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Quantitative Analysis of 3D Cranial Morphology in Craniosynostosis Using
Photogrammetry

Abstract

Subjective assessment of craniosynostosis severity of-
ten leads to inconsistent treatment outcomes. This study
introduces and evaluates innovative quantitative methods,
including distance-based, spectral, shape descriptor, and
deep learning view-based approaches, to objectively assess
the severity of sagittal craniosynostosis. The effectiveness
of these quantitative scores is determined by their correla-
tion with expert clinical ratings, with the goal of improv-
ing the consistency and accuracy of severity evaluations.
Furthermore, we applied the methods developed with syn-
thetic data to real clinical datasets, focusing on pre- and
post-surgery severity assessments. This study showcases
how our quantitative approach effectively guides and opti-
mizes surgical treatments, underscoring its potential utility
in clinical practice.

1. Introduction

1.1. Background

Craniosynostosis is a congenital condition characterized
by the early fusion of one or more cranial sutures, the nar-
row seams of undifferentiated mesenchyme between the
bones of the skull [32]. This premature closure results in
an abnormal head shape due to restricted growth perpen-
dicular to the fused suture and compensatory overgrowth
at the non-fused sutures [27]. Various sutures can be af-
fected, including the sagittal, coronal, metopic, and lamb-
doid sutures, leading to distinct head shapes: scaphocephaly
(long and narrow head), trigonocephaly (triangular fore-
head), brachycephaly (broad and flattened head), and pla-
giocephaly (skewed head) [18], the classification of cran-
iosynostosis is shown in Figure 1. Scaphocephaly, also
known as sagittal craniosynostosis, is the most prevalent
subtype among all craniosynostosis cases, accounting for
44% of instances [20]. This condition occurs in approxi-
mately one in every 2100 live births [33, 70], often mani-
festing as cranial malformation within the first year of life.

Craniosynostosis occurs across all racial groups, with
over 85% of cases being non-syndromic, an isolated

Figure 1. Classification of craniosynostosis. Adapted from [34].

anomaly [52]. Non-syndromic craniosynostosis is thought
to have a strong genetic component, potentially involving
gene–gene or gene–environment interactions that have yet
to be fully identified [15]. This study focuses on the most
prevalent subtype, non-syndromic sagittal synostosis.

Craniosynostosis can cause elevated intracranial pres-
sure (ICP) [19], leading to headaches, irritability, vomit-
ing, and brain damage in severe cases, which can result
in cognitive and developmental delays [19]. The abnormal
skull shape can also cause vision problems such as strabis-
mus, optic nerve compression, and exposure keratitis [35],
as well as conductive hearing loss due to structural abnor-
malities in the ear. Additionally, abnormal facial and skull
development can lead to obstructive sleep apnea and other
breathing difficulties, necessitating interventions like CPAP
support or surgery [39].

3D photography, or 3D photogrammetry, captures the
three-dimensional shape of objects by taking multiple 2D
photos from different angles and creating a detailed 3D
model with specialized software [1]. This technology is
used in medicine, engineering, architecture, and entertain-
ment. In medical diagnostics, it has several advantages: it
does not use harmful radiation, making it safer for repeated
use in children [16,28,49], and usually doesn’t require seda-
tion, which is helpful for young patients. It reduces human
error, provides accurate, consistent measurements for track-
ing growth and surgical results [40], and creates detailed



images of cranial and facial structures. It measures parame-
ters like volume and asymmetry and is quick and convenient
for both patients and clinicians [4]. Portable 3D scanners
offer flexibility in various clinical settings [38], and tech-
niques like heat maps and curvature analyses provide valu-
able insights for clinical and research purposes [4, 41]. The
visualization of curvature analysis is shown in Figure 2.

Figure 2. The curvature analysis illustrated by the heatmap.
Adapted from [20].

Diagnosing craniosynostosis is generally straightfor-
ward, but assessing its severity is more challenging. While
clinicians can typically distinguish craniosynostosis from
conditions like positional plagiocephaly and reassure par-
ents about its self-limiting nature [14], accurately gaug-
ing its severity is crucial for determining appropriate treat-
ment [14]. Historically, severity assessments have been sub-
jective, relying on visual evaluations and 2D photo scores,
leading to varied treatment outcomes and inconsistent post-
operative evaluations [76]. There is a pressing need for
objective metrics to capture the intricate details of cranial
abnormalities in three dimensions, aiding in more effec-
tive evaluation and clinical intervention [25]. Variability

in expert assessments arises from personal interpretations
of craniosynostosis characteristics [11], differences in train-
ing and experience [2], and a reliance on visual inspection
rather than objective measures [77]. Integrating objective,
three-dimensional metrics into clinical practice is essential
for achieving consistent, reliable assessments of craniosyn-
ostosis severity [26].

Assessing the severity of craniosynostosis is essential
due to the risks of surgery. Mild cases might not improve
quality of life enough to justify the potential harm and com-
plications of surgery, such as brain injury from invasive ICP
monitoring or major reconstruction complications like in-
fection and bleeding [74]. Some patients may even develop
new symptoms or see a decline in their condition or cogni-
tive outcome after surgery. The long-term effects on cog-
nitive development and overall health are not fully known,
and unnecessary surgeries could lead to unexpected nega-
tive outcomes.

Recent research has focused on developing improved
metrics for quantifying craniosynostosis severity beyond
traditional methods like head circumference, cephalic in-
dex, and intracranial volume, which have significant limi-
tations [12, 65, 70]. For example, the cephalic index often
fails to distinguish between different types of craniosynos-
tosis, and intracranial volume measurements can fall within
normal ranges despite the presence of cranial abnormali-
ties. To address these issues, more complex anthropomet-
ric methods have been introduced, such as the Interfrontal
Angle Method, which uses landmark detection to measure
various cranial angles [16]. Other approaches include us-
ing the interparietal to intercoronal distance ratio, record-
ing ray lengths from key anatomical points, and assessing
angles related to trigonocephaly severity [1, 9, 40, 66]. Cur-
vature analysis and statistical modeling techniques, such as
Principal Component Analysis (PCA) and Statistical Shape
Modeling (SSM), have also been applied to quantify cra-
nial shape and deformation more accurately [10,25,28,38].
Methods like the Head Shape Anomaly(HSA) index and
various asymmetry measures, including (Anterior Cranial
Asymmetry Index(ACAI) and Posterior Cranial Asymme-
try Index(PCAI), provide additional ways to assess severity
based on anatomical and statistical data [2, 25, 50]. These
advancements aim to offer a more objective and detailed
understanding of cranial dysmorphologies, improving diag-
nosis and treatment planning.

1.2. Problem Statement and Overview

This study explores novel quantitative methods for gen-
erating descriptors and assessing the severity of sagittal
craniosynostosis (scaphocephaly), primarily through dis-
similarity measures compared to a control skull (Figure 3).
These methods include distance-related techniques, spectral
methods, the Zernike shape descriptor, and view-based deep



learning techniques. By expanding the application of these
descriptors, the research aims to enhance the accuracy and
consistency of severity assessments in clinical practice.

The evaluation involves correlation tests between expert
ratings (ranging from 0 to 3, which are categorical vari-
ables) and the resulting severity scores to determine the
effectiveness of these quantitative methods. The Spear-
man Rank Correlation Coefficient is employed to assess the
monotonic relationship between the computed scores and
the ordinal clinical severity scores. A significance level
of less than 0.05 is considered significant for all statistical
analyses. Additionally, if box plots and swarm plots show
that the severity levels ranging from 0 to 3 have distinct and
separate scores, this indicates the most ideal situation. In
other words, clear separation in scores across these severity
levels would suggest that the analysis or method is effec-
tively differentiating between different degrees of severity,
achieving the best possible discrimination among the cate-
gories.

Figure 3. Dissimilarity from the control skull as the measure of
severity

2. Dataset and Data Reprocessing

2.1. Description of Craniosysnostosis Data

The synthetic 3D head models utilized for this project
were derived from a publicly accessible craniosynostosis
dataset [3]. This dataset was created using a statistical
shape model specifically tailored to children under 1.5 years
of age, with detailed age distribution information provided
in the original publication [64]. The dataset comprises
a total of 200 head models, equally divided into control
(n=100) and sagittal craniosynostosis (n=100) categories,
and is available in .ply file format.

2.2. Point correspondence Establishment

During pre-processing, the data were clipped along the
nasion tragus plane and a template mesh was deformed to
match the shape of each 3D surface using a variant of the
non-rigid iterative closest point algorithm [7]. This process
preserves the topology of the template and guarantees con-

sistent point correspondences throughout the entire collec-
tion of 3D data samples [3].

2.3. Expert Scoring for Synthetic Data

Expert ratings are correlated with computed severity
scores using Spearman Rank Correlation to test the effec-
tiveness of quantitative methods, with a significance level
of less than 0.05. Two craniofacial experts, Irene M. J.
Mathijssen and Marie-Lise C. van Veelen, evaluated the
overall phenotypic severity using a randomized subset of
60 synthetic head models, including 30 that were scapho-
cephalic [3]. After eliminating inconsistent ratings, our
research specifically focuses on these 28 cases of scapho-
cephaly. They employed a 4-point scale, where ’0’ indicates
normal, ’1’ stands for mild, ’2’ signifies moderate, and ’3’
denotes severe, following published craniosynostosis pho-
toscore guidelines (Gaillard, 2023a, 2023b). Head shapes
with discrepancies in scores between the two experts were
excluded from the correlation analysis.

2.4. Normative Skull Selection and Creation

In past research, it has been common to use normal pa-
tients’ skulls as a control group. However, this study de-
termines the severity score by comparing the differences
between the skulls of normal individuals and those in the
control group. There are two limitations to using normal
patients’ skulls as a control group. First, existing methods
that quantify severity, such as those relying on intracranial
volume and skull size, are influenced by skull size, which
then affects the severity score results.

Normal patients’ skulls may contain moderate flatness
and some degree of asymmetry, which are critical geomet-
ric features for assessing severity. If we select any random
normal patient as the control group, we risk losing some of
these areas of interest, leading to biased severity scores.

