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A B S T R A C T

As a two-sided digital platform, ride-sourcing has disruptively penetrated the mobility market. 
Ride-sourcing companies provide door-to-door transport services by connecting passengers with 
independent service suppliers labelled as “driver-partners”. Once a passenger submits a ride 
request, the platform attempts to match the request with a nearby available driver. Drivers have 
the freedom to accept or decline ride requests. The consequences of this decision, which is made 
at the operation level, have remained largely unknown in the literature. Using agent-based 
simulation modelling on the realistic case study of the city of Amsterdam, the Netherlands, we 
study the impacts of drivers’ ride acceptance behaviour, estimated from unique empirical data, on 
the ride-sourcing system where the platform applies regular and surge pricing strategies, and 
riders may revoke their requests and reject the received offers. Furthermore, we delve into the 
implications of various supply–demand intensities, a centralised fleet (i.e., mandatory acceptance 
on each ride request) versus a decentralised fleet (i.e., ride acceptance decision by each driver), 
ride acceptance rates, and surge pricing settings. We find that the ride acceptance decision of ride- 
sourcing drivers has far-reaching consequences for system performance in terms of passengers’ 
waiting time, driver’s revenue, operating costs, and profit, all of which are highly dependent on 
the ratio between demand and supply. As the system undergoes a transition from undersupplied 
(i.e., real-time demand locally exceeds available drivers) to balanced and then oversupplied state 
(i.e., more available drivers than real-time demand), ride acceptance decisions result in higher 
income inequality. A high acceptance rate among drivers may lead to more rides, but it does not 
necessarily increase their profit. Surge pricing is found to be asymmetrically in favour of all the 
parties despite adverse effects on the demand side due to higher trip fare. This study offers in-
sights into both the aggregated and disaggregated levels of ride-sourcing system operations and 
outlines a series of transport policy and practice implications in cities that offer such ride-sourcing 
systems.
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1. Introduction

Ride-sourcing platforms are built upon a two-sided business model where drivers, as independent contractors/freelancers, supply 
passengers, who submit ride requests through dedicated smartphone applications. In such a context, drivers are free to make various 
decisions from strategic to operational levels (Ashkrof et al. 2020). At the operational level, drivers confront a pivotal choice when a 
ride request appears, relying on limited information provided by the platform. Notably, in many operational areas, drivers typically 
lack visibility into the trip fare and final destination before accepting a ride request. Consequently, they base their choice on restricted 
trip-related information and make ride acceptance decisions which may have profound consequences on system operations. For 
instance, once a request is rejected by a driver, it is returned to the queue to be matched with a new driver. This leads to longer waiting 
time for passengers and therefore a lower level of service and higher idle time for that driver.

Ride-sourcing platforms implement varying degrees of limitations regarding the disclosure of trip-related information to drivers. 
For instance, in the case of Uber in Amsterdam, drivers are provided with the pick-up point address, the distance, the estimated travel 
time from their location, and the rider’s rating. However, the trip fare and final destination are not disclosed initially. Drivers only see 
the destination once they have accepted the request and are approaching the rider. Uber cites passenger privacy protection as the 
primary reason for limiting trip-related information (Uber, 2022c). Nevertheless, this practice may also be intended to reduce the 
likelihood of drivers cancelling requests after acceptance, as the driver has already committed some distance to pick up the passenger 
(Ashkrof et al. 2020).

In the supply-side literature, three main research streams are identified. The first research stream assumes that drivers are fully 
compliant with platform strategies (Wang, Fu, and Ye 2018; Cachon, Daniels, and Lobel 2017; Zha, Yin, and Yang 2016). Under this 
assumption, drivers make no independent decisions and completely follow what they are instructed to do by the platform app. The 
second stream focuses on an automated fleet centrally operated by the platform (Ruch et al. 2018, Winter et al. 2016, Zhang et al. 2016, 
Levin 2017, Liang et al. 2018, Wang et al. 2022). In both cases, the assumptions made on fleet characteristics appear not to be in line 
with current operations and simply ignore the impacts of driver’s behaviour on system performance.

A third, recently emerging research stream is devoted to the study of labour behaviour and preferences of the ride-sourcing supply 
side (Ashkrof et al. 2020; Ramezani et al. 2022; Ashkrof, Homem de Almeida Correia, et al. 2023). Applying a data-driven method, Xu 
et al. (2018) mention that nearly 40 % of ride requests in the Didi Chuxing platform on 23 January 2017 in Shangai, China, received no 
response. They also report that surge pricing significantly increases the probability of accepting ride requests. Analysing 576 responses 
collected through a stated choice survey from Uber and Lyft drivers in the US, Ashkrof et al. (2022) estimate the effects of various 
factors influencing ride acceptance behaviour. They suggest that part-time and beginning drivers tend to have higher acceptance rates. 
Based on choice model estimations, they conclude surge pricing has a higher marginal utility than trip fare per monetary unit.

On the platform side, a large body of research is focused on the design of matching and pricing strategies (Cachon, Daniels, and 
Lobel 2017; Zha, Yin, and Du 2018; Zha, Yin, and Xu 2018; Li, Jiang, and Lo 2022; Son 2023). One of the focal research topics in this 
area is surge pricing. Surge pricing, a commonly applied strategy in ride-sourcing practices, offers a monetary bonus for drivers when 
the demand is excessively higher than the supply. It is often considered a black-box algorithm (Chen, Mislove, and Wilson 2015) due to 
the lack of transparency and the limited information shared by ride-sourcing platforms. In one of the earliest studies in this area, Chen 
et al. (2015) reverse-engineered surge pricing by tracking the Uber application operations on 43 mobile phones distributed through 
San Francisco and Manhattan. They found that surge pricing has a significant negative effect on riders and a minor positive impact on 
drivers. Guda and Subramaniana (2019) argue that surge pricing should be applied strategically. They suggest that if there is a demand 
surge in a given zone, the platform should apply strategic surge pricing in a proactive manner.

Most of the abovementioned studies address a specific problem, while the interaction and dynamics between the involved parties 
have remained largely neglected. In order to understand and analyse the complex nature of ride-sourcing operations, the behaviour 
and interactions of both drivers and riders with the platform need to be considered simultaneously. Bokányi and Hannák (2020)
performed agent-based simulation experiments to model a ride-hailing system at the microscopic level. They found that income 
inequality among drivers is higher in an oversupplied system (i.e., the number of drivers is excessively higher than what would be 
needed to satisfy the incoming requests) and the extent of which depends on the spatial characteristics of requests, drivers’ reposi-
tioning strategies, and the platform matching algorithm. Developing a dynamic framework that takes into account the daily partici-
pation of drivers in the platform operations, de Ruijter et al. (2022) model the emergence of substantial income disparities amongst 
drivers.

