

Delft University of Technology

A software-in-the-loop implementation of adaptive formation control for fixed-wing UAVs

Yang, Jun; Wang, Ximan; Baldi, Simone; Singh, Satish; Fari, Stefano

DOI
10.1109/JAS.2019.1911702
Publication date
2019
Document Version
Accepted author manuscript
Published in
IEEE/CAA Journal of Automatica Sinica

Citation (APA)
Yang, J., Wang, X., Baldi, S., Singh, S., & Fari, S. (2019). A software-in-the-loop implementation of adaptive
formation control for fixed-wing UAVs. IEEE/CAA Journal of Automatica Sinica, 6(5), 1230-1239.
https://doi.org/10.1109/JAS.2019.1911702

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/JAS.2019.1911702
https://doi.org/10.1109/JAS.2019.1911702

1

A Software-in-the-loop Implementation of Adaptive
Formation Control for Fixed-wing UAVs

Jun Yang, Ximan Wang, Simone Baldi, Satish Singh, and Stefano Farì

Abstract—This paper discusses the design and software-in-
the-loop implementation of adaptive formation controllers for
fixed-wing Unmanned Aerial Vehicles (UAVs) with parametric
uncertainty in their structure, namely uncertain mass and inertia.
In fact, when aiming at autonomous flight, such parameters
cannot assumed to be known as they might vary during the
mission (e.g. depending on the payload). Modelling and autopilot
design for such autonomous fixed-wing UAVs are presented.
The modelling is implemented in Matlab, while the autopilot
is based on ArduPilot, a popular open-source autopilot suite.
Specifically, the ArduPilot functionalities are emulated in Matlab
according to the Ardupilot documentation and code, which allows
us to perform software-in-the-loop simulations of teams of UAVs
embedded with actual autopilot protocols. An overview of real-
time path planning, trajectory tracking and formation control
resulting from the proposed platform is given. The software-in-
the-loop simulations show the capability of achieving different
UAV formations while handling uncertain mass and inertia.

Index Terms—Fixed-wing UAVs, ArduPilot, adaptive formation
control, software-in-the-loop simulations.

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs) are generating the cu-
riosity of several scientific communities. Among the various
types of UAVs, fixed-wing UAVs have been studied in different
contexts from military to commercial, due to their energy
efficient performance while carrying payloads [1], [2]. The
holy grail of such researches is to have formations of UAVs
that are able to complete missions autonomously with little
supervision from the human operator [3]. As such, it is
necessary to equip UAVs with a smart flight control unit. Path
following is one of the most crucial tasks for implementation
in flight control units: many mature control theories and
algorithms have been proposed for path following. In [4],
state-of-the-art path following algorithms are summarized and
compared with each other using two metrics: control effort
and cross-track error. Five algorithms are evaluated, namely
carrot-chasing, nonlinear guidance, vector-field (VF), linear

The first two authors equally contributed to this work. This research
was partially supported by the Fundamental Research Funds for the Central
Universities under Grant No. 4007019109 (RECON-STRUCT), by the special
guiding funds for double first-class under Grant No. 4007019201, and by the
joint TU Delft - CSSC Project ‘Multi-agent Coordination with Networked
Constraints’ (MULTI-COORD) (corr. author: S. Baldi, s.baldi@tudelft.nl).
J. Yang is with Systems Engineering Research Institute, China State Ship-
building Corporation (CSSC), Beijing 100094, China
X. Wang and S. Singh are with Delft Center for Systems and Control (DCSC),
TU Delft, 2628CD Delft, The Netherlands.
S. Baldi is with School of Mathematics, Southeast University, 211189 Nanjing,
China, and with DCSC, TU Delft, 2628CD Delft, The Netherlands.
S. Farì is with German Aerospace Center (DLR), Institute of Space Systems,
D-28359 Bremen, Germany, and was with Politecnico di Milano, Itay and
with DCSC, TU Delft, The Netherlands.

quadratic regulation and pure pursuit with line-of-sight (cf.
[5]–[16] for more details on such algorithms and on variants
of such algorithms). Monte Carlo simulations in [4] show
that the VF path following, a technique developed in [17], is
more accurate than the other methods, while requiring more
parameters to be designed. The basic concept of VF path
following is to construct a vector field around the desired path,
resulting in course commands to the vehicle. Path following
laws are typically derived from Lyapunov stability analysis
which guarantees stable convergence to the desired path.
Despite the advances in the field, several challenges remain
in path following. For example, the simulations in [4] and in
the aforementioned works highlight three crucial points:

(a) The actual performance of path-following methods con-
siderably depends on the fidelity of the UAV model
used for design. When aiming at autonomy, parametric
uncertainties will inevitably appear in the UAV structure
(uncertain mass and inertia might vary during the mis-
sion). Path-following algorithms that cannot adapt to such
changes will exhibit poor performance.

(b) The actual path-following performance depends not only
on the commanded UAV course angle. At a lower level,
a complex suite of algorithms commonly referred to as
autopilot, must be in charge of regulating roll, pitch and
altitude (rudder/wing/aileron actuators) according to the
course commanded by the path-following algorithm.

(c) Simulations performed on single UAVs or teams of UAVs
to test path-following protocols usually do not include the
autopilot layer [4]; this testing is to a large extent open.

Given these challenges, this work is driven by the following
research questions: how to cope with parametric uncertainties
in the UAV? How to account for the autopilot low-level control
when testing path-following algorithms? How to scale the
path-following problem to teams of UAVs? While some of
the authors studied in [18]–[24] adaptive formation control
algorithms for various systems with uncertain dynamics, the
corresponding problem for UAVs is much more challenging
due to the complex UAV control architecture as sketched in
Fig. 1. This architecture relies on multiple layers: the autopilot
contains the low-level control algorithms that are able to
maintain roll and pitch angles, airspeed, altitude, and roll.
UAV states (or estimated states) and cross-track errors is the
crucial information to be used by the higher levels. The path
following is meant to maintain the vehicle on the desired path
by providing the course heading; the path manager supervises
the navigation of the UAV with a finite-state machine which
converts a sequence of way-points into a sequence of path

© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works.

