
Crowdsourced Knowledge Base
Construction using Text-Based
Conversational Agents

Master's Thesis
Enreina Annisa Rizkiasri

Crowdsourced Knowledge Base
Construction using Text-Based

Conversational Agents

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE
TRACK DATA SCIENCE & TECHNOLOGY

by

Enreina Annisa Rizkiasri
born in Jakarta, Indonesia

Web Information Systems
Department of Software Technology

Faculty EEMCS, Delft University of Technology
Delft, the Netherlands

http://wis.ewi.tudelft.nl

http://wis.ewi.tudelft.nl

© 2019 Enreina Annisa Rizkiasri. Cover picture: Photo by urfinguss from Getty Im-
ages

Crowdsourced Knowledge Base
Construction using Text-Based

Conversational Agents

Author: Enreina Annisa Rizkiasri
Student id: 4701224
Email: e.a.rizkiasri@student.tudelft.nl

Abstract

Knowledge Base Construction (KBC) is a challenging and complex task
involving several substeps and many experts of a knowledge domain. Crowd-
sourcing approach has been used to support KBC with promising scalability and
output quality, but to enable even more people to participate in KBC, there is a
need to broaden the pool of workers beyond the ones who are already familiar
with existing crowdsourcing platforms. Meanwhile, the number of people who
use messaging platforms has been increasing. There is also a renowned popular-
ity of text-based conversational agents – chatbots – existing on these messaging
platforms. By leveraging the fact that there is a large number of users who are
familiar with conversational interfaces, we see an opportunity to broaden the par-
ticipants of crowdsourced KBC by using chatbots to execute KBC tasks.

In this thesis, we investigate the use of chatbots to enable crowdsourced con-
struction of knowledge bases. We design a conversational crowdsourcing plat-
form to support the execution of KBC tasks. An experiment involving 43 students
using our system and interviews with 7 participants were conducted to evaluate
the system within the context of constructing a knowledge base for the TU Delft
campus. From the results, we show that the platform is suitable to be used for
crowdsourced KBC with justifiable execution time, accuracy, and completeness.
We also laid out the potential future work to improve and extend the functionali-
ties of the chatbot system.

Thesis Committee:

Chair: Prof.dr.ir. G.J.P.M. Houben, Faculty EEMCS, TU Delft
University Supervisor: Prof.dr.ir. A. Bozzon, Faculty EEMCS, TU Delft
Daily Supervisor: S. Qiu, PhD Student, Faculty EEMCS, TU Delft
Committee Member: Dr.ir. J.A. Pouwelse, Faculty EEMCS, TU Delft

e.a.rizkiasri@student.tudelft.nl

Preface

This thesis report concludes my two years of study to obtain a Master Degree in Com-
puter Science at the Delft University of Technology (TU Delft). The work towards
completing this thesis has given me an opportunity to grow in so many ways: from
being able to extend my knowledge beyond the courses I have taken prior to the thesis
work; challenging myself to be persistence and critical toward my own work; as well
as developing myself to be a better researcher and a better person.

I would like to give my gratitude to Alessandro Bozzon, who has allowed me to
work under his supervision. Without his insightful input, this work wouldn’t be able
to be completed with sufficient quality. I would also like to thank Sihang Qiu, my
daily supervisor who has always been available whenever I have doubts regarding my
thesis work, giving on-point feedbacks as well as keeping the research direction on
the track. Furthermore, I would like to thank the members of my thesis committee,
Geert-Jan Houben and Johan Pouwelse, for taking their time to read the report as well
as attending my thesis assessment.

Special thanks to my friend, Neha Sree Thuraka, whom I have been working with
throughout finishing our thesis. We discussed, designed, and implemented the crowd-
sourcing system together to achieve the goal of our thesis. I also wish to thank all the
participants who have volunteered to try and use the system, without them I would not
have been able to conduct the experiments which are important to complete this thesis.

I would also like to give my special thanks to my friends and family. Without their
emotional and motivational support, I would not have been able to reach this point of
completing my thesis. Finally, thank you to TU Delft for supporting the funding of my
study through the JvEffen Excellence Scholarship.

Enreina Annisa Rizkiasri
Delft, the Netherlands

August, 2019

iii

Contents

Preface iii

Contents v

List of Figures ix

1 Introduction 1
1.1 Problem Definition and Goal . 3
1.2 Research Questions . 3
1.3 Contributions . 4
1.4 Thesis Outline . 5

2 Related Work 7
2.1 Knowledge Base Construction and Ontology Engineering 7

2.1.1 Methodology for Ontology Engineering 8
2.1.2 Methodologies for Collaborative Ontology Engineering 11
2.1.3 Collaborative Ontology Engineering Tools 12

2.2 Crowdsourcing for Knowledge Base Construction 14
2.3 Conversational Interface and Crowdsourcing 16

2.3.1 Crowdsourcing for Chatbot 18
2.3.2 Ontology-based Chatbot . 18
2.3.3 KBC using Chatbot . 19

2.4 Summary . 20

3 Chatbot System Design for Knowledge Base Construction 21
3.1 KBC as Microtasks . 21

3.1.1 Basic Terms of KBC . 21
3.1.2 Hierarchical Task Analysis 22

3.2 Crowdsourcing Workflow . 25
3.3 System Architecture . 28

3.3.1 Database . 28
3.3.2 Conversational Interface . 30
3.3.3 Task Executioner . 30
3.3.4 Backend API . 35

v

CONTENTS CONTENTS

3.3.5 Knowledge Base Generation 36
3.4 Conversation Flow . 39

3.4.1 Start Flow . 39
3.4.2 Task List Flow . 40
3.4.3 Task Execution Flow . 40
3.4.4 Push Notification Flow . 42

3.5 Summary . 42

4 Chatbot Implementation 43
4.1 Conversational Interface . 43
4.2 Task Executioner . 46

4.2.1 Flow Handler Classes . 46
4.2.2 Task Instance . 47
4.2.3 Task Templates . 48
4.2.4 Question Template . 48

4.3 Backend API . 49
4.4 Knowledge Base Generation . 51
4.5 Deployment . 51

5 Evaluating the Chatbot System 53
5.1 Goal of Experiments . 53
5.2 Study 1: Campus Domain Use Case 54

5.2.1 Domain Description . 54
5.2.2 Task Types . 55
5.2.3 Interaction Style for Multiple Choice Questions 55
5.2.4 Recruiting Participants . 58
5.2.5 Metrics and Measurement 59

5.3 Study 2: Qualitative User Study . 61
5.3.1 Recruiting Participants . 61
5.3.2 Study Setup . 61
5.3.3 Post-Interview Survey . 62
5.3.4 Analysis Method . 62

6 Results and Discussion 63
6.1 Results and Discussion on Study 1 63

6.1.1 General Statistics on Participation and Tasks 63
6.1.2 Execution Time . 64
6.1.3 Answer Accuracy . 68
6.1.4 Knowledge Base Completeness 69
6.1.5 Usability . 72
6.1.6 Issues Found on Study 1 . 73

6.2 Results and Discussion on Study 2 74
6.3 Discussions on Study 1 and Study 2 76
6.4 Threats to Validity . 78

7 Conclusions and Future Work 79
7.1 Conclusions . 79

vi

CONTENTS CONTENTS

7.2 Future work . 81

Bibliography 83

A Entity Relationship Diagram 89

B Knowledge Model 91

C Wikibase Properties and Categories 93

D Participant Recruitment - Study 1 95

E Survey Questions (Study 1) 101

F Guideline and Survey Questions (Study 2) 107

vii

List of Figures

1.1 Thesis Outline . 5

2.1 Tasks of Conceptualization Phase . 10

3.1 Crowdsourcing Workflow for Producing an Item for a Knowledge Base . 26
3.2 System Architecture Overview . 28
3.3 High Level Overview of Task Executioner Logic 31
3.4 Task Template Elements . 33
3.5 Example of Each Question Type . 34
3.6 Knowledge Base Generation Module . 36
3.7 Wikibase Data Model, from http://w.wiki/32q 37
3.8 Start Flow . 39
3.9 Task List Flow . 40
3.10 Task Execution Flow . 41
3.11 Push Notification Flow . 42

4.1 How Task Preview Works . 44

5.1 Interaction Style . 58

6.1 Participants Conversion . 63
6.2 Task Instance Completion . 65
6.3 Execution Time (seconds) of Text, Numeric, Location, and Image Questions 67
6.4 Execution Time (seconds) of Multiple Choice Questions (B=Buttons, CF=Code

& Free Text) . 68
6.5 System Usability Score (SUS) Perceived by Survey Respondents of Study 1 73
6.6 System Usability Score (SUS) Perceived by Survey Respondents of Study 2 75

A.1 CampusBot Entity Relationship Diagram 89

B.1 Knowledge Model for Place Use Case 91
B.2 Knowledge Model for Trash Bin Use Case 92

D.1 Experiment Advertisement Poster . 95
D.2 Sign Up Form for Recruiting Participants 96

ix

List of Figures List of Figures

D.3 Download Instructions (Part 1) . 97
D.4 Download Instructions (Part 2) . 98
D.5 Download Instructions (Part 3) . 99
D.6 Download Instructions (Part 4) . 100

x

Chapter 1

Introduction

These days, there is a vast amount of information available to be accessed by people.
However, from the perspective of technology, not all information is directly usable
because they are often presented in an unstructured format such as web pages, arti-
cles, and other formats. This kind of information would be more useful to support
information-based systems, such as web-search and question-answering technologies,
if it is stored in a semantically structured way (that is machine-processable) while al-
lowing for consumption by humans.

A repository of structured information – or interchangeably, knowledge – is of-
ten referred to as a Knowledge Base (KB). A KB consists of entities, representing
concepts or real-world objects, with their relationships between each other. The rela-
tionship between entities can be in the form of object-property relationship (e.g. the
entity Netherlands has a property capital city that links to the Amsterdam entity) or
hierarchical relationship (e.g. Amsterdam is an instance of the concept city). Notable
examples of KBs are DBPedia [35], Wikidata [57] (replacing its predecessor Freebase
[43]), and Yago [53].

Producing and populating KBs has been one of the main challenges in the field
of the Semantic Web. The process of populating a knowledge base is often referred
to as Knowledge Base Construction (KBC). KBC is a non-trivial process consisting
of several substeps: starting from identifying concepts from the unstructured knowl-
edge source, defining and classifying these concepts, determining relationships be-
tween concepts, and finally constructing the knowledge base from these definitions.
With the complexity of the process, the output of a KBC process tends to have a trade-
off between its quality (the correctness of the stored knowledge) and its quantity (how
much information is included in the KB) [19].

Constructing a knowledge base can be done either by manual or automatic tech-
nique. A straightforward manual approach is to recruit domain experts and construct
the knowledge base by hand. These experts are tasked to annotate unstructured in-
formation and input them into a structured KB. Though the quality of the KB can be
controlled as each entity are input by human experts by hand, this approach is costly
and time-consuming especially with large-scale complex knowledge [25].

Automatic approaches, on the other hand, employ information extraction tech-
niques on the unstructured knowledge sources such as articles, books, and web pages.
Although it has the advantage in term of cost and time, the automatic approach often

1

Introduction

yields to noisy output, leading towards a knowledge base which lacking in accuracy
and coverage [25].

The crowdsourcing approach to KBC has been explored to overcome the limita-
tion of the manual and automatic approach. The term crowdsourcing is used for any
approach that tries to distribute a number of tasks to a pool of workers. A research man-
ifesto [46] of the intersection between the field of Semantic Web and Crowdsourcing
tries the opportunity to leverage crowdsourcing technique as a part of KBC workflow.
This research manifesto leads to a number of works [11, 42, 50] investigating on to
what extent crowdsourcing can support the task of KBC.

The crowdsourcing approach is more scalable compared to the manual approach,
as we can break down the KBC task into smaller tasks and distribute them to a pool of
workers who each can work independently to complete the task. Additionally, com-
pared to the automatic approach, crowdsourced KBC has the advantage of better qual-
ity output, as it involves humans to work on the construction of a KB. The quality,
though, might not be on par with the quality of a KB constructed by hand by ex-
perts, as the workers participating in crowdsourced KBC might also include people
who are not experts of the KB domain. To improve the KB quality, tasks need to be
assigned to workers optimally based on the level of expertise needed. This issue is
addressed through task assignment and has been addressed for general crowdsourcing
in [15, 20, 34] and specifically for KBC in [12].

Another issue of using crowdsourcing to KBC is the availability of workers. Crowd-
sourcing tasks are typically distributed on crowdsourcing platforms such as Mechan-
ical Turk1 and Figure Eight2 or through a mobile app [40]. Meanwhile, constructing
a KB with sufficient quality and coverage would need to involve a large number of
people. There is a need to broaden the pool of workers beyond the ones who are al-
ready familiar with existing crowdsourcing platforms. We need to look into platforms
which these people are already familiar with in order to reduce the learning curve of
completing KBC tasks.

Meanwhile, interest on chatbots – text-based conversational agents that mimic hu-
man conversation to enable tasks completion [24] – has resurfaced because of the
increased popularity of Messaging platforms such as Facebook Messenger, Whatsapp,
and Telegram. Based on this popularity, chatbots can be seen as an opportunity to
broaden the pool of workers to execute crowdsourcing tasks, by leveraging the fact
that there exists a crowd of people using these messaging platforms. Additionally,
familiarity with conversational interfaces can potentially lower the learning curve of
completing crowdsourcing tasks.

From this opportunity, Mavridis et al. [37] did a work on the use of chatbot in
microtask crowdsourcing. The result of their work shows that chatbots have compara-
ble output quality and execution time, and gain higher user satisfaction compared with
using traditional web-based interface. Based on their findings, we see the potential of
employing their approach specifically to KBC process. Therefore, we would like to
design KBC as microtasks and investigate to what extent can a chatbot support KBC
process.

1https://www.mturk.com/
2https://www.figure-eight.com/

2

Introduction 1.1 Problem Definition and Goal

1.1 Problem Definition and Goal

The main goal of our thesis is to investigate to what extent chatbots can be used to
enable the process of crowdsourced KBC. To achieve this goal, we need to take a look
into the challenges that come from employing a crowdsourcing approach to KBC and
presenting the KBC task using chatbots.

First of all, KBC is indeed a non-trivial task. There has been a need to formalize
the methodology to construct a KB as well as bridging the gap between domain experts
with no knowledge of KBC with the KBC process itself. The challenge lies in speci-
fying a "step-by-step" guideline towards the construction of a KB. As there have been
numerous works proposing methodologies for KBC, a follow-up challenge would be
on how to bridge this methodology to a more refined decomposition of KBC task into
microtasks that are suitable to be incorporated into a crowdsourcing workflow.

The second challenge comes from the goal of bringing conversational interface into
supporting KBC process. The challenge is on how to map the decomposition of the
KBC task to be presented in a conversational setting. Also, to bridge the gap between
generic crowdsourcing workflow and KBC workflow, a conversational crowdsourcing
platform specifically for KBC would have to be designed.

Finally, as mentioned in the previous section, one of the main challenges of con-
structing a KB is to maintain the trade-off between its quality and quantity. At the
same time, there is also the need to reduce time and cost when constructing a KB. The
challenge here lies in designing and validating a system such that it can support KBC
while maintaining correctness, coverage, and scalability.

From the previous discussion, we can summarize the challenges that need to be
addressed in order to achieve our goal: (1) decomposing the KBC task; (2) mapping
and presenting the task in a conversational crowdsourcing system; and (3) retaining
correctness and coverage of the constructed KB while maintaining the scalability of
the process. In the next section, we will refine the research questions to address these
challenges.

1.2 Research Questions

Drawing from the problem defined in the previous section, we would like to know how
to decompose and organize KBC task and present them on a text-based conversational
interface. We set our main focus of the thesis to answer the following main research
question (RQ):

Main RQ: How could a text-based conversational agent be designed to enable
the crowdsourced construction of knowledge bases?

To answer our main research question, we derive three research sub-questions. The
questions are listed as follows along with what they would address in this work.

RQ 1: What is the state of the art in knowledge base construction and
conversational crowdsourcing?

To define a decomposition of KBC task, we would need to look into existing state-of-
the-art methodologies of constructing a knowledge base. We also look into existing

3

1.3 Contributions Introduction

works investigating the use of crowdsourcing approach to construct knowledge bases
as well as the viability of conversational interface for crowdsourcing. We also highlight
the limitations that come from previous works on crowdsourced KBC.

RQ 2: How could a text-based conversational agent be designed and
implemented to support the microtask crowdsourcing for knowledge base
construction?

Drawing from the answer for RQ1, we analyze and define KBC as smaller tasks –
microtasks – that are decomposed from the task of KBC. We shall design the task such
that it is small enough and appropriate to be presented in a text-based conversational
interface. This part will address challenge (1) discussed in our problem definition.

As a proof-of-concept, we shall design a system specifically designed to support
the execution of the previously defined microtasks. The system design would be based
on existing state-of-the-art techniques of building text-based conversational interface.
We will also have to consider both the conversational and user interface design based
on the current standard of conversational User Experience (UX) design. This part of
the system design shall address challenge (2) as discussed in our problem definition.

RQ 3: How does the interaction style of the text-based conversational agent
affect the construction time and quality of the KB?

Our next concern comes to the quality and quantity of constructed KB as the output of
the KBC process supported by the chatbot system. In order for us to understand to what
extent the system can be used for KBC while still retaining scalability and the output
quality (addressing challenge (3)), we shall run an experiment to assess both the system
and the constructed KB. The experiment would be based on the variation of interaction
style introduced in the system as well as task types and how they affect the correctness
and coverage of the constructed KB. Additionally, we would also investigate on to
what extent the chatbot is usable to construct a knowledge base.

1.3 Contributions

Our work sits at the intersection of three fields: knowledge base construction, crowd-
sourcing, and conversational interface. Into our work, we incorporate what we have
learned from the three fields and made three main contributions as listed below.

• C1: We contribute a literature survey on three fields and their intersection. The
three fields are well explored independently in previous studies, so our contribu-
tion would be summarizing the fields as well as drawing relation between them.
We first look into the state-of-the-art methodology to construct knowledge base,
before we delve into how crowdsourcing can support a KBC process. We also
investigate how crowdsourcing and text-based conversational agent can support
each other. The findings on what can be explored on conversational crowdsourc-
ing for KBC shall be the groundwork on which our research would be based on.

• C2: We designed and implemented a conversational crowdsourcing system that
is intended to enable the process of KBC. This contribution consists of: the de-

4

Introduction 1.4 Thesis Outline

composition and organization of KBC process into microtasks; the design of the
crowdsourcing system; the design of the conversational interface; and an imple-
mentation of the system design as a proof-of-concept. The importance of this
contribution is to show the feasibility to design a conversational crowdsourc-
ing platform specialized for constructing knowledge bases. The implementation
part especially would also enable us to carry out experiments in order to evaluate
the system.

• C3: Finally we setup and conduct an experiment in order to evaluate our design
and to understand better on how can it support a KBC process. An implemen-
tation of the designed chatbot called CampusBot is used to run the experiment.
The experiment was run on tasks which were devised from 4 item types of a
campus knowledge base: Places, Food, Course Questions, and Trash Bins. We
recruited 43 students to try out and use CampusBot in their daily life to com-
plete some tasks and measure the time they each took to complete the tasks. We
also measure the quality and completeness of the resulting KB and how it relates
to our system design. As a follow-up study, we also interviewed 7 participants
for a guided one-to-one session where we observe and ask them questions while
they use our chatbot system.

1.4 Thesis Outline

This thesis consists of seven chapters, where each chapter focuses on the following
parts building the whole thesis. Figure 1.1 illustrates the flow of the chapters with
their corresponding contributions.

Figure 1.1: Thesis Outline

In chapter 2, we discuss the existing methodologies of constructing knowledge
base and how crowdsourcing has been incorporated to support KBC. Chapter 3 and

5

1.4 Thesis Outline Introduction

4 will focus on the system design and implementation of the chatbot for constructing
KB. In chapter 5, experimental design is described to evaluate the design of the chatbot,
while chapter 6 discusses the experiment results. Finally in chapter 7, we summarize
the contributions, conclude the thesis with final remarks as well as potential future
work.

6

Chapter 2

Related Work

This chapter is a survey of previous works in the field of Knowledge Base Construction
(KBC) in relation to crowdsourcing and specifically the potential of using conversa-
tional interface to support it. The survey answers to RQ1 described in Chapter 1. The
gap between research found in this survey would be our starting point for our work to
focus on.

As this survey involves multiple fields (KBC, Crowdsourcing, and Conversational
Interface) at once, we structure this chapter as follows:

1. We will first survey on the definition of KBC and known KBC methodologies
that have been used so far. This part would give us an initial guideline on what
are the subtasks of constructing a knowledge base.

2. Then, we would focus on surveying previous works which utilize crowdsourcing
as a mean to support the task of KBC. We would associate the works to each
subtask of KBC from the previous section.

3. Finally, we would discuss related works in the field of conversational interface
and its potential as an alternative crowdsourcing interface.

2.1 Knowledge Base Construction and Ontology
Engineering

In a practical guide of "Ontology Development 101" [41], an ontology is defined as a
formal description of concepts in a domain of discourse (called classes), with a set of
properties of each concept to describe features (slots), and restrictions on slots (facets).
Additionally, a set of instances built on top of an ontology constitutes a knowledge
base.

The set of activities involving ontology development process, the ontology life
cycle, and the methodologies, tools and languages for building ontologies is referred
as ontology engineering [26].

As a knowledge base consists of both the ontology and its instances, ontology en-
gineering is a part of knowledge base construction (KBC). While ontology engineering
focuses more on concepts and relations between concepts, KBC involves the task of
mapping these concepts to real entities referred as instances.

7

2.1 Knowledge Base Construction and Ontology Engineering Related Work

Note that the methodologies to develop ontology discussed below mostly involve
the activities of creating instances of the ontology itself. As defined in [41], a knowl-
edge base is an ontology with a set of individual instances, thus we will use the term
KBC and ontology engineering interchangeably.

Methodologies of ontology engineering have been a subject of literature survey
several times, such as in the book Ontological Engineering by Gomez-Perez [26] and
a survey of collaborative ontology engineering by Simperl [51]. We will first discuss
ontology engineering methodologies in general, and then methodologies which are
intended for collaborative ontology engineering.

2.1.1 Methodology for Ontology Engineering

The ontology development process was identified along with the METHONTOLOGY
framework in [23]. It refers to the set of stages which the ontology moves during its
life, but does not dictate the order on the execution of each stage. Three categories of
activities were advised in [13] to be carried in an ontology development process:

• Ontology management activities consisting of scheduling, control, and quality
assurance.

• Ontology development oriented activities consisting of three subcategories of
activities:

– Pre-development activities consisting of environment and feasibility study.

– Development activities consisting specification, conceptualization, for-
malization, and implementation.

– Post-development activities consisting of maintenance of the ontology
and how it is used by other ontologies or applications.

• Ontology support activities consisting of activities performed at the same time
with development-oriented activities such as knowledge acquisition, ontology
evaluation, integration, and alignment.

[26] gives a thorough overview of several known methodologies for ontology engi-
neering. They compared several methodologies and methods used to build ontologies,
either from scratch or by reusing other technologies. The methods discussed were: the
Cyc method, the Uschold and King’s method, the Grüninger and Fox’s methodology,
the KACTUS approach, METHONTOLOGY, the SENSUS method, and the On-To-
Knowledge methodology.

