for the setup phase:

A, =40. m=1465
A, =20. 3=0.093

In the setup phase, repeatedly a new position is generated at random in a user-
defined area of the design space; this new position is then analysed. If it
satisfies all constraints, the point is accepted and added to the set; if not, it is
moved (retracted) halfway towards the centroid of the previously accepted points
and reanalysed. Notice the difference between the words position (a location in
the design space) and point (a feasible position included in the complex set C).
Because all points are feasible by definition it is likely that the retracted
position will become feasible in the end. However, the design space is discrete
in the application considered here, and when a retracted position is near the
centroid of feasible points it might no longer move because of the discrete
nature of the design space. Then the position is discarded and the process is
repeated with another random generation. In the example under consideration,
at the end of the setup phase, the following complex set C is obtained:

60 ¢
. infeasible feasible
50 F region region 00
é aec’ eas\"
40 /
< 30
starting
20 F point O
s (40;20)
10}
o displacement
constraint
o [N AN NS T A A U A SR G U U N A 1 Lo g 00033131 10003 011y M TR O T W W e |
o) 10 20 30 40 50 60

Figure 29 Design space of the two-bar truss problem
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Table 10 the complex set C after the setup phase (two-bar truss problem)

point Xy X, X3 Xy Xe X5
Ay 40. 48. 24. 28. 33. 26.
Ay 20. 4. 46. 35. 2. 11.
m 146.5 155.8 121.9 123.5 106.4 93.2

Then the method proceeds with the second or move phase, where repeatedly the
worst point is moved to a better position. In Table 10 point X, (written in
boldface) has the greatest mass and is thus the worst point. For the move a
subset C’ of the complex C is defined with all points except the worst point, and
its centroid X» is calculated:

Table 11 the subset C’ of the complex C, and its centroid X

point Xy X, Xy Xy X6 X
A 40. 24. 28. 33. 26. 30.2
A, 20. 46. 35. 2. 11. 22.8
m 146.5 121.9 123.5 106.4 93.2 -

Note that the centroid need not be discrete. A trial position X, to replace X, is
generated on a discrete position at a certain distance beyond the centroid X on
the line that connects X,, with the centroid (called the reflection of X,):

X; = XC/+1'eﬂ *(XC’_XZ) 117)

where refl is the reflection factor that defines how far the trial position X; is to
be positioned beyond the centroid X. Because X, was the worst point of the
complex C, it is assumed that this trial position X, has a smaller mass than the
worst point X; of the subset C’ (see boldfaced mass value in Table 11). X is
analysed and if the position is feasible the complex C is updated replacing X,
by X;. The move process is then repeated with the definition of a new worst
point (X;). If, on the other hand, the position X, is infeasible, it is retracted
halfway towards the centroid, and analysed again. Note that it is also possible
that X, is located outside the user-specified bounds on the variables A; and A,
(these bounds were also used in the setup phase for generation of the complex
C); then X, is positioned on the user-specified bound before analysis. In the
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example under consideration Figure 30 and Table 12 illustrate this process:

Table 12 Move phase of the Complex method (refl=2.)

point A, A, m 3 Comment

X, 48 4 155.8 .093 worst point

X -5.4 60.4 - - after reflection
out of user-given bounds

1 50 53.16 3.52 positioned on bounds;
constraint violation
16 36 86.60 0.223 | retracted;

still constraint violation

Xy 23 29 101.7 0.157 | retracted again; feasible;
new position for X,

In Figure 31 the optimization process is illustrated; in Figure 3la the
optimization trajectory is drawn in the design space, by plotting the movement
of the centroid of the Complex C’, while in Figure 31b the design history is
shown with the evolution of the objective function of the best point in the
Complex C.
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Figure 30 Move phase of the Complex method
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Because of the discrete nature of the design space, at a certain point a reflected
or retracted point may have not actually moved. As also done in the setup
phase, this point is then removed from the Complex set and the move phase

continues with one point less.

40 ¢
s Complex set C
s after setup phase
30 f
< 20}
10 |
o: ......... I SO SR S S T SR SN 't | U SR W S TN N S S|
20 30 40 50
A1l
a. Optimization trajectory
150 20
Objective
of best point
in Complex set C
100 | P o
£
S T
o
o
50 S N
.-~ Number of points
7 in Complex set C
o — J 0
0 4 8 12 16 20
point #

b. Design history

Figure 31 Optimization with the Complex method of the two-bar truss problem
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There are two stop criteria for the move phase; first, because the number of
points can decrease (as described above) at a certain stage there may be only
one point left. Furthermore, because of the discrete nature of the design space,
it is possible that all points in the Complex are coincident. In both cases the
optimization stops with the remaining point as optimum.

The procedure above describes the changes required for application of the
Complex method to a discrete design space. There are two basic parameters
involved, the number of points npt in the complex set C and the reflection
parameter refl. In the original reference [Box65], for nvar continuous variables
Box proposed:

npt = 2*nvar refl = 1.3 (continuous variables)

For discrete variables, the author [Bladel89c] has proposed a larger number of
variables, because points are deleted from the Complex set, and a larger value
for refl:

npt = 2*nvar+2 refl = 2. (discrete variables)

After 20 points and 52 analyses (including those yielding unfeasible points) the
Complex method stops, having reached the discrete optimum X"

X" A =22, m=7757
A,=8. §=0.161

However, sometimes the stop criterion can be satisfied before the optimum is
actually found. Therefore, a restart feature is introduced; when the stop
criterion is satisfied, another optimization run is done, starting from the current
best point. When no improvement is obtained (i.e. when the end point equals
the starting point of the restart) this point is accepted as optimum. With the
restart the process of focusing on specific good points in the design space
(during the move phase) is alternated with zooming out to check for the
existence for other good points. In practice, it is found that restarts benefit from
the use of a smaller design space. Therefore, at every restart, the interval in
which the variables are generated is halved'.

! At a restart only the bounds on the setup space are halved; the user-given bounds

(used in the move phase) outside of which a point is not analyzed remain the same
throughout.
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For small problems (say, up to five discrete variables) the method first
described (further called the standard discrete Complex method or SDC method)
yields good results; the optimum is found in fewer analyses than, for example,
Hooke and Jeeves’ method. However, for larger problems the true optimum is
not always found. Therefore it is best, at the end of an optimization, to repeat
the optimization from the user given starting point. Then, because of the
random aspect of the method (in the setup phase the Complex set C is
generated randomly) different Complex sets C are obtained at the end of the
setup, after which alternative optimization paths are followed to the optimum.
Another possibility is to continue from the obtained optimum, to confirm
whether the obtained optimum is indeed the global optimum. A further benefit
of repeated optimizations from the user given starting point is the possibility of
finding equivalent optima (recall from paragraph 5.2 that in this type of
discrete optimization problem with a coarse discrete grid many equivalent
optima often exist). A typical optimization with the discrete Complex method
will therefore comprise some repeated optimizations from the obtained
optimum, and some repeated optimizations from the user-given starting point.