2

primitives that the path following can track.
Having highlighted how modelling and autopilot design are

crucial steps towards the autonomous control of fixed-wing
UAVs, this papers exactly addresses such issues for a team of
autonomous fixed-wing UAVs. The modelling is implemented
in Matlab, while the autopilot algorithms are taken by ArduPi-
lot, a popular open-source autopilot suite: specifically, the
ArduPilot functionalities are replicated in Matlab following the
Ardupilot documentation and the Ardupilot code itself (reverse
engineering), a feature that allows us to perform software-
in-the-loop simulations with the actual autopilot protocols.
Such software-in-the-loop simulations show the capability of
handling parametric uncertainty in the UAV structure, (i.e.
handling uncertain mass and inertia) for a team of UAVs.

The rest of the paper is organized as follows: Section II
gives some details on the Matlab UAV simulation platform.
Section III describes some aspects related to the autopilot,
while Section IV discusses hardware and software integration
of the various components. In Section V an algorithm for
adaptive vector field path following is given, followed by an
adaptive formation control method in Section VI, with simu-
lations tests. Section VII prospects future research directions.

Figure 1. General layout for UAV control with autopilot. In this work we show
how, by reverse engineering the Ardupilot code, one can perform software-
in-the-loop simulations with the actual autopilot protocols of the UAV.

II. MODELLING

In line with Fig. 1, the basic level of a reliable fixed-
wing UAV simulator must contain the UAV dynamics and
the dynamics of the environment (wind). These are briefly
sketched below, in conformity with the standard literature [25],
[26]).

State Description
φ Euler angle for Roll
θ Euler angle for Pitch
ψ Euler angle for Yaw
ū Angular velocity along x-axis in body frame
v̄ Angular velocity along y-axis in body frame
w̄ Angular velocity along z-axis in body frame
p̄ Roll rate along x-axis in body frame
q̄ Pitch rate along y-axis in body frame
r̄ Yaw rate along z-axis in body frame

Table I
STATE VARIABLES FOR EQUATIONS OF MOTION

A. Equations of motion

The motion of a fixed-wing UAV can be written in the Euler-
Lagrange (EL) form as [25]:
m 0 0 0 0 0
0 m 0 0 0 0
0 0 m 0 0 0
0 0 0 Ix 0 −Ixz
0 0 0 0 Iy 0
0 0 0 −Ixz 0 Iz


︸ ︷︷ ︸

D(q)



˙̄u
˙̄v
˙̄w
˙̄p
˙̄q
˙̄r


︸︷︷︸
q̈

+


0 −mr̄ mq̄ 0 0 0
mr̄ 0 −mp̄ 0 0 0
−mq̄ mp̄ 0 0 0 0

0 0 0 0 Iz r̄ − Ixz p̄ −Iy q̄
0 0 0 Ixz p̄− Iz r̄ 0 Ixp̄− Ixz r̄
0 0 0 Iy q̄ Ixz r̄ − Ixp̄ 0


︸ ︷︷ ︸

C(q,q̇)
ū
v̄
w̄
p̄
q̄
r̄


︸︷︷︸
q̇

+


mg sin(θ)

−mg sin(φ)cos(θ)
−mg cos(φ)cos(θ)

0
0
0


︸ ︷︷ ︸

g(q)

=


Fτ1
Fτ2
Fτ3
Mτ1

Mτ2

Mτ3

 , τ =


Fτ1
Fτ2
Fτ3
Mτ1

Mτ2

Mτ3


(1)

where m is the mass of the UAV, Fτ1 , Fτ2 , and Fτ3 are
the forces acting in x,y,z coordinate axes; I is the inertia
tensor and Mτ1 , Mτ2 and Mτ3 , are the moments acting in
x,y,z axes. It is taken into account that the fixed-wing UAV
is symmetric with respect to x and z axes and inertia in
the planes xy and yz is negligible. As wind may represent
20%-50% of the air-frame airspeed, wind is included in the
simulation, by modelling it as the composition of a constant
part and a dynamic part (known in literature as Dryden model
[27]). Along the lines of [26], in order to properly describe the
influence of the wind, one needs to define the ground speed,
i.e. the UAV velocity relative to the inertial frame. Such ground
speed is commonly denoted with Vg , and it is a crucial variable
when deriving the path-following laws [4].

B. Matlab-based simulator

The fixed-wing UAV and wind dynamics have been im-
plemented in the Matlab-Simulink environment by means of
the Aerospace blockset [28]. Some screen-shots from the
simulator can be seen in Fig. 2 and Fig. 3. In Fig. 2
the forces and moments contributions are shown on the left.
On the right, the block ’Derived Conditions’ contains the
implementation of the wind dynamics, i.e. the computation
of airspeed, angle of attack, side-slip angle, course angle, and
other useful quantities affected by the wind. A visual interface,
shown in Fig. 3, contains in-flight instruments embedded in
the simulator, to help analyzing the flight status and reveal
potential errors. More details on the simulator can be found
in [29].

3

Figure 2. Matlab Simulink model for UAV dynamics. The model comprises the forces and moments on the UAV, as well as the airspeed, angle of attack,
side-slip angle and course angle after the effect of the wind.

Figure 3. Simulink visual interface

III. ARDUPILOT AUTOPILOT

Recalling that the final goal is to provide a realist UAV
simulation platform, it is essential that the Matlab simulator
can replicate the low-level control structure of the UAV (i.e.
the autopilot layer). The code of ArduPilot, a professional au-
topilot software suite, is open-source and it thus can accessed
and replicated in any other simulation platform. One of the
main feature of ArduPilot is to let the user operate under
different flight modes, which are:
• Manual: The controller is not active, the pilot closes the

loop. The radio controller stick commands of aileron,
elevator, rudder and thrust are delivered to the control
actuators as they are.

• Fly-by-wire A (FBWA): Control of roll and pitch angles
is enabled, whose reference is given by the user with the
radio controller stick commands.

• Fly-by-wire B (FBWB): In addition to roll and pitch
angles, altitude and airspeed control is enabled, taking as

reference the airspeed and rate of climb given by the user
with the radio commands.

