Circuits and Systems
Mekelweg 4, CAS-2022-5346371

2628 CD Delft

The Netherlands
https://cas.tudelft.nl/

M.Sc. Thesis

Off-chip Self-timed SNNN Custom Digital
Interconnect System

Yichen Yang B.Sc.

Abstract

To support the spike propagates between neurons, neuromorphic
computing systems always require a high-speed communication link.
Meanwhile, spiking neural networks are event-driven so that the com-
munication links normally exclude the clock signal and related blocks.
This thesis aims to develop a self-timed off-chip interconnect system
with ring topology that supports multi-point communication in neuro-
morphic computing systems. This interconnect system is implemented
in high-level modeling with SystemC and involves the burst-mode
two-wire protocol in point-to-point communication. In order to en-
sure the flexibility of the system, the distributed control system is in-
volved. Further, the system can be configured with different numbers
of chiplet to fulfill various spiking neural network structures. We also
explore optimization methods, which is a bi-directional ring topology
achieving the growth of throughput. Based on evaluation and simula-
tion results, the interconnect system can achieve 4.302Gbps with the
specific application scenario.

%
TUDelft

Delft University of Technology

Off-chip Self-timed SNN Custom Digital
Interconnect System

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE
in
ELECTRICAL ENGINEERING

by

Yichen Yang B.Sc.
born in Xi’an, China

This work was performed in:

Circuits and Systems Group

Department of Microelectronics

Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology

%
TUDelft

Delft University of Technology

Copyright (©) 2022 Circuits and Systems Group
All rights reserved.

DELFT UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF
MICROELECTRONICS

The undersigned hereby certify that they have read and recommend to the Faculty
of Electrical Engineering, Mathematics and Computer Science for acceptance a thesis
entitled “Off-chip Self-timed SNN Custom Digital Interconnect System” by
Yichen Yang B.Sc. in partial fulfillment of the requirements for the degree of Master
of Science.

Dated: 28.11.2022

Chairman:

Prof. Dr. Ir. Rene van Leuken

Advisor:

Dr. Aditya Dalakoti

Committee Members:

Dr. Charlotte Frenkel

iv

Abstract

To support the spike propagates between neurons, neuromorphic computing systems
always require a high-speed communication link. Meanwhile, spiking neural networks
are event-driven so that the communication links normally exclude the clock signal and
related blocks. This thesis aims to develop a self-timed off-chip interconnect system
with ring topology that supports multi-point communication in neuromorphic com-
puting systems. This interconnect system is implemented in high-level modeling with
SystemC and involves the burst-mode two-wire protocol in point-to-point communica-
tion. In order to ensure the flexibility of the system, the distributed control system is
involved. Further, the system can be configured with different numbers of chiplet to
fulfill various spiking neural network structures. We also explore optimization methods,
which is a bi-directional ring topology achieving the growth of throughput. Based on
evaluation and simulation results, the interconnect system can achieve 4.302Gbps with
the specific application scenario.

vi

Acknowledgments

This thesis marked the end of my student’s life at TU Delft. During the development
of the whole project, I have receievd a great deal of support and assistance from many
people.

I would like to express my deepest appreciation to my supervisor Prof. Dr. Ir.
Rene van Leuken, who provided invaluable patience and feedback on my research.
Also, I could not have undertaken this journey without the advisors from Innatera
Nanosystems. Special thanks to Dr. Aditya Dalakoti, Dr. Kamlesh Kumar Singh,
Ir. Alexander de Graaf, and Jinbo Zhou. Without their assistance and dedicated
involvement in every step throughout the process, this project would have never been
accomplished. Additionally, they bring me many knowledge and practical skills in the
field of digital design

I am also grateful to my parents. Thanks to their unfailing support and continuous
encouragement, I am able to complete my studies in the Netherlands. Also, special
thanks to my colleagues and friends, Tianyu, Jiongyu, etc. Working with them has
brought a lot of joy into my life. Last but not least, I would like to thank my girlfriend,
Jin. In these months, she is always there for me.

Yichen Yang B.Sc.
Delft, The Netherlands
28.11.2022

vil

viii

Contents

Abstract
Acknowledgments
1 Introduction
1.1 Problem Statement
1.2 Goal
1.3 Contributions
1.4 Thesis Outline
2 Background
2.1 Neuromorphic computing system
2.1.1 Neurons model
2.1.2 Address-Event Representation
2.2 Communication System
221 SerDes
2.2.2 Asynchronous Communication link
2.2.3 Various Topology L
3 Implementation
3.1 Overview
3.2 Implementation of Basic SerDes Link
3.2.1 Transmitter Design 0oL
3.2.2 Receiver Design oo
3.2.3 Cooperation Mechanism
3.3 Implementation of Multi-Point Communication
3.3.1 System’s Ring Topology
3.3.2 Upgrading in Transmitter and Receiver
3.3.3 Distributed Control System
3.4 Optimization
3.4.1 Bi-directional Ring Topology
3.4.2 Optimized Chiplet Design
3.5 Configuration and Parameterization
4 Simulations and Results

4.1 Power and Area
4.2 Simulation with MNIST Use Case
4.2.1 Mapping Methodology
4.2.2 Simulation Waveform
4.2.3 Timing constraintso
4.2.4 Throughput Analysis
4.3 Comparison

ix

<

s.

NN =

—
N OO ©] Ut ot ot

—_

5 Conclusion and Future Work
5.1 Summary
5.2 Future Work

List

of Figures

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15
2.16

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21
3.22
3.23

4.1

The neural system in brain[l] 6
The integrate-and-fire model of Lapicque[2] 6
The Hodgkin—Huxley model[3] 7
Address-Event Representation [1] 7
The structure of a event-driven transmitter [1] 8
The structure of a event-driven receiver [5] 8

The structure of a typical SerDes device [6] 9
The structure of a voltage mode asynchronous links with handshaking [7] 10
The handshaking protocol in[7] 11
Current-mode driver, channel and receiver[s] 11
Another Current-mode driver[9] Lo 12
The communication system between cores in TrueNorth[10] 12
Top level blocks of the TrueNorth chip architecture[l1] 13
Neuron-to-neuron mesh routing model in Loihi[12] 14
Hierarchical address-event routing (HiIAER) architecture[13] 14
The torus topology in SpiNNaker[14] 15
Overview of the Interconnect System 18
SerDes link between two neural arrays 19
The Digital Block of Transmitter 19
Two-wire Burst-mode Protocol 20
The Structure of the Transmitter 20
The pulse generator in transmitter 21
The Structure of OR gate tree in transmitter 21
The Digital Block of Receiver 22
The Structure of Receiver L. 22
The Structure of Data_diff 23
The feed-forward mechanism 24
Interconnect System with the Ring Topology 25
The structure of interconnect system inside one chiplet 26
The Structure of Transmitter 27
The Structure of Receiver 28
The Overview for distributed control system 29
The Structure of Local Controller 29
The States diagram 30
The control logic of bus controller 31
The Optimized chiplet Structure 33
The Multiplexer with bi-direction 34
The control logic of optimized bus controller 35
Configure the system with different number of chiplet 36
The structure of a Neural Network from Specific Use Case 42

xi

4.2
4.3
4.4
4.5
4.6
4.7
4.8

The first traffic pattern for system simulation 43

The second traffic pattern for system simulation 44
The workflow of transmitting and receiving packet 44
The waveform regarding the beginning stage of the interconnect system 45
The waveform regarding transmitting a packet 45
The waveform regarding receiving a packet 46
The waveform for simultaneously inserting several packets A7

xil

List of Tables

4.1 The Gate number in transmitter’s main components 38
4.2 The Gate number in Receiver’s main components 38
4.3 The Gate number of local controller 38
4.4 The Gate Counting Results with kGE 39
4.5 The Energy Consumption of Each Pulse-mode Gate [15] 39
4.6 The Energy Consumption of Transmitter 41
4.7 The Energy Consumption of Receiver 41
4.8 The Energy consumption and Power of System 42
4.9 The parameters regarding the latency of Interconnect System 47
4.10 The Throughput of Interconnect System 48

4.11 The Throughput and Power Comparison Between Two Topology . . . 49

xiii

xiv

Introduction

1.1 Problem Statement

Nowadays, neuromorphic computing system has become a new noticeable formal com-
puting system, which mimics the physics of the human brain and nervous system with
the help of the Spiking Neural Network (SNN). The neural array is a prominent part of
that system, and tremendous spikes signals are transferred between those neural arrays
to simulate the connection system in the brain. Therefore, it would be essential to
conduct a particular interconnect system for that system to ensure the communication
demands are satisfied.

This thesis aims to develop a high-speed, self-timed interconnect system between
chiplets in a neuromorphic system. Normally, neural arrays, which are packaged in
chiplets, generate the spikes signals with high width, and they are needed to be trans-
ferred in an extremely short time, which means that it is necessary to keep the system
working at high speed. Meanwhile, there are considerable benefits when a neuromor-
phic system is based on the self-timed instead of relying on the clock. For example, the
speed of interconnect is only limited by wire speed instead of the clock frequency. Also,
self-timed has some positive effect on power consumption. Consequently, high speed
and self-timed will be two main characteristics of interconnect systems.

Address Event Representation (AER) is a widely used protocol in neuromorphic
interconnect systems, which focuses on point-to-point communication and propagates
the data based on event address. In the AER circuit, as an event or spike only has one
destination, the communication between two neural arrays can be seen as the Point to
Point communication. Meanwhile, there will be an event if a one-bit signal generates
a spike, and then that event is encoded to the address information used to transmit to
the receiver. After that, the receiver-end decodes the address information to represent
the original event. So, these characteristics lead to some bottlenecks when applying
AER to a neuromorphic system that contains many neural arrays and more complex
communication demands.

Compared with AER, our interconnect system not only supports Point to Point com-
munication between any two chiplets but also introduces some mechanism to support
multi-point communication between several chiplets. Also, a more effective method to
represent the event is conducted to replace the AER. In our systems, a multi-points
communication mechanism is designed to ensure the demand for collaboration between
chiplets, as there are many neural arrays in a neuromorphic system generally, which
means there is more than one chiplet.

In addition, a bi-directional ring topology and the local controller are introduced
to ensure the interconnect system works with low latency and keeps synchronizing be-
tween transmitters and receivers. Every neural array, as known as chiplet, contains

a transmitter and a receiver to finish spikes signal transmission with a feed-forward
protocol. Meanwhile, they are connected with a bus that has a ring topology so that
it can guarantee the spikes signal could arrive at any receiver and also keeps the low
latency of the whole system. As for the local controller, a state machine is introduced.
It would work with a round-robin arbiter to determine the permission for data trans-
mission, and the feed-forward design would keep synchronization between transmitters
and receivers.

1.2 Goal

This thesis project aims to design and implement a customized high-speed burst-mode
asynchronized interconnect system for a neuromorphic computing system and propose
the optimization method to enhance the system’s performance. Additionally, evaluate
the power, area, and throughput of interconnect system and verify the functions with
multiple MNIST use cases.

1.3 Contributions

The contributions of this thesis include the following parts:

e Implement the basic SerDes Link for two neural arrays.

e Based on the designed SerDes link, propose the ring topology for the off-chip
interconnect system between multiple chiplets in a neuromorphic system and im-
plement it in system modelling level.

e Explore and implement the potential optimization method for the off-chip inter-
connect system.

e Build the simulation environment and verify the system with a specific MNIST
use case .

e Evaluate the system’s throughput, area and power, and also compare the result
between different two kinds of implementation.

1.4 Thesis Outline

e Chapter 2:

It introduces the background of interconnect systems for neuromorphic computing
systems and some detailed methods for implementation.

e Chapter 3:

It introduces the whole topology of our interconnect system, illustrates the de-
sign methodology of the transmitter, receiver and local controller, and elaborates

on how they cooperate with each other to meet the system’s functional require-
ments. Meanwhile, this chapter introduces the optimization methods and how to
configure the system according to the customized requirements.

Chapter 4:

It shows the simulation results and evaluates system’s power, area and throughput.
Also, the comparison between different implementations is carried out in this
chapter

Chapter 5:

It concludes our interconnect system and proposes potential improvements in the
future.

Background

First, the structure of a neuromorphic computing system, which comprises multiple
neurons and event-driven communication with a lot of connectivity, will be introduced
in this chapter. Furthermore, the interconnect system with different characteristics and
working principles are introduced. Meanwhile, some research related to the topology
and routing system of communication systems is introduced.