Inspired by previous research, a triaxial ellipsoid has
been described as the ideal shape to represent a cranium
[10]. The ellipsoid fitting method is valuable because it cap-
tures abnormal flatness, which is crucial for distinguishing
between typical and atypical cranial shapes. This method
employs the difference between the fitted ellipsoid and the
skull to identify flattened and rounded areas, utilizing the
’non-ellipsoid’ and ellipsoid regions for analysis. We used
an ellipsoid fitting approach to determine the minimum-
volume ellipsoid that encompasses all the given points,
which then serves as the normative data for each specific
skull. By using this personalized ellipsoid, we can better
capture the area of interest and eliminate the influence of
the ellipsoid on our analysis.

However, ellipsoid fitting can result in the loss of signif-
icant rendering information, which is crucial in view-based
methods. In most of our experiments, we focus solely on the
positional information of individual points for each skull,



neglecting depth information from rendering and connec-
tivity data from triangulation techniques in computer graph-
ics. For view-based methods, multi-view images generated
from the 3D mesh represent depth and roundness in the 2D
projected image [78], and ellipsoid fitting can compromise
this information. Therefore, for view-based methods, we
use a skull from the control group as the normative refer-
ence to preserve this crucial information.

2.5. Implementation

The ellipsoid fitting algorithm fits an ellipsoid to a set
of 3D points by determining the ellipsoid’s parameters that
best represent the points’ distribution using Linear Least
Squares (LLSQ). The algorithm begins by extracting the
x, y, and z coordinates from the 3D points. Given the
3D points from the test skull, we can determine the coor-
dinates of the origin. By setting the centroid of these points
as the new origin in spherical coordinates, we can simplify
the problem of fitting an ellipsoid. Assuming the parame-
ters of the ellipsoid are defined in spherical coordinates, the
radial distance between any known point A on the test skull
and the centroidO (the new origin) can be easily computed.
Consider the line passing through A and O. Let B be the
point where this line intersects the ellipsoid described by
the parameters shown in Figure 4. The distance AB is then
considered the radial distance. By applying this approach to
all points on the test skull, we can obtain a set of such radial
distances. The best-fitting ellipsoid is determined when the
sum of all these radial distances is minimized. This method
effectively transforms the 3D surface fitting problem into a
1D fitting problem. Linear Least Squares can then be used
to find the closed-form solution for this optimization prob-
lem.

Figure 4. Dissimilarity from the control skull as the measure of
severity

After establishment of the above process, the final ellip-
soid parameters are extracted, including the center, radii,
and semi-axes direction. The center represents the centroid
of the ellipsoid, indicating the average location of the data
points. The radii describe the lengths of the semi-axes of the

ellipsoid, while semi-axes direction representing its extent
in each principal direction. For ease of use and comparison
with synthetic skulls, the ellipsoid’s spherical coordinates
are generated from this parameterized expresion and trans-
formed into Cartesian coordinates. Finally, the ellipsoid is
plotted in a three-dimensional space, showing its alignment
and extent relative to the data points.

The Figure 5 below show a visualization of a test skull
sagittal 06(gery mesh with shading) in dataset along-
side its personalized normative skull(black discrete points).

(a)

(b)

(c)

Figure 5. The visualization of the test skull and its fitted ellipsoid
shape (discrete points) from three directions.



2.6. Quantification Function of the Difference Be-
tween Two Descriptors

Most of the methods discussed in this paper require a
control group. The severity score is obtained by measur-
ing the difference between the descriptor of the test shape
and the normative shape, which necessitates a function to
quantify the differences between the test skull and the nor-
mative skull. In this paper, most of the descriptors are in a
vector-like form, with a few being scalar.

For vector-like descriptors, four loss functions are used
to quantify the difference between the descriptor of the nor-
mative skull and the test skull. These loss functions are
the Mean Absolute Error (MAE), the Mean Squared Error
(MSE), Eigenvalue Decomposition Distance (EVD), and
Jensen-Shannon Divergence.

The Mean Absolute Error (MAE) is the average of the
absolute differences between the components of the vector:

MAE =
1

n

n∑
i=1

|xi − yi| (1)

The Mean Squared Error (MSE) is the average of the
squared differences between the components of the vector:

MSE =
1

n

n∑
i=1

(xi − yi)
2 (2)

Eigenvalue Decomposition Distance (EVD) measures
the difference between two distributions based on their
eigenvalues. The formula for EVD when the inputs are the
eigenvalue spectra is:

DistEVD(P,Q) =
1

2

N∑
i=1

[
|λPi |

1
2 − |λQi |

1
2

]2
|λPi |

1
2 + |λQi |

1
2

(3)

where: λPi and λQi are the i-th eigenvalues of the covariance
matrices of distributions P and Q. The sum is taken over
the first N eigenvalues.

If the inputs are not eigenvalue spectra, the generic for-
mula for Eigenvalue Decomposition Distance (EVD) using
descriptors f and g is:

DistEVD(f, g) =
1

2

N∑
i=1

[
|fi|

1
2 − |gi|

1
2

]2
|fi|

1
2 + |gi|

1
2

(4)

where: fi and gi are the i-th entries of the vectors f and
g. N is the length of the input vectors f and g.

The requirement for using this function is that the entries
of f and g must be non-negative.

Jensen-Shannon Divergence (JSD) is used to measure
the similarity between two probability distributions. It is

based on the Kullback-Leibler Divergence (KLD) and is
symmetric and finite. The formula for JSD is:

JSD(P ∥ Q) =
1

2
DKL(P ∥M) +

1

2
DKL(Q ∥M) (5)

where: P and Q are the two probability distributions. M =
1
2 (P +Q) is the average of P and Q. DKL is the Kullback-
Leibler Divergence:

DKL(P ∥ Q) =
∑
i

P (i) log
P (i)

Q(i)
(6)

The JSD combines the KLD of each distribution with re-
spect to their average distribution.

When the inputs are two scalars, the forms and formu-
las for the Mean Absolute Error (MAE) and Mean Squared
Error (MSE) are as follows:

The Mean Absolute Error (MAE) between two scalars a
and b is given by the absolute difference between the two
values:

MAE(a, b) = |a− b| (7)

The Mean Squared Error (MSE) between two scalars a and
b is the average of the squared difference between the two
values. Since we are dealing with only two values, it sim-
plifies to:

MSE(a, b) =
1

1
· (a− b)2 = (a− b)2 (8)

Regarding the Eigenvalue Decomposition Distance and
Jensen-Shannon Divergence, these methods are not appli-
cable to scalar values. They are designed for comparing
matrices or probability distributions, respectively, and do
not have meaningful formulations for scalar inputs.

3. Methodology
3.1. Mean Facial Asymmetry Index

Traditional methods for assessing facial asymmetry, such
as the asymmetry index outlined by Huang, Liu, and Chen
[66], typically measure the variation in distances between
landmarks on the left and right sides of the face relative to a
reference plane. Their study focused on specific facial land-
marks, including the glabella, nasion, pronasale, subnasale,
labial superius, stomion, labial inferius, menton, exocan-
thion, endocanthion, alar curvature, and cheilion.

These methods require solely on landmark point corre-
spondence. Our dataset not only ensures the correspon-
dence of these landmark points but also allows us to ex-
plore and utilize comprehensive positional information be-
yond just key points. The mean facial asymmetry (MFA)
index is the mean distance between each vertex on one half



of the face to its corresponding vertex on the other half (us-
ing a mirrored reflection). It enables a more detailed cap-
ture of shape information and provides a more informative
quantification of shape differences.

By using mesh registration for facial analysis, we can
calculate the mean distance between each vertex on one
half of the face and its corresponding vertex on the other
half (via mirrored reflection). Additionally, the mean facial
asymmetry (MFA) index provides a quantitative measure of
the overall asymmetry observed in the face.

This method does not depend on the presence of a control
group for comparison. It is designed to be invariant to both
rotation and translation, meaning it can accurately assess
facial asymmetry regardless of the orientation or position of
the face. This invariance ensures that the measurements are
consistent and reliable, even if the face is rotated or shifted,
providing a robust analysis of facial shape and symmetry.

The visualization using a heatmap is implemented by
CraniumPy [5], a software developed for the registration
and craniofacial analysis of 3D images. This produces a
heatmap (in mm) that highlights areas of varying symmetry
in Figure 6.

Figure 6. Visualization of Asymmetry Compared to the Other
Hemisphere

3.2. Difference Between Corresponding Coordi-
nates

Coordinates are the most direct descriptors for shape
analysis. Our dataset includes precise point correspon-
dences within each test skull and between each test skull
and the normative skull.

We use the coordinates of corresponding points between
each test skull and the fitted ellipsoid normative skull as
shape descriptors. Arrays generated from these correlated
coordinates are directly used as shape descriptors. Quan-
tification functions such as Mean Absolute Error (MAE),
Mean Squared Error (MSE), and generalized eigenvalue

distance are employed to quantify the differences between
these arrays.

As previously discussed, the Jensen-Shannon Diver-
gence (JSD) is primarily used to measure the similarity be-
tween two probability distributions or histograms. Since
the coordinate arrays cannot be interpreted or generalized
in this manner, we do not use JSD to quantify the differ-
ences between the shape descriptors of the test skull and the
normative skull.

3.3. D2 Shape Descriptor

This method represents a geometric histogram-based
shape descriptor. This method combines SSM with
distance-based metrics. To be more specific, SSM maps
shapes into histograms, and distance is crucial because it
provides a visually intuitive metric for surgeons. Unlike
many existing methods that focus on distance of specific
directions or certain distance between two landmarks, like
Frontal bossing index/cite51, our approach uses the D2
shape descriptor to integrate all distance information, rather
than relying on a single direction of data.

The geometric histogram-based shape descriptor method
involves representing the shape signature of a 3D model as
a probability distribution sampled from a shape function,
which measures geometric or other properties of the model.
This approach generalizes geometric histograms into what
is known as a shape distribution. The key idea is to trans-
form an arbitrary 3D model into a parameterized function
that can be easily compared with others, simplifying shape
analysis to the sampling, normalization, and comparison of
probability distributions [59]. The shape descriptor captures
global geometric characteristics, such as distance, angle,
area, and volume measurements, across random points on
the surface.