• Autotune: Same as FBWA mode, but meanwhile the
aircraft response is used to tune online the pitch and roll
controllers.

• Auto: The guidance logic is also enabled. The UAV will
follow a set of GPS waypoints set by the user.

ArduPilot is written in C++, with many supporting utilities
written in Python. In order to promote the integration of
Ardupilot along with the aforementioned Matlab-based UAV
model, the ArduPilot functionalities are replicated in Mat-
lab after studying the Ardupilot documentation [30] and the
Ardupilot code itself [31]. This step of reverse engineering
allows us to perform software-in-the-loop simulations with the
actual autopilot protocols of the UAV. A flowchart illustrating
the structure of the ArduPilot is provided in Fig. 4.

Because the purpose of the autopilot layer is to provide
low-level controllers to govern the various UAV states, let us

4

Figure 4. Flowchart structure for the Ardupilot autopilot. Such a structure
has been replicated in Matlab following the Ardupilot documentation.

illustrate the main ideas behind lateral and longitudinal UAV
control. For most flight maneuvers of interest, autopilots are
designed with the assumption of decoupled and linear lateral
and longitudinal dynamics [26]. In this way, the autopilot
design significantly simplifies. The decoupled linearized dy-
namics of the UAV are of first and second order

roll φ(s) =
aφ2

s(s+ aφ1)

(
δa(s) +

1

aφ2

dφ2
(s)

)
pitch θ(s) =

aθ3
s2 + aθ2s+ aθ1

(
δe(s) +

1

aθ3
dθ2(s)

)
course χ(s) =

g

Vgs
(φ(s) + dχ(s))

where the terms in d are disturbances coming from the coupled
dynamics, and the definition for all variables can be found in
[29]. Such first or second order loops allow an effective use
of Proportional-Integral-Derivative (PID) control.

Let us focus only on the lateral dynamics, most relevant to
path following: the roll controller structure is depicted in Fig.
5. It consists of two nested loops: the inner one controls the roll
rate p̄; the outer the roll angle φ; Cφ2

(z) is a PID controller;
K̃Pφ is a feed-forward gain; at the outer loop there is a
proportional controller with gain Ωφ. Similar reasoning applies
to the pitch control scheme as shown in Fig. 6. The ArduPilot
documentation provides descriptions on the structure of such
loops and on the tuning of the PID controllers [32], which can
then be perfectly replicated in Matlab and eventually validated
on a real fixed-wing UAV. Validation of both the roll and the
pitch control loops has been performed on a HobbyKing Bixler
UAV (cf. the detailed validation procedure in [29]), showing
that the simulated fixed-wing UAV behaves very closely to the
actual fixed-wing UAV.

IV. HARDWARE AND SOFTWARE INTEGRATION

This section presents the basic steps necessary for integra-
tion of hardware and software on an actual fixed-wing UAV
with ArduPilot.

Figure 5. Roll control scheme of the UAV. The variables φ, φc are the roll
and commanded roll angle, while the variables p̄, pc are the roll rate and
commanded roll rate. The commanded aileron is δa,c.

Figure 6. Pitch control scheme of the UAV. The variables θ, θc are the pitch
and commanded pitch angle, while the variables q̄, qc are the pitch rate and
commanded pitch rate. The commanded elevator is δe,c.

A. Flight Control Unit

ArduPilot can run on many different micro-controllers and
platforms [33]. The HobbyKing HKPilot32 was chosen (see
Fig. 7). It is a Pixhawk clone, an open-hardware flight
controller specifically meant for UAV applications [34]. It
has two redundant inertial measurement units (IMUs) which
integrate a 3-axis accelerometer, a 3-axis gyroscope, and a
magnetometer. The measurements from these devices are used
by the state estimation protocols of ArduPilot to get the states
of the UAV. In fact, each accelerometer can output three
acceleration measurements, one per axes, while the gyroscopes
can measure the body angular rates on the three orthogonal
axes. In HKPilot32 there is also a barometer for indirect
altitude measurement. A real-time Operating System (OS)
runs on HKPilot32, called NuttX: the OS is in charge of
separating the program functions into self-contained tasks and
implements an on-demand scheduling of their execution. The
main benefit is that some tasks can be executed in parallel.

Figure 7. The HobbyKing HKPilot32 micro-controller.

5

Figure 8. Cross-section showing CoG and the distribution of electronics inside the UAV.

B. Integration

Integration of all the electronics submodules inside the
airframe is shown in Fig. 8. As the HKPilot32 micro-controller
contains the two IMUs necessary for the estimation of the
plane attitude, it is advised to place it as close as possible to the
center of gravity. It is also advised to place some foam dampers
between the micro-controller and the fixing surface, at the
corners. These dampers are required to: reduce sensor errors
due to mechanical environment solicitations; protect sensors as
they can be damaged by shocks or vibrations; contain parasitic
IMUs movements. In fact, accelerometers are very sensitive
to vibrations: in the presence of excessive vibrations, the state
estimates can lead to very bad performance, thus preventing
accurate positioning.

V. VECTOR-FIELD PATH FOLLOWING

As standard in literature, straight-line and orbit path are
considered for path following [17]. VF strategies work under
the assumption of first-order course χ dynamics

χ̇ = αχ(χc − χ), (2)

with χ the course angle, χc the commanded course angle and
αχ the time constant. The main variables behind the VF path
following are collected in Table II.

Variable Description
χ Course angle
χc Commanded course angle
χd Reference course angle (vector field)
χ∞ Reference course at infinity
λ =1 clockwise, =−1 counter-clockwise orbit
χq Angle between reference line and the north
γ Angle between UAV-center line and the north
χ̃ Path-following error (line)
s̃ Path-following error (orbit)

ksl, ko Vector field smoothness parameter
κsl, κo Control authority parameter
εsl, εo Anti-chattering parameter
Vg Magnitude of ground speed

Table II
VARIABLES FOR VECTOR-FIELD PATH FOLLOWING.