This is a good optimization method for the discrete problems at hand, especially
when few design variables are present. It differs from the approach of [Box65]
only in the changes required for the use of discrete variables (i.e. removal of
points when they do not move anymore, and the stop criterion). However, many
‘useless’ analyses are required; in the example above the optimum is reached
after 52 positions have been analysed, to obtain 20 feasible points (before the
restart); hence 32 analyses are done on infeasible points. This ratio of 52 to 20
is fairly constant, for various runs and different cases; before a next point is
found, on average 2.5 analyses are needed. Two modifications were examined
here to decrease this ratio; in the first approach it was tried to estimate the
outcome of an analysis instead of performing one for every trial position.
However, defining sufficiently reliable estimates is not easy and the estimation
procedure also costs computer time. This approach was therefore abandoned
(see [Bladel89c]). The second approach is to make the reflection factor refl
variable. If the reflected position violates one or more constraints, at the end of
this move refl is decreased by a certain amount. If, on the other hand, the
position does not violate constraints and if it is not outside the user-given
bounds, refl is increased. In this way less violating trial points are generated.
In practice, this approach indeed decreases the overall number of analyses
performed in an optimization, but often also results in a premature termination
of the optimization because very low values of refl can occur. To balance this
exaggerated focus on a specific good point the size of the setup space at a restart
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should not be decreased.

With the second approach a modified discrete Complex method (MDC) is
created, in which the number of analyses is indeed decreased significantly. The
number of points before the optimum is reached is, on the other hand,
increased. This indicates that the MDC method proceeds slower than the SDC
method. The MDC method differs from the SDC method in the following
aspects:

¢ at the beginning of a move phase, reset refl to the user-given value
¢ when a new point is found (or when the point is omitted from the complex
set C), update refl as follows:
¢ when a trial position X; has violated one or more constraints and has
therefore been retracted retr times, decrease refl:

refl = refl / deltar™"
where:  deltar = 20/npoint)

¢ when the trial position has not violated any constraint, and less than
(nvar/3) variables are at their upper or lower bounds, increase refl:

refl = refl * deltar

The modified discrete Complex method (MDC) performs as well as the SDC
method for small problems (for the two-bar truss problem the true optimum is
found in as many analyses as in the standard discrete Complex method). For
large problems, on the other hand, there is a clear advantage; optimizations
from the user-given starting point arrive at optimum as good as those obtained
by the SDC method, in half the number of analyses required in the SDC
method. However, when the optimization is repeated from these optima, less
improvement is on the whole found with the MDC method.

Concluding, the two variants of the Complex method each have their
advantages and disadvantages; for small problems there is no difference in
performance between the SDC and MDC method. For larger problems the SDC
method can be described as thorough but slower, and the MDC method as fast
but less thorough.
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Organisation of SAPANO

The computer program SAPANO (which stands for ‘SAndwich Panel ANalysis
and Optimization’) is based on those aspects of the theoretical development in
parts 1 and 2 of this thesis relevant to flat, rectangular laminates and sandwich
panels. It is an interactive design tool to analyse and optimize such panels
under in-plane loads, considering material failure and stability. The program
COPANO (COrrugated Panel ANalysis and Optimization) on the other hand
combines the aspects relevant to corrugated panels. This chapter describes the
organisation of SAPANO and covers two optimization examples, while specific
instructions for use are given in a separate user’s manual ([Bladel94a]).

Figure 32 An example of a sandwich panel (in SAPANO also other materials
and loads can be used)
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Structural model in SAPANO

The structure, whether a laminate or sandwich panel, is considered to be flat,
rectangular and simply-supported on all four sides, as shown in Figure 32. Note
that the illustrated flattening of the edges (one of the possible methods of
fastening) agrees well with the assumption of simple-support. Both sandwich
panels and laminates are modelled as a stack of layers, each of a specific
material and with a thickness and orientation with respect to the panel axes
(both constant over the whole of the panel). In case of a sandwich panel one of
the layers near the middle is made of a light but flexible material, creating in
this way two distinct faces, separated by a core; typically this core layer
constitutes more than three quarters of the thickness of the panel. In this way a
high bending stiffness is obtained, but the relatively flexible core causes a
significant reduction in transverse shear stiffness. Therefore, analyses
incorporating transverse shear deformations are required (see chapters 3 and
4). The model in SAPANO is therefore defined by the size (length and width) of
the panel and its layup, i.e. the material, thickness and orientation of the
different layers. Different ways exist to model the layup; here the panel is
considered to be a stack of up to 20 different layers; every layer is of one (user-
defined) material and has a thickness and orientation with respect to the panel
axes. The user defines the number of different layers in the panel and assigns a
material to each of them. The orientation and thickness of every layer are then
the variables that can be used in the optimization to find the panel of least
mass (if the panel is symmetric, only half of the panel, up to the mid-plane, has
to be specified). In the program the thickness is given as a multiple of the
physical ply thickness of the material (this thickness is part of the data of the
material). Further data for one case are the (up to 10) load combinations, each
of which can have non-zero direct loads N,, N, and shear load N,,. Only in-
plane loads are considered.

When the panel is not symmetric it is possible to include the effect of the
eccentricity of the applied load. Then it is necessary, of course, to specify the
vertical position of the (in-plane) load at the edges. The loads are assumed to
act at the middle of a given layer of the laminate, see Figure 32. The
eccentricity is then given by the vertical difference between the position of the
applied load and the neutral axis in cylindrical bending in that direction. In this
way, as the thicknesses of the layers change during the optimization, the value
of the eccentricity will change accordingly.

Panel analysis in SAPANO
Once the case is suitably defined by the appropriate data, an analysis can be
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performed. The user can specify which aspects are to be examined, for example
whether or not buckling and eccentricity effects are to be included. Then, within
SAPANO, two different procedures for analysis are followed, depending on
whether a single analysis is done, or a series of analyses (during the
optimization). In the first procedure, all the aspects specified by the user are
examined while in the second case aspects are examined in order of increasing
complexity (and computer time) as long as no violations (i.e. non-compliance of
the panel to the user-specified requirements) are encountered. In this way the
first procedure provides a complete analysis of the panel, while the second
discards generated designs that are infeasible as soon as the panel violates a
requirement.

Every analysis begins with a calculation of the panel stiffnesses:
¢ the ABD-matrix is obtained by the classical laminate theory, as described
in paragraph 2.1.1;
¢ transverse shear stiffnesses S, and Syz (based on cylindrical bending) are
obtained from paragraph 3.1.2;
¢ if the panel is not symmetric, reduced bending stiffnesses D**ij are
calculated on the basis of cylindrical bending, see paragraph 2.1.2;
¢ if specified by the user, the bending stiffnesses of the individual faces of a
sandwich panel are calculated (as required in the wrinkling analysis (see
paragraph 4.3) and in the compression buckling analysis of paragraph 4.1).
Then various mechanical analyses are performed, as specified by the user,
beginning with material failure:
¢ for static failure, the modified Tsai-Hill stress criterion of paragraph 2.2.1
is adopted;
¢ impact damage is covered based on a fibre strain criterion, as described in
paragraph 2.2.2,
Next a number of buckling loads are calculated, if buckling is specified by the
user:
¢ wrinkling analysis (if a sandwich panel is defined, with a core and two
faces), as described in paragraph 4.3; the wrinkling load Py in x- and y-
direction is calculated, and for any given load case it is checked whether
wrinkling occurs;
¢ basic buckling loads p,, Py and q (i.e. when only one of these loads is
present):
¢ direct buckling loads p, and py, are calculated with the formula of
paragraph 4.1.1 (if required including face bending stiffnesses); the
effect of moderate anisotropy can also be included (see paragraph
2.3.1);
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¢ for buckling under shear loads, the formula of paragraph 2.3.2 is
combined with the knock-down factor of 3.3.1.
¢ if within any load case different loads are present, it is examined whether
buckling occurs for the following load combinations:
¢ combined p, and g;
¢ combined Py and q;
0 combined p, and Py
(combined p,, py and q cannot be analysed).
Finally, if required the stresses caused by the eccentricity are calculated, as
given in paragraph 4.2.