D2 is a distribution function that measures the distance
between two random points on the surface, as shown in
Figure 7. The method involves mapping 3D surfaces to
a common parameterization through random sampling of
shape functions [58]. As illustrated in Figure 8, 3D models
like a ball and a cup are sampled to transform their com-
plex geometries into a more manageable format. The shape
functions then generate D2 shape distributions, which are
represented as graphs plotting probability against distance.
These distributions probabilistically capture the geometric
properties of the 3D models. A similarity measure is ap-
plied to compare these distributions, determining the degree
of similarity or difference between the shapes [59].

The approach allows for standardized comparison of dif-
ferent 3D shapes using their D2 shape distributions, sim-
plifying shape analysis and comparison. This method ef-
fectively quantifies similarity between complex 3D mod-
els. A good shape descriptor should be concise, quick to
compute, and invariant to various transformations. The D2



Figure 7. Illustration of D2 Descriptor. Adapted from [42]

Figure 8. Illustration of Similarity Measure by Shape Histogram.
Adapted from [59]

shape descriptor maintains its characteristics regardless of
the shape’s position, orientation, mirroring, or scale, ensur-
ing accurate and efficient shape analysis in applications like
computer vision and 3D modeling.

Compared to the mean corresponding distance, which
measures the distance between corresponding points, our
method provides end-to-end generation for both the test
skull and the normative skull. It captures the intrinsic re-
lationships and positional information between each point
within the skull, offering a more comprehensive analysis.

3.3.1 Implementation

To generate a D2 shape descriptor histogram, follow these
steps:

1. Downsample the Shape: Reduce the shape to 499
points.

2. Calculate Pair-Wise Distances: Compute the distances
between each pair of these 499 points, resulting in 499×498

2
(or 124,751) distance values.

3. Create the Histogram: Using 17 predefined bins, cre-
ate a histogram to represent the shape based on these dis-
tances.

4. Result: This histogram of each skull serves as shape
descriptor.

The visualization of the D2 histogram of a test skull
sagittal 06 is shown in Figure 9.

Figure 9. Visualization of D2 Histogram

3.4. Spectral Embedding from Affinity Matrix

The size-independent nature of spectral analysis on
shapes makes it an attractive choice, leading to its recent
potential utilization in craniosynostosis research. The paper
describes a method for constructing spectral embeddings
from 3D triangle meshes to achieve invariance to bending
and rigid-body transformations [29].

Each shape is represented by the eigenvectors of an ap-
propriately defined affinity matrix, forming a spectral em-
bedding [30] that is invariant against rigid-body transfor-
mations, uniform scaling, and shape articulation (i.e., bend-
ing).

To be more specific, given a 3D triangle mesh with n
vertices, we form an n × n affinity matrix A such that the
ij-th entry of A is the affinity between the i-th and the j-th
mesh vertices; several possible choices for the affinities are
discussed in subsequent sections. Matrix A is then eigen-
decomposed as A = V ΛV T, where Λ is a diagonal matrix
with eigenvalues λ1 ≥ · · · ≥ λn along the diagonal and
V = [v1| · · · |vn] is an n× n matrix with v1, . . . ,vn as the
corresponding eigenvectors.

The eigenvectors are scaled by the square root of their
corresponding eigenvalues to normalize variations due to
mesh size. The first k scaled eigenvectors form a k-
dimensional spectral embedding, which is represented be-
low:

V̂k = [v̂1 | v̂2 | · · · | v̂k] (9)

where
v̂i = vi

√
λi. (10)

While the eigenvectors of the affinity matrix form a spec-
tral embedding that provides a normalized representation
of the shape, the eigenvalues indicate the variation of the
shape along the axes defined by the corresponding eigen-
vectors [31]. Therefore, we consider eigenvalues as spectral
shape descriptors. However, eigenvalues are influenced by



mesh sizes, and typical shape databases contain shapes with
different numbers of vertices. To address this, the eigen-
vectors are scaled by the square root of their corresponding
eigenvalues to normalize variations due to mesh size. Thus,
the eigenvalues of the original affinity matrices cannot be
used for direct shape comparison.

For our research, with the same number of samples taken
from each shape, the eigenvalues of the sampled affinity
matrices become comparable. Finally, the output spectrum,
consisting of a list of eigenvalues, is normalized to produce
comparable descriptors.

3.4.1 Implementation

For the Affinity Matrix generation, we use Gaussian
affinities: with a robust method for estimating geodesic
distances, we define the affinity matrix A as Aij =
exp(−d2ij/2σ2), where dij is the distance between the ith
and jth vertices of the mesh, and σ is the Gaussian width
[8]. This approach shows that the affinity between two ver-
tices is inversely related to the Euclidean distance between
them.

To implement the spectral shape descriptor, known as
EVD (Eigenvalue Decomposition Distance), we use the
eigenvalues of a 500 × 500 sampled affinity matrix for
each shape, with 500 sample points selected experimen-
tally. The resulting spectrum is normalized to the range
[0, 1]. Upon examining all output embeddings, it was ob-
served that eigenvalues ranked beyond the 20th largest are
all less than 0.0001. Therefore, we use only the 20th largest
eigenvalue as our shape descriptor and visualization is given
in Figure 10.

Figure 10. Visualization of spectral embedding descriptor

3.5. LBO Spectrum

The Laplace–Beltrami spectrum can be regarded as the
set of squared frequencies [61] (the so-called natural or res-
onant frequencies) that are associated with the eigenmodes
of a generalized oscillating membrane defined on the mani-
fold [61].

Let f be a real-valued function, with f ∈ C2, defined on
a Riemannian manifold M (a differentiable manifold with

a Riemannian metric) [53]. The Laplace–Beltrami operator
∆ is defined as:

∆f = ∇i∇if (11)

where ∇ is the Levi-Civita connection associated with
the Riemannian metric, and the repeated index i indicates
a summation over all coordinates (Einstein summation con-
vention).

Regarding the original mathematical expressions, the
following three forms are also commonly found in papers:

∆f = div(∇f) (12)

∆f = ∇ · ∇f (13)

∆f = div(grad f) (14)

From the above formula, the Laplace–Beltrami operator is
a linear differential operator that can be calculated in local
coordinates. Unlike the divergence and gradient operators
we encounter in Euclidean space, the Laplace–Beltrami op-
erator is defined on a manifold. It can be understood as
a generalization of the differential operators in Euclidean
space to curved surfaces.

3.5.1 Matrix Representation of LBO and Relationship
between Eigenvalues and Shape

Local parameterization is defined for a manifold as below:

ψ : Rn → Rn+k (15)

Defining the intermediate matrix G and varible W [79]:

gij = ⟨∂iψ, ∂jψ⟩ (16)

G = (gij) (17)

W =
√
detG (18)

(gij) = G−1 (19)

The Laplacian Beltrami Operator can be written as:

∆f =
1

W

∑
i,j

∂i(g
ijW∂jf) (20)

This can be also written as matrix representation [79]:

∆f = ∇ · ∇f =
1√
G

n∑
i,j=1

gij
∂

∂xi

(√
Ggij

∂f

∂xj

)
(21)

where i, j = 1, . . . , n, n is the number of vertices in the
mesh.

Observing above formula, if the mesh M degraded to
Euclidean plane, the LBO will degrade to well-knowned
Laplacian operator.



∆f =
∂2f

(∂x)2
+

∂2f

(∂y)2
(22)

Recalling the Wavefield theory, considering the wave
equation, which gives the differential relationship between
the spatial component and temporal component within the
wave propogation.(

∇2 − 1

c2
∂2

∂t2

)
u(r, t) = 0 (23)

where the u is the wave, like electromagnetic radiation, seis-
mology, and acoustics. Seperating the temporal and spatial
part of above equation:

u(r, t) = A(r)T (t) (24)

Based on above motivation, substituting this seperated form
into the wave equation and then simplifying, the following
equation is obtained.

∇2A

A
=

1

c2T

d2T

dt2
(25)

This is one form of Helmholtz equation. The solution of
Helmholtz equation is given:

∇2A = −k2A (26)

The wave number k characterizes the spatial frequency
of the wave. To understand this formula, A is the spatial
part of the wave function, and f is derived by parameteriz-
ing the manifold, which can be analogous to a spatial wave.
For the spatial component A, applying the Laplacian oper-
ator yields information related to spatial frequency. Thus,
applying an LBO operation to f will also provide similar
spatial frequency information. This is why LBO can be
used as a shape descriptor. We refer to the output of this
process as the LBO spectrum.

The Laplace–Beltrami operator is an intrinsic quantity
of the surface, meaning it is invariant under isometric de-
formations of the manifold [13]. The spectrum, which de-
pends only on the gradient and divergence defined by the
Riemannian structure of the manifold (i.e., the intrinsic ge-
ometry), is also isometry invariant [60]. This property un-
derscores the benefit of normalized LBO spectrum as shape
descriptors: shapes can be compared regardless of the ob-
ject’s scale and position [44].

3.5.2 Implementation

In the last part, we define the spectrum in equation(21) in
the context of a manifold. To make this spectrum more ap-
plicable to meshes in practice, we need to use a discretized
version. We approximate the derivative operation by using

the neighboring points of a given point as shown in Figure
11 [80].

∆f (vi) =
1

2

∑
vj∈Nei(vi)

(cotαij + cotβij) |f (vj)− f (vi)|

(27)

Figure 11. Implementation of LBO spectrum at each vertex

In above diagram, f(vi) is the value of the function f at
vertex vi, in this project it’s the coordinate. Ni is the set
of neighboring vertices of vi. αij and βij are the angles
opposite to the edges connecting vi and vj .