A. Straight Line Following

The vector field which describes the reference course to
drive the UAV on the path is

χd(epy) = χq − χ∞
2

π
tan−1(kslepy) (3)

where epy is the cross-track error, χq is the angle between
the reference line and the north, χ∞ is a parameter in (0, π2]
which is the course reference when the error is large, and
ksl a tuning parameter governing the vector field smoothness.
In [17] it is shown that the control law which is able to let
χ→ χd and epy → 0 as t→∞ is

χc = χ− χ∞
2

π

βsVg
αχ

sin(χ− χq)−
κsl
αχ

sat

(
χ̃

εsl

)
(4)

where χ̃ = χ− χd, βs = ksl/(1 + (kslepy)2), Vg = ‖Vg‖.
The parameters κsl and εsl govern the control aggressiveness
and counteract possible chattering in the control action, and
sat(x) = x, if |x| < 1 or sign(x) otherwise.

B. Orbit Path Following

The desired course vector field which drives the aircraft to
loiter on an orbit path is

χd(s̃) = γ + λ
(π

2
+ tan−1(kos̃)

)
(5)

where is s̃ = s−R, s is the distance of the UAV from the
orbit center, R the orbit radius and γ is the angle between
the north and the UAV position with respect to the orbit
center. The parameter λ is 1 for clockwise orbit path and −1
for counter-clockwise orbit path. In [17] it is shown that the
control law which is able to let χ→ χd and s̃→ 0 as t→∞
is

χc = χ+
Vg
αχs

sin(χ− γ)+βo
λVg
αχ

cos(χ− γ) (6)

− κo
αχ

sat

(
χ̃

εo

)
where βo = ko/(1 + (kos̃)

2), and the parameters ko, κo, εo
are defined similarly to the straight-line case.

VI. ADAPTIVE FORMATION ALGORITHM

In this section, a network formation of UAVs is considered,
each one with dynamics:

Di(qi)q̈i + Ci(qi, q̇i)q̇i + gi(qi) = τi, i = {1, ..., N} (7)

where the dynamics are in the EL form (1) as in Sect. II-A.

6

A. Preliminaries on communication graphs

The UAVs are linked to each other via a communication
graph that describes the allowed information flow (cf. the
example in Fig. 9). In a communication graph, a special role
is played by the pinning node, which is a UAV (typically
indicated as system 0) and it does not receive information
from any other UAVs in the network. The communication
graph describing the allowed information flow between all the
systems, pinner excluded, is completely defined by the pair
G = (V, E), where V = {1, ..., N} is a finite non empty set of
nodes, and E ⊆ V ×V is a set of pairs of nodes, called edges.
To include the presence of the pinner in the network we define
Ḡ = {V, E , T }, where T ⊆ V is the set of those nodes, called
target nodes, which receive information from the pinner. Let
us introduce the Adjacency matrix A = [aij] ∈ RN×N of a
directed communication graph, which is defined as aii = 0
and aij = 1, if (i, j) ∈ E , where i 6= j. In addition, we define
a vector, the target vector M = [aj0] ∈ RN , to describe the
directed communication of the pinner with the target nodes.
Specially, the target matrix is defined as ajo = 1 if j ∈ T and
ajo = 0 otherwise.

B. Formation Control Law

The main variables behind the formation control law are
collected in Table III, whose explanation is sketched hereafter.

Variable Description
Am, Bm Reference dynamics
Kp,Kv Reference gains
P Lyapunov matrix
Γ Adaptive gain

D̂i, Ĉi, ĝi Estimated dynamics of UAV # i
ΘDi,ΘCi,Θgi Estimated gains of UAV # i
D̂iDji, ̂DiDjCji Estimated dynamics between UAVs # i and # j
ΘDiDj ,ΘDiDjDj Estimated gains between UAVs # i and # j

Table III
VARIABLES FOR FORMATION CONTROL LAW.

Given a hierarchical network Ḡ of EL heterogeneous un-
certain UAVs, a pinner with state (q0, q̇0), we want to find
a distributed strategy for the inputs τi that respects the com-
munication graph, that does not require knowledge of the EL
matrices, and that leads to synchronization of the network, i.e.

Figure 9. Communication graph with V formation.

[qi, q̇i] → [q0, q̇0] as t → ∞ for every UAV i. Let us start
by formulating some reference dynamics:[

q̇0
q̈0

]
=

[
0 I
−Kp −Kv

]
︸ ︷︷ ︸

Am

[
q0
q̇0

]
︸︷︷︸
xm

+

[
0
I

]
︸︷︷︸
Bm

r (8)

where q0, q̇0 ∈ Rn is the state of the reference model and
r = q̈d+Kv q̇

d+Kpq
d is a user-specified reference input. The

reference dynamics (8) basically represent some homogeneous
dynamics all UAVs should synchronize to. With reference to
the formation given in Fig. 9, we propose the controllers:

τ1 = Θ′D1ξD1︸ ︷︷ ︸
D̂1

(−Kpq1 −Kv q̇1 + r) + Θ′C1ξC1︸ ︷︷ ︸
Ĉ1

q̇1 + Θ′g1ξg1︸ ︷︷ ︸
ĝ1

τ2 = Θ′D2ξD2︸ ︷︷ ︸
D̂2

(−Kpq2 −Kv q̇2 + r) + Θ′C2ξC2︸ ︷︷ ︸
Ĉ2

q̇2 + Θ′g2ξg2︸ ︷︷ ︸
ĝ2

(9)

where, the estimates D̂1, Ĉ1, ĝ1 and D̂2, Ĉ2, ĝ2 of the
ideal matrices have been split in a linear-in-the-parameter
form (i.e. any dynamic term is split as Θ′ξ(q, q̇) for some
unknown parameter Θ and some known state-dependent
regressor ξ(q, q̇)).