Each of the discussed methodologies were mostly developed by experience or
guidelines of developing a specific ontology. The Cyc method, for example, was the
method used for building the ontology of Cyc, a knowledge base of common sense.
The Uschold and Kingâs method, on the other hand, was developed from the their
experience in developing the Enterprise Ontology of the Artificial Intelligence Appli-
cations Institute at the University of Edinburgh.

Most of these methodologies cover some part of the activity category in the ontol-
ogy development process, but the most stable and comprehensive ones are the METHON-
TOLOGY and On-To-Knowledge methodology. For our work, we will use the METHON-
TOLOGY as our guideline for ontology engineering.

8

Related Work 2.1 Knowledge Base Construction and Ontology Engineering

The METHONTOLOGY methodology comprises of 7 phases to build ontologies
from scratch: specification, knowledge acquisition, conceptualization, integration, im-
plementation, evaluation, and documentation. Each of the phase will be briefly de-
scribed as follows.

1. Specification: the goal of this phase is to produce either an informal or formal
ontology document specification. It consists of the purpose, level of formality,
and scope of the ontology.

2. Knowledge Acquisition: this phase is an independent activity supporting the
development of ontology. The goal is to collect knowledge by means of either
interviews with domain experts and/or text analysis of the knowledge source in
the form of books, articles, and so on.

3. Conceptualization: in this phase, the domain knowledge is structured into a
conceptual model describing problem and solution in terms of the domain vo-
cabulary.

4. Integration: the METHONTOLOGY framework encourages the re-usage of
existing ontologies, with the integration phase, an integration document is pro-
duced to link between existing ontology and the ontology being developed.

5. Implementation: this phase’s objective is to formalize the conceptual model
into a formal computational language.

6. Evaluation: in this phase, a technical judgement of the ontology is carried out,
in respect to the requirements specified in the specification phase.

7. Documentation: documentation is encouraged by the METHONTOLOGY frame-
work on every phase of the ontology development,

Each phase was described briefly in the original paper of METHONTOLOGY,
with the conceptualization phase described in detail in the follow-up paper of building
ontology at the knowledge level [13]. The conceptualization phase can be broken down
into 11 tasks which are shown in Figure 2.1.

First, a glossary of terms to be included in the ontology is built including each
of their description and synonyms (Task 1). Each of this term has to be identified
either as a concept or instance attribute. Then, the concepts are classified as such that
a concept taxonomy is built (Task 2). After that, a binary relation diagram (Task 3)
is built to identify relationships between concepts in the ontology. For the next task,
a concept dictionary (Task 4) is built. The concept dictionary contains all the domain
concepts with their relations, instances, and their class and instance attributes.

After the concept dictionary is built, the detail of relations (Task 5), instance at-
tributes (Task 6), and class attributes (Task 7), as well as constants (Task 8) should
be defined. Then, formal axioms (Task 9) and rules (Task 10) should be described for
constraint checking and inferring attribute values. Instances could also be introduced
(Task 11), thus making the ontology a full-fledged knowledge base.

Note that although some order must be followed to carry each of the task of the
conceptualization phase, the process is not strictly sequential as an ontology engineer
can return to any of previous task at point where a new term is introduced.

9

2.1 Knowledge Base Construction and Ontology Engineering Related Work

Task 1:
Build glossary of

terms

Task 2:
Build concept
taxonomies

Task 3:
Build binary

relation diagram

Task 4:
Build concept

dictionary

Task 5:
Describe binary

relations

Task 6:
Describe instance

attributes

Task 7:
Describe class

attributes

Task 8:
Describe

constants

Task 9:
Describe formal

axioms
Task 10:

Describe rules

Task 11:
Describe

instances

Figure 2.1: Tasks of Conceptualization Phase

Based on this tasks, we can relate each task based on the primitive element of an
ontology that it involves. In general an ontology would consist of: classes, instances,
attributes, relationships, hierarchy, axioms and rules. An overview table of these prim-
itive elements is shown in Table 2.1. Each of this element would connect with one or
more elements, thus building the whole ontology.

In the scope of our work, we will focus mostly on the Conceptualization phase,
specifically on Task 11, which is to describe instances. The system design in our work
would facilitate the creation of instances on top of a predefined ontology schema. Our
work would also touch a part of the Integration and Implementation phase where we
would integrate the knowledge base constructed by the system to an existing ontology.
The system, however, could be easily extended to cover other phases.

The METHONTOLOGY framework has introduced a stable guideline in order to

10

Related Work 2.1 Knowledge Base Construction and Ontology Engineering

Table 2.1: Primitive Elements of an Ontology

Primitive Element Description Tasks Example

Class Represents a concept or
group of similar concepts

Task 1, Task
2, and Task 4

Building, Person,
Animal, City

Instance Represents a real-world
entity or item

Task 11 The Eiffel Tower,
Taylor Swift, Delft

Attribute A property of either a
class or instance

Task 6, Task
7, and Task 8

name, colour, loca-
tion

Relationship A special type of attribute
with a value referencing
to another instance

Task 3 author, belongs to,
leader, CEO

Hierarchy A special type of relation-
ship where a group of in-
stances or class belongs to
another class

Task 2 and
Task 5

Subclass of, in-
stance of

Axiom A logical expression to
specify constraint in an
ontology

Task 9 "Every train de-
parting from
European location
must arrive at
another European
location"

Rule A conditional expression
used to infer knowledge
such as attribute values or
relationships

Task 10 "Every ship that
departs from Eu-
rope is arranged by
the company Costa
Cruises"

develop an ontology, but it does not consider when an ontology is built collaboratively.
In the next section, we will discuss some methods and tools explicitly designed to
support the construction of ontology collaboratively.

2.1.2 Methodologies for Collaborative Ontology Engineering

The emergence of Semantic Web has encouraged the practice of developing ontology
in a community-driven manner. Methods and tools to support collaboration and contri-
butions are needed. Simperl and Luczak-Rosch did a survey on collaborative ontology
engineering methods that have emerged along with tools to facilitate the activities de-
scribed in each methodology [51]. In this section, we will briefly discuss some of the
mentioned methods and conclude on how do they relate to our work.

In [51], the methods that were discussed and compared are the Holsapple and Joshi
method; Dogma-Dess; DILIGENT; Human-Centered Ontology Engineering Method-
ology (HCOME); and Ontology Maturing. Each of this method follows a participatory
approach, emphasizing on collaborative effort with technological support that allows
non-expert to participate in the ontology development.

11

2.1 Knowledge Base Construction and Ontology Engineering Related Work

The Holsapple and Joshi methodology consists of four phases: preparation, an-
choring, iterative improvement and application. The preparation phase is similiar to
the Methontology’s specification phase, while the anchoring phase’s objective is to
produce a first version of the ontology. The collaboration happens in the iterative im-
provement phase where domain experts are asked for their feedback on the ontology
and the consolidated results are implemented when there is a consensus among the
experts.

The Dogma-Mess methodology are distinguished in 5 main phases: formulate vi-
sion statement; conduct feasibility study; project management; preparation and scop-
ing; domain conceptualization; and application specification. This methodology does
not describe on how to reach consensus on multiple view of ontology, but the collabo-
ration happens in the form of knowledge negotiation which is a part of the conceptu-
alization phase.

The DILIGENT is referred as an "argumentation-based" methodology based on
IBIS argumentation model [54]. First, a core team create an ontology that is not re-
quired to be complete in the build phase. Then, this ontology is made available to users
who can adapt it to their own local environment, while the original ontology remains
unchanged. This second phase is called local adaptation. The analysis phase then
involves an ontology engineering board to select which of the local branches’ change
to be carried to the next version of the original ontology. These agreed changes are im-
plemented in the revision phase, resulting a new version of the shared ontology. Users
may opt to align their local ontologies with the version in the local updates phase.

The HCOME, similar to DILIGENT, also focuses on distributed development of
ontologies. Their approach is to distinguish between a personal information space,
reflecting the view of an individual party, and a shared information space, reflecting
the agreed conceptualization view of different parties. The collaboration is supported
by allowing users to browse shared ontology, compare it to their own version, and
discuss feedback on a moderated discussion thread.

Ontology Maturing [16] is a "Web 2.0" approach of ontology engineering, fo-
cusing on building lightweight ontology and views ontology engineering as an infor-
mal learning process. It takes from the Web 2.0 approach which empowers informal,
lightweight, and easy-to-use aspect to ontology development. The methodology con-
sists of 4 main phases: emergance of ideas; consolidation in communities; formal-
ization; and axiomization. The core collaborative aspect lies in the first two phases
where any participants can contribute terms by assignment of simple tags and then be
consolidated by merging or splitting terms leading to a common terminology.

Overall, the mentioned methodologies have common challenges that they try to
overcome: how to resolve differences of multiple versions of ontology produced by
each participants viewpoint. They also take the iterative view of ontology life cycle:
allowing the ontology to be improved at any point of time, thus producing multiple
revised versions.

2.1.3 Collaborative Ontology Engineering Tools

In this section, we will discuss some tools (software; desktop and web application)
used in order to support collaborative ontology engineering. The purpose of this sec-

12

Related Work 2.1 Knowledge Base Construction and Ontology Engineering

tion is to give an overview on how these tools work and what participation patterns
they encourage that can later be translated to conversational interface for our work.

Ontology Development Environment (ODE) is the term used to refer to tools ded-
icated for ontology development and editing. The two most prominent tools are Pro-
tégé1 and NeOn Toolkit2.

To support collaboration, Protégé has an extended version called Collaborative
Protégé3 which has features for participants to interact and hold a discussion for con-
flict resolution. Multiple users can edit the ontology at the same time, and then use the
discussion threads and direct chat channel to communicate their opinions. The discus-
sion then can be followed by a voting, either with a five-star or agreement type, and
the result will be in the form of annotation to the ontology.

NeOn Toolkit, on the other hand, is a set of Eclipse plugins dedicated for develop-
ing interconnected ontologies. Each plugin of the set is dedicated for a certain feature,
from ontology editing, export and import feature, to an integrated system with a wiki
system for collaboration. The wiki is dedicated as a part of the ontology engineer-
ing process, facilitating interaction between user to discuss on a certain ontology item
(concepts and instances), and the result of the discussion can be transferred back into
the ontology.

There are also dedicated wiki-based ontology engineering tools. In addition to be-
ing user-friendly, wiki system has gained attention in the Semantic Web field as it is
used for the purpose of community-driven content curation focusing on collaborative
interaction. Some examples of ontology engineering tools that adapted this Wiki sys-
tem are myOntology [52], coefficientMakna [54], IkeWiki [47], and OntoWiki [27].
These Wiki-based tools present each instance and concept as a Wiki page, allowing
user to annotate these pages with links with other pages, corresponding to relation-
ships in the ontology, and adding property-value pairs, corresponding to attributes in
the ontology.

There is also the Wikidata4 project, which has its origin from Wikipedia5, the
largest peer-produced encyclopedia, with the purpose of building structured knowledge
base allowing users to access and edit the data. Although it is not strictly an ontology
editor, and more of a collaborative knowledge base itself, we will regard it as so, as the
system, in a way, supports collaborative ontology engineering tasks (editing concepts,
adding links, voting statements).

Müller-Birn et al. did a study on how Wikidata can be regarded both as a peer-
production system and a collaborative engineering tool[39]. They analyzed the history
of Wikidata edits, and group the edits as action sets.

Based on participation patterns, users of Wikidata can be categorized into 6 groups:
Reference Editor, Item Creator, Item Editor, Item Expert, Property Editor, and Property
Engineer.

Overall, the main challenge of developing an ontology collaboratively is how to
reach consensus whenever there are multiple conflicting opinions from different con-
tributors (both knowledge engineers and domain experts). In general, a contributor

1https://protege.stanford.edu/
2http://neon-toolkit.org/
3http://protegewiki.stanford.edu/index.php/CollaborativeProtege
4https://www.wikidata.org/
5https://www.wikipedia.org/

13

2.2 Crowdsourcing for Knowledge Base Construction Related Work

can take part in the ontology development process by two type of actions: suggesting
a creation, change, or removal of primitive entities (as discussed in Section 2.1.2) and
reacting on a suggestion. The later action would depend on the agreement mecha-
nism: it can be in the form of comments, voting, moderation, or a mix between them.
For example, actions involving the primitive element class would be distinguished as
follows:

• Suggesting

– Suggesting a creation of concept/class

– Suggesting a merge of two concepts

– Suggesting a removal of a concept

• Reacting

– Agreeing/disagreeing on a creation of concept

– Agreeing/Disagreeing on a merge of two concepts

– Commenting on the creation of a concept

– Agreeing/disagreeing on a removal of a concept

The above example could also be applied to other primitive elements such as in-
stances, relations, and attributes. In our work, we would derived our decomposition
of KBC task upon the described two actions. Ultimately, the KBC task would be
decomposed into two major subtasks corresponding to the two actions: the task of
creating (suggesting) a primitive element (in our work, we would focus on instances)
and assigning attributes and the task of validating (reacting) the created instances and
attributes.

2.2 Crowdsourcing for Knowledge Base Construction

As with crowdsourcing research in general, crowdsourcing approach for knowledge
base construction can also be divided into two types of approach: microtasking ap-
proach and Games with a Purpose (GWAP) approach. The microtasking approach
tries to utilize microtask platform such as FigureEight and Amazon Mechanical Turk
(AMT) to publish tasks for the crowd to work on. Usually this approach involves in-
centives in form of money which is paid to the crowdworkers based on the number
of tasks they completed. On the other hand, the GWAP approach tries to avoid this
monetary incentives by designing a game as such that crowdworkers, as players, will
complete tasks for the intent of seeking entertainment.

Works focusing on crowdsourcing for KBC can be grouped based on which type
of task of ontology engineering to be solved by crowdsourcing. The type of task is
based on what ontology elements are involved and whether the crowdsourcing task
is to create (collect) new elements or validate existing elements. As described previ-
ously, example of ontology elements are class, instance, attribute, relationaship, and
hierarchy.

A work by Simperl et al. proposes a framework utilizing crwodsourcing to support
linked data management [50]. Linked Data is a way to publish structured data, so it is

14

Related Work 2.2 Crowdsourcing for Knowledge Base Construction

highly related to ontology and knowledge base. Simperl et al. use Amazon Mechanical
Turk (AMT) to execute microtask involving identity resolution which is the task of
deciding weather two resources (equivalent to instances) is the same with each other.
This involves the creation of a sameAs links, which are equivalent to relationships in
a knowledge base. On top of that, their work also involves metadata correction, the
task of validating concept’s attributes, and classification, related to the task of creating
hierarchies.

Noy et al. instead focuses solely on the task of hierarchy-verification, presenting
them to crowdworkers through AMT [42, 38]. Their main purpose is to find out the
feasibility of crowdsourcing in ontology engineering by comparing the performance
of students and AMT workers in answering hierarchy-verification questions. The re-
search results that both groups perform similarly for verifying hierarchies of two on-
tologies: a business process model ontology and a general-purpose terms ontology.
Additionally, they also investigate if the choice of the ontology affects the workers’
performance, as well if crowdsourcing is suitable for ontologies in specialized do-
mains. Their experiment results in high levels of accuracy achieved for common-sense
ontologies such as WordNet, and fewer questions correctly answered than by domain
experts for verifying hierarchies in specialized ontologies.

Crowdlink [11], utilizes crowdsourcing to create and validate triples in linked data.
Triples is another term for links between concepts and instances in structured semantic
data. AMT, is again used in this work as a platform to crowdsource tasks of creating
and verifying properties (attributes), entity (instances), schema, and sameAs relation-
ship in linked data. Their contribution is three-fold: the use of crowdsourcing to create
links; a workflow management which is responsible to generate tasks based on existing
ontologies; the implementation of their approach in Semantic Web.

Another line of work tries to incorporate crowdsourcing into existing ontology en-
gineering workflow, specifically reolving around Protege as an ontology editor. Wohlge-
nannt et al. developed a plugin that allows ontology engineers to outsource ontology
verification tasks [58]. The plugin supports the generation of relationship and hier-
archy verification tasks right from within the Protege ontology editor. The tasks are
generated through the uComp API. uComp 6 is a crowdsourcing platform facilitat-
ing knowledge acquistion tasks. It could flexibily allocate tasks to either GWAPs or
mechanised labour platform such as CrowdFlower (now Figure8) and AMT.

Another work [21] tries to solve the problem of fine-grained entity type completion
using crowdsourcing to aid the limitation of automatic machine-based algorithm. En-
tity type is equivalent to class, where an instance can be typed as a general type (such as
SportPlayer, for example) and also as a more specific type (such as BasketballPlayer).
Their work focuses on generating tasks that can be presented in crowdsourcing plat-
form in order to complete the missing fine-grained type for entities in DBPedia7, a
large-scale knowledge base derived from Wikipedia.

There are several works which alternatively takes the GWAPs approach to crowd-
source KBC tasks such as Climate Quiz [48], UrbanMatch [18], HIGGINS [29], and
the Aparto Game [44]. Climate Quiz [48] is a web-based game for players to verify
whether two concepts (e.g. "climate change" and "ecosystem") are related to each

6https://www.ucomp.eu/
7https://wiki.dbpedia.org/

15

2.3 Conversational Interface and Crowdsourcing Related Work

other and what kind of relationship between the two terms. The game attracts player
by leveraging social network, particularly Facebook.

UrbanMatch [18], on the other hand, is a mobile photo-coupling game. It presents
the player photos of point-of-interests (POIs) and asks for their coupling. This cou-
plings would be used to verify links between POIs and their respective images.

HIGGINS [29] is an attempt to combine Information Extraction and Human Com-
putation, generating game questions to collect input from the players of relationships
between entities as subjects and objects. They did an experiments using plots and
character description from SparkNotes stories and movie articles from Wikipedia, re-
sulting that HIGGINS is able to manage high-quality knowledge collection with low
crowdsourcing costs.

The Aparto Game [44] focuses on harnessing the power of casual user to construct
a knowledge base. They experiment with a knowledge base of a multilingual rental
apartment Frequently Asked Questions (FAQ). The game itself is a part of the FAQ
website, so users can post questions and answers regarding the apartment and also play
the game. In the game, users are asked to answer apartment related quiz, collecting
points for answering the quiz. The system then collects the answers from the players
to update the knowledge base.

OntoPronto [55] is another GWAP, specifically a selection-agreement game where
two players are asked to decide whether a Wikipedia article refers to a specific instance
or to a class of entities. The players are also asked to categorize the entity refered by the
article. The collection of answers from players eventually are used to create a general-
purpose ontology. The GWAP approach used by OntoPronto is then compared to a
similar settings but using microtask crowdsourcing through AMT.

Overall, works on crowdsourcing approach for constructing knowledge base is
summarized in Table 2.2. The table groups the work based on the crowdsourcing
approach used (microtask and GWAP), the ontology element involved, and the type of
KBC task (either creating or validating tasks).

As for our work, we will base our system design upon the existing works that
involves the following primitive elements: instance, attribute, relationship, and hierar-
chy with microtask as the crowdsourcing approach (blue-colored in Table 2.2). This
will ensure that crowdsourcing approach for these primitive elements have been ex-
plored before, and our work will extend them as such with a conversational interface
instead of a web-based interface. Though, for future work, we can see that there are
opportunities of research here, where there are empty cells (gray-colored in Table 2.2)
indicating types of task that have not been done for certain crowdsourcing approach
and ontology primitives, at least as far as we know for now.

2.3 Conversational Interface and Crowdsourcing

Conversational interface, specifically the text-based one commonly called chatbot, is
a type of user interface where a typical use case is carried through a series of text
conversation mimicking that of with a human. Although chatbot is often referred as
an AI-powered bot that is assumed to be able to interact with us as humane as possi-
ble, the term "Botplication" was introduced in [24]. The term refers to a category of
conversational agent encouraging simplicity and effectiveness as replacement of tra-

16

Related Work 2.3 Conversational Interface and Crowdsourcing

Table 2.2: Summary of Works on Crowdsourcing for KBC (blue-colored cells high-
light the scope of our work; gray-colored cells highlight approaches not yet explored)

Crowdsourcing Type Element Task Type Approach

Microtask

Class Create OntoPronto [55], CrowdLink
[11], PROFIT[3]

Validate uComp Protégé Plugin [58]
Instance Create OntoPronto [55], CrowdLink

[11]
Validate Simperl [50], CrowdLink [11]

Attribute Create CrowdLink [11], PROFIT [3]
Validate Simperl [50], CrowdLink [11]

Relationship Create Simperl [50], Crowdmap [45]
Validate Crowdmap [45], Amini [5],

uComp Protégé Plugin [58]
Hierarchy Create [50], CrowdLink [11], Dong

[21]
Validate Noy [42] [38], CrowdLink [11],

uComp Protégé Plugin [58]
Axiom Create

Validate
Rule Create

Validate

GWAP

Class Create OntoPronto[55]
Validate

Instance Create OntoPronto[55], Aparto
Game[44]

Validate
Attribute Create

Validate
Relationship Create UrbanMatch[18], Climate

Quiz[48], HIGGINS[29]
Validate Kondreddi[30]

Hierarchy Create
Validate

Axiom Create
Validate

Rule Create
Validate

17

2.3 Conversational Interface and Crowdsourcing Related Work

ditional mobile applications. In our work, we are inclined more towards this type of
chatbot to support KBC.

As our work investigates the potential of using conversational interface to sup-
port crowdsourced KBC, this section will discuss related work surrounding usage of
crowdsourcing to support chatbots, ontology-based chatbots, and KBC using chatbot.

2.3.1 Crowdsourcing for Chatbot

Crowdsourcing approaches have been tried to be integrated to chatbot system. The ba-
sic idea is to incorporate human computation to the usual machine learning based and
pattern-matching technology underlying the chatbot. The human computation module
plays a role to decide what response would be appropriate to the user’s input. Sev-
eral implementations of this approach are Chorus [33, 32], Crowd-Intelligence-chatBot
(CI-Bot) [36], and Evorus [28].

Chorus features a two-way natural language conversation between one end user
and the crowd. The crowd in Chorus acts as a single agent. When a user inputs a query
to Chorus, Chorus will forward it to a pool of crowd workers. Each worker would
submit or vote on other worker’s response. Once a response has reach consensus of
agreement, the response would be forwarded back to the end user. In their test, Chorus
correctly answered 84.62% out of the questions asked during conversations.

The difference between CI-Bot and Chorus is that CI-Bot would first tries to re-
spond to end user automatically. Then if the question is beyond the knowledge of
CI-Bot, it would forward the question to experts found by the expert recommender.
The answers by the experts are collected and integrated to the final answer that would
be sent to the end user. In a way, CI-Bot is a hybrid chatbot, incorporating both a
corpus-based AI module and a CI module. The prototype of CI-Bot was built on top of
the chinese messaging platform Wechat8 and experiments were conducted to evaluate
how effective CI-Bot is.

Another hybrid approach of crowd-powered and automated conversational assis-
tant, Evorus [28] was built to be able to automate itself over time. The basic mech-
anism behind Evorus are three folds: (i) uses multiple chatbot and the system would
learn how to select appropriate bots over time, (ii) reusing prior answers to similar
queries, and (iii) automatically approve response candidates generated by the crowd
workers. In Evorus, crowd workers can play a role to suggest a response (in addition
to automatically generated responses) and also vote on candidate responses. Evorus is
another case of hybrid chatbot, integrating the crowds and machine learning.

2.3.2 Ontology-based Chatbot

In this section, we will discuss several chatbot development approach where they in-
corporate the utility of ontology and/or knowledge base in order to generate response
to end-user.

Augello et al. [8, 7, 9] built an intuitive chatbot using AIML (Artificial Intteligence
Mark-Up Language) KB of Alice chatbot, DBPedia datasets, and Wikipedia reposi-
tory. The chatbot exploits the knowledge from DBPedia by making SPARQL queries
through AIML categories.