The skull data has been downsampled to 500 points and
retriangulated. The resulting spectrum (sagittal 06) is
shown in Figure 12:

Figure 12. Visualization of LBO spectrum

3.6. Laplacian Heat Kernel Descriptor

3.6.1 Mesh Laplacian Matrix

The discrete Laplacian matrix is a fundamental tool in graph
theory, representing the structure and properties of a graph.
It is particularly valuable for analyzing various characteris-
tics of the graph, such as connectivity, clustering, and spec-
tral properties. When applied to mesh data, which can be
effectively modeled as a graph, the discrete Laplacian ma-
trix becomes instrumental in a range of mesh processing
tasks. The implementation of the discrete Laplacian matrix



is mathematically similar to the discrete Laplace-Beltrami
operator (LBO). Assuming the mesh is represented in Fig-
ure 13, the discrete Laplacian matrix is given by the follow-
ing formula [5, 81]:

Lij =


wij =

1
2 (cotαij + cotβij) if j adjacent to i
−
∑

j∈N (i) wij when j = i

0 otherwise
(28)

Figure 13. One example subset of mesh data. Adapted from [71]

3.6.2 Heat Kernel Signature Histogram

Given an initial heat distribution u0(x) over the surface, the
heat diffusion equation on a compact Riemannian manifold
can be expressed as:(

∆− ∂

∂t

)
u(x, t) = 0 (29)

In this context, ∆ denotes the Laplace–Beltrami operator,
and u(x, t) represents the heat distribution at a point x at
time t. The solution can be expressed as follows:

u(x, t) =

∫
ht(x, y)u0(y)dy (30)

ht(x, y) represents the heat transferred from a point x to
another point y at time t. The eigen decomposition of the
heat kernel is expressed as [69].

ht(x, y) =

∞∑
i=0

exp (−λit)ϕi(x)ϕi(y) (31)

where λi and ϕi denote the i-th eigenvalue and eigenfunc-
tion of the Mesh Laplacian matrix [69]. When restricting

the heat kernel to the temporal domain by replacing y with
x, the expression simplifies to:

ht(x, x) =

∞∑
i=0

exp (−λit)ϕ2i (x) (32)

The above equation provides a local shape descriptor for
a vertex, known as the Heat Kernel Signature (HKS). Once
we have such a local shape descriptor, a technique similar to
the D2 shape descriptor is applied to create the Heat Kernel
Signature Distance Distribution (HKSDD) [79].

Since the number of vertices in our skull is finite,
the eigenvalues and eigenfunctions obtained from the dis-
cretization are also finite, with a maximum count equal to
the number of vertices. Let this number be denoted as N .
Therefore, the above equation can be written as:

ht(x, x) =

N−1∑
i=0

exp (−λit)ϕ2i (x) (33)

The distance of pairs for this Heat Kernel Signature is ex-
pressed as:

d2h(x, y) =

N∑
i=1

e−2tλi (ϕi(x)− ϕi(y))
2 (34)

3.6.3 Implementation

1. Compute the Laplacian matrix according to the
method detailed in Section 3.6.1.

2. Perform an eigen decomposition of the Laplacian ma-
trix to obtain its eigenvalues and eigenvectors.

3. Determine the distance of the heat kernel signature val-
ues at any two points on skull data according to in
Equation 34.

4. Generate a distance histogram as outlined
in Section 3.6.2, the visulization of one test
skull(sagittal 06) is shown in Figure 14.

Figure 14. Visualization of Laplacian Heat Kernel Descriptor



3.6.4 Verification Using Reconstruciton

This procedure is primarily intended to validate the accu-
racy of the calculations involved in the complex computa-
tion of the Laplacian matrix, rather than being directly re-
lated to skull shape analysis.

To reconstruct a 3D mesh using a specified number of
eigenvectors obtained from the Laplacian Matrix, the fol-
lowing method is employed:

Initially, the eigenvector matrix is computed from the
eigenvalue decomposition of the Laplacian matrix. This
matrix is then truncated to include only the eigenvectors
corresponding to indices from 0 to 250, while the rest are
discarded. Subsequently, each coordinate (x, y, z) of the
mesh vertices is projected using the transposed truncated
eigenvector matrix, resulting in transformed coordinates.
These coordinates are then used to reconstruct the origi-
nal mesh vertices by multiplying the full eigenvector matrix
with the transformed coordinates. The final step assembles
these reconstructed coordinates to form the complete set of
vertices for the reconstructed mesh. The Figure 15 shows
the comparison of original and reconstructed skull shapes.

(a) Original shape

(b) Reconstructed shape

Figure 15. Comparison of original and re-
constructed shapes.

Based on the visualization, the ear region appears
slightly blurred; however, overall, the shapes are almost
identical. This indicates that our computation of the Lapla-
cian matrix and the capture of eigenvalues and eigenvectors
are accurate.

3.7. 3D Zernike Shape Descriptor

We are inspired by recent research in protein database
retrieval [36, 62, 72], which focuses on quantifying differ-
ences between protein shapes to identify the most similar
ones. This approach parallels our goal of measuring differ-
ences between test and normative skulls. Given the subtle
and complex features in protein datasets, highly discrimi-
native shape descriptors are required, which surpass those
designed for standard 3D shape classification. Therefore,
we applied the high-performing 3D Zernike shape descrip-
tor, commonly used in protein shape retrieval, to enhance
our craniosynostosis research.

3.7.1 Zernike Polynomials

In mathematics, the 3D Zernike polynomials are a sequence
of polynomials that are orthogonal on the sphere. These
polynomials are defined as below in terms of polar coordi-
nates, specifically the azimuthal angle ϕ, the radial distance
ρ, and the polar angle θ. The 3D Zernike functions are given
by [57]:

Zm
nl(r, θ, ϕ) = Rnl(r)Y

m
l (θ, ϕ) (35)

where Ylm(θ, ϕ) are the spherical harmonics defined in
spherical coordinates (r, θ, ϕ). The integers n, l, and m
satisfy |m| ≤ l and n − l is even. Rnl(r) represents the
orthogonal radial polynomials.

3.7.2 The Orthogonality of Zernike Polynomials

According to above formula, we can verify the orthogonal-
ity within the unit sphere by below formula:

3

4π

∫
∥x∥≤1

Zm
nl(x)Z

m′
n′l′(x)dx = δnn′δll′δ

mm′
(36)

The prerequisite for serving as a basis function to represent
arbitrary functions is fulfilled by the 3D Zernike functions.
Based on the above discussion, the orthogonality of Zernike
polynomials Znlm ensures that they can form a complete
orthonormal system [48]. This property allows for the ap-
proximation of any smooth real-valued function defined on
the unit sphere using the Zernike coefficients.

3.7.3 The Rotation Invariance of Zernike Polynomials

In the context of 3D Zernike functions, there exists an anal-
ogous invariance relation to that of spherical harmonics un-
der arbitrary rotation represented by the rotation matrix P .



This means that when the Zernike functions undergo ro-
tation by P , they exhibit a consistent relationship similar
to the rotational invariance observed in spherical harmon-
ics [54].

Znl(Px) = ol(P)Znl(x) (37)

3.7.4 Zernike Transform

Any sufficiently smooth real-valued phase field over the unit
sphere G(ρ, θ, ϕ) can be represented in terms of its Zernike
coefficients [6], much like how periodic functions have an
orthogonal representation using the Fourier series [45, 55].

f(x) =
∑
n

∑
l

∑
m

Ωm
nlZ

m
nl(x) (38)

The function f is defined or transformed onto the unit
sphere, and Fnl represents the Zernike moment. Given a
3D shape function f(x), the Zernike moments are the pro-
jections of this shape function onto a set of orthogonal basis
functions [46]. For an order n, Zernike moments are ex-
pressed as an integral weighted by f :

Fm
nl =

3

4π

∫
R3

f(x)Zm
nl(x)dx (39)

The above derivation is similar to the Fourier Transform and
its inverse transform. By analogy, Zernike moments Fnl are
similar to the Fourier spectrum in a 1D signal, which con-
tains frequency information. Similarly, Zernike moments
also encapsulate frequency information.

3.7.5 Implementation of Zernike Transform

As regards the calculation the Zernike moment Fnl,we use
an established algorithm instead of using the definition.

denotes the geometrical moment of the objectIntroduc-
ing an intermediate variable χ, which is defined based on
the geometrical moment expression of Zernike Polynomi-
als.

Zm
nl(x) =

∑
r+s+t≤n

χrst
nlmx

ryszt (40)

Define Mrst as the geometrical moment of the object:

Mrst =

∫
|x|≤l

f(x)xryszt dx (41)

Combing the above Equation 41,40,39, the Zernike Mo-
ment is given as:

Fn
nl =

3

4π

∑
r+s+t≤n

χst
nlmMrst (42)

Moving forward, our calculation will focus on Fnl,
which will serve as our feature vector for shape descrip-
tion. We collect the moments Fnl into (2l+1)-dimensional

vectors. After generating the 3D Zernike moments, tak-
ing the norm of these moments ensures rotation invari-
ance. This process involves aggregating the moments
into (2l + 1)-dimensional vectors, denoted as Fnl =
(Fnl1, Fnl2, Fnl3, . . . , Fnl(2l+1)).

3.7.6 Implementation

According to the previous research, any sufficiently smooth
real-valued phase field over the unit sphere G(ρ, θ, ϕ) can
be represented using its Zernike coefficients. However, our
skull data is defined by a mesh, not a unit sphere. To fit
an unstructured surface mesh inside a unit ball centered at
the origin, we follow these steps and illustration is shown in
Figure 16:

1. Translate the vertices A so that their average position
aligns with the origin O.

2. Normalize the distances by calculating each vertex’s
distance from the newly established origin O and nor-
malizing these distances.

3. Map the target mesh onto a function defined on a unit
sphere, where the value represents the normalized dis-
tance.

Figure 16. Illustration of mapping a 3D shape onto a unit sphere,B
is the corresponding point of A under this mapping, where its
value is the normalized distance |OA|.

Once we have established a compatible function defined
in the unit sphere for each skull in our dataset, we calcu-
late the Zernike moment vectors for both the test skulls and
their corresponding normative skulls across orders from 1
to 30, with each vector having a length of 2l + 1. The most
computationally intensive part of this process is the calcu-
lation of the geometrical moments. To efficiently handle
this, we employ an optimized method developed by Ma-
teusz Banach [9], which uses a fast Python implementation



of the PK algorithm. This approach leverages Numba to
optimize computationally demanding functions and loops,
resulting in approximately 200 times faster performance at
Zernike moment order 20 compared to traditional NumPy-
based implementations.

The visualization of Zernike moment of a specified order
is given in Figure 17.

Figure 17. Visualization of Zernike moment of a specified order.