2.1 Neuromorphic computing system

With the continuous improvement of transistor technology, a larger number of transis-
tors can be accommodated in the same area of the chip. At the same time, the power
consumption of the system is also rising. Therefore, in order to address this problem,
the neuromorphic computing system is proposed, which is inspired by the brain’s struc-
ture. Meanwhile, Spiking Neural Network (SNN) processing is used in neuromorphic
compute accelerator ICs, which use stateful neuron models that share information in
the form of sparse asynchronous events (spikes)[10]. State-of-the-art implementations
of neuromorphic systems are based on analog, digital, or hybrid mixed-signal silicon
technology[17][15].

Generally, the neural system consists of the neuron cell, axons, and synapses, as
shown in figure 2.1. The neuron transmits the electricity through the axon and the
signal is received by the next neuron through the synapse, which is the junction between
several types of neurons. Basically, axons are used by the many types of neurons to
form long-distance connections[l] and emulate the interconnectivity[l9]. And these
axons are represented by the communication link in neuromorphic computing systems.
In the following content, we will demonstrate the various neuron models and how these
neurons communicates based on the Address-Event Representation (AER) protocol.

2.1.1 Neurons model

The neurons require the communication link with specific characteristics. Before intro-
ducing the communication link, it is essential to explore the neuron architecture and
the working principle of them. There are two most widely used single neuron models
in theoretical neuroscience, which are integrate-and-fire model (IF), modeling neurons
at an abstract level and the Hodgkin—-Huxley (HH) model describing the biophysical
mechanisms of cells [20]. In the following content, we will introduce them respectively.

e Integrate-and-fire model

The integrate-and-fire neuron model was developed by Lapicque and it is one of
the most widely used models for analyzing the behavior of neural systems [21].

yn"\‘
B
D h

T .
S\
S AT "

&)

Gray matter

.

White matter 100um

Figure 2.1: The neural system in brain[!]

The figure 2.2 demonstrates the prototype of this model. This model consists of
capacitance C and membrane resistance R, which are shown in figure2.2(A). On
the left side, the analogue simulation result of IF model is shown, which reveals
the fluctuation of the membrane potential V is related to the input current I.

| N action

potential %‘ 20
C R > 40
threshold -6
g
= Viest < =
10ms reset 0 100 200 300 400 500

t (ms)

Figure 2.2: The integrate-and-fire model of Lapicque|?]

[21] described the dynamics of the neuron’s membrane potential, v(t), which follow
the equation 2.1.

du(t
C’m% = Lieak(t) + Is(t) + Lin (1) (2.1)
C,, is the membrane capacitance. In terms of the current I, they represent the
synaptic inputs and the injected current. As soon as the membrane potential
arrives at a specific threshold, a spike will be generated.

e Hodgkin-Huxley model

Hodgkin—Huxley model was developed in 1952, which depicts the initiation and
spread of action potentials in neurons. Also, it is a mathematical model that
aims to explain the ionic mechanisms underlying the initiation and propagation

of action potentials in the squid giant axon[22]. Figure 2.3 can be used to explain
the fundamental mechanism of Hodgkin—-Huxley model. Every part is regarded as
an electrical element. It has three distinct processes: leak channels, voltage-gated
ion channels, and pumps and exchangers. Comparatively speaking, this paradigm
is more difficult to implement in silicon.

Extracellular Medium

f
gn(t,V) g
EER
En‘l' EL‘I'

Intracellular Medium

|

Figure 2.3: The Hodgkin—Huxley model[3]

2.1.2 Address-Event Representation

Address-Event Representation(AER) is invented by Mahowald[23], which is a circuit
that are used to provide multiplexing/demultiplexing functionality for spikes that are
generated by/delivered to an array of individual neurons [l]. Figure 2.4 reveals the
architecture of the AER circuit that cooperating with the two neural arrays and trans-
mitting data in serial. Basically, the AER circuit can be divided into three parts, which
are multiplexer and encoder placed at the transmitter end, and the demultiplexer and
decoder locating at receiver end, and the communication link driven by events.

[ADDRESS ENCODER [l i X-DECODER |
T IT T T I CXREQ CRREQ T IT T IT
| HANDSHAKING LOGIC I ADDRESS LATCH |

CRACK

CXACK

gaugava /
H3Q003AA |

HOlv1ss3adaay |
I

HIAOON3 SSHHGGV'
I
[01901 ONBIvHSANVH |

Figure 2.4: Address-Event Representation [!]

The transmitter end aims to encode the spike/data from the neurons, which are
able to indicate the address of the fired neuron. In addition, the encoding result is sent
out in serial. Also, the proper arbitration mechanisms is essential to avoid the collision
of data and there are various arbiter to accomplish this goal in the transmitter end,
such as tree arbiter, mesh arbiter, etc.

A scalable multiple-access transmitter is proposed by [1], which supports communi-
cation binary activity between two-dimensional arrays. Figure 2.5 reveals the architec-
ture of this transmitter. We can notice that the TX is able to read all active cells in
a selected row in parallel. Meanwhile, the burst-mode communication with the three
wires protocol is involved in this structure. A row-request, a column-request, and a
common acknowledgment, these three wires support the communication. Additionally,
the tree arbiter and hand-shaking are involved in this design.

Arbiter Tree

-
Handshaking ‘L

Figure 2.5: The structure of a event-driven transmitter [4]

In terms of the receiver end, [5] proposed a receiver for AER protocol, shown in
figure 2.6. In this receiver, row and column addresses are used to identify recipients,
although they are not transmitted simultaneously. The row address and column address
are latched by D and E, respectively. As soon as the burst finish, the address is going
to be decoded and the data is written into row R.

T e ——
Ry U |
Y;X u
Ay
D -
Ay

E’_

Il

Figure 2.6: The structure of a event-driven receiver [5]

2.2 Communication System

Basically, the communication networks can be divided into two main categories: circuit-
switched and packet switched[!]. In terms of the circuit-switched network, a virtual
circuit is established when the data is propagated. Once the communication is done, the
hardware resources is going to be released and converted into other virtual supporting
new data communication. On the other hand, packet-switched networks work by time-
multiplexing the network’s component segments. Compared with the previous circuit-
switched, there is no longer existing an end-to-end path. Hence, a packet has to carry
enough information for each step in the communication network to identify what the
packet’s next step should be. In the following content, we mainly investigate the packet-
switched network.

2.2.1 SerDes

A Serializer /Deserializer (SerDes) is a couple of functional blocks that are frequently
applied in the high speed communications. Normally, the serializer regards the trans-
mitter and the deserializer regards as the receiver during the communication. Figure
2.7 reveals the structure of a typical SerDes device. The transmitter transforms paral-
lel data to serial format and then sends the serial data to the transmission media. By
multiplying the reference clock, the PLL provides an internal high-speed serial clock
for the serializer. In the aspect of receiver, it is responsible recover the clock in CDR.
At the same tie, the parallel format data is restored with the help of recovered clock

[0].

| Transmitter | | Receiver |

|) - 4 i) |
Line e Line
Farol Drtvee [TFARSINSSION, Recsiver ! Decoding Parallel
Data X . Medium . oie Data
Encoding
‘:I’ i - | P2s s2p | . &
Logic .
’ One 2 Frame
- Differential | ,| Alignment
| — | Pair | CDR | |

Reference | | | T l Clock

Clock
Recovered

I. | I Clock |

Figure 2.7: The structure of a typical SerDes device [0]

Due to the sequential information involved in the system, the power consumption
is significantly occupied by the clock. Normally, the power of SerDes device is on the
order of milliwatts even though there are distinctive working conditions and fabrication
technologies [21] [25]. As a result, in order to eliminate the clock blocks from the com-
munication system and reduce power consumption, the asynchronous communication
link is proposed and we demonstrate some research regarding this kind of link.

2.2.2 Asynchronous Communication link

Compared with the synchronous communication links, it is challenging to ensure the
synchronization between receiver and transmitter in the asynchronous communication
links, thanks to the clock excluded in the system and Tx and Rx located at two sepa-
rative clock-domain. To address this challenge, the handshake is applied to the asyn-
chronous link. However, it leads to the asynchronous protocols becoming relatively
slow due to the demand of requirement and acknowledged transition. In the following
content, we introduce and compare various asynchronous links with specific synchro-
nization mechanisms.

Based on the concept from [26], Carlos proposed a low power fast ON/OFF voltage
mode communication link, which aims to be applied into the high-speed bit-serial Low
Voltage Differential Signaling AER chip grids in [7]. Normally, events are asynchronous
and sparse in AER systems. As a result, significant additional power savings can be
realized if the links are turned off during inter-event intervals and immediately turned
back on when a new event needs to be broadcast. Figure 2.8 reveals the architecture of
this fast turn on/off asynchronous communication links. Once the transmitter read the
AER input data, the system turns on and the circuit 4 phrase handshaking is performed
before sending data out by LVDS.

i | =
8 Manch '[Mancl : ‘(E
N anchester anchester o
::_E Coder 1| Decoder |] Z-
I =
| B | = -
ackIN | @ VN | i BN Il & |ackOUT
v T T o
reqIN I ! ! reqOUT
—_— Control | | | [Control [. |
Clock X |4 Horx | ! R‘*"’fk o
Generator | ackSER | coovery |
-
[S S
ackSERser | | I T =
reqSERser ik L ackSERdes

Figure 2.8: The structure of a voltage mode asynchronous links with handshaking [7]

We can notice that the reqIN leads to the toggle of reqSERser. Further, this request
signal arrives at the receiver end controller. Once the ackSER signal is sent back, the
handshaking done and the data starts converting into serial format. This procedure
is shown in figure 2.9. It is easy to understand the handshaking mechanism consume
more time and leads to the degradation of the link’s throughput.

10

reqSER |

ackSERdes|;

ackSER |
'.

i
reqOUT

N |

Serial i

Data — i
Link - ; End of data
activation (b) transmission

Figure 2.9: The handshaking protocol in[7]

Some research implemented the voltage mode asynchronous communication link
based on the low voltage differential signal, such as [7] and [27]. However, some research
revealed that the current-mode asynchronous link could be more efficient than the volt-
age mode, enabling almost twice longer links at the same high speed.[8]. Mochizuki[25]
proposes a single-ended-style current-mode circuit with quaternary current signaling,
which is used for an energy-efficient asynchronous communication link. This design
achieved the throughput of 1.1Gbps per wire at the power supply of 1.2V under at
130nm CMOS technology. Compared with the traditional conventional binary dual-rail
current-mode circuit[29], this design achieves the 2.3 times increase in the throughput
of the link.

Figure 2.10 reveals the schematic of the current mode driver and receiver with the
differential channel. In the driver end, it either blocks one of the two currents or
generates two slightly different currents in the same direct. In receiver end, the input
current is converted into a low voltage swing signal on output. And this design achieves
the 67 Gbps finally[3].

. Receiver-Q
G: L
[R
a
CM-Driver s]’] M
Cl_ e C a |
e Ma|L
CIN 7 w CN
.A—~| T s aasa I,
AN— M2
N
I RBOEIUErDN an

Figure 2.10: Current-mode driver, channel and receiver[¥]

[9] proposed a kind of on-chip pulsed current-mode interconnect with ultra low la-

11

tency and the driver of this interconnect is shown in figure 2.11. Basically, the RC delay
increases quadratically with the length of line. This research focus on the exploration
of the inductance rather than the resistance and impedance in the wire.

mamg—r—mmmm———aaa = Signal Signal

Du—q_':

m
:

Figure 2.11: Another Current-mode driver[9]

2.2.3 Various Topology

There are several neuromorphic systems being implemented these years, such as the
Loihi developed by Intel[12] , the TureNorth developed by IBM [l 1]. These designs
proposed its interconnect system with various topologies. In this section, we mainly
introduce how the interconnect is built in these systems.

e 2D mesh topology

Figure 2.12 shows the TrueNorth is based on the point-to-point communication to
convey a spike from one neuron to another core. Meanwhile, the hierarchical com-
munication with a high-fanout crossbar for local communication is involved in this
system. Actually, TrueNorth includes the hybrid synchronous-asynchronous flow
to design interconnect elements. We mainly pay attention to the implementation
of asynchronous parts.

clones Synapse

——= Cross-bar

Inputs

Core 1 Core 2 Core3

Figure 2.12: The communication system between cores in TrueNorth[1(]

In the aspect of internal core, 2-D mesh network is applied to TureNorth, which
is responsible for routing spike signals from neurons to axons with minimum la-
tency. Meanwhile, some router is built to support the data travel between multiple

12

core inside a chip. Compared with the internal chip network, it also proposed the
chip periphery, merge-split blocks and serializer /deserializer circuits, which can be
regarded as the off-chip interconnect network in TrueNorth. Figure 2.13 demon-
strates the top-level structure of a neural array core. We notice that the packet
travel in serial format with the help of SerDes at the periphery of the core array,
and packets merge/spilt before serializing/deserializing