8.1.3 Optimization in SAPANO

Optimization in SAPANO is performed by the Complex method, as described in
paragraph 7.3. Recall that two alternative implementations are available; the
standard discrete Complex method (SDC) and the modified discrete Complex
method (MDC); the SDC can be described as thorough but slower, and the MDC
as fast but less thorough. Note that an initial feasible point is required to
initiate the optimization. All intermediate panels and the obtained optimum are
feasible (i.e. the optimization proceeds inside the bounds of the feasible region
of the design space).

The various calculations summarized in 8.1.2 can be selected by the user to be
included or excluded as constraints during optimization, together with some
geometrical constraints such as a user-specified minimum thickness for one or
more layers, or a maximum overall thickness for the panel as a whole.
Furthermore it is possible to add a condition by which the optimization process
prefers orthotropic panels.

8.2 Some optimization examples

Two examples will be given here, considering a specific laminate optimization
problem. They are presented here to show how such problems are modelled, the
convergence of the optimization and the typical number of analyses involved.
Furthermore, the results display characteristics that are typical of discrete
optimization,

The examples treat the optimization of fibre orientation of a long, laminated
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panel in compression, considering both buckling and material failure. On the
basis of netting theory it is known ([Rothwell69]) that at low loading the fibres
are best oriented at +45° with respect to the direction of the applied load, while
at high loading the optimum laminate contains only unidirectional material
(UD) aligned with the applied load (in the 0°-direction), see Figure 33. Note
that in both cases the laminate is balanced and orthotropic. The aim here is to
see whether SAPANO, which uses classical laminate theory and a discrete
optimization, reproduces these results. The panel dimensions are taken to be:

a = 5000. mm, b = 200. mm

representing a long laminated panel. Note that the compression buckling
analysis of SAPANO deals accurately with long panels (while the shear
buckling analysis is accurate only up to a/b=~5). Note also that the low
transverse shear stiffness of the laminate (important at high loading) is taken
into account in the buckling analysis. In [Rothwell69], this problem is modelled
as a homogeneous two-fibre system where UD fibres and fibres at +0 are
distributed uniformly through the thickness. In [Rothwell69] for low loads the
UD fraction in the laminate is zero and ¢=45°, while for high loads the UD
fraction increases to 100% as ¢ increases to 90°. In SAPANO it is not possible to
model this homogeneous layup, because different orientations are in different
layers, as in a real laminate. Furthermore, in the optimization in SAPANO only
¢ can vary, not +¢ together. Therefore layups are defined here with fizxed
orientation, (although in SAPANO it is possible to include the orientations as
variables in the optimization). The following two examples are drawn from this
case, showing the performance of SAPANO in both a large and a small problem.

a. low compressive loading b. high compressive loading

Figure 33 Optimum fibre orientation of long laminates in compression, from
netting theory
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The first (large) example is a 7-layer symmetric laminate, defined as follows:
[90°/+75°/+60°/+45°/+30°/x15°/0°]

where the ’s’ stands for ’symmetric’. The following materials and mechanical
properties are used:

Table 13 Material properties* for the laminate example
material CFRP UD CFRP x15° CFRP £30° CFRP +45°

E, MPa  145000. 113550. 40309. 12860.

E, MPa  7000. 7050. 7780. 12860.
Viy - 0.34 1.35 1.66 837
Gy  MPa  3500. 11880. 28640. 37020.
G,, MPa  3500. 3000. 3000. 2500.
G, MPa  1500. 2000. 2000. 2500.
o, MPa  1750. 1443 385. 159.
0  MPa  -1350. -1043. -304. -159.
o,  MPa 63. 67. 87. 159.
6y  MPa  -210. -182. -143. -159.
Ty  MPa 80. 266. 618. 785.

' for all used materials the discrete ply thickness is 0.1 mm and the density is 1.6 g/em®

This laminate can be realized with the materials of Table 13, by defining the
different layers as follows:

Table 14 Laminate definition for the 7-layer case
layer 1 2 3 4 5 6 7
CFRP CFRP CFRP CFRP CFRP CFRP CFRP
UD +15° +30° *+45° +30° +15° UD
orientation 90° 90° 90° 0° 0° 0° 0°

material

Although seven different orientations are included in the laminate it is expected
that the optimization will yield an optimum laminate with a high fraction of a
few orientations. At first, optimizations are performed for Nx= -2000.N/mm,
both with the standard discrete Complex method (SDC) and with the modified
discrete Complex (MDC). The starting point is:
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[90°) (/£75°, o/ +60°, /+45°1 (/£30°, /£15°) /0° 1,

Because the laminate is symmetric, it has 140 plies of material in total. When
the optimization is ended, it is restarted by the user, until SAPANO has
returned three times the same optimum. This process is repeated five times
from the starting point given above (note the random generation of points in the
Complex method). In this way it is nearly certain that the overall optimum will
be found. With the SDC method the following results are obtained:

Starting point [10/10/10/10/10/10/10] (the numbers indicate the number of plies
in that layer)
— [0/0/1/12/8/7/8], [idem}—>{idem] —[0/0/0/11/16/1/7.5], —>fidem]—[idem]—>[idem]

— [0/0/5/3/14/3/11.5] —lidem]—[idem] —[0/0/1/16/6/1/11. 5] —[0/0/0/21/3/2/9. 5] -
—[idem]—[idem]—[idem]

— [0/0/1/11/14/7/2.5]; —lidem]—[idem]—[idem]
— [0/0/1/11/6/9/9]) —lidem]—(idem]—[idem]
— [1/0/3/10/6/8/8.5] —[idem]—[idem] —[0/0/0/21/2/3/9.5]; —lidem]—[idem]—[idem]

In the optimization ‘history’ above the continued optimization from the last
obtained optimum (until the same optimum is obtained three times) is clearly
seen, as well as the five repeated optimizations from the same original starting
point. At first sight, the optimization does not seem to perform well, as many
different optima are found. However, many of these optima have the same
thickness and are therefore equally good. This is clear from the following
optimization record where the thickness of the optimum is given instead of its

layup:

Starting point [t=14.mm]
[t=7.2mm] —[idem]—[idem] —[t=7.1mm] —[idem]—(idem]—s[idem]
[t=7.3mm] —[idem]—[idem) —[t=7.1mm] —[t=7.1mm] —[idem]—[idem]—[idem]
[t=7.1mm] —[idem]—[idem]—s[idem]
[t=7.2mm] —[idem]—[idem]—[idem]
(t=7.3mm] —(idem]—>[idem] —[t=7.1mm] —{idem]—{idem]->{idem]
Not only do all the obtained final optima have a very similar efficiency, also
many different optimum laminates exist with the same thickness of 7.1 mm.