8https://www.wechat.com/

18

Related Work 2.3 Conversational Interface and Crowdsourcing

Another chatbot utilizing DBPedia is the DBPedia chatbot [6], aiming to optimize
community interaction for answering recurrent questions. Rather than using AIML,
the DBPedia chatbot utilize Rivescript to identify the intent of user’s message. The
chatbot handles three types of message: DBpedia questions, Factual questions, and
regular Banter. For DBPedia question, they apply a rule-based approach by refering
to DBPedia’s mailing list. For factual question in the form of natural language, the
bot utilizes combination of WolframAlpha and QANARY question answering system.
While QANARY responds are already in the form of DBPedia URIs, WolframAlpha’s
response are still needed to be linked to DBPedia through DBPedia Spotlight. For
banter, or casual conversation, a basic set of responses are used such as "Hi" or "What
is your name" with the combination of the Eliza chatbot in case there is no applicable
rule to a user’s utterance.

There is also another ontology-based chatbot with specific purpose of being an
argumentative agent of climate change. The chatbot, called ClimeBot [56], is hosted on
the API.AI platform (now called Dialogflow9). The chatbot consist of two modules: an
ontology module which answers question based on an ontoloty stored in OWL format
and a textual entailment module in case the relevant knowledge cannot be found in the
ontology. One of their main contribution is to incorporate OWL ontologies into the
API.AI platform.

2.3.3 KBC using Chatbot

In this section, some chatbots whose purposes are to construct knowledge base are
discussed. In contrast to the previous category of chatbot, where the ontology are used
in order to support response generation, this section discusses category of chatbots
specifically developed as an interface for KBC.

First, there are several ontology editors supporting the use of controlled natural
language (CNL) to edit ontologies. CNL is a type of language used to hide the for-
mal syntax and semantics of traditional ontologies. Some ontology editors supporting
CNL are discussed in [1], and then there is AceWiki[31] and also Fluent Editor[49].
Although these editors are technically not chatbots, the way that they allow ontology
editing using natural language is similar to a chatbot.

One of the most in-depth proof-of-concept for knowledge acquisition chatbot is
Curious Cat [14]. Curious Cat is a context-aware crowdsourcing knowledge acqui-
sition system using conversational interface. Curious Cat is developed as a mobile
application with interface similar to messaging apps. The system was built based on
Cyc, a knowledge base of common sense. It also uses the Cyc inference engine in or-
der to answer user’s question. Questions are mapped into a set of logical expressions
and then answers are generated through the logical inference engine. The generated
answers are translated back into natural language before sent back to the user. The
context awareness is facilitated through the use of mobile sensors (e.g. location) in
order to decide which user and what question to ask.

Our work differs from the work by Bradesko et al. because we are focusing on
knowledge base construction starting from an almost empty knowledge base (only a
partially defined ontology), while Curious Cat was developed on an already growing

9https://dialogflow.com/

19

2.4 Summary Related Work

knowledge base (Cyc). Additionally, Curious Cat heavily focuses on using context-
based information to support acquisition of knowledge, while our work would focus
more on defining KBC as microtasks and executing them in conversastional setting.

Similar to Curious Cat, KB-Agent [2] is also a chatbot with the purpose of com-
pleting the knowledge given an existing knowledge base. The chatbot tries to collect
new entities and attributes through conversation with users. Put simply, KB-Agent
works as follows: (i) first it generates a list of questions for each entity in a KB, (ii)
KB-agent that ask questions to the users, (iii) finally, KB-agent identify entities in
user’s utterances and incorporate them into the KB. As far as our understanding, the
system design of KB Agent does not incorporate any crowdsourcing workflow, thus
the work did not explore much on how the chatbot users can contribute on ensuring
the quality of the acquired knowledge. This is the gap that our work is trying to bridge,
by incorporating a crowdsourcing workflow to the chatbot system to ensure the quality
of the constructed knowledge base.

2.4 Summary

Up until now, numerous studies on how crowdsourcing are used for knowledge base
construction and ontology engineering have been done. They mostly explored one of
the two main approaches: either using a web-based microtask platform or a GWAP
approach. Existing approaches used crowdsourcing to support part of KBC tasks to
some extent, but not the whole knowledge base construction itself.

In the context of our work, we will mostly design our system upon the previously
discussed existing works, specifically the following aspects:

KBC Task Decomposition We based our design of decomposing KBC Tasks on
the methodologies discussed in section 2.1. The task decomposition would focus
specifically on the conceptualization phase. In the case of which primitive ontology
elements to be involved, the scope of our work would focus on the creation and
validation of instances, attributes, and relationships.

Crowdsourcing for KBC Our work would also be a contribution to the state-of-the-
art by extending existing works in the field of crowdsourcing for KBC. The extension
tries to investigate the use of conversational interface as an alternative to the two
crowdsourcing approaches in previous works: web-based microtasking and GWAP.

Conversational Crowdsourcing In the intersection of conversational interface and
crowdsourcing, there are two main lines of work discussed above: crowdsourcing for
chatbot and ontology-based chatbot.

Our work relates to the first line of work by using chatbot for crowdsourcing similar
to the work of conversational microtasking by Mavridis et al [37]. Our work would
targets microtasking specifically for KBC task.

In relation to the second line of work, instead of building a chatbot that uses an exist-
ing ontology or knowledge base, we intend to do the converse: building a knowledge
base using a chatbot. Though, to some extent, the chatbot could continuously use the
evolving knowledge base, this will remain as an opportunity for future work.

20

Chapter 3

Chatbot System Design for
Knowledge Base Construction

In order to answer RQ2, this chapter will discuss the system design of the chatbot
in detail. We first formalize how KBC process can be decomposed as microtask in
our system. We then explain the crowdsourcing workflow to KBC using a set of the
microtasks. After describing the microtask and crowdsourcing workflow, we describe
how the architecture of the system as well as the conversation flows were designed.

3.1 KBC as Microtasks

As discussed in the Related Work (chapter 2), the KBC process is complex as it con-
sists of several non-linear substeps such as identifying what to include into the KB,
defining and classifying concepts, and determining relationships between concepts.
With the complexity, it would be helpful if we define several small tasks that builds the
whole KBC process. Defining these tasks would become the starting point before we
discuss on how to execute these tasks using conversational crowdsourcing.

In this section, we will discuss how the process of KBC can be broken down into
several small tasks (microtasks). This will be the basis on what types of KBC tasks
to be presented in the conversational interface discussed in the later sections. First we
will define several basic terms of KBC, then a task analysis would be described, before
synthesizing the task types that would be used for our system.

3.1.1 Basic Terms of KBC

As KBC is a wide field of research and many literature refer to same concepts with
different terms, we would like to explain the terms used in this thesis.

First of all, an item is a representation of either a real-world entity or a concept.
If it represents a real-world entity (e.g. the Eiffel Tower), it can be referred to as an
instance. A concept is a representation of a set of instances. For example, the Eiffel
Tower (an instance) is an instance of a landmark (a concept). An item would have at
least a name and optionally description and/or aliases.

Each item (either a concept or an instance) would have 0 or more statements. A
statement consists of a property-value pair. A property is a descriptor of a data

21

3.1 KBC as Microtasks Chatbot System Design for Knowledge Base Construction

value. A property can be paired with one or more values; or even a special value such
as "no value" or "unknown value".

A relation is a special case of statement depicting a connection between items. The
target item of a relation becomes the value of the statement. A relation which depicts
the property of subclass of or instance of is referred to as a hierarchical relation.

Each statement is accompanied by a rank, representing how probable that the
statement is true. The rank is calculated based on the calculation of upvotes and
downvotes from contributors.

3.1.2 Hierarchical Task Analysis

In this section, we attempt to decompose the task of constructing knowledge base
using hierarchical task analysis (HTA) method. We carry the breakdown analysis
based on synthesis of KBC methodology discussed in the related work chapter. Here,
the task-breakdown is done to two major subtasks separately: the task of constructing
a knowledge base (Table 3.1), and the task of fixing and verifying a knowledge
base (Table 3.2). With each task-breakdown, we would also describe the task plan,
explaining how each of the task should be executed.

HTA of Contructing a Knowledge Base

Table 3.1 depicts the task break-down of constructing a knowledge base. The task
is carried under the assumption that there is no knowledge base created yet, e.g. the
construction started from scratch.

The goal and plan for each task of constructing a knowledge base is as follows:

• Plan for Task A: Do each of Task A.1-A.5 once in order. After that feel free to
return to any task in any order to make the KB complete.

• Plan for Task A.1: Repeat Task A.1.1 as many times as needed. This depends
on how wide and specific the domain of the KB is intended. The goal of this task
is to have a list of terms (keywords, or important words) within the the domain
of the KB that could be potentially turned into concepts or instances in the next
tasks.

• Plan for Task A.2: Do and repeat Task A.2.1 and Task A.2.2 in order until all
concepts are identified. The goal is to define some concepts from the list of
terms.

• Plan for Task A.3: Do and repeat Task A.3.1 and Task A.3.2 in order until all
instances are identified. The goal is to define some instances from the list of
terms.

• Plan for Task A.4: Do Task A.4.1, A.4.2, and A.4.3 in any order or even in
parallel. The goal is to have necessary relations between the defined concepts
and instances.

– Plan for each Task A.4.1, A.4.2, and A.4.3: Do each subtask in order (e.g.
A.4.1.1-A.4.1.3) and repeat as necessary to assign all possible relations.

22

Chatbot System Design for Knowledge Base Construction 3.1 KBC as Microtasks

Table 3.1: HTA of Constructing a Knowledge Base

Task A: Construct a knowledge base
Task A.1: Create a list of terms

Task A.1.1: Add a term to the list
Task A.2: Define concepts

Task A.2.1: Choose a term from the list as a concept
Task A.2.2: Create a definition of the concept

Task A.3: Define instances
Task A.3.1: Choose a term from the list as an instance
Task A.3.2: Create a definition of the instance

Task A.4: Assign relations
Task A.4.1: Assign relations between concepts

Task A.4.1.1: Choose two concepts
Task A.4.1.2: Define relation
Task A.4.1.3: Assign relation

Task A.4.2: Assign relations between instances
Task A.4.2.1: Choose two instances
Task A.4.2.2: Define relation
Task A.4.2.3: Assign relation

Task A.4.3: Assign relations between instances and concepts
Task A.4.3.1: Choose an instance and a concept
Task A.4.3.2: Define relation
Task A.4.3.3: Assign relation

Task A.5: Assign statements
Task A.5.1: Choose an instance or a concept
Task A.5.2: Add a statement

Task A.5.2.1: Define a property
Task A.5.2.2: Set statement’s property
Task A.5.2.3: Define a value
Task A.5.2.4: Set statement’s value

Skip A.4.1.2 (or A.4.2.2 and A.4.3.2) if the relation is already defined be-
fore, so it can just be reused and assigned immediately.

• Plan for Task A.5: Do Task A.5.1 and Task A.5.2 in order. Repeat as necessary
for every instance. The goal is to have necessary statements describing the facts
about each concept and instance.

– Plan for Task A.5.2: Do Task A.5.2.1 - A.5.2.4 in order. Repeat as nec-
essary to assign all needed statements to the instance. Skip Task A.5.2.1
and/or Task A.5.2.3 if the property and/or value to be assigned has already
been defined previously.

Note that Task A.4 of assigning relations is actually a specific case of Task A.5 of
assigning statements. A relation can be defined as a special statement, with which the
property depicts the type of relation, and the value depicts another instance or concept.

23

3.1 KBC as Microtasks Chatbot System Design for Knowledge Base Construction

Table 3.2: HTA of Fixing and Verifying a Knowledge Base

Task B: Fix and verify a knowledge base
Task B.1: Fix and verify existing relation

Task B.1.1: Determine whether the relation is true or false
Task B.1.2: Fix relation

Task B.1.2.1: Change relation
Task B.1.2.2: Remove relation

Task B.2: Fix and verify existing statement
Task B.2.1: Determine whether the statement is true or false
Task B.2.2: Fix statement

Task B.2.2.1: Change statement (property and/or value)
Task B.2.2.2: Remove statement

HTA of Fixing and Verifying a Knowledge Base

Table 3.2 depicts the task break-down of fixing and verifying an existing knowledge
base. This major subtask is meant to be a continuation of the previous major task,
with the goal of sustaining and maintaining the knowledge base. A knowledge base is
assumed to be already constructed, but may contain invalid relation or statements. The
task itself can be carried in parallel with the task of constructing the knowledge base.

The followings are the task plans for this task-breakdown:

• Plan for Task B: Do Task B.1 and Task B.2 in any order, and repeat as neces-
sary for all relations and statements. The goal is to make sure the constructed
knowledge base from Task A is correct.

• Plan for Task B.1: Do Task B.1.1. Only if the relation is thought to be false,
do Task B.1.2. The goal is to make sure the chosen relation is correct. If it’s
deemed to be incorrect it should be changed or removed.

– Plan for Task B.1.2: Either do one of Task B.1.2.1 or Task B.1.2.2. Task
B.1.2.1 of changing a relation can be done either by: changing the name
of the relation, changing the target of the relation, or both.

• Plan for Task B.2: Do Task B.2.1. Only if the statement is thought to be false,
do Task B.2.2. The goal is to make sure the chosen statement is correct. If it’s
deemed to be incorrect it should be changed or removed.

– Plan for Task B.2.2: Either do one of Task B.2.2.1 or Task B.2.2.2. Task
B.2.2.1 of changing a statement can be done either by: changing the prop-
erty of the statement, changing the value of the statement, or both.

In this section of task analysis, constructing, fixing and verifying a KB involves
only a single individual carrying the task. When more than one contributors are in-
volved, each contributor can carry each task. In order to resolve conflicts between
opinion (e.g. contributor A thinks a statement is true while contributor B thinks other-
wise), we can apply a voting mechanism, where all contributors can give an upvote or
downvote of relation and/or statements.

24

Chatbot System Design for Knowledge Base Construction 3.2 Crowdsourcing Workflow

For our work, we would focus on the following types of KBC microtasks derived
from our HTA. We choose the task granularity on the second level from the hierarchical
task analysis, and give them a new numbering (T1, T2, and so on) so we can refer it in
the later sections. Note that we chose a limited number of the microtasks as the scope
of our thesis, but we acknowledge that there are potential future work to explore how
the other defined microtasks can presented in a conversational crowdsourcing system.
We describe each microtask type briefly as follows.

Creating a definition of an instance (T1). This task corresponds to Task A.3 from
our HTA. In this task, worker creates an instance representing a real-world object.
An example would be creating an item with the name "Lecture Hall Ampere" that
represents a lecture hall in TU Delft campus. For our system, we wouldn’t include
Task A.1 and A.2 as we would have a predefined concepts (categories), and would
focus on creation of instances. This is, of course, would be a potential future work to
include the task of concept definition using a crowdsourced conversational system.

Assigning a relation between instances (T2). This task corresponds to Task A.4.2
from our HTA. Given an instance and another instance (or list of instances), the
worker has to specify the type of relation (if there is any) between the two instances.
For example, a worker chooses the relation "building in which it is located at" be-
tween the instance "Lecture Hall Ampere" and the instance "EWI Building".

Assigning a relation between an instance and a concept (T3). This task corre-
sponds to Task A.4.3 from our HTA. Given an instance and a concept, the worker has
to specify a relation (if there is any) between the instance and the concept. For ex-
ample, a worker assigns the relation "categorized as" between the instance "Lecture
Hall Ampere" and the concept "Lecture Hall".

Adding a statement (T4). This task corresponds to Task A.5.2 from our HTA.
Worker is given an already created instance and are asked to complete a statement
regarding the instance. For example, the worker is given the instance "Lecture Hall
Ampere" representing a place and is asked to complete the statement about the floor
number of the place.

Determining whether a relation is true or false (T5). This task corresponds to Task
B.1.1 from our HTA. Worker is given with an already defined relation and they have
to assess whether the relation is correct or not. For example, the worker is asked to
verify if "Lecture Hall Ampere" can be categorized as "Lecture Room".

Determining whether a statement is true or false (T6). This task corresponds to
Task B.2.1 from our HTA. Worker is given with an already defined statement of an
instance, and they have to assess whether the statement is correct or not. For example,
the worker is asked to verify the statement "Lecture Hall Ampere is located on the
first floor".

3.2 Crowdsourcing Workflow

In this section, we will describe the workflow on utilizing the crowd in order to con-
struct a knowledge base. The workflow is designed based on the defined microtasks

25

3.2 Crowdsourcing Workflow Chatbot System Design for Knowledge Base Construction

Figure 3.1: Crowdsourcing Workflow for Producing an Item for a Knowledge Base

from the previous section and can be divided into three stages: Create, Enrich, and
Validate. This workflow would later be used by our system to enable crowdsourced
construction of knowledge base. Figure 3.1 illustrates an overview of the stages to pro-
duce a single item for a knowledge base. In each of the stages, one or more workers
executes some tasks to produce input for the item. We will now elaborate the details
of each stage.

Stage 1: Create

In the Create stage, a worker is assigned to an Item Creation Task. This Item Creation
Task is a task consisting of multiple microtasks. Each of the microtasks can be of type
T1, T2, T3, or T4. The output of this stage is for a worker to create an initial definition
of an item representing a real-world object. The following is a list of example tasks
that a worker might need to complete in this stage:

1. Creating an item with the name "Lecture Hall Ampere" (microtask type T1).

2. Assigning a relation ’building in which it is located at’ between "Lecture Hall
Ampere" and the "EWI" building (microtask type T2).

3. Assigning a relation ’categorized as’ between "Lecture Hall Ampere" and the
category "place" (microtask type T3).

4. Adding a statement "located on the 1st floor" for "Lecture Hall Ampere" (mi-
crotask type T4).

26

Chatbot System Design for Knowledge Base Construction 3.2 Crowdsourcing Workflow

After the Item Creation Task is completed by the worker, thus producing an ini-
tial definition of an item, the workflow then proceeds with a task generation process
done by our system. The task generation process would take an item as an input and
produces a task to be executed in the next stage.

Stage 2: Enrich

After an item is produced from the previous stage, a corresponding Item Enrichment
Task would be generated. This task would be assigned to a defined number of workers
other than the worker who created the item in Stage 1. These workers would add
more information (in the form of statements) to the created item by executing the Item
Enrichment Task that consist of multiple microtasks of type T2, T3, and T4. The
microtasks contained in this stage can be similar with the ones from Stage 1, as the
purpose of this stage is to complete missing statements which were not acquired in
Stage 1. The following is a list of example tasks that a worker might need to complete
in this stage:

1. Assigning a relation ’building in which it is located at’ between "Lecture Hall
Ampere" and the "EWI" building (microtask type T2).

2. Assigning a relation ’categorized as’ between "Lecture Hall Ampere" and the
category "place" (microtask type T3).

3. Adding a statement that "Lecture Hall Ampere" has electricity outlets for stu-
dents (microtask type T4).

4. Adding a statement about the seat capacity of "Lecture Hall Ampere" (microtask
type T4).

When the number of workers that have completed the task satisfies the defined
number of answers required for each microtask, a new task would be generated to
validate the statements in the next stage.

Stage 3: Validate

In this stage, an Item Validation Task is generated by considering the answers from
workers completing the item creation task and item enrichment task from the first
two stages of the workflow. The goal of this stage is to ensure that the statement
inputted regarding an item is valid to some extent. The Item Validation Task again
would be assigned to a defined number of workers. These workers have to validate
the statements gathered from stage 1 and stage 2. The task would consist of multiple
microtasks of type T5 and T6. A list of example tasks in this stage is as follows:

1. Verifying that "Lecture Hall Ampere" can be categorized as "Lecture Room"
(microtask type T5).

2. Verifying that "Lecture Hall Ampere" is not located on the 1st floor (microtask
type T6).

27

3.3 System Architecture Chatbot System Design for Knowledge Base Construction

Finally, when the number of workers who completed the Item Validation Task
satisfies the defined number of answers required, the final step of the workflow would
be to aggregate the item, statements, and validated statements so it will produce an
item along with relations and statements as a part of a knowledge base. All three
stages would be executed numerous times for each newly created item, and ultimately
the produced knowledge base would evolve with more items along with their validated
statements and relations.

3.3 System Architecture

Figure 3.2: System Architecture Overview

We first describe the overall architecture of the system supporting the chatbot.
Figure 3.2 illustrates the overview of the system. The main modules of the system
consists of the Conversational Interface, the Task Executioner module, the database,
the Backend Application Programming Interface (API) as the back-end layer, and
the Knowledge Base Generator module. The Backend API consists of submodules
to handle Task Generation, Task Assignment, and Push Notification.

3.3.1 Database

As we will refer to the collection in the database often throughout the following de-
scription of the system architecture, we will first briefly describe how our data model
is structured.

We decided to use a NoSQL document database, instead of relational database, as
it will allow us to flexibily define entity’s properties without fixing the schema. So in

28

Chatbot System Design for Knowledge Base Construction 3.3 System Architecture

the future, if we want to add more types of information to be stored for certain use
case, we will be able to easily adjust the data model.

The complete entity relationship diagram is available in Appendix A. We will
briefly explain each entity in this section.

Users

First, we have the users collection, saving the data of our users. Data of each user
is stored as a document in this collection. We store their basic data such as their
userId, inferred from their Messaging platform account ID, and createdAt, which is
the timestamp of when they started to chat with the chatbot. For logging purpose, we
would also store the conversations between the user and the chatbot in the subcollec-
tion utterances of each user document.

Items

Next, we have the items collection. This collection consists of documents of saved an-
swers when user completed a Create task. Some attributes stored for each item would
be the author attribute to indicate which user created an item; the createdAt attribute
reprsenting when the item was created; and the executionStartTime attribute repre-
senting when the user start working on the corresponding create task.

Tasks

A task document has a reference to an item that needs to be completed either by
adding more information (an item enrichment task) or validating existing information
(an item validation task). A task would have the following attributes: the id of the item
(itemId), number of answers required (numOfAnswersRequired), the type of task
(type; whether it is an enrichment or validation task), and optionally an expiration
date (expirationDate).

Task Instances

Every task would be assigned to several users. The assignment is done by generating
a task instance document that links to the task document. Each of this task instance
would then be stored as a subcollection taskInstances under the corresponding as-
signed user.

Task Templates

Questions for each task type (create task, enrich task, and validate task) are stored in
a task template document in the taskTemplates collection. For example, the ques-
tions for create task for items with type place would be saved as a document with id
create-place in the taskTemplates collection. We will discuss more about how task
template works in section 3.3.3.

29

3.3 System Architecture Chatbot System Design for Knowledge Base Construction

Enrichments and Validations

While the answers from users who completed a create task is stored in the items col-
lection, for enrichment and validation task, they would be stored in the enrichments
collection and validations collection respectively. The documents stored in this col-
lection have references to the completed task instances.

3.3.2 Conversational Interface

The Conversational Interface module is responsible to handle interaction between
the user and the chatbot itself. There are three main user-initiated interactions that it
would handle: when user starts the conversation (Start Handler); when user asks a
list of task (Task List Handler); and when a user choose to start working on a selected
task.

Start Handler

When a user starts a conversation with the chatbot, the Start Handler will first check if
the user is a first time user. If they are, the start handler will save the user data to the
users collection for future identification. The Start Handler then will send instruction
for the user to choose the available item types. Types of item available are dependent
on the domain of the knowledge base, in which for our work we will offer 4 item types
(food, place, course question, trash bin), discussed in more detail later in Chapter 5.

