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Abstract

Oil and gas pipelines play a key role in the safe and efficient delivery of energy

resources around the world. Crude oil by itself is not corrosive, but oil extracted from

geological reservoirs is accompanied by varying amounts of water and acidic gases

such as carbon dioxide (CO2), which can form a corrosive combination. Estimating

the corrosion rate and depth in pipelines is essential for predicting their failure proba-

bility. In the present study, a Bayesian network has been developed for predicting

the distribution of corrosion rate in oil pipelines given the point estimates generated

using an empirical corrosion simulation model. For this purpose, the simulation model

considers corrosion parameters such as pipe diameter, flow temperature, flow veloc-

ity, and CO2 partial pressure, among others. With the corrosion rate distribution

predicted by the Bayesian network, corrosion depth–rate relationships have been

employed to convert the corrosion rate distribution into failure probability

distribution.

K E YWORD S

Bayesian network, depth–rate relationship, failure probability assessment, oil pipeline

1 | INTRODUCTION

Pipelines are still considered the safest and most cost-effective means

of mass transportation in the oil and gas industry. Meanwhile, even

minor failures in pipelines may lead to catastrophic consequences.1

Among the failure modes of pipelines, corrosion appears to be one of

the most feared and frequent culprits. Corrosion is a naturally occur-

ring electrochemical reaction resulting in the degradation of materials.

Corrosion of pipelines by aqueous CO2 and H2S has long been a

concern in the oil and gas industry and still represents a serious threat

to pipeline integrity and plays a key role in life-cycle assessment of oil

pipelines.2 Oil and gas pipelines are commonly made of carbon steel

because of its good mechanical properties, low cost, and wider avail-

ability despite having a relatively low corrosion resistance.3 Applying

advanced techniques in oil and gas extraction, such as CO2 injection

for enhanced oil recovery and extraction of deep natural gas reser-

voirs, has brought this problem to attention again.4

Dry gas and oil by themselves are not corrosive; however, the

presence of an aqueous phase on the metal surface along with CO2

and H2S provides a suitable condition for corrosion to occur.5 When

oil wells age, the production of oil starts to decline whereas the flow

rates of water and gas, which usually contain corrosive agents such as

CO2, start to increase, accelerating the internal corrosion of the

pipeline.3,6

Abbreviations: BN, Bayesian network; d, Corrosion depth; D, Pipe diameter; f(r), Probability

density function of corrosion rate; F(R), Cumulative density function of corrosion rate; h, Pipe

wall thickness; I, Inhibitor efficiency; k, Shape parameter of Weibull distribution; P, Pressure;

pCO2, Partial pressure of CO2; POF, Probability of failure; r, Corrosion rate variable;

R, Corrosion rate value; t, Age of pipe (exposure time to corrosion); S, Shear stress;

T, Temperature; V, Flow velocity; X, Generic random variable in BN; α, Exponent of corrosion

depth function; β, Coefficient of corrosion depth function; θ, Parameters (conditional

probabilities) of BN; γ, Scale parameter of Weibull distribution.
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Although there are steel alloys that resist corrosion effectively,

mild steel (a type of carbon steel with low carbon content) is widely

used in the construction of pipelines and process equipment in the oil

and gas industry, because of its cost effectiveness. The corrosive envi-

ronment in the presence of acidic gases of CO2 and H2S is classified

as sweet and sour corrosion, respectively.7 The severity of both types

of corrosion is controlled by the combination of several operational

parameters such as temperature, pressure, flow velocity, and the envi-

ronmental parameters such as the pH of the fluid inside the pipeline.

Data about the rate and extent of corrosion are usually collected by

intelligent pigging, which is a highly sophisticated instrument for mea-

suring the pipeline wall thickness through electromagnetic waves or

electrochemical potential noise.8 If the corrosion rate cannot be deter-

mined from thickness inspection data, rough estimates may be

established using expert elicitation,9 or predictions can be made using

deterministic and probabilistic models based on measurement of the

key corrosion parameters.10–18 Generic failure frequencies of process

equipment and pipelines, due to internal and external corrosion, are also

available19 but they need to be tailored before use by taking factors

such as management systems, inspection history, an so on, into account.

Based on the underlying physicochemical processes of corro-

sion, many models have been developed to calculate the corrosion

rate of pipelines, including mechanistic models,14,20 semiempirical

models,21 empirical models,22,23 neural networks,24,25 and numerical

simulation of corrosion differential equations.26 The Bayesian net-

work (BN) has been effectively used for modeling and failure assess-

ment of engineering systems and structures where uncertainty may

impede the application of conventional techniques.27 BNs devel-

oped or enhanced on the basis of physical models (also known as

physical-model-based BNs) have recently been employed as a prom-

ising alternative for corrosion analysis28–32 and for estimating the

remaining useful life and reliability of pipelines33 and for other engi-

neering systems.34,35 The superior performance of BN over most

conventional techniques is mainly due to its ability in reasoning

under uncertainty and updating the prior probabilities should new

information become available.

In the present study, a probabilistic method based on BN and

Weibull distribution is proposed for predicting the failure probability

of an oil pipeline due to CO2 corrosion. Considering the radial corro-

sion rate as a key factor in corrosion-related failure of pipelines,14 a

corrosion rate simulation model23 is used to generate point estimates

of corrosion rate (mm/year) given the pipe diameter, flow tempera-

ture, flow velocity, CO2 concentration (as its partial pressure), and so

on. The output of the simulation model is used to develop a BN and

learn its parameters via the maximum likelihood estimation algorithm.

With the distribution of the corrosion rate predicted by the BN, a

Weibull distribution is used to predict the corrosion depth and the

respective failure probabilities.

The steps taken to develop the methodology are illustrated in

Figure 1.

