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[1] A novel method is presented for model uncertainty estimation using machine learning
techniques and its application in rainfall runoff modeling. In this method, first, the
probability distribution of the model error is estimated separately for different hydrological
situations and second, the parameters characterizing this distribution are aggregated
and used as output target values for building the training sets for the machine learning
model. This latter model, being trained, encapsulates the information about the model error
localized for different hydrological conditions in the past and is used to estimate the
probability distribution of the model error for the new hydrological model runs. The M5
model tree is used as a machine learning model. The method is tested to estimate
uncertainty of a conceptual rainfall runoff model of the Bagmati catchment in Nepal. In
this paper the method is extended further to enable it to predict an approximation of
the whole error distribution, and also the new results of comparing this method to other
uncertainty estimation approaches are reported. It can be concluded that the method
generates consistent, interpretable and improved model uncertainty estimates.
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1. Introduction

[2] Uncertainty has always been inherent in water resour-
ces engineering and management. For example, in coastal
and river flood defenses it was treated implicitly through
conservative design rules, or explicitly by probabilistic
characterization of meteorological events leading to extreme
floods. Along with the recognition of the uncertainty of
physical processes, the uncertainty analysis of models of
these processes has become a popular research topic over
the last decade. Rapid growth in computational power, the
increased availability of distributed hydrological observa-
tions and an improved understanding of the physics and
dynamics of water systems permit more complex and
sophisticated models to be built. While these advances in
principle lead to more accurate (less uncertain) models, at
the same time if such complex (distributed) models with
many parameters and data inputs are not parameterized
properly or lack input data, they could be an inaccurate
representation of reality. This prompts more studies into the
model uncertainty of various types.
[3] The model errors are typically seen as the mismatch

between the observed and the simulated system behavior. In
the context of hydrological modeling they are unavoidable
owing to the inherent uncertainties in the process. These
uncertainties stem mainly from the four important sources
[see, e.g., Melching, 1995; Refsgaard and Storm, 1996;
Gupta et al., 2005] and relate our understanding and
measurement capabilities regarding the real-world system

under study: (1) uncertainties in input data (e.g., precipitation
and temperature); (2) uncertainties in data used for calibra-
tion, (e.g., output data such as streamflow); (3) uncertainties
in model parameters; and (4) uncertainties due to imperfect
model structure.
[4] Explicit recognition of uncertainty is not enough; in

order to have this notion adopted by decision makers in
water resources management, uncertainty should be properly
estimated and communicated [Pappenberger and Beven,
2006]. The research community, however, has done quite a
lot in moving toward the recognition of the necessity of
complementing point forecasts of decision variables by the
uncertainty estimates. Hence, there is a widening recognition
of the necessity to (1) understand and identify of the sources
of uncertainty; (2) quantify uncertainty; (3) evaluate the
propagation of uncertainty through the models; and (4) find
means to reduce uncertainty. A number of methods have
been proposed in the literature to estimate model uncertainty.
In general, these methods fall into six categories [see, e.g.,
Montanari, 2007; Shrestha and Solomatine, 2008]: (1) ana-
lytical methods [see, e.g., Tung, 1996], (2) approximation
methods (e.g., first-order second moment method [Melching,
1992]), (3) simulation and sampling-based methods [e.g.,
Kuczera and Parent, 1998], (4) Bayesian methods (e.g.,
‘‘generalized likelihood uncertainty estimation’’ (GLUE)
by Beven and Binley [1992]), (5) methods based on the
analysis of model errors [e.g., Montanari and Brath, 2004]
and (6) methods based on fuzzy set theory [see, e.g.,
Maskey et al., 2004].
[5] Most of the existing methods (e.g., categories 3 and 4)