Task List Handler

When a user selects one of the available item types, the Task List Handler will fetch
available task instances assigned to the user from the database. It will then send a list of
messages representing each of the available task instances. The user can then response
to select which of the task they want to work on. This module will then instantiate a
Task Executioner which will be discussed in more details in section 3.3.3.

Help Menu Handler

Additionally, we would also have a Help Menu Handler module which simply sends a
text message explaining how to use the chatbot whenever a user asks for help.

3.3.3 Task Executioner

The task executioner module is responsible to handle the flow when a user is working
on a task, starting from the user selecting a task instance until the user submits their
answers. After a user selects a task instance, an instance of a task executioner will be
spawned specifically for that user. Figure 3.3 shows the high level overview of how
the task executioner works.

First, the task executioner instance will load the task template corresponding to the
item type and the type of task (create, enrich, or validate) the user selected. The task
template for each task type are stored in the taskTemplates collection in the database.
Table 3.3 describes the main fields that should be stored in a task template and Figure

30

Chatbot System Design for Knowledge Base Construction 3.3 System Architecture

Figure 3.3: High Level Overview of Task Executioner Logic

31

3.3 System Architecture Chatbot System Design for Knowledge Base Construction

Table 3.3: Task Template Fields

Field Description Example

openingStatements A list of text messages or images
sent by the bot to the user when
they start working on a task.

Here’s the place that needs to be
verified:

closingStatements A list of text messages or images
sent by the bot to the user when
they finish working on a task
and after they submitted their an-
swer. We can also include data
submitted from the user in the
statement (e.g. to include name
of the item, use the item[name]
placeholder).

Thank you! We have updated the
information about *item[name]*

entryCommand The text command that should
be sent by the user to trigger start
of a task. In our system this de-
faults to "create" for create task.
The task template will also ac-
cepts custom commands if this
field is set.

create

questions Stores a list of questions that will
be sent by the bot.

See types of question (Table 3.4)
for examples.

3.4 highlights how the corresponding elements of a task template are presented in the
conversational interface.

If the type of the selected task instance is an enrichment or validation task, the task
executioner will also load the data of the item corresponding to that task instance. After
that, the task executioner will start the conversation and guide the user to complete the
task. The task executioner will prepare each message that will be sent to the user based
on the loaded task template and the data item.

First, it will send message built from each string in the openingStatements field.
Then, it will send each question from the questions field, waiting the user’s response
for each question before moving on to the the next one. A question in which the answer
is not required can be skipped by the user and the task executioner shall move on to the
next question. User can also quit and abandon the task whenever they want, in which
the task executioner will terminate.

Several types of question can be defined in the task template and it will determine
how the Task Executioner will send the question and what kind of answer is accepted
for the question. Table 3.4 shows the type of question that our chatbot would support.
Figure 3.5 illustrates examples on how each question type would be presented in the
chatbot.

There are three questions types which falls within the "Multiple Choice" (MC)
question type: MC Categorization, MC Item, and MC Custom. We differentiate

32

Chatbot System Design for Knowledge Base Construction 3.3 System Architecture

Figure 3.4: Task Template Elements

these question types based on their allowed input and choices generation. An MC
Categorization question populate the choice options based on pre-defined categories
for an item type. An MC Item question, on the other hand, show a list of certain item
type (e.g. building items) based on certain criteria (e.g. location). Additionally, this
type of question also allows user to give free text as a custom input if their answer
is not listed. Finally, an MC Custom question has a fixed set of answers (e.g. "Yes",
"No", and "Not Sure" options). Furthermore, later we would be having two variations
of interaction style for these three question types for experimental purpose: whether
to show a set of buttons (as shown in Figure 3.5f, 3.5g, and 3.5h) or to show a list of
possible answer along with numbers corresponding to each answer (see section 5.2.3).

When the user finishes answering all questions, a question with the type of An-
swers Confirmation shall be sent by the task executioner. This question allows the
user to either: submit their answers; start over the task; or quit the task. Although, the
ideal feature to allow users editing their answer is to enable user to go back to any of
the questions; in this thesis we simplify the feature in order to have a better control of
experimental settings.

After the user submitted the answers, the task executioner will save the answers to
the database. Then, it will notify the Backend API that a new answer has been submit-
ted, so the API can generate new task accordingly as discussed in the Crowdsourcing

33

3.3 System Architecture Chatbot System Design for Knowledge Base Construction

Table 3.4: Question Types

Question Type Type of Message(s) Answer Type

Text Text Message Text
Multiple Input Text Message Comma-separated text
Numeric Text Message Text (Numeric Only)
Location Text Message, A button to

Send Current Location
Location

Image Text Message Image File
MC Categorization Text Message, Buttons of

Category Options
Selected Option

MC Item Text Message, Buttons of
Item Options

Selected Option or Text

MC Custom Text Message, Buttons of
Custom Options

Selected Option

Answers Confirmation Text Message, Buttons to
"Submit", "Restart", or
"Quit" Task

Selected Option

(a) Text Question (b) Multiple Input (c) Numeric

(d) Location (e) Image (f) MC Categorization

(g) MC Item (h) MC Custom (i) Answers Confirmation

Figure 3.5: Example of Each Question Type

34

Chatbot System Design for Knowledge Base Construction 3.3 System Architecture

Workflow (Figure 3.1).

3.3.4 Backend API

The Backend API acts as our backend module consisting of three submodules: task
generation; task assignment; and push notification. Endpoints to trigger task gen-
eration, task assignment, and push notification would be exposed as REST Endpoints,
such that it can be triggered by the chatbot, the mobile app, or by a cron schedule.

Task Generation

The task generation process happens in between stages of our crowdsourcing workflow
as discussed in Section 3.2. Two types of generation is handled by the task generation
module: the generation of item enrichment tasks that happens between the Create stage
and Enrich Stage and the generation of item validation tasks that happens between the
Enrich Stage and Validate Stage.

A new item enrichment task would be generated every time a new item is created
when the chatbot user completes an item creation task. The output of this task gen-
eration would be a new task document in the tasks collection that has the field item
referencing to the newly created item.

For item validation tasks, they are generated whenever a sufficient number of an-
swers of an enrichment task have been submitted. This number is defined in the task
in the numOfAnswersRequired field, which we set to 5 for our evaluation setting
described in Chapter 5. Every time a user completes an enrichment task, the task gen-
eration module will check the total number of answers, and proceed by generating the
corresponding validation task if the number is more than or equal to 5.

Task Assignment

After either an item enrichment task or an item validation task is generated, the task
assignment module would assign this new task to some existing users. The assignment
is done by creating a taskInstance document in the taskInstances subcollection
under each user.

For each task, the number of users to be assigned is determined as three times the
number of answers required. We also prioritize users who have previously worked on
similar tasks based on a predefined similarity depending on item types. For example,
for a task corresponding to a place, we would group the places based on their location,
so a task about a place in a library would be prioritized for assignment to users who
previously has completed a task about another place in that same library.

Push Notification

As we want our users to spend time on completing task every day, we included a push
notification module to ask the user whether or not they want to complete another task.

The module is a part of the Backend API and would be implemented as an endpoint
that would be hit twice a day (for our experimental settings it would triggered at 10.00
and 15.00). The endpoint will send a message to each of all chatbot users who are not
currently in the middle of completing a task.

35

3.3 System Architecture Chatbot System Design for Knowledge Base Construction

After receiving the message, the user can response to indicate if they would want
to complete another task or would like to do it later.

The module should also remove previously pushed notification to avoid clutter of
several messages in a row. Additionally, this module would also keep track of users
who has blocked the chatbot.

3.3.5 Knowledge Base Generation

As the main problem this thesis is trying to solve is to construct a knowledge base, we
include a module which is responsible to aggregate the answers from our user to a more
known knowledge base structure. We would call this module as the Knowledge Base
Generation module. Figure 3.6 shows the high level overview on how the module
works.

Figure 3.6: Knowledge Base Generation Module

Wikibase Data Model

In our proof-of-concept we intend to store the aggregated collected answers into the
data model used by Wikidata, a free and open collaborative knowledge base initiated

36

Chatbot System Design for Knowledge Base Construction 3.3 System Architecture

by the Wikimedia Foundation [57]. Wikidata itself is an instance of Wikibase1, the
software which enables access and store data in a structured repository. Wikibase
allows anyone to run their own KB along with a SPARQL endpoint to access the KB
and a Wiki as the client to view, explore, and edit data.

The data in Wikibase is stored using the Wikibase Data Model2 structure. In this
data model, entity which can be both conceptual or phyisical are represented as an
Item. For example, in Figure 3.7, Marie Curie is an Item represented by an item
identifier of Q71863 in Wikidata.

An item would have several information stored with it such as a Label, a Descrip-
tion, and optionally some Aliases. An item would also have a list of Statements.
Statements are responsible to represent factual data about the item. For example, here
we have statements stating that Marie Curie had received the Nobel Price in Physics
Award and Willard Gibbs Award. Here, the statement consists of a property "award
received" and two values. Here, both the property itself and the values are also items.

Supporting the statements are a list of optional qualifiers and references. Qual-
ifiers are meant to add additional facts to the main statement. For example in Figure
3.7, Marie Curie received the Nobel Price in Physics in 1903. The additional fact is
the point of time on when the award was given, which is stored as a qualifier to the
main statement. References, on the other hand, are publication and/or links to source
which supports the fact represented by the statement.

Figure 3.7: Wikibase Data Model, from http://w.wiki/32q

We decided to use Wikibase with the following plus points in mind:
1https://www.mediawiki.org/wiki/Wikibase
2https://www.mediawiki.org/wiki/Wikibase/DataModel
3https://www.wikidata.org/wiki/Q7186

37

3.3 System Architecture Chatbot System Design for Knowledge Base Construction

• Wikibase allows us to use bot to create and edit items. This is an advantage to
our intent on automating the aggregation phase of syncing our database to the
Wikibase instance.

• It maintains history of changes. In this case, all edits to the knowledge base are
recorded thus we can better analysis the edit activity corresponding to the user
activity in KBC process by using the chatbot.

• The data model used by Wikibase is not rigid, especially with qualifiers and ref-
erences which allows another level of clarification of a factual information. This
enables us to adjust the usage of qualifiers for our system to represent the answer
of validation tasks; depicting how many users approved or rejects a statement.

• Compatibility with Wikidata is also a great opportunity for future work to link
the knowledge base constructed by using the chatbot to the Wikidata knowledge
base.

• Wikibase has a similar vision to our thesis vision which is to promotes broader
participation of KBC process. We can see this as a future opportunity to inte-
grate the chatbot-based system with the Wikibase technology for constructing a
knowledge base.

• Exporting the Wikibase data to the Resource Description Framework (RDF)
format, which is a well-known standard model specified by World Wide Web
Consortium (W3) for Semantic Web, is also supported [22]. This compatibility
means that we can easily export the data to the Linked Data Web.

Properties Mapping

As we would like to start with a blank Wikibase, without any item or properties, we
started defining properties for our campus knowledge base by storing it in our database.
The Knowledge Base Generation module would then import this properties to our
Wikibase instance. The complete list of properties is available in Appendix C.

Categories Mapping

For our domain use case, we would make a predefined list of categories so each created
item can be categorized. This range from categories of places (study space, lecture
room, and so on). Completed list of categories is available in Appendix C.

The module is then responsible to import this categories as items in Wikibase in-
stance. This categories would then be values of "instance of" statement that would
indicate category of created items.

Items Mapping

To avoid confusion, we would refer items stored in our the database as Database Item,
while item in Wikibase instance as Wikibase Items.

Each database items would be mapped as wikibase items. It means that we would
be able to view them as Wiki page. Properties of the item (such as image, gelocation,
and so on) collected from users would then be included as statements.

38

Chatbot System Design for Knowledge Base Construction 3.4 Conversation Flow

Enrichments Mapping

Enrichments from the database would be mapped as statements of the corresponding
Wikibase item. The module would be responsible to map the property name to the
corresponding Wikibase properties. Values are also adjusted depending on its data
type.

Validations Mapping

As validations in our database represents whether a user approves or rejects a certain
information about an item, we would need to represent this in Wikibase instance. We
designed the module such that it maps validations into qualifiers to the corresponding
statements. Two types of qualifiers are used: to represent approval we use "validated
by", and to represent rejection we use "rejected by". The value of these two fields
would be the number of users who gives their validation.

3.4 Conversation Flow

While previous section focuses on the system architecture, this section will focus on
how the chatbot should carry the conversation with the users. We work on the con-
versation design iteratively, presenting the conversation in mockups, and improving
the mockups by considering the potential problems that user might encounter when
using a chatbot application. We enforce guided conversation into our chatbot design,
suggesting actions and choices to the user in order to finish a task. This kind of design
is a typical characteristic in chatbots that have specific goal in mind [24], in our case:
user completes a KBC task.

3.4.1 Start Flow

Figure 3.8: Start Flow

When the user starts a new conversation with the chatbot by tapping the Start
button which triggers the command /start, the chatbot would send a message to give
the user the options to choose among the available item types. When the user types or

39

3.4 Conversation Flow Chatbot System Design for Knowledge Base Construction

clicked on the corresponding command of a use case, the chatbot will then switch to the
Task List Flow for the chosen use case. Figure 3.8 shows a sample dialog between the
first-time user and the chatbot. In this example, the user types in the /place command
which will lead the chatbot to the Task List (see section 3.4.2 for the place use case.

In addition, the user can also type in the ’/help’ command in which the chatbot
would reply with a more detailed description of the chatbot.

3.4.2 Task List Flow

Figure 3.9: Task List Flow

After the user selects one of the item types, the chatbot would send consecutive
messages depicting a list of available tasks instances for the user. Figure 3.9 shows
a sample dialog where the bot sends the available tasks and explains how to select a
task.

The user can select one of the task by typing in the task number command at which
the chatbot would start Task Execution flow for the corresponding task.

In addition to the task list, the chatbot would also send a message describing other
actions that can be done aside from selecting a task. User can choose to do a create
task by typing in the /create command. User can also request to see a different set
of 5 task instances by typing in the /refresh command.

3.4.3 Task Execution Flow

When the task execution flow starts, the chatbot will send one question at a time to the
user, waiting for the user to answer the question before moving on to the next. The user
can either: answer the question or skip the question (if it’s not a required question).

By the end of the task, the chatbot will offer the user to do one of the followings:

1. Submit Answers: The user can confirm and finalize their answers by submitting
their answers. After the user submits the answer, the chatbot will terminate the

40

Chatbot System Design for Knowledge Base Construction 3.4 Conversation Flow

Figure 3.10: Task Execution Flow

current task execution flow, offering the user to do another task and then go back
to the Start Flow.

2. Start Over: If the user thinks that they need to change their answer, the user can
opt to start over the task. The chatbot will then restart the current task execution
flow and starts from the first question again.

3. Quit Task: If the user does not want to submit the answer, for example they
want to do another task instead, they can decide to quit the current task. The
chatbot will then terminate the current task execution flow without saving the
answers.

The overall flow of task execution is shown in Figure 3.10.

41

3.5 Summary Chatbot System Design for Knowledge Base Construction

Figure 3.11: Push Notification Flow

3.4.4 Push Notification Flow

Once in a while, the chatbot will send a message, asking the user if they are interested
to work on another task or not. The user can choose "yes" or "no", which the chatbot
will execute the Start Flow for the former, or end the confirmation for the latter. Figure
3.11 shows the dialog samples when the user accepts or reject the notification.

3.5 Summary

This chapter describes the details of the design of our conversational crowdsourcing
system for constructing knowledge bases. First, a decomposition of KBC task was
done through a hierarchical task analysis approach, leading us to derive 6 types of
KBC microtask to be covered in our work. Building upon these microtask types, we
design a crowdsourcing workflow consisting of three main stages for crowdsourced
KBC: Create, Enrich, and Validate. Each of these stages corresponds to a task which
in turns consist of several microtasks.

To enable the execution of the crowdsourcing workflow, we design a conversa-
tional crowdsourcing system specifically for constructing knowledge bases. The sys-
tem consists of four main modules: a conversational interface which users interact
with to complete KBC task; the task executioner module that manages the states of a
task execution; the Backend API module that handles task generation and assignment;
and a Knowledge Base Generation module to construct a KB based on the collected
answers. We also discuss the design of the conversation flow, describing how users
would complete tasks using our system through the conversational interface.

42

Chapter 4

Chatbot Implementation

In this chapter, we would describe the technical implementation of the chatbot system
and its supporting modules. First, the implementation of the conversational interface
is explained followed by implementation of the logic modules: task executioner; task
generation and assignment; as well as knowledge base generation. Finally we would
describe how all of the modules are deployed to production.

4.1 Conversational Interface

We developed a Telegram Bot using Python 2.7, utilizing the Python Telegram Bot
Framework1 which is a Python interface to the Telegram Bot API2. The framework
also has some high-level classes that are useful to develop typical chatbot application,
such as managing conversation states and error handling, which helps us speeding up
the process of developing the chatbot.

We will now discuss some of the key points of conversational interface implemen-
tation as follows.

Identifying New User

When a user first starts a conversation with the chatbot, they would tap on the Start
button in Telegram chat which will send a /start command message to the bot. In
addition to searching the chatbot directly in Telegram, user can also open the bot by
opening it through a unique link e.g. telegram.me/v1_campusbot.

In our experimental settings described in later chapter, we would need to track who
is the user opening the chatbot. Thus, we append a unique id as the /start parameter
to the end of the link, which Telegram Bot API will recognize as a parameter to the
/start command. We process this unique id and save it to the uniqueId field of the
new user. For example, the link telegram.me/v1_campusbot?start=22 will pass
the number 22 as unique id. So when a user opens the chatbot for the first time using
that link and start the chatbot, it will be recognized and saved as that user’s unique id.

1https://python-telegram-bot.org/
2https://core.telegram.org/bots/api

43

4.1 Conversational Interface Chatbot Implementation

(a) Task Preview Bubble

(b) Meta Tags

(c) Message Payload

Figure 4.1: How Task Preview Works

Sending Message as a Bot

We use the sendMessage method of the Telegram Bot API to send text message to
the chatbot users. We just have to supply the text and the id of the user to send a text
message. This method also supports Markdown or HTML formatting so we sometimes
use it to emphasize specific word of the text we’re sending by using bold formatting.

There are also some cases that we would need to send a photo or location to our
users. In these cases, we use the sendPhoto method and sendLocation method of
the Telegram Bot API respectively.

Some of the questions that the chatbot will have to ask the users are questions with
multiple choice answers. In this case, we use Inline Keyboard to give the possible
options to the user. Inline Keyboard is a feature of Telegram to send buttons to user
along with a text message. When a user taps on one of the buttons, it will trigger a
predefined method to be processed by the chatbot. In our case, the chatbot will simply
save the user’s selected answer and response accordingly.

There is also a question that requires the chatbot to get the user’s current lo-
cation. In this case, we send a text along a keyboard button with the parameter
request_location to true. By setting this parameter, when the user taps on this but-
ton, the chatbot will ask permission to the user and proceed saving the current location
if the user agrees to send their location.

Showing Task Preview

In the chatbot, when a user chooses a use case (e.g. /place), the bot will send mes-
sages representing previews of available task instances assigned to the user. An exam-
ple of a task preview is shown in Figure 4.1a.

As Telegram does not yet support sending this type of message (text with image
thumbnail), we took advantage of the Rich Link Preview3 feature of Telegram. This
feature processes links send in Telegram conversation and then show a preview of the
link with title, short short description, and optionally image of the website.

We implemented the task preview by creating a webpage which dynamically pro-
cess the task title, task type, and task image into HTML meta tags (shown in Figure

3https://telegram.org/blog/link-preview

44

Chatbot Implementation 4.1 Conversational Interface

4.1b) that Telegram will use to process link previews. The chatbot will then send this
link to the user in HTML format (shown in Figure 4.1c), using blank character (
u200f) between a hyperlink tag, so the link itself won’t be shown in the message bub-
ble.

Responding to User

We use predefined response templates in order to generate appropriate response to
chatbot users according to their current state. The response templates mostly have
placeholder to be replaced by the the current chosen item type.

When a user is in the middle of working on a task, the response would be generated
based on the current question and the message sent by the user. Each question of a task
has their own predefined response template, and it usually contains a placeholder to be
replaced by user’s previous answers of the whole. For example, given the following
question template:

{
...,
"text": "What kind of place is {item[name]}?"
"responseOk": "I see that this place is a item[category][name]."
...,

}

The bot would use this question template to send the question text replacing item[name]
with the name of item previously given by the user. If the user answered "TU Delft
Library", then the question that would be sent would be:

What kind of place is TU Delft Library?

Next, the response of the user’s answer to this question would depend on the given
answer. The bot will replace the item[category][name] placeholder with the chosen
category’s name. So, if the user answered "building" as the answer to the question, then
the response to the answer would be:

I see that this place is a building.

Each question also has their own predefined response dedicated to handle error
when a user response to a question with unrecognized message type. For example,
when the question asks a user to send an image but the user sends some text instead,
the chatbot will response with a message to ask the user to send a photo instead of
text. The response message to handle error is also defined in the question template, as
shown in the following example with the responseError field:

{
...,
"text": "Please upload a *photo* of the place?"
"responseError": "Send a photo using the camera or from photo ...

album by tapping the attachment (paper clip) icon"

45

4.2 Task Executioner Chatbot Implementation

...,
}

4.2 Task Executioner

As explained in Chapter 3, the Task Executioner module is responsible to manage the
flow when a user is working on a task. This section descibes how we implemented the
Task Executioner module.

4.2.1 Flow Handler Classes

We implemented the Task Executioner as 4 Python classes: (1) the Generic Flow
Handler class which is an abstraction of a task flow handler. It handles generic flow
when any type of task is executed; (2) the Create Flow Handler class, (3) the Enrich
Flow Handler class, and the (4) Validate Flow Handler class. Each of Create, Enrich,
and Validate Flow Handler class is a subclass of Generic Flow Handler, dedicated to
handle specific logic for Create Task, Enrich Task, and Validate Task respectively.

Whenever a user selects and starts a task, an instance of one of the class corre-
sponding to the task type is instantiated and would be dedicated to the said user. The
instance of the class would be run on an individual thread process, thus each user
would be independent from each other when completing a task.

In overall, these classes are responsible to handle the following logic:

Loading the task template and task instance: The class should load the corre-
sponding task template and task instance to the memory. In the case of Create Flow
Handler, there won’t be any task instance associated, thus only the task template is
loaded.

Preparing the opening and closing statement(s) from the task template: When-
ever a task is started, an opening statement loaded from the task template is sent to the
user through the sendMessage method of the Telegram Bot API. A closing statement
is sent instead for whenever a task has been completed.

Managing the conversation states: We implemented the state management logic by
utilizing the ConversationHandler4 provided by the Python Telegram Bot Frame-
work. We use the question number to represent the state of the module whenever the
user is expected answer the corresponding question. Each state is associated with a
handler depending on the type of answer is expected for each question. The class
would also need to handle the state when a user wants to skip a question using the
/skip command or they want to quit a task using the /quit command.

Storing the (temporary) answers in memory: Everytime a user answers a question,
the answer should be saved to the memory. This way, it would be possible to include
some of the temporary answers in the next questions or responses for the user (as
described in Section 4.1).

4https://python-telegram-bot.readthedocs.io/en/stable/telegram.ext.conversationhandler.html

46

Chatbot Implementation 4.2 Task Executioner

Validating answer: A certain type of answer would be expected for a question de-
pending on the type of question (see Table 3.4). The class would be responsible to
check and handle invalid answer from the user. In the case of a mismatch type of
answer, an error message would be sent to prompt the user for answering with the
correct type of message.