Given that the information on the supply side is strictly limited due to the reluctance of ride-sourcing companies to share revealed 
preference data and the fact that stated preference data collection is costly owing to the highly specific target group, drivers’ 
behaviour, particularly at the operational level, is typically neglected or underestimated in simulation studies. Some studies included 
driver’s relocation choice in the analysis of two-sided ride-sourcing platforms by directly adopting past results for taxi drivers’ 
repositioning choices (e.g. Nahmias-Biran et al., 2019). Nonetheless, the other operational decision − ride acceptance behaviour − is 
rather unique to the ride-sourcing context, and there is a lack of knowledge of its implications.

The identified gap calls for developing a simulation model that incorporates the stochastic dynamic ride acceptance decision of 
ride-sourcing drivers into system operations while accounting for the decisions made simultaneously by other parties. This modelling 
approach enables devising new strategies to improve system operational management and analysing the performance consequences 
thereof. To the best of our knowledge, this is the first study to model an empirically underpinned representation of ride-sourcing 
drivers’ acceptance behaviour into a simulation model. One notable strength of this research lies in deriving the acceptance func-
tion from an empirical study conducted by Ashkrof et al. (2022), specifically tailored to discern the variables influencing drivers’ ride 
acceptance decisions. Leveraging the insights gained from this study provides substantial value, especially within the context of 
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current ride-sourcing system operations that feature restricted information sharing with drivers. This mirrors the existing system 
operations where drivers make decisions without access to upcoming trip fare and distance details. We also take into account riders’ 
decisions and platform matching and pricing strategies. The main research contributions of this paper are listed as follows: 

• Developing a discrete-event agent-based simulation framework for realistically reproducing ride acceptance behaviour of ride- 
sourcing drivers in a complex dynamic system.

• Extending the framework with characteristics of a centralized (automated) fleet to analyse its implications in comparison to a 
decentralized fleet.

• Designing a surge pricing model based on actual platform operation and seamlessly incorporating it into the proposed agent-based 
framework.

• Insights and implications from applying the model to the realistic case study of the city of Amsterdam, the Netherlands

The analysis consists of several layers: First, we contrast the performance of a decentralised fleet where individual drivers make ride 
acceptance decisions, and a centralised fleet, where drivers are fully compliant with the system in a way that all the requests are 
accepted (automated fleet) and also analyse the effects of supply–demand intensity on the system-level behaviour. Second, the im-
plications of drivers’ ride acceptance rate are analysed. Third, the impacts of surge pricing on system operations are discussed. In the 
next section, the methodology applied in this research is elaborated.

2. Methodology

2.1. Agent-based simulation model

In this research, we adopt a bottom-up approach for modelling emergent phenomena by means of developing and using an agent- 
based simulation model in which drivers, riders, and the platform are defined as the model agents. Given the immense complexity 
arising from the real-time interactions between the ride-sourcing actors, an agent-based simulation model allows capturing the ride- 
sourcing system dynamics, offers flexibility in adding the system agents with their behaviour, and provides the ability to change levels 
of detail as well as aggregation and simulate the complex relationship between riders, drivers, and the platform. This modelling 
approach has been used extensively to study demand-responsive transport modes in urban areas (Martínez et al., 2017).

To study the implications of ride-sourcing drivers’ ride acceptance decisions on system performance, we adopt and adapt a within- 
day discrete event agent-based simulation model in which drivers are individual decision-makers on ride requests, interacting with 
riders and the platform and integrated into the MaaSSim simulator (Kucharski and Cats, 2022). For the needs of this study, the 
simulation framework is extended by introducing the drivers’ ride acceptance and surge pricing functionalities, as detailed below.

2.1.1. MaaSSim
MaaSSim (Kucharski and Cats, 2022) is an open-source, agent-based simulator in Python, which reproduces the dynamics of ride- 

sourcing systems. It simulates, on the urban road network, the behaviour and interactions of two classes of agents: (i) travellers, 
requesting a ride to travel from their origin to their destination at a given time, (ii) drivers, offering rides for travellers to supply their 
travel needs. The spatiotemporal interactions between the two types of agents are mediated by the platform, matching travellers to the 
closest idle driver. Both demand and supply, as well as their interactions, are modelled at a disaggregate level. This relates to the 
explicit representation of single vehicle agents and their movements in time and space for supply. For demand, this pertains to the 
precise trip request time and destinations defined at the graph node level. MaaSSim does not account for the traffic congestion, 
assuming a constant speed for ride-sourcing vehicles and that their contribution to traffic is not enough to impact travel times, which 
are predominantly influenced by private cars.

2.1.2. Matching and ride acceptance
In MaaSSim, a rider agent submits a ride request (r) with a specific origin and destination. Next, the platform agent attempts to 

match the requests queued in the system (Qr) with nearby available drivers (d) in the queue (Qd) based on their distances. Considering 
our constant speed assumption, nearby drivers can be alternatively defined by pickup times (i.e., travel time between the driver’s 
location and the rider’s location (Prd)). Thus, by matching passengers with the closest drivers, the possible shortest pick-up times are 
ensured. The match between rider and driver (Mrd) is calculated based on the matching function presented in Eq. (1). Note that the 
MaaSSim matching function is reactivated upon any changes in either the requests’ queue or the drivers’ queue, i.e., when a new ride 
request is made or a driver becomes idle. 

Mrd = argminPrd, r ∈ Qr, d ∈ Qd (1) 

On the supply side, once a driver agent receives a request, they accept or decline it based on a logit model using a utility function. The 
model specification is based on the model estimation results reported in the study by Ashkrof et al. (2022b), specifically designed to 
analyse the ride acceptance behaviour of ride-sourcing drivers. Ride-sourcing platforms adopt various information-sharing policies 
leading to partial disclosure of information about ride requests. In most cases, ride-sourcing drivers make ride-acceptance decisions 
based on limited information. For instance, trip fare and final destination are typically not shown to drivers before ride acceptance. 
Therefore, we only include the typical factors related to the current system operations. To this end, the utility function consists of the 
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driver’s idle time (Id), which is the duration between the last drop-off and the incoming request, pickup time (Prd), alternative-specific 
constant (ASC), and the error term (ε) representing the model stochasticity in the base scenario in which the platform applies regular 
pricing. Eq. (2) and Eq. (3) represent the acceptance utility function specification and the corresponding probability according to a 
binary logit function since the driver is not able to see and assess several requests at the same time in the same platform. 