Furthermore it is clear that the first optimum (i.e. obtained after a single
SAPANO run), even if it is not as good as the final optimum (after repeated
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SAPANO runs until the same optimum is obtained three times), is already of a
good quality. A final optimization record of this case shows the number of
analyses required:

Starting point

— (843 analyses] —[327 a] —[284 a] —»[530 a] —5[294 a] —-[396 a] —[328 a]
— [787 a] —=[306 a] —[335 a] —[789 a] —[586 a] —[362 a] »[373 a] —[342 a]
[859 a] —[323 a] —[313 a] —[316 a]

— [975 a] —[292 a] —[352 a] —[321 a]

L [791 a] —[302 a] —[316 a] —[566 a] —»[318 al —[380 a] —[382 a]

Although many analyses are required, on a modern workstation this
optimization can still be performed interactively (typically within a minute).
Optimizing the same case again but using now the MDC method allows a
comparison of performance between SDC and MDC. Below, the optimum
thickness and number of analyses are compared for SDC and MDC, both for a
single SAPANO optimization and for the same continued optimization (i.e. until
the same optimum has been found three times):

Table 15 Performance’ of SDC and MDC optimization of a 7-layer laminate
for N,=-2000. N/mm

single'1t continued? single continued

SDC | SAPANO SAPANO MDC | SAPANO SAPANO
run run run run

topti 7.22 mm 7.12 mm topti 7.24 mm 7.22 mm
# an. 851 2738 # an. 568 1417

1 optimum thickness (topﬁ) and the number of analyses (# an.) are averages over five

optimizations from the starting point given by the user
’single’ means one SAPANO run from the user-given starting point; ’continued’ means
continuing the optimization until the same optimum is found three times

}

This confirms what was said about SDC and MDC in chapter 7: SDC can be
considered as thorough but slower while MDC is fast but less thorough.

The obtained optima with t=7.1 mm do not reproduce the results of
[Rothwell69]; here the results show only that layers with ¢<+45° are favoured
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(see the first optimization history). This is examined in the second (small)
example, with a 2-layer laminate, defined as follows:

[+0/0°]

The first such case, [£45°/0°];, gives for both SDC and MDC even after one
optimization run of SAPANO an optimum laminate thickness of t=7.1 mm (the
thickness of the global optimum). While the quality of the optima is the same,
the number of analyses still differs between SDC and MDC:

Table 16 SDC and MDC optimization of laminate [+45°/0°];
for N,=-2000. N/mm

single continued single continued

SDC | SAPANO SAPANO MDC | SAPANO SAPANO
run run run run
# an. 167 350 # an. 89 206

t average over three optimizations

Note that now only three (not five) optimizations are performed from the user-
given starting point, because the case is much simpler, and therefore the
optimization more reliable. Note also that from here on, only results of SDC
optimizations will be given (because of the smaller problem, here it is not
necessary to use the faster MDC method). The optimizations and extra analyses
show that a wide range of equivalent optima exist, all with a total laminate
thickness of t=7.1 mm; in fact, all laminates with between 10% and 44% of the
thickness made of UD material are equivalent optima. This confirms clearly
what was said in chapter 7, that many equivalent optima exist in this kind of
discrete optimization.

Optimizing other 2-layer laminates [+¢/0°]; shows that for a compressive
loading N,=-2000. N/mm the laminate with +45° gives the lowest optimum
thickness:

Table 17 Optimum thickness of different two-layer laminates
at a compressive loading of Nx=-2000. N/mm

laminate composition  [+30°/0°] [£45°/0°] [+60°/0°]

optimum thickness 7.5 mm 7.1 mm 7.6 mm
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Performing similar optimizations for other compressive loads gives the results
of Figure 34. In Table 18 the same results are given, with a column added with
the percentage of UD-material in the optimum laminate:

40
Nx=-50000. N/mm
E 30 -32000. N/mm
0 \
@ -25000. N/mm t +
c
X ] *\,_____’——+
S 20>
L
= \_’/,_4-16000. N/mm
g
£ - ———"=-8000. N/mm
g 107 -2000. N/mm
——m
} —+-500. N/mm
o L 1 I
30 45 60 75 90

orientation of outside layer [deg]

Figure 34 Optimum total thickness and orientation ¢ of two-layer laminates
[£6,0°], for different loads
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Table 18 Optimum thickness (in mm) of two-layer laminates
for various compressive loads

compressive orientation +¢° of outside layer % 0° in
loading N in [+¢°/0°] laminate optimum
[N/mm] laminate

+30° +45° +60° +75° +90°

-500. 4.7 4.4 4.7 0-41 %
-1000. 5.9 5.6 6.0 4-46 %
-2000. 75 7.1 7.6 10-44 %
-4000. 9.5 9.0 9.7 22-27 %
-8000. 12.5 11.8 13. 37-49 %
-16000. 21.9 15.8 16.6 62-66 %
-25000. 22.8 20.8 21.2 88 %
-32000. 28.2 24.9 24.6 24.5 98 %

-50000. 37.1 37.1 100 %

T boldface indicates the optimum (minimum) thickness

These results partially confirm the statement of [Rothwell69]; at high
compressive loading the UD-fraction in the laminate is indeed dominant, at low
loading the +¢ fraction. However, in this optimization there is only a small
intermediate region where ¢ increases from +45° to 90°.

A special property of the discrete optimization is the presence of many
alternative optima. In other words the optimum thickness is often only weakly
dependent on the layup. A general conclusion that can be drawn from this is
that when the discrete thickness of the material is taken into account, ’simple’
laminates (for example with the fibres only at 0°, £45° and 90°) will often yield
just as good results as more complex laminates (with many different
orientations). Hence a designer may often limit his design to relatively few
orientations, without much deterioration of the quality of the optimum.
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Organisation of COPANO

This chapter describes how various aspects of parts 1 and 2 of this thesis are
combined in the computer program COPANO (which stands for COrrugated
Panel ANalysis and Optimization). The first paragraph describes the
organisation of COPANO and the second presents an optimization example.
Instructions for use can be found in a separate user’s manual ([Bladel94b]). The
computer program COPANO is based on those aspects of the theoretical
development in parts 1 and 2 of this thesis relevant to composite corrugated
panels. It is an interactive design tool to analyse and optimize long corrugated
panels under in-plane loads. The shear buckling analysis (based on the results
of chapter 5) has received special attention.

Figure 35 A typical corrugated panel of COPANO
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Structural model in COPANO

The subject of the program is a corrugated panel with flat faces (recall that the
term face is used here to denote the separate flat surfaces of the panel), as
drawn in Figure 35. It is modelled as a long panel, hence the height h is the
only relevant overall dimension. The corrugated cross-section is defined by the
widths b; and b, of the two faces, and by the angle B between them. Both faces
are made of the same laminate of up to 20 layers, defined in the same way as in
SAPANO:; each layer is made of one (user-defined) material and has a thickness
and an orientation with respect to the panel axes. Here the term laminate is
used, although it is of course possible to use only one layer of isotropic material.
In COPANO, as in SAPANO, the laminate can be symmetric with respect to its
mid-plane. The orientation and thickness of the layers are the laminate
variables (next to the corrugation variables by, b, and B) that can be used in an
optimization to find a panel of least mass (if the panel is symmetric, only half of
the layup, up to the mid-plane, has to be specified). Further data for one case
are the (up to 10) load combinations, each of which can have non-zero direct
loads Ny, Ny and a shear load N,,. Only in-plane loads are considered. Note
that for the stress analysis all three in-plane loads are considered, while for
buckling only N, and N, are considered.