Spikes Spikes
Morth 0 I North 1 I
L 1
: [Pads North | |
Spikes 1 [] |]] | Spikes
West 1 | [Merge Split NO | [merge Split N1 | ! East 1
]
1 Z|— —| T 1
: —| & G [y PN !
1 7 !!"’ g” - :
' 2|l |E]— Core —l2 (B !
3l = 0| i = wn
: E g [— Array — @ E !
1 = =
) . R =1 : uE‘ — :)
Spikes 1 &l o & | Spikes
West 0 | = | 2] | East 0
: IMerge Split 50 || Merge Split 51 I 1
I
L I ! —
1 | Pads South I 1
D e e o o o o o o o o o o e e 1
Spikes I Spikes I *
South 0 South 1 2D router

Figure 2.13: Top level blocks of the TrueNorth chip architecture[l1]

Similar with the [11], a 2D mesh network cooperating with the hierarchical archi-
tecture is developed in [12]. this characteristic has the potential to greatly reduce
the chip-wide connectivity and synaptic resources required to map convolutional-
style networks, in which a template of synaptic connections is applied uniformly to
many neurons. The total synaptic fan-in state and the total number of distribu-
tion lists, associated by axon_id is the connectivity bottleneck of this interconnect
system, which are shown in figure 2.14.

e Tree topology

Besides the mesh topology, some research proposed the tree topology network
for the neuromorphic communication system. Figure 2.15 depicts a Hierarchical
Neural Network Topology with a Synaptic Routing Table that depicts the con-
nections between neurons[!3]. In the meantime, each layer is made up of relay
neurons(RN). An RN forwards an incoming source event to RNs at higher and/or
lower levels of the TREE structure.

e Torus topology

13

F]
1 E] |/'_r
3 D ;u_n:m_:b_r‘/ C‘}
C : — ?\ |[
s I S)
B i - N _‘ - M
| B ", {E
A I = Sl i
| ™ /
B O %
| — “~ CORE3
|
u |
O O H u
u O B LH O L9
= T} — . axon_id; [} y |
l T "R -
! A) — | \\i/ ‘ﬁ\,l
| O B o .
- I B
! O COREL [| Y - el
b N [—
L awon_id, L 1 CORE2
_____________________ I

PRE[POST| PAR T
T 12| di | L3 |
2 3] d
12 223 / 2. .L;,!\
PRE|POST| PAR 11.12/ PRE[POST] PAR
1] 5 dras 1 1| 16] dise 2
| 1] 4y L2 2| 15| doys L2
2 12] da 3| b5 dias
2] 4S5 das
(TSI ¥5) b5 b0
nAL N2)4
L1 ! LI ? LI '| L1 2|
gl l l 11l 11 1 i 1l
IFAT IFAT IFAT IFAT
PRE[POST[PAR PRE[POST] PAR PRE [POST[PAR PRE [POST[PAR
1|2 W2 2 1 W, 1 2 Wiz 1 2 W2
14| w 2 3| was 1]t dry 32| wa
2|t dy 2| 12] do 32| wi S0 ws
2] 3 Wi 5 i Ws,g 3 4 Wig 5| 4 Wsa
511 Ws g 5 4 W 5 2 Ws,2 6 2 Wa
Sl 3 Ws3 5 4 Wsg 6 4 We

Figure 2.15: Hierarchical address-event routing (HIAER) architecture[l3]

The interconnect system of SpiNNaker is inspired by mammalian brain[30] and it
supports carrying tremendous packet with very small size (40 or 72 bits). Figure
2.16 reveals the topology of the system, which is different with the traditional
2D mesh network. In the aspect of inter-processor Communications There are
many network interface modules responsible for converting the data from parallel
format into the serial format, which can be regard as the SerDes. Besides, they
are in charge of synchronizing signals that span the timing domain[!].

With the help of torus topology, every neuron in a SpiNNaker system can com-
municate with any other neuron via a time delay that corresponds to adjacency in
biological three-dimensional space. As a result, the mapping of neurons from bio-
logical 3D space into the SpiNNaker 2D processor network can be arbitrary—every

14

neuron can be mapped to any processor[31].

S

SpilNakar
chip

3 @

4 02 +

T
:

N

1.1

0,0 —

P

1,0 o — | 2,0

3 3

Figure 2.16: The torus topology in SpiNNaker|[11]

15

16

Implementation

In the previous chapter, some research on interconnect systems has been shown. Based
on existing research, in chapter 4, we will propose a new off-chip and self-timed inter-
connect system that is applicable to the neuromorphic computing system and elaborate
on how this system is implemented from each bottom level to the top level.

3.1 Overview

Our work aims to build a configurable interconnect system between multi-chiplets in
system-level modeling. Generally, the neuromorphic computing system includes multi-
neural arrays used for accumulating spike signals. And the accumulation results are
generated from the output of one neural array. Then they are sent to the input of
another neural array, which can represent the data propagation between different SNN
layers. In the application scenario of this work, one chiplet only contains one large
neural array, which means the propagation of data is implemented by off-chip commu-
nication. Therefore, our work mainly focuses on the off-chip interconnect system.

Besides the off-chip, another main characteristic of this interconnect is self-timed.
Normally the neuromorphic computing system keeps in an idle state as long as there
is no spiking signal. Therefore, it is possible to build a self-timed interconnect system
without a clock signal. In our system, various events are used to trigger the system to
work. Due to the event-driven instead of clock-driven, power consumption experiences
a significant degradation.

In figure 3.1, there is an overview of the interconnect system shown in the dash line
square. We can find four chiplets, including four neural arrays, and they are all linked
by the interconnect system. This system supports that each neural array can transmit
the packet to any neural array, including itself, and also, the multi neural arrays can
receive the packet from one origin at the same time. The system works at high speed
so that it can meet the throughput requirements and avoid the data junction in the
transmitter-end or receiver-end. To explain the process of implementation more clearly,
we assume that the neural array always generates a spike packet with a width of 256
bits in the following chapter.

17

Chiplet 0 Chiplet 1
s) z
_) X — RX —-—>
Neural |_ . | RX L 1 e Neural
Array ; ; Array
Control Control | :
Unit Unit | :
éThe Interconnect
' System
Chiplet 3 § : Chiplet 2
_) TX = RX —'—>
Neural (_._ RX — X (_ Neural
Array : : Array
i | Control Control | :
unit | \—/ Unit

Figure 3.1: Overview of the Interconnect System

In the following chapter, we start with the basic SerDes link used for communica-
tion between one transmitter and one receiver. And then, the structure of interconnect
system between multi-chiplet and the working mechanism of this system is illustrated.
After that, the optimization method based on that ring topology is proposed. Further-
more, considering that the interconnect system is configurable, which parts of a system
can be configured by the various parameters is illustrated. At last, we explain that
the system can be configured with several parameters to prove the flexibility of our
interconnect system.

3.2 Implementation of Basic SerDes Link

For information transmission between two neural arrays, our basic idea is to convert
the parallel spike signal to serial at the transmitting end. Then the packet is sent
out in serial. At the receiving end, the packet is decoded into a parallel spike signal.
Considering this working mechanism, the transmitting-end can be considered as a Se-
rializer. On the contrary, the receiving-end is considered as a deserializer. Hence, this
solution is similar to SerDes link, but the clock is not involved in our system. Figure
3.2 demonstrates a SerDes Link implements the point-to-point communication between
two neural arrays.

18

Point to Point Communication

Serializer

>

Deserializer

~

Array
0
Array

Figure 3.2: SerDes link between two neural arrays

3.2.1 Transmitter Design

The transmitter is responsible for sending the spike packet and indicating that packet’s
destination. Figure 3.3 shows the transmitter block and the input and output ports.
The packet_dstn is used to indicate the destination of the packet. Meanwhile, consider-
ing that this subsection focuses on the basic point-to-point SerDes communication, the
packet_dstn is only 1 bit instead of 4 bits. In terms of enable_TX, as long as it becomes
"1’, the transmitter will start converting the spike packet into serial and send out the
spike packet and that packet’s destination.

X
| Spike_packet Dataline |
256bits 2bits
| Spike_dstn Destination|
4bits 4bits
Enable_TX Spike_dtc |
1bit 1bit
| TX_reset
1bit

Figure 3.3: The Digital Block of Transmitter

In terms of converting the spike packet from parallel into serial, a two-wire burst-
mode protocol is conducted in our system. Figure3.4 shows an example of our protocol’s
methodology; basically, a 256 bits packet is converted into 2 bits data lines, one line and
zero line. One line corresponds to the logic "1 in the spike packet; conversely, the logic
‘0’ from that packet is represented by a zero line. The encoding process starts from
the lowest bit and ends at the highest bit of 256 bits spike packet. Consequently, some
pulses present in zero line and one line with a sequence in time are used to represent the
parallel signal from lower bit to upper bit. Meanwhile, no clock signals are involved in
the data line since the time information has been represented in this sequential output.

19

One line —/_\—/_\ /_\ /_\
-=-0101011 Zero line /_\ /_\ m_

N— _/

~
256 bits 256 pulse

Figure 3.4: Two-wire Burst-mode Protocol

Figure 3.5 shows the structure of a transmitter to explain the working principle
clearly. According to this figure, besides encoding the spike packet, we can find that
the function of the transmitter also includes indicating the destination of the spike
packet. Basically, the transmitter includes the following main component:

e A Pulse-mode Latch and a Normal latch: Since the data is always represented
by pulse signal in SNN; it is necessary to involve a pulse-mode latch storing the
data and keeping it stable temporarily. Whereas the packet_dstn is a level signal,
a normal latch can meet the demand;

e A controller used for latch: The transmitter is an event-driven system, therefore,
the latch is controlled by several events. And this function is introduced by the
component latch_ctrl;

e Pulse Generator: This component is used to generate parallel pulse signals with
specific time intervals;

e OR Gate Tree: The data from the spike packet is converted into serial with the
help of this component.

packet_dstn spike_dstn_
Tbit Latch Tbit
TX_1et;1ibee Pulse Generator

states [256bits

reset |enable

Y

OR Gate Tree data.hne
spike_packet Pulse-mode |packet data| 2bits

256bits Latch 256bits

Figure 3.5: The Structure of the Transmitter

In the transmitter, the packet_dstn is first latched and then directly transmit with-
out encoding as long as enable_TX becomes '1’. At the same time, the spike_packet goes

20

through a pulse-mode latch and is transformed into level signals packet_data. Mean-
while, the pulse generator starts to produce the states, as shown in figure 3.6. This 256
bits states in sequential are used to bitwise AND with packet_data. During this period,
the controller keeps read states till the pulse presents in highest bit, which means the
encoding is finished. Further, pulse-mode latch is reset so that it can wait for the arrival
of next spike packet.

256 [

bits I

Figure 3.6: The pulse generator in transmitter

Figure 3.7 demonstrates the structure of the component OR Gate Tree. It mainly
consists of two-part, bitwise AND in left side, and the gate tree in the right side. First,
the bitwise AND is performed between packet_data from pulse-mode latch and states
from pulse generator. After that, if logic "1’ appear in packet_data, the pulse is allocated
to corresponding data_one. Otherwise, the pulse is allocated to data_zero. Further,
parallel signal data_one is injected into gate tree, which emerges the 256bits signal
into 1 bit one_line. Also, the same data processing happens on data_zero. Basically,
these 2 OR gate trees generate the 2 bits output of transmitter, and the packet data is
converted into serial and sent out in this component.

— data one[0]
data one[1]
data one[2]
data one[3]

packet_data [\data one

states J >

ata zero
R

data one[i-1]
data onefi]

Figure 3.7: The Structure of OR gate tree in transmitter

21

3.2.2 Receiver Design

The receiver is used to decode the spike packet that is shown in fig.3.4, which means
it converts the 2bits serial data line into a 256bits parallel spike packet. This process
needs to be done with several components, and the following content will illustrate how
to implement these step by step.