Uacceptance = ASC+ βId * Id + βPrd
* Prd + ε (2) 

Pacceptance =
eUacceptance

1 + eUacceptance
(3) 

If a driver agent accepts a request, the following events take place in the simulation: heading to the passenger’s location, picking them 
up, driving to the destination, dropping them off, staying at the drop-off point, and waiting for the next ride (it is assumed that drivers 
stay at the drop-off location and make no repositioning decision) or ending the working shift. If the request is rejected, driver and rider 
agents return to the queue and wait for a possible next match.

2.1.3. Driver’s profit
Once a ride is completed (i.e., the rider arrives at the destination), the corresponding driver and the platform receive their share of 

the trip fare based on the platform pricing strategy. When the platform uses regular pricing, the driver’s revenue (Rd) is calculated 
based on the base fare (fbase), fare per kilometre (fkm), trip distance in kilometres (tdkm), and the platform commission fee (α). The 
operating costs (OCd) depend on the total driving distance (pickup distance plus trip distance) in kilometres (ddkm) and the total costs 
per kilometre (tckm). These expenses consist of gas, tax, insurance, repair, maintenance, depreciation, or lease payments. The sub-
traction of operating costs from revenue yields the driver’s profit (Pd). Eq. (4) – Eq. (6) present the driver’s revenue, operating costs, 
and profit, respectively. 

Rd = (fbase + fkm*tdkm)*(1 − α) (4) 

OCd = tckm*ddkm (5) 

Pd = Rd − OCd (6) 

2.1.4. Surge pricing
Once riders locally outnumber drivers, a bunch of ride requests may be left unserved, potentially harming the platform’s repu-

tation. Hence, the platform strives to balance supply and demand using multiple approaches such as surge pricing. In this study, the 
platform agent applies surge pricing (also known as dynamic pricing) to adjust trip fares based on the real-time ratio between demand 
and supply. In case surge pricing is applicable, an additional positive term associated with surge pricing (S) is added to the ride 
acceptance utility function (Eq. (7). 

Uacceptance = ASC+ βId * Id + βPrd
* Prd + βS*S+ ε (7) 

For surge pricing, for example, Uber employs a geospatial indexing system dividing cities into multiple zones where the real-time ratio 
between demand and supply is calculated (Chen et al., 2015). We mimic Uber’s strategy (Uber surge pricing patent, 2013) for 
implementing surge pricing by dividing the study area into several hexagonal zones using an open-access python package known as H3 
developed by Uber (Uber, 2022a). In each zone, we record the real-time ratio between demand and supply. If this ratio is greater than 
one, then this implies that the system is undersupplied, and surge pricing should be applied.

We consider a surge multiplier ranging from 1x to 5x with an interval of 0.1, which is in line with Uber operations (Chen et al., 

Fig. 1. Surge Multiplier Graph.
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2015). The multiplier is determined based on the following surge function that depends on the real-time ratio between demand and 
supply in zone i ((D/S)i). As shown in Fig. 1, the function is bounded by: (i) a minimum demand–supply ratio of 1 (i.e., perfect local 
balance between supply and demand) and an absolute maximum ratio between demand and supply (D/Smax) in all zones, on the x-axis; 
(ii) a minimum surge multiplier of 1x (i.e., regular price) and a maximum surge multiplier of 5x, on the y-axis. We specify a linear 
function for estimating the surge multiplier based on the real-time ratio between supply and demand in any given zone. Eq. (8)
mathematically presents the surge function yielding the surge multiplier in zone i (SMi). 

SMi =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1 +

4* (
(

D
S

)

i
− 1)

D
Smax − 1

, (
D
S
)i > 1

1, (
D
S
)i ≤ 1

(8) 

Once the surge multiplier is determined, the trip fare is updated in the system, and the driver’s revenue is calculated based on Eq. (9): 

Rd = (fbase + fkm*tdkm)* SMi* (1 − α) (9) 

As mentioned earlier, the surge pricing strategy aims at restoring the balance between demand and supply. This is achieved by 
retaining the ride requests for which the willingness to pay is the highest. To account for the impacts of surge pricing on the demand 
side, we adopt the demand elasticity estimated by Cohen et al. (2016), who conducted a regression discontinuity analysis. We obtain 
the probability of an offer being accepted by riders based on the applied surge multiplier (Fig. 2).

2.2. Experimental design

We apply the developed simulation framework to the city of Amsterdam, the Netherlands, where merely non-shared (UberX) 
services are available. According to the municipality of Amsterdam (Gemeente Amsterdam, 2019), around 8 million taxi/ride-sourcing 
trips were made in 2019 in Amsterdam, resulting in an average of 22,000 rides per day. In order to study the within-day ride-sourcing 
system operations, we set the simulation starting and ending times at 8:00 and 16:00, respectively, to cover a typical working shift of 8 
h. Given the non-uniform distribution of demand within a day, we assume 10,000 ride-sourcing rides out of 22,000 daily rides are 
made during the simulation time. The demand is sampled from a dataset of trips of 3 km or longer obtained from an updated version of 
the activity-based Albatross model (Arentze and Timmermans, 2004). Given that the matching algorithm of Uber reportedly takes 
seconds to run (Medium, 2022; Uber, 2022), we assume that riders revoke their requests without making new request once no offer is 
given within 3 min. Note that MaaSSim does not account for the traffic congestion, thereby assuming a constant speed for ride-sourcing 
vehicles and that their contribution to traffic is not enough to impact travel times, which are predominantly influenced by private cars.

We perform experiments for fleet sizes varying between 100 and 1000 drivers with an increment step of 100, enabling us to analyse 
the effects of the supply–demand intensity. Driver agents are geographically generated based on a negative exponential distribution 
function to ensure more drivers are placed in the city centre where more demand is expected. Drivers’ working shift matches the 
simulation time, i.e., no working shift decision is made. Vehicle speed is assumed to be constant at 36 km/h. We consider two types of 
fleets: a) a decentralised fleet in which drivers make ride acceptance decisions; and b) a centralised fleet where drivers accept all the 
requests (fully compliant). Then, the performance of both fleets is compared to provide deeper insights into the implications of drivers’ 
ride acceptance decisions. We assume that only one platform is operating in the city, therefore multi-homing (i.e., driving for multiple 
platforms) is not applicable.