Saving the submitted answers: When a user submits their answer by the end of the
task, the class would then save the answer to a database depending on the task type.
The Create Flow Handler, for example would save the answers as a new document
in the items collection, while the Enrich and Validate Flow Handler would save the
answers in the enrichments and validations collection respectively.

4.2.2 Task Instance

When a user starts a task, the Task Executioner module should load the selected task
instance if it’s an Enrich or Validate task. A task instance is assigned to a user, i.e.
in the database, it is stored in a subcollection under the user document. A task in-
stance has the following schema (the schema depicts the name of the fields with their
corresponding data type):

{
taskId: String , // required
task: Reference , // reference to Task , required
createdAt: Timestamp ,
completed: Boolean ,
expired: Boolean

}

What we would like to highlight is the fact that the task field references to a task
document in the tasks collection. The referenced task would in turn have a reference
to an item document. To be more clear, here is the schema of a task document:

{
itemId: String , // required
item: Reference , // reference to Item , required
type: Number , //0: ENRICHMENT_TASK_TYPE; 1: ...

VALIDATION_TASK_TYPE; required ,
createdAt: Timestamp , // required ,
numOfAnswersRequired: Number ,
expirationDate: Timestamp ,
aggregatedAnswers: Object ,
answersCount: Object ,

}

The task executioner would use the data from the referenced item to ask enrichment
questions related to the referred item. For validation task, the task executioner would
use the data from the aggregatedAnswers, which is the aggregated data from multiple
answers based on majority count (see section 7.2).

47

4.2 Task Executioner Chatbot Implementation

4.2.3 Task Templates

The core element used by the Task Executioner to send questions of a task is the loaded
task template. A task template represents how a conversation for completing the task
should be carried: starting from sending opening messages, asking questions, and
finally sending a message to indicate end of a task. We implemented the task template
schema as follows:

{
openingStatements: [String],
closingStatements: [String],
questions: [QuestionSchema]

}

Opening messages are defined as openingStatements, a list of message to be sent
at the start of a task. Closing messages are defined as closingStatements, a list of
message to be sent at the end of a task. The questions to be asked are stored in the
questions field, which we will discuss its schema in more detail in the following
section.

4.2.4 Question Template

The task template schema supports conditional logic flow which allows the conversa-
tion handler to "jump" from one question to another question in a fullfilment of certain
condition. We defined the schema of a question as follows:

{
property: String ,
text: String | [String],
type: Number ,
responseOk: String ,
responseError: String ,
confirmationText: String ,
isRequired: Boolean ,
jumpRules: [QuestionJumpRuleSchema],
imageUrl: String , //optional , if question includes image
geolocation: LocationType , // optional , if question includes ...

location ,
mustHavePropertyNames: [String]

}

We want to highlight the jumpRules field which is related to the implementation
of how the task execution handles conditional jump. A jump rule is a rule consisting
of 4 main elements which describe the condition that must be fulfilled in order for the
conversation to proceed to a certain question number, instead of the next question. The
schema is better depicted as follows:

{
propertyName: String ,
propertyValue: (dynamic),
isEqual: Boolean ,

48

Chatbot Implementation 4.3 Backend API

jumpIndex: Number // question index
}

The propertyName field indicates which property of the condition to be checked,
while propertyValue is the value to be matched. The isEqual field indicates whether
we want the condition check to be equal or not for it to be evaluated to be true. If the
evaluated condition is true, then the task executioner will proceed to question number
indicated by the jumpIndex field (note that jumpIndex starts from 0 representing the
first question). For example, if we define a question with the following jump rule:

{
propertyName: "category",
propertyValue: /categories/building ,
isEqual: false ,
jumpIndex: 8

}

This means that when a user’s previous answer for the question asking the category is
not building, then for the next question, the chatbot will ask the question numbered 8
(instead of the next question). In the case the condition is not fulfilled (i.e. the selected
category is building), the next question will be asked instead.

4.3 Backend API

In order to execute the task generation and assignment strategy, we implemented API
endpoints using Flask API5. These endpoints can be used by the chatbot to trigger
automatic task generation and assignment after a user completes a certain task. We
implemented the endpoints for the following logic:

Generate Enrichment Task

The generation of enrichment task is implemented separately for each item type, with
the following endpoint URI:

/api/[itemType]/generate -enrichment -task/<itemId >

This endpoint will be used by the Task Executioner module whenever a user completes
a create task, passing the id of the new item by replacing the itemId parameter. The
endpoint simply creates a new task document and save it to a corresponding task col-
lection (so a place item would trigger a generation of a place task). The endpoint also
predefines an expiration date for the generated task. After a task is generated, it au-
tomatically triggers a task assignment procedure implemented in a separate endpoint
(see Assign a Task to Multiple Users).

We also implemented another variation of this endpoint that allow us to do task
generation for a batch of multiple new items. We define the batch endpoint on the
following URI:

5https://flaskapi.org

49

4.3 Backend API Chatbot Implementation

/api/[itemType]/generate -enrichment -task

This endpoint additionally sweeps all expired task, and generate tasks for existing
place or trashbin items. This endpoint is not called by the task executioner itself, but
scheduled (using cron) to be hit daily at midnight.

Generate Validation Task

For generating validation task, the endpoint is implemented with the following URI:

/api/[itemType]/generate -validation -task/<userId >
/<enrichmentTaskInstanceId >

This endpoint would be used by the Task Executioner module every time a user
completes an enrichment. The API would first update the number of answers collected
so far for the enrichment task. If the number of answers is sufficient (as defined in
numOfAnswersRequired in the task), it will proceed to generate a validation task for
the corresponding item.

As the case with enrichment task, the generated validation task would also be
assigned to several users by the endpoint described in the following section.

Assign a Task to Multiple Users

Task assignment procedure is implemented in the following endpoint:

/api/[itemType]/assign -task/<taskId >

The task assignment simply generates a task instance for each user selected by our
task assignment strategy.

Assign Tasks to New User

Every time a new user starts to use the chatbot, they will by default have no task
instance assigned to them. To prevent showing an empty task list to the user, we
implemented an endpoint to assign new task instances for the new user. The endpoint
simply loads 15 most recent generated tasks and assign them as task instances to the
new user. We use the following endpoint URI which is hit every time a new user is
registered:

/api/[food|place|question|trashbin]/assign -task -to-user/<userId >

Push Notification

The push notification API is used to regularly send reminders to chatbot users. The
reminder will ask whether they want to work on another task or not. The API is
implemented with the following endpoint:

50

Chatbot Implementation 4.4 Knowledge Base Generation

/api/push -notification

Additionally, we implemented the push notification API to take note if a user has
blocked the bot or not, thus we can exclude them to not send the push notification in
the future.

4.4 Knowledge Base Generation

For the Knowledge Base Generation module, the implementation consists of two com-
ponents: the knowledge base instance and the script to aggregate and import the an-
swers from the database to the knowledge base instance.

For the knowledge base instance, we setup a new installation of Wikibase to store
the structured data. To import and map data from the database, we implemented a
python script and utilize Pywikibot6, a Python library that wraps a collection of script
to automate editing activities of a Wikibase instance.

4.5 Deployment

We deployed most of our system components on a virtual machine running Ubuntu
Server 18.04 as the operating system. We deploy the chatbot using Gunicorn7 as our
Web Server Gateway Interface (WSGI) and then exposed to the public network using
ngrok8. The exposed url generated by ngrok is then used as a webhook which is used
by our Telegram bot.

For the Backend API component, we also deployed it to the same virtual machine
and also uses Gunicorn as the WSGI. The API is then exposed to public network using
Nginx as reverse proxy with a previously set up domain address.

For the database component, we use Cloud Firestore9 which is a NoSQL cloud
database provided as part of Google Firebase. The chatbot and Backend API reads
and writes to the database using the Python Client for Google Cloud Firestore.

The Knowledge Base Generation module is also deployed to the same virtual ma-
chine, as a separate API endpoint under the Backend API project. This allows us for
improvement in the future where we can use the endpoints for immediate synchro-
nization between the database and the KB whenever a user completes a task and a new
answer is saved. For the Wikibase instance used to store the constructed knowledge
base, we run it on top of Docker using the Wikibase Docker Image10 provided by
Wikimedia.

6ttps://doc.wikimedia.org/pywikibot/master/
7https://gunicorn.org/
8https://ngrok.com/
9https://firebase.google.com/docs/firestore

10https://github.com/wmde/wikibase-docker

51

Chapter 5

Evaluating the Chatbot System

This chapter discusses in detail on how we evaluated the implemented chatbot system
that should enable users to participate in a KBC process. The evaluation would be
divided into two experimental settings. In the first study, we publishes a prototype of
our system into the public (in our case, to the students of TU Delft Campus), encour-
aged them to complete tasks, and evaluate the collected answers. As we weren’t to
able form a strong understanding based on quantitative findings from the first study, a
follow-up study focusing on qualitiative findings is needed. We conducted a second
study which consists of one-to-one guided sessions where we observe the participants
closer while using the chatbot system to complete tasks. We will explain the details of
both study in the following sections.

5.1 Goal of Experiments

Our experiments are conducted in order to answer RQ3. Specifically, we would like to
investigate the execution time of KBC tasks using conversational interface as well as
the quality of the constructed knowledge base. The quality would be measured on the
accuracy of answers and completeness of the constructed KB. Additionally, we would
also like to learn more on how different types of interaction style, specifically between
buttons and free-text input, may influence the execution time and KB quality.

In Study 1, we included 3 task types relating to KBC process and 4 item types as
well as two types of interaction style, denoted as button-based input and free-text input
within our experimental design. The goal of the first study is to find out if the execution
time and quality of KB is acceptable and aligns with the findings from previous work.
We also investigate how the variations of interaction style and question types affect the
constructed KB.

The second study is a follow-up study to the first one, with the main goal is to
justify qualitatively on what is intuitive and what is not for the users to participate in a
KBC process using conversational interface. The findings of the second study would
be assessed qualitatively to complement the findings in Study 1.

53

5.2 Study 1: Campus Domain Use Case Evaluating the Chatbot System

5.2 Study 1: Campus Domain Use Case

In the first study, we implemented a chatbot called CampusBot to support the con-
struction of a domain-specific knowledge. The system is intended to be used by stu-
dents of TU Delft to answer questions revolving 4 domains of the campus: Food,
Places, Course Questions, and Trash Bins. The answers we get from the students are
then aggregated and constructed to be a knowledge base.

We set up the three versions of the system: a Telegram bot with two versions
of interaction style (CampusBot 1 and CampusBot 2) and an equivalent mobile app
version (Campus Manager app). The reason for developing the mobile app is that the
experimental setup was run along with a simultaneous project to compare the use of
chatbot and mobile app for crowdsensing. As this thesis would focus on investigating
how the implemented chatbot is being used to support KBC process, the focus will
be on the chatbot version, although we would mention the mobile app throughout the
chapter as needed.

In this section we would discuss the experimental settings for the first study. We
first discuss the domain in which our chatbot is implemented. After that we discuss the
independent variables (task types and interaction style), the participant recruitment
strategy, and the metrics and measurements that we would take to assess the system.

5.2.1 Domain Description

The implemented chatbot as our proof-of-concept has the purpose of building knowl-
edge base in the domain of campus, specifically the TU Delft campus. We refer the
chatbot as CampusBot, a bot running on the Telegram1 messaging platform to collect
campus-related knowledge with the following specific item types:

• Food: Users would be able to share photos of food that they eat and/or bought at
the campus. With the photos, the chatbot would ask them to complete informa-
tion about the food such as the place where they bought it and how much they
paid for it.

• Place: The place use case encourages users to upload photos of places around
campus such as: Building, Study Space, Education Room, Parking Space, and
Food-Beverage Place. The chatbot would ask them to complete the information
such as location of the place and available space.

• Course Questions: The course use case allows users to post questions regarding
a certain course. A user can also answers question from other user while also
promoting (or de-promoting) other’s answer to a question.

• Trash Bin: The trash bin use case would be used for users to report location
of trash bins and also the information whether a trash bin is full and need to be
replaced.

A more robust description of what type of information to collect for each item type
is available in Appendix B.

1http://telegram.me

54

Evaluating the Chatbot System 5.2 Study 1: Campus Domain Use Case

5.2.2 Task Types

For our experiment, we have three different task types to be executed by our partici-
pants. This task types are derived from the Crowdsourcing Workflow of our system
design (section 3.2). We descibe the task types again in this section within the context
of campus domain for experimental purpose. The task types are as follows:

• Item Creation Task: In creation task, the chatbot users are expected to create
an item from scratch by answering questions to complete the information of an
item. In our defined campus domain, an item can be a set of meal (food), a
place, a course question, or a trash bin. For each type of item, we define a set of
questions concerning information of the item.

• Item Enrichment Task: In enrichment task, users are given an existing item,
either prepopulated by us or created by another user, and then they need to an-
swer questions to complete the information of the given item. Again, we have
defined a set of questions for each type of item.

• Item Validation Task: In validation task, similar to enrichment, users are also
given an existing item. The item already has some information, but not vali-
dated. The task would consist of a set of questions to confirm whether the given
information is valid or not.

Each task would contain a set of predefined questions depending on the type of
item. An example set of questions for item creation task for place items is shown in
Table 5.1 along with the type of chatbot UI elements to facilitate the user to input their
answers. Question 4-13 are also asked in Item Enrichment Task. Meanwhile, Table
5.2 shows an example set of questions for place item validation task.

Initially, our knowledge base is empty; thus there wouldn’t be any enrichment task
or validation task available until a user creates an item by executing the item creation
task. As we want to avoid of showing an empty task list to our participants, we pre-
populated some items along with their enrichment and validation tasks. Table 5.3
shows the number of item enrichment tasks and item validation tasks we created for
each item type.

Note that we initially planned for the validation tasks to be generated according to
our task generation strategy, where a sufficient number of answers for an enrichment
task would generate the corresponding validation task. Though We expected there
would be enough number of users to complete the enrichment tasks, it did not turn
out as expected. To accommodate this, we manually generated some validations tasks
even if the number of answers does not satisfy the minimum answers required.

5.2.3 Interaction Style for Multiple Choice Questions

One of the most common question type asked in our experiment is the multiple choice
(MC) question, in which we have three specific defined question types: MC Catego-
rization, MC Item, and MC Custom. We initially choose Telegram inline button as
the interaction style for user to select their answer. To investigate how the choice of
input UI for this type of question affects the task completion time and answer input,
we include two variations of the interaction style for this question type. The variation

55

5.2 Study 1: Campus Domain Use Case Evaluating the Chatbot System

Table 5.1: Questions for Item Creation and Enrichment Task for Place Items

No Question Question
Type

UI Input Required

1 Please upload a photo of the
place

Image File Upload Yes

2 What is the name of the place? Text Free Text Yes
3 What kind of place is

item[name]?
MC Catego-
rization

Inline Buttons Yes

4 Where is it located? You can
share your current location (us-
ing the keyboard button) or a
custom location (using the attach
icon).

Location Custom Keyboard,
Location Sharing

Yes

5 Which building is it located in?
You can also type any other
building not suggested here

MC Item Inline Buttons,
Free Text

No

6 Which floor number is it located
on? You can /skip this question
if you are not sure

Numeric Free Text No

7 What is the number of this build-
ing? For example, EWI is build-
ing number *36*. You can /skip
this if you are not sure.

Numeric Free Text No

8 How do we go to this place? You
can state the public transport to
get there or the route to reach the
room from the building entrance.

Text Free Text No

9 Does this place have any elec-
tricity outlet?

MC Custom Inline Buttons No

10 What is the estimated capacity
of this place?

Numeric Free Text No

12 How many seats are available
right now?

MC Custom Inline Buttons No

13 How clean is it right now in
item[name]?

MC Custom Inline Buttons No

56

Evaluating the Chatbot System 5.2 Study 1: Campus Domain Use Case

Table 5.2: Questions for Item Validation Task for Place Items

No Question Question
Type

UI Input Required

1 Does the photo represent
item[name]?

MC Custom Inline Buttons No

2 Is this place a
item[categoryName]?

MC Custom Inline Buttons No

3 Is this place located in building
item[buildingName]?

MC Custom Inline Buttons No

4 Is this place located on floor
item[floorNumber] of build-
ing *item[buildingName]*?

MC Custom Inline Buttons No

5 To get to *item[name]*:
item[route], is this correct?

MC Custom Inline Buttons No

6 Does this place have any elec-
tricity outlet for public use?

MC Custom Inline Buttons No

7 This place has
item[seatCapacity] capacity,
is this correct?

MC Custom Inline Buttons No

Table 5.3: Number of Pre-populated Tasks Across Item Type and Task Type

Item Type Enrichment Task Validation Task*

Food 3 2
Place 11 7
Course Question 3 1
Trash Bin 13 9

depends on how a user can input their selected answer choice. Figure 5.1 shows the
same question with the two interaction styles.

Input through buttons (CampusBot 1)

With this interaction style, user can simply input their answer by selecting their choice
through the inline buttons provided by the chatbot. When a user sends their answer, a
checklist mark would be shown next to the text to indicate the selected answer.

Input through code and/or free text (CampusBot 2)

With this interaction style, the chatbot would send a list of possible answer along with
code (numbers) corresponding to each answer. User can then select the answer by
typing either the number of the answer or the text of the answer of itself.

When inputting some text, our chatbot would match the input with a set of pre-
defined regular expressions (regex) corresponding to each answer. Additionally, we

57

5.2 Study 1: Campus Domain Use Case Evaluating the Chatbot System

(a) Buttons (b) Code and Free Text

Figure 5.1: Interaction Style

would also ignore the case (lower and capital letters) when matching this regular ex-
pressions.

5.2.4 Recruiting Participants

For the first experiment, we conduct an open recruitment process to recruit our partici-
pants without offering any extrinsic incentives. We are well aware that this strategy has
the risk of not having enough well-motivated participants, but we want to try avoid-
ing confounding factors introduced by other variables (e.g. the presence of incentives)
outside the independent variables that we are testing.

The open recruitment process was conducted by advertising our application through-
out the TU Delft Campus. The advertisement was done by means of posters, screens
advertisement, and short presentations in several lectures. The advertisement promotes
the experiment study and invites students who are interested to sign up through Google
Form. We include the poster and form for the recruitment in Appendix D.

When signing up, the student are asked to fill their email address and the Operating
System (OS) of their mobile phone. Then, we use Google Apps Script to automatically
assign the participant to a system version (Mobile App, CampusBot 1, or CampusBot
2). The assignment is done by a rotation, so the first participant who signs up will be
assigned to mobile app, the second participant will be assigned to CampusBot 1, the
third participant will be assigned to CampusBot 2, and so on.

The script will then send an email to the participant according to their assigned
system and selected OS. The email contains guide on how to download the Mobile
App (or Telegram for chatbot participants) and also a short step-by-step tutorial on

58

Evaluating the Chatbot System 5.2 Study 1: Campus Domain Use Case

how to use the chatbot. In the email, participants are encouraged to use the app for 2-3
weeks so we can gather sufficient data. Each email is tailored to the participant based
on their assigned system such that it has a unique link to the chatbot so we can identify
the user who opens the chatbot through the link. The email template is included in
Appendix D.

5.2.5 Metrics and Measurement

By the end of our first study, we will measure the following as our dependent variables:
Execution Time, Answer Accuracy, and Knowledge Base Completeness. Additionally
we would also send out a post-experiment survey where we will ask our participants
regarding the usability and possible improvements of our chatbot system.

Execution Time

The execution time would be measured in seconds between starting a task and submis-
sion of a task. In case of user selecting to start over a task, we would take the whole
execution time from the first start, taking note on the times that the user has restarted
the task.

The start of a task is when a user inputs the command to start a task. This command
is either the /create, or the item type and number of the task (e.g. /place1). The end
of a task is when a user submits the answer by selecting the "submit answer" button
(in CampusBot 1) or inputting the "submit" keyword (in CampusBot 2).

Additionally, we would also measure the execution time on the question level
based on the question types as described in Section 7.2. The time would be measured
between when the question is sent by the bot and when the user sends their answer for
that particular question.

Answer Accuracy

The accuracy of answers contributed by the user would be manually inspected and
compare to the factual information of TU Delft campus as necessary. Because most
tasks are generated from user’s own created item, we won’t have the actual ground
truth from each task except that from information inferred from the photo uploaded by
the user and our own knowledge about the campus referring to TU Delft website as
necessary.

For food items, we would just check if the names of the food input by the user is
indeed shown in the uploaded photo. For place items, we will mostly refer to infor-
mation available on TU Delft website or our own knowledge. As for course questions,
we would not measure the contribution quality as it would be difficult to confirm the
answer validity across courses. For trash bin items, we would heavily focus on the
photo of the trash bin and its related properties such as waste type and the color of
the trash bin. As it would be difficult to know if the exact location of the trash bin is
correct or not, we wouldn’t take this into account when measuring the quality.

59

5.2 Study 1: Campus Domain Use Case Evaluating the Chatbot System

Knowledge Base Completeness

In addition to quality, another important metric of evaluating a knowledge base is
its completeness [4]. We would measure the completeness of the knowledge base
constructed by means of chatbot. In a survey of knowledge base assesment metrics
[60], completeness refers to the degree to which all required information is present. In
our experiment we will use two dimensions to measure the completeness as defined in
[59]: Schema Completeness (mcSchema) and Column Completeness (mcCol).

• Schema Completeness (mcSchema): Schema completeness represents to what ex-
tent in which classes (categories) and relations (properties) are not missing. For-
mally, the schema completeness is defined as the ratio of the number of classes
and properties represented in knowledge base g, noclatg, to the number of classes
and properties in the gold standard, noclat . For our experiment, we set our gold
standard for Place and Food classes as shown in Table 5.4.

mcSchema(g) =
noclatg

noclat

• Column Completeness (mcCol): Column completeness represents the extent to
which values of properties on item level (or statements) are not missing. For-
mally, it is defined as the ratio of the number of items under categories k and
having a value for property p, nokp, to the number of all items having under cat-
egory k. To calculate the column completeness of the whole knowledge base g,
we average the completeness over all category-property pairs on the item level.
Here the metric is defined formally letting H as the set of combinations of the
considered categories and considered properties:

mcCol(g) =
1
|H| ∑

(k,p)∈H

nokp

nok

Usability Survey

We would also measure how usable is the implemented chatbot to enable users partic-
ipate in constructing a knowledge base. We sent out a post-experiment survey too all
participants who signed up regardless of their activities level – we also sent it out to
people who signed up but did not try the chatbot at all. The set of questions is included
with this report in Appendix E

We based the survey on the System Usability Scale (SUS) [17], asking 10 questions
with five response options in likert scale (1 means strongly disagree, 5 means strongly
agree).

We also asked which specific use case the participants find easy to do as well as
the ones they found challenging to do. They can choose which one of the following
is hard or easy to do: starting the chatbot, finding a task, choosing a task, creating an
item, completing an enrichment task, and completing a validate task.

Additionally, for people who signed up but did not try the chatbot, we asked a
question to find out the reason behind why they did not try the chatbot. We give them
a list of possible reasons to choose and they can input their own reason not listed on
the survey.