RX
Data line
2bits Spike_packet
Spike_dstn 256bits
1bit RX_done
RX_reset 1bit
1bit

Figure 3.8: The Digital Block of Receiver

Figure 3.8 shows the digital block of the receiver. The Data line is connected with
the same-named ports that are located in the output of the transmitter. Also, the
Spike_dstn interacts with the same-named ports in transmitter. As long as this receiver
is indicated as the packet destination, the receiver will start to decode the serial packet.
After the decoding is over, RX will generate parallel spike packets at the output, and
at the same time, RX_done jumps to 1 to indicate the finish of this conversion. Also,
this signal cooperates with the controller, which will be illustrated in the following
subsection.

spike_Dstn _ Pulse States
1bit " | Generator | 256bits
Data_diff
Zero Line R -
Tbit — dg;%;ﬁ? Spike_out
> > Pulse- | 256bits
one Li mode ——>»
ne Line
. > \ q data one Latch
1bit BECLERLLN
> / > 256bits

RX_done

L, 1bit
Counter EEE—
L

Figure 3.9: The Structure of Receiver

The receiver consists of four main components, which are an 8-bits counter, a
data_diff, and a pulse-mode latch, and a pulse generator. Figure 3.9 shows how these
four components collaborate. Meanwhile, the red arrow and black arrow correspond to

22

the control signal and data signal in this figure, respectively. In the following part, the
function of each component is introduced.

o Counter

In this receiver, the counter is used to count how many pulses are input. It keeps
working when the pulses are injected into the clock port. When it counts to the
maximum value, this counter writes a pulse in the port RX done. The rising edge
of that pulse means a whole packet is received and the falling edge of that pulse
indicates decoding is successful. Therefore, this counter plays a 'monitor’ role in
receiver.

e Data_diff

In figure 3.10, the data_diff aims to convert the data line into parallel and also
differentiate the pulse from one line or zero line. During the counting period, the
states, being from the pulse generator with the same function shown in figure 3.6
, are performed logic AND with the data line input in component data_diff. To
explain the detailed structure of data_diff, the structure of this block is shown in
figure 3.10. By the AND operand, the pulse from the data line can be distinguished
as logic '1” or logic "0’.

o Pules Generator and Latch

The pulse generator just follows the same design in transmitter, we can find the
waveform of signal states in figure 3.6. In term of receiver’s latch, it produces the
parallel results one bit by one bit, which depends on whether 1 appears in data
one or data zero. Finally, the decoded result spike_out is obtained in parallel.

zero_line data_zeroli]
Statesi]
. data_oneli]
one_line —

Figure 3.10: The Structure of Data_diff

3.2.3 Cooperation Mechanism

It is essential to avoid missing the spike packet during transmission, so we must ensure
the transmitter and receiver cooperate correctly. The feedforward control is introduced
in our basic SerDes link. In order to achieve feed-froward control, the on-chip delay
and off-chip delay cooperate with the transmitter and the receiver.

In terms of on-chip delay, according to figure 3.11, we can find the spike_dstn is
always sent out before the spike packet since the delay has cooperated with the latch and

23

combinational logic circuit in the datapath of the spike packet. Whereas, in datapath
of spike_dstn, the delay has only cooperated with latch.

Meanwhile, the spike_dstn and data_line almost experience the same off-chip delay.
In figure 3.9, the spike_dstn not only indicates the destination of a packet but also
does perform the enable signal for the receiver. Only if the spike_dstn keeps logic 17,
the receiver can read the pulse from zero line and one line and decode the packet.
Otherwise, the receiver just keeps working in an idle state.

on-chip dela
— > P
! off-chip

i delay "

packet_dstn

transmitting-end <) ﬂ |_|
one line :

L zero line

spike_dstn

receiving-end ~) H H
one line
zero line H

Figure 3.11: The feed-forward mechanism

As we mentioned before, the spike_dstn is always sent out before the spike packet,
and they are going to experience the same delay in off-chip interconnect. Therefore, we
can conclude that the spike_dstn does always arrive in the receiving-end before the spike
packet, and the receiver will be ready before the packet’s arrival. This feed-forward
mechanism can guarantee that the transmitter and receiver cooperate correctly.

3.3 Implementation of Multi-Point Communication

A SerDes link has implemented the basic point-to-point communication as mentioned
in Section 3.2. However, several neural arrays always cooperate in the actual use case.
Hence, based on the previous SerDes link, we propose a new off-chip interconnect system
with ring topology that supports multi-point communication in this chapter.
Multi-point communication means the transmission of spike packets is between sev-
eral neural arrays. Besides, multiple neural arrays sometimes intend to send data

24

simultaneously. For this situation, the control system is introduced to our interconnect
system to avoid data conflict during transmission. On the other hand, inspired by the
literature, we propose a ring topology that can integrate multiple neural arrays. The
following sub-chapter starts with the system topology and then demonstrates various
detailed implementations.

3.3.1 System’s Ring Topology

The interconnect system was developed based on a ring bus that connects four chiplets
with each other and supports the packet propagates between four chiplets. Compared
with figure 3.1, figure 3.12 shows more detail about the system’s structure. From this
figure, some arrow is shown in the ring bus, which means the ring is one-directional
and the packets always travel in clockwise. Inside one chiplet, the interconnect system
is comprised of several components, which include a transmitter, a receiver, and a local
controller and corresponding multiplexer. The collaboration between these components
supports the packet transmission properly.

Also, we can find there are two ring buses that represent control flow and data flow,
which are shown by a blue line and a red line, respectively. The composition of these
two rings are:

CHIPLET_O(master) CHIPLET _1(slave)
chip_num /—iMUX g
Rl AL LIS TX chip_num
I packetldstn X Sip_um
mst_ctrl i) mst_ctrl
,) _
M— controller :control S|gnal= controller —M;
muxi_sel
RX packet}dstn RX
- MUX +——
CHIPLET_3(slave) CHIPLET_2(slave)
hip_num g g chip_num
M’ TX I packet dStn TX <p—7
mst_ctrl ilee) mst_ctrl
GNT 0 GNT_O ¢
—_ « >« controller » ——————
el control signal
mux#sel
RX packetldstn RX
< MUX <

Figure 3.12: Interconnect System with the Ring Topology

25

e Data flow:

The data signal is composed of the serial spike packet and also the destination
of that packet. There is a 6 bits signal, of which 4 bits are allocated to the
destination signal, and the other two bits are allocated to spike packet. Since any
one or multiple chiplets could be the destination at once transmission, it requires
at least a 4bits signal to represent the destination information. In terms of the
data signal, it follows the same design that is shown in figure 3.4.

e Control flow:

The control signal is interacted with all components in the interconnect system
and it consists of the 4 bits Grant, and Request and so on. Basically, this part is
used to keep multiple chiplets cooperating properly. More details about how the
control signal work with the controller is introduced in chapter 3.3.3.

Some multiplexers are incorporated in the ring bus, according to to figure 3.12. The
reason is that sometimes the packet needs to be injected from a chiplet into the ring
bus, and sometimes it just passes by the chiplet. The MUX is used to select the path
according to the propagation path of the packet.

To clarify the implementation of the whole system, we can zoom in on one chiplet
in figure 3.12. More detailed information inside one chiplet is shown in figure 3.13.
The control flow is defined by a red line, and the data flow is defined by a double-wire
arrow. Compared with the TX block in figure 3.3 and RX block in figure 3.8, the TX
and RX obtain more input and output ports, which means some update happened in
these two components. In chapter 3.3.2 and chapter 3.3.2, we introduce what kind of
change happened to the transmitter and receiver and how they collaborate with control
systems.

packet_dstn

guslgi_itlg packet_dstn R 4bits
|::> | 4bits Data Line
.y 2bits :5>
packet_dstn 4bits , , Data_line_ou
— | spike_dtc 1 bit > bits

spike_dtc 3 bits

Queue 4bits

mux_sel 1 bit

chip_num 2bits »< local controller

Gnt (start_ser_FSM)
1 bit

Gnt 4 bits

spike_final_out

256 bits RX RX_Done 1 bits RX_done (from other chiplet)
< : < 3 bits

Figure 3.13: The structure of interconnect system inside one chiplet

bypass data line 2bits

26

3.3.2 Upgrading in Transmitter and Receiver

A transmitter and receiver with a new function are developed and follow the design
shown in figure 3.14. This transmitter and receiver still focus on encoding and decoding
the spike packet, but other functions are implemented to generate events driving the
collaboration between the TX, RX, and control system. In the following, it will be
explained separately from the two aspects of TX and RX.

e Transmitter

The new function of the transmitter aims to achieve the hand-shaking between
the transmitter and controller. And the structure of the re-designed transmitter
is shown in figure 3.14.

In figure 3.14, signal spike_dtc is an output from the pulse-mode latch and aims
to detect if there is any bit that becomes logic "1’ in the latched result. As soon
as a spike is detected, spike_dtc becomes logic 1" and this event is sent to the
local controller to inform that a packet awaits the transmission in the TX. In fact,
the spike_dtc also works as the request signal trying to obtain permission from
the controller. If TX is authorized to transmit the packet by the controller, a
enable_TX with value '17 is received by the transmitter, which means it gets the
grant and will start the transmission of this packet.

packet_dstn . spike_dstn
T b 4 bits LATCH Ats
enable
Grant pulse
1bit | trigger
pulse[255]—
Request
4bits pulse|256 bits
enable reset
v v DATA LINE

:> Pulse-mode | OR GATE 2 bits
LATCH ——— 2 TREE :I|>

Sipke latch_out 256bits
256bits A 5
spike_dtc
1 bit”™
Reset
1bit

Figure 3.14: The Structure of Transmitter

e Receiver

The new function of the receiver aims to achieve decoding of the destination
signal. Figure 3.15 demonstrates the structure of this receiver. In the input ports,

27

the packet_dstn changes to 4 bits in order to support communication between
4 chiplets. Also, this signal cooperates with the chip_num to figure out if the
receiver is enabled. For example, if the chip_num is equal to 0, which means the
dstn_decode capture the lowest bit in packet_dstn and this bit is used to control
whether the receiver starts converting packet from serial to parallel. Other parts
of receive just follow the same design mentioned in chapter 3.2.2

chip_num
2bits l
spike_dstn capture one
4 bits hot
"
address enable 256 bits
1 bit >
DATA LINE 2 bits determine re¢ ——
1 — 0" OR "1 latch "spike_out_final
e 256 bits
pulse 1 7
256 bits 256 bits
|
pulse_generator
|7ﬂag—T
:> counter RX_done ,
1bit
A
reset 1 bit

Figure 3.15: The Structure of Receiver

3.3.3 Distributed Control System

Ensuring that only one packet propagates along the required path on the ring bus is
the main problem faced by the control system when there are multiple neural arrays
that want to send packets simultaneously. At the same time, if we only develop one
controller to control four transmitters, this controller is located at one chiplet, and
some latency fluctuations happen on different control flows.

In order to solve the above problems, the distributed control system is introduced
to our interconnect system. The distributed control system involves 4 local controllers
that are allocated for 4 chiplets, and these 4 local controllers follow the same design.
Furthermore, these four local controllers can be configured as one master controller
and three slave controllers. Basically, the master controller is responsible for the whole
system’s functions, and the other controllers are slave controllers following the master
controller’s instructions. This architecture is shown in figure 3.16.

28

Master
controller
Mst_ctrl
4bits
Y Y Y
Slave controller Slave controller Slave controller

Figure 3.16: The Overview for distributed control system

The distributed control system is configured by the signal mst_ctrl so that we can
determine which local controller works as the master controller, as the figure 3.16 shows.
The implementation of one local controller can be divided into three parts, which are

e Finite State Machine(FSM)
e Round-robin Arbiter(RR arbiter)
e Bus Controller

In figure 3.17, the structure and IO ports of the local controller are demonstrated.
Inside the local controller, the main part is FSM, which is responsible for the enable
signal for the bus controller and RR arbiter. From the output end of the system, we
can find that, basically, the system is to implement the arbitration of the request signal
and to control the multiplexer to ensure that packet propagates with the specified path.

In terms of the input ports, some parameters need to be configured before starting
working, which includes the chip_num and mst_ctrl. These two parameters let the
system know if they belong to the master controller or slave controller, and their own
location. Furthermore, the local controller can start work with the FSM. Besides the
input ports mentioned above, there are three other ports relative to the FSM and
arbiter and bus controller.

In terms of the outputs port of the local controller, grant is used to give permission
to 4 chiplet transmitting packet, Muxz_sel is connected to the 'sel” port of multiplexer,
which can specify the propagation path of the packet. The other output port is used
to investigate the working process of FSM.

Request Local controller
4bits
Packet_dstn Bus controller Grant
4bit: 4bits
s bus_ctrl enable Mux se
RX done :
4bits FSM 1bit
Mst ctrl arbiter enable cur stat
TS | RR arbiter 3bits
Chip_num
2bits

Figure 3.17: The Structure of Local Controller

29

The following content will illustrate how these three components work together in
the local controller and the interaction between the controller and TX/RX.

e F'SM

Figure 3.18 shows the state diagram of the finite state machine. There are five
states representing the working process of the local controller. Basically, the
controller is defined as the master controller or slave controller depending on the
value of Mst_ctrl. If this parameter is ’1’, the local controller work as the master
controller. Otherwise, it works as the slave controller.