Fig. 2. Demand elasticity as a function of the surge multiplier (Cohen et al. 2016).
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Empirical data from the real-world Albatross trip set, which we are using in our study, demonstrates higher demand in the city 
center (Arentze and Timmermans, 2004) which is in line with the ride-sourcing demand distribution in the literature (Marquet, 2020; 
Wang et al. 2021). Accordingly, we assume higher supply in the city center based on a negative exponential distribution function to 
align with expected demand patterns. Such an assumption is in line with previous studies on real-world data, which, based on GPS 
trajectories, indicate that drivers are distributed throughout the city with a high concentration in the city center, and their number 
decrease with increasing distance from the city center (Qian and Ukkusuri, 2015; Santi et al., 2015; Peng et al., 2012).

Based on the models estimated by Ashkrof et al. (2022), the parameters of the ride acceptance functions, ASC, βId , βPrd
, and βS, are 

set to 1.810, − 0.017, − 0.050, 0.101, respectively. Using the Uber price estimator tool in 2022, the base fare (fbase), the fare per kil-
ometre (fkm), and the minimum fare (fmin) are set to €2, €1.2, and €5, respectively. The platform commission rate is 25 % (α), in line 
with the current Uber operations in Amsterdam. The operating cost of drivers (OCd) is set to €0.5 per kilometre (Standard mileage rates 
(2021)). Given the stochasticity of the simulation process, several experiment replications are needed to attain statistically robust 
results. The number of required replication runs is set to five as it is found to obtain results with a confidence level of 95 %. We use the 
average values to conduct the analysis at the aggregate level.

2.3. Results

The results of the experiments are presented and analysed along four dimensions: the impacts of the supply–demand intensity on 
the performance of a centralised (automated) fleet versus a decentralised fleet operated by drivers making their decisions on ride 
requests (Section 3.1), the effects of ride acceptance rate on drivers’ performance (Section 3.2) and an analysis of applying surge 
pricing and its consequences for system and drivers’ performance (Section 3.3).

2.4. Centralised versus decentralised fleet

A widespread assumption in most of the literature concerned with ride-hailing is that a central operator makes all the decisions 
regarding a match between a driver and a client. This in reality implies that the fleet consists of either AVs or fully-compliant drivers 
who do not make independent choices, none of which reflects the current state of affairs. Rather, drivers are independent decision- 
makers who choose what they perceive to be in the best of their interest. In this sub-section, we analyse and compare the perfor-
mance of centralised and decentralised fleets.

Fig. 3 presents the distribution of passenger waiting time with centralised (CF) and decentralised fleets (DF) using a violin plot. It 
can be seen that passenger waiting time in the DF, where drivers can reject ride requests, is not necessarily higher than in the CF. It is 
observed that there is no substantial difference between the waiting time of passengers in both fleets in case the system is under-
supplied with 300 drivers or fewer. This is because the number of drivers in this state is not sufficient to serve all requests. Therefore, 
even if a request is rejected in the DF, another request (not far away from the other) is immediately offered to the driver which, if 
accepted, results in a shorter waiting time for another passenger. While the rejected passenger probably loses their patience and leaves 
the system. Once the system is in a balanced/oversupplied situation (400 drivers and more), the average and standard deviation of 
passenger waiting time are higher in the DF than the CF, i.e., drivers’ acceptance behaviour results in system efficiency loss. This is 
because some requests get rejected in the DF by the closest available driver, and then a farther away driver may get assigned to the 
request which in turn might get rejected again.

Across fleet, the general pattern indicates that the average passenger waiting time does not necessarily decrease for larger fleet sizes 
which might be counter-intuitive. For instance, the average waiting times are 190, 217, and 303 s for fleet sizes of 100, 200, and 300, 
respectively. This can be explained by the trade-off between match rate (i.e., the percentage of rides matched within a specific time 
interval) and the match quality (i.e., the attractiveness of a ride such as pickup distance which is the distance between the driver’s 
location and the pickup point). When the fleet size is 100, 6,224 out of 10,000 requests are rejected which results in a total match rate 
of 38 % while the average pickup distance is 1.32 km. When 100 more drivers are added to the system − resulting in a fleet size of 200 
− the match rate rises to 71 %, whereas the match quality decreases with an average pickup distance of 1.72 km leading to a higher 
waiting time for the passengers. The average waiting time peaks with 300 drivers, in which the total match rate reaches 92 % and the 
pickup distance levels up to 2.81 km. With a fleet size of 400, the system seems to reach a balance between supply and demand given 
that all the requests during the simulation period are served (i.e., 100 % match rate). Once the number of drivers exceeds this 

Fig. 3. Passenger waiting time in the centralised and decentralised platforms.
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threshold, a sharp drop in the passengers’ average waiting time is observed. From this point onward, the waiting time pattern changes 
and the average value constantly decreases with the growing fleet size. This is because the number of drivers is (more than) sufficient to 
cover all requests with shorter pickup distances.

As the system state changes from balanced to oversupplied (around 500 drivers to 800 driver), the likelihood that drivers are 
available in the vicinity of requests increases leading to a decrease in the average passengers’ waiting time. From 800 drivers onward, 
average passengers’ waiting time remains roughly constant. The threshold of 800 drivers emerges from experiments with different 
fleet sizes in the context of Amsterdam, a city with a population of approximately 920,000 and a total of around 5000 taxi drivers, 
including Uber drivers (ROA Rapport, 2023; Gemeente Amsterdam, 2019). Beyond this point, we observed that passenger waiting 
times plateaued, indicating no significant improvement in system performance. The threshold is mainly determined by demand level, 
trip distances, and pick-up distances. In Amsterdam, ride-sourcing demand is relatively low (around 2 %), likely due to the high share 
of trips completed by bikes. Additionally, the city has relatively small and dense road network leading to shorter trip and pick-up 
distances. While short trips increase the drivers availability resulting in low matching times, short pick-up distances means short 
pick-up times, ultimately decreasing passenger waiting times. In larger cities with higher demand and/or longer travel distances (e.g. 
due to urban sprawl), thresholds are expected to be higher, and conversely, lower in smaller and more compact cities.

Next, the performance of the ride-sourcing supply side is analysed starting with the drivers’ revenue in Fig. 4. Comparing the 
drivers’ revenue in both fleets, we find a significantly higher income variation between the drivers of the DF in the balanced and 
oversupplied states. In other words, human intervention causes more income inequality as drivers seek to maximise their income 
regardless of the system state. That is why the income dispersion is considerably sharper in the DF where more drivers can earn a 
higher income, in some cases even more than the maximum revenue in the CF. On the other hand, the number of drivers who have a 
low revenue is higher in the oversupplied DF given the high competition. As expected, the average revenue is nearly the same in both 
fleet types, especially when all the requests are satisfied (equivalent total revenue). Nevertheless, the revenue is slightly higher in the 
CF in the undersupplied state given that more rides are served.