In Section 2, the basics of CO2 corrosion and BN are briefly

reviewed (Step 1 is covered in Section 2.1). Section 3 demonstrates

the development and validation of the developed BN model for

predicting corrosion rates through an illustrative case study (Step 2 is

covered in Section 3.1 while Step 3 is covered in Section 3.2). In

Section 4, a Weibull distribution is used to estimate the corrosion

depth and predict the respective failure probabilities (Step 4 is cov-

ered in Section 4). Section 5 concludes the paper.

2 | THEORETICAL BACKGROUND

2.1 | CO2 corrosion mechanism

The initiation of corrosion damage is a random process, depending on

the microstructure of the material, the surface condition (e.g., the

F IGURE 1 Steps taken to generate
the failure probability distribution in the

present study
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presence of surface defects), and other environmental factors.17

Aqueous CO2 corrosion of mild steel is an electrochemical process

involving the anodic dissolution of iron (Fe) and the cathodic evolution

of hydrogen (H2) as
3

FeþCO2þH2O!FeCO3þH2: ð1Þ

The presence of CO2 can increase the rate of hydrogen evolution

and thus accelerate the rate of corrosion. As an oil well ages, the pro-

duction of oil starts to decline, whereas the flow of water and gas,

which usually contain highly corrosive agents such as CO2, tends to

increase. This, in turn, accelerates the corrosion process inside the

pipeline.3 Compared to that of CO2, the role of iron carbonate

(FeCO3), which is usually formed at higher temperatures in the form

of solid films (also known as scales), is twofold: it can be protective

and decelerate the corrosion, or it could be non-protective, depending

on the environmental conditions under which it is created.36 Iron can

also be anodically dissolved individually in acid solutions as

Fe!Fe2þ þ2e�: ð2Þ

As a result, carbonic acid (H2CO3) can react with free electrons

and enable hydrogen evolution even at pH >5:

2H2CO3þ2e� !H2þ2HCO�
3 : ð3Þ

However, carbonic acid is believed to serve as an extra source of

hydrogen ions (H+), which in retraction with electrons can lead to the

evolution of more hydrogen:

2Hþ þ2e� !H2: ð4Þ

pH has a strong influence on corrosion rate; at pH ≤4, the reduc-

tion of H+ ions is important particularly at lower partial pressures of

CO2 (pCO2), directly affecting the corrosion rate. On the other hand,

at high pH the solubility of iron carbonate decreases, which in turn

increases the precipitation rate and formation of scales, thereby

reducing the rate of corrosion.7

pCO2, temperature, flow velocity, and corrosion inhibitor are the

other factors that play a key role in the rate of corrosion.36 The

increase in pCO2 increases the concentration of carbonic acid and

accelerates the cathodic reaction and thus the corrosion rate. The role

of temperature, however, is controversial: at low pH, the increase in

temperature accelerates the corrosion rate, whereas at high pH, a high

temperature speeds up the formation of protective scales and

decreases the corrosion rate. By almost all accounts, flow velocity at

both low and high pH increases the rate of corrosion. Given the corro-

sion depth (d) and the pipe wall thickness (h), the corrosion depth can

be categorized as shallow if 0.1 < d
h <0.2, moderately deep if 0.2 < d

h

<0.4, and deep if 0.4 < d
h <0.6.

15 A detailed analysis of CO2 corrosion

mechanism can be found elsewhere.3

2.2 | Bayesian network

A BN can be defined as an acyclic directed graph BN = (G, θ), where

G denotes the structure of the graph (nodes and edges) and θ denotes

the parameters.37 Based on the chain rule and the d-separation

criteria, the joint probability distribution of the nodes (each node rep-

resents a random variable) in a BN can be factorized as the product of

the conditional probabilities of the nodes given their immediate

parents

P X1,X2,…,Xnð Þ¼
Yn
i¼1

P Xijpa Xið Þð Þ, ð5Þ

where Xi is a random variable, and pa(Xi) is the parent set of Xi, that is,

the set of nodes from which there are direct edges to Xi. The condi-

tional probabilities θi ¼P Xijpa Xið Þð Þ, which are also known as the

parameters, can either be estimated by subject matter experts or be

learned from data (observations) using algorithms such as the maxi-

mum likelihood estimation (MLE).

Given a set of observations D¼ d1,d2,…,dmf g in which each

observation assigns a value to each node as dj ¼ xj1,x
j
2,…,xjn

n o
, the

likelihood function of the parameters can be developed as38

L D;G,θð Þ¼P Djθð Þ¼
Ym
j¼1

P djjθ
� �¼Ym

j¼1

Yn
i¼1

P xjijpa xji

� �� �
: ð6Þ

By maximizing either the likelihood function in Equation (6) or its

natural logarithm (log-likelihood function), the parameters of the BN

can be estimated. An illustrative example on the application of MLE is

presented in the Appendix A.

3 | MODEL DEVELOPMENT

3.1 | Data generation

Considering the influential parameters in CO2 corrosion, as described

in Section 2.1, the M-506 corrosion rate model, which is an empirical

model developed by NORSOK,23 is used to generate the data required

for estimating the conditional probabilities of the BN model for

predicting the corrosion rates. If experimental data or field measure-

ments are available,39 the probabilities needed in the BN can be esti-

mated using data mining techniques. In the present study, for

illustrative purposes, the data generated by the M-506 model is used

for model development and parameter learning.

