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A B S T R A C T

In this study, we present an efficient and flexible adjoint-based framework for history matching and forecasting
geothermal energy extraction at a large scale. In this framework, we applied the Principal Component
Analysis to reduce the parameter space for representing the complex geological model. The adjoint method
is implemented for gradient calculation to speed up the history-matching iteration process. Operator-based
linearization (OBL) used in this framework makes the calculation of the physical state and its derivatives
very efficient and facilitates the matrix assembly in the adjoint method. This study primarily focuses on
history matching based on combined observation of well production and in-situ electromagnetic measurements
to predict the temperature front. However, different types of misfit terms can be added to the objective
function based on practical considerations. For example, our history-matching case studies include model
misfit terms applied for regularization purposes. The measurement data is extracted from the true model,
and realistic measurement errors are considered. Also, in this work, we propose an optimal weighting
strategy for the terms of the objective function to balance their sensitivity with respect to the model control
variables. The high efficiency of the framework is demonstrated for the geothermal doublet model implemented
at the heterogeneous reservoir with multiple realizations. The framework allows for generating posterior
Randomized Maximum Likelihood (RML) estimates of the entire ensemble of the realizations with a reasonable
computational cost. Results show that the framework can achieve reliable history-matching results based on
the doublets production data and the reservoir electromagnetic measurement.
1. Introduction

A numerical simulation is an essential tool for developing geother-
mal resources. The most accurate resource estimations are achieved
with high-fidelity simulations performed with physical models based
on the first principles of mass and energy conservation (O’sullivan,
1985; Faust and Mercer, 1979; O’Sullivan et al., 2001; Wang et al.,
2020). In order to calibrate such physical models, their response should
be matched to geothermal field observations, which may include the
observed well temperature, well flow rate, time-lapse data, etc. This
calibration process is therefore called history matching and comprises
the adjustment of uncertain geological model parameters, e.g., perme-
ability, porosity, and thermal conductivity (Rath et al., 2006; Zhang
et al., 2014; O’Sullivan and O’Sullivan, 2016; Zhang et al., 2019; Wu
et al., 2021). Regarding geological uncertainty, the Bayesian approach
is often adopted, taking into account all available prior knowledge,
such as the hard data obtained from samples, geological formation
scenarios, and assumptions on the statistical distribution. Essentially,

∗ Corresponding author at: Department of Geoscience and Engineering, TU Delft, Delft, Netherlands.
E-mail address: D.V.Voskov@tudelft.nl (D. Voskov).

Bayesian approach starts from the prior information on model parame-
ters and uses observations (often with noise) to investigate the relation
between the observation and the model parameters (Oliver et al., 2008;
Hoteit et al., 2012). In this context, history matching has the goal
to assimilate observed data and the prior parameters to generate a
posterior estimate for the uncertain model. Typically, the observed
data comprises the well water rates, bottom hole pressure (BHP), well
temperature, and reservoir temperature distribution.

A limited research has been conducted on the history matching of
geothermal reservoirs using electromagnetic observation data, though
some investigation on history matching using the electromagnetic data
in hydrocarbon reservoirs was performed, see for example (Zhang
et al., 2019; Zhang and Hoteit, 2020). Electromagnetic (EM) data has
recently been used in geothermal engineering for the interpretation of
reservoir temperature distribution. EM data can be used to show the
sensitivity to conductivity changes associated with fluid temperature
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fluctuations (Ucok et al., 1980; Sen and Goode, 1992). In our study,
the reservoir temperature distribution interpreted from EM data is a
crucial type of observation for the geothermal inverse modeling prob-
lem. This category of observation provides highly pertinent information
for the gradient evaluation across the entire expanse of the reservoir,
especially in the region where the reservoir temperature is changing
because of the cold front propagation. It should be noted that EM
data is not directly used in our study. Instead, the focus resides on
employing the reservoir temperature interpreted from EM data as a
pivotal observational input for our inverse modeling procedure.

Data assimilation can be performed in different ways, with method-
ologies having varying complexity and cost in terms of the number of
numerical simulations required. Some methodologies, such as posterior
sampling with Monte Carlo simulations, are straightforward to imple-
ment but are prohibitively expensive in conjunction with geothermal
physical models (Rubinstein and Kroese, 2007; Nikolaidis et al., 2012;
Adekitan, 2014). A more accessible way is to formulate and solve
the history matching as an optimization problem where the observed
historical data misfit is minimized at the same time as the statistical
likelihood of the model parameters is maximized. This methodology
has been applied in numerous works for the full statistics in the form
of the Randomized Maximum Likelihood (RML) approach (see for
example Oliver et al., 2008; Stordal and vdal, 2017) as well as for the
reduced statistics in the form of Maximum A-Posteriori (MAP) estimate
approach (see for example Vo and Durlofsky, 2014; Bukshtynov et al.,
2015). In this paper, we adopt the RML approach for Electro-Magnetic
(EM) monitoring and make it more efficient by coupling it with pa-
rameter space reduction as well as fast optimization and simulation
techniques.

When considering the prior information in the history matching,
the covariance matrix inversion is a serious issue. This issue is even
more pronounced in the case of using a high-fidelity geological model.
In this case, the dimension of the history matching problem needs to
be reduced so that the problem can be solved in a lower dimensional
space. This is reasonable because the history matching problem is usu-
ally over-parameterized for large models (Bukshtynov et al., 2015), as
the amount of observation data is usually much smaller than the num-
ber of model parameters. Many methods for reducing the dimension
have been widely investigated and applied in the field of geothermal,
petroleum, and groundwater hydrology engineering.

Upscaling is one of the most often used methods to reduce the
number of model parameters. In this method, a coarse grid model
is applied to represent the high-resolution model by assigning the
effective properties in each coarse cell (Durlofsky, 2005). Rühaak et al.
(2015) investigated the upscaling of thermal conductivity of sedimen-
tary formations for geothermal exploration. The results show that
the harmonic averaging strategy is more accurate than other aver-
aging methods. More upscaling approaches of hydraulic conductivity,
permeability, and other petrophysical properties are analyzed in the
reviews and studies of Sanchez-Vila et al. (2006), Neuman et al. (2013),
and Wen and Gómez-Hernández (1996). However, consistent upscaling
of geothermal models with convective and conductive flow still poses
significant challenges (Perkins, 2019; Wang et al., 2023). For example,
when employing local upscaling for non-reservoir lithologies, its appli-
cability to basic flow simulations is evident, but its direct applicability
to heat transfer encounters difficulties. This challenge arises due to the
changes in heat outflow from upscaled volumes, surpassing fine grid
simulation outcomes. Enhancements in accuracy are achieved through
flow-based techniques, which involve re-evaluation of thermal trans-
missibility values. Nonetheless, accurately representing breakthrough
times for large upscaled volumes remains an intricate task.

The upscaling can achieve high computational efficiency because of
the reduced dimension that physically coarsens the model grid cells.
Mathematically speaking, the degrees of freedom of the model can
also be reduced by using fewer key components in the space, while
2

these key components are mostly independent of each other and they
represent and encapsulate the utmost essence of the original space.
Principal Component Analysis (PCA) is a powerful tool to quantify the
dependency among the components and boil down the key components
under a specific criterion. PCA has been successfully applied in many
history matching problems for multi-Gaussian fields (Gavalas et al.,
1976; Oliver, 1996; Sarma et al., 2006). However, Sarma et al. (2007)
pointed out that the direct use of PCA on non-Gaussian fields may
lead to ‘‘Gaussian-looking’’ models after history matching. Therefore,
they introduced kernel principal component analysis (KPCA) to solve
this problem. Ma and Zabaras (2011) had later refined the KPCA
approach. Although the KPCA approach focuses more on representing
the multiple ‘‘feature’’ space in the reservoir, this method is essentially
strongly nonlinear and brings challenging numerical issues. Vo and
Durlofsky (2014) proposed an optimization-based PCA method for the
low-dimensional parameterization of complex geological models. Buk-
shtynov et al. (2015) also introduced PCA parameterization in their
gradient-based optimization framework for the closed-loop reservoir
management problem. In their study, the adjoint method is applied
and incorporated with the PCA parameterization to compute the new
gradient in the reduced-dimension space.