Considering the overall trend with respect to fleet size, the average revenue of the drivers decreases as the fleet size becomes larger 
for a given demand level. We do, however, observe that once the number of drivers exceeds 500, this income rate of reduction due to 
the joining of more drivers decreases. Another observation concerns the income variation which sharply rises once the system state 
changes from being undersupplied to balanced and oversupplied. This might be due to higher competition amongst drivers.

Drivers’ revenue includes the costs incurred during their operations, known as operating costs. As illustrated in Fig. 5, more 
variation in the drivers’ operating costs in the DF can be found. Such difference is more striking in the balanced and oversupplied states 
where the disparity in driver’s ride acceptance behaviour becomes large. This is because in the DF, drivers are free to decline rides 
assigned based on the shortest pickup distance. Once a request is rejected, another one, which is likely to be farther away, might be 
matched with the driver resulting in a longer pickup distance and thereby contributing to increased operating costs. Such a disparity in 
drivers behaviour results in diverse drivers’ revenue and operating costs for DF, i.e., their distributions on Figs. 4 and 5 tend to shift 
from being unimodal toward a more uniform shape. Thus, we expect a uniform distribution for highly oversupply conditions (fleet size 
> 1000).

Similar to the overarching revenue pattern concerning fleet size, we observe that the undersupplied system performs strikingly 
different from the base case. In this range (< =300 drivers), there is no notable average difference in the operating costs of drivers, 
while a sharp drop in the operating costs occurs in the balanced and oversupplied state. The operating cost is obtained from driving 
distance consisting of pickup and trip distance (Fig. 6). It should be highlighted that drivers are not paid for picking up passengers. 
Thus, pickup distance merely incurs costs for these drivers. At the same time, the average trip distance travelled in the shift decreases 
with an increasing number of drivers.

It is interesting to note that the increase in the average pickup distance is offset by the fall in the average trip distance for fleet sizes 
of 100, 200, and 300. This results in similar driving distances and consequently nearly equivalent average operating costs for these 
drivers. Given that the average pickup distance starts decreasing with the rise in fleet size in the balanced state, there is a steep decline 
in operating costs due to the synergy between the decline in the pickup and trip distances in the balanced and oversupplied ranges. In 
addition to the mean, the cost variation between drivers grows for fleet sizes of 400 and higher, this is due to the more fierce 
competition between drivers.

Following the higher variation in revenue and operating costs of drivers in the DF, drivers’ profit varies more dramatically when 
drivers are able to make decisions on ride requests. With larger fleet sizes, the average profit is slightly higher in the CF once the 

Fig. 4. Driver’s revenue in the centralised and decentralised platforms.
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number of drivers is between 100–500. As mentioned above, this is due to marginally higher revenue in the undersupplied state and/or 
lower operating costs in the balanced state of the CF during the shift in these scenarios.

The platform revenue during the simulation time does not significantly change as soon as all requests are served. Nonetheless, 
driver’s acceptance behaviour may result in a higher average waiting time for passengers in the balanced and oversupplied state. This 
may decrease the platform market share which may potentially in the long term lead to lower income for a platform with a DF.

Fig. 5. Drivers’ operating costs in the centralised and decentralised platforms.

Fig. 6. Average distance travelled per driver.

Fig. 7. Average imposed delay per driver.
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2.5. Ride acceptance rate implications

In this section, we observe how the drivers’ acceptance behaviour affects their performance. To this end, we track the drivers’ 
behaviour across the simulation and classify them based on their acceptance rate, which is obtained from the ratio between the number 
of accepted requests and the total number of requests received during the shift. The drivers are then grouped into five segments with an 
acceptance rate of 60 % or less, 60 %-70 %, 70 %-80 %, 80 %-90 %, and more than 90 %. The performance of drivers is analysed for 
each of these groups.

First, we analyse the delay imposed on passengers by drivers rejecting rides. Fig. 7 depicts the imposed delay in the shift for 
different fleet sizes based on the drivers’ ride acceptance rate. In the undersupplied state, none of the drivers has an acceptance rate of 
less than 60 % given that the number of requests received during the shift is high enough. The delay imposed by a driver is the time that 
the corresponding passenger whose request has been rejected needs to wait to be matched with another available driver or cancel the 
requests because of exceeding the maximum allowable waiting time. Expectedly, the imposed delay decreases when more drivers are 
available. In the undersupplied state, the delay imposed by drivers with a low acceptance rate is much higher given that the rejected 
passengers should wait longer owing to the low number of drivers available to serve them.

Fig. 8 presents drivers’ average profit benchmarked against their acceptance rate in each fleet size. In the undersupplied state, the 
acceptance rate does not have a significant effect on the average profit per shift given the high number of incoming requests despite a 
relatively high rejection rate. Once the system is no longer in undersupply, the average profit significantly varies based on the 
acceptance rate. From this point onward, drivers with an acceptance rate of up to 60 % have the lowest income as the idle time is 
higher. With 500 or more drivers, the highest income is earned by the drivers whose acceptance rate is between 80 % and 90 %.

To gain a better understanding of the ride acceptance rate implications on drivers’ profits, Fig. 9 shows the distribution and 
quartiles of the profit based on drivers’ acceptance rate for different fleet sizes. Interestingly, the profit of drivers with an acceptance 
rate of 80 %-90 % is either more than or equal to the other categories in each quartile once the number of drivers is 500 or higher. In the 
oversupplied situation, a high-profit variation with an acceptance rate of 90 % is seen. In other words, this group of drivers can make a 
profit as high as or more than the drivers with an acceptance rate of 80 %-90 % or as low as or less than drivers with a 60 %-70 % 
acceptance rate. To explain this, we need to investigate the performance of each driver. A scatterplot of the number of rides received by 
each driver against the acceptance rate is shown in Fig. 9.

2.6. Surge pricing

At the operational level, surge pricing is one of the platform’s most prevalent pricing strategies. This surge in price, applied as a 
multiplier or an additive value to the trip fare, is paid by riders and results in higher revenue for drivers and the platform. Some 
passengers may revoke their request due to their sensitivity to trip fare. Moreover, surge pricing motivates drivers to accept more rides 
given that they can earn more money through surge pricing in which each monetary unit is valued higher than the trip fare (Ashkrof 
et al., 2022b). To implement surge pricing, the case study area of Amsterdam is divided into 55 hexagonal zones, and the 
demand–supply ratio is dynamically calculated in each zone. If a zone is undersupplied, the surge function (as explained in section 
2.1.3) is used to assign a surge multiplier ranging from 1.0x to 5.0x and estimate the corresponding surge fee. Fig. 10 illustrates the 
granular hyperlocal zones in Amsterdam and the calculated maximum demand–supply ratio in each zone using a colour palette 
ranging from dark red (high surge) to light red (low surge).