3.8. View-based Method Descriptor

View-based method in shape analysis is a kind of
straightforward approaches to comparing 3D models is to
represent them as a collection of images rendered from var-
ious viewpoints around the object, known as ”viewers”,
shown in Figure 18. This method is motivated by several
factors: first, the human visual system processes 3D objects
as a series of 2D views rather than as a complete 3D repre-
sentation. Second, similar 3D models will appear alike from
all viewing angles. Lastly, prior to the advent of widespread
3D technology, significant progress was made in 2D image
analysis, leading to efficient techniques for indexing, classi-
fication, and retrieval. By representing 3D models through
2D projections, one can capitalize on the rich body of work
in 2D image analysis to advance 3D shape analysis.

View-based techniques for 3D shape analysis address the
parameterization issue by projecting the 3D models onto 2D
images, thereby simplifying the shape analysis task to a 2D
(image) analysis problem. The fundamental concept of this
series of methods revolves around the notion that two visu-
ally similar 3D models will exhibit similarity from all view-
ing perspectives.

This idea originates from the Light Field Descriptor
(LFD) [22]. In the original paper, a set of 60 light field
descriptors is proposed for a 3D model. Each descriptor
is obtained using a system of 60 cameras positioned at the
vertices of a regular dodecahedron’s half hemisphere. Con-
sequently, the dissimilarity between two 3D models can be
measured using the L1 norm between their 2D shape de-
scriptors.

Figure 18. The illustration of basic idea of multi-view recognition

3.8.1 Multi-view CNN

In original view-based method, LFD, authors don’t directly
use a global descriptor for 3D shape dissimilarity quantifi-
cation. Instead, they find the minimum distance over 60
possible rotations of the camera system [22]. This approach
effectively uses only a selected image to represent the shape
for comparison with other shapes, not fully leveraging in-
formation from all projection images. Considering the ad-
vances in neural network for information fusion, a more ef-
fective and informative strategy could involve using neural
networks to aggregate the information extracted from each
2D image.

Additionally, many pre-trained CNN-based networks,
such as those available through the torchvision.models API
in the PyTorch library, like AlexNet trained on the Ima-
geNet dataset, can be utilized. Leveraging these advances
in image descriptors and large image databases allows for
the pre-training of CNN architectures. This pre-training en-
ables the network to learn generic features for 2D image cat-
egorization, which can then be fine-tuned for specific tasks.

There is significant potential to integrate deep learning
methods for 3D shape recognition. A Multi-View Convo-
lutional Neural Network (MVCNN) has been developed for
this purpose [67]. The MVCNN processes multiple 2D ren-
dered views of a 3D shape through a unified Convolutional
Neural Network (CNN). The network consists of five con-
volutional layers (conv1 to conv5), corresponding to the ar-
chitecture of pretrained AlexNet in torch.model up to the
flattening layer. This is followed by a View-Pooling Layer
that applies an element-wise maximum operation across the
views. Subsequently, there are three fully connected layers
(fc6 to fc8), and the architecture concludes with a softmax
classification layer. The architecture is illustrated in Figure
19:



Figure 19. The architecture of MVCNN. Adapted from [68]

3.8.2 The Relationship between Shape Descriptor and
Neural Network Classifier

During this time frame, various research efforts have high-
lighted the promise of Artificial Intelligence (AI) in iden-
tifying different subtypes of craniosynostosis through the
analysis of 3D data [17, 23, 24, 47, 51, 63, 64]. Although
these innovative studies are crucial for pushing the bound-
aries of the field and showcasing AI’s potential in 3D shape
analysis, simply distinguishing between subtypes of cran-
iosynostosis has limited clinical impact [3].

In neural network-related research, classification is a sig-
nificant topic. The MVCNN model focuses on classifica-
tion tasks, whereas our project is not about classification but
on descriptors—the expression of task-related features of a
shape. Despite this difference, certain aspects can be used
across both areas: information flows from high-dimensional
to low-dimensional spaces in neural network architectures,
regardless of the complexity of the classifier structure. The
intermediate layers function as structures for feature ex-
traction and information aggregation, and their outputs can
serve as effective descriptors for task-related features.

To be more specific, a Convolutional Neural Network
(CNN) consists of several key components: an input layer
for raw pixel values, convolutional layers for feature extrac-
tion, ReLU layers for activation, pooling layers for down-
sampling, and fully-connected layers for classification.

When an input image is fed into a CNN, it passes through
these various layers, ultimately producing a set of scores
(one per neuron in the last layer). In image classification,
these scores represent the probabilities of the image belong-
ing to each class, such as chairs, horses, or cars. Each class
is a collection of different geometric features. The goal of
the training process is to learn the weights of the filters at
various layers of the CNN. Often, the output of one of the
layers before the last fully-connected layer can be used as a
global descriptor for the input image, shown in Figure .

Thus, while MVCNN is designed for classification tasks,
the intermediate layers involved in feature extraction and
aggregation can be leveraged to obtain effective descriptors
for shape analysis in our project. Considering the classi-
fier’s ability to represent shapes, we can train a classifier
using a standard dataset and use the output from the inter-

mediate layers of this model to represent our skull data.

Figure 20. The relationship between global shape descriptor and
the network classifier(MVCNN). Adapted from [68]

3.8.3 View-GCN

MVCNN exhibit limitations in 3D shape recognition
tasks. One major drawback is ignoring view relationships:
MVCNN’s use of max-pooling treats each view indepen-
dently, neglecting the spatial and relational context between
different views. Additionally, there is a loss of information:
max-pooling can aggregate features in a way that discards
valuable information, which could otherwise be captured by
understanding the relationships among views.

View-GCN addresses these limitations by leveraging a
view-graph representation and a hierarchical GCN archi-
tecture. This approach enables the effective aggregation of
multi-view features while preserving and utilizing the rela-
tionships among views, leading to improved performance in
3D shape recognition tasks.

View-Graph Construction The View-Graph Construc-
tion process begins with defining nodes as the camera views
of the 3D object, represented by coordinates vi. Edges
between these nodes are established using the k-nearest
neighbor (kNN) algorithm based on the spatial relationships
among views. The adjacency matrix Sij is defined as:

Sij = Φ(gij ; θs) (43)

where gij = [vi, vj , vi − vj , ∥vi − vj∥2] and Φ is a non-
linear embedding function.

View-GCN Architecture In the View-GCN Architecture,
initial features {f0i } are extracted from 2D images using a
pre-trained network such as ResNet-18. Local graph con-
volution updates node features by considering neighboring
nodes:

F l = Ψ(AlF l
inW

l; θlc) (44)

where Al is the learnable adjacency matrix, W l is the
weight matrix, and Ψ is a non-linear transformation. Non-
local message passing captures long-range relations among



nodes:
ml

ij = Γ([f li , f
l
j ]; θ

l
m) (45)

f̂ li = Ω([f li , r
l
i]; θ

l
f ) (46)

where Γ and Ω are relation and fusion functions, respec-
tively. Selective view-sampling for graph coarsening uses
a novel strategy to sample representative views, enhancing
diversity and representativeness:

vl+1
j = arg max

vq∈N(vj)

(
max(V (f̂ lvq

; θl,jv ))
)

(47)

where V is the view selector function.
A single level of View-GCN consists of local graph con-

volution, non-local message passing, and selective view-
sampling, as shown in Figure 21.

Figure 21. View-GCN layer architecture. Adapted from [75]

Hierarchical Network Structure The hierarchical net-
work structure consists of multiple levels of view-GCN,
with each level coarsening the graph and updating node fea-
tures. Features from all levels are fused to form a com-
prehensive global shape descriptor like the analysis in the
MVCNN in section.

As shown in Figure 22, the CNN (blue block) represents
the view-graph construction and also performs multi-view
image feature extraction. The view-GCN (orange block)
represents graph information aggregation.

Figure 22. Architecture of entire network of View-GCN

3.8.4 MVCNN Implementation

ModelNet40 description The ModelNet40 dataset is a
widely recognized benchmark for point cloud analysis, con-
taining synthetic object point clouds. Point clouds are sets

of data points in a three-dimensional coordinate system that
represent the external surface of objects. Each point in a
point cloud corresponds to a specific location on an ob-
ject’s surface, which allows for detailed 3D shape analy-
sis. The dataset features 12,311 CAD-generated meshes
categorized into 40 distinct classes, such as airplane, car,
plant, and lamp. Of these, 9,843 meshes are used for train-
ing, while the remaining 2,468 are reserved for testing. The
point cloud data is uniformly sampled from the surfaces of
these meshes and preprocessed by centering it at the origin
and scaling it to fit within a unit sphere, ensuring consis-
tency and facilitating effective analysis.

For classifier training of MVCNN and View-GCN,
we utilize the ModelNet40 dataset in conjunction with
the Blender script provided by Jongchyisu (available
at https://github.com/jongchyisu/mvcnn pytorch). This
GitHub repository also includes a pre-established multi-
view image dataset, which facilitates the training process.

Traning Process All the experiments are run remotely
through Vast.ai, a market leader in low-cost cloud GPU
rental. The system utilized is equipped with an NVIDIA
RTX 4090 GPU, offering 82.6 TFLOPS of performance and
24 GB of memory, and features an AMD Ryzen Threadrip-
per PRO 3955WX processor with 16 cores.

The training process of the MVCNN is conducted in
two stages, both focusing on classifier training. In the first
stage, the pretrained AlexNet is fine-tuned with 40 output
classes. In the second stage, the entire MVCNN architec-
ture is trained from scratch. Both stages utilize the same
training dataset, consisting of multiple views of each shape
from the ModelNet40 dataset, with no data augmentation
for scaling or rotation.

The loss function of two stages used is CrossEntropy-
Loss. The network aggregates features from multiple views
and produces a final class probability distribution using a
softmax layer. The cross-entropy loss is then computed
based on these predicted probabilities and the true class la-
bels of the 3D shapes.

L = −
C∑

c=1

yc log(pc) (48)

where: C is the number of classes, yc is a binary indica-
tor (0 or 1) if class label c is the correct classification for the
given observation, pc is the predicted probability that the
observation belongs to class c.