Although lots of dimension reduction techniques can be applied to
reservoir simulation problems, the low calculation efficiency is still a
big issue that barricades the reservoir simulation on high-resolution
models. To accelerate the physics calculation and improve overall com-
putational efficiency, an Operator-Based Linearization (OBL) method
was proposed and developed by Voskov (2017). This method was later
incorporated into the newly proposed reservoir simulation framework
Delft Advanced Research Terra Simulator (DARTS). Later, a higher
simulation efficiency of DARTS has been achieved because of the
adaptive parameterization of the physical parameter space and the
implementation within GPU architecture. More details can be found
in Khait and Voskov (2018b) and Khait et al. (2020).

We also developed the inverse modeling features in DARTS using
the adjoint method. This method is applied to efficiently evaluate the
gradient used in the optimization or history-matching problems. The
idea of adjoint method is combining the original objective function
with other constraints (e.g. the governing equations), while this pro-
cedure does not change the stationary point of the original objective
function (Jansen, 2011). With the development of numerical reservoir
simulations, this method was first applied to solve the history-matching
problems in the petroleum recovery process (Mehos and Ramirez, 1989;
Fathi and Ramirez, 1984; Ramirez et al., 1984), and it was further
extended to the thermal recovery process (Wei et al., 1993). Tian et al.
(2021) implemented the adjoint method for the generic multi-phase
multi-component formulation and tested it on different ensembles of
fluvial models. The result shows that, compared with the conventional
numerical derivatives, several orders of magnitude in efficiency im-
provements are observed based on the adjoint method. The capabilities
of inverse modeling in DARTS based on the adjoint gradients have been
further extended in Tian and Voskov (2022) for the stochastic Discrete
Well Affinity model.

In this study, the geothermal history matching and prediction using
the reduced dimension technique are investigated. The PCA is applied
to determine the dimension size of the reduced parameter space and
find out the principal components to represent the reservoir model.
We implement this framework in DARTS, which has the feature of
simulating the geothermal developing process (Wang et al., 2020). We
also extend the DARTS geothermal engine with the inversion feature
of the adjoint method for gradient calculation in this study. To make
the history-matching framework more flexible, various types of mis-
fit terms can be added to the objective function based on practical
considerations. We also propose an optimal weighting strategy for
the terms of the objective function to balance their sensitivity with
respect to the model parameters. The heterogeneous geological models

of the fluvial field with 100 realizations (Jansen et al., 2014) are
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utilized in this study to demonstrate the performance and high effi-
ciency of this framework. This model is a synthetic reservoir featuring
fluvial channels and it has been widely employed to illustrate aspects
of computer-assisted flooding optimization and history matching. Its
original ‘‘stochastic’’ form comprises 100 realizations of a channelized
reservoir, using discrete permeability fields in a 60 × 60 × 7 grid
25,200 cells, 18,553 active). In this study, we make all 25,200 cells
ctive. The high-permeability channels in a low-permeable background
epresent typical meandering river patterns as encountered in fluvial
nvironments. The fields display a clear channel orientation with a
ypical channel distance and sinuosity. The permeability values have
ot been conditioned on the wells, while the porosity is assumed to be
onstant.

This paper proceeds as follows. In the next section, the mathe-
atical descriptions of the geothermal forward simulation and the
istory-matching problem are presented. The adjoint method is also
ntroduced. Next, the dimension reduction technique based on PCA is
xplained. In Section 4, an example of the modeling of electromagnetic
esponse is utilized to test the proposed inverse modeling framework.
he main results of the inverse modeling based on PCA parameteriza-
ion under different training strategies are demonstrated in Section 5.
he conclusion is provided in the last section.

. Mathematical description

.1. Forward modeling formulation

The geothermal model describes a non-isothermal process in which
he heat is transported between fluids and surroundings in convec-
ive and conductive flows. In geothermal reservoir simulation, the
overning equations describing this process consist of mass and en-
rgy conservation equations. The fully-coupled fully-implicit scheme is
sually applied in the geothermal numerical simulation because this
cheme is unconditionally stable. In DARTS, we adopted this scheme
nd used the finite volume method combined with two-point flux
pproximation to discretize the governing equations.

.1.1. General formulation of geothermal system
Pressure and enthalpy are taken as the primary variables when

olving the discretized equations. We assume that the influence of the
hemical reactions on the mass and energy system is negligible. The
overning questions of the geothermal system considering gravity effect
re therefore given by:

𝜕
𝜕𝑡

(

𝜙
𝑛𝑝
∑

𝑝=1
𝜌𝑝𝑠𝑝

)

− div
𝑛𝑝
∑

𝑝=1
𝜌𝑝𝑢𝑝 +

𝑛𝑝
∑

𝑝=1
𝜌𝑝𝑞𝑝 = 0, (1)

𝜕
𝜕𝑡

(

𝜙
𝑛𝑝
∑

𝑝=1
𝜌𝑝𝑠𝑝𝑈𝑝 + (1 − 𝜙)𝑈𝑟

)

−div
𝑛𝑝
∑

𝑝=1
ℎ𝑝𝜌𝑝𝑢𝑝+div(𝜅∇𝑇 )+

𝑛𝑝
∑

𝑝=1
ℎ𝑝𝜌𝑝𝑞𝑝 = 0,

(2)

where 𝑡 is the time, 𝜙 is the porosity of porous media, 𝑛𝑝 is the total
number of the phases existing in the geothermal system, 𝜌𝑝 is the
density of phase 𝑝, 𝑠𝑝 is the saturation of phase 𝑝, 𝑞𝑝 is the phase rate per
unit volume, 𝑈𝑝 is the phase internal energy, 𝑈𝑟 is the internal energy of
rock, ℎ𝑝 is the phase enthalpy, 𝜅 is the thermal conduction coefficient,
𝑇 is the temperature.

The fluid Darcy velocity 𝑢𝑝 considering gravity effect is:

𝑢𝑝 = 𝑲
𝑘𝑟𝑝
𝜇𝑝

(

∇𝑝𝑝 − 𝛾𝑝∇𝐷
)

, (3)

here 𝑲 is the permeability of porous media, 𝑘𝑟𝑝 is the phase relative
ermeability, 𝜇𝑝 is the phase viscosity, 𝑝𝑝 is the pressure, 𝛾𝑝 is the
pecific weight, and 𝐷 is the depth. The expression of porosity 𝜙
onsidering the rock compressibility is:

= 𝜙
(

1 + 𝑐
(

𝑝 − 𝑝
))

, (4)
3

0 𝑟 𝑟𝑒𝑓
here 𝜙0 is the initial porosity of the rock, 𝑐𝑟 is the rock compressibility,
nd 𝑝𝑟𝑒𝑓 is the reference pressure.