Fig. 8. Average profit in the shift based on the acceptance rate.
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Fig. 9. Driver’s profit variation for different acceptance rates.

Fig. 10. Maximum demand–supply ratio in the granular hyperlocal zones in Amsterdam.

Table 1 
Summary statistics of surge multiplier and drivers’ surge income.

Fleet size Surge Multiplier Drivers’ Surge Income in the Shift
Mean Standard Deviation Mean (Euros) Standard Deviation

100 1.51x 0.08 119.83 21.71
200 1.34x 0.08 74.77 18.27
300 1.15x 0.06 29.34 12.33
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Table 1 presents the mean and the standard deviation of the surge multiplier and drivers’ surge income (i.e., the revenue derived 
from surge pricing) in various fleet sizes. Simulation results indicate that surge pricing is activated only for fleet sizes of up to 300, in 
which the system is undersupplied. With 69 % of the rides being surge priced in the extremely undersupplied state (i.e., 100 drivers), 
drivers have approximately 120 euros (on average) surge income during a working shift with an average surge multiplier of 1.51x. 
With 200 drivers, surge pricing is applied to 49 % of the rides and an average driver can earn 75 euros from surge pricing with a 
multiplier of 1.34x. In the moderately undersupplied situation where the fleet size is 300, only 21 % of the rides receive surge pricing 
with a multiplier of 1.15x resulting in an average surge income of 30 euros for drivers. Remarkably, the average surge multiplier and 
the number of rides with dynamic pricing in the moderately undersupplied fleet size scenario (300 drivers) perfectly match the 
corresponding indicators in real-world Uber system operations. Moreover, surge pricing decreases the demand by no more than 4 % in 
all the fleet size scenarios as a consequence of the relatively inelastic passenger demand towards surge pricing reported by Cohen et al. 
(2016).

The analysis of drivers’ income shows that the average profit in the shift increases with surge pricing by about 100 %, 70 %, and 30 
% with 100, 200, and 300 drivers, respectively. Given that no significant change in the operating cost is observed, this rise in profit 
stems from the higher revenue obtained from drivers’ surge income. In addition, a higher variation in driver’s profit is observed, 
implying that surge pricing reinforces income inequality.

Given that the platform charges a 25 % commission per ride, the platform’s revenue is higher when surge pricing is introduced. The 
platform can earn up to 50 % higher revenue in a shift with surge pricing when the fleet size is 100. With 200 and 300 drivers in the 
surge pricing scenario, the platform revenue is 30 % and 10 % higher, respectively. Interestingly, platform’s revenue reaches a peak 
with 300 drivers when surge pricing is applied. This means that the platform can maximise its revenue by applying surge pricing in the 
moderately undersupplied state even though this results in leaving about 10 % of the requests unserved.

Furthermore, the platform can take advantage of having greater control over the demand–supply ratio. Platforms wish to minimise 
the number of unanswered ride requests and ensure riders can at least receive an offer. It appears that surge pricing can be used to serve 
this purpose. Given that surge pricing is paid out of riders’ pockets, some riders may reject the offer due to their lower willingness to 
pay. As shown in Table 2, the number of ride requests with no offer decreases when surge pricing is applied. This is because the ride 
acceptance rate is slightly higher thanks to surge pricing and some riders reject the offer, making drivers available for the next rides. 
Notably, in both the balanced and oversupplied states, riders do not reject any rides. Rejections are rather triggered by surge pricing, 
which is activated only in the undersupplied state.

Our simulation model results suggest that surge pricing does not have a significant impact on the average passenger’s waiting time. 
With 100 and 200 drivers, the waiting time slightly decreases, but with 300 drivers, a minor increase is observed in the surge pricing 
scenario. Although surge pricing primarily occurs when demand is considerably higher than supply and then a higher waiting time is 
expected, the drop in demand due to high surge fees can nearly offset the extra waiting time. This is in line with the findings of Cohen 
et al. (2016), in which they concluded that no correlation exists between passenger waiting time and surge pricing.

Fig. 11 presents the variation in travellers’ waiting times (upper row) and drivers’ income (lower row) across granular hyperlocal 
zones in Amsterdam, for fleet sizes of 100 (first column), 200 (second column), and 300 (third column). Note that the travellers’ origin 
and the drivers’ initial position are used to assign them to a specific zone. The average waiting time per traveller exhibits an increasing 
trend as the distance from the city center increases, a pattern that is more noticeable with the fleet size of 300. The average revenue per 
driver shows minimal variation based on their initial position. Note that the white suburban zones denote areas that were initially 
unoccupied by drivers at the beginning of the simulation.

The linear function used for estimating the surge multiplier (Eq. (8) can be replaced with alternative functional forms. Fig. 12
illustrates the maximum recorded surge multipliers for the convex and the concave quadratic functions for the fleet size of 100, 
compared to the linear function employed in this study. We expect the concave quadratic function to result in higher trip fares and 
increased number of rejected requests by travellers, and the convex quadratic function to lead to lower trip fares and decreased number 
of rejected requests by travellers. Furthermore, drivers’ income highly depends on the trade-off between the trip fares and the number 
of rejected requests by travellers.

3. Discussions and implications

Based on the ratio between demand and supply in a given area, the system state can be divided into three categories: undersupplied 
(more requests than available drivers), balanced, and oversupplied (more available drivers than the number of requests). The im-
plications of such distinction are highlighted in a study by de Ruijter et al. (2022b). They establish how the ratio between supply and 
demand governs the balance between the matching time (i.e., request match time and driver idle time) and the match quality (i.e., 
average pickup distance). Furthermore, they show that the system is more efficient in an asymmetrical two-sided market (either 

Table 2 
Number of rides rejected by riders or receiving no offer.

Fleet Size Dynamic Pricing Regular Pricing
Rejected by Rider No Offer No Offer

100 841 5492 6218
200 1093 2004 2908
300 638 501 787
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undersupplied or oversupplied) in which one side benefits from higher match quality at the expense of higher matching time for the 
other side.

In our research, a distinctive pattern is observed in each state, especially in the case of undersupplied conditions. For instance, 
passengers’ average waiting time decreases with the fleet size (for a fixed demand) except for the undersupplied condition where a 
larger fleet size leads to a higher match rate and a higher pickup distance resulting in longer passengers’ waiting time. This suggests 
that the system is less reliable in the undersupplied situation. At the same time, drivers’ average profit decreases when more drivers 
join the system regardless of the ratio between supply and demand, but the profit variation significantly rises once the system moves 
beyond the undersupplied state given the greater competition between drivers. The within-day platform’s revenue increases with a 
larger fleet size in the undersupplied state and does not significantly change in the balanced and oversupplied ranges.