60

Evaluating the Chatbot System 5.3 Study 2: Qualitative User Study

Table 5.4: Gold Standard to Compute mcSchema(g) and mcCol(g)

Item Type Categories Properties

Place Place coordinate location
Bicycle Parking Space route
Building available seats
Car Parking Space floor
Food Establishment building
Lecture Room building number
Project Room has electricity outlet
Study Space image

maximum capacity
clean level

Food Meal image
Food food location
Appetizer / Snack meal item
Main Course price
Beverage rating
Dessert / Fruit

5.3 Study 2: Qualitative User Study

In the second study, we would like to investigate even further, specifically in the qual-
itative perspective, on how the chatbot can be used to construct a knowledge base.
We only got a small sample of task completed from Study 1, so we would need to to
conduct a second study to interview the users and get a better understanding on how
the usage of the chatbot affect the resulting answers and constructed KB. For this pur-
pose, we invite participants for one-to-one interviews while guide and observe them to
complete tasks using the chatbot.

5.3.1 Recruiting Participants

We invited some of the participants from the first by contacting them personally and
asked if they are interested to participate in a follow-up interview. As to avoid bias on
having previous experience on the chatbot before, we try to prioritize participants who
either: signed up but did not download or try the chatbot; or tried the chatbot without
completing any task. Though, user who has already used the chatbot before could still
be invited and we will take consideration on this fact when analyzing the study results.
Additionally, we also tried to recruit some additional participants who did not sign up
for Study 1.

5.3.2 Study Setup

In the interview, a smartphone with Telegram installed and a laptop to browse the
internet is provided. The interview would be carried as follows:

61

5.3 Study 2: Qualitative User Study Evaluating the Chatbot System

1. First, we would explain briefly about our thesis goal and the implemented chat-
bot. We would also explain to the participant that the screen of the provided
smartphone is recorded and the conversation would also be recorded. The par-
ticipant could withdraw from the study whenever they want.

2. Participant is then guided to open the chatbot using the provided smartphone.

3. After starting the chatbot, the participant is then guided to complete the fol-
lowing tasks: choosing a task, completing a validation task, completing an en-
richment task, and creating an item. In this second study, we guide the user to
complete the tasks for place item types.

4. While working on the task, participant is allowed to use the provided laptop to
search information in order to complete their tasks, specifically for answering
the questions asked by the chatbot. We also provide links to pages containing
information of the place asked in each task.

5. The participant is encouraged to say their thoughts out loud when using the
chatbot to complete the given tasks. Once in a while, when the participant seems
to ponder on something, we would ask them some prompting questions in order
to know what they think about the task at hand.

6. Finally, after completing all of the tasks, the interviewer would ask several ques-
tions to the participant in order to know more about what was easy and challeng-
ing while using the chatbot.

5.3.3 Post-Interview Survey

After completing the requested tasks, the participant is then asked to fill a survey on
the usability of the system and also about the things that they found easy and challeng-
ing to do while using the chatbot. The survey also asked additional comments in order
to ellicit any additional comments and/or suggestions not discussed in the verbal inter-
view. The set of questions of the survey is similar to the survey sent for participants of
Study 1, and is included in Appendix F.

5.3.4 Analysis Method

The main method to analysis the result of the second study would be qualitative anal-
ysis based on the recorded interview. We, as the interviewer, would also take notes on
our observation on the screen when the user was executing the tasks. We summarize
our findings based on common things that the participant found challenging to do as
well as connecting it to the results found in Study 1.

62

Chapter 6

Results and Discussion

This chapter discusses the results obtained from running the two studies described
from the previous chapter. We would divide discussion into two main sections: dis-
cussion on mainly quantitative result from the first study and discussion on qualitative
analysis from results of the second study. With each study, we also discuss some issues
we found from running the experiment.

6.1 Results and Discussion on Study 1

For the first study, we carried an analysis on the resulting completed tasks focusing
on the execution time and quality of the knowledge base. Before we discuss the two
collected measurements, to give a better overview of the data collected, we give a brief
discussion on general statistics from our participants.

6.1.1 General Statistics on Participation and Tasks

Participants Conversion

Figure 6.1: Participants Conversion

63

6.1 Results and Discussion on Study 1 Results and Discussion

A total number of 81 people were recruited by means of registration through an
online form, and 39 were assigned to use CampusBot 1, while 42 were assigned to use
CampusBot 2. Not all of these people try the chatbot, as we record 53.09% of them
(43 people) who actually open the link sent to their email to start the chatbot. Further-
more, among the 43 participants, there are 24 participants who at least completed one
task. Figure 6.1 shows the participants conversion funnel starting from the number of
recruited people who registers through the form until the participants who completed
at least 3 tasks.

We are aware that the number of active users were not as high as expected, thus
we analyze the collected data keeping in mind that we don’t have that much data to do
more of statistical analysis. We will also discuss some of the potential issues causing
this low participation in section 6.1.6 as well as conducting Study 2 as a follow-up
study for better understanding of our system’s capability to support KBC process.

Task Completion

In the experiment for Study 1, a total of 49 tasks is deployed consisting of 30 item
enrichment tasks and 19 item validation tasks. Each task contained a number of task
instances assigned to the participants. The number of assignments is not fixed for each
task because of our task assignment strategy which assigns a task according to the
number of currently available users and the similarity of the task (i.e. location of the
place) with their previously completed tasks.

A total of 105 task instances were executed by the participants in an experiment
period of 50 days. The executed task instances consist of 30 creation task instances,
68 enrichment task instances, and 7 validation task instances. The number of task in-
stances completed by each user grouped by the type of task is shown in Figure 6.2,
with 2 most active users completed 19 task instances each. We note that the number of
completed enrichment task instances is higher than creation task instances, and even
way higher than the number of validation task. This might be caused by higher avail-
ability of enrichment task, because validation task is generated only after enrichment
task has sufficient number of answers.

6.1.2 Execution Time

In this section, we discuss and compare the execution time across task types (Item Cre-
ation Task (Create), Item Enrichment Task (Enrich), Item Validation Task (Validate)),
item types (food, place, course question, trash bin) as well as interaction style for mul-
tiple choice questions (buttons and code & free text). Table 6.1 summarize the average
and standard deviation of task execution time across task types and interaction style
along with the numbers of task executions (#TE).

In all task types (create, enrich, validate), we can note that average task execution
for place items takes more time compare to the other item types. This is due to the
number of defined questions is higher for place items then other item types. Mean-
while, on average, validating answers of a course questions takes the least time, that
might be due to the fact that the users just have to decide to choose an "up-vote" or
"down-vote" to several answers to a question regarding a course.

64

Results and Discussion 6.1 Results and Discussion on Study 1

Figure 6.2: Task Instance Completion

Table 6.1: Execution Time (average ± standard deviation, unit: seconds) Across Task
Types and Interaction Styles (#TE=number of task executions)

Interaction Style

Task Type Item Type Buttons (B) #TE Code & Free Text (CF) #TE

Create

Food 242 1 84 ± 17 4
Place 374 ± 522 9 155 ± 93 12
Course Question 104 ± 72 3 n/a 0
Trash Bin n/a 0 87 1

Enrich

Food 22 ± 15 12 33 ± 15 6
Place 88 ± 97 35 92 ± 81 8
Course Question 17 ± 5 4 94 ± 59 3
Trash Bin 21 1 n/a 0

Validate

Food 30 1 n/a 0
Place 34 ± 11 4 n/a 0
Course Question 16 ± 4 2 n/a 0
Trash Bin n/a 0 n/a 0

Note that there are item types that we only get one sample for some settings, pre-
sented in the table with #TE equals to 1. There are also some cases that we did not even
manage to acquire any sample at all, presented with #TE equals to 0 in the table, thus
the average execution time is not available (n/a). Due to this lack of sufficient samples,
we can only compare the average execution time across the two interaction styles for
the following pairs of task-item type: Create-Place, Enrich-Food, Enrich-Place, and

65

6.1 Results and Discussion on Study 1 Results and Discussion

Table 6.2: Execution Time (average ± standard deviation, unit: seconds) Across Non-
Multiple Choice Question Types (B=Button Input, CF=Code & Free Text Input)

Metric Text Numeric Location Image

Execution Time 21 ± 23 12 ± 9 38 ± 69 47 ± 53

Table 6.3: Execution Time (average ± standard deviation, unit: seconds) Across Mul-
tiple Choice Question Types (B=Button Input, CF=Code & Free Text Input)

MC Categorization MC Item MC Custom

Metric B CF B CF B CF

Execution Time 8 ± 4 15 ± 19 8 ± 5 16 ± 6 4 ± 1 5 ± 3

Enrich-Course.
For Enrich-Food, Enrich-Place, and Enrich-Course, we can see that their average

execution time are higher when using Code & Free Text (CF) interaction style com-
pared to using Buttons interaction style. This is expected due to the fact that the user
has to type in the answers to the KB questions using the CF input, while with buttons,
user can tap on one of the buttons to give their answer. Intuitively, tapping on a but-
ton should take less time then typing the answer. Unexpectedly, though, we see the
average execution time for creating place items using buttons seems to take more time
compared to using CF. We suspect that this is because we don’t have enough sample
or because certain question takes more time to answer despite of the interaction style.

In order to have a more thorough analysis, we take a look into the execution time of
a more finer level of the task execution: on the question level. A task consists of several
questions with various types: Text, Numeric, Location, Image, and Multiple Choice
(MC) questions. Users might need more time to answer a certain type of question
compared to the others. In order to know whether the execution time was affected due
to different interaction style for multiple choice questions or due to another type of
question, we take a look into the average execution time for each question type. The
average is calculated by sampling the execution time of each question from 12 task
instances, in which each task instance would have around 11-12 questions.

Table 6.2 and Table 6.3 shows the average and standard deviation of execution
time across non-multiple choice question types and multiple choice question types
respectively. Figure 6.3 and 6.4 shows the distribution of execution time for non-
multiple choice question types and for multiple choice question types respectively.

We can note from Figure 6.3, image questions need more time to be answered,
because the user has to take or choose a photo and we also have to take into account
the time needed for the image to be uploaded. There seems to be a similar case for
answering Location questions, where user has to pick a location from a map. Though,
for this case, user can speed up the process by sending their current location with the
provided keyboard button.

Numeric question type takes less time to be answered, compared to Text ques-
tion type. Questions with text as expected answer varies on the question itself, where

66

Results and Discussion 6.1 Results and Discussion on Study 1

Figure 6.3: Execution Time (seconds) of Text, Numeric, Location, and Image Ques-
tions

answering question such as "What is the name of the place?" takes less time then an-
swering questions "What is the route to get to the place?".

We would like to highlight on three question types under the Multiple Choice (MC)
question types (MC Categorization, MC Item, and MC Custom) which we have set for
each to have two variations of interaction style (Buttons (B) and Code & Free Text
(CF)). From figure 6.4, we can see that the average execution time for these three
question types is higher using Code & Free Text interaction style compared to using
Buttons interaction style. Although we couldn’t statistically test the significance of
the difference due to small sample size, from looking into the conversation log, we
suspect that answering questions with the CF interaction style takes more time due to
having to input the answer by typing the code or the text of the answer. Especially
with the MC Item, where the user can answer a custom answer not listed as a choice,
in which user has to type the full answer instead of typing a shorter code corresponding
to the answer. Intuitively, typing out a full answer would take more time comparing to
typing out the code or tapping on a button. Interestingly, for MC Categorization and
MC Custom using CF interaction style, we observe from conversation log that most
users answer by typing the code of the answer (e.g. "5"), instead of the text of the
answer (e.g. "Lecture Room"), which should speed up the typing time, but still takes
longer time on average compared to interacting with buttons.

In a way, our findings in term of execution time is in line with the findings in [37]
on using chatbots for microtask crowdsourcing, where they found that using button-
based interaction pulls ahead in terms of execution time compared to text-based in-
teraction. Our work extends the findings within the scope of KBC, though we lack

67

6.1 Results and Discussion on Study 1 Results and Discussion

Figure 6.4: Execution Time (seconds) of Multiple Choice Questions (B=Buttons,
CF=Code & Free Text)

statistical testing to know the significance of the difference due to small sample size
as well as more variations of interaction style (e.g. mixed input of buttons and free
text). This might be an opportunity for future work to measure the execution time with
larger sample size and more variations of interaction style.

6.1.3 Answer Accuracy

In order to know the quality of the answers provided by the users, we measure the
accuracy of their answers by calculating the percentage between the number of correct
answers and the number of given answers. In other words, we do not take into account
questions which the users have skipped the answer. Furthermore, we only consider
the accuracy for the place and food item types, because we don’t have the necessary
ground truth for trash bin and course question items. In the case of place items, in order
to determine if the answer is correct or not, we inspect each answer manually and refer
to the factual information which is available on the TU Delft website. For food, we
judge their answer subjectively (i.e. determining if the food mentioned contained in
the image or not).

We examine a total of 397 answers from 21 place creations, 42 place enrichments,
4 place validations, 5 food creations, 18 food enrichments, and one food validation.
Table 6.4 shows the answer accuracy across task types and interaction styles for com-
pleted place and food task instances.

At first look, the accuracy of place items for both creation tasks and enrichment

68

Results and Discussion 6.1 Results and Discussion on Study 1

tasks seems to be lower when using the CF interaction style compared to using the
button-based interaction. After we checked the answers of both versions of the chatbot
manually, the low accuracy turns out to be caused the answers for the question asking
the route to get to the place "How do we get to this place?". Most answers are deemed
incorrect because their answer mentions only the number of the bus without the stop
to get off at in order to reach the created place. We suspect that the cause is that the
question might be unclear to the participants, so we would revisit this particular ques-
tion in the second study, where we clarify with the participants whether the question is
clear or not.

Answers of validation tasks have high accuracy both for place items and a single
food item (we only managed to get one answer for food validation task). The high
accuracy is expected due to the fact that the users only have to answer some "yes" or
"no" questions to validate whether a statement is correct or not. However, we only got
answers for validations using buttons as the interaction style, so we couldn’t compare
the accuracy between the two interaction styles.

Furthermore, we also look into the accuracy across question types to know whether
answers to a certain type of question have the tendency to be more often correct or in-
correct. Table 6.5 and 6.6 shows the accuracy of answers grouped by the type of
question. We can note that answers for questions without choice expecting text, nu-
meric, location, and image have lower accuracies compared to multiple choice ques-
tions. Questions expecting text input, in particular, have the lowest accuracy, which we
suspect is due to the nature of allowing the user to input any text without any specific
input validation, thus more prone to incorrect answers.

In the case of multiple choice questions, we have given a set of possible options of
the answer, thus the chance of receiving incorrect answer is lower compared to typing
the answer without any given choice of answer. As for the effect between using button-
based interaction (Buttons) and using text-based interaction (Code Free Text), there
seems to be no apparent difference in term of the accuracy of the inputted answers.
This is the case because both interaction styles only accept the pre-defined choices as
a valid answer, and would ask the user to re-input their answer again if they try to
submit answer that is not included in the provided choice of answers. For MC Item
questions, we do allow users to input a custom answer not listed in the choice list,
but when we look into their answers, users tend to select one of the choices instead of
typing their own custom answer.

Our findings regarding the answer accuracy are as follows. First, the accuracy
seems to be comparable across all task types and also across place and food items.
Second, between the two interaction style, there seems to be no apparent difference
in terms of answers of accuracy. Finally, we found that answers for multiple choice
questions tend to have higher accuracy compared to text, numeric, location, and image
questions. This might be a motivation for future work to suggest possible answer
choices for the users in order to enforce better answer accuracy.

6.1.4 Knowledge Base Completeness

In addition to execution time and accuracy, when we construct a knowledge base, one
of the challenge is to have a high coverage of the acquired knowledge such that the
information contained in the KB should be as complete as needed. Thus, we mea-

69

6.1 Results and Discussion on Study 1 Results and Discussion

Table 6.4: Accuracy across different task types, item types, and interaction styles
(#TE=number of task executions)

Interaction Style

Task Type Item Type Buttons (B) #TE Code & Free Text (CF) #TE

Create Place 0.88 9 0.66 12
Food 1.00 1 0.75 4

Enrich Place 0.90 34 0.68 8
Food 0.79 12 1.00 6

Validate Place 1.00 4 n/a 0
Food 1.00 1 n/a 0

Table 6.5: Accuracy Across Non-Multiple Choice Question Types (B=Button Input,
CF=Code & Free Text Input)

Metric Text Numeric Location Image

Accuracy 0.66 0.74 0.76 0.85

Table 6.6: Accuracy Across Multiple Choice Question Types (B=Button Input,
CF=Code & Free Text Input)

MC Categorization MC Item MC Custom

Metric B CF B CF B CF

Accuracy 0.87 0.90 0.98 0.92 0.98 0.90

sure and evaluate the completeness of the knowledge base constructed by the knowl-
edge base generation module which aggregates the answers acquired from our chatbot
users. The constructed knowledge base is available as RDF and JSON dump file in our
github repository1. We measure the completeness using two dimensions: the schema
completeness (mcSchema) and the column completeness (mcCol). Schema completeness
represents how much of the schema (in our case categories and properties) are repre-
sented as items and statements in the generated KB. Column completeness represents
how complete the KB on the instance level, making sure that each instance has the
required properties based on their categories.

Table 6.7 shows the mcSchema and mcCol across item types and interaction styles. We
have the completeness for each of the KB generated from each version of the chatbot
with different interaction style, and also the completeness of the Combined KB, which
is generated by the combined answers of both versions of the chatbot. We only include
Places and Food in our analysis as we did not acquire enough task completion for
Course Questions and Trash Bins.

We can note from Table 6.7 that the schema completeness is measured to be com-
parable across item types and interaction styles. While the schema completeness is

1https://github.com/enreina/campusbot-data-results

70

Results and Discussion 6.1 Results and Discussion on Study 1

Table 6.7: Schema and Column Completeness Across Item Type and Interaction Style

Interaction Style

Item Type Metric Combined KB Buttons Code & Free Text

Place mcSchema 0.94 0.83 0.83
mcCol 0.63 0.42 0.28

Food mcSchema 1.00 0.73 0.91
mcCol 0.45 0.25 0.20

acceptable, with only missing some unrepresented categories (e.g. there is no "car
parking space" place created) and properties (e.g. food, price, and rating are not rep-
resented in food knowledge base), the column completeness is fairly low especially
of two KBs generated from answers from each versions of the chatbot. Though, as
expected, the column completeness gets better when we combine the answers from
both versions, as statements acquired from one version of chatbot complements and
completed the missing statements from the other version.

To understand more about how such results of schema and column completeness
is obtained, again we look into how much of answers did we acquire from each type
of question. In this case, we measure the completeness simply as the ratio between the
number of submitted answers (i.e. the user did not skip the question) and the number
of total questions (within that question type) which were asked to the users. Table 6.5
and Table 6.6 shows the completeness percentage of each type of question.

Unsurprisingly, we have perfect completeness for Location and Image questions
as we have set the questions of these two types to be required, thus the user wouldn’t
be able to skip the question. In the case of MC Categorization question (e.g. asking
the user to categorize the category of a place), we actually did not require the user to
answer the question, allowing them to answer "Not Sure" if they don’t know category
of the item. Nevertheless, all users answered to the categorization question, resulting
in complete set of answers.

Between using Buttons and CF interaction style, there is not that much difference
of completeness percentage between the two interaction styles. We can see that most
users did not skip questions of type MC Item (e.g. which building is the place located
in) and type MC Custom (e.g. does the place has an electricity outlet or not), thus the
interaction style does not seem to matter much in regards to completeness.

Overall, across question types, the completeness percentage is surprisingly higher
and seems to not align with the low mcCol of the resulting KB. When we look further
into this, it turns out this is caused by item creation with incomplete information and
also the lack of completion of corresponding enrichment task which should have com-
plement the missing information. A better task assignment approach for enrichment
tasks would have to be designed such that it enforces to collect high quality and com-
plete answers from the users. Additionally, we also think that the column completeness
should be able to be improved by making questions to be required, not allowing users
to skip the questions. Although this has a downside specifically when the user doesn’t
really know the answer of the required question, thus blocking them to continue an-
swering the other questions.

71

6.1 Results and Discussion on Study 1 Results and Discussion

Table 6.8: Completeness Across Non-Multiple Choice Question Types (B=Button In-
put, CF=Code & Free Text Input)

Metric Text Numeric Location Image

Completeness 0.85 0.84 1.00 1.00

Table 6.9: Completeness Across Multiple Choice Question Types (B=Button Input,
CF=Code & Free Text Input)

MC Categorization MC Item MC Custom

Metric B CF B CF B CF

Completeness 1.00 1.00 1.00 0.92 0.97 1.00

6.1.5 Usability

From the survey link that had been sent to the participants email address, we acquired
10 responses consisting of 7 responses and 3 responses from participants who were
assigned to CampusBot 1 and CampusBot 2 respectively. One participant, who were
assigned to CampusBot 1, did not manage to download and try the chatbot. He stated
that he did not have Telegram on his phone in addition to not being in campus that
often to be able to actively use the chatbot.

We managed to gather the perceived System Usability Score (SUS) [17] from the
9 participants who did use the chatbot and responded to the survey. Figure 6.5 shows
the SUS of each of the 9 participants. The average SUS calculated from these 6 par-
ticipants is 66.39. If we refer to [10] on how to interpret this score, our chatbot system
can be interpreted as "marginally acceptable", so although it is usable to some extent,
there are certainly things to be improved. In order to understand more about why such
score were given by the participants, we look into each of the participant activities and
their answers to the survey.

In the survey, we gave a list of options for the respondents to pick on what are the
challenges they encounter while using CampusBot. Five respondents (P3, P4, P5, P6,
and P7) stated that they had a hard time on completing enrichment tasks. By looking
through their activities and interaction with the chatbot, we found that most of the
struggles lies on answering questions that they might not know the answer of. This
shows in the way they skipped most of the questions, and only submitting answer for
the "easy" ones (such as whether a place has an electricity outlet or not).

We also notice that one of them tried to input something which the chatbot deemed
to be invalid. For example, when the chatbot asked the estimated maximum capacity
of a place, one of the respondent answers with a range (e.g. "6-8") instead of a single
number (e.g. "6"). Our chatbot does not recognize this kind of answer, thus it prompted
the user to input a single number instead. Although the user managed to submit the
correct answer, this might result as an awkward experience from their perspective. This
aligns with their agreement with the statement "I found CampusBot very awkward to
use" in the survey.

Additionally, we also asked the respondents to choose on what was easy to do

72

Results and Discussion 6.1 Results and Discussion on Study 1

Figure 6.5: System Usability Score (SUS) Perceived by Survey Respondents of Study
1

when they use CampusBot. Five respondents (P4, P5, P6, and P7) chose "Starting the
chatbot" as one of their answers. "Choosing a task" was also chosen by five respon-
dents (P1, P3, P5, P6, and P7). Although this shows that these respondents perceived
that starting the chatbot and choosing a task are straightforward, we still need to in-
vestigate whether this is really the case or because they might already be familiar with
similar chatbots or Telegram bots in particular. Our survey did not collect the fact
whether they have previous experience with chatbot and/or Telegram, so we would
need to revisit this in Study 2.

We also received specific suggestions in regards on how to improve CampusBot.
P2 discusses specifically on the timing of the push notification, which we set to be sent
twice a day on 10 AM and 3 PM to remind users to do more tasks. P2 suggests to
vary the time of the push notification as students tend to have a habit of being in the
same place at certain time everyday, thus reducing the variation of places created and
enriched everyday. Furthermore, P3’s comment is somewhat aligned with P2’s sug-
gestion, stating the fact that they frequently gets the same place to enrich and validates
everyday.

6.1.6 Issues Found on Study 1

From conducting the experiment for first study, we found several issues that results on
the lack of completed tasks, causing the lack of data to do quantitative and statistical
analysis. Each issue is discussed as follows.