In a geothermal system, there is only a single component (i.e., wa-
er), so the pressure and the enthalpy are taken as the primary vari-
bles (Wang et al., 2020). The pressure and enthalpy are then encapsu-
ated and denoted as state variables 𝝎. To solve the governing Eq. (1)

and Eq. (2), Newton–Raphson method is applied:

𝜕𝑔
(

𝝎𝑘
)

𝜕𝝎𝑘

(

𝝎𝑘+1 − 𝝎𝑘
)

= −𝑔
(

𝝎𝑘
)

, (5)

where 𝑔 denotes the residual form of the governing Eq. (1) and Eq. (2),
and the subscript 𝑘 represents the 𝑘th nonlinear iteration.

The well treatment and the linearization of Eq. (1) and Eq. (2) using
Operator-Based Linearization method can be found in Appendix B.

2.2. History matching problem

In this study, we formulate the history-matching problem as an opti-
mization problem. An objective function is defined for this problem and
it will be solved using the gradient-based method. The mathematical
expression of the objective function usually contains two goals: (1) min-
imizing the data misfit between the observation and the model response
and (2) minimizing the model misfit (or regularization) between the
model parameters and the prior geological information. The data misfit
term depends on the state variables 𝝎 and the model control variables
𝒖. Here the ‘‘control variable’’ corresponds to the ‘‘model parameter’’
that is often used in the Bayesian approach (or Bayes’ theorem). The
expression of the history matching problem therefore reads:

𝐿(𝝎, 𝒖) =
(

𝐺(𝝎, 𝒖) − 𝐝obs
)𝑇 𝐶−1

𝐷
(

𝐺(𝝎, 𝒖) − 𝐝obs
)

+ 𝑅, (6)

where 𝐿 is the objective function (i.e. loss function), 𝐺 is the model
response, 𝐝obs represents the observation data, 𝐶−1

𝐷 is the inverse of
the diagonal matrix characterizing measurement error, and 𝑅 is the
regularization term. Particularly in this work, the data misfit terms are
formed by the weighted summation of the following expressions:

𝑓1 =
nw
∑

𝑗=1

np
∑

𝑝=1
𝐶𝑟𝑎𝑡𝑒
𝑗,𝑝

(

𝑞𝑗,𝑝 − 𝑞∗𝑗,𝑝
)2

𝑓2 =
nw
∑

𝑗=1
𝐶𝐵𝐻𝑃
𝑗

(

𝑝𝑗 − 𝑝∗𝑗
)2

𝑓3 =
nw
∑

𝑗=1
𝐶𝑇𝑤𝑒𝑙𝑙
𝑗

(

𝑇𝑗 − 𝑇 ∗
𝑗

)2

𝑓4 =
nblock
∑

𝑏=1
𝐶𝑇𝑟𝑒𝑠
𝑏

(

𝑇𝑏 − 𝑇 ∗
𝑏
)2 ,

(7)

where 𝑓1, 𝑓2, and 𝑓3 are the misfit term of well flow rate, well BHP, and
well block temperature, respectively. The term 𝑓4 designates a proxy
of the time-lapse electromagnetic (EM) data measurements represented
via an effective reservoir block temperature. Here, nw denotes the
number of wells, nblock is the total number of reservoir blocks, 𝐶𝑟𝑎𝑡𝑒

𝑗,𝑝 ,
𝐶𝐵𝐻𝑃
𝑗 , 𝐶𝑇𝑤𝑒𝑙𝑙

𝑗 , and 𝐶𝑇𝑟𝑒𝑠
𝑏 are the corresponding diagonal elements of

matrix 𝐶−1
𝐷 in Eq. (6). The superscript ∗ denotes the observation data

in the corresponding misfits.
Note that not all terms in Eq. (7) are necessarily included in Eq. (6).

For example, when the wells are under rate control, we can remove
the corresponding rate observation terms (i.e. 𝑓1) while keeping the
terms of BHP (i.e. 𝑓2) in Eq. (6), and vice versa. The time-lapse data
(i.e. 𝑓4) can also be eliminated from Eq. (6) if the electromagnetic data
measurements are not available. Furthermore, we proposed a weighting
strategy for the terms in Eq. (7) to balance their sensitivity with respect
to the model control variables by introducing the weighting factor 𝐷:

𝐿(𝝎, 𝒖) =
𝑁
∑

𝐷𝑖𝑓𝑖 + 𝑅, (8)

𝑖=1
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where 𝑁 is the total number of the misfit term to be added to the
objective function, and

𝐷𝑖 =
1

𝑁𝑓𝑖𝑚𝑎𝑥
. (9)

𝑖𝑚𝑎𝑥 is the maximum value of 𝑓𝑖, which is usually obtained when the
ontrol variable is equal to the initial guess. This means that the misfit
erm of the objective function is always normalized to 1 before history
atching.

The objective function given by equation Eq. (8) will be optimized
hrough the utilization of the ‘‘L-BFGS-B’’ algorithm, which is avail-
ble in the Python SciPy package. This algorithm requires the user
o provide the objective function gradient, which will be employed
y the optimizer to search for the minimum. Instead of calculating
he gradient using the conventional numerical derivatives, which is
ery time-consuming, we utilize the adjoint method to calculate the
radient for the observation misfit term with significantly improved
fficiency. The regularization term 𝑅 only consists of the expression
elated to the model control variables. This indicates that the gradient
f the regularization term can be easily calculated analytically. As for
he gradient of the misfit terms, they are prepared using the adjoint
ethod. More details about the implementation of the adjoint method

n the misfit term can be found in the next section.

.3. Adjoint gradients formulation

In the gradient descent method, calculating the gradient with re-
pect to model control variables is not trivial work, especially when
he degrees of freedom of the model control variables are very high.
his is because the model responses (e.g., the well flow rates, well
HP, etc.) usually implicitly depend on the model control variables,
o it is difficult to get the derivatives analytically, and sometimes it is
ven impossible. Alternatively, one may calculate the gradients using a
umerical method. However, the numerical derivatives involve a large
umber of forward simulations, which is quite time-consuming. To
btain the gradient analytically and efficiently, the adjoint method is
tilized in this study. More details about the adjoint method can be
ound in the review paper of Jansen (2011). Here we use the notation

to represent the misfit term of Eq. (6). Combined with the residual
orm of the governing equation, the augmented misfit term writes:

(𝝎, 𝒖,𝝀) = 𝐽 (𝝎, 𝒖) + 𝝀T𝑔(𝝎, 𝒖), (10)

here  denotes the augmented misfit term, 𝒖 is the model control
ariables of the history matching problem, 𝑔 is the residual form of the
overning equation of the reservoir system, and 𝝀𝑇 is the transpose of
agrange multipliers. To find the optimum of  , we need to calculate
ts derivatives with respect to 𝝀, 𝝎 and 𝒖, and make them equal to zero:

𝝀 = 𝑔(𝝎, 𝒖) = 0, (11)

𝝎 = 𝝀T𝑔𝝎(𝝎, 𝒖) + 𝐽𝝎(𝝎, 𝒖) = 0, (12)

𝒖 = 𝝀T𝑔𝒖(𝝎, 𝒖) + 𝐽𝒖(𝝎, 𝒖) = 0, (13)

here the subscript 𝝀, 𝝎 and 𝒖 denotes the derivatives with respect to
, 𝝎 and 𝒖, respectively. The Eq. (11) is actually the governing equation
nd is already satisfied in the forward simulation. As for Eqs. (12) and
13), they are known as adjoint equations and optimization equations,
espectively. Note that 𝑔𝝎, 𝑔𝒖, 𝐽𝝎, and 𝐽𝒖 are easy to be collected
hanks to the convenience of the OBL method. But before plugging in
hem to Eqs. (12) and (13), we need to introduce a Dirac function to
ake sure the consistency between the observation time points and

he corresponding simulation time points. The misfit term 𝐽 , therefore,
hould be modified as:

=
𝐾
∑

(𝑓 (𝑘)
1 + 𝑓 (𝑘)

2 + 𝑓 (𝑘)
3 + 𝑓 (𝑘)

4 )𝛿𝑡(Tobs), (14)
4

𝑘=1
where the superscript (𝑘) denotes the 𝑘th simulation time step 𝜟𝒕𝑘, 𝐾 is
the total number of the simulation time steps, 𝛿𝑡(Tobs) is Dirac measure
function and is given as:

𝛿𝑡(Tobs) =
{

1 if t ∈ Tobs
0 if t ∉ Tobs

, (15)

where 𝑡 is the time at the endpoint of time interval 𝜟𝒕𝑘, Tobs is a
set of the observation time points, which means it is a subset of the
simulation time points. Now, with all necessary derivatives prepared,
the adjoint gradient can be calculated by simply solving Eqs. (12) and
(13). As it can be seen from Eq. (12), the Lagrange multiplier 𝝀 is solved
backward in time. This backward-in-time procedure only consumes a
similar computational time as a single forward simulation.

3. PCA-based parameterization

In the previous section, the adjoint method is introduced as an
efficient approach for the evaluation of gradient. Nevertheless, the
high dimensionality and uncertainty inherent in geological models still
present notable obstacles to the optimizer’s search for the global mini-
mum. As previously noted, these obstacles can be addressed through
the utilization of PCA approach, which enables the transformation
of the original space into a reduced space. The uncertainty of the
reservoir is usually quantified by an ensemble of geological realiza-
tions. Initially, the ensemble is generated based on all available prior
geophysical information (e.g., hard data from the rock samples, seis-
mic measurements, etc.). Then, the history matching process reduces
further uncertainty. The uncertainty and the correlations among these
realizations are described by a covariance matrix of the model control
variables. Mathematically speaking, as long as the covariance (i.e., the
off-diagonal elements in the covariance matrix) is non-zero, it means
those model control variables depend on each other and, therefore,
can be represented using fewer ‘‘independent’’ control variables in the
parameter space. From the perspective of the history matching prob-
lem, the amount of observation data is much smaller than the number
of unknown model parameters, so the history matching problem is
over-parameterized for large models (Bukshtynov et al., 2015). This
also indicates that the history matching problem is nonconvex, and
the optimal solution is nonunique. The history matching, therefore,
requires regularization term as shown in Eq. (6), and it writes:

𝑅(𝒖) = 𝛼𝑅(𝒖 − 𝒖𝑟𝑒𝑓 )𝑇𝐶−1
𝑀 (𝒖 − 𝒖𝑟𝑒𝑓 ), (16)

here 𝛼𝑅 is the scaling coefficient, 𝐶−1
𝑀 is the inverse of the covariance

atrix, and 𝒖𝑟𝑒𝑓 is the reference of the model control variables.
As mentioned above, the control variable space can be represented

y using fewer ‘‘independent’’ variables in the new space. Here we
tilize the Principal Component Analysis (PCA) to project the original
nsemble of prior realizations into a new space characterized by a set of
inearly uncorrelated variables. We denote the model control variables
n the new space as 𝝃.

The history matching based on Randomized Maximum Likelihood
RML) takes different samples of 𝒖 as the 𝒖𝑟𝑒𝑓 . Following the procedure
f mapping the original model control variables 𝒖 to 𝝃 in Appendix C,

the regularization terms Eq. (16) in the reduced-dimension 𝝃-space
should be written as:

𝛼𝑅(𝒖 − 𝒖𝑟𝑒𝑓 )𝑇𝐶−1
𝑀 (𝒖 − 𝒖𝑟𝑒𝑓 ) = 𝛼𝑅[𝑈̃ 𝛴̃(𝝃 − 𝝃𝑟𝑒𝑓 )]𝑇 (𝑈̃ 𝛴̃−2𝑈̃𝑇 )[𝑈̃ 𝛴̃(𝝃 − 𝝃𝑟𝑒𝑓 )]

= 𝛼𝑅[(𝝃 − 𝝃𝑟𝑒𝑓 )𝑇 𝛴̃𝑈̃𝑇 ](𝑈̃ 𝛴̃−2𝑈̃𝑇 )[𝑈̃ 𝛴̃(𝝃 − 𝝃𝑟𝑒𝑓 )]

= 𝛼𝑅(𝝃 − 𝝃𝑟𝑒𝑓 )𝑇 (𝝃 − 𝝃𝑟𝑒𝑓 ),

(17)

where

𝝃𝑟𝑒𝑓 = 𝛷̂−1(𝒖𝑟𝑒𝑓 − 𝒖). (18)

We will also check how the regularization affects the history-matching
results if the model is constrained to the ensemble prior mean. In such
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Fig. 1. The permeability map in the 𝑥 direction (left) and the porosity map (right) of the 2D fluvial model. The white and red dots in the figures represent the well locations of
the injector and the producer, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Table 1
The parameters of 2D West Netherlands Basin model.

Model Production Initial Initial Rock
dimension time temperature pressure conductivity

60 × 40 × 1 40 years 348.15 K 200 bars 200
(30 m × 30 m × 2.5 m) kJ/m/day/K

Volumetric Well Well Well control of Well control of
heat capacity locations depth injector producer

2200 kJ/m3/K 15 × 20 × 1 (injector) 1000 m BHP control of BHP control of
48 × 20 × 1 (producer) 300 bars at 308.15 K 50 bars
case, the model reference 𝒖𝑟𝑒𝑓 is fixed as 𝒖. Therefore the regularization
term is:

𝛼𝑅(𝒖 − 𝒖𝑟𝑒𝑓 )𝑇𝐶−1
𝑀 (𝒖 − 𝒖𝑟𝑒𝑓 ) = 𝛼𝑅𝝃𝑇 𝝃. (19)

4. Modeling of electromagnetic response based on 2D model

In this section, we will present the application of the proposed
framework on a 2D fluvial geothermal model. The electromagnetic
monitoring data will be included in the objective function for history
matching. Recently, there are some research about utilizing electro-
magnetic observations for the interpretation of field conductivity as
it relates to temperature distribution. Notably, a three-dimensional
simulator known as ‘‘emg3d’’ has been developed to facilitate diffu-
sion EM modeling (Werthmüller et al., 2019). The behavior of the
EM signal adheres to Maxwell’s equations (Zhang et al., 2019). By
assuming perfectly electrically conducting boundaries, employing a 1-
meter-long electric dipole with a 1 A current source, and a relative
permeability value of 1, the electric field can be determined through
the governing equations. Subsequently, observations are acquired by
sampling the electric field at designated receiver locations. It is im-
portant to highlight that this methodology utilizes the electric field’s
amplitude to avoid complex numbers in the recorded data. Extending
the two-dimensional conductivity model along the 𝑧-axis yields three-
dimensional outcomes. Through comparative analysis of field conduc-
tivity during different time-lapse intervals, deviations in field tempera-
ture can be deduced from alterations in field conductivity (Oudshoorn,
2023).

The proposed framework in this study does not necessarily require
the time-lapsed field temperature values obtained from EM data. In-
stead, a singular field temperature observation at any given time step
suffices (e.g., the temperature at the final time step) for conducting
the inverse modeling. However, a greater number of field temperature
observations across multiple time steps is advantageous, as inadequate
temporal resolution may adversely impact the optimization solution of
inverse modeling (Volkov and Voskov, 2015).