The extent of imbalance between supply and demand is found to be critical. In an extremely undersupplied state where the number 
of incoming requests in a particular zone is excessively higher than the number of drivers, drivers earn significantly higher income at 
the expense of a low match rate and long waiting time for passengers. Conversely, an extremely oversupplied system benefits pas-
sengers, as it yields a high acceptance rate and short waiting time, but creates intense competition between drivers resulting in longer 
idle times and, consequently, a lower income. The platform may adopt measures to mitigate the emergence of such extreme situations. 
When the system is moderately misbalanced, both sides can asymmetrically benefit from the system. Under a moderately under-
supplied state passengers experience long waiting times caused by a higher match rate. In a near-balanced or slightly oversupplied 
situation, the competition between drivers is not as fierce as in the highly oversupplied situation resulting in a higher income/ 
satisfaction, and at the same time, the number of drivers is sufficient to handle all the requests with a relatively short waiting time for 
passengers. The platform can also benefit directly from the revenue obtained from serving all the requests and indirectly from having a 

Fig. 11. Average waiting time per traveller (upper row) and average revenue per driver (lower row) in granular hyperlocal zones 
within Amsterdam.

Fig. 12. Maximum surge multipliers for convex (left), linear (middle), and concave (right) surge functions in the granular hyperlocal zones 
in Amsterdam.
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potentially higher market share, given the higher level of service provisioned.
Comparing the performance of a centralised and a decentralised fleet operation, we argue that the type of fleet associated with 

drivers’ ride acceptance behaviour plays a crucial role in system operations. In the balanced and oversupplied condition, passengers’ 
average waiting time is higher in a DF given that each rejection imposes a delay to the system. This increase in waiting time can reduce 
the system’s capacity and efficiency. This is in line with the findings of Nahmias-Biran et al. (2019) that suggest that a centralised fleet 
operated by automated vehicles, which dutifully follow the platform instructions on repositioning, performs more efficiently than a 
decentralised human-driven fleet. They found that such higher efficiency increases the platform market share by four times once an 
automated fleet takes over the operations. Regarding the relation between drivers’ profit and fleet type, we find that human in-
terventions as manifested in ride acceptance decisions cause higher income inequality leading to drivers of a DF having higher income 
variation, especially if the system is not undersupplied. Such operational differences in CF and DF suggest that ignoring drivers’ 
behaviour when analysing the within-day operations of real-world two-sided ride-sourcing system potentially leads to misrepresen-
tation of the system performance.

The surge pricing model introduced in this study is based on the ratio between supply and demand which is dependent on spa-
tial–temporal factors. Our observations show that surge pricing is more likely to occur in the city centre during peak hours where 
demand concentrations are higher. Analysing the impacts of surge pricing on system operations suggests that surge pricing can be 
beneficial for drivers and the platform while having mixed effects on the demand side. On the one hand, an inflated price decreases the 
utility of a ride for passengers, leading to some offers being rejected by riders. On the other hand, this reduction in the total number of 
requests leaves the remaining passengers better off as it creates more balance between supply and demand, enhancing the chance of 
those passengers to receive a ride. This can improve the matching efficiency by allocating the rides to passengers with a high will-
ingness to pay when drivers are scarce (Castillo, 2018). According to Uber, surge pricing is meant to help passengers find a reliable ride 
by restoring the balance between supply and demand (Uber Marketplace Surge pricing, 2022). In fact, Uber strives to minimise the 
number of requests that receive no response. Using surge pricing, the platform nudges riders with a lower willingness to pay (e.g. due to 
differences in urgency, income or quality of alternatives) to opt out. Regardless of the final decision, this choice can boost riders’ 
surplus. Moreover, the platform benefits from higher revenue due to higher trip fares.

From the suppliers’ perspective, drivers, on average, earn significantly higher average profits during surge pricing, the extent of 
which depends on the ratio between demand and supply. Nevertheless, surge pricing reinforces income inequality between drivers. 
Overall, it seems that surge pricing can offer benefits to all parties at the aggregate level, albeit their advantages are asymmetric. 
Nevertheless, the surge pricing mechanism is reportedly not transparent, leading to complaints and mistrust which cities may want to 
avoid if they are focusing on equity and transparency in the mobility system (Ashkrof et al., 2020; Castillo, 2018).

Building upon the critical insights gained in this study, the subsequent policy and practice implications are derived: 

• Policies such as enforcing supply caps or regulating the number of drivers during surplus periods should be devised to prevent 
extreme oversupply, which benefits passengers but results in lower income for drivers due to intensified competition.

• Ride-sourcing platforms need to invest in clear and unbiased communication regarding system operations to build trust and prevent 
potential misunderstandings among riders and drivers.

• Introducing regulatory measures for ride-sourcing platforms to ensure transparent implementation of surge pricing (e.g., specifying 
clear criteria that detail the specific circumstances and timing of surge pricing occurrences) and the effective dissemination of 
information and instructions can be highly beneficial for both riders and drivers.

• Policies may target the reduction of income inequality among drivers caused by ride acceptance behaviour, especially when 
transitioning from an undersupplied state. Initiatives for rewarding drivers maintaining a fair acceptance rate as opposed to a low 
acceptance rate even during high-demand or oversupplied conditions could prove advantageous.

4. Conclusions

This study sheds light on the within-day operations of a two-sided ride-sourcing platform in which the interactions between the 
platform, individual riders and drivers are explicitly taken into account. To this end, we adapt and adopt a discrete-event agent-based 
simulation for the case of Amsterdam to investigate system dynamics. To the best of our knowledge, this is the first study that models 
the ride acceptance decisions of ride-sourcing drivers while interacting with riders and the platform in a simulation framework.

Our investigation extends to various perspectives, contrasting centralised fleet operations (mandatory acceptance on each ride 
request) with decentralised fleet dynamics (ride acceptance decisions made by individual drivers). We explore the implications of 
supply–demand intensity, ride acceptance rates, and surge pricing, tracking and analysing key performance indicators. This approach 
allows us to capture potential effects stemming from agents’ dynamic behaviour on system operations, providing insights into certain 
(ir-)regularities.

We have shown that the decisions made by ride-sourcing drivers regarding ride acceptance significantly impact the overall per-
formance of the system, influencing factors such as passengers’ waiting time, drivers’ revenue, operating costs, and profit. While a 
higher acceptance rate among drivers may result in more rides, it does not necessarily translate to increased profits for them. 
Furthermore, surge pricing, despite its asymmetric impact on the demand side through higher trip fares, is found to favour parties 
involved.