Many "no-show" participants. As mentioned several times before, we found that
there were many participants who signed up for the experiment but did not try the
chatbot. Furthermore, there are also participants who tried the chatbot but did not

73

6.2 Results and Discussion on Study 2 Results and Discussion

complete any task. We found out through the survey we sent to the participants that
one of the reason they did not try the chatbot is the need of installing Telegram and/or
they are not often in campus. They assume they would need to be in campus when
answering the question, which is ideally correct, though our experiment description
should have mentioned that answering the question does not require the participants
to be in the campus all the time.

No suitable tasks for participants. This is a follow up on the previous point, that
might be the main reason on why some participants did not complete any task at all.
We suspect that the tasks shown in the list are not suitable for them, for example
the place tasks shown are not the places that they often come by, thus they did not
complete any task.

Same tasks everyday for place and trash bin tasks. We notice that for place items
and trash bin items, one of the participants commented through the online survey
that they are offered the same task everyday resulting in having to input the same
answer everyday for the same place. This might be caused by poor task generation
and assignment strategy.

Unbalanced number of completed tasks between the interaction styles. By the
end of the experiment, we found out that our participant assignment causes unbal-
anced number of completed tasks between CampusBot 1 and CampusBot 2. This
might be the case that the number of active users in CampusBot 1 is higher than in
CampusBot 2.

6.2 Results and Discussion on Study 2

The results from Study 1 were not sufficient to form a strong understanding on to what
extent the designed chatbot could enable users to participate in a KBC process. The
lack of enough number of task executions demands us to conduct a second experiment
focusing on qualitative findings. We discuss the results of the second study in this
section.

The audio recording of each interview session from Study 2 is transcribed and
analyzed along with the recorded screen when the participant executes the requested
tasks (create, enrich, and validate). We focus on analyzing what is intuitive to do
and what is not based on the recorded interviews and the behavior of the user when
interacting with the chatbot.

We interviewed a total of 7 people consisting of 3 participants who signed up for
the first study but did not complete any tasks, as well as 4 additional participants who
did not sign up for Study 1. 5 participants (P10, P11, P13, P14, P15) have stated that
they haven’t used Telegram before the experiment, while 2 participants (P12 and P16)
are regular Telegram users. We assign 4 participants (P10, P11, P12, and P15) to use
CampusBot 1, and 3 participants (P13, P14, P16) to use CampusBot 2. The followings
are the findings that we have found from interviewing the 7 participants.

Usability Score. After the guided session, we asked the participants to fill a survey
to measure their perceived SUS just like we did in Study 1. Figure 6.6 show the per-
ceived SUS for each participant, resulting in an average SUS of 68.93. This confirms

74

Results and Discussion 6.2 Results and Discussion on Study 2

Figure 6.6: System Usability Score (SUS) Perceived by Survey Respondents of Study
2

the acceptable level of our system’s usability as found in Study 1 – which can be
interpreted as "marginally acceptable".

Finding a task. Apparently, we observe (P10) to be struggling, by the way they kept
scrolling the task list back and forth, on what task should they choose among the ones
shown in the task list. At the end of the session, we asked a follow-up question on
why was it hard to choose a task. The participant instead suggested that the shown
tasks should be relevant to them. This might indicate for a future work to a more
context-aware task assignment, for example based on the user’s current location. On
regards on similar matter, P16 also expressed similar opinion, where they took their
time to choose a task because they were not sure on what task to choose among the
shown task list.

Choosing a task. The other observation on P10 shows that they weren’t sure on
how to choose the task, despite the instruction shown at the end of the task list ("You
can select a task by tapping on the task number"). It turns out that, according to the
participant, they were not aware that the instruction exists, because the instruction
comes after the task list, instead of before the task list. P14 was also not sure at first
on how to choose a task. They expected that tapping on the "chat bubble" of the task
is the way to do it, but after reading through the instruction again, they managed to
choose one of the task by typing the task number. On contrary, P13 and P15 didn’t
have such troubles on choosing a task. When asked about what they think about
the interaction they had to make in order to choose a task, P13 stated that they are
familiar with blue-colored "hyperlinks", so they just intuitively tapped on the task
number which is blue-colored.

75

6.3 Discussions on Study 1 and Study 2 Results and Discussion

Consistency of interaction style. We also observed some struggles with different
kind of interaction style offered by the chatbot. P13, who stated their familiarity with
hyperlinks, expressed their opinion that the way to answer multiple choice questions
should be similar to the way they choose the task, which is to tap on the answer’s
number instead of typing the number of the answer. P15, who was assigned to Cam-
pusBot 2 which uses CF interaction style for multiple choice questions, highlighted
the fact that there is an inconsistency between when they were asked to choose a
category (MC Categorization) and when they were asked to choose a building (MC
Item). In the former, they could just type the number of the answer they intended to
submit, while for the latter, the number of the answer was not presented so they had
to type in the full answer.

Unclear questions. Once in a while, when we observed that a participant took some
time to answer a certain question, we tried to ask whether the cause of their pause
was because the question is unclear. Several participants had trouble on answering
the "How do we get to the place?" question where they stated that the question is
unclear and they were not sure on how to answer it not until we explain to them the
intention of the question. This shows the importance of clearly defined questions,
especially in conversational setting where the users expect to be asked in the most
clear and natural way as possible.

Getting used to the chatbot. P10 expressed their opinion that, although the chatbot
was fun to use, they think it was a little confusing at first especially on the navigation
part. P11 also express similar opinion where they stated that they needed some time
to get used to the chatbot and answer the questions. P13 expressed that they just
needed a short time to get used on how to use the chatbot, and once they have gotten
used to it, they think the chatbot is fairly easy to use. Both P15 and P16 also had
similar opinion – they think the chatbot is not hard to use and people can get used to
it real soon without detailed explanation.

Other suggested improvements. There are suggestions that some of the partici-
pants gave that they think should improve the overall chatbot experience. First, P13
suggests to vary the wording the chatbot used so it would feel more natural and not
robot-like. Responding to user’s answer naturally is also important, for example giv-
ing feedback like "Nice to know!" instead of a robot-like response like "Ok". P16
expressed their suggestion on how the chatbot should not only collect data but also
allows users to check on the summary of the collected data so far. Additionally,
they also suggested that the questions should show multiple choice options based on
common answers in addition of allowing users to input their own answer.

6.3 Discussions on Study 1 and Study 2

In this section, we will discuss various findings from both studies and how they com-
plement each other. The discussion will mostly focus on how the independent variables
(interaction style and task type) affect the construction of a knowledge base in regards
to its execution time, accuracy, and completeness. The discussion draws from mostly
quantitative results of Study 1 and complemented by qualitative findings from Study
2.

76

Results and Discussion 6.3 Discussions on Study 1 and Study 2

Regarding the execution time, Study 1 shows while button-based interaction style
enforces faster execution time compared to text-based interaction style, the execution
time was mostly affected by the number of questions in a single task execution as well
as the type of question being asked. For example, asking the question of "What is the
route to get to the place?" takes more time than "What is the name of the place?". This
was also confirmed in Study 2, where we observe that users seem to take more time on
thinking for coming up with the answer for questions that demands answer for longer
type. These finding can be a motivation for future work and aligns with one of the
participant suggestion to incorporate more choice-based questions, where the chatbot
shows a list of suggested answers. We think this improvement would speed up the
execution time of task completion.

For the accuracy of the inputted answers, we found out that there is no apparent dif-
ference between using buttons and CF interaction style for multiple-choice questions.
We found that the accuracy is mostly affected by the type of question asked, where
non-multiple choice questions (text, numeric, location, and image) are more prone to
producing incorrect answers compared to multiple-choice questions disregard of the
interaction style.

The one-to-one guided sessions with some participants also show that incorrect
answers tend to emerge when a user is faced with ambiguous questions (e.g. the route
to the place, whether a place has electricity outlet). Some users find the need to ask for
clarification for this kind of question to the interviewer before proceeding to answer
them.

We also measure the completeness degree of KB generated from Study 1. We
found that answers from different users for the same item complement each other, thus
more users tend to result in more complete info for an item. This shows by the fact that
the completeness degree of the combined KB from both CampusBot 1 and CampusBot
2 is higher than the KB generated from separate answers of each version of the chatbot.

Interaction style does not seem to matter much in regards to the completeness,
as we can see in Table 6.9 that multiple-choice questions tend to results in high com-
pleteness degree. Perfect completeness degree (i.e. 1.0) mostly resulted from questions
which are marked as required, in which the users could not skip.

We investigate the effect of required and non-required questions towards KB com-
pleteness in Study 2. We observed that most users tend to do their best answering all
questions (despite the fact that the question is not required). They only skipped if they
really think they do not know the answer to a question. Thus, although from Study 1
we can see a perfect degree of completeness for required questions, Study 2 shows that
marking a question to be not required (i.e. allowing users to skip the question) does
not necessarily encourage the user to skip the questions.

To understand more on whether the implemented system is usable for constructing
a knowledge base, we collected survey responses to measure the System Usability
Score (SUS). Study 1 and Study 2 results in an average perceived SUS of 66.39 and
68.93 respectively and both can be interpreted as "marginally acceptable".

After we look into this further, based on conversation log of users from Study 1
and observation on users in Study 2, we found that the usability issues mostly come
from the fact that the users seem to not be able to found relevant tasks for them. This
is more of a result on the task assignment, which we acknowledge can be improved
for future work, and less of a UI or UX design issue as we have already, in fact, tested

77

6.4 Threats to Validity Results and Discussion

our prototype in a controlled experiment with some colleagues before publishing the
chatbot. On the contrary, using the chatbot and executing the task itself weren’t found
to be a problem, as observed in Study 2 where users get used to the chatbot in a short
time despite having no prior experience with Telegram.

6.4 Threats to Validity

We conducted two experiments in order to investigate to what extent our system can
be used to enable participation of crowdsourced construction of knowledge bases. Al-
though we try our best to minimize "external" factors outside our selected independent
variables that might influence the results, we acknowledge that there are still potential
threats to the validity of the results. We discuss the threats as follows.

Representation of KBC participants. Our participants were limited to students of
TU Delft due to the design of the experiment which is to construct a knowledge
base for the campus. Thus, our results might not be representative of other potential
workers for constructing knowledge bases for other domains. However, our work
can easily be extended to validate whether similar understandings can be found when
applied to other domains.

Majority of task executions from most active users. There is quite a gap of com-
pleted task executions from Study 1 between the most active users (4 users completed
around 14-19 task executions) and less active users (20 users completed less than 5
task executions). This might cause biased results where the majority of task execu-
tions for execution time and accuracy measurement were taken from the four most
active users. However, when we measured the execution time and accuracy across
question types, we try our best to sample across different users as well as confirming
our understanding based on observation in Study 2.

Telegram as the messaging platform. We chose Telegram as the messaging plat-
form of the chatbot because it requires the least time to set up compared to other
platforms, such as Messenger, that requires more time for the application approval
process. We are aware that this decision of using a specific messaging platform might
introduce bias to our results caused by participants’ familiarity (or non-familiarity)
with Telegram. We try our best to reduce this bias by designing the chatbot to be as
general as possible, using common features supported by other messaging platforms.

Limited variations of interaction style and task type. We acknowledge the fact that
the experimental design only includes limited variations of interaction style as well
as task type. Although we believe the experiments were well designed to answer our
research question, there is a potential to extend the research to include more variety
of interaction style and task type in the future.

78

Chapter 7

Conclusions and Future Work

In this chapter, we present our conclusion to answer our main research question by
answering the three research subquestions stated in the Introduction chapter. We also
discuss opportunities of future work in order to utilize the potential of conversational
crowdsourcing for KBC even more.

7.1 Conclusions

In order to answer our main research question "How could a text-based conversa-
tional agent be designed to enable the crowdsourced construction of knowledge
bases?", we first summarize the conclusion for each of the three subquestions as fol-
lows.

RQ 1: What is the state of the art in knowledge base construction and
conversational crowdsourcing?

We did a literature survey (C1) on previous work within the intersections of three
fields: KBC, crowdsourcing, and conversational interface. We discussed several well-
known methodologies for constructing a knowledge base and managed to identify
primitive elements (classes, instances, attributes, relations, hierarchies, axioms, and
rules) of a knowledge base as well as activities involved in order to construct a KB
from scratch.

We also discuss work which investigates the viability of utilizing crowdsourc-
ing technique for KBC process. Previous work in this research line mostly focuses
on either the microtasking approach, which utilize monetary incentives or the Game
with a Purpose (GWAP) approach, which promotes entertainment incentives. Both
approaches try to present one or more KBC tasks into the crowdsourcing workflow.

Finally, we discuss a research direction on which text-based conversational agents
(chatbots) are used to execute microtask crowdsourcing. We also discuss some previ-
ous work exploring the potential of chatbots for knowledge acquisition.

We based our work on these findings, designing a crowdsourcing workflow based
on existing KBC methodologies as well as validating the findings of similar work of
chatbot for microtask crowdsourcing but specifically in the context of constructing
KBs.

79

7.1 Conclusions Conclusions and Future Work

RQ 2: How could a text-based conversational agent be designed and
implemented to support the microtask crowdsourcing for knowledge base
construction?

Our contribution to address this research question is a System Design of a Conversa-
tional Agent for Crowdsourced KBC (C2) and consist of three main components:

• A crowdsourcing workflow which incorporates KBC microtasks decomposed
from state-of-the-art KBC methodologies. The workflow consists of three main
stages: Create, Enrich, and Validate. In Create stage, KB items are defined and
initial statements are added. In Enrich stage, additional statements are added to
make the item more complete. Finally, in Validate stage, the correctness of
added statements are validated before being aggregated into a constructed KB.

• A system design of a conversational crowdsourcing system which incorporates
the designed crowdsourcing workflow in order to support the construction of
KBs. The system consists of a conversational interface, a task executioner com-
ponent to control the flow of task execution, a database, as well as a KB genera-
tor module to construct a KB from the acquired knowledge.

• An implementation of the system (called CampusBot) for the specific use case
of Campus domain specifically Food, Places, Course Questions, and Trash Bins.
This implementation enabled us to carry an evaluation on the system design,
which helped us addressing RQ3.

RQ 3: How does the interaction style of the text-based conversational agent
affect the construction time and quality of the KB?

We contribute an Evaluation of Chatbot System for KBC (C3) in order to address
this research question. We carried out two experiments by recruiting participants to
use CampusBot to participate in the construction of a campus knowledge base.

The first experiment involves publishing CampusBot to students of TU Delft and
invites them to use CampusBot to create campus-related items and complete the sev-
eral tasks. 43 participants were involved in trying out the chatbot in which 24 of them
completed at least one task execution. Then we measure the execution time, answers
accuracy, and completeness of the collected answers. We also measure the usability
of the system by sending an online post-experiment survey, which results in an av-
erage System Usability Score (SUS) of 66.39, deeming our system to be marginally
acceptable.

In the second experiment, we invite participants to a one-to-one guided session and
observe and talk to them regarding their experience with the chatbot. This second ex-
periment was carried to conduct a qualitative analysis and complement the quantitative
findings from the first experiment.

We contribute to the existing line of work by confirming similar results with related
work but specifically in the context of KBC. We found several findings such as: button-
based interaction style enforces faster execution time (on average 5 seconds faster)
then text-based interaction style; as well as the answers accuracy (varied between 0.66
and 0.98 across question types) are comparable despite different interaction type and

80

Conclusions and Future Work 7.2 Future work

question type. These findings align with previous work specifically on the resulting
execution time and answers accuracy.

Additionally, we also include a KB-specific metric, the completeness metric, into
the set of metrics to evaluate our system. We measure the schema and column com-
pleteness metric based on the definition in previous work on KB assessment [60], and
use it to evaluate the KB generated from the collected information by our chatbot sys-
tem. The constructed KB results in a schema completeness degree of 0.94 for place
items and 1.00 for food items. The column completeness degrees are fairly low for KB
generated from each version of chatbot independently (between 0.20 to 0.45), but once
the combined KB is generated the column completeness improves (0.63 for place items
and 0.45 for food items). This leads us to conclude that the Create and Enrich stages
of our crowdsourcing workflow enable users to indirectly complement each other for
completing missing information of a knowledge base item.

To summarize, to design a chatbot system for enabling crowdsourced construction
of knowledge bases, we first need to know the state-of-the-art of KBC methodologies.
The methodologies were used to decompose KBC task into microtasks which in turn
are incorporated into a crowdsourcing workflow. To execute the workflow, we would
need a conversational crowdsourcing system for KBC to be designed. Finally, the
system was evaluated to make sure that it can produce a KB with acceptable execution
time, quality, and completeness. The results of our experiments show that our system
is viable to be used for constructing KBs, though of course with room for improvement
which we left as potential future work.

7.2 Future work

As mentioned throughout the the whole report, there is a lot of future work opportuni-
ties based on our work. We summarize and describe each of them below.

Experiment with more task execution. The limitation of our work is the lack of
enough samples to generate stronger findings by means of statistical analysis. A po-
tential future work would be to carry a similar experiment within a more controlled
setting, where a larger sample of task execution can be collected thus more quantita-
tive measurements can be analyzed.

Incorporate other types of KBC microtask. Although we defined an exhaustive
list of KBC microtasks in Section 3.1, for the sake of limiting the scope of our work,
we only incorporate some of them into our crowdsourcing workflow. The micro-
task involving the definition of concepts has not yet been explored in conversational
settings. It would be interesting to deploy this type of microtasks where users can
contribute not only by creating instances but also defining new concepts.

Integration with existing ontologies. In our work, we briefly describe a knowledge
base generation module which connects to a Wikibase instance. This is a bridge to
the potential of linking the constructed knowledge base with existing ontologies such
as the Wikidata ontology. This would promote a new way to contribute to the linked
data available on the internet.

81

7.2 Future work Conclusions and Future Work

Comparison with other KBC tools. Although to some extent, we found that a
chatbot system can be designed to crowdsource the construction of a knowledge base,
there is a need to find a more evident proof that using a chatbot is comparable or
more superior compared to using existing KBC tools such as Protege or wiki-based
interface. An idea of future work is to compare the difference of the resulting KB
between using the chatbot and using existing KBC tools.

Querying the constructed KB through the conversational agent. A recurring dis-
cussion from the participants of our experiment is that some of them expect to not
only be able to submit answers to the chatbot but also acquire answers from it. Our
work’s scope is limited to executing microtasks to construct a KB, but it would be
interesting if the chatbot functionalities are extended so it can be used to query the
constructed KB.

82

Bibliography

[1] Controlled and uncontrolled English for ontology editing. In Emmons I., Laskey
K.B., Costa P.C.G., and Oltramari A., editors, 10th Conference on Semantic Tech-
nology for Intelligence, Defense, and Security, STIDS 2015, volume 1523, pages
74–81, CUBRC, Buffalo, NY, United States, 2015. CEUR-WS.

[2] Chatbot who wants to learn the knowledge: KB-agent. volume 2241, pages 33–
36, Semantic Web Research Center, School of Computing, KAIST, 291 Daehak-
ro, Yuseong-gu, Deajeon, South Korea, 2018. CEUR-WS.

[3] Albin Ahmeti, Victor Mireles, Artem Revenko, Marta Sabou, and Martin
Schauer. Crowdsourcing updates of large knowledge graphs. In CEUR Work-
shop Proceedings, volume 2169, pages 1–6, 2018.

[4] Albin Ahmeti, Simon Razniewski, and Axel Polleres. Assessing the complete-
ness of entities in knowledge bases. In European Semantic Web Conference,
pages 7–11. Springer, 2017.

[5] R Amini, M Cheatham, P Grzebala, and H B McCurdy. Towards best practices
for crowdsourcing ontology alignment benchmarks. In CEUR Workshop Pro-
ceedings, volume 1766, pages 1–12, Data Semantics Laboratory, Wright State
University, Dayton, OH, United States, 2016.

[6] Ram G. Athreya, Axel-Cyrille Ngonga Ngomo, and Ricardo Usbeck. Enhanc-
ing Community Interactions with Data-Driven Chatbots–The DBpedia Chatbot.
Companion of the The Web Conference 2018 on The Web Conference 2018 -
WWW ’18, pages 143–146, 2018.

[7] A Augello, G Pilato, A Machi, and S Gaglio. An Approach to Enhance Chatbot
Semantic Power and Maintainability: Experiences within the FRASI Project. In
2012 IEEE Sixth International Conference on Semantic Computing, pages 186–
193, 2012.

[8] A Augello, G Pilato, G Vassallo, and S Gaglio. A Semantic Layer on Semi-
Structured Data Sources for Intuitive Chatbots. In 2009 International Conference
on Complex, Intelligent and Software Intensive Systems, pages 760–765, 2009.

83

BIBLIOGRAPHY BIBLIOGRAPHY

[9] A Augello, G Pilato, G Vassallo, and S Gaglio. Chatbots as interface to ontolo-
gies, 2014.

[10] Aaron Bangor, Philip T. Kortum, and James T. Miller. An Empirical Evalua-
tion of the System Usability Scale. International Journal of Human-Computer
Interaction, 24(6):574–594, jul 2008.

[11] A Basharat, I B Arpinar, S Dastgheib, U Kursuncu, K Kochut, and E Dogdu.
CrowdLink: Crowdsourcing for large-scale linked data management. In Proceed-
ings - 2014 IEEE International Conference on Semantic Computing, ICSC 2014,
pages 227–234, Large Scale Distributed Information Systems (LSDIS) Lab.,
Department of Computer Science, University of Georgia, Athens, GA 30602,
United States, 2014.

[12] Senjuti Basu Roy, Ioanna Lykourentzou, Saravanan Thirumuruganathan, Sihem
Amer-Yahia, and Gautam Das. Task assignment optimization in knowledge-
intensive crowdsourcing. The VLDB JournalâThe International Journal on Very
Large Data Bases, 24(4):467–491, 2015.

[13] Juan Blázquez, M. Fernández, JM. García-Pinar, and A. Gómez-Pérez. Building
Ontologies at the Knowledge Level using the Ontology Design Environment,
1998.

[14] Luka Bradeško, Michael Witbrock, Janez Starc, Zala Herga, Marko Grobel-
nik, and Dunja Mladenić. Curious Cat–Mobile, Context-Aware Conversational
Crowdsourcing Knowledge Acquisition. ACM Transactions on Information Sys-
tems, 35(4):1–46, aug 2017.

[15] Jonathan Bragg, Andrey Kolobov, Mausam, and Daniel Weld. Parallel task rout-
ing for crowdsourcing. In Proceedings of the Second AAAI Conference on Human
Computation and Crowdsourcing (HCOMP-14). AAAI Press, November 2014.

[16] Simone Braun, Andreas Schmidt, and Andreas Walter. Ontology Maturing: a
Collaborative Web 2.0 Approach to Ontology Engineering. WWW 2017, (Au-
gust), 2007.

[17] John Brooke et al. Sus-a quick and dirty usability scale. Usability evaluation in
industry, 189(194):4–7, 1996.

[18] Irene Celino, Simone Contessa, Marta Corubolo, Daniele Dell’Aglio,
Emanuele Della Valle, Stefano Fumeo, and Thorsten Krüger. UrbanMatch - link-
ing and improving smart cities data. In CEUR Workshop Proceedings, volume
937, CEFRIEL, Italy, 2012.

[19] Philipp Cimiano and Heiko Paulheim. Knowledge Graph Refinement: A Survey
of Approaches and Evaluation Methods. Technical report, 2016.

[20] John P Dickerson, Karthik Abinav Sankararaman, Aravind Srinivasan, and Pan
Xu. Assigning tasks to workers based on historical data: Online task assignment
with two-sided arrivals. In Proceedings of the 17th International Conference

84

BIBLIOGRAPHY BIBLIOGRAPHY

on Autonomous Agents and MultiAgent Systems, pages 318–326. International
Foundation for Autonomous Agents and Multiagent Systems, 2018.