The M-506 has been developed using Microsoft Excel and has a

main dialogue box (Figure 2) that can perform all corrosion rate calcu-

lations with no need for (or the possibility of) changing the program

settings. All the input parameters can be entered in the dialogue box

for point calculation of the corrosion rate (mm/year). The model is

based on the NORSOK Standard M-506 and is developed by the

KHAKZAD ET AL. 3



Norwegian Oil Industry Association and the Federation of Norwegian

Manufacturing Industries.40

The M-506 uses, among other parameters, the flow temperature

and pressure, flow velocity, and the internal diameter of the pipe to

calculate the shear stress on the internal wall of the pipe. Similarly,

the temperature, pressure, and pCO2 are used to calculate the

pH. Having the shear stress, pH, and efficiency of corrosion inhibitor,

the M-506 calculates a single value for the corrosion rate (mm/year).

The steps taken to enter the input parameters in the M-506 simulator

are as follow:

• Step 1. Insert the fluid temperature (in �C) in the Temperature box.

• Step 2. Insert the internal pressure (in bar) in the Pressure box.

• Step 3. Insert the CO2 partial pressure (in bar) in the box with the

same name.

• Step 4. Click “Calculate shear stress” to calculate the shear stress.

The calculated value will automatically appear in the Shear stress

box (in Pa).

• Step 5. Click “Calculate pH” to calculate the fluid pH. The calcu-

lated value will automatically appear in the pH box.

• Step 6. If glycol has been added to the fluid to prevent it from

freezing, insert its concentration in the Glycol concentration

box (in %).

• Step 7. Insert the efficiency of the corrosion inhibitor in the Inhibi-

tor efficiency box (in %).

• Step 8. Press the “Calculate corrosion rate” button to run the

model and calculate the corrosion rate (in mm/year). The model

calculates the corrosion rate both in the presence and absence of

the corrosion inhibitor.

The model is valid for temperatures 5–150�C, pH 3.5–6.5, shear

stress 1–150 Pa, and pCO2 0.1–10 bar, although it may mis-predict

the corrosion rate when pCO2 is less than 0.5 bar. The model is appli-

cable to corrosion rates only when CO2 is the corrosive agent. In

other words, it does not include the additional effects of other con-

stituents that may influence the corrosivity, including contamination

of O2 and H2S, which are more common in water and gas pipelines.

To validate the developed BN in Section 3.2, the experimental

values reported in Peng and Zeng36 for the temperature (T), pCO2, and

flow velocity (V) are adopted in the present study, as listed in Table 1.

As the same parameters will be used for the root nodes of the BN,

to facilitate the discretization of the nodes later in Section 3.2, the

values reported in Table 1 were discretized as T = (60, 70, 75),

P = (60, 65, 70), pCO2 = (0.3, 0.4, 0.5), and V = (0.7, 1.1, 1.6). Further,

since the inhibitor efficiency is not reported in Peng and Zeng,36 three

values were considered for the inhibitor efficiency (%) as I = (40, 50,

60). Owing to the uncertainty regarding the distributions of the basic

parameters (the root nodes), uniform distribution was considered for

all the root nodes so as to not impose the analyst's prior (and possibly

biased) knowledge on the analysis; this way, given a root node, all the

states of the node would have equal chances to contribute to the

probability distribution of the corrosion rate and consequently the fail-

ure probability. Considering a wall thickness of 12 mm for the pipeline

of interest, the M-506 model was run 243 times to account for all

F IGURE 2 Interface of M-506
corrosion rate model23

TABLE 1 Experimental values of
corrosion parameters36 used in the
M-506 model23 for data generation

Temperature (T) Pressure (P) pCO2 Flow velocity (V) pH

60–75�C 60–70 bar 0.3–0.5 bar 0.7–1.6 m/s 3.5–5.5

4 KHAKZAD ET AL.



possible combinations of the five tertiary root nodes (35 = 243). Given

the input parameters, the discrete values of pH and shear stress were

calculated by the model as pH = (4.2, 4.3, 4.4) and Shear = (1, 2, 4)

while the corrosion rates were observed to vary from 1 to 4 mm/year.

A sample of the generated data is presented in Table 2.

3.2 | Development of the Bayesian network

The parameters and the way they are considered by the M-506 to cal-

culate the shear stress, pH, and, finally, the corrosion rate can be used

to construct the structure (nodes and the causal arcs, among others)

of the BN, as shown in Figure 3. Since the M-506 uses the tempera-

ture, pressure, and flow velocity to calculate the shear stress, the

corresponding nodes are considered as the parents of the node Shear

(shear stress) in the BN. Similarly, since the M-506 uses the tempera-

ture, pressure, and pCO2 to calculate the pH, the corresponding nodes

are considered as the parents of the node pH in the BN. The nodes T,

P, pH, and Shear, together with the node Inhibitor (inhibitor effi-

ciency), are connected to the node Corrosion rate as its parents. The

nodes of the BN and their states are presented in Table 3.

Using data generated in Section 3.1, the parameter learning mod-

ule of the GeNIe software41 was employed to learn the conditional

probabilities of the nodes pH, Shear, and Corrosion rate in the BN

using the MLE algorithm presented in Equation (6). Since the values of

corrosion rate were continuous and varying from 1 to 4 mm/year, for

the corresponding node in the BN, four discrete states were consid-

ered as r1 = 0–1 mm/year, r2 = 1–2 mm/year, r3 = 2–3 mm/year,

and r4 = 3–4 mm/year.

With the parameter learning implemented, the BN was quantified

to obtain the probability distribution of the corrosion rates as P(r1, r2,

r3, r4) = (0.05, 0.28, 0.48, 0.20), with the corrosion rate of 2–3 mm/

year as the likeliest corrosion rate with a probability of �48%. This is

in agreement with the experimental result reported in Peng and

Zeng,36 where an average corrosion rate of �3–4 mm/year was

reported. The reason why the experimentally measured corrosion rate

is slightly higher than the one predicted by the BN can be explained

as due to a more acidic condition (pH = 3.5–4) in the experiments

conducted by Peng and Zeng,36 which could not be exactly simulated

using the M-506 model. This is because the M-506 calculates pH as a

function of T, P, and pCO2, without letting the analyst to arbitrarily

set or manipulate its value.