Reset=1

Mst_Ctrl=1

Spike_dtc=0

()

Spike_dtc=1

Mst_Ctrl=1 &
arb_empty=0 &
RX_done=0

Mst_Ctrl=0
RX_done=0

Mst_Ctrl=1 &
arb_empty=1 &
RX_done=0

RX_done=1

Figure 3.18: The States diagram

When the local controller is configured as the slave controller, the control logic
comes into MUX control. In MUX control, the output of bus_ctri_enable turns to
"1’ so that the bus controller is enabled and going to start calculating the MUX
selection and determining the datapath of the packet according to its origin and
destination. The control logic of bus controller will be illustrated in the following
content. Further, if the state machine detects the RX_done becoming '1’, it comes
to Done, which means one spike packet has been transmitted and received. And
then, the state machine returns to MUX control when RX_done becomes "0’ so
that it keeps ready to calculate the datapath for the next packet.

In terms of working as the master controller, the control logic starts with the
'waiting’ state. Meanwhile, the bus_ctri_enable and arbiter enable keep logic 0.
Further, the control logic works at ’transmission’ state, as long as the spike_dtc
becomes ’1’. In this state, the arbiter is enabled and deal with the request signal
from transmitter. Also, the bus controller is enabled so that it can arrange the
specific datapath for corresponding spike packet. The control logic stays in this
state until a packet is decoded by RX, which means one packet is received success-
fully and RX_done turns to '1’. And then, the control logic goes to 'Done’ state

30

and both the arbiter and bus controller turns off. The falling edge of RX _done
triggers the next state transition. If there is no request signal anymore, the control
logic returns to 'waiting’ state; otherwise, it goes to "transmission’ state and start
transmitting next spike packet waiting in the Queue.

In conclusion, when the local controller works as the master, it controls the bus
controller and arbiter. Otherwise, it works as a slave, which means it only controls
the bus controller. Because the multi-arbiter leads to the data conflict in ring
bus, only one arbiter is allowed to work. Additionally, the whole state machine
is asynchronous since it is based one the event-driven without the clock signal,
which means the transfer of states only trigger by an event happened.

Bus controller

The bus controller aims to allocate a proper datapath for the corresponding packet
in the ring bus. According to the origin and the destination of the packet, a packet
needs to bypass a chiplet or just end the propagation in one chiplet. Basically, the
above behavior is implemented by the MUX and corresponding Mux_sel in each
chiplet, as shown in figure 3.13. In the control logic of this component, the specific
datapath is determined by three parameters, which are chip_num and spike_dstn
and origin.

Origin chip_num
detection 2bits
I
origin

3bits Destination
decoding
dstn
rYES NO 2bits
Mux_sel=1
(TX path)
YES NO
v v
Mux_sel=0 Mux_sel=1
(bypass path) (end propagation)

Figure 3.19: The control logic of bus controller

Figure 3.19 shows the control logic for Muz_sel. As long as the FSM works at
"Transmission’ state or 'MUX control’ state, the bus controller executes this logic
and determines the result of Muz_sel. There are three kinds of scenario leading
the result of Mux_sel, which are the packet starts from this chiplet or the packet
bypass this chiplet or this packet is the final destination of the packet.

In principle, the Mux_sel turns to '1’ when the specific chiplet is the origin of
spike packet or the destination of the packet. Otherwise, the Mux_sel keeps 0’ so

31

that the packet can bypass that chiplet. This strategy ensure the transmitter can
inject the packet into ring bus properly and the packet ends at the destination
avoiding energy loss.

o Arbiter

It is essential to involve an arbiter in the control system, when the multiple chiplets
require to send the spike packet at the same time. Therefore, a fixed priority ar-
biter is implemented to achieve the arbitration among multiple chiplets. Basically,
an arbiter gets the 4bits Request signal representing the spike_dtc from each chiplet
and the arbiter_enable from FSM. Once the arbiter_enable becomes "1, the fixed
priority arbiter starts processing Request. And then, the Grant will be generated
in the output port that can represent the permission for transmitting packet. The
data processing applied in input Request is shown in the equation 3.1. When de-
tecting the rising edge of arbiter enable, the arbiter starts the following calculation
obtaining the Grant and the updated Request.

Grant = Request N Request — 1 (3.1)
Request, .., = Request N Grant '

Basically, if chiplets require transmitting a packet, the corresponding bit in Re-
quest turns to 1. And then, the arbiter offers the permission from chipletO to
chiplet3, once the FSM works at transmission state, which means the chiplet0O has
the highest priority to transmitting data and the chiplet3 has the lowest priority.

Generally, the distributed control system guarantees that there is always one packet
propagating in the ring bus and the packet following the desired path can arrived at
its destination correctly. Also, latency is significantly important in this control system.
Therefore, the timing information is under consideration with timing constraints.

3.4 Optimization

In this section, an optimization of topology is proposed. Compared with the sys-
tem with ring topology explained in Section 3.3, the new topology supports packet
propagation in any direction. In previous design, the unnecessary latency and energy
consumption is involved in some cases, considering that the one-directional system
only supports the propagation of packets on clockwise. For example, in figure 3.1,
when a packet generated by chiplet 1 intends to go to chiplet 0, that packet has to
go through chiplet 1 and chiplet 2, rather than going left directly, owing to the one-
directional topology. Therefore, the higher latency and more energy consumption are
incorporated in the previous one-directional topology, and it is meaningful to develop
a bi-directional topology in this case.

32

3.4.1 Bi-directional Ring Topology

The interconnect system with bi-directional ring topology supports that the packets
propagate clockwise or counterclockwise between the chiplets. The propagation path
depends on the destination and origin of the packet and the distributed control system
is able to choose a specific path that can decrease the latency and power consumption
during the propagation.

The optimized interconnect system almost follows the same design as a one-
directional ring topology, which consists of the transmitters and receivers and a dis-
tributed control system. Compared with the previous design, the difference only hap-
pens on a component of the local controller and the multiplexer of the ring bus. Mean-
while, the clockwise ring bus in figure 3.1 is substituted by a directional ring bus. The
ring of data flow can support two directions of propagation, clockwise and counter-
clockwise. In the next section, We will explain what has changed in the system and
how the new modules work to determine the direction and path of the packets.

3.4.2 Optimized Chiplet Design

In the previous section, we have explained the optimized topology and shown an
overview of interconnect system structure. Further, we zoom in one chiplet and il-
lustrate more detail about the new chiplet design in this section. Figure 3.20 shows the
optimized chiplet design. We can find that the data transmitted from the TX side can
be directly transmitted to the RX side without going through the bypass channels of
other chiplets. In addition, the data on the TX side can also be sent out of the chiplet
through the MUX.

packet_dstn

pulse_in address 4 bits

256 bits 2 bit
——— s Data Line
X 2 DITS

1
Data_line_out
2 bits

4b¥paj§_dala_[me_>

spike_dtc 3 bits

ket_dstn4bit
packet_dstn4bits) spike_dtc 1 bit

>
>

Queue 4bits

mux_sel 2 bits

chip_num 2bits »< local controller
Gnt (start_ser_FSM)

1 bit

Gnt 4 bits

spike_final_out

256 bits RX RX_Done 1 bits RX_done (from other chiplet)
< I,: < 3 bits

Figure 3.20: The Optimized chiplet Structure

bypass data line 2bits

As we mentioned before, in order to realize the function of bidirectional transmission,
we mainly optimize the two modules, which are the bus controller and the multiplexer of

33

ring bus. In the following content, the implementation of these two parts is elaborated.

e Optimized MUX

Normally, a multiplexer works as a data selector that supports transferring the
multi-input ports to the output port based on the selection signal. While, in
our design, the optimized MUX also supports transfer the data from output to
input ports, which means the datapath in new MUX includes two directions.
Meanwhile, the selection signal requires more bits so that it can achieve various
datapath selections.

Figure 3.21 shows the inside datapath of optimized MUX. There are 2 inout-
ports that include data line(bypass) and data line out. Also, an input port is
used to transfer the spike packet from TX-end. In terms of the selection signal,
the MUX sel becomes 2 bits, compared with the normal MUX with only 1 bit
selection signal. Therefore, this selection signal can satisfy 4 kinds of datapath
inside the MUX, which are represented by the arrows in figure 3.21.

When a packet is propagated from data line (TX) to data line (bypass), it means
that data is propagated counterclockwise. At this time, the data packet can be
accepted at the RX side of this chiplet, or it can be transmitted to the next ad-
jacent chiplet in the counterclockwise direction. In contrast, a packet propagates
from data line (bypass) to data line out, or from data line (TX) to data line out,
which means that data is propagated clockwise.

data line(TX)

,1: Data_line_out
2 bits
data line(bypass) / <l l>

MUX_sel 2bits

Figure 3.21: The Multiplexer with bi-direction

e Optimized Bus controller

The Optimized bus controller is a part of the local controller and it cooperates
with the FSM to control the optimized MUX. Compared with the formal bus
controller in section 3.3.3, the control logic of new bus controller become more
complex since there are more datapath inside the MUX. Basically, the control
logic is required to determine the packet’s propagating direction and if it should
end propagation in this chiplet.

Figure 3.22 illustrates the control logic of this component. According to the sev-
eral parameters, the bus controller can generate the result of MUX_sel, which

34

determines the specific datapath for a packet. The upper bit of MUX_sel rep-
resents the packet propagation in clockwise or counterclockwise, and the lower
bit of MUX sel represents the packet coming from this local chiplet or another
chiplets. Therefore, these two bits can fully control the various datapath in opti-
mized MUX.

In this control logic, the packet can always reach its destination by taking the
shortest path. If the starting point and the ending point are adjacent, the control
logic decides in which direction propagation has the shortest path. For example,
chipletO is the starting point and chiplet3 is the ending point, the packet can
be propagated directly in the counterclockwise direction without passing through
chipletl and chiplet2. On the other hand, when the starting and ending points of
a packet are not adjacent, the path length will be the same whether it propagates
clockwise or counterclockwise, so the bus controller will propagate the packet in
clockwise by default.

decode address
bus_ctrl enable

destination=origin
YES

ounterclockwise|
TX data NO

adjacent?
NO

NO

clockwise <ﬂ ip_num=destinatior YES
b= TX data ‘
NO
. . e 2
<Getermine direction> clockwise clockwise
bypass data TX data

ounterclockwise| clockwise
TX data TX data

<determine direction>

ounterclockwise]| clockwise ounterclockwise]| clockwise
TX data TX data bypass data TX data

Figure 3.22: The control logic of optimized bus controller

3.5 Configuration and Parameterization

The implementation of the system consisting of four chiplets has been explained in the
previous section. However, considering that there could be more or fewer chiplets in
the application scenarios, the off-chip interconnect system should be configurable and
parameterizable. Therefore, our design has the flexibility to ensure the following four
parts can be configured, which are

35

e Distributed control system
e The dynamic destination of spike packet
e The size of spike packet

e The number of chiplet

In the aspect of the distributed control system, the configuration is supposed to
be done before the system starts working. Each chiplet includes an input port named
mst_ctrl, and we can configure the local controller as master or slave in this chiplet. No
matter how many chiplets are in the system, there is only one chiplet’s mst_ctrl being
'1’, which means one local controller works as the master controller, and others are
considered as the slave controller.

In terms of the destination of the spike packet, it could be static or dynamic, de-
pending on the application requirements. The chiplet can read in a static destination
indicating the destination for the packet transmitting from this chiplet. Meanwhile, our
system supports the dynamic destination, which means a chiplet can transmit pack-
ets with different destinations each time. This design guarantees the system supports
several use case mapping into our system.

The implementation of the system remains parameterized. For the size of each
packet, there is a parameter named spike_width to configure how many bits are in one
packet. Also, the ring topology supports the interconnect system composed of a differ-
ent number of chiplets. There could be either four chiplets or more chiplets connected
by the ring bus. In addition, the width of packet_dstn is adjustable according to the
number of chiplets in the system, which is used to indicate the packet’s destination.
In our interconnect system, the more chiplets means packet_dstn requires more bits to
declare the destination of one packet. The following picture shows the interconnect
system consisting of different numbers of chiplets.

[TX RX]
Chiplet 0 Chiplet 1

[RX] 7]

A

[TX RX] TX] [RX|,
Chiplet 0 Chiplet 1 Chiplet 2
[RX]" TX|

Figure 3.23: Configure the system with different number of chiplet

36

Simulations and Results

In this chapter, we evaluated the power, performance, and are of the interconnect
system with different kinds of application scenarios. Also, we evaluated the latency and
relative effect on our system so that the timing constraint is investigated. Meanwhile,
the simulation environment is built and configured in cooperation with the trained
MNIST network in order to verify the system’s function.