The adaptive laws for estimating such unknown Θ are:

Θ̇′C1 = −ΓB′mP e1 q̇1
′ξ′C1, Θ̇′g1 = −ΓB′mP e1 ξ

′
g1

Θ̇′D1 = −ΓB′m P e1 (−Kpq1 −Kv q̇1 + r)′ξ′D1

Θ̇′C2 = −ΓB′mP e2 q̇2
′ξ′C1, Θ̇′g2 = −ΓB′mP e2 ξ

′
g2

Θ̇′D2 = −ΓB′mP e2 (−Kpq2 −Kv q̇2 + r)′ξ′D2 (10)

where, Γ is adaptive gain and P = P ′ > 0 is such that:

PAm +A′mP = −Q, Q > 0 (11)

0 50 100 150 200 250 300

y-axis(m)

-100

-50

0

50

100

150

200

250

300

350

x-
ax

is
(m

)

Multi fixed-wing UAV formation, XY plane

Reference
Leader 1
Leader 2
Follower 1
Follower 2

Figure 10. Path following with V formation. The UAVs in the formation
follow a line and then orbit around a point.

7

Figure 11. Communication graph with Y formation.

0 50 100 150 200 250 300

y-axis(m)

-50

0

50

100

150

200

250

300

350

x-
ax

is
(m

)

Multi fixed-wing UAV formation, XY plane

Reference
Leader 1
Leader 2
Leader 3
Follower 1

Figure 12. Path following with Y formation. The UAVs in the formation
follow a line and then orbit around a point.

The following controller is proposed for the other UAVs:

τ3 =− D̂3[Kp(q3 − q1) +Kv(q̇3 − q̇1)] + Ĉ3q̇3

+ D̂3D1τ1 − D̂3D1C1q̇1 + ĝ3

τ4 =− D̂4[Kp(q4 − q2) +Kv(q̇4 − q̇2)] + Ĉ4q̇4

+ D̂4D2τ2 − D̂4D2C2q̇2 + ĝ4 (12)

Here, the adaptive laws for such an estimates are:

Θ̇′D3D1
= −ΓB′m P e13 τ

′
1 ξ
′
D3D1

Θ̇′D3D1C1
= −ΓB′m P e13 q̇′1 ξ

′
D3D1C1

Θ̇′C3
= −ΓB′m P e13 q̇

′
3 ξ
′
C3

Θ̇′g3 = −ΓB′mP e13 ξ
′
g3

Θ̇′D3 = −Γ B′m P e13
[
Kp(q3 − q1)

+Kv(q̇3 − q̇1)′ ξ′D3D1

]
(13)

Figure 13. Communication graph with T formation.

-50 0 50 100 150 200 250 300 350

y-axis(m)

-150

-100

-50

0

50

100

150

200

250

300

350

x-
ax

is
(m

)

Multi fixed-wing UAV formation, XY plane

Reference
Leader 1
Follower 1
Follower 2
Follower 3

Figure 14. Path following with T formation. The UAVs in the formation
follow a line and then orbit around a point.

Θ̇′D4D2
= −ΓB′m P e24 τ

′
2 ξ
′
D4D2

Θ̇′D4D2C2
= −ΓB′m P e24 q̇′2 ξ

′
D4D2C2

Θ̇′C4
= −ΓB′m P e24 q̇

′
4 ξ
′
C4

Θ̇′g4 = −ΓB′m P e24 ξ
′
g4

Θ̇′D4 = −Γ B′m P e24
[
Kp(q4 − q2)

+Kv(q̇4 − q̇2)′ξ′D4D2

]
(14)

It is possible prove that, the proposed controllers and
adaptive laws with all closed-loop signals are bounded, for
any (i, j) such that aij 6= 0, we have eij = (xj − xi) → 0 as
t→∞. In addition, for every UAV j we have ej = (xj −x0)
→ 0 as t → ∞. The proposed synchronization protocol can
be extended to include gaps formation, provided that the error:

eij = xj − xi + νji =

[
qj
q̇j

]
−
[
qi
q̇i

]
+

[
ν̄ji
0

]
(15)

is considered, where νji contains the desired formation dis-
placement ν̄ji among UAVs j and i. In the forthcoming

8

simulations we will consider the following parameters: con-
stant airspeed Va = 15 m/s, constant altitude hm = 50
m. The control parameters of the vector field approach are
κsl = κo = π

2 , ksl = ko = 0.1, εsl = εo = 1, while the
control parameters of the adaptive formation algorithm are

Q = 100I, Kp = 50, Kv = 50, Γ = 100. (16)

In line with most UAV path generation approaches, the path
is composed of straight lines and orbits. For these simulations
we take a path consisting of a straight line followed an orbit.

Fig. 10 shows the result of the simulations for an inverted
V formation amongst the UAVs. The simulations of the multi-
UAV formation are carried out for 4 UAVs and a pinner UAV.
The communication graph shown in Fig. 9. It can be noted
that the formation control task is achieved despite uncertainty,
which demonstrates the effectiveness of the proposed forma-
tion control method. It must be remarked that the kinematic
constraints of the UAV are not handled directly by the path fol-
lowing, but by the low level controllers (for pitch/roll/altitude)
which are implemented inside ArduPilot. This implies that, for
example, the radius of the circle path, which has been selected
as 30 meters for all UAVs, should be decided according to
physical limits: it cannot be too small otherwise the autopilot
of the UAV would not be able to track the orbit (due to the
maximum range of the aileron angle). More specifically, the
following constraints are used in the model, in line with most
commercial fixed-wing UAVs: the aileron command spans
±30 degrees, the elevator command spans±15 degrees and the
rudder command spans ±25 degrees. Table IV below shows
the parameters of the fixed-wing UAVs, which are used only
for the sake of simulations and are unknown for the purpose
of control design. With respect to the initial conditions for
the UAVs, the starting point can basically be arbitrary, and
the initial attitude angles (pitch/roll/yaw) should be within the
autopilot operating ranges, otherwise the autopilot will not be
able to stabilize the UAV.

Remark 1. The benefit of the adaptive law is to allow all UAVs
to homogenize to the same dynamics, by adapting the control
action to compensate for different mass and inertia. In fact, it
is well known in formation control literature that homogeneous
dynamics are a crucial feature in order to achieve proper
coordinated motion [19], [24].