TABLE 2 Sample of data generated
using the M-506 model23

T (�C) P (bar) pCO2 (bar) V (m/s) I (%) pH Shear (Pa) Corrosion rate (mm/year)

60 60 0.5 1.1 40 4.2 2 3.2

70 65 0.3 0.7 50 4.4 1 1.6

60 70 0.5 1.6 50 4.2 4 2.7

75 70 0.4 1.6 40 4.3 4 2.8

F IGURE 3 BN developed for predicting CO2 corrosion rate

KHAKZAD ET AL. 5



To examine the impact of pH on the corrosion rate, node pH was

instantiated to pH 1 = 4.2, which is the most acidic state among the

others, to update the states of node Corrosion rate. As can be noted

from the updated BN in Figure 4, this more acidic pH makes the prob-

ability distribution of Corrosion rate more skewed to the right,

increasing the probability of r4 = 3–4 mm/year from 0.2 (in Figure 3)

TABLE 3 The nodes of the BN in
Figure 3 and their states. The probability
distributions of the root nodes are
identified by the user (uniform
distribution), while the distributions of
the child nodes are identified by the BN
using the maximum likelihood function

Parameter Node States Probability distribution

Temperature (�C) T T1 = 60

T2 = 70

T3 = 75

(0.33, 0.33, 0.33)

Pressure (bar) P P1 = 60

P2 = 65

P3 = 70

(0.33, 0.33, 0.33)

CO2 pressure (bar) pCO2 C1 = 0.3

C2 = 0.4

C3 = 0.5

(0.33, 0.33, 0.33)

Flow velocity (m/s) V V1 = 0.7

V2 = 1.1

V3 = 1.6

(0.33, 0.33, 0.33)

Inhibitor efficiency (%) Inhibitor I1 = 40

I2 = 50

I3 = 60

(0.33, 0.33, 0.33)

pH pH pH 1 = 4.2

pH 2 = 4.3

pH 3 = 4.4

(0.17, 0.50, 0.33)

Shear stress (Pa) Shear S1 = 1

S2 = 2

S3 = 4

(0.26, 0.39, 0.35)

Corrosion rate (mm/year) Corrosion rate r1 = 0–1
r2 = 1–2
r3 = 2–3
r4 = 3–4

(0.05, 0.28, 0.48, 0.20)

F IGURE 4 Updated BN given an instantiation of pH node. Corrosion rate distribution is skewed to the right, given a more acidic pH

6 KHAKZAD ET AL.



and 0.26 (in Figure 4). As such, a more acidic pH (3.5–4) would be

expected to further increase the likelihood of r = 3–4 mm/year in the

BN, making the prediction even more consistent with the experiment.

4 | ESTIMATION OF FAILURE
PROBABILITY

The aim of pipeline corrosion analysis is to estimate the residual

strength and failure probability of pipelines with the purpose of risk

assessment or identifying maintenance schedules. One approach to

relate the corrosion rate to the probability of failure (POF) of the pipe-

line is to first find the corrosion depth given the age of the pipe, and

then to calculate the failure pressure of the corroded pipeline. Based

on a comparison between the failure pressure of the corroded pipe-

line and the operational pressure of the pipeline,14,15,18,42 the POF of

the pipeline can be estimated using, among others, Monte Carlo simu-

lation. This approach, however, is computationally demanding since

both the corrosion width and length need to be calculated in addition

to the corrosion depth.

One simpler approach is based on a comparison between the cor-

rosion depth and the nominal wall thickness of the pipe.9 As pointed

out in Larin et al.,17 at the operational pressure, a corroded pipe may

incur plastic strains at spots where the corrosion depth (d) is larger

than half of the pipe thickness (h). They also argue that at startup and

shutdown pressures, which may be twice the operational pressure of

the pipe, there is a 70% probability of failure where the corrosion

depth is about one-third of the pipe thickness.

Following the latter approach (i.e., a comparison between the cor-

rosion depth and the nominal wall thickness), in the present study we

assume that the POF of the pipeline is conservatively equal to the

probability of the corrosion depth exceeding one-third of the pipe

wall thickness, that is

POF¼P d≥0:3hð Þ: ð7Þ

This assumption is also in agreement with that in Opeyemi

et al.,43 where the failure probabilities were obtained for d
h ≥0:3, and

in Hasan et al.,44 where 0:15< d
h <0:40 was proposed.

Therefore, if the corrosion depth and its distribution can be

predicted based on the calculated corrosion rates, Equation (7) can be

employed to derive the failure probability distribution of the corroded

pipeline. In the next sections, we present two approaches to do so. In

the first approach (Section 4.1), the corrosion rate predicted by the BN

is assumed to have a Weibull distribution,16,45 whereas in the second

approach (Section 4.2) the corrosion rate predicted by the BN is directly

employed with no further assumption regarding its distribution.