4.1 Power and Area

The off-chip interconnect system is implemented in system-level modeling with Sys-
temC, which means it is hard to get the accurate power and area result from synthe-
sizing with different PV'T conditions. Consequently, we did estimate the gate number
from each component to the whole system. Further, the equivalent gate number com-
bined with switching times under the specific use case can inform the power estimation
result. The following content is divided into two parts. which show the results of the
area estimation and the power estimation, respectively.

o Area

The estimation of the system’s area is based on the architecture of each compo-
nent. Also, the change in the size of packets leads to the different structures of the
transmitter. For example, the width of the latch and the number of levels in the
OR Gate Tree, as mentioned in figure 3.7 are adjustable according to the width
of one spike packet. In order to keep consistency with the previous section, when
calculating the gate number, there are four chiplets in our interconnect system
and the packet width keeps 256 bits.

In addition, the gate categories are divided into two groups, which are normal
logic gates and pulse-mode logic gates. The family of pulse-mode logic gates
has been implemented in the transistor-level by the previous contributor, which
includes the basic delay element, Pulse AND, Pulse OR and Pulse Latch. The
reason why we involve this logic gate family in our design is that the transmitter
and receiver interact with the spike signals that always keep a narrow width and
the normal logic gate cannot support the calculation of such high-speed signals.
On the other hand, it is essential to keep these two logic gates group since the
significant difference in power consumption.

Table 4.2 and Table 4.1 shows how many pulse-mode logic gates and normal logic
gates are in one transmitter and one receiver when the transmitter and receiver
are configured to process the 256bits spike packet. Meanwhile, the width of desti-
nation should be 4 bits due to the system consisting of 4 chiplets. Table 4.3 shows
the gate number in the local controller when following the above configuration.

37

Table 4.1: The Gate number in transmitter’s main components

- Transmitter_wrapper
PACKET WIDTH=256 latch_address or gate tree pulse_trigger latch In total

Pulse AND GATE 0 722 0 0 722
Pulse OR GATE 0 1024 0 0 1024
Pulse LATCH GATE 0 0 0 256 256
AND GATE 0 0 0 0 0
XOR GATE 13 0 1 513 536
MUX 13 1 1 513 536
OR GATE 0 0 0 0 0
LATCH GATE 6 0 0 0 10
DELAY ELEMENT 0 0 256 0 256

Table 4.2: The Gate number in Receiver’s main components

- Receiver_wrapper
PACKET WIDTH=256 rec_determine pulse_generator rec_latch counter In total

Pulse AND GATE 512 0 0 0 014
pulse OR GATE 0 0 0 256 256
Pulse LATCH GATE 0 0 512 0 512
AND GATE 0 0 0 0 0

XOR GATE 0 3 512 0 015
MUX 0 1 512 0 513
OR GATE 0 0 0 0 0

LATCH GATE 0 0 0 256 256
DELAY ELEMENT 0 256 0 0 256

Table 4.3: The Gate number of local controller

. local controller & ring bus
Destination WIDTH=4 FSM bus_ctrl arbiter mux_address mux_data In total

Pulse AND GATE 0 0 0 0 0 0
Pulse OR GATE 0 0 0 0 0 0
Pulse LATCH GATE 0 0 0 0 0 0
AND GATE 0 1 12 0 0 13
XOR GATE 11 7 9 1 1 29
MUX 7 5 4 1 1 18
OR GATE 0 3 0 0 0 3
Latch 9 3 0 4 2 18
DELAY ELEMENT 7 0 0 1 1 9

As the above tables show, the gate number of the transmitter and receiver are
significantly larger than the local controller. Therefore, the transmitter and re-
ceiver occupy main part of area in our interconnect system. On the other hand,
we calculated the kilo Gate Equivalent(kGE) of the system, in order to report the

38

area with the corresponding process. We considered two-input drive-strength-one
NAND gate as our standard logic cell, and then accumulated the results from ta-
ble 4.1, table 4.2, and table 4.3 to get the total kGE for one chiplet and a system
comprised of 4 chiplets. Table 4.4 illustrates the accumulation results.

Table 4.4: The Gate Counting Results with kGE
Gate counting

Gate One chiplet Interconnect system
Pulse AND GATE 1236 4944
pulse OR GATE 1280 5120
Pulse LATCH GATE 768 3072
AND GATE 13 52
XOR GATE 1076 4304
MUX 1063 4252
OR GATE 3 12
D flip-flop 280 1120
DELAY ELEMENT 521 2084
kGE(kilo Gate Equivalent) 18.041 72.164

e Power

In the aspects of power estimation, we mainly focus on dynamic power and ignore
static power, considering that dynamic power always takes over the main part
of total power consumption. The first step is to define the energy consumption
per switching for various logic gates. A previous contributor has implemented the
pulse-mode logic gates; therefore, we referred to her work to conduct the energy
consumption of those gates. In this thesis[15], when the pulse is defined with a
period of 200ns, and the power supply keeps 0.8v, the energy consumption per
switching of pulse-mode logic gates is shown in the table 4.5.

Table 4.5: The Energy Consumption of Each Pulse-mode Gate [15]

Pulse-mode Gate Energy Consumption (J)
Pulse Delay Gate 5.6832e-15
Pulse OR Gate 6.8950e-15
Pulse AND Gate 6.1680e-15
Pulse Latch Gate 3.4652e-15

Besides these pulse-mode logic gates, there is also a normal logic gate family
included in our system. Basically, the energy consumption of these gates is slightly
smaller than the pulse-mode logic gates. We assumed the energy consumption
difference between these two groups is 10% so that the energy consumption per
switching for the normal gate family is obtained directly.

In order to estimate the power for the whole interconnect system, it is necessary
to define a specific use case and then we can figure out the switching times for

39

various gates and the time periods for executing this use once. We define two
kinds of use cases that reveal the power consumption respectively.

— Basic assumptions:

The speed of off-chip link: 5GHz;
The time interval between two sets of spike packets: Hus.

— Use case 1:

The off-chip interconnect system consists of four chiplets and each chiplet
intends to transmit one 256bits packet to its adjacent chiplets at the same
time.

— Use case 2:

The off-chip interconnect system consists of four chiplets and each chiplet
intends to transmit a 256bits packet to another three chiplets at the same
time. Therefore, the act of receiving the package is twelve times.

According to the above use case, we need to get the specific switching times for
various gates and the time period of executing these use cases so that we can
calculate the final power result. The following equations show the process of
calculation. Equation 4.1 illustrates the energy consumption when TX converts
a 256bits packet from parallel to serial. Correspondingly, Equation 4.2 shows the
energy consumption when RX converts a 256bits packet from serial to parallel.
Due to less switching happening on the local controller, we ignored the power
consumption in this part.

Erx per_packet = Z (Switching times X Energy consumption) (4.1)

gate

ERrxX per_packet = Z (Switching times X Energy consumption) (4.2)

gate

Generally, the off-chip link consumes more energy than the on-chip component.
According to [32], we assume that each spike needs 26pJ when propagating it the
off-chip link, which is A\ in equation 4.3.cc and (3 refers to how many packets are
transmitted and received by TX and RX respectively. Based on this equation, the
energy consumption during the whole use case can be converted into the system
power.

a X ETX,per,packet + 6 X ERX,per,packet + v X Packet size X A
Time_Period

Ptotal - (43)

40

Table 4.6: The Energy Consumption of Transmitter

Times of Switching Sum ENERGY in total (J)

Pulse AND GATE 512 3.15E-12
Pulse OR GATE 1280 8.82E-12
Pulse LATCH GATE 260 9.01E-13
AND GATE 0 0.00E-+00
XOR GATE 782 8.67E-12 1.30E-11
MUX 262 2.91E-12
OR GATE 0 0.00E+-00
LATCH 0 0.00E-+00
DELAY ELEMENT 256 1.45E-12

Table 4.7: The Energy Consumption of Receiver

Times of Switching Sum ENERGY in total (J)

Pulse AND GATE 256 1.58E-12
Pulse OR GATE 0 0.00E-+00
Pulse LATCH GATE 512 1.77E-12
AND GATE 0 0.00E4-00
XOR GATE 515 5.71E-12 1.37E-11
MUX 518 5.74E-12
OR GATE 0 0.00E4-00
LATCH 256 7.98E-13
DELAY ELEMENT 256 1.45E-12

Table 4.6 and table 4.7 show the accumulation energy result of Erx per packer and
ERrX per packet, respectively, when they encode and decode a spike packet with
256bits. Further, theTime_period is another main parameter that needs to be
fixed before calculating the total power. Basically, the latency is supposed to be
incorporated into this parameter and more detailed information regarding how the
latency is set up during the transmission is going to elaborate in section 4.2.3. The
TX needs at least 51.2ns to convert a 256 bits packet, regardless of the latency.
The same time is required in the receiver end. Therefore, once transmission
requires 51.2ns when the system works in a totally ideal state ignoring the off-
chip delay and on-chip delay at the same time.

According to [33], the off-chip delay can be set as 2ns, which means a spike requires
at least 2ns to finish the off-chip propagation. However, the time interval between
two sets of spike packets is significantly larger than this latency. For these two
use cases, the parameter Time_period is supposed to be set to bus.

The energy consumption and power of off-chip interconnect system are shown in
the table 4.8. This table reveals that the power has a strong relationship with
the particular use case. The power increases as more packets are delivered and as
they pass through additional chiplets.

41

Table 4.8: The Energy consumption and Power of System
a [~ Energy in total(J) Power in total(mW)
Usecasel 4 4 8 2.67E-08 10.66
Usecase2 12 12 24 1.60E-07 32.013

4.2 Simulation with MNIST Use Case

In this section, some data sets from MNIST training results are applied to off-chip inter-
connect system to conduct the functional simulation. Meanwhile, the various mapping
methodologies between the MNIST data set and interconnect system are proposed.
Hence, we can ensure that more functional specifications are under consideration and
verified in the proposed traffic pattern. In addition, several sets of waveforms, corre-
sponding to each traffic pattern, are shown and explained. Finally, we investigated the
limitation of the system and concluded the throughput range with various application
scenarios.

4.2.1 Mapping Methodology

The neural network trained on MNIST consists of three layers, which are an input
layer, a hidden layer and an output layer, respectively. And the neuron numbers are
different in this network; figure 4.1 shows its structure. We only used a quarter of the
original input data from the MNIST to develop our use case. Based on this structure,
we can obtain 4 sets of data with the specific timestamp, spike_in, spike_h1, spike_h2,
and spike_out, corresponding to the different layers’ output in a neural network.

spike_in spike_h1 spike_h2
T4x14 196bits 100bits 50bits

I::>spikefout
10bits

euron
100
euron
196
—

Figure 4.1: The structure of a Neural Network from Specific Use Case

Further, we aimed to map this network into our interconnect system with different
patterns, and then we can carry out the simulation for the system. The network
shown in figure 4.1 includes only 3 layer. However, there are four neural arrays in our
interconnect system. Therefore, chiplet 0 works as a virtual input layer injecting the
data into our system. Additionally, another three chiplet is responsible for acting as the
input layer, hidden layer, and output layer, respectively. Since the neural array is not

42

implemented in this interconnect system, an interface remaining in each transmitter
allows us to inject the data into itself instead of receiving data from the neural array,
and this interface is shown as the red arrow in figure 4.2. Moreover, the dashed line
shows the virtual data flow inside a chiplet, and the black arrow means the real data
flow in our interconnect system.

Spike_in
Spike_hidden1

MNIST |Spike_hidden2
Training | ..
Spike-out------f-coccoceoeieeel e
Result P = Virtual Input
: Input Layer
= — >
Chiplet 0 L Chipléti1
: : le-Ld
—K e
Output
10bits valid
Output Layer Hidden Layer
_> '
[t : : !
Chiplet 3 ; ; Chipleti2

N
A

Figure 4.2: The first traffic pattern for system simulation

The second traffic pattern is shown in figure 4.3. Compared with the previous
one, the situation becomes more complex in this pattern. The data Vt1 and Vt2 are
combined into one spike packet, which aims to simulate reusing the neural array in one
chiplet. Besides, the destination of this packet is chiplet3, which means it is attempted
to bypass chiplet2 and arrived at chiplet3. Owing to this more complex traffic pattern,
more functional specifications are verified.

4.2.2 Simulation Waveform

The whole use case, including 8560 sets of spike packets, starts from Oms to 19.5ms
and stores this information in the above four files, spike_in, spike_hl, spike_h2, and
spike_out. Owing to the tremendous data under test, it is too ambiguous to show the
waveform of the whole use case in one picture. Consequently, we divided the waveform
into several segments and zoomed in on each segment to explain the workflow of our
interconnect system.