The training is performed for 30 epochs with a batch size
of 12. The Adam optimizer is employed with a learning rate
of 0.001 and a weight decay of 0.0005 to adjust the model
parameters effectively during training.

https://github.com/jongchyisu/mvcnn_pytorch


3.8.5 View-GCN Implementation

Regarding the View-GCN, the training process follows a
standard classifier training approach. It is conducted in two
steps: first, fine-tuning the pre-trained view feature extrac-
tor (e.g., ResNet-18) on multi-view 2D images, and second,
performing end-to-end training of the complete View-GCN
architecture using the total training loss. Both stages uti-
lize the same training dataset, which comprises 12 multiple
views of each shape from the ModelNet40 dataset, with no
data augmentation for scaling or rotation.

The training loss for View-GCN consists of two com-
ponents: shape loss Lshape and view loss Lview. The shape
loss Lshape is a cross-entropy loss based on the global shape
descriptor F , used to classify the shape:

Lshape = CrossEntropy(F, y) (49)

where y is the class label of the shape. The view loss
Lview is a cross-entropy loss applied to view-selectors to en-
sure they can discriminate the shape category based on local
view features:

Lview =

L−1∑
l=0

Nl∑
j=1

∑
vq∈N(vj)

CrossEntropy(V (f̂ lvq ; θ
l,j
v ), y)

(50)
where V is the view selector function, f̂ lvq

is the updated
feature of node vq at level l, and θl,jv are the parameters of
the view selector. The total training loss is the sum of these
two losses:

Ltotal = Lshape + Lview (51)

The Training Process The training of View-GCN in-
volves two main steps. First, the pre-trained 2D image clas-
sification network (e.g., ResNet-18) is fine-tuned on multi-
view 2D images of all training 3D objects using SGD with
momentum, with a batch size of 30, an initial learning rate
of 10−2 reduced by half every 10 epochs, and a total of 400
epochs.

Second, the entire View-GCN architecture is trained end-
to-end on 3D shapes for shape recognition using SGD with
momentum. This step uses an initial learning rate of 10−3

for 15 epochs, with a batch size of 20 shapes (400 views)
for the 20-views version and 32 shapes (384 views) for the
12-views version. The learning rate is linearly increased
from 0 to 10−3 in the first epoch and then follows a cosine
quarter-cycle reduction to 0.

3.8.6 Classification Accuracy

For the classification on the validation dataset, the accuracy
is 0.9404 for MVCNN and 0.9762 for View-GCN. This
indicates that the trained classification models were able
to correctly classify each of the 40 classes in the standard

dataset. This suggests that these models can extract useful
information from the input 3D shapes and the output values
from the intermediate layers have the potential to be used as
descriptors.

3.8.7 Multi-view Image Generation for Skull Data

Once we have a classifier trained on a standard dataset, we
need to set the well-trained classifier to test mode to en-
sure the parameters remain unchanged. The next step is to
input the multi-view images of our skull data and inspect
the output values of certain layers. The first task, there-
fore, is to generate multi-view images. We generate multi-
view images for each sagittal skull using PyVista. PyVista
is a visualization library built on VTK (The Visualization
Toolkit) that provides a user-friendly, ”Pythonic” interface
to simplify working with VTK. The ‘pyvista.Plotter‘ class
is a versatile tool for displaying VTK meshes or NumPy
arrays and is especially useful for automated screenshots
and visualizations. In this class, the camera position
attribute allows for capturing screenshots from various di-
rections by specifying the camera’s position relative to the
object.

This attribute defines the camera position using three
points that determine the projection plane, enabling the gen-
eration of multi-view images from different viewpoints.

As regards the MVCNN, The input shapes are oriented
upright along vertical axis, with all cameras set in the cen-
tral plane of the test skull. Twelve virtual cameras are
placed around the mesh at 30-degree intervals, resulting in
12 rendered views. For all skulls with sagittal craniosynos-
tosis, we generate 12 multi-view images with camera setting
shown in Figure 23a. According to the discussion in 2.4, el-
lipsoid fitting can distort rendering information, which is
critical in view-based methods. Therefore, we select a nor-
mal synthetic skull from the database as the normative skull,
indexed as "control inst 001 CN". Multi-view im-
ages for the normative skull are generated in the same man-
ner.

In View-GCN, the camera positions are defined based on
an icosahedral configuration, providing a uniform distribu-
tion of 20 viewpoints around the skull, shown in Figure 23b.

3.8.8 Descriptor Extraction

MVCNN We utilized forward hooks in PyTorch to ex-
tract intermediate layer outputs from our neural network.
Forward hooks are functions registered on specific layers to
capture their inputs or outputs during the forward pass. By
attaching these hooks to selected layers, we were able to
store and analyze the activations generated at various stages
of the network. This approach provided valuable insights
into the feature extraction and representation learning pro-



(a) Circular camera configuration for MVCNN

(b) Polygon camera configuration for View-GCN

Figure 23. Camera configuration for Image Generation

cesses, enabling a deeper understanding of how the network
processes and transforms data through its layers.

As regards the MVCNN, the global shape descriptor is
represented by four types of embeddings in the CNN. The
first descriptor is the output of the first Linear Layer of the
aggregation CNN, with a dimension of 4096. The second
descriptor is the input to the second Linear Layer, also with
a dimension of 4096; this descriptor has passed through an
activation layer (ReLU) compared to the first. The third de-
scriptor is the output of the second Linear Layer after pass-
ing through the activation layer, maintaining a dimension
of 4096. The final descriptor is the output probability of
the neural network with a dimension of 40, representing the
probability distribution of the skull data classified into the
standard categories of the ModelNet40 dataset in our test
mode.

The visualization of descriptors of sagittal 006 is
shown in Figure 24.

View-GCN Regarding the View-GCN, the global shape
descriptor is not only represented by embeddings in the
CNN but also includes F 1 and F 2. These feature matrices,
at different hierarchical levels of the View-GCN, represent

(a) Output of 1st linear layer (b) Input of 2nd linear layer

(c) Output of 2nd linear layer (d) Output probability

Figure 24. Visualization of different levels of shape descriptor
extracted by well-trained MVCNN

progressively coarsened and enriched multi-view features
used to construct a global shape descriptor for 3D shape
recognition. These matrices are denoted as the input to the
L view block in the diagram presented in Section 3.8.3.
Based on previous discussions, these matrices are integral
to the final loss function of the classifier, making it reason-
able to consider these two tensors as shape descriptors. For
comparison purposes, F 1 and F 2 are flattened into one-
dimensional arrays, with F 1 having a length of 1600 and
F 2 having a length of 800. Additionally, the descriptors ex-
tracted from the output and input of the second linear layer
each have a length of 512, while the descriptor extracted
from the output of the first linear layer has a dimensional-
ity of 1536. The visualization of different levels of shape
descriptors is shown in Figure 25.

4. Result
In this section, we present the findings from our analy-

sis, which involved visualizing the data using box plots and
swarm plots, and evaluating the relationship between our
various severity scores in the methodology part and the Sur-
geon Rating index using Spearman rank correlation. The
distribution of subjects according to the surgeons’ ’over-
all’ severity score is as follows: severity score 0 includes
4 subjects (n=4), severity score 1 includes 7 subjects (n=7),
severity score 2 includes 9 subjects (n=9), and severity score
3 includes 8 subjects (n=8). These scores represent the sur-
geons’ assessments of the overall severity of the cases.

Figures in this part show the distribution of the Surgeon
Rating index across different clinical phenotype scores. The
mean severity score for each level, represented by the line
within each box, varies across the scores. The interquar-
tile ranges (IQRs), depicted by the boxes, and the whiskers
indicate substantial overlap, suggesting significant variabil-
ity within each clinical phenotype score category. Out-
liers, marked as points outside the whiskers, are present in



(a) Output of 1st linear layer (b) Input of 2nd linear layer

(c) Output of 2nd linear layer (d) Output probability

(e) F 1 (f) F 2

Figure 25. Visualization of different levels of shape descriptor
extracted by well-trained View-GCN

multiple categories, indicating some extreme values in the
dataset.

The Spearman rank correlation analysis provides further
insights into the relationship between clinical phenotype
scores and the our severity score. The correlation coefficient
and the corresponding p-value are presented to quantify the
strength and significance of this relationship.

4.1. Assymetry Index

Figure 26. Box plot comparing computed severity scores(AI) for
sagittal head models against clinical severity scores

4.2. Difference Between Corresponding Coordi-
nates

From Figure 26, the Spearman rank correlation coeffi-
cient is -0.043, with a p-value of 0.829. This low corre-

lation coefficient and high p-value indicate no significant
monotonic relationship between the Asymmetry Index and
surgeon ratings, suggesting that this method is not effective
in correlating Asymmetry Index with the surgeon’s assess-
ment of severity. The mean Asymmetry Index values for
surgeon ratings 0, 1, 2, and 3 are approximately 0.65, 0.6,
0.55, and 0.75, respectively. The interquartile ranges (IQRs)
show considerable overlap between the groups, further in-
dicating that the Asymmetry Index does not effectively dis-
tinguish between different levels of severity.

Overall, the analysis reveals the following insights: The
Spearman Rank Correlation Coefficient indicates a strong
positive correlation between Surgeon Rating and Mean Ab-
solute Error (MAE); as the Surgeon Rating increases, the
MAE tends to increase. Additionally, the p-value confirms
that this correlation is statistically significant. These ob-
servations collectively validate the effectiveness of all three
quantification methods.

The box plot of this method is shown in Figure 27 and
summarized in Table 1.

For cases with a Surgeon Rating of 0, the MAE values
are tightly clustered around a lower mean distance, suggest-
ing good agreement and lower error for these less severe
cases. This indicates that the method performs accurately
for such cases.

In cases with a Surgeon Rating of 1, the results are gen-
erally satisfactory. When using MSE and MAE as quantifi-
cation functions, the interquartile ranges are distinct. How-
ever, under the EVD condition, there is some overlap be-
tween the sections of Surgeon Ratings 0 and 1. Conversely,
EVD effectively distinguishes between Surgeon Ratings 1
and 2, with no overlap, highlighting its ability to differenti-
ate between these two severity levels of craniosynostosis. In
contrast, MAE and MSE show some overlap between these
ratings.

For cases with a Surgeon Rating of 2, the interquartile
range under EVD nearly overlaps entirely with that of sever-
ity 3.