One of the synthetic geological layers from the West Netherlands
Basin (Donselaar et al., 2015; Shetty et al., 2018) is taken as a 2D fluvial
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model. The permeability and porosity maps are shown in Fig. 1 . The
parameters used in this model are shown in Table 1. The real time-lapse
electromagnetic (EM) monitoring data is not available for this case
study. Instead, we create an approximation of the temperature response
interpreted from EM monitoring data. In our assumptions, the EM setup
includes multiple surface sources and a single receiver in the production
well that allowed us to fully reconstruct the temperature field. We will
call this approximation of the temperature response as ‘‘EM data’’ in the
following sections. The EM data will be used in the objective function
𝑓4 of Eq. (7). For that, we collect the simulated temperature data and
blur it by applying a spatial filtering kernel of the size that is consistent
with the resolution scale of typical EM measurements. This synthetic
EM data will be treated as the observations 𝐝obs. The steps are:

• Generate the true temperature data 𝐝true based on the true model
• Compute the spatial filtering kernel size based on the 𝑟2 to the EM

receivers, where 𝑟 is the distance between the given point and the
EM receiver location. In this 2D model, we set the EM receiver at
the location of the production well.

• Apply the spatial filtering strategy to the true temperature data
based on the kernel size at different locations in the reservoir.

The flowchart depicting the aforementioned steps is illustrated in Fig. 2.
The schematic of generating time-lapse EM data 𝐝obs is shown in Fig. 3.
The measurement error matrix 𝐶𝐷 of EM data is computed based on the
square of the difference between 𝐝true and 𝐝obs.

Since the 2D model uses the BHP control as the well control, the
misfit term of the objective function Eq. (6) consists of 𝑓1, 𝑓3, and 𝑓4
from Eq. (7). The model is history matched based on the first 20 years of
production and forecast for the next 20 years. The training and forecast
curves are shown in Fig. 4. The results of the time-lapse temperature
data are demonstrated in Fig. 5. As it can be seen from Fig. 4, the
trained well rates and temperature match with the observation data
very well, though the well temperature of the forecast period deviates
a bit from the observation data. Fig. 5 also indicates a good history
matching result of the time-lapse temperature data.

Note that the CPU time (Intel CPU i7-8556U) for a single forward
simulation takes 2.1 s, while the gradient calculation using the adjoint
method only takes 2.5 s for 4702 control variables in a single history-

matching iteration. This means that the computational time used for
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Fig. 2. The flowchart of generating synthetic time-lapse EM observation data.

Fig. 3. The schematic of generating synthetic time-lapse EM data. Different levels of filtering kernels are applied at the given location of dtrue(with noise) to generate synthetic
EM observations dobs. The accuracy of EM data diminishes as the distance between the given point and the location of the EM receiver increases.
Source: Adapted from Fig. 4 of Bukshtynov et al. (2015).
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Fig. 4. The training and forecast results of the injection well rate (left), production well rate (middle), and production well temperature (right), respectively. The red dashed
curves are the observation data. The gray and blue curves are the results before and after model training. The light green areas demonstrate the training periods while the rest
areas are the forecast periods. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 5. The temperature distributions at different time steps. The white dot and circle show the well locations of the injector and producer, respectively. X and Y represent the
cell index. From the top to the bottom rows, they represent the temperature distributions at the 100, 2000, 4000, and 6000 days respectively.
computing gradient is comparable to the CPU time of a single for-
ward simulation, which is much less than the computational time of
4702 forward simulations used in the conventional numerical gradient
calculation. This shows that the proposed framework based on the
adjoint method has a significant improvement in the efficiency of the
history matching problem. Next, we will present a more complex 3D
example of the fluvial reservoir and introduce the dimension reduction
technique based on the Principal Component Analysis method.

5. Simulation test using fluvial geothermal reservoir as prior
model

In this section, a large ensemble of the fluvial models will be used
in this study to demonstrate the history matching framework with PCA-
based parameterization. Generally, when the degrees of freedom of
the model are not so high, we can directly solve the history problem
without using the dimension reduction technique. However, the high-
resolution model usually brings a large number of degrees of freedom in
the history matching problem. In this case, it may introduce redundant
degrees of freedom to the problem. Moreover, if we try to conduct
the history matching directly on the high-resolution model, it is often
7

limited by the computer resources and capacities. With the concerns of
the redundant degrees of freedom and the limitation of the computer
capacity in the complex history matching problem, we introduce the
dimension reduction technique into the proposed history matching
framework.

We will use the fluvial models to demonstrate the process of di-
mension reduction in history matching. This model is an open-access
geological reservoir ensemble (Jansen et al., 2014). This model consists
of an ensemble of 100 permeability realizations of a three-dimensional
channelized reservoir. The term ‘‘realization #𝑛’’ hereafter denotes the
𝑛th realization of the original set. The realization #1 will be considered
a ‘‘true’’ model to generate the observation data. The rest of the 99
realizations will be used as priors to train the model. The permeability
data are imported from the ensemble realizations. The permeability in
the 𝑥 and 𝑦 directions are identical, while the permeability in the z
direction is 0.1 times the horizontal permeability. The uniform proper-
ties of porosity, pressure, initial reservoir temperature, the volumetric
heat capacity of rock, and the thermal conductivity of rock are shown in
Table 2. A doublet (one injector and one producer) is set in the reservoir
with all seven layers perforated, see Fig. 6. The true model ‘‘realization
#1’’ will run for 40 years to generate the observation data. The first
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Fig. 6. The permeability distribution of realization #1. The blue and red bars represent the location of the injector and producer, respectively. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
Table 2
The parameters of 3D fluvial model.

Model Production Initial Initial Rock
dimension time temperature pressure conductivity

60 × 60 × 7 40 years 348.15 K 200 bars 181.44
(30 m × 30 m × 12 m) kJ/m/day/K

Volumetric Well Well Well control of Well control of
heat capacity locations depth injector producer

2200 kJ/m3/K 14 × 30 × 1 to 7 (injector) 2000 m Rate control of Rate control of
46 × 30 × 1 to 7 (producer) 5000 m3/day at 308.15 K 5000 m3/day
30 years are taken as the training period, and the rest 10 years are the
forecast period to test the performance of the proposed method.

Following the dimension reduction process described in Section 3
and Eq. (C.13), the dimension of the control variable space of transmis-
sibility is reduced to 82. The total number of the dimension is therefore
82 plus 14 (well indexes). This is much less than the original dimension
of the transmissibility (i.e., 71160 block interfaces) and well indexes
(i.e., 14 perforation positions) control variable space. The time-lapse
electromagnetic data are also included in the objective function to train
the model. The history matching process of most of the priors can be
finished within 8 h. The total training time of 99 realizations is 10 h on
DelftBlue cluster (Delft High Performance Computing Centre (DHPC),
2022) with multiple nodes and cores of 2x Intel XEON E5-6248R 24C
3.0 GHz processors.

5.1. The training based on maximum likelihood estimation

In the Maximum Likelihood Estimation (MLE) method, we will show
the history matching results without the consideration of regulariza-
tion. This means, compared with Bayes’ theorem, only the likelihood
will be maximized, while the prior information is not considered.