4.1 | First approach

Velazquez et al.46 proposed that the growth of corrosion depth in

low-carbon steel is a power-law function of the corrosion rate and the

age (exposure time) of the pipeline:

d¼ r:tα, ð8Þ

where r is the corrosion rate, and α is the exponential factor identified

based on experimental data, ranging from 0.3 to 1.0; Larin et al.17 pro-

posed the value of α¼0:6. Similar power-law functions have been

proposed for uniform internal corrosion of pipelines.47-49 Considering

the relationship between time, corrosion rate, and corrosion depth in

Equation (8), the POF modeled in Equation (7) can be presented as

POF¼P d≥0:3hð Þ¼P r:t0:6 > 0:3h
� �¼P r >

0:3h

t0:6

� �
: ð9Þ

Using the probability distribution of the corrosion rate, the POF

presented in Equation (9) can be calculated. Corrosion rate, as a ran-

dom variable, is commonly believed to satisfy the Gamma, Weibull, or

generalized extreme value distributions.16,45 In the present study, we

adopt a Weibull distribution for the corrosion rate, with a probability

density function f(r) and cumulative density function F(R) as

f rð Þ¼ k
γ

r
γ

� �k�1

e�
r
γð Þk , ð10Þ

F Rð Þ¼P r ≤Rð Þ¼1�e�
R
γð Þk , ð11Þ

where k > 0 and γ >0 are, respectively, the shape parameter and the

scale parameter of Weibull distribution. Considering temporal varia-

tion of corrosion rate, a value of k<1 indicates a decreasing corrosion

rate, k = 1 indicates a constant corrosion rate, and k>1 indicates an

increasing corrosion rate over time. By combining Equations (9) and

(11), the POF can be calculated using Equation (12) if the values of

k and γ are known:

POF¼P r >
0:3h

t0:6

� �
¼1�P r <

0:3h

t0:6

� �
¼ e

� 0:3h
γt0:6

� �k

: ð12Þ

The probability distribution of the corrosion rates predicted by

the BN in Figure 3 can be used to estimate the values of k and γ for

Equation (12). Since there are two unknown variables (k and γ), two

equations would be required. Considering the corrosion rate probabili-

ties, one equation can be P (2≤ r<3) = 0.478 while the other can be

P (3≤ r<4) = 0.196 (any other two interval probabilities could be used

for this purpose). Considering a nominal wall thickness of h = 12mm

for the pipeline, the foregoing equations would result in

P 2≤ r <3ð Þ¼0:478

P 3≤ r <4ð Þ¼0:196
)using 11ð Þ�

e�
2
γð Þk �e�

3
γð Þk ¼0:478

e�
3
γð Þk �e�

4
γð Þk ¼0:196

(
: ð13Þ

Solving the system of equations presented in Equation (13) using

Solver (a Microsoft Excel add-in program), the values of k and γ were

obtained as 3.5 and 2.6, respectively. With h = 12mm, the values of

k = 3.5 and γ =2.6, the cumulative POFs of the pipeline presented in

Equation (12) can be updated as

KHAKZAD ET AL. 7



POF tð Þ¼ e
� 0:3h

γ t0:6

� �k

¼ e
� 0:3�12

2:6 t0:6

� �3:5

¼ e� 3:12 t�2:1ð Þ: ð14Þ

Using Equation (14), the failure probability distribution of the

pipeline can be presented, as in Figure 6. For example, at t = 3 years,

the cumulative failure probability is calculated as

POF 3ð Þ¼ e� 3:12�3�2:1ð Þ =0.73.

4.2 | Second approach

The corrosion depth in uniform corrosion mechanisms can be

modeled as a power-law function of the exposure time as47-49

d¼ β:tα, ð15Þ

where d is corrosion depth, t is exposure time, and α and β are con-

stants to be determined using experimental or field measurements of

d. Assuming a constant (but random) corrosion rate over time, β would

be equal to r, and α would be equal to 1.0. Thus, Equation (15) can be

simplified as

d¼ r:t: ð16Þ

Plugging Equation (16) in Equation (7), the failure probability can

be calculated as

POF¼P d≥0:3hð Þ¼P r:t≥0:3hð Þ¼P r ≥
0:3h
t

� �
: ð17Þ

With h = 12 mm, the probability mass distribution derived from the

BN for the corrosion rate can be used to quantify Equation (17) for dif-

ferent values of t. This mass distribution is presented in Figure 5 for clar-

ity. For instance, for t = 1 year, Equation (17) would be quantified as

POF t¼1ð Þ¼P r ≥
0:3�12

1

� �
¼P r ≥3:6ð Þ¼1�P r <3:6ð Þ

¼1� P 0≤ r <1ð ÞþP 1≤ r <2ð ÞþP 2 ≤ r < 3ð ÞþP 3≤ r <3:6ð Þf g:
ð18Þ

According to Figure 5, P(0 ≤ r < 1) = 0.05, P(1 ≤ r < 2) = 0.28,

and P(2 ≤ r < 3) = 0.48. Further, assuming that the probability

mass is equally spread over the corrosion interval r = [3, 4),

P(3 ≤ r < 3.6) = 0.6 � 0.20 = 0.12. Having the constituent proba-

bilities, POF (t = 1) = 1 – (0.05 + 0.28 + 0.48 + 0.12) = 0.07.

The probability of failures for other consecutive years can be cal-

culated similarly. The resultant probability distribution (second

approach) is depicted in Figure 6 along with the results obtained from

the first approach. The area with meaningful differences between the

results is denoted with a red solid line, where the failure probabilities

calculated by the second approach are higher than those of the first

approach for t = 2, 3 and 4 years.

The higher failure probabilities in the second approach can be

attributed to higher corrosion depths calculated using Equation (16)

than Equation (8). This becomes clearer when we note that

Equation (16) is a special case of Equation (8) in which α = 1.0. In

Equation (8), the role of α (0.3–1.0) is to consider the decelerating

effect of environmental and corrosion parameters (e.g., corrosion

scale) on the corrosion rate as time passes.

Corrosion scales consist of hard mineral coatings, and corrosion

deposits build up over time at the location of corrosion, providing a

protection layer and reducing the corrosion rate.50 Since most empiri-

cal models assume constant corrosion rates, deceleration of the corro-

sion rate can be taken into account through the value of α. In other

words, α < 1 denotes a corrosion depth advancing with a decreasing

pace (slowing corrosion rate), whereas α = 1 denotes a corrosion

depth increasing with a constant rate (constant corrosion rate). There-

fore, the difference between the failure probabilities can partly be

attributed to the assumption of a more aggressive corrosion rate in

the second approach (α = 1.0) than the first approach (α = 0.6).