The proposed algorithm can also be implemented with a
different number of leaders and followers: Fig. 12 shows the
result of the simulations for a Y formation (3 leaders and 1
follower) with control law

τ1 = D̂1(−Kpq1 −Kv q̇1 + r) + Ĉ1q̇1 + ĝ1

τ2 = D̂2(−Kpq2 −Kv q̇2 + r) + Ĉ2q̇2 + ĝ2

τ3 = D̂3(−Kpq3 −Kv q̇3 + r) + Ĉ3q̇3 + ĝ3

τ4 = −D̂4[Kp(q4 − q3) +Kv(q̇4 − q̇3)] + Ĉ4q̇4

+ D̂4D3τ3 − D̂4D3C3q̇3 + ĝ4 (17)

with adaptive laws

Θ̇′C1 = −ΓB′mP e1 q̇1
′ξ′C1, Θ̇′g1 = −ΓB′mP e1 ξ

′
g1

Θ̇′D1 = −ΓB′m P e1 (−Kpq1 −Kv q̇1 + r)′ξ′D1

Θ̇′C2 = −ΓB′mP e2 q̇2
′ξ′C2, Θ̇′g2 = −ΓB′mP e2 ξ

′
g2

Θ̇′D2 = −ΓB′mP e2 (−Kpq2 −Kv q̇2 + r)′ξ′D2

Θ̇′C3 = −ΓB′mP e3 q̇3
′ξ′C3, Θ̇′g3 = −ΓB′mP e3 ξ

′
g3

Θ̇′D3 = −ΓB′mP e3 (−Kpq3 −Kv q̇3 + r)′ξ′D3

Θ̇′D4D3
= −ΓB′m P e34 τ

′
3 ξ
′
D4D3

Θ̇′D4D3C3
= −ΓB′m P e34 q̇′3 ξ

′
D4D3C3

Θ̇′C4
= −ΓB′m P e34 q̇

′
4 ξ
′
C4

, Θ̇′g4 = −ΓB′m P e34 ξ
′
g4

Θ̇′D4 = −Γ B′m P e34
[
Kp(q4 − q3)

+Kv(q̇4 − q̇3)′ξ′D4D3

]
. (18)

In other words, the structure of the controller is suitable for
any formation, but because each UAVs has different neighbors
according to the formation, the signals used to implement the
control action will be different. The communication graph for
the Y formation is shown in Fig. 11. Fig. 14 shows the result
of the simulations for an inverted T formation (1 leader and
3 followers) with control law

τ1 = D̂1(−Kpq1 −Kv q̇1 + r) + Ĉ1q̇1 + ĝ1

τ2 = −D̂2[Kp(q2 − q1) +Kv(q̇2 − q̇1)] + Ĉ2q̇2

+ D̂2D1τ1 − D̂2D1C1q̇1 + ĝ2

τ3 = −D̂3[Kp(q3 − q1) +Kv(q̇3 − q̇1)] + Ĉ3q̇3

+ D̂3D1τ1 − D̂3D1C1q̇1 + ĝ3

τ4 = −D̂4[Kp(q4 − q1) +Kv(q̇4 − q̇1)] + Ĉ4q̇4

+ D̂4D1τ1 − D̂4D1C1q̇1 + ĝ4 (19)

with adaptive laws

Θ̇′C1 = −ΓB′mP e1 q̇1
′ξ′C1, Θ̇′g1 = −ΓB′mP e1 ξ

′
g1

Θ̇′D1 = −ΓB′m P e1 (−Kpq1 −Kv q̇1 + r)′ξ′D1

Θ̇′D2D1
= −ΓB′m P e12 τ

′
1 ξ
′
D2D1

Θ̇′D2D1C1
= −ΓB′m P e12 q̇′1 ξ

′
D2D1C1

Θ̇′C2
= −ΓB′m P e12 q̇

′
2 ξ
′
C2

, Θ̇′g2 = −ΓB′m P e12 ξ
′
g2

Θ̇′D2 = −Γ B′m P e12
[
Kp(q2 − q1)

+Kv(q̇2 − q̇1)′ξ′D2D1

]
(20)

Θ̇′D3D1
= −ΓB′m P e13 τ

′
1 ξ
′
D3D1

Θ̇′D3D1C1
= −ΓB′m P e13 q̇′1 ξ

′
D3D1C1

Θ̇′C3
= −ΓB′m P e13 q̇

′
3 ξ
′
C3

, Θ̇′g3 = −ΓB′m P e13 ξ
′
g3

Θ̇′D3 = −Γ B′m P e13
[
Kp(q3 − q1)

+Kv(q̇3 − q̇1)′ξ′D3D1

]
(21)

Θ̇′D4D1
= −ΓB′m P e14 τ

′
1 ξ
′
D4D1

Θ̇′D4D1C1
= −ΓB′m P e14 q̇′1 ξ

′
D4D1C1

Θ̇′C4
= −ΓB′m P e14 q̇

′
4 ξ
′
C4

, Θ̇′g4 = −ΓB′m P e14 ξ
′
g4

Θ̇′D4 = −Γ B′m P e14
[
Kp(q4 − q1)

+Kv(q̇4 − q̇1)′ξ′D4D1

]
. (22)

The communication graph for the inverted T formation is
shown in Fig. 13.

9

0 50 100 150 200 250 300

y-axis(m)

-100

-50

0

50

100

150

200

250

300

350
x-

ax
is

(m
)

Multi fixed-wing UAV formation, XY plane

Reference
Leader 1
Leader 2
Follower 1
Follower 2

Figure 15. Unsuccessful path following in the absence of adaptation. Leader
2 and Follower 2, employing the adaptive algorithm, manage to achieve their
part of the formation, while Leader 1 and Follower 1, which do not employ
adaptation, leave the formation.