The history matching results of well temperature are shown in
Fig. 7. Except for a few realizations that are relatively far from the
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observation data (red curve), most of the trained realizations have
good history matching results (the green area in the figure) to the
observation data. Although the forecasting results (the white area in the
figure) demonstrate a wider range of well temperature, this is expected
and acceptable for the forecasting period. Here we introduce Root Mean
Square Error (RMSE) to quantify the error of the results. The expression
of RMSE is given as:

𝑅𝑀𝑆𝐸 =

√

∑𝑁
𝑖=1

(

𝐺 − 𝐝true
)2

𝑁
(20)

where 𝐺 is the model response and 𝐝true is the true data. For each re-
alization, the RMSE can be calculated based on Eq. (20). The ensemble
average RMSE for MLE is 0.253.

The history matching results of reservoir temperature data are
shown in Fig. 8. This figure shows the temperature results of the 4th
layer of realization #66. It can be clearly seen that the temperature
results after the history matching have a good match with the EM obser-
vation data, even though the original temperature distribution is very
different from the observed EM data. This indicates that the optimizer
might have largely changed the original permeability distribution of
realization #66 to try to match the EM observation data. Therefore,
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Fig. 7. The history matching results of the well temperature for the entire ensemble
of the fluvial model based on MLE. The red curve is the observation data of well
temperature. The gray and blue curves are the results before and after history matching,
respectively. The yellow dashed and solid lines represent the results of realization #66
before and after history matching. The green area shows the training period, while the
white area is the forecasting period. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

we plot the permeability distribution of this realization and the ‘‘true’’
permeability distribution in Fig. 9.

Fig. 9 shows the permeability of realization #66 before (figure a)
and after (figure b) history matching. The true permeability (figure c)
and the difference (figure d) between the permeability before and after
history matching are also presented. As it can be seen from the figure
(d) in Fig. 9, the optimizer tries to block the original fluvial channel
(blue channelized area), while reconstruct the channel of the ‘‘true’’
model (red channelized area). This is because, with the information
given by observed EM data, the adjoint gradient is able to capture
the characteristics of the ‘‘true’’ permeability field, and therefore re-
construct the temperature map that is similar to the observed EM
data.

In the next section, we will repeat this history matching procedure,
while considering the prior information of the realization permeability
based on Bayes’ theorem. The reduced-dimension technique based on
PCA is also introduced.

5.2. The training based on randomized maximum likelihood

In the Randomized Maximum Likelihood method (RML), the prior
information is considered and the regularization term chooses each
realization from the ensemble as the reference model. Therefore, the
regularization term in the reduced-dimension 𝜉-space is written as
Eq. (17). A comparison of RML in the original space and reduced-
dimension 𝜉-space can be found in Appendix A. The history matching
results of well temperature is shown in Fig. 10. The ensemble average
RMSE is 0.314. Compared with the history matching based on MLE
shown in the previous section, the well temperature curves of the entire
ensemble have a wider distribution range around the observation data
curve (red curve) and a larger ensemble average RMSE. This is because
the regularization term forces the optimizer to search the optimum
around the prior, instead of searching in an area that is far away from
the prior in the parameter space. From Bayes’ theorem perspective, this
history-matching procedure considered both the prior knowledge and
the likelihood maximization.

To compare with the history-matching results of the previous sec-
tion, we also take the 4th layer of realization #66 as an example to
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show the history-matching results of reservoir temperature data and
permeability map based on RML. They are demonstrated in Figs. 11
and 12. It can be seen from Fig. 11 that the history-matching result of
reservoir temperature based on RML has less similarity to the results of
the previous section (i.e. MLE method). This is because, with regular-
ization, the optimizer tends to preserve the prior information instead
of severely reforming the prior to maximize the likelihood. This is also
reflected in the permeability difference map (i.e. figure (d)) in Fig. 12.
The permeability distribution is not significantly changed compared
with the permeability difference map in Fig. 9, though there are still
some slight permeability modifications along the prior fluvial channel
(i.e. blueish color in the permeability difference map).

5.3. The training constrained to ensemble prior mean

We also conducted the history matching to explore the impact
of regularization on history matching outcomes when the model is
constrained to the ensemble prior mean. In this case, the reference
model used in regularization is fixed with the average of the whole
realization ensemble. The regularization term in the reduced-dimension
𝜉-space is therefore shown as in Eq. (19).

The history matching results of the well temperature are shown
in Fig. 13. The ensemble average RMSE is 0.312. Similarly, we take
the 4th layer of realization #66 as an example to show the results of
reservoir temperature data and permeability map in Figs. 14 and 15.

We do not observe the evident difference between this method
and RML. This might be because, with the regularization term, the
optimizer is prone to search for the optimum around the initial guess
therefore trapped in the local minimum that is close to the initial guess.
This phenomenon is as expected, considering the high heterogeneity
and the fluvial channels existing in the fluvial model.

5.4. Comparisons of history matching methods

When conducting the history matching using these three types of
methods, we distribute the history matching tasks to different nodes
and cores on DelftBlue cluster (Delft High Performance Computing Cen-
tre (DHPC), 2022), specifically, one core per simulation. This cluster is
equipped with 2x Intel XEON E5-6248R 24C 3.0 GHz processors.

The comparison between these three types of history matching
results is demonstrated in Fig. 16. The RMSE, CPU time, and degrees
of freedom (DoF) of each method are demonstrated in Table 3. The re-
ported CPU time is the mean duration of history matching computations
across the entire ensemble of realizations. It is worth noticing that even
though the RML with full space uses the least CPU time of 2.94 h, it
needs an extra 16.33 h to inverse the full covariance matrix and it yields
the highest RMSE of 0.564. In contrast, the history matching based
on MLE has the lowest RMSE of 0.253, though it takes a somewhat
extended duration of time for the optimal solution search.

6. Conclusions

An efficient and flexible adjoint-based history-matching framework
for the geothermal reservoir is proposed and developed in this study. To
ensure scalability, high-performance optimization and space reduction
techniques are introduced and implemented in this framework.

The adjoint method is successfully implemented into the DARTS
simulator for the geothermal engine. With the application of the ad-
joint method, the calculation efficiency and accuracy of the gradient
used in the history matching iterations are largely improved. This
advancement empowers the framework to effectively conduct history-
matching iterations involving a vast number of control variables, which
is a critical capability in geothermal reservoir management. In this
study, the history matching of the fluvial model with the impressive
control variable number of 71,160 can be finished within a relatively

short timeframe of 10 h on an Intel XEON E5-6248R processor. In
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Fig. 8. The history matching results of the reservoir temperature of the 4th layer of the fluvial model. The left column shows the temperature observation data derived from
EM data of the ‘‘true’’ model. The middle and right columns are the results of realization #66 based on MLE. From the top to the bottom rows, they represent the temperature
distributions at 1, 10, 20, and 30 years respectively. The white dots and circles represent the injector and producer, respectively.
Table 3
The RMSE, mean CPU time, and degrees of freedom of the model parameters for each method.

MLE RML(full space) RML HM constrained
to ensemble prior mean

RMSE 0.253 0.564 0.314 0.312
Mean CPU time [h] 9.18 2.94+(16.33) 6.31 6.80
DoF of space 71174 71174 96 96
contrast, the history matching with a control variable of equivalent
magnitude through conventional numerical gradient calculated via the
Finite Difference Method is basically unfeasible.