5 | CONCLUSIONS

In this study, we presented a methodology based on BN for

predicting the probability distribution of corrosion rate in oil pipe-

lines. An empirical model, namely the M-506 corrosion rate
F IGURE 5 Corrosion rate mass distribution derived from BN in
Figure 3

F IGURE 6 Failure probability distributions. The Second approach
has resulted in higher failure probabilities due to the assumption of
constant corrosion rate over time

8 KHAKZAD ET AL.



simulator,23 was used to generate the data required for the develop-

ment and parameter learning of the BN. The corrosion rate probabil-

ity distribution predicted by the BN was shown to be consistent

with the experimental results.36 Compared with the empirical model,

the BN model was shown to account for the uncertainty of input

variables, enabling the analyst to easily update the probability distri-

bution of corrosion rate when new information (e.g., new data for oil

temperature and pressure) becomes available. This updating feature

of the BN is particularly important because recalibration of parame-

ters in semiempirical and empirical models based on new data can

usually be a tedious task.24

We demonstrated that the result of the BN (i.e., probability

distribution for the corrosion rate) can be combined with corrosion

depth–rate relationships to convert the corrosion rate's probability

distribution into the pipeline's failure probability distribution. To do

so, the rate distribution was processed under two separate assump-

tions, resulting in two approaches: In the first approach, the rate

distribution was considered to have a Weibull distribution and a

power-law function for the corrosion depth–rate relationship was

used to imply that the corrosion rate might decelerate over time. In

the second approach, however, the rate distribution derived from the

BN was used with no further assumption regarding its distribution

type, and a linear corrosion depth–rate relationship was employed to

denote that the corrosion rate remains constant over time. Both

approaches were illustrated to result in similar trends for the failure

probability distribution, although, overall, the linear depth–rate

relationship yields higher failure probabilities.

With new information regarding the input parameters, the devel-

oped methodology can be used to update the distributions of both

the corrosion rate and the failure probability. To do so, the BN can be

used directly to update the rate distribution, which can subsequently

be used to update the failure distribution. For instance, regarding the

first approach (Section 4.1), given an updated rate distribution,

Equation (13) can be re-solved to calculate the updated values of

k and γ (the parameters of Weibull distribution), and then Equation (14)

can be recalculated using these updated k and γ to obtain updated

failure probabilities.

The present study has not been aimed at advertising or validating

the M-506 model; but it was to demonstrate how empirical models

like M-506 can be coupled with BN and corrosion depth–rate rela-

tionships to predict the corrosion-induced failure of pipelines. As

such, the accuracy of the method is expected to improve if more accu-

rate models than the M-506 were employed.

ACKNOWLEDGMENTS

The authors are grateful to the two reviewers for their instructive

comments that helped enhance the readability and quality of this

study. The financial support provided by the Faculty of Community

Services, Ryerson University, via the Publication Grant is much

appreciated.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

Sina Khakzad: Formal analysis (lead); methodology (lead); writing –

original draft (lead). Ming Yang: Validation (equal); writing – review

and editing (equal). Ali Lohi: Validation (equal); writing – review and

editing (equal). Nima Khakzad: Conceptualization (lead); supervision

(lead); writing – review and editing (lead).

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are available from the

corresponding author, [NK], upon reasonable request.

ORCID

Nima Khakzad https://orcid.org/0000-0002-3899-6830

REFERENCES

1. Khakzad S, Khan F, Abbassi R, Khakzad N. Accident risk-based life

cycle assessment methodology for green and safe fuel selection. Proc

Safety Environ Protect. 2017;109:268-287.

2. Bonis MR, Crolet JL. Basics of the Prediction of the Risks of 2 CO Corro-

sion in Oil and Gas Wells. Corrosion/89, Paper no. 466. NACE Interna-

tional; 1989.

3. Ilman MN, Kusmono. Analysis of internal corrosion in subsea oil pipe-

line. Case StudEng Fail Anal. 2014;2(1):1-8. https://doi.org/10.1016/j.

csefa.2013.12.003

4. Zhao G, Lu X, Xiang J, Han Y. Formation characteristic of CO2 corro-

sion product layer of P110 steel investigated by SEM and electro-

chemical technique. J Iron Steel Res Int. 2009;16(4):89-94.

5. Lee K. A Mechanistic Modeling of CO2 Corrosion of Mild Steel in Pres-

ence of H2S. [Ph.D thesis]. Ohio University; 2004.

6. Rodriguez M, Delgado D, Gonzalez R, et al. Corrosive wear failure

analysis in a natural gas pipeline. Wear. 2007;263:567-571.

7. Nesic S. Key issues related to modelling of internal corrosion of oil

and gas pipelines – a review. Corros Sci. 2007;49:4308-4338.

8. Bhandari J, Khan F, Abbassi R, Garaniya V, Ojeda R. Modelling of

pitting corrosion in marine and offshore steel structures – a technical

review. J Loss Prevent Process Indust. 2016;37:39-62.

9. Kamsu-Foguem B. Information structuring and risk-based inspection

for the marine oil pipelines. Appl Ocean Res. 2016;56:132-142.

10. Kiefner JF, Vieth PH. New method corrects criterion for evaluating

corroded pipe. Oil Gas J. 1990;6:56-59.

11. Ahammed M, Melchers RE. Reliability estimation of pressurized pipe-

lines subject to localized corrosion defects. Int J Press Vessels Piping.

1996;69:267-272.

12. Ahammed M. Probabilistic estimation of remaining life of a pipeline in

the presence of active corrosion defects. Int J Press Vessels Piping.

1998;75:321-330.

13. Melchers RE, Jeffrey RJ. Probabilistic models for steel corrosion loss

and pitting of marine infrastructure. Reliab Eng Syst Safety. 2007;

93(3):423-432.