Corrugated panel analysis in COPANO

Once the case is suitably defined by the appropriate data, an analysis can be
performed. As in SAPANO, two different procedures for analysis are followed,
depending on whether a single analysis is to be done, or a series of analyses
(during the optimization). In the first procedure, all the aspects specified by the
user are examined, while in the second case aspects are examined in order of
increasing complexity (and computer time) as long as no violations (i.e. non-
compliance of the panel to the user-specified requirements) are encountered. In
this way the first procedure provides a complete analysis of the panel, while the
second discards infeasible designs as soon as the panel violates a requirement.

Every analysis begins with a calculation of the panel stiffnesses:
¢ the ABD-matrix of the laminate is obtained by classical laminate theory,
as described in paragraph 2.1.1;
¢ if the panel is not symmetric, reduced bending stiffnesses D**ij are
calculated based on cylindrical bending, see paragraph 2.1.2;
¢ the overall corrugated panel stiffness D;, Dy and Dy, (to be used in the
overall buckling analyses) are obtained from the formulae of paragraph
5.1.
Then various analyses are performed, as specified by the user, beginning with
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material failure:

¢ for static failure, the modified Tsai-Hill stress criterion of paragraph 2.2.1
is adopted;

¢ impact damage is covered on the basis of a fibre strain criterion, as
described in paragraph 2.2.2,

Next-a number of buckling loads are calculated, if specified by the user and
depending on which analysis procedure is being followed (i.e. one single analysis
or an analysis during the optimization). Because of the corrugated shape, both
local and overall buckling analyses are performed, for compression and shear
loads. The shear buckling analyses (performed when ny;tO.) are taken directly
from paragraphs 5.1 and 5.2 of this thesis. For compression buckling (performed
when N, <0.), the case is somewhat more complex:

+ first, local buckling analyses are performed on the faces separately, giving
buckling loads p,;; and p,,. Contrary to the local buckling analysis in
shear, here the faces are considered separately (i.e. with no interaction
between adjacent faces) and transverse shear effects are included;

¢ an overall compression buckling load p,, is calculated, for which the panel
is considered as a wide cclumn, buckling in an overall "Euler’ mode.

Interaction between compression and shear buckling is analysed by means of
the parabolic interaction formula, as discussed in paragraphs 3.4 and 5.4. Recall
that paragraph 5.4 (on the interaction between overall compression and shear
buckling) concludes that the formula is up to 10% conservative. For the local
buckling mode, in principle the formula behaves well. However, the local
compression and shear buckling modes considered here are not entirely similar;
in compression the two faces are considered separately, while in shear two
linked faces are considered. Still, the adopted formula is a good compromise
between accuracy and simplicity.

Mode interaction of local and overall shear buckling, as discussed in chapter 5,
can be checked by the stiffness parameter derived in paragraph 5.3; its value
indicates whether interaction will occur.

Optimization in COPANO

Optimization in COPANO is performed by the Complex method, as described in
paragraph 7.3. At the moment only the standard discrete Complex method
(SDC) is available in COPANOQ. Note that an initial feasible point is required to
initiate an optimization. All intermediate panels and the obtained optimum are
feasible (i.e. the optimization proceeds inside the bounds of the feasible region
of the design space).

The user can select the different calculations summarized in paragraph 9.1.2 to
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be included or excluded as constraints during optimization, as well as a number
of geometrical constraints such as a user-specified minimum thickness for one
or more layers, or a maximum overall thickness for the panel as a whole.
Furthermore it is possible to add a condition by which the optimization process
prefers orthotropic panels.

An optimization example

Optimization in COPANO happens in much the same way as in SAPANO.
However, the Complex method has more difficulty in finding the optimum in
COPANO than it has in SAPANO. The average number of analyses required to
find a feasible point is greater here, and more often the optimization stops at a
local minimum. As an example, here the detail results of the optimization of the
second corrugated panel case of chapter 10 are given. The following materials

are used:
Table 19 Composite material data
E, E, Vyy Gyy T P , t
[MPa] [MPa] (-] [MPa] [MPa] [g/cm°] [mm]
CFRP %45° 11092. 11092. 79 24757. 566. 1.60 .23
CFRP 0° 145000. 7000. .34 3500. 80. 1.60 .20

The corrugated panel has a height of h=1000.mm; it is made of a CFRP
laminate [+45°/0°]); and is loaded by a shear loading ¢=50. N/mm. The
optimization proceeds as follows:

Starting point: laminate [+45°;/0°5], face widths b;=by=100.mm,
corrugation angle $=90°, mass m=1.376 g/cm?

— [m=.153] —[idem]—[idem]—[idem]

— [m=.174] —[idem]—[idem]—[idem]

— [m=.154] -»[m=.153] —[idem]-J[idem])—[idem)

— [m=.174] -[m=.174] -[m=.153] - [idem]—[idem]—[idem]

— [m=.204] —>[idem]—[idem]—[idem]
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The following intermediate optima are found in the process:
Starting point [5/5/100./100./90.1"

— [1/1/39./52./35.] —[idem]—[idem]—{idem]
— [1/1.5/57./66./18.] —[idem]—[idem]—[idem]
— [1/1/38./52./35.] —[1/1/39./52./35.] —[idem]—[idem]—[idem]

— [1/1.5/66./56./21.1-[1/1.5/567./66./18.] >[idem]—[1/1/39./52./35.]
—fidem]—lidem] —{idem]

— [1/2/82./73./12.] —[idem] —[idem] —[idem]

Contrary to the SAPANO results, here the different end results are not equally
good, but are local optima with different performance. Other aspects of the
optimization are similar to those of the optimization in SAPANO, and are
therefore not covered here.

In summary, COPANO is very much like SAPANO (user interface, elements of
the analysis), but the optimization process requires more effort from the user.

T [5/5/100./100./90.] is a condensed representation of the panel; first the symmetric
laminate is described (on every half of the laminate: 5 plies of +45° material, then 5 plies
of 0° material); then the corrugation shape is given (face widths b,=100 mm, by=100
mm, corrugation angle $=90°).
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Efficiency of Optimum Panels

10.1

This chapter presents some results obtained with the computer programs
SAPANO and COPANO, described in part 3 of this thesis. It must be noted that
these results are not intended to show the limits of the developed software, but
rather to present some interesting aspects of the design of sandwich panels and
corrugated panels by comparing optimum panels designed with the computer
programs with those obtained in chapter 6. In chapter 6 the design was done in
an analytical way, which made it necessary to neglect some practical aspects
essential to the real problem, that have been included in the programs
SAPANO and COPANO.

Optimum sandwich panels under compression

The performance of optimum sandwich panels designed as in chapter 6 will
always serve as an upper limit for the performance of optimum panels obtained
with SAPANO, for two reasons: first, in chapter 6 the transverse shear effect is
excluded; furthermore, the thicknesses of optimum panels of chapter 6 are
continuous, not discrete values (note that by a suitable material definition it is
possible to reproduce the analytical results with SAPANO, applying very high
transverse shear stiffnesses G, and Gyz, and very small discrete material
thicknesses).