Starting with the first traffic pattern, figure 4.4 shows one transmission between
chiplet 2 and chiplet3 during this pattern. Since the master controller is located on
chiplet 0, chiplet 0 also is involved in this workflow. In the following content, we explain
more detail information with the waveform around the workflow shown in figure 4.4

The first waveform, figure 4.5, shows that the system boots up in the beginning
stage. First, the global_reset becomes '1’. Meanwhile, the parameters chip_num and

43

Spike_in
Spike_hidden1
Spike_hidden2

Result |Spikeé_out virtyal Input ’ ‘

MNIST
Training

;"Input Layer &hidden Iayer“':
| I
Chiplet 0 i Chiplet|t
: : le)t
— e
<
Output
10bits valid
Output Layer
_)
g : :
Chiplet 3 : bypass

i Chiplet 2 Chiplet3 !
dstn
Input spike packet i 2bits 256bits|
detection & [———> | TX encoding > > i | RXdecoding ——> !
Packet latched :
QuLue """""""""""" Grant™™ T RX_done
Chiplet 0

Control flow: ———>

Data flow: EE—

Figure 4.4: The workflow of transmitting and receiving packet

mst_ctrl are configured to indicate the location of each chiplet and the master controller.
The controller in chiplet 0 works as the master controller since the mst_ctrl 0 is 1.
Further, the destination of the spike packet is set at 30ns in figure4.5. Since the packet
always keeps the static destination, the value of spike_dstn is stable in the following
process. So far, the system totally boots up and waits to transmit the spike packets.

Figure 4.6 shows that a packet is transmitted and leads the corresponding signals
converts in the control flow. At 30ns, a spike packet is injected into the transmitter
located in chiplet 2 and spike_dtc_2 becomes 1, indicating this packet is detected. After
that, TX converts it from parallel into serial. The spike packet encoding into serial is
represented by DIE2TX one_line and DIE2TX one_line, based on the protocol in figure
3.4.

Additionally, Figure 4.6 also allows us to observe the state transformation of FSM

44

ianal W
ignals Waves

I 10|ns 20|ns 30|ns 40|ns 50|
Time I B L

global_reset =0

ns 60
TTT T TTT7T

mst_ctrl_o =1 [
mst_ctrl_1 =0 |
mst_ctrl_2 =0 |
mst_ctrl_3 =0 L
chip_num_e[1:0] =0 10
chip_num_1[1:0] =1 T
chip_num_2[1:0] =2 2
chip_num_3[1:0] =3 6]

=2 e je)
=4 0 2
=8 10 B

spike_dstn_0[3:0]

spike_dstn_1[3:0]

spike_dstn_2[3:0]

spike_dstn_3[3:0]

pulseiinie[ZSS:D] =000008| 000000000000000000000000000000000000000R0000AAAE0000AAE00EER0000

pulse_in_l[ZSS:D] =000008| 00RERE00ERARE00EERE000
- o]
» o]

pulse_in_2[255:
pulse_in_3[255:

Figure 4.5: The waveform regarding the beginning stage of the interconnect system

in the local controller. According to cur_states_0 and cur_states_2, the FSM belonging
to chiplet 0 enters the Transmission state(010) at 31ns, indicating the transmitter is
allowed to start converting packet, and the FSM belonging to chiplet2 stay in MUX
control state(011) state indicating the bus controller is ready. During this period, Queue
becomes 0100, which means a request from chiplet2 is sent to the master controller. As
long as the FSM goes to Transmission state(010), the Gnt becomes 0100, indicating
the chiplet obtains permission to send the packet.

Signals Waves

Time ‘ 200 — — Lo ——
pulse_in_o[255:0] =

spike_dtsn_0[3:0] = |2 2

pulse_in_1[255:0] =

spike_dtsn_1[3:0] = |2 =

pulse_in_2[255:0] = 0000056BC7SE2063100060

spike_dtsn_2[3:0] = |2 B

pulse_in_3[255:0] =

spike_dtsn_3[3:0] = |e

spike_dtc 2 =

cur_states_0[2:0] = |88l Ye1e

cur_states_2[2:0] E RSy

Queue[3:0] = e &

Gnte[3:0] = 8 [

mux_sel_2 =

mux_sel_3 £ 1) |

DIE2TX_one_line = T UL U U Ui U n
DIE2TX zero_line - T T I T O T W 1)

Figure 4.6: The waveform regarding transmitting a packet

Figure 4.6 shows that a packet is received successfully in chiplet3. At 86ns, the
receiver generates a flag signal, RX done_3, claiming the packet has been received
successfully. And the final decoding result can be found in spike_final_out_3. Meanwhile,
we can find this decoding result is fully equal to the pulse_in_2 in figure 4.6, which means
chiplet2 sends the packet to chiplet 3 successfully.

Similar to the waveform shown in figure 4.6, the working states of local control
can be monitored by cur_states_0 and cur_states_2. At 86ns, both master controller
and slave controller enter the RX_done(100) state, which totally follows the FSM’s
working principle in figure 3.18. Besides, the muz_sel_2 and mux_sel_3 keep 1 during
the transmission, ensuring the packet starts with chiplet2 and ends at chiplet3. This
path-controlling mechanism can avoid the waste of power consumption.

45

Signals Waves
Time

pulse_in_0[255:0]
spike_dtsn_o[3:0]
pulse_in_1[255:0]
spike_dtsn_1[3:0]
pulse_in_2[255:0]
spike_dtsn_2[3:0]
pulse_in_3[255:0]
spike_dtsn_3[3:0]

————— o ———— — —=¢jns
£00080000000000000
2
00000000000000000DHHO00000006000HEPH0000000000HBHOO00000000000
)
£00080000000000000
8
000000000000000009H0000000000000HEIO0000000000HOBHO000000000000
[

spike_dtc_2 1

010) i) e
o1l T 1L
3 le
E])

|

| I

cur_states_e[2:0]
cur_states_2[2:0]
Queue(3:0]
Gnto[3:0]
mux_sel_2
mux_sel_3

DIE2TX_one_line
DIE2TX_zero_line

L e ey

Splke_flnal_out_S[ZSS :0] £00000000000000E0ERDEEEHAEEAHELHALOREEONDAENALASEBCT7SE2D63100000

RX_done_3

Figure 4.7: The waveform regarding receiving a packet

In those two kinds of traffic patterns, another common situation is that multiple
chiplets request to transmit packets at the same time and the arbiter gives permission
by specific order to accomplish the transmission. Figure 4.8 is the waveform that we
obtained from the second traffic pattern. Also, this waveform shows the situation we
mentioned above. ChipletO and chipletl intend to send packets simultaneously.

In figure 4.8, we can find the pulse_in_0 and pulse_in_1 get two spike packets and the
destination of those two packets are claimed. Spike_dtc_0 and Spike_dtc_1 turns to 1 at
the same time. Consequently, the request signal Queue becomes 0011, indicating two
chiplet intending to get permission. The Gnt becomes 0001, which means TX locating
in chipletO is granted to send packet. Further, this packet is received by RX locating
in chipletl, which is shown in spike_final_out_1 and RX done_1. As soon as a pulse
is generated by RX_done_1, the interconnect system starts transmitting the packet in
chipletl. As a result, we can find Gnt becomes 0010, and the packet is sent in serial.
According to DIE1_MUX one_line and DIE2_MUX _one_line, we know that this packet
start from chipletl and bypasses chiplet2, as the traffic shown in figure 4.3. Finally,
RX _done_3 becoming 1 indicates this packet is decoded successfully in the destination,
chiplet3.

4.2.3 Timing constraints

Even though the whole interconnect system is self-timed and excludes the clock signal,
there are still some timing constraints in the control loop. Basically, a feed-forward
control is developed between the transmitter and receiver. Meanwhile, an optimized
handshaking control is developed among the controller and transmitter and receiver.
As long as a require signal is generated by transmitter and the receiver is not busy,
the controller grants the transmission. 4.9 shows the related latency parameters in our
interconnect system. Based on above mechanism, we propose some timing constraints
to ensure these delays keep proper values and the system works correctly.

e In receiving-end: the destination signal should arrive before the data line so that

46

Signals Waves

Time r : 2823p0 ns . ; . L 282apons .
pulse_in_o[255:0] =| | _{6B00006+)

spike_dtsn_o[3:0] =| |ee1e

pulse_in_1[255:0] E [5C95C3A+

spike_dtsn_1[3:0] =| |1ece

pulse_in_2[255:0] =

pulse_in_3[255:0] =|| | 2200000000000000000000000090000000000000000900000000008000000000

spike_dtc_6 =f T 1

spike_dtc_1 = T 1
cur_states_0[2:0] =| D (e1e (@eT
cur_states_1[2:0] =|| | o1z)¢ @ 0eiT
cur_states_2[2:0] = |8) $ 00 oL
Queue[3:0] =| |+ fooiT) EETE] Joooo
Gnto[3:0] =|| | +_fsoe1 Jeote Jeooo
mux_sel o =] 1

mux_sel_1 =) 1
mux_sel_2 = :

mux_sel_3 =11 | U

DIEO_MUX_one_line
DIE@_MUX_zero_line
DIE1_MUX_one_line

DIE1_MUX_zero_line
DIE2_MUX_one_line
DIE2_MUX_zero_line

spike_final_out_1[255:0]
RX_done_1
spike_final_out_2[255:0]
RX_done_2
spike_final_out_3[255:0]
RX_done_3

Figure 4.8: The waveform for simultaneously inserting several packets

the feed-forward is achieved.

e In transmitting-end: the spike_dtc(request) should keep stable during the trans-
mitting period.

e In controller end: the update of spike_dtc should happens when the RX_done
keeps ‘1’; the spike_dtc should arrive at the controller later than the spike packet
latched in TX.

Table 4.9: The parameters regarding the latency of Interconnect System

Component Parameter Description

pulse_gen_delay_2 On-chip latency in delay line

TX tran_latch_delay On-chip latency in latched data
tran_latch_dtc_delay On-chip latency in latched data and control logic
or_gate_tree_delay On-chip latency in combinational logic

Ring bus bus_delay Off-chip latency for data flow

bus_delay_ctrl_ flow Off-chip latency for control flow
rec_latch_delay On-chip latency in latched data

RX rec_dtrm_delay On-chip latency in combinational logic
rec_done On-chip delay in counter

4.2.4 Throughput Analysis

Basically, throughput is a key parameter to evaluate the performance of interconnect
system. By monitoring the waveform from previous traffic patterns, the interconnect

47

system always works properly. And it does not meet the throughput limit during the
transmission. Otherwise, some packets will miss as the interval between two packets
decreases. The system’s throughput is about 0.102 Gigabits per second when it works
with the MNIST training results, which is significantly beyond the throughput limit.
Hence, in this section, we propose various assumptions regarding traffic patterns and
determine the corresponding system’s throughput limit. Hence, the following content
consists of two parts, which are

e The pre-defined use case

The use cases are supposed to be defined first, and then we propose some assump-
tions about the on-chip latency and off-chip latency, which are crucial to evaluate
the throughput. There are two kinds of use cases, which are

— Use case 1: This use case totally follows the traffic pattern shown in figure
4.2 with the 5GHz off-chip link. In this case, each chiplet intends to transmit
one 256bits packet to its adjacent chiplets at the same time.

— Use case 2: This case aims to describe an extreme situation when we apply the
one-directional interconnect system and bi-directional interconnect system,
respectively. Each chiplet intends to send a packet to itself with the 5GHz
off-chip link.

In terms of latency, the on-chip and off-chip latency has been shown in table 4.9.
Basically, the values of on-chip latency are on the order of nanoseconds. Mean-
while, with the help of interposer, the off-chip delay is on the order of nanoseconds
as well[33]. Cooperating with the above use case, varying the values of these pa-
rameters results in different system throughput. Basically, the latency value will
follow the timing constraint as we mention in section 4.2.3 when evaluating the
throughput.

e The corresponding throughput limit

When four transmitters obtained the spike packets from the neural array simul-
taneously, there are 4 x256bits data injected into system. Based on the above use
cases, we need at least 52ns to finish the transmission of one packet. Further, the
throughputs with these two use cases are shown in table 4.10.

Table 4.10: The Throughput of Interconnect System
Throughput(Gigabits per second)

USE CASE 1 4.302

USE CASE 2 3.908

Some verification is done in order to confirm the theoretical throughput result.
In the MNIST use case, we change the timestamp and reduce its value until
the interconnect system begins to lose packets. By observing the waveform from
the 1st use case, some packets are missed as long as the time interval less than
238ns, which means the analysis result shown in table 4.10 is correct. The same

48

verification is conducted with 2nd use case, proving that the thorough result is
correct.

4.3 Comparison

Compared with the one-directional ring topology, an optimization topology is proposed
in section 3.4. In this section, we try to conclude the impact conduced by the optimized
topology. Therefore, some comparisons regarding the power and performance between
the two sorts of topology are introduced in the following content. The reason why we
exclude the area in the comparison is that the TX and RX occupy the main area of the
whole interconnect system, and the optimization that happens on the local controller
does not lead to a significant difference in gate number and area as well.