14. Li S, Yu S, Zeng H, et al. Predicting corrosion remaining life of under-

ground pipelines with a mechanically-based probabilistic model.

J Petrol Sci Eng. 2009;65:162-166.

15. Netto T. A simple procedure for the prediction of the collapse pres-

sure of pipelines with narrow and long corrosion defects - correla-

tion with new experimental data. Appl Ocean Res. 2010;32(1):

132-134.

16. Bazan F, Beck A. Stochastic process corrosion growth models for

pipeline reliability. Corros Sci. 2013;74:50-58.

17. Larin O, Barkanov E, Vodka O. Prediction of reliability of the corroded

pipeline considering the randomness of corrosion damage and its sto-

chastic growth. Eng Fail Anal. 2016;66:60-71.

KHAKZAD ET AL. 9

https://orcid.org/0000-0002-3899-6830
https://orcid.org/0000-0002-3899-6830
https://doi.org/10.1016/j.csefa.2013.12.003
https://doi.org/10.1016/j.csefa.2013.12.003


18. Leira BJ, Næss A, Næss OB. Reliability analysis of corroding pipelines

by enhanced Monte Carlo simulation. Int J Press Vessels Piping. 2016;

144:11-17.

19. ASME-B31G. Manual for determining the remaining strength of cor-

roded pipelines. A Supplement of ASME B31G Code for Pressure Piping.

American Society for Mechanical Engineers; 1995.

20. de Waard C, Milliams DE. Prediction of Carbonic Acid Corrosion in

Natural Gas Pipelines, in: First International Conference on the Inter-

nal and External Corrosion of Pipes, paper F1, University of Durham;

1975

21. de Waard C, Lotz U. Prediction of CO2 Corrosion of Carbon Steel,

Corrosion/93, Paper. Vol no. 69. NACE International; 1993.

22. Dugstad A, Lunde L, Videm K. Parametric Study of CO2 Corrosion of

Carbon Steel, Corrosion/94, Paper. Vol no. 14. NACE International;

1994.

23. NORSOK M-506 CO2 corrosion Rate Model. (2005). https://www.

standard.no/en/sectors/energi-og-klima/petroleum/norsok-standard-

categories/m-material/m-5061/. Accessed July 23, 2020.

24. Nesic S, Nordsveen M, Maxwell N, Vrhovac M. Probabilistic model-

ling of CO2 corrosion laboratory data using neural networks. Corros

Sci. 2001;43:1373-1392.

25. Yao Y, Yang Y, Wang Y, Zhao X. Artificial intelligence-based hull

structural plate corrosion damage detection and recognition using

convolutional neural network. Appl Ocean Res. 2019;90:101823.

26. Sanchez JF, Alhama F, Moreno JA. An efficient and reliable model

based on network method to simulate CO2 corrosion with protective

iron carbonate films. Comput Chem Eng. 2012;39:57-64.

27. Khakzad N, Khan F, Amyotte F. Safety analysis in process facilities:

comparison of fault tree and Bayesian network approaches. Reliab

Eng Syst Safety. 2011;96:925-932.

28. Shabarchin O, Tesfamariam S. Internal corrosion hazard assessment

of oil & gas pipelines using Bayesian belief network model. J Loss

Preven Process Indus. 2016;40:479-495.

29. Ayello F, Liu G, Zhang J. Decision making through the application of

Bayesian network for internal corrosion assessment of pipelines. Pro-

ceedings of the ASME 2018 37th International Conference on Ocean,

Offshore and Arctic Engineering. Volume 4: Materials Technology.

Madrid, Spain. June 17–22; 2018.
30. Arzaghi E, Abbassi R, Garaniya V, et al. Developing a dynamic model

for pitting and corrosion-fatigue damage of subsea pipelines. Ocean

Eng. 2018;150:391-396.

31. Abubakirov R, Yang M, Khakzad N. A risk-based approach to determi-

nation of optimal inspection intervals for buried oil pipelines. Process

Safety Environ Protect. 2020;134:95-107.

32. Yazdi M, Khan F, Abbassi R. Operational subsea pipeline assessment

affected by multiple defects of microbiologically influenced corrosion.

Process Safety Environ Protect. 2022;158:159-171.

33. Cai B, Shao X, Liu Y, et al. Remaining useful life estimation of struc-

ture systems under the influence of multiple causes: subsea pipelines

as a case study. IEEE Trans Indus Electron. 2020;67(7):5737-5747.

34. Cai B, Sheng C, Gao C, et al. Artificial intelligence enhanced reliability

assessment methodology with small samples. IEEE Trans Neural Netw

Learn Syst. 2021;1-13. doi:10.1109/TNNLS.2021.3128514

35. Khakzad N, Van Gelder P. Vulnerability of industrial plants to flood-

induced natechs: A Bayesian network approach. Reliab Eng Syst

Safety. 2018;169:403-411.

36. Peng S, Zeng Z. An experimental study on the internal corrosion of a

subsea multiphase pipeline. Petroleum. 2015;1(1):75-81.

37. Pearl J. Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann;

1988.

38. Neapolitan R. Learning Bayesian Networks. Prentice Hall; 2003.

39. Ricker RE. Analysis of pipeline steel corrosion data from NBS (NIST)

studies conducted between 1922-1940 and relevance to pipeline

management. J Res Natl Instit Stand Technol. 2010;115(5):373-392.

40. NORSOK Standard M-506. Draft 1 for Rev. 2, March. 2005. https://

wiki.olisystems.com/wiki/images/e/eb/Norsok_standard_M-506.pdf.

Accessed December 12, 2021.

41. GeNIe. Academic Installer, Decision Systems Laboratory, University

of Pittsburg. https://download.bayesfusion.com/files.html?category=

Academia. Accessed July 10, 2021.