A first interesting comparison is the effect of transverse shear on the efficiency,
which is given in Figure 36. The dotted line represents the optimum design of
chapter 6, while the full line shows the performance of the optimum sandwich
panel designed with SAPANO, using normal transverse shear stiffnesses and a
very small material thickness (of course, for best comparison, here eccentricity
effects and face bending effects are excluded in the SAPANO design, leaving
only material failure and buckling as constraints; later in this chapter these are
included). The following data (elaborated from the material data of chapter 6)
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are used for the CFRP 0°-90° material:

Table 20 Composite material data
E, Ey Viy ny ny ny Oy t

[MPa] [MPa] (-] [MPa] [MPa] [MPa] [MPa] [mm)]
CFRP 0°-90° 76350. 76350. .031 3497. 2500. 2500. -304. .10

Then:

E; = EX2 = 76430.MPa
1 ~Viy

Note how in Figure 36 the difference between the two curves increases as the
load is increased, showing an increasing transverse shear effect for higher
loadings. Nevertheless, for this type of panel the effect remains small, even if at
the edge of the graph (at Nx/b=4.N/mm?) the optimum design of SAPANO
buckles in a transverse shear mode, with p,=S , (hence with a pronounced
influence of transverse shear). Also in Figure 36 the performance of sandwich
panels with true discrete material thicknesses is drawn, showing a ’sawtooth’
curve. The sawtooth appears because when the loading is increased, at a certain
point the stress in the faces causes material failure, and an extra ply of

Square | Ll
CFRP 0°-90°
sandwich
panel
— ~—— Small ply
g thickness
E ~ - - Standard ply
® thickness
100 —— low bound
----- Analytical
solution
7/
50 PR R R | " n " L s 1
0.05 0.1 1 10

Nx/b [Mpal

Figure 36 Efficiency of optimum sandwich panels in compression
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material has to be added (to each face, because the panel is symmetric). The
increased face thickness gives an increased out-of-plane stiffness, and therefore
the core thickness can be decreased. Still, there remains a net increase in mass
of the panel, and an associated decrease in equivalent stress ¢”. Even when the
face thickness is constant (eg. for Nx/b=0.12) the sawtooth has no straight
segments, because the core also has a discrete material thickness, of 1.mm (of
course, for a honeycomb core material physically there is no such discrete
material thickness, this is simply the procedure of SAPANQO). Note that now,
with the introduction of the discrete thickness, the graph is no longer generic,
but applies only to panels with b=500.mm.

In chapter 6 for some (low) values of Nx/b sandwich panels with minimum face
and core thickness (so called fully stressed designs’) were heavier than panels
designed for maximum buckling load (neglecting the stress in the faces). This
effect is not present here because it applies only to the region below Nx/b=0.1,
and the face thickness (see Figure 26) of the associated optimum panels (as
given in chapter 6) is always below 1.mm, the thickness of one ply of material.
Figure 37 shows the composition of the discrete optimum panels of Figure 36;
the double sawtooth is clearly visible.

20 1.00
16 10.80
/0 tC /1
// | oL,
- ! / I
— 12 f L7 10.60 —_
£ A E
E . v £
2 b
- 8 L . 040
Square
tf CFRP 0°-90°
sandwich
4 - panel 10.20
b=500.mm
0o ———— : R 0.00
0.05 0.1 1

Nx/b [Mpal]

Figure 37 Optimum sandwich panels in compression
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When the effect of face bending is included, for small loadings (up to
Nx/b~3.N/mm?) the optimum design is equal to that without face bending. For
higher loads only a small difference is found. This effect will increase, but for
Nx/b>23. N/mm? a massive CFRP plate performs best; of course at this stage
the faces are no longer present. Note that in other cases the effect of face
bending may be much more pronounced.

When the loading is applied at a face, the effect of eccentricity does have a
significant influence on the performance of optimum sandwich panels, as can be
judged from Figure 38. Although a discrete material thickness is used, the
sawtooth is different because the optimum panel is now not designed by
coincident buckling and material failure, but only on the basis of the
eccentricity. This means that, because of the eccentric loading and the
consequent out-of-plane deformation of the panel, the optimum panel always
has the maximum allowable stress at the top or bottom surface. Figure 39
shows the composition of the optimum panel. Note that the panel is definitely
asymmetric; the thickness of the face where the load is applied (face 1)
increases much more than that of face 2 as the load is increased. In this way
the neutral axis remains near to face 1, limiting the eccentricity.

Up to now, because of the comparison with the analytical results of chapter 6,

Square
CFRP 0" -90°
sandwich —
panel /-/’/
b=500.mm —
.~
-
‘" e
Q. . — Small ply
E. thickness
b — — Normal ply
100 thickness
I —— low bound
of sawtooth
—- Eocentricity
A / included
so Ll N
0.05 0.1 1 10
Nx/b [Mpa)

Figure 38 Efficiency of optimum sandwich panels, including the effect of
eccentric loading
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the faces of the sandwich panel have been of simple composition (0°-90° CFRP
material). However, by combining different materials in the faces a more
realistic sandwich panel can he obtained, with a much better performance. For
example, the following layup could be used:

[£45°/0°/core/+45°]

where the compressive loading is considered to be applied at the 0°-layer. This
is a typical asymmetric panel, where the second face carries little loading and
only provides out-of-plane stiffness against buckling. For a loading of
Nx=-500.N/mm (i.e. at Nx/b=1.) the following panel is optimum:

[3*0.1 mm / 5*0.1 mm / 28*1. mm / 2*0.1 mm)]

This panel has a greater efficiency than the one with only 0°-90° material in the
faces, as Table 21 shows, comparing all optimum panels at Nx/b=1. N/mm?2. The
table shows ’reserve factors’ (a reserve factor is the ratio between the failure
load and the applied load) for the various constraints.

80 7.50
//
/
Square )
sandwich panel ’
60 - with eccentric )
load introduction ) 15.00
E b=500.mm . E
E 40! £
) b=
1250
20 r
P ———— . s 0.00
0.05 0.1 1

Nx/b [Mpal

Figure 39 Composition of optimum sandwich panel, including eccentricity
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Table 21 Optimum panels at Nx=-500.N/mm, a=b=500.mm

constraint value

Case t’ o’
[mm] [N/mm?] TeS factor res factor res factor
in-plane  buckling eccentric
[0°-90"/c0re]S (no TS) 2.03 247. 1.00 1.00 -
(continuous thickness)
[O"-‘.~)O°/(:01re]S 2.14 234. 1.00 1.00 -
(continuous thickness)
[0°-90°/core] 2.28 219. 1.09 1.07 -
(discrete thickness)
[0°-90°/core/0°-90°] 2.89 173. 1.16 2.59 1.0005
(discrete thickness)
[+45°/0°/core/+45°] 1.84 272. 1.72 1.66 1.07
(discrete thickness)
thickness o’ [MPa]
[mm] 60 s 300
0’ ’/“ -
50 é\\*\ 7‘1 . 50
40 C
}-
150
30 -
™ 100
20 i
face2 719 50
core u
face 1 )
0
Case no continuous | discrete discrete UD face realistic
transverse | thickness thickness | thickness | (notin panel
shear Table 21)
face layup | 0°-90° 0°-90° 0°-90° 0°-90° 0° realistic
eccentricity | no no no yes yes yes

Figure 40 Composition of optimum sandwich panels for Nx =-500.N/mm
(a=b=500.mm)
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Note that in the third case of Table 21 the reserve factor cannot be less than
1.07 or 1.09, because of the discrete thickness. The table shows that eccentricity
is an important constraint, as it alone defines the optimum panel (the reserve
factors of the other constraints are much higher than 1.00). In Figure 40 these
results can be visualized, the composition of the different optimum panels and
the equivalent stress ¢” of that panel being given.