Mass
(kg)

Moment of Inertia
(kgm2)

UAV-0
(Pinner) 10 Ix = 0.02, Iy = 0.026

Iz = 0.053, Ixz = 0.01
UAV-1
(Leader 1) 20 Ix = 0.1, Iy = 0.05

Iz = 0.1, Ixz = 0.01
UAV-2
(Follower 1) 30 Ix = 0.2, Iy = 0.1

Iz = 0.2, Ixz = 0.02
UAV-3
(Leader 2) 40 Ix = 0.4, Iy = 0.02

Iz = 0.4, Ixz = 0.04
UAV-4
(Follower 2) 50 Ix = 0.8, Iy = 0.04

Iz = 0.08, Ixz = 0.08
Table IV

FIXED-WING UAVS PARAMETERS

C. The importance of adaptation

Finally, we would like to highlight the relevance of embed-
ding adaptation in formation control by showing what happens
in the absence of such adaptation. To this purpose, we set up
another simulation with inverted V formation in which two
UAVs (Leader 2 and Follower 2) adopt the adaptive algorithm,
whereas the other two (Leader 1 and Follower 1) do not
employ adaptation. This means that their control gains are kept
fixed without adapting to different mass/inertia. Fig. 15 shows
the result of such simulation: it can be seen that the two UAVs
not employing adaptation cannot close the gap with respect to
their predecessor and they eventually leave the formation. It
can be noted from Table IV that the masses of the UAVs
vary of a factor 5, whereas the inertia vary of a factor 10:
it is remarkable that a unique algorithm can adapt to such
heterogeneity. In the absence of such adaptation, it might be
difficult to find a formation control strategy that can work
for any inertia and mass. Therefore, the proposed software-in-
the-loop simulations show the capability of achieving different
UAV formations while handling uncertain mass and inertia.

VII. CONCLUSIONS

The paper has discussed the research activities on the
design and software-in-the-loop implementation of adaptive
formation controllers for fixed-wing Unmanned Aerial Vehi-
cles (UAVs). The focus of this paper was on the control and
simulation of fixed-wing UAVs in Matlab environment, in the
presence of parametric uncertainties represented by uncertain
mass and inertia. Several aspects of the guidance and control
for fixed-wing UAVs have been tackled: Matlab modelling of
UAVs, hardware and software integration, ArduPilot autopilot
low-level (roll/pitch/altitude) control, vector field path follow-
ing, adaptive formation control and finally the software-in-the-
loop simulations. Software-in-the-loop capability was achieved
by replicating in Matlab the ArduPilot code (according to the
Ardupilot documentation and to the Ardupilot code itself).
This reversed engineering step allowed us to perform simu-
lations with the actual autopilot protocols of the UAV. Future
work will cover hardware-in-the-loop simulations (the actual
flight controller will send commands and receive measures
from the Matlab simulator), as well as the real flights.

REFERENCES

[1] H. Chao, Y. Cao, and Y. Chen, “Autopilots for small unmanned aerial
vehicles: a survey,” International Journal of Control, Automation and
Systems, vol. 8, no. 1, pp. 36–44, 2010.

[2] A. Isidori, L. Marconi, and A. Serrani, Robust autonomous guidance: an
internal model approach. Springer Science & Business Media, 2012.

[3] L. Marconi, C. Melchiorri, M. Beetz, D. Pangercic, R. Siegwart,
S. Leutenegger, R. Carloni, S. Stramigioli, H. Bruyninckx, P. Doherty,
A. Kleiner, V. Lippiello, A. Finzi, B. Siciliano, A. Sala, and N. Toma-
tis, “The SHERPA project: Smart collaboration between humans and
ground-aerial robots for improving rescuing activities in alpine environ-
ments,” in 2012 IEEE International Symposium on Safety, Security, and
Rescue Robotics (SSRR), 2012, pp. 1–4.

[4] P. B. Sujit, S. Saripalli, and J. B. Sousa, “Unmanned aerial vehicle path
following: A survey and analysis of algorithms for fixed-wing unmanned
aerial vehicles,” IEEE Control Systems, vol. 34, no. 1, pp. 42–59, 2014.

[5] A. P. Aguiar, J. P. Hespanha, and P. V. Kokotović, “Performance limi-
tations in reference tracking and path following for nonlinear systems,”
Automatica, vol. 44, no. 3, pp. 598–610, 2008.

[6] L. Furieri, T. Stastny, L. Marconi, R. Siegwart, and I. Gilitschenski,
“Gone with the wind: Nonlinear guidance for small fixed-wing aircraft
in arbitrarily strong windfields,” in 2017 American Control Conference
(ACC’17), 2017, pp. 4254–4261.

[7] D. Invernizzi and M. Lovera, “Trajectory tracking control of thrust-
vectoring UAVs,” Automatica, vol. 95, pp. 180 – 186, 2018.

[8] D. V. Dimarogonas, “Sufficient conditions for decentralized potential
functions based controllers using canonical vector fields,” IEEE Trans-
actions on Automatic Control, vol. 57, no. 10, pp. 2621–2626, 2012.

[9] M. Kothari, I. Postlethwaite, and D.-W. Gu, “UAV path following in
windy urban environments,” Journal of Intelligent & Robotic Systems,
vol. 74, no. 3-4, pp. 1013–1028, 2014.

[10] F. Gavilan, R. Vazquez, and S. Esteban, “Trajectory tracking for fixed-
wing UAV using model predictive control and adaptive backstepping,”
1st IFAC Workshop on Advanced Control and Navigation for Au-
tonomous Aerospace Vehicles (ACNAAV’15), pp. 132–137, 2015.

[11] J. Chang, J. Cieslak, J. Dávila, A. Zolghadri, and J. Zhou, “Analysis
and design of second-order sliding-mode algorithms for quadrotor roll
and pitch estimation,” ISA Transactions, vol. 71, pp. 495 – 512, 2017.

[12] G. Casadei, L. Furieri, N. Mimmo, R. Naldi, and L. Marconi, “Internal
model-based control for loitering maneuvers of UAVs,” in 2016 Euro-
pean Control Conference (ECC), 2016, pp. 672–677.

[13] J. Chang, J. Cieslak, J. Davila, J. Zhou, A. Zolghadri, and Z. Guo, “A
two-step approach for an enhanced quadrotor attitude estimation via imu
data,” IEEE Transactions on Control Systems Technology, vol. 26, no. 3,
pp. 1140–1148, 2018.

[14] B. Zhou, H. Satyavada, and S. Baldi, “Adaptive path following for
unmanned aerial vehicles in time-varying unknown wind environment,”
in 2017 American Control Conference (ACC’17), 2017, pp. 1127–1132.

10

[15] N. Cho and Y. Kim, “Three-dimensional nonlinear differential geomet-
ric path-following guidance law,” Journal of Guidance, Control, and
Dynamics, vol. 38, no. 12, pp. 948–954, 2015.