42. DNV. Corroded Pipelines Recommended Practice DNV-RP-F101,

October 2010.

43. Opeyemi D, Patelli E, Beer M, Timashev S. Comparative Studies on

Assessment of Corrosion Rates in Pipelines as Semi-Probabilistic and

Fully Stochastic Values. International Conference on Applications of

Statistics and Probability in Civil Engineering; 2015.

44. Hasan S, Khan F, Kenny S. Probability assessment of burst limit

state due to internal corrosion. Int J Press Vessels Piping. 2012;89:

48-58.

45. Caleyo F, Velázquez J, Valor A, Hallen J. Probability distribution of

pitting corrosion depth and rate in underground pipelines: a Monte

Carlo study. Corros Sci. 2009;51:1925-1934.

46. Velazquez JC, Caleyo F, Valor A, Hallen JM. Predictive model for

pitting corrosion in buried oil and gas pipelines. Corrosion. 2009;65:

332-342.

47. Bubenik T, Olson R, Stephens D & Francini R Analyzing the pressure

strength of corroded pipeline. In Proc. 11th Int. Conference on Off-

shore Mechanics and Arctic Engineering. Vol V, Part A, ASME 1992,

pp.225–231.
48. Baker M. Stress Corrosion Cracking Studies, Integrity Management Pro-

gram DTRS56-02-D-70036. Department of Transportation; 2004.

49. Nahal M, Khelif R. Failure probability assessment for pipeline under

the corrosion effect. Am J Mech Eng. 2014;2(1):15-20.

50. Cabrini M, Lorenzi S, Pastore T. Corrosion behavior of carbon steels

in CCTS environment. Int J Corros. 2016;3121247. doi:10.1155/

2016/3121247

How to cite this article: Khakzad S, Yang M, Lohi A,

Khakzad N. Probabilistic failure assessment of oil pipelines due

to internal corrosion. Process Saf Prog. 2022;1‐11. doi:10.

1002/prs.12364

APPENDIX A: Application of maximum likelihood function

Consider a BN consisting of three binary nodes, two root nodes X

and Y, and a child node Z. X, Y, and Z as discrete random variables can

assume values of 0 or 1. Given a dataset as in Table 4, the probability

of (z = 1 j x = 1, y = 0), among others, can be estimated using the

MLE algorithm. To do so, the estimated probabilities can be presented

as θ¼bP z¼1 j x¼1,y¼0ð Þ and 1�θ¼bP z¼0 j x¼1,y¼0ð Þ.
As such, the likelihood function (L) for observing the data pairs

listed on lines 2, 4, 9, and 10 in Table 4 can be developed as

L¼ θ� 1�θð Þ�θ�θ¼ θ3�θ4

To find the value of θ that maximizes the likelihood function, we

can calculate the first derivative of the likelihood function with

respect to θ, and then solve for the value of θ that makes this deriva-

tive equal to zero:
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∂L
∂θ

¼3θ2�4θ3 ¼0! θ2 3�4θð Þ¼0! θ¼3
4

Therefore, bP z¼1jx¼1,y¼0ð Þ¼ 3
4.

As explained in Section 2.2, one may decide to maximize the log-

likelihood function to find the value of θ:

Log L¼ Ln θ3� 1�θð Þ� �¼3Ln θð ÞþLn 1�θð Þ

∂ Log Lð Þ
∂θ

¼3
θ
� 1
1�θ

¼0! θ¼3
4

Using the MLE algorithm, the CPTs of nodes pH, Shear, and

Corrosion rate in the BN have been determined by GeNIe.41 The CPT

of node pH is shown in Table 5 as an example.

TABLE 4 Exemplary dataset to estimate the conditional
probability of Z given X and Y

Line No. X Y Z

1 1 1 1

2 1 0 1

3 0 0 0

4 1 0 0

5 0 1 1

6 0 0 1

7 0 0 0

8 1 1 0

9 1 0 1

10 1 0 1

11 1 1 1

12 0 1 0

TABLE 5 CPT of node pH in the BN in Figure 3, which has been
developed using the MLE algorithm in GeNIe41

pH

No. pCO2 T P pH1 pH2 pH3

1 C1 T1 P1 0.033 0.033 0.933

2 C1 T1 P2 0.033 0.033 0.933

3 C1 T1 P3 0.033 0.033 0.933

4 C1 T2 P1 0.033 0.033 0.933

5 C1 T2 P2 0.033 0.033 0.933

6 C1 T2 P3 0.033 0.033 0.933

7 C1 T3 P1 0.033 0.033 0.933

8 C1 T3 P2 0.033 0.033 0.933

9 C1 T3 P3 0.033 0.033 0.933

10 C2 T1 P1 0.033 0.933 0.033

11 C2 T1 P2 0.033 0.933 0.033

12 C2 T1 P3 0.033 0.933 0.033

13 C2 T2 P1 0.033 0.933 0.033

14 C2 T2 P2 0.033 0.933 0.033

15 C2 T2 P3 0.033 0.933 0.033

16 C2 T3 P1 0.033 0.933 0.033

17 C2 T3 P2 0.033 0.933 0.033

18 C2 T3 P3 0.033 0.933 0.033

19 C3 T1 P1 0.933 0.033 0.033

20 C3 T1 P2 0.933 0.033 0.033

21 C3 T1 P3 0.933 0.033 0.033

22 C3 T2 P1 0.933 0.033 0.033

23 C3 T2 P2 0.033 0.933 0.033

24 C3 T2 P3 0.033 0.933 0.033

25 C3 T3 P1 0.033 0.933 0.033

26 C3 T3 P2 0.033 0.933 0.033

27 C3 T3 P3 0.033 0.933 0.033
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