The bi-directional ring topology aims to deduce the latency and energy consumption
in some specific situations since the packet experiences a shorter propagation path. In
order to prove the advantages of this topology, we propose one new use case to demon-
strate the improvement in optimization. We assume each chiplet intends to send a
packet to itself. For example, one packet with the destination 0010 is sent out from
chipletl and received by the same chiplet. Following the same calculation methodol-
ogy we mentioned above, this situation results in some improvements in bidirectional
topology, which are shown in table 4.11.

Table 4.11: The Throughput and Power Comparison Between Two Topology
Throughput (Gigabits per second) Power (mW)

One-directional ring topology 3.908 13.6
Bi-directional ring topology 4.452 6.4
Comparison result 113.9% 152.9%

According to table 4.11, the bidirectional topology enhances power and performance
in the given scenario. On the other hand, although we do not evaluate the corresponding
area for optimized topology, there are some costs in the area. Also, the bidirectional
topology leads to the degradation in configurability due to the working principle of bus
controller.

49

50

Conclusion and Future Work

5.1 Summary

Neuromorphic computing systems always require a high-speed communication link to
support the spike(packet) that travels between neurons(array). Meanwhile, due to
the characteristic of event-driven in spiking neural networks, the communication link
normally excludes the clock signal and related blocks. For now, many researchers
developed specific solutions for communication links in the neuromorphic system. They
focused on various aspects, such as the communication protocol, the structure of the
network, the synchronization mechanism between transmitter and receiver, etc.

This thesis proposes a high-speed self-timed off-chip interconnect system with the
ring topology for neuromorphic computing systems. Basically, the off-chip link is devel-
oped by a SerDes, which excludes the clock signal and involves the burst-mode protocol
converting the packet in a two-wire serial format. And every chiplet is linked by a ring
bus to propagate the spike packet. Since the fire of the neural array happens randomly,
it is possible to lead the collision in the ring bus. A distributed control system is pro-
posed to tackle this problem, which is responsible for arbitration and packet routing
control. We also explored the optimization method for this interconnect system and
implemented the bi-directional ring topology to improve the system throughput. Be-
sides, the system keeps flexible and parameterizable during the design, which means it
can be configured with different numbers of chiplet.

The system is implemented in high-level modeling, which means it is tough to it,
but we still evaluated this interconnect system’s power performance and area. The
system throughput fluctuates when the packet takes different traffic patterns. But the
throughput is still around 4Gbps. In order to verify the functionality of this system, a
neural network from a quarter MNIST training result is mapped into our interconnect
system with different traffic patterns. The latency of several components has cooperated
in the simulation. Furthermore, the simulation results show the interconnect system
supports the packet communication between several chiplet. Meanwhile, Under the
specific scenario, the throughput of the system reaches 4.57 Gbps which can fulfill the
needs of application scenarios, and the power consumption keeps 5mW with the help
of pulse-mode gates in 28nm Technology.

5.2 Future Work

Although the performance of this interconnect system has met the application require-
ments, there are still some potential improvements and optimization possibilities. The
following are some of the fields where more work could be done in the future:

1. Share-bus mechanism

o1

The ring bus only supports one packet traveling on it, whatever the origin and
destination of this packet. It is possible to involve the share-bus mechanism to
allow multiple packets to propagate at the same time as long as there are no data
conflicts. This mechanism can improve the system throughput significantly with
little growth in power consumption.

. Synthesizable

The system is implemented in high-level modeling with SystemC. It is possible
to rewrite the specific components in a more synthesizable language such as Sys-
temVerilog. Furthermore, we can evaluate the power and area of the system more
accurately.

92

Bibliography

[1] S.-C. Liu, T. Delbruck, G. Indiveri, A. Whatley, and R. Douglas, Event-based
neuromorphic systems. John Wiley & Sons, 2014.

[2] L. F. Abbott, “Lapicque’s introduction of the integrate-and-fire model neuron
(1907),” Brain research bulletin, vol. 50, no. 5-6, pp. 303-304, 1999.

[3] Wikipedia contributors, “Hodgkin—huxley —model — Wikipedia, the
free encyclopedia,” 2021, [Online; accessed 13-November-2022]. [On-
line]. Available: https://en.wikipedia.org/w/index.php?title=Hodgkin%E2%80%
93Huxley_model&oldid=1049127797

[4] K. Boahen, “A burst-mode word-serial address-event link-i: transmitter design,”
IEEFE Transactions on Circuits and Systems I: Regular Papers, vol. 51, no. 7, pp.
1269-1280, 2004.

[5] ——, “A burst-mode word-serial address-event link-ii: receiver design,” IFEE
Transactions on Circuits and Systems I: Regular Papers, vol. 51, no. 7, pp. 1281—
1291, 2004.

(6] Y. Fan and Z. Zilic, “Accelerating jitter tolerance qualification for high speed serial
interfaces,” in 2009 10th International Symposium on Quality Electronic Design,
2009, pp. 360-365.

[7] C. Zamarreno-Ramos, R. Kulkarni, J. Silva-Martinez, T. Serrano-Gotarredona,
and B. Linares-Barranco, “A 1.5 ns off/on switching-time voltage-mode lvds
driver/receiver pair for asynchronous aer bit-serial chip grid links with up to 40
times event-rate dependent power savings,” IEEFE transactions on biomedical cir-
cuits and systems, vol. 7, no. 5, pp. 722-731, 2013.

[8] R. Dobkin, M. Moyal, A. Kolodny, and R. Ginosar, “Asynchronous current mode
serial communication,” IEEFE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 18, no. 7, pp. 1107-1117, 2010.

9] A. P. Jose, G. Patounakis, and K. L. Shepard, “Pulsed current-mode signaling
for nearly speed-of-light intrachip communication,” IEEE Journal of Solid-State
Circuits, vol. 41, no. 4, pp. 772-780, 2006.

[10] S. Furber, “Large-scale neuromorphic computing systems,” Journal of neural en-
gineering, vol. 13, no. 5, p. 051001, 2016.

[11] F. Akopyan, J. Sawada, A. Cassidy, R. Alvarez-Icaza, J. Arthur, P. Merolla,
N. Imam, Y. Nakamura, P. Datta, G.-J. Nam et al., “Truenorth: Design and
tool flow of a 65 mw 1 million neuron programmable neurosynaptic chip,” IEEFE

transactions on computer-aided design of integrated circuits and systems, vol. 34,
no. 10, pp. 1537-1557, 2015.

93

https://en.wikipedia.org/w/index.php?title=Hodgkin%E2%80%93Huxley_model&oldid=1049127797
https://en.wikipedia.org/w/index.php?title=Hodgkin%E2%80%93Huxley_model&oldid=1049127797

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]
[20]
[21]

[22]

23]

[24]

M. Davies, N. Srinivasa, T.-H. Lin, G. Chinya, Y. Cao, S. H. Choday, G. Dimou,
P. Joshi, N. Imam, S. Jain et al., “Loihi: A neuromorphic manycore processor with
on-chip learning,” leee Micro, vol. 38, no. 1, pp. 82-99, 2018.

J. Park, T. Yu, S. Joshi, C. Maier, and G. Cauwenberghs, “Hierarchical address
event routing for reconfigurable large-scale neuromorphic systems,” IEEE trans-

actions on neural networks and learning systems, vol. 28, no. 10, pp. 2408-2422,
2016.

M. M. Khan, D. R. Lester, L. A. Plana, A. Rast, X. Jin, E. Painkras, and S. B.
Furber, “Spinnaker: mapping neural networks onto a massively-parallel chip mul-
tiprocessor,” in 2008 IEEE International Joint Conference on Neural Networks
(IEEE World Congress on Computational Intelligence). Ieee, 2008, pp. 2849—
2856.

F. YANG, “Designing asynchronous gate library with new system level trade-offs,”
2021.

J. Stuijt, M. Sifalakis, A. Yousefzadeh, and F. Corradi, “pbrain: An event-driven
and fully synthesizable architecture for spiking neural networks,” Frontiers in neu-
roscience, vol. 15, p. 538, 2021.

J. Schemmel, D. Briiderle, A. Griibl, M. Hock, K. Meier, and S. Millner, “A wafer-
scale neuromorphic hardware system for large-scale neural modeling,” in 2010
IEEE International Symposium on Clircuits and Systems (ISCAS). 1EEE, 2010,
pp- 1947-1950.

A. Neckar, S. Fok, B. V. Benjamin, T. C. Stewart, N. N. Oza, A. R. Voelker,
C. Eliasmith, R. Manohar, and K. Boahen, “Braindrop: A mixed-signal neuro-

morphic architecture with a dynamical systems-based programming model,” Pro-
ceedings of the IEEFE, vol. 107, no. 1, pp. 144-164, 2018.

M. Mahowald, An analog VLSI system for stereoscopic vision. Springer Science
& Business Media, 1994, vol. 265.

J. Feng, “Is the integrate-and-fire model good enough?—a review,” Neural net-
works, vol. 14, no. 6-7, pp. 955-975, 2001.

A. N. Burkitt, “A review of the integrate-and-fire neuron model: I. homogeneous
synaptic input,” Biological cybernetics, vol. 95, no. 1, pp. 1-19, 2006.

A. L. Hodgkin and A. F. Huxley, “A quantitative description of membrane cur-
rent and its application to conduction and excitation in nerve,” The Journal of
physiology, vol. 117, no. 4, p. 500, 1952.

M. Mahowald, “Vlsi analogs of neuronal visual processing: a synthesis of form and
function,” 1992.

D. Thulasiraman and J. S. Gaggatur, “A tunable, power efficient active inductor-
based 20 gh/s ctle in serdes for 5g applications,” Microelectronics Journal, vol. 95,
p. 104657, 2020.

o4

[25]

[26]

[29]
[30]

[31]

[32]

[33]

M. P. Miller, F. D. Brewer, and G. Magazzu, “5gb/s radiation hard low power
point to point serial link,” in 2014 19th IEEE-NPSS Real Time Conference, 2014,

pp. 1-4.

C. Zamarreno-Ramos, T. Serrano-Gotarredona, B. Linares-Barranco, R. Kulkarni,
and J. Silva-Martinez, “Voltage mode driver for low power transmission of high
speed serial aer links,” in 2011 IFEEE International Symposium of Circuits and
Systems (ISCAS). 1EEE, 2011, pp. 2433-2436.

N. Qiao and G. Indiveri, “A clock-less ultra-low power bit-serial lvds link for
address-event multi-chip systems,” in 2018 24th IEEE International Symposium
on Asynchronous Circuits and Systems (ASYNC). 1EEE, 2018, pp. 93-101.

A. Mochizuki, H. Shirahama, and T. Hanyu, “Design of a quaternary single-ended
current-mode circuit for an energy-efficient inter-chip asynchronous communication
link,” in 2014 IEEFE }4th International Symposium on Multiple- Valued Logic, 2014,
pp. 67-72.

T. Instruments, “Lvds owner’s manual,” Jan, 2008.

S. B. Furber, F. Galluppi, S. Temple, and L. A. Plana, “The spinnaker project,”
Proceedings of the IEEE, vol. 102, no. 5, pp. 652-665, 2014.

S. B. Furber, D. R. Lester, L. A. Plana, J. D. Garside, E. Painkras, S. Temple, and
A. D. Brown, “Overview of the spinnaker system architecture,” IEEFE Transactions
on Computers, vol. 62, no. 12, pp. 2454-2467, 2013.

P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada,
F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura et al., “A million
spiking-neuron integrated circuit with a scalable communication network and in-
terface,” Science, vol. 345, no. 6197, pp. 668-673, 2014.

N. Kim, D. Wu, D. Kim, A. Rahman, and P. Wu, “Interposer design optimiza-
tion for high frequency signal transmission in passive and active interposer using
through silicon via (tsv),” in 2011 IEEFE 61st Electronic Components and Technol-
ogy Conference (ECTC), 2011, pp. 1160-1167.

95

	Abstract
	Acknowledgments
	Introduction
	Problem Statement
	Goal
	Contributions
	Thesis Outline

	Background
	Neuromorphic computing system
	Neurons model
	Address-Event Representation

	Communication System
	SerDes
	Asynchronous Communication link
	Various Topology

	Implementation
	Overview
	Implementation of Basic SerDes Link
	Transmitter Design
	Receiver Design
	Cooperation Mechanism

	Implementation of Multi-Point Communication
	System's Ring Topology
	Upgrading in Transmitter and Receiver
	Distributed Control System

	Optimization
	Bi-directional Ring Topology
	Optimized Chiplet Design

	Configuration and Parameterization

	Simulations and Results
	Power and Area
	Simulation with MNIST Use Case
	Mapping Methodology
	Simulation Waveform
	Timing constraints
	Throughput Analysis

	Comparison

	Conclusion and Future Work
	Summary
	Future Work