[16] H. Chen, K. Chang, and C. S. Agate, “UAV path planning with tangent-
plus-lyapunov vector field guidance and obstacle avoidance,” IEEE
Transactions on Aerospace and Electronic Systems, vol. 49, no. 2, pp.
840–856, 2013.

[17] D. R. Nelson, D. B. Barber, T. W. McLain, and R. W. Beard, “Vector
field path following for miniature air vehicles,” IEEE Transactions on
Robotics, vol. 23, no. 3, pp. 519–529, 2007.

[18] S. Baldi, S. Yuan, and P. Frasca, “Output synchronization of unknown
heterogeneous agents via distributed model reference adaptation,” IEEE
Transactions on Control of Network Systems, 2018.

[19] S. Baldi and P. Frasca, “Adaptive synchronization of unknown hetero-
geneous agents: An adaptive virtual model reference approach,” Journal
of the Franklin Institute, vol. 356, no. 2, pp. 935 – 955, 2019, special
Issue on Modeling, Analysis and Control of Networked Autonomous
Agents.

[20] S. Baldi, “Cooperative output regulation of heterogeneous unknown sys-
tems via passification-based adaptation,” IEEE Control Systems Letters,
vol. 2, no. 1, pp. 151–156, 2018.

[21] Y. Abou Harfouch, S. Yuan, and S. Baldi, “An adaptive switched control
approach to heterogeneous platooning with inter-vehicle communication
losses,” IEEE Transactions on Control of Network Systems, vol. 5, no. 3,
pp. 1434–1444, 2018.

[22] S. Baldi, M. R. Rosa, and P. Frasca, “Adaptive state-feedback synchro-
nization with distributed input: the cyclic case,” 7th IFAC Workshop
on Distributed Estimation and Control in Networked Systems (NEC-
SYS2018), Groningen, The Netherlands, 2018.

[23] S. Baldi, I. A. Azzollini, and E. B. Kosmatopoulos, “A distributed
disagreement-based protocol for synchronization of uncertain heteroge-
neous agents,” 2018 European Control Conference, Limassol, Cyprus,
2018.

[24] Y. Abou Harfouch, S. Yuan, and S. Baldi, “An adaptive switched control
approach to heterogeneous platooning with inter-vehicle communication
losses,” 20th IFAC World Congress, Toulouse, France, pp. 1382–1387,
2017.

[25] B. L. Stevens, F. L. Lewis, and E. N. Johnson, Aircraft control and
simulation: dynamics, controls design, and autonomous systems. John
Wiley & Sons, 2015.

[26] R. W. Beard and T. W. McLain, Small unmanned aircraft: Theory and
practice. Princeton University Press, 2012.

[27] “Dryden wind turbulence model (discrete) Simulink,” 2019. [Online].
Available: https://nl.mathworks.com/help/aeroblks/wind.html

[28] “Aerospace block-set Simulink,” 2019. [Online]. Available:
https://nl.mathworks.com/help/aeroblks/index.html

[29] S. Farì, “Guidance and control for a fixed-wing UAV,” Master’s thesis,
Politecnico di Milano, 2017.

[30] “Ardupilot documentation,” 2019. [Online]. Available:
http://ardupilot.org/

[31] “Learning the ardupilot codebase,” 2019. [Online]. Available:
http://ardupilot.org/dev/docs/learning-the-ardupilot-codebase.html

[32] “Roll, pitch and yaw controller tuning,” 2019. [Online]. Available:
http://ardupilot.org/plane/docs/roll-pitch-controller-tuning.html

[33] L. Meier, D. Honegger, and M. Pollefeys, “Px4: A node-based mul-
tithreaded open source robotics framework for deeply embedded plat-
forms,” in 2015 IEEE International Conference on Robotics and Au-
tomation (ICRA), 2015, pp. 6235–6240.

[34] “Hkpilot32 flight controller,” 2019. [Online]. Available:
https://docs.px4.io/en/flight-controller/HKPilot32.html

Jun Yang received his MS degree
in electronic information engineering
from Northwestern Polytechnical univer-
sity. He is a research fellow and a sys-
tem designer at the Systems Engineering
Research Institute of China. His current
research interests include unmanned air
vehicle systems, airborne detection infor-
mation processing, and object detection
and tracking.

Ximan Wang received the B.Sc. de-
gree from Taiyuan University, China, in
2014, and the M.Sc. degree from Uni-
versity of Sheffield, in 2016. He was a
Senior Engineer at Systems Engineering
Research Institute, Beijing, China, and he
is now pursuing the PhD at the Delft
Center for Systems and Control, Delft
University of Technology with research

interests in adaptive optimization for control and UAV adaptive
control.

Simone Baldi received the B.Sc. de-
gree in electrical engineering, and the
M.Sc. and Ph.D. degrees in automatic
control systems engineering from the Uni-
versity of Florence, Italy, in 2005, 2007,
and 2011, respectively. He is currently
professor at the School of Mathematics,
Southeast University, with a guest posi-
tion at the Delft Center for Systems and
Control, Delft University of Technology,

where he was assistant professor. Previously, he held post-
doctoral researcher positions at the University of Cyprus, and
at the Information Technologies Institute, Centre for Research
and Technology Hellas. His research interests include adaptive
systems and switching control with applications in networked
control systems and multi-agent systems.

Satish Singh received the B.E. (Bach-
elor of Engineering) degree in electrical
engineering from Nagpur University, In-
dia in 2012. He is currently pursuing his
M.Sc. degree in embedded systems from
Delft University of Technology, Delft,
The Netherlands. His work focuses on
software-in-the-loop and hardware-in-the-

loop simulations for UAVs.
Stefano Farì received the B.Sc. and

M.Sc. in automation engineering from
Politecnico di Milano, Italy, performing
his master thesis as guest researcher at
the Delft Center for Systems and Con-
trol, Delft University of Technology, The
Netherlands. He has worked at Piaggio
Aerospace, Savona, Italy, as flight control
system engineer and he is now working
as GNC engineer at German Aerospace

Center (DLR), Bremen, Germany.