Optimum corrugated panels under shear

With COPANO the performance of the optimum corrugated panels, obtained in
chapter 6 can be verified. Using the same CFRP +45° material and using for the
present a continuous thickness, the result of Figure 41 is obtained. The
continuous line is associated with the analytical result of chapter 6, assuming
an efficiency n=1.73 (the maximum value that can be obtained with an isotropic
material according to [Rothwell85], see chapter 6). The difference between the
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Figure 41 Optimum corrugated panels; comparison of analytical results of
chapter 6 with optima of COPANO with continuous thickness
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analytical and numerical result is not due (as in the previous paragraph) to
differences in mechanical analysis, but only to approximations in Equation
(114). First, the assumed efficiency n=1.73 is only valid for isotropic materials.
Also, the power 8/15 (or .833) of ¢/h in (114) is only an approximation, as was
pointed out in chapter 6.

The optimum panels of COPANO given in Figure 41 have a continuous
thickness. When a discrete thickness is used, the results no longer form a
straight line, as Figure 42 shows. However, there is no ’sawtooth’ in the graph,
like the graphs of the previous paragraph had; for every discrete thickness, the
equivalent shear stress 1’ forms a curve that in one point touches that of the
optimum panel with continuous thickness. Another difference compared with
the sandwich panel result is that, for increasing loading g/h, at the point where
adding a layer to the laminate increases the equivalent shear stress 1" material
failure is not active; this constraint only becomes active at much higher loads.
The active constraints for all optimum designs of which the performance is
plotted in Figure 42 are local and overall buckling.

At two loads (g/h=.05 and q/h=3.0) optimum panels are obtained for a more
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Figure 42 Effect of discrete ply thickness on the performance of optimum
corrugated panels
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realistic laminate, where 0° material is added to resist possible crushing loads:
[+45°/0°]

For a further comparison, a third case is examined in which the 2-layer

laminate should have at least 60% of the +45° material. Table 22 compares the

optimum panels and the resulting performance:

Table 22 Optimum corrugated panels (h=1000.mm)

g/h case n, 450 noof b; b, 0 T

[N/mm?] [mm] [mm] [deg] [N/mm?]
+45° 5 - 66. 82. 40. 37.9
050 [£45°/0°] 2 2 39. 52. 35 52.3
[:45"/0"]S 4 1 69. 75. 23. 42.8

min 60% +45°
+45° 32 - 144, 168. 42. 351.
3.0 [:4t5°/0°]S 24 5 124. 137. 34. 419.
[J_r45°/0°]S 24 5 124, 137. 34. 419,

min 60% +45°

T when the laminate has 2 layers, the 0° layer is at the centre of the symmetric laminate
and is therefore the only layer that can have an odd number of material plies. Note that
the number of plies is given for the whole of the laminate.

The table shows clearly that the optimum designs are very different to each
other; COPANO uses all the variables to obtain the best possible design. Figure
43 shows the performance of these two new cases compared to that of the
optimum corrugated panel made of only +45° material. At g/h=.050 the
introduction of 0° material in the laminate increases 1’ by 38%. The subsequent
constraint, on a minimum +45° content of 60%, reduces the gain to 13%, which
is still significant. At g/h=3.0 the introduction of 0° CFRP increases 1’ by 19%
in both cases (the constraint to have at least 60% +45° is not active). Note that
the stiffness parameter, defined in Equation (88) of chapter 5 to prevent
interaction of the local and overall buckling modes, is not used in the
optimization because it is not validated yet for composite materials (the
optimum panels for q/h=0.05 all satisfy the constraint SP>1500., the optimum
panels at g/h=3.0 do not).



138 CHAPTER 10

In Figure 43 at the high end of the load range there is a change in the slope of
the curve for the optimum panel made of only +45° material; there the material
failure constraint becomes active, that limits 1’ to its maximum value equal to
the maximum shear stress of the material.
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Figure 43 Performance of optimum corrugated panels
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Conclusions

A number of general conclusions can be drawn with regard to various aspects of
the work.

In the first part of the thesis various formulae have been presented, mainly on
the stability analysis of composite panels. These are used in the design software
developed in this work but are, of course, useful in their own right as well. They
do not extend the level of accuracy of existing analysis methods; rather, they
have the specific accuracy required in a design environment. Other products of
this research are the two computer programs that have been developed,
SAPANO and COPANO, for sandwich panels and corrugated panels
respectively. Only a few applications of the programs are given in this thesis,
but they are shown to be valid tools for the designer. They have, for example,
allowed the author to generate very quickly the efficiency charts presented in
this thesis.

In a computer program for use in design with composite materials an
optimization method to guide the user towards panels with low mass is an
essential feature. First of all this is because the design of composite panels can
involve a large number of design variables. Even the optimization of the
relatively simple layup [+45°/0°core/+45°] of the sandwich panel of chapter 10
is probably beyond the reach cf a designer without such a tool. An optimization
method using discrete variables is employed. The primary benefit of using
discrete variables is that results of direct practical use are obtained. An
interesting feature of the design of composite panels, especially laminates, with
discrete variables is the occurrence of many equivalent optima. This allows the
user to select from a set of optima, with his own (subjective) constraints. Or the
designer can at the outset start with a simple layup, knowing that the
performance will in many cases differ little from that of a sophisticated layup.

Of course there are limitaticns to SAPANO and COPANO; some of these
limitations can be removed by continued research leading to further
development of the programs; for example, the use of curved panels in
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SAPANO, or the use of the full ABD-matrix in the buckling analysis and in the
eccentricity analysis. Further verification of the mode interaction in the
corrugated panel buckling analysis is also required, especially for composite
materials. Such improvements would certainly expand the capability of the
programs. Other limitations are more difficult to overcome; for example,
production requirements of the optimum designs are certain to introduce
penalties (consider the additional material near the flattened edges of a
sandwich panel and at the edges of a corrugated panel). But these are aspects
that will always fall outside the scope of design tools for the first stage of the
design process to assist the designer to make an initial design. In the later
stages of design SAPANO and COPANO can be useful as well, because they can
easily modify the panel at the level of the layup (having the orientations and
thicknesses of the separate layers as variables), a feature that the computer
codes currently used in those stages (i.e. finite element codes) generally lack.

The concept of a design program has been at the root of this research, where
including all relevant types of analysis of the problem at hand coupled with an
optimization procedure is more important than the highest degree of accuracy of
the analyses. The success of this concept will ultimately be judged by the use
made of the developed programs, and the extent to which their development can
be continued to meet the changing needs of the designer.
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Samenvatting

Dit proefschrift is een van de resultaten van onderzoek op het gebied van de
synthese (het ontwerpen) van constructies. Bij gegeven randvoorwaarden moet dan
een ohtwerp, een constructie gegenereerd worden. Dit vraagt een gedegen kennis
van de analyse (het gedrag van de constructie), maar deze kennis is niet het doel
van het onderzoek. De kennis wordt foegepast om nieuwe constructies te
ontwikkelen bij gegeven randvoorwaarden. De concrete omgeving van het werk is
het begin van het ontwerptraject, wanneer alleen nog de randvoorwaarden voor de
constructie (belastingen, globale afmetingen) bekend zijn, terwijl de vorm van de
constructie en de te gebruiken materialen nog bepaald moeten worden. In het
bijzonder is de aandacht gegaan naar composietconstructies, omdat deze in
toenemende mate gebruikt worden in lucht- en ruimtevaart. Met deze materialen
kunnen constructies in het algemeen lichter gemaakt worden, en bevatten zij een
kleiner aantal onderdelen. Composietmaterialen in lucht- en ruimtevaart zijn
echter niet homogeen (het zijn vezels ingebed in hars) en ze zijn anisotroop (d.w.z.
met verschillende eigenschappen in verschillende richtingen). Hierdoor wordt de
analyse van deze constructies veel moeilijker. Bovendien is ook het ontwerpen
moeilijker, omdat er veel meer vrijheden zijn in een composietconstructie. Niet
alleen de uitwendige vorm, maar ook de samenstelling van het paneel zelf (ligging
van de vezels in de verschillende delen van de constructie) moet bepaald worden.