In this study, driver agents are considered homogeneous. However, key individual characteristics such as employment status, 
experience level with the platform, and working shifts can significantly influence their perceived values of pickup time, thereby 
affecting their ride acceptance decisions. Future studies may incorporate heterogeneous drivers to account for the implications of these 
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characteristics on ride acceptance behavior, however, one must collect enough statistically significant information on these variables 
in order to generate these attributes.

Furthermore, we assumed constant speed for the vehicles in experiments without accounting for traffic congestion on the road 
network. In cities with a large share of ride-sourcing trips, it is by now well-acknowledged that congestion can lead to prolonged pick- 
up and travel times, which not only deteriorates driver income but also increases passenger waiting time (Beojone and Geroliminis, 
2021; Li et al., 2016; Dandl et al., 2017). Despite low modal share of ride-sourcing platforms in Amsterdam, it might still be insightful 
to investigate the impact of traffic congestion.

While the focus of this study centres on within-day operations with assumed fixed demand and supply, future research avenues may 
broaden the scope. Integrating within-day and day-to-day decisions for both demand and supply sides in the ride-sourcing market 
holds promise for a more comprehensive analysis at the operational level.
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Bokányi, E., Hannák, A., 2020. Understanding Inequalities in Ride-Hailing Services Through Simulations. Scientific Reports 10 (1), 1–11. https://doi.org/10.1038/ 
s41598-020-63171-9.

Cachon, G.P., Daniels, K.M., Lobel, R., 2017. The Role of Surge Pricing on a Service Platform with Self-Scheduling Capacity. Manufacturing and Service Operations 
Management 19 (3), 368–384. https://doi.org/10.1287/msom.2017.0618.

Castillo, J.C., 2018. Who Benefits from Surge Pricing? SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3245533.
Chen, Le, Alan Mislove, and Christo Wilson. 2015. “Peeking beneath the Hood of Uber.” Proceedings of the ACM SIGCOMM Internet Measurement Conference, IMC 2015- 

October (October). Association for Computing Machinery: 495–508. doi:10.1145/2815675.2815681.
Cohen, P., Hahn, R., Hall, J., Levitt, S., Metcalfe, R., 2016. Using Big Data To Estimate Consumer Surplus. Nber Working Paper Series 42.
Dandl, F., Bracher, B., Bogenbergerde, K., 2017. Microsimulation of an autonomous taxi-system in Munich. In: 5th IEEE International Conference on Models and 

Technologies for Intelligent Transportation Systems. https://doi.org/10.1109/MTITS.2017.8005628.
de Ruijter, A., Cats, O., Kucharski, R., van Lint, H., 2022a. Evolution of Labour Supply in Ridesourcing. Transportmetrica B 10 (1), 599–626. https://doi.org/10.1080/ 

21680566.2021.2024917.
de Ruijter, A., Cats, O., van Lint, H., 2022b. Emerging Dynamics in Ridesourcing Markets. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4258151.
GemeenteAmsterdam. 2019. “Agenda Taxi 2020–2025. Technical Report. Verkeer En Openbare Ruimte, Gemeente Ams- Terdam.”.
Guda, H., Subramaniana, U., 2019. Your Uber Is Arriving: Managing on-Demand Workers through Surge Pricing, Forecast Communication, and Worker Incentives. 

Management Science 65 (5), 1995–2014. https://doi.org/10.1287/mnsc.2018.3050.
Kucharski, R., Cats, O., 2022. Simulating Two-Sided Mobility Platforms with MaaSSim. PLoS ONE 17 (6 June), 1–20. https://doi.org/10.1371/journal.pone.0269682.
Li, Manzi, Gege Jiang, and Hong K. Lo. 2022. “Pricing Strategy of Ride-Sourcing Services under Travel Time Variability.” Transportation Research Part E: Logistics and 

Transportation Review 159 (March 2020). Elsevier Ltd: 102631. doi:10.1016/j.tre.2022.102631.
Li, Z., Hong, Y., Zhang, Z., 2016. An Empirical Analysis of On-Demand Ride Sharing and Traffic Congestion. Proc. International Conference on Information Systems 

(ICIS’16), Available at SSRN.

P. Ashkrof et al.                                                                                                                                                                                                        Transportation Research Part A 192 (2025) 104362 

14 

http://doi%3a10.1007/s11116-019-10070-2
https://doi.org/10.1016/j.trb.2002.10.001
https://doi.org/10.1016/j.rtbm.2020.100516
https://doi.org/10.1016/j.trc.2022.103783
https://doi.org/10.1080/19427867.2023.2192581
https://doi.org/10.1080/19427867.2023.2192581
https://doi.org/10.1016/j.trc.2020.102890
https://doi.org/10.1038/s41598-020-63171-9
https://doi.org/10.1038/s41598-020-63171-9
https://doi.org/10.1287/msom.2017.0618
https://doi.org/10.2139/ssrn.3245533
http://refhub.elsevier.com/S0965-8564(24)00410-5/h0060
https://doi.org/10.1109/MTITS.2017.8005628
https://doi.org/10.1080/21680566.2021.2024917
https://doi.org/10.1080/21680566.2021.2024917
https://doi.org/10.2139/ssrn.4258151
https://doi.org/10.1287/mnsc.2018.3050
https://doi.org/10.1371/journal.pone.0269682
http://refhub.elsevier.com/S0965-8564(24)00410-5/h0100
http://refhub.elsevier.com/S0965-8564(24)00410-5/h0100


Marquet, Oriol. 2020. “Spatial distribution of ride-hailing trip demand and its association with walkability and neighborhood characteristics”. Cities Elsevier: 102926. 
doi:10.1016/j.cities.2020.102926.

Martínez, L. Miguel, Gonçalo Homem de Almeida Correia, Filipe Moura, and Mafalda Mendes Lopes. 2017. “Insights into Carsharing Demand Dynamics: Outputs of an 
Agent-Based Model Application to Lisbon, Portugal.” International Journal of Sustainable Transportation 11 (2). Taylor & Francis: 148–159. doi:10.1080/ 
15568318.2016.1226997.

Nahmias-Biran, B.H., Oke, J.B., Kumar, N., Basak, K., Araldo, A., Seshadri, R., Akkinepally, A., Azevedo, C.L., Ben-Akiva, M., 2019. From Traditional to Automated 
Mobility on Demand: A Comprehensive Framework for Modeling On-Demand Services in SimMobility. Transportation Research Record 2673 (12), 15–29. https:// 
doi.org/10.1177/0361198119853553.
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