[21] Zhaoan Dong, Ju Fan, Jiaheng Lu, Xiaoyong Du, and Tok Wang Ling. Using
Crowdsourcing for Fine-Grained Entity Type Completion in Knowledge Bases.
pages 248–263. Springer, Cham, jul 2018.

[22] Fredo Erxleben, Michael Günther, Markus Krötzsch, Julian Mendez, and Denny
Vrandečić. Introducing wikidata to the linked data web. In International Seman-
tic Web Conference, pages 50–65. Springer, 2014.

[23] M Fernández-López, A Gómez-Pérez, and Natalia Juristo. METHONTOLOGY:
From Ontological Art Towards Ontological Engineering. Technical report, 1997.

[24] Emilio Ferrara, Onur Varol, Clayton Davis, Filippo Menczer, and Alessandro
Flammini. The Rise of Social Bots. 2014.

[25] Evgeniy Gabrilovich and Nicolas Usunier. Constructing and mining web-scale
knowledge graphs. In Proceedings of the 39th International ACM SIGIR Confer-
ence on Research and Development in Information Retrieval, SIGIR ’16, pages
1195–1197, New York, NY, USA, 2016. ACM.

[26] Asunción Gómez-Pérez, Mariano Fernández-López, and Oscar Corcho. Ontolog-
ical Engineering. Advanced Information and Knowledge Processing. Springer-
Verlag, London, 2004.

[27] Martin Hepp, Daniel Bachlechner, and Katharina Siorpaes. Ontowiki:
Community-driven ontology engineering and ontology usage based on wikis. In
Proceedings of the 2006 International Symposium on Wikis, WikiSym ’06, pages
143–144, New York, NY, USA, 2006. ACM.

[28] T.-H. Ting-Hao T.-H. Huang, J C Chang, Jeffrey P Bigham, Joseph Chee Chang,
and Jeffrey P Bigham. Evorus: A Crowd-powered conversational assistant built
to automate itself over time. In 2018 CHI Conference on Human Factors in Com-
puting Systems, CHI 2018, volume 2018-April, Language Technologies Insti-
tute, Human-Computer Interaction Institute, Carnegie Mellon University, United
States, 2018. Association for Computing Machinery.

[29] Sarath Kumar Kondreddi, Peter Triantafillou, and Gerhard Weikum. Combin-
ing information extraction and human computing for crowdsourced knowledge
acquisition. In 2014 IEEE 30th International Conference on Data Engineering,
pages 988–999. IEEE, mar 2014.

[30] Sarath Kumar Kondreddi, Peter Triantafillou, Gerhard Weikum, Sarath Kumar
Kondreddi, Peter Triantafillou, and Gerhard Weikum. Human computing games
for knowledge acquisition. In Proceedings of the 22nd ACM international con-
ference on Conference on information & knowledge management - CIKM ’13,
pages 2513–2516, New York, New York, USA, 2013. ACM Press.

[31] Tobias Kuhn. AceWiki: A natural and expressive semantic wiki. In CEUR
Workshop Proceedings, volume 543, 2009.

85

BIBLIOGRAPHY BIBLIOGRAPHY

[32] Walter S Lasecki. Real-Time Conversational Crowd Assistants. In Beaudouin-
Lafon M., Baudisch P., and Mackay W.E., editors, 31st Annual CHI Conference
on Human Factors in Computing Systems:, CHI EA 2013, volume 2013-April,
pages 2725–2730, ROC HCI, Computer Science, University of Rochester, United
States, 2013. Association for Computing Machinery.

[33] Walter S Lasecki, Rachel Wesley, Jeffrey P Bigham, and Anand Kulkarni. Speak-
ing with the crowd. In 25th Annual ACM Symposium on User Interface Software
and Technology, UIST 2012, pages 25–26, University of Rochester, Computer
Science, ROC HCI, United States, 2012.

[34] Edith Law and Luis von Ahn. Human Computation. Synthesis Lectures on
Artificial Intelligence and Machine Learning. Morgan & Claypool Publishers,
2011.

[35] Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch, Dimitris Kontokostas,
Pablo N Mendes, Sebastian Hellmann, Mohamed Morsey, Patrick Van Kleef,
Sören Auer, et al. Dbpedia–a large-scale, multilingual knowledge base extracted
from wikipedia. Semantic Web, 6(2):167–195, 2015.

[36] X Liang, R Ding, M Lin, L Li, X Li, and S Lu. CI-Bot: A hybrid chatbot
enhanced by crowdsourcing, 2017.

[37] Panagiotis Mavridis, Owen Huang, Sihang Qiu, Ujwal Gadiraju, and Alessandro
Bozzon. Chatterbox: Conversational interfaces for microtask crowdsourcing. In
UMAP, 2019.

[38] Jonathan M Mortensen, Mark A Musen, and Natalya F Noy. Developing crowd-
sourced ontology engineering tasks: An iterative process. In CEUR Workshop
Proceedings, volume 1030, pages 79–88, 2013.

[39] Claudia Müller-Birn, Benjamin Karran, Janette Lehmann, and Markus Luczak-
Rösch. Peer-production system or collaborative ontology engineering effort. In
Proceedings of the 11th International Symposium on Open Collaboration - Open-
Sym ’15, pages 1–10, 2015.

[40] Prayag Narula, Philipp Gutheim, David Rolnitzky, Anand Kulkarni, and Bjoern
Hartmann. Mobileworks: A mobile crowdsourcing platform for workers at the
bottom of the pyramid. In Proceedings of the 11th AAAI Conference on Human
Computation, AAAIWS’11-11, pages 121–123. AAAI Press, 2011.

[41] Natalya F Noy and Deborah L Mcguinness. Ontology Development 101: A
Guide to Creating Your First Ontology. Technical report, 2001.

[42] Natalya F. Noy, Jonathan Mortensen, Mark A. Musen, and Paul R. Alexander.
Mechanical turk as an ontology engineer?: using microtasks as a component
of an ontology-engineering workflow. In Proceedings of the 5th Annual ACM
Web Science Conference, volume volume, pages 262–271, Stanford University,
Stanford, CA 94305, United States, 2013. ACM Press.

86

BIBLIOGRAPHY BIBLIOGRAPHY

[43] Thomas Pellissier Tanon, Denny Vrandečić, Sebastian Schaffert, Thomas
Steiner, and Lydia Pintscher. From freebase to wikidata: The great migration.
In Proceedings of the 25th international conference on world wide web, pages
1419–1428. International World Wide Web Conferences Steering Committee,
2016.

[44] Boonsita Roengsamut, Kazuhiro Kuwabara, and Hung Hsuan Huang. Toward
gamification of knowledge base construction. In INISTA 2015 - 2015 Interna-
tional Symposium on Innovations in Intelligent SysTems and Applications, Pro-
ceedings, pages 1–7. IEEE, sep 2015.

[45] Cristina Sarasua, Elena Simperl, and Natalya F. Noy. CrowdMap: Crowdsourc-
ing Ontology Alignment with Microtasks. pages 525–541. Springer, Berlin, Hei-
delberg, nov 2012.

[46] Cristina Sarasua, Elena Simperl, Natasha F. Noy, Abraham Bernstein, and
Jan Marco Leimeister. Crowdsourcing and the Semantic Web: A Research Man-
ifesto. Human Computation, 2(1):3–17, 2015.

[47] Sebastian Schaffert. Ikewiki: A semantic wiki for collaborative knowledge man-
agement. In Enabling Technologies: Infrastructure for Collaborative Enter-
prises, 2006. WETICE’06. 15th IEEE International Workshops on, pages 388–
396. IEEE, 2006.

[48] Arno Scharl, Marta Sabou, and Michael Föls. Climate quiz: a web application
for eliciting and validating knowledge from social networks. . . . symposium on
Multimedia and the web, pages 189–192, 2012.

[49] Alessandro Seganti, Paweł Kapłański, and Piotr Zarzycki. Collaborative editing
of ontologies using fluent editor and ontorion. In International Experiences and
Directions Workshop on OWL, pages 45–55. Springer, 2015.

[50] E Simperl, B Norton, and D Vrandečić. Crowdsourcing tasks in Linked Data
management. In CEUR Workshop Proceedings, volume 782, Institute AIFB,
Karslruhe Institute of Technology, Germany, 2011.

[51] Elena Simperl and Markus Luczak-Rösch. Collaborative ontology engineering:
A survey. Knowledge Engineering Review, 29(1):101–131, 2014.

[52] Katharina Siorpaes and Martin Hepp. myontology: The marriage of ontology
engineering and collective intelligence. Bridging the Gep between Semantic Web
and Web, 2:127–138, 2007.

[53] Fabian M. Suchanek, Gjergji Kasneci, and Gerhard Weikum. Yago: A core of
semantic knowledge. In Proceedings of the 16th International Conference on
World Wide Web, WWW ’07, pages 697–706, New York, NY, USA, 2007. ACM.

[54] Christoph Tempich, Elena Simperl, Markus Luczak, Rudi Studer, and H Sofia
Pinto. Argumentation-based ontology engineering. IEEE Intelligent Systems,
(6):52–59, 2007.

87

BIBLIOGRAPHY BIBLIOGRAPHY

[55] S Thaler, E Simperl, and S Wölger. An experiment in comparing human-
computation techniques. IEEE Internet Computing, 16(5):52–58, 2012.

[56] D Toniuc and A Groza. Climebot: An argumentative agent for climate change.
In 2017 13th IEEE International Conference on Intelligent Computer Communi-
cation and Processing (ICCP), pages 63–70, 2017.

[57] Denny Vrandečić and Markus Krötzsch. Wikidata: A free collaborative knowl-
edgebase. Commun. ACM, 57(10):78–85, September 2014.

[58] Gerhard Wohlgenannt, Marta Sabou, and Florian Hanika. Crowd-based ontology
engineering with the uComp Protégé plugin. Semantic Web, 7(4):379–398, 2016.

[59] Amrapali Zaveri, Dimitris Kontokostas, Universität Leipzig, and Sebastian Hell-
mann. Linked Data Quality of DBpedia , Freebase, OpenCyc, Wikidata, and
YAGO. Technical Report 0, 2017.

[60] Amrapali Zaveri, Anisa Rula, Andrea Maurino, Ricardo Pietrobon, Jens
Lehmann, and Sören Auer. Quality assessment for linked data: A survey. Se-
mantic Web, 7(1):63–93, 2016.

88

Appendix A

Entity Relationship Diagram

1

1

User Utterance

N Task Instance

Task Template

Item

Enrichment

Task

Validation

Has N

N

Assigned

1 Has

1

N

Generates

1N Authored By

N

1

Refers

1

1

Has

11 Has

telegramId createdAt

totalTasksCompleted
uniqueId

byBot createdAt
text

executionStartTime

createdAt

type

createdAt

expirationDate

numOfAnswersRequired

aggregatedAnswers

answersCount

openingStatements

closingStatements

questions

entryCommand
executionStartTime createdAt

executionStartTime createdAt

createdAt

expired

completed

Figure A.1: CampusBot Entity Relationship Diagram

89

Appendix B

Knowledge Model

Figure B.1: Knowledge Model for Place Use Case

91

Knowledge Model

Container.png

Figure B.2: Knowledge Model for Trash Bin Use Case

92

Appendix C

Wikibase Properties and
Categories

Category Name Subclass of Use Case Domain

place - place
building place place
parking space place place
car parking space place place
food establishment place place, food
lecture room place place
project room place place
study space place place
meal - food
food establishment - food
trash bin - trash bin
waste type - trash bin
general waste waste type trash bin
paper cup waste waste type trash bin
other waste type waste type trash bin
question - course
course - course

Table C.1: List of Predefined Categories in the Wikibase Instance

93

Wikibase Properties and Categories

Property Label Property Description Data Type
subclass of all instances of these items are instances of

those items; this item is a class (subset) of that
item.

wikibase-item

instance of that class of which this subject is a particu-
lar example and member (subject typically an
individual member with a proper name label)

wikibase-item

image image of relevant illustration of the subject url
building the building in which a place is a part of wikibase-item
coordinate location geocoordinates of the item globe-coordinate
building number the number associated with this building string
floor number the floor number which the place is located on string
route the route or direction on how to go to the place string
has electricity outlet depicts whether the place has electricity

socket for public use or not
string

maximum capacity number of people allowed for a venue or ve-
hicle

quantity

available seats the currently available number of space al-
lowed for additional humans or vehicles

string

clean level the subjective level of cleanliness of a place string
point in time time and date something took place, existed

or a statement was true
time

waste type type of a waste container wikibase-item
size size of a trash bin (subjective) string
is full indication whether a trash bin is currently full

or not
string

color the color of an item wikibase-item
course code the unique code of a study course string
course the study course associated with this item wikibase-item
answer the answer to a question string
meal items the (food) item contained in this meal wikibase-item
price published price listed or paid for a product

(use with unit of currency)
quantity

food location the location where the food was bought from wikibase-item
Table C.3: List of Predefined Properties in the Wikibase Instance

94

Appendix D

Participant Recruitment - Study 1

Figure D.1: Experiment Advertisement Poster

95

Participant Recruitment - Study 1

Figure D.2: Sign Up Form for Recruiting Participants

96

Participant Recruitment - Study 1

Figure D.3: Download Instructions (Part 1)

97

Participant Recruitment - Study 1

Figure D.4: Download Instructions (Part 2)

98

Participant Recruitment - Study 1

Figure D.5: Download Instructions (Part 3)

99

Participant Recruitment - Study 1

Figure D.6: Download Instructions (Part 4)

100

Appendix E

Survey Questions (Study 1)

101

CampusBot: Post-Experiment Survey
Thank you for participating in our CampusBot experiment.

We would like to ask a few questions regarding your experience in trying our app. It will take

approximately 10 minutes to answer all the questions.

The data collected in this survey (excluding the information for identification) will be used only for

research purpose.

* Required

1. Email Address *
This will help us identify you in our participant

list. Your email address won't be used for

purposes outside the experiment.

2. Gender *
This data will only be used for statistical description purpose.

Mark only one oval.

 Female

 Male

 Prefer not to say

3. What is your age?
This data will only be used for statistical

description purpose.

4. What degree are you currently studying?
This data will only be used for statistical description purpose.

Mark only one oval.

 Bachelor

 Master

 PhD

 Other / Not a Student

5. Did you try to download the app? *
Mark only one oval.

 Yes Skip to question 19.

 No Skip to question 20.

Please rate how much you agree with the following statements:

6. I think that I would like to use CampusBot frequently. *
Mark only one oval.

1 2 3 4 5

Strongly Disagree Strongly Agree

7. I found CampusBot unnecessarily complex. *
Mark only one oval.

1 2 3 4 5

Strongly Disagree Strongly Agree

8. I thought CampusBot was easy to use. *
Mark only one oval.

1 2 3 4 5

Strongly Disagree Strongly Agree

9. I think I would need the support of a technical person to be able to use CampusBot. *
Mark only one oval.

1 2 3 4 5

Strongly Disagree Strongly Agree

10. I found the various features in CampusBot were well integrated. *
Mark only one oval.

1 2 3 4 5

Strongly Disagree Strongly Agree

11. I thought there was too much inconsistency in CampusBot. *
Mark only one oval.

1 2 3 4 5

Strongly Disagree Strongly Agree

12. I would imagine that most people would learn to use CampusBot very quickly. *
Mark only one oval.

1 2 3 4 5

Strongly Disagree Strongly Agree

13. I found CampusBot very awkward to use. *
Mark only one oval.

1 2 3 4 5

Strongly Disagree Strongly Agree

14. I felt very confident when I use CampusBot. *
Mark only one oval.

1 2 3 4 5

Strongly Disagree Strongly Agree

15. I needed to learn a lot of things before I could get going with CampusBot. *
Mark only one oval.

1 2 3 4 5

Strongly Disagree Strongly Agree

16. What were the challenges you found while interacting with the app?
Check all that apply.

 Starting the app

 Choosing a task

 Creating an item (place, food, question or trash bin)

 Completing an Enrich Task

 Completing a Validate Task

 Other:

17. What did you find easy to do while interacting with the app?
Check all that apply.

 Starting the app

 Choosing a task

 Creating an item (place, food, question or trash bin)

 Completing an Enrich Task

 Completing a Validate Task

 Other:

18. Any additional comments about the app? (e.g. why was it hard to use, or the app's
purpose was unclear, how to make it better, etc)

Stop filling out this form.

19. Did you use the app? *
Mark only one oval.

 Yes Skip to question 6.

 No Skip to question 22.

20. What was the reason you did not download the app?
You can choose more than one reason. If the reason is not listed, you can also type in your

reason by selecting "Other"

Check all that apply.

 I forgot to download the app

 The app did not work on my phone

 I was not interested

 I did not have Telegram on my phone and don't want to download it

 I did not have time to try out the app

 Other:

21. What would have convinced you to download the app?

Stop filling out this form.

22. What was the reason you did not use the app? *
You can choose more than one reason. If the reason is not listed, you can also type in your

reason by selecting "Other"

Check all that apply.

 I did not have time to use the app

 It was not interesting enough to use the app

 I forgot to use the app

 I would have used it if it was a chatbot instead

 The app was not useful for me

 Other:

23. What would have convinced you to use the app?

Appendix F

Guideline and Survey Questions
(Study 2)

107

Hi! Thank you for your

interest in trying out

CampusBot!

CampusBot is a chatbot to

build a knowledge base of a

campus. In this survey, you

will be guided to test out

the chatbot. We will also

ask you a few questions

regarding your experience

with the chatbot.

Your answers would only be

used for research purpose,

and we won't disclose any

private information. You are

also allowed to leave the

survey at any point.

Start press ENTER

Hi! Thank you for your interest in trying out CampusBot!

CampusBot is a chatbot to build a knowledge base of a

campus. In this survey, you will be guided to test out the

chatbot. We will also ask you a few questions regarding your

experience with the chatbot.

Your answers would only be used for research purpose, and

we won't disclose any private information. You are also

allowed to leave the survey at any point.

We recommend opening this survey on a desktop/laptop and

have your mobile phone ready to interact with the chatbot.

Are you ready? Let's start!

press ENTERStart

Start CampusBot

Open this link:

https://telegram.me/test_campusbot

on your mobile phone to start chatting with

CampusBot.

Or you can also search the user test_campusbot in

the Telegram app.

Type "/start" or tap on the "Start" button in Telegram

to chat with CampusBot.

After that, type "/place".

“

press ENTERContinue

Download Telegram

(You can skip this if you already have Telegram on

your phone)

First download Telegram on your mobile phone:

https://telegram.org/download

Open Telegram and register a new account.

“

press ENTERContinue

Complete a Validate Task

1. Choose one of the Validate tasks

2. Complete the task by answering the questions

asked by CampusBot.

You can refer to the following links to find the

answer to the questions:

Library

Aula

Albert Einstein Room in Library

Auditorium

3. Submit your answers.

When you are done, type "/place" to see the list of

tasks again.

“

press ENTERContinue

Complete an Enrich Task

1. Choose one of the Enrich tasks

2. Complete the task by answering the questions

asked by CampusBot.

You can refer to the following links to find the

answer to the questions:

Library

Aula

Albert Einstein Room in Library

Auditorium

3. Submit your answers.

When you are done, type "/place" to see the list of

tasks again.

“

press ENTERContinue

Create an Item

1. Type "/create" to create an item

2. Complete the item creation by answering the

questions asked by CampusBot.

You can create any place of your choice or refer to

this link when answering the questions:

Lecture Hall A

3. Submit your answers.

“

press ENTERContinue

Please rate how much you agree with the following

statements:

1

press ENTERContinue

1 2 3 4 5

Strongly Disagree Strongly Agree

I think that I would like to use CampusBot

frequently. *

a.

1 2 3 4 5

Strongly Disagree Strongly Agree

I found CampusBot unnecessarily complex. *b.

1 2 3 4 5

Strongly Disagree Strongly Agree

I thought CampusBot was easy to use. *c.

1 2 3 4 5

Strongly Disagree Strongly Agree

I think I would need the support of a technical

person to be able to use CampusBot. *

d.

1 2 3 4 5

Strongly Disagree Strongly Agree

I found the various features in CampusBot were well

integrated. *

e.

1 2 3 4 5

Strongly Disagree Strongly Agree

I thought there was too much inconsistency in

CampusBot. *

f.

1 2 3 4 5

Strongly Disagree Strongly Agree

I would imagine that most people would learn to use

CampusBot very quickly. *

g.

1 2 3 4 5

Strongly Disagree Strongly Agree

I found CampusBot very awkward to use. *h.

1 2 3 4 5

Strongly Disagree Strongly Agree

I felt very confident when I use CampusBot. *i.

1 2 3 4 5

Strongly Disagree Strongly Agree

I needed to learn a lot of things before I could get

going with CampusBot. *

j.

Choose as many as you like

What are the challenges you found while interacting

with CampusBot?

2

Starting CampusBotA

Finding a taskB

Choosing a taskC

Creating an itemD

Completing an Enrich TaskE

Completing a Validate TaskF

OtherG

Choose as many as you like

What did you found easy to do while interacting with

CampusBot?

3

Starting CampusBotA

Finding a taskB

Choosing a taskC

Creating an itemD

Completing an Enrich TaskE

Completing a Validate TaskF

OtherG

Type your answer here...

SHIFT + ENTER to make a line break

Any additional comments about CampusBot?4

e.g. why was it hard to use, or the chatbot's purpose was

unclear, how to make it better, etc

	Preface
	Contents
	List of Figures
	Introduction
	Problem Definition and Goal
	Research Questions
	Contributions
	Thesis Outline

	Related Work
	Knowledge Base Construction and Ontology Engineering
	Methodology for Ontology Engineering
	Methodologies for Collaborative Ontology Engineering
	Collaborative Ontology Engineering Tools

	Crowdsourcing for Knowledge Base Construction
	Conversational Interface and Crowdsourcing
	Crowdsourcing for Chatbot
	Ontology-based Chatbot
	KBC using Chatbot

	Summary

	Chatbot System Design for Knowledge Base Construction
	KBC as Microtasks
	Basic Terms of KBC
	Hierarchical Task Analysis

	Crowdsourcing Workflow
	System Architecture
	Database
	Conversational Interface
	Task Executioner
	Backend API
	Knowledge Base Generation

	Conversation Flow
	Start Flow
	Task List Flow
	Task Execution Flow
	Push Notification Flow

	Summary

	Chatbot Implementation
	Conversational Interface
	Task Executioner
	Flow Handler Classes
	Task Instance
	Task Templates
	Question Template

	Backend API
	Knowledge Base Generation
	Deployment

	 Evaluating the Chatbot System
	Goal of Experiments
	Study 1: Campus Domain Use Case
	Domain Description
	Task Types
	Interaction Style for Multiple Choice Questions
	Recruiting Participants
	Metrics and Measurement

	Study 2: Qualitative User Study
	Recruiting Participants
	Study Setup
	Post-Interview Survey
	Analysis Method

	 Results and Discussion
	Results and Discussion on Study 1
	General Statistics on Participation and Tasks
	Execution Time
	Answer Accuracy
	Knowledge Base Completeness
	Usability
	Issues Found on Study 1

	Results and Discussion on Study 2
	Discussions on Study 1 and Study 2
	Threats to Validity

	Conclusions and Future Work
	Conclusions
	Future work

	Bibliography
	Entity Relationship Diagram
	Knowledge Model
	Wikibase Properties and Categories
	Participant Recruitment - Study 1
	 Survey Questions (Study 1)
	 Guideline and Survey Questions (Study 2)