Notably, all plots for Surgeon Rating 2 exhibit signifi-
cant outliers, indicating that our severity assessment method
does not classify these cases well.

Table 1. Comparison of corresponding Spearson Rank Correlation
Coefficient and p-value

Quantification Function Coefficient p-value

MAE 0.756 0.00000321
MSE 0.759 0.00000280
EVD 0.722 0.00001420



(a) Analysis of Corresponding
Coordinate(MAE)

(b) Analysis of Corresponding
Coordinate(MSE)

(c) Analysis of Corresponding
Coordinate(EVD)

Figure 27. Box plot comparing computed severity
scores(Corresponding Coordinate) for sagittal head models
against clinical severity scores

4.3. D2 Histogram

From Figure 28, we observed a significant overlap in
the interquartile ranges. According to statistical principles,
if the p-value is smaller than 0.05, we can reject the null
hypothesis, indicating that the result is statistically signifi-
cant. However, in the quantification of EVD, the p-value is
greater than 0.05, indicating that the result is not effective.
Among the remaining three quantification methods, MSE
performs the best in terms of both p-value and correlation
coefficient. Nonetheless, overall, they all perform worse
than using the Difference Between Corresponding Coordi-
nates as the descriptor. The summary of Spearman rank
correlation coefficient is shown in Table 2.

Table 2. Comparison of D2 histogram metrics with their correla-
tion coefficients and p-values

Quantification Function Coefficient p-value

MAE 0.383 0.0444
MSE 0.425 0.0242
EVD 0.359 0.0605
JSD 0.375 0.0492

4.4. Spectral Embedding

When comparing the four quantification methods, JSD
and EVD demonstrate significantly better performance than
MSE and MAE in terms of both correlation value and p-
value, which is shown in 3. This highlights that the EVD
function is more effective for spectrum-related dissimilar-
ity comparisons. Unlike previous methods, which show

(a) Analysis of D2 his-
togram(MAE)

(b) Analysis of D2 his-
togram(MSE)

(c) Analysis of D2 his-
togram(EVD)

(d) Analysis of D2 his-
togram(JSD)

Figure 28. Box plot comparing computed severity scores(D2 his-
togram) for sagittal head models against clinical severity scores

positive correlation coefficients, this approach uses a neg-
ative correlation. This is because it calculates the eigen-
values of the affinity matrix, A, which is defined as Aij =
exp(−d2ij/2σ2), where dij represents the distance between
the ith and jth vertices of the mesh. This matrix exhibits
a negative relationship with point similarity, contributing to
the effectiveness of the EVD approach.

Specifically, our severity score using the EVD of the
spectrum embedding method accurately reflects the differ-
ences between ratings of 2 and 3. However, for distinguish-
ing between ratings of 3 and 4, the JSD score provides a
better reflection of the differences, which is shown in Fig-
ure 29.

(a) Analysis of Spectral Embed-
ding(MAE)

(b) Analysis of Spectral Embed-
ding(MSE)

(c) Analysis of Spectral Embed-
ding(EVD)

(d) Analysis of Spectral Embed-
ding(JSD)

Figure 29. Box plot comparing computed severity scores(Spectral
Embeddings) for sagittal head models against clinical severity
scores



Table 3. Comparison of Spectral Embedding metrics with their
correlation coefficients and p-values

Quantification Function Coefficient p-value

MAE -0.456 0.0146
MSE -0.446 0.0175
EVD -0.722 < 0.0001
JSD -0.748 < 0.0001

4.5. LBO Spectrum

In these tests, the p-value for EVD is greater than 0.05,
indicating that it is not statistically significant. The remain-
ing three methods are acceptable; according to our princi-
ples, the severity scores generated by these methods show
some level of correlation with expert ratings. The best per-
formance is achieved using JSD as the quantification func-
tion between the normative and test skulls. A careful ex-
amination of the interquartile ranges reveals that, among
the four groups, those classified as 0 and 1 (relatively low
severity) and 2 and 3 (relatively high severity) are clearly
distinguishable.

The summary is shown by Table 4 and Figure 30.

(a) Analysis of LBO Spec-
trum(MAE)

(b) Analysis of LBO Spec-
trum(MSE)

(c) Analysis of LBO Spec-
trum(EVD)

(d) Analysis of LBO Spec-
trum(JSD)

Figure 30. Box plot comparing computed severity scores(LBO
Spectrum) for sagittal head models against clinical severity scores

4.6. Laplacian Heat Kernel Descriptor

It was observed that there are a large number of zeros
in the descriptors, making the use of generalized eigen-
value distance for quantifying differences unsuitable. The
p-values for MSE and MAE were notably poor, shown in
Table 5. Although JSD is acceptable in terms of both cor-
relation coefficient and p-value, and is statistically signifi-
cant, the box plots reveal that it is still challenging to dis-

Table 4. Comparison of LBO Spectrum metrics with their correla-
tion coefficients and p-values

Quantification Function Coefficient p-value

MAE 0.415 0.0279
MSE 0.398 0.0360
EVD 0.292 0.1315
JSD 0.482 0.0094

tinguish between groups. Notably, expert ratings of 2 dom-
inate nearly 70% of the plot in Figure31, indicating limited
discrimination among the groups.

(a) Analysis of Laplacian Heat
Kernel(MAE)

(b) Analysis of Laplacian Heat
Kernel(MSE)

(c) Analysis of Laplacian Heat
Kernel(EVD)

Figure 31. Box plot comparing computed severity
scores(Laplacian Heat Kernel) for sagittal head models against
clinical severity scores

Table 5. Comparison of Laplacian Heat Kernel Descriptor metrics
with their correlation coefficients and p-values

Quantification Function Coefficient p-value

MAE -0.377 0.0481
MSE -0.271 0.1635
JSD 0.523 0.0043

4.7. Zernike Shape Descriptor

After obtaining the Zernike coefficients, we calculated
and plotted the correlation coefficient curve with respect to
the order for four different quantification functions shown
in Figure 32.

Based on above images, we determined that the opti-
mal order and quantification function are an order of 22 and
MSE as the quantification metric. While there are a few out-
liers where ratings of 2 and 3 cannot be distinguished due to



their similar values, the remaining interquartile range is dis-
tinctly separated, shown in Figure 33. In terms of p-value
and correlation coefficient, this approach proves to be the
most effective.

(a) MAE as difference quantifica-
tion method

(b) MSE as difference quantifica-
tion method

(c) EVD as difference quantifica-
tion method

(d) JSD as difference quantifica-
tion method

Figure 32. Box plot comparing computed severity
scores(Laplacian Heat Kernel) for sagittal head models against
clinical severity scores

Figure 33. Box plot comparing computed severity scores(3D
Zernike Descriptor(order=22)) for sagittal head models against
clinical severity scores

4.8. View-based Method

4.8.1 MVCNN-based Descriptor

From the result image, it’s common for some nodes in the
hidden layers of a neural network to have values of zero.
When these values are used as shape descriptors, the pres-
ence of many zeros makes it unsuitable to use generalized
eigenvalue distance as a measure of difference.

Based on the p-values for all the test results, none of
the outcomes are statistically significant. However, the 1st
linear output shows the best performance, with p-values
around 0.07 for JSD(36), MAE(34), and MSE(35). This is

in contrast to the final aggregated descriptor of output prob-
ability.

(a) Output of 1st linear layer (b) Input of 2nd linear layer

(c) Output of 2nd linear layer (d) Output probability

Figure 34. Box plot comparing computed severity
scores(MVCNN related, MAE) for sagittal head models
against clinical severity scores

(a) Output of 1st linear layer (b) Input of 2nd linear layer

(c) Output of 2nd linear layer (d) Output probability

Figure 35. Box plot comparing computed severity
scores(MVCNN related, MSE) for sagittal head models
against clinical severity scores

4.8.2 View-GCN-based Descriptor

By observing the p-values, we can see that only a few sever-
ity assessment methods are statistically significant. We pro-
vide a summary table of these statistically significant meth-
ods. Additionally, in the plots, the interquartile ranges show
a considerable amount of overlap.

The figures of boxplot are shown in Figure37,38,39 and
summary of correlation coefficient is shown in Table 6.



(a) Output of 1st linear layer (b) Input of 2nd linear layer

(c) Output of 2nd linear layer (d) Output probability

Figure 36. Box plot comparing computed severity
scores(MVCNN related, JSD) for sagittal head models against
clinical severity scores

(a) Output of 1st linear layer (b) Input of 2nd linear layer

(c) Output of 2nd linear layer (d) Output probability

(e) F 1 (f) F 2

Figure 37. Box plot comparing computed severity scores(View-
GCN related, MAE) for sagittal head models against clinical sever-
ity scores

5. Discussion
5.1. Asymmetry Index

Regarding the Severity score of AI (Asymmetry Index),
the median Asymmetry Index values for surgeon ratings 0,
1, 2, and 3 are approximately 0.65, 0.60, 0.55, and 0.75,
respectively. There is no apparent monotonic trend in the
Asymmetry Index values relative to expert ratings, and the
large p-values suggest that these differences are not statisti-

(a) Output of 1st linear layer (b) Input of 2nd linear layer

(c) Output of 2nd linear layer (d) Output probability

(e) F 1 (f) F 2

Figure 38. Box plot comparing computed severity scores (View-
GCN related, MSE) for sagittal head models against clinical sever-
ity scores

(a) Output of 1st linear layer (b) Input of 2nd linear layer

(c) Output of 2nd linear layer (d) Output probability

(e) F 1 (f) F 2

Figure 39. Box plot comparing computed severity scores (View-
GCN related, JSD) for sagittal head models against clinical sever-
ity scores

cally significant. Upon further investigation, the visualiza-



Table 6. Test Results and Statistical Significance

Description Coefficient p-value

2nd Linear Layer output(MAE) -0.409 0.0306
Output probability(MAE) -0.413 0.0289
F 1(MAE) -0.398 0.0357
F 2(MAE) -0.176 0.3710
F 2(MSE) -0.220 0.2600
F 1(MSE) -0.422 0.0254
2nd Linear Layer Output(MSE) -0.406 0.0320
2nd Linear Layer Input(MSE) -0.379 0.0465

tion of a control skull and a sagittal skull regarding its asym-
metry index is created in Figure 40, 41. The control skull
has a higher level of asymmetry index shown by a deeper
color in the heat map and a higher Mean Asymmetry In-
dex overall. This suggests that while the asymmetry index
might be an important shape feature, it does not appear to
be clinically relevant for diagnosing severity.