To represent the complexity of the model while keeping the un-
certainty of the model ensemble, the Principal Component Analysis
is utilized to transform the model from the original space to the
reduced-dimension 𝜉 space, and vice versa. This procedure involves the
transformation of the control variables, gradients, and regularization
terms.
10
The time-lapse temperature distribution data derived from electro-
magnetic data measurements have been also considered in the proposed
history matching framework. Here, we assumed that by using multi-
ple sources and single receiver in the production well, we can fully
reconstruct the temperature field. Combined with the conventional
observations of well rates and BHP, the trained model is able to predict
the temperature front. However, it is not necessary to include all types
of observations in this history-matching framework. The framework
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Fig. 9. The permeability distribution of the 4th layer of fluvial model. Figure (a) demonstrates the prior permeability of realization #66 before history matching; (b) is the posterior
permeability after history matching; (c) shows the ‘‘true’’ permeability; and (d) demonstrates the permeability difference between posterior and prior based on MLE. The blue dots
and circles represent the injector and producer, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
Fig. 10. The history matching results of the well temperature based on RML under the
reduced-dimension 𝜉-space. The red curve is the observation data of well temperature.
The gray and blue curves are the results before and after history matching, respectively.
The green area shows the training period, while the white area is the forecasting period.
(For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

provides the flexibility of adding or removing different types of obser-
vations in the objective function based on the availability and necessity
of the observation data.

The comparison of the history matching based on MLE, RML, and
constrained to ensemble prior mean, are presented in this study to
11
illustrate the performance of the proposed framework. The results
show that the adjoint gradients can capture the characteristics of the
‘‘true’’ permeability field and re-construct the temperature map that is
observed from the EM data. This phenomenon is especially pronounced
in the history matching based on MLE. In the history matching based
on RML and the case constrained to the ensemble prior mean, the
history matching considers both the likelihood maximization and the
prior knowledge information. Therefore, the model response has rela-
tively less similarity to the observation, while the prior permeability
information is preserved.

The significance of this efficient and flexible history-matching frame-
work lies in its capacity to streamline the calibration process of geother-
mal reservoir models, thus enhancing predictive accuracy and facili-
tating optimal decision-making in geothermal reservoir management.
With the ability to handle a large number of control variables effi-
ciently, geothermal practitioners can gain deeper insights into reservoir
behavior, which in turn aids in the sustainable and effective utilization
of geothermal resources.

In this study, we use a 3D model with less heterogeneity along the
vertical direction, and the reservoir temperature and pressure are uni-
formly initialized. In future work, we may consider more heterogeneous
and high-enthalpy models. The adjoint method for Multi-Point Flux
Approximation simulator may also be developed.
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Fig. 11. The history matching results of the reservoir temperature of the 4th layer of fluvial model. The left column shows the temperature observation data derived from EM data
of the ‘‘true’’ model. The middle and right columns are the results of realization #66 based on RML. From the top to the bottom rows, they represent the temperature distributions
at 1, 10, 20, and 30 years respectively. The white dots and circles represent the injector and producer, respectively.
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Appendix A

A comparison of RML in the original full space and reduced-
dimension 𝜉-space was conducted to check the feasibility and the
accuracy of the reduced-dimension technique based on PCA. As shown
in Eq. (16), the RML in the original full space requires the inversion
of covariance matrix 𝐶𝑀 of control variables. In the fluvial reservoir
model, the control variables have a dimension of 71,160 (i.e. the
transmissibility of the interfaces of reservoir blocks). This indicates
large amounts of computational cost and memory consumption for
the matrix inversion. To inverse a non-positive definite covariance
matrix, the pseudo-inverse function from the Python Numpy linear
algebra package is chosen to inverse 𝐶𝑀 . This inversion procedure
needs around 500 GB of memory and takes more than one day to
finish the computation. Finally, the output inversed covariance matrix
𝐶−1
𝑀 has a size of 39.6 GB and can be stored for further use in each

realization in the ensemble.
The history matching results of well temperature are shown in

Fig. A.17. It is evident to see that the history matching has a more
divergent result in the original full space, compared with the result
in the reduced-dimension 𝜉-space. Their ensemble average RMSEs are
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Fig. 12. The permeability distribution of the 4th layer of fluvial model. Figure (a) demonstrates the prior permeability of realization #66 before history matching; (b) is the
posterior permeability after history matching; (c) shows the ‘‘true’’ permeability; and (d) demonstrates the permeability difference between posterior and prior based on RML. The
blue dots and circles represent the injector and producer, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)
Fig. 13. The results of the history matching constrained to the ensemble prior mean
under the reduced-dimension 𝜉-space. The red curve is the observation data of well
temperature. The gray and blue curves are the results before and after history matching,
respectively. The green area shows the training period, while the white area is the
forecasting period. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

0.564 and 0.314, respectively. It indicates that the reduced-dimension
technique based on PCA is capable of generating more accurate history-
matching results. Moreover, this technique requires much less machine
memory and computational time to evaluate the regularization term.
13
Appendix B

Operator-Based Linearization

Based on the Operator-Based Linearization (OBL) approach for
geothermal system (Wang et al., 2020), the discretized mass conser-
vation equation in operator form for a given gridblock 𝑖 is:

𝜙0𝑉
(

𝛼(𝝎) − 𝛼
(

𝝎𝑛
))

+
∑

𝑙
𝛥𝑡𝛤 𝑙

𝑛𝑝
∑

𝑝=1
𝛷𝑝,𝑖𝑗𝛽𝑝(𝝎) = 0. (B.1)

Here we omit most of the gridblock index 𝑖 in this equation, 𝝎𝑛
represents the state variable a the previous time step, 𝑙 is the interface
between two neighboring gridblocks, 𝛤 𝑙 is the transmissibility at the
interface 𝑙, and the state-dependent operators 𝛼 and 𝛽 are written as:

𝛼(𝝎) =
(

1 + 𝑐𝑟
(

𝑝 − 𝑝𝑟𝑒𝑓
))

𝑛𝑝
∑

𝑝=1
𝜌𝑝𝑠𝑝,

𝛽𝑝(𝝎) = 𝜌𝑝
𝑘𝑟𝑝
𝜇𝑝

,

(B.2)

The phase potential difference 𝛷𝑝,𝑖𝑗 in Eq. (B.1) is defined based on
phase-potential-upwinding (PPU) strategy (Khait and Voskov, 2018a):

𝛷𝑝,𝑖𝑗 = 𝑝𝑗 − 𝑝𝑖 −
𝛿𝑝

(

𝝎𝑖
)

+ 𝛿𝑝
(

𝝎𝑗
)

2
(

𝐷𝑗 −𝐷𝑖
)

, (B.3)

where the subscript 𝑖 and 𝑗 are the index of gridblock 𝑖 and 𝑗 respec-
tively, 𝛿𝑝 is the density operator for phase 𝑝.