Als concrete onderwerpen van het onderzoek zijn twee types composietpanelen
gekozen die samen het dragende deel van een vleugeldoos kunnen vormen, een
sandwichpaneel als normaalkrachtdragende constructie voor de boven- en
onderhuid (met een gladde buitenkant blootgesteld aan de luchtstroming) en een
gegolfde liggerlijfplaat die met name schuifbelasting draagt voor de voor- en
achterligger van de doosconstructie in de vleugel.

De ontwikkelde computerprogramma’s SAPANO* en COPANO?* zijn, naast dit
proefschrift, twee tastbare resultaten van het verrichte onderzoek. In deze
programmatuur bestaat een zorgvuldig evenwicht tussen het analytische deel en
het synthetische deel. De analyse moet de essentiéle aspecten van het mechanische
gedrag beschrijven, maar mag niet zo uitgebreid zijn dat detailinformatie
overheerst. Het doel is immers een goed eerste ontwerp te genereren. Van de
andere kant ondersteunen de programma’s de ontwerptaak, allereerst door een

¥ SAPANO betekent SAndwich Panel AN alysis and Optimization; COPANO staat voor COrrugated
Panel ANalysis and Optimization.
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lage gebruiksdrempel zodat een ontwerper gemakkelijk de verschillende
randvoorwaarden kan wijzigen om inzicht te krijgen in het probleem. Tevens is er
een numerieke optimalisatiemethode in de programma’s aanwezig, omdat het
bepalen van het lichtste paneel door het grote aantal vrijheden al gauw buiten het
bereik van een menselijke ontwerper ligt.

Deze aandacht voor een evenwicht tussen analyse en synthese heeft niet tot gevolg
gehad dat enkel modellen en resultaten uit de literatuur zijn overgenomen. Veel
bestaande modellen zijn uitgebreid of aangepast voor composieten. Dit proefschrift
kan beschouwd worden als de theoretische handleiding bij deze programma’s (voor
het gebruik van SAPANO en COPANO bestaan aparte handleidingen, zie
[Bladel94a] en [Bladel94b]). Toch zijn de ontwikkelde formules niet alleen van
belang voor gebruikers van de programma’s, maar zijn zij ook op zichzelf
interessant.

Het eerste deel van dit proefschrift beschrijft het analytische deel van de
ontwikkelde programmatuur, met formules voor het bezwijken en voor
verschillende vormen van instabiliteit (knik) van de panelen. Steeds wordt de
constructie als een vlak laminaat (stapeling van laagjes met verschillende
eigenschappen) beschouwd. Het mechanische gedrag wordt beschreven met een
model van de eerste orde (Reissner-Mindlin-Bollé). In het tweede deel van het
proefschrift wordt de synthese van composietconstructies onderzocht. Het eerste
hoofdstuk van dit deel bevat formules voor de efficiéntie van optimale
sandwichpanelen en gegolfde platen, op basis van de analyse beschreven in het
eerste deel. Het tweede hoofdstuk in dit deel beschrijft een numerieke
optimalisatiemethode om met behulp van de computer dit zoekproces naar het
optimale paneel uit te voeren. Een grote moeilijkheid bij dit zoekproces is dat
composietconstructies een discreet optimalisatieprobleem opleveren. De dikte van
de verschillende lagen in het paneel kan niet elke willekeurige waarde aannemen,
maar enkel een waarde die een veelvoud is van de dikte van het materiaal. Twee
concrete resultaten van het onderzoek, beschreven in het derde deel van het
proefschrift, zijn de computerprogramma’s SAPANQO (voor laminaten en
sandwichpanelen) en COPANO (voor gegolfde platen). In het vierde deel worden
met SAPANO en COPANO een aantal panelen ontworpen. Vergeleken met de
panelen ontwikkeld volgens de formules uit het tweede deel van het proefschrift
zijn de panelen van de computerprogramma’s van grotere waarde, omdat ze meer
rekening houden met de concrete randvoorwaarden van het ontwerpprobleem
(discrete dikte, accuratere analyse).



Curriculum Vitae

Patrick van Bladel was born in Deurne, near Antwerp (Belgium) on November
30th, 1963. In 1981 he graduated from pre-university education (hAumaniora,
wiskundige richting) at the St. Xaverisucollege in Borgerhout, near Antwerp. From
1981 to 1987, together with the last group of students that received the five-year
course, he studied Aerospace Engineering at the Delft University of Technology,
the Netherlands. His final project for the Master’s degree (ingenieurstitel) was
carried out at the Structures’ group, under supervision of prof.dr. A. Rothwell. This
project later proved to be a first step towards the PhD thesis, that was started in
1987, as AIO (assistent in opleiding) in this same Group, again under supervision
of prof.dr. A. Rothwell. The preparation of this thesis was interrupted twice, for a
period of work and study at the International Centre Mystici Corporis in Loppiano,
near Florence (italy) and for health reasons. The author has presented the results
of his research work as author and co-author of papers, reports and presentations
at several international conferences. Favourite pastimes are water sports and
reading, but most of all collaborating to the Focolare Movement’s activities
promoting solidarity and unity.



Published Papers

Een programma voor optimalisatie van vezelversterkte sandwichpanelen SAPANO,
Master's thesis?, June 1987

Calculation of the loads on the composite wing of a 105 passenger transport
aircraft, P.G. van Bladel, LR} memorandum M-595, April 1988

Review of formulae for the buckling of simply-supported, orthotropic plates under
shear load, including transverse shear effects, P.G. van Bladel, LR? report
LR-571, November 1988

Discrete variable structural optimization by the complex method, P.G. van Bladel,
LR* report LR-597, June 1989

A suitable transverse shear stiffness definition for buckling of laminates and
sandwich plates, P.G. van Bladel, LR} Report LR-603, July 1989

The effect of eccentricities on sandwich plates under in-plane loads, P.G. van
Bladel, LR* Memorandum M-612, August 1989

Optimization of composite structures, an engineering application, P.G. van Bladel,
conference paper, ICOTA’92 Singapore, proceedings p. 850-858

Formulae for the buckling of simply-supported corrugated panels of orthotropic
material, P.G. van Bladel, LR? report LR-716, March 1993

Computerized design of fibre composite panels for aerospace applications, P.G. van
Bladel, conference paper, XI Polish conference on computer methods in
mechanics, 1993, proceedings

User’s manual of the computer program SAPANO, version 3.0, P.G. van Bladel,
LR* memorandum M-696, January 1995

User’s manual of the computer program COPANO, version 2.4, P.G. van Bladel,
LR* memorandum M-697, January 1995

In preparation:
SAPANO: A computer program for the optimization of laminated composite
sandwich panels, P.G. van Bladel and A. Rothwell

i Delft University of Technology, Faculty of Aerospace Engineering