(a)

(b)

Figure 40. The visualization of Asymme-
try Index of a normal skull

(a)

(b)

Figure 41. The visualization of Asymme-
try Index of a sagittal skull

5.2. Corresponding Coordinate

Regarding the corresponding coordinate difference, this
method works well by calculating the coordinate difference
between each point and its own normative fitted ellipsoid,
achieving a high level of distinctiveness. By leveraging the
continuous curvature characteristics of the fitted ellipsoid,
we perfectly capture the clinically significant regions that
differ in the test skull. Compared with using coordinates
directly, the greatest drawback of local shape descriptors,
especially those using coordinate-derived methods, is their
ineffectiveness in providing invariance to transformations
such as translation, rotation, and scaling. To address this,
we build a normative skull for each test skull, eliminating
the issue of coordinates being affected by rotation and trans-
lation, which significantly enhances the applicability of our
method in clinical settings. Additionally, in the context of
3D photography for clinical data, standards are relatively in-
consistent regarding point number, point establishment, and
frequent rotations. By employing an ellipsoid-fitted skull
as the normative reference, we effectively address the point
establishment requirement for quantifying differences be-
tween the control skull and the test skull.



5.3. Histogram-based Method

Regarding the two histogram-based methods, namely the
D2 shape descriptor and the Laplacian heat kernel descrip-
tor(coefficient of D2 histogram: 0.425, p-value = 0.0242;
coefficient of Laplacian heat kernel descriptor: 0.523, p-
value = 0.0043), both produce normalized histograms with
a length of 17. However, these histograms may have lim-
ited discriminative power when distinguishing between rel-
atively similar shapes, such as skulls with varying levels
of severity . This low discriminative power arises because
histogram-based methods aggregate shape information into
bins, potentially losing details necessary for distinguishing
subtle variations [43], verified by Figure 42. When shapes
are very similar, the aggregated histogram features can ap-
pear nearly identical, making it challenging to capture mi-
nor but clinically significant differences.

(a)

(b)

Figure 42. The D2 histogram of severity
of 3 and the severity of 1 both exhibit a
trend of initially increasing and then de-
creasing.

5.4. Spectrum-based Method

Comparing spectral embedding using the affinity matrix
and the LBO spectrum, the former significantly outperforms
the latter (coefficient of spectral embedding: −0.748, p-
value = 4.639 × 10−6; coefficient of LBO: 0.482, p-value
= 0.00939). Both descriptors use spectral related informa-
tion to capture the variational patterns. The affinity matrix
in spectral embedding measures pairwise similarities be-
tween points or features on the shape, offering greater ro-
bustness to noise and artifacts. By directly assessing how
similar or close two points are, it maintains meaningful
shape information despite noise.

In contrast, the LBO spectrum relies on the Laplacian-
Beltrami operator, which is sensitive to noise and small vari-
ations in surface geometry due to its dependence on local

curvature and differential properties. This sensitivity can
reduce the reliability of shape recognition when noise is
present. Also, the derivative component of LBO operator
makes it focus on local information, encoding the shape’s
connectivity. While these edge-level details are important
for graphical rendering, they are less crucial for our shape
analysis needs.

Although LBOs excel at capturing local shape features,
affinity matrices provide a more comprehensive and flexi-
ble approach to shape representation. This makes spectral
embedding using the affinity matrix more effective for our
purposes, as it better preserves overall shape characteristics
and is more resilient to noise and variability in the data.

Compared to the LBO Spectrum, the Laplacian Heat
Kernel Descriptor performs better, achieving a Spearman
rank correlation coefficient of 0.523, which is slightly
higher than that of the LBO Spectrum. This improvement is
likely because the Heat Kernel Descriptor integrates global
information through the Heat Kernel Signature (HKS) and
distance histograms, rather than relying solely on local
shape features as in the LBO Spectrum. However, its per-
formance is still significantly lower than that of the Spectral
Embedding.

5.5. 3D Zernike Descriptor

Among all the methods evaluated, Zernike moment per-
form the best, as evidenced by their superior separation
of interquartile ranges, higher correlation coefficients, and
more significant p-values. Zernike moment offer greater
discriminative power for circular and radial data (e.g., unit
sphere distance mapping discussed in Section 3.7.6) due to
their tailored basis functions compared to spectral or eigen-
value methods.

By examining the Zernike descriptor severity score
across different orders, we observe that performance is op-
timal between orders 20 and 25 under four kinds of quan-
tification functions. This finding suggests that the Zernike
descriptor captures detailed and clinically relevant informa-
tion about skull severity, highlighting that important shape-
related details are present at a fine level, which distance-
based or spectral methods may miss. The precision of
double-precision floating-point numbers is surpassed at or-
der 9 [56]. Additionally, research in protein shape analysis,
which demands high precision and discriminative power be-
yond that required for standard object classification, indi-
cates that moments up to order 20 are necessary for effec-
tive descriptors [21, 37, 73]. This reinforces the importance
of capturing detailed information for accurate severity as-
sessment in further research.

5.6. MVCNN

For MVCNN (Multi-View Convolutional Neural Net-
works), we observed no statistically significant features in



our analysis. This lack of significant findings could be at-
tributed to the specific viewpoints chosen for capturing the
images, which may not have included the relevant features
needed for effective analysis. Alternatively, the selected
viewpoints might not have been discriminative enough to
highlight meaningful differences. Furthermore, the cam-
eras used in the study were all positioned on the same plane,
which imposed inherent limitations on the captured multi-
view images. This uniform camera positioning restricted
the diversity of perspectives and angles, potentially leading
to less informative and less varied images. Such limitations
can hinder the ability of MVCNN to extract and learn from
distinctive features that could have improved feature detec-
tion and severity clustering performance.

5.7. View-GCN

View-GCN performed significantly better compared to
MVCNN, which may be attributed to the fact that some im-
age angles, such as the oblique view, are not crucial for as-
sessing severity. However, its performance still lags behind
spectrum-based methods. While images from certain views,
like the top view, effectively capture asymmetry informa-
tion and classify shape based on geometric features, they
do not significantly impact the severity evaluation for sagit-
tal craniosynostosis. When aggregating features, we cannot
adequately down-weight these less relevant angles because
they are important for classification. Consequently, our
analysis included too much clinically irrelevant but shape
classification relevant information.

In training neural networks, it is often necessary to fine-
tune hyperparameters to improve performance. One chal-
lenge with applying neural network methods to this project
is that, even if we utilize the feature representation capac-
ity of a shape classifier, the well-trained classifier with a
high level of test accuracy will capture shape-related infor-
mation. This information is highly related to recognition.
However, while these features can classify the shape of the
skull in my test, they are not entirely clinically related to
severity. This means that the optimal severity quantification
performance for the skull does not correspond to the pa-
rameter values that yield the highest classification accuracy.
This makes fine-tuning the network directionless.

5.8. Potential Application

5.8.1 Guidance on Whether Surgery is Required: Ob-
jective Recommendations

The mesh data we tested is within a case that has been
diagnosed as requiring surgery. We use the three best-
performing methods described earlier—Spectral Embed-
ding (JSD), Corresponding Coordinate (MSE), and 3D
Zernike Coefficient (order = 22, MSE)—to assess the sever-
ity of this case and provide objective guidance. The red in-
dicates the severity score patient corre in following figures.

Corresponding Coordinate (MSE) The average severity
scores for surgeon ratings 0, 1, 2, and 3 are approximately
0.03, 0.04, 0.07, and 0.105, respectively. The severity score
for the case in the image is 0.164. According to this method,
a score of 0.164 would be classified as a severity rating of 3
in Figure 43.

Figure 43. Suggestion from Corresponding Coordinate(MSE)

Spectral Embedding (JSD) The severity score from
Spectral Embedding (JSD) is negatively correlated with sur-
geon ratings. The average severity scores for surgeon rat-
ings 0, 1, 2, and 3 are approximately 0.651675, 0.6516,
0.65145, and 0.65135, shown in Figure 44 respectively. The
severity score for the case in the image is 0.65125. Based on
this method, the severity would be categorized as either rat-
ing 2 or 3. Considering the results shown in the figure sec-
tion, the score falls within the interquartile range of severity
rating 3 and not within that of rating 2. Thus, it is most
likely a severity rating of 3.

Figure 44. Suggestion from Spectral Embedding(JSD)

3D Zernike Coefficient (order = 22, MSE) The average
severity scores for surgeon ratings 0, 1, 2, and 3 are ap-
proximately 0.0002, 0.0005, 0.0007, and 0.00075 shown in



Figure 45, respectively. The severity score for this case is
0.00098, which falls entirely within the interquartile range
for severity rating 3. Therefore, it is highly likely that this
case corresponds to severity level 3.

Figure 45. Suggestion from 3D Zernike Descriptor(MSE)

Summary of the Three Evaluation Methods Although
not all methods can precisely differentiate between sever-
ity ratings 2 and 3, the overall conclusion is that the case is
indicative of severe craniosynostosis. This conclusion sup-
ports the surgeon’s recommendation for surgery. Therefore,
this research offers a valuable tool for providing objective
support in the surgeon’s diagnostic process.

5.9. Recovery Situation Analysis: Pre- and Post-
Surgery

We have pre- and post-surgery mesh data for seven
anonymous patients who have undergone surgery. Given
that our severity scores are not very intuitive due to be-
ing small decimal numbers, we applied a linear mapping,
specifically mapping the minimum and maximum values of
the y-axis in the box plot to a range of 0-100. We calcu-
lated the severity scores for each patient using the Zernike
Shape Descriptor, identified as the best-performing method
in terms of correlation coefficient and p-value, and mapped
these scores to the 0-100 range.

The Figure 46, 47 illustrate these results, we can see
that our descriptor effectively captures the improvement in
shape information in most of cases aside from the third one,
demonstrating its potential for assessing the efficacy of the
surgery.
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