The discretized energy equation in operator form is written as:

𝜙0𝑉
[

𝛼𝑒𝑓 (𝝎) − 𝛼𝑒𝑓
(

𝝎𝑛
)]

+
(

1 − 𝜙0
)

𝑉 𝑈𝑟
[

𝛼𝑒𝑟(𝝎) − 𝛼𝑒𝑟
(

𝝎𝑘−1
)]

+
∑

𝑙
𝛥𝑡𝛤 𝑙

𝑛𝑝
∑

𝑝=1
𝛷𝑝,𝑖𝑗𝛽𝑒𝑝(𝝎)

+
∑

𝛥𝑡𝛤 𝑙
𝑒
(

𝑇 𝑖 − 𝑇 𝑗) [𝜙0𝛾𝑒𝑓 (𝝎) +
(

1 − 𝜙0
)

𝜅𝑟𝛾𝑒𝑟(𝝎)
]

= 0,

(B.4)
𝑙
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Fig. 14. The history matching results of the reservoir temperature of the 4th layer of fluvial model. The left column shows the temperature observation data derived from EM
data of the ‘‘true’’ model. The middle and right columns are the results of history matching constrained to the ensemble’s prior mean. From the top to the bottom rows, they
represent the temperature distributions at 1, 10, 20, and 30 years respectively. The white dots and circles represent the injector and producer, respectively.
where 𝛤 𝑙
𝑒 is the coefficient related to thermal transmissibility, and the

operators are defined as:

𝛼𝑒𝑓 (𝝎) =
(

1 + 𝑐𝑟
(

𝑝 − 𝑝𝑟𝑒𝑓
))

𝑛𝑝
∑

𝑝=1
𝜌𝑝𝑠𝑝𝑈𝑝,

𝛼𝑒𝑟(𝝎) =
1

1 + 𝑐𝑟
(

𝑝 − 𝑝𝑟𝑒𝑓
) ,

𝛽𝑒𝑝(𝝎) = ℎ𝑝𝜌𝑝
𝑘𝑟𝑝
𝜇𝑝

,

𝛾𝑒𝑓 (𝝎) =
(

1 + 𝑐𝑟
(

𝑝 − 𝑝𝑟𝑒𝑓
))

𝑛𝑝
∑

𝑝=1
𝑠𝑝𝜅𝑝,

𝛾𝑒𝑟(𝝎) = 𝛼𝑒𝑟(𝝎).

(B.5)

Note that the operators in Eq. (B.2) and Eq. (B.5) are only dependent
on physical state 𝝎. It means that these operators can be pre-processed
or adaptively prepared in a table for further use in the course of
Jacobian and residual assembly. These operator tables can also be re-
used many times in the process of adjoint gradient assembly, reducing
the time-consuming and complex evaluations of each property and its
derivatives with respect to nonlinear unknowns.
14
Well treatment

The simulator utilizes a connection-based multi-segment well to
simulate the flow in wells (Khait and Voskov, 2019). For BHP control,
a fixed pressure constraint is added at the well block:

𝑝 − 𝑝𝑡𝑎𝑟𝑔𝑒𝑡 = 0. (B.6)

𝑝𝑡𝑎𝑟𝑔𝑒𝑡 is the target BHP at the well. The volumetric rate control is
defined by the volumetric rate operator 𝜁𝑣𝑜𝑙𝑝 for given phase 𝑝:

𝛤 𝑙𝜁𝑣𝑜𝑙𝑝 (𝝎)𝛥𝑝 −𝑄𝑡𝑎𝑟𝑔𝑒𝑡 = 0, (B.7)

where

𝜁𝑣𝑜𝑙𝑝 =
𝑠̂𝑝(𝝎)𝛽𝑝(𝝎)

𝜌̂𝑡(𝝎)
. (B.8)

𝑄𝑡𝑎𝑟𝑔𝑒𝑡 is the target volumetric flow rate, 𝑠̂𝑝 and 𝜌̂𝑡 are the saturation
of phase 𝑝 and total fluid density at production conditions, respec-
tively. Eq. (B.6) and Eq. (B.7) are then coupled with energy boundary
conditions:

𝜒(𝝎) − 𝑇 target = 0, (B.9)
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Fig. 15. The permeability distribution of the 4th layer of fluvial model. Figure (a) demonstrates the prior permeability of realization #66 before history matching; (b) is the
posterior permeability after history matching; (c) shows the ‘‘true’’ permeability; and (d) demonstrates the permeability difference between posterior and prior based on the history
matching constrained to ensemble prior mean. The blue dots and circles represent the injector and producer, respectively. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Fig. 16. The comparison of the history matching results is based on MLE (the first column), RML (the second column) and constrained to the ensemble prior mean (the third
column). The true results are also included (the fourth column). From the top to the bottom rows, they represent the history matching results of producer well temperature,
reservoir temperature distribution, and the permeability difference between the prior and posterior.
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Fig. A.17. The history matching results of the well temperature based on RML under the original full space (left figure) and reduced-dimension 𝜉-space (right figure). The red
curve is the observation data of well temperature. The gray and blue curves are the results before and after history matching, respectively. The green area shows the training
period, while the white area is the forecasting period. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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where 𝜒(𝜔) is the temperature that is dependent on the thermodynamic
state. 𝑇 target is the target temperature at the well.

Appendix C

The procedure of mapping the original model control variables 𝒖 to
is described below. More details can be found in Vo and Durlofsky

2014), Sarma et al. (2007).
The covariance matrix can be calculated by using the following

quation:

𝑀 = 𝑿𝑿𝑇

𝑁𝑟 − 1
, (C.10)

here 𝑁𝑟 is the total number of realizations, and 𝑿 is given by:

𝑿 = [𝒖1 − 𝒖,… , 𝒖𝑁𝑟
− 𝒖]. (C.11)

is a 𝑁𝑢 ×𝑁𝑟 matrix, where 𝑁𝑢 is the number of the control variables
n a single realization. The 𝒖 in Eq. (C.11) is the mean of the ensemble
f the realization, and here we assume a Gaussian distribution for
he model control variables 𝒖. Instead of directly decomposing 𝐶𝑚,

we perform Singular Value Decomposition (SVD) on the matrix 𝑦 =
𝑿∕

√

𝑁𝑟 − 1 because of the decomposition efficiency. The factorized 𝑦
sing SVD is given:

≈ 𝑈̃𝑁𝜉
𝛴̃𝑁𝜉

𝑉 𝑇
𝑁𝜉

, (C.12)

here 𝛴̃ is a diagonal matrix that contains the singular value of 𝑦, 𝑈̃
nd 𝑉 are the unitary matrices that contain the left- and right-singular
ectors of 𝑦 respectively, the suffix 𝑁𝜉 denotes the dimension size of
he new parameter space (i.e. 𝜉-space) after the truncation to 𝑈̃ , 𝛴̃,

and 𝑉 . The method of the prescribed portion of the variance (energy)
contained in eigenvalues is used to determine 𝑁𝜉 :
∑𝑁𝜉

𝑘=1 𝜎
2
𝑘

∑𝑁𝛴
𝑘=1 𝜎

2
𝑘

≥ 90%, (C.13)

here 𝜎𝑘 is the square root of the eigenvalue (i.e. the element along
he diagonal of 𝛴̃), 𝑁𝛴 is the total number of the elements along the
iagonal of 𝛴̃. Here we prescribe 90% as the energy portion value when
etermining the dimension of 𝜉-space. Once the dimension size 𝑁𝜉 is

determined, several important transformation matrices can be defined:

𝛷 = 𝑈̃𝑁𝜉
𝛴̃𝑁𝜉

, (C.14)

̂ −1 = 𝛴̃−1
𝑁𝜉

𝑈̃𝑇
𝑁𝜉

, (C.15)

= 𝛴̃ 𝑈̃𝑇 . (C.16)
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The formulations of mapping between the original space and 𝜉-space
are then written:

𝒖 = 𝛷𝝃 + 𝒖̄, (C.17)

𝝃 = 𝛷−1(𝒖 − 𝒖) ≈ 𝛷̂−1(𝒖 − 𝒖), (C.18)

∇𝝃 = 𝛷𝑇 ⋅ ∇𝒖 = 𝛹 ⋅ ∇𝒖 , (C.19)

where 𝒖 and 𝝃 are the model control variables in the original space
and the reduced-dimension 𝜉-space, respectively. ∇𝝃 and ∇𝒖 are the
radients of misfit term  with respect to the model control variable
n the reduced-dimension 𝜉-space and the original space, respectively.
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