analyze the uncertainty of the uncertain input variables by
propagating it through the deterministic model to the out-
puts, and hence requires the assumption of their distribu-
tions. Most of the approaches based on the analysis of the
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model errors require certain assumptions regarding the
residuals (e.g., normality and homoscedasticity). Obviously,
the relevancy and accuracy of such approaches depend on
the validity of these assumptions. The fuzzy theory-based
approach requires knowledge of the membership function of
the quantity subject to the uncertainty which could be very
subjective. Furthermore, the majority of the uncertainty
methods deal only with a single source of uncertainty. For
instance, Monte Carlo-based methods analyze the propaga-
tion of uncertainty of parameters (measured by the proba-
bility distribution function, pdf) to the pdf of the output.
Similar types of analysis are performed for the input or
structural uncertainty independently. Note that the methods
based on the analysis of the model errors typically compute
the uncertainty of the ‘‘optimal model’’ (i.e., the model with
the calibrated parameters and the fixed structure), and not
of the ‘‘class of models’’ (i.e., a group of models with the
same structure but parameterized differently) as, for exam-
ple, Monte Carlo methods do.
[6] The contribution of various sources of errors to the

model error is typically not known and, as pointed out by
Gupta et al. [2005], disaggregation of errors into their
source components is often difficult, particularly in hydrol-
ogy where models are nonlinear and different sources of
errors may interact to produce the measured deviation.
Nevertheless, evaluating the contribution of different sour-
ces of uncertainty to the overall uncertainties in model
prediction is important, for instance, for understanding
where the greatest sources of uncertainties reside, and,
therefore directing efforts toward these sources [Brown
and Heuvelink, 2005]. In general, relatively few studies
have been conducted to investigate the interaction between
different sources of uncertainty and their contributions to
the total model uncertainty [Engeland et al., 2005; Gupta et
al., 2005]. For the decision-making process, especially in
water resources management, it is more important to know
the total model uncertainty accounting for all sources of
uncertainty than the uncertainty resulting from individual
sources. Recently Shrestha and Solomatine [2006, 2008]
presented the basis of a novel method to estimate the
uncertainty of the optimal model that takes into account
all sources of errors without attempting to disaggregate the
contribution given by their individual sources. The ap-
proach is referred to as an ‘‘uncertainty estimation based
on local errors and clustering’’ (UNEEC). The method uses
clustering and machine learning techniques to estimate the
uncertainty of a process model by analyzing its residuals
(errors). The distribution of model error is conditioned on
the input and possible state variables of the model including
the lagged variable of the observed response variable. Since the
pdf of the model error is estimated through empirical distri-
bution, it is not necessary to make any assumption about
residuals. The method is computationally efficient, and
therefore can be easily applied to computationally demand-
ing process models. The method described here is based on
the concept of optimality instead of equifinality as it analyzes
the historical model residuals resulting from the optimal
model (both in structure and parameters). If compared to
earlier publications, in this paper the UNEEC method is
extended further by introducing several quantiles of the error
distribution, another case study is considered, and the results

are also compared to those produced by several methods of
uncertainty estimation.

2. Brief Overview of Machine Learning
Techniques

[7] A machine learning technique is an algorithm that
estimates (or induces) a hitherto unknown mapping (or
dependency) between the inputs (predictors) and outputs
(predictands) of a physical system from the available data
[Mitchell, 1997]. As such a dependency (model) is discov-
ered, it can be used to predict the future outputs of the
system from the known input values. Machine learning
techniques, based on observed data D = (X, y) = {xt, yt},
t = 1, 2,. . ., n, try to identify (learn) the target function f(xt,
w) describing how the real system behaves, where X is the
matrix (x, vector) of the input data, y is the vector (y, scalar)
of systems’ response, n is the number of data, w is the
parameter vector of the function. Learning (or ‘‘training’’)
here is the process of minimizing the difference between
observed response y and model response ŷ through an
optimization procedure. Model f is often called a ‘‘data-
driven model.’’ For a recent overview of data-driven mod-
eling in water-related issues see, e.g., Solomatine and
Ostfeld [2008].
[8] A review of the application of machine learning

techniques to estimate the uncertainty of either process or
machine learning-based rainfall runoff modeling can be
found in the work by Shrestha and Solomatine [2008].
Sections 2.1 and 2.2 present a brief overview of the machine
learning technique used in this study.

2.1. Piecewise Linear Regression Models: Model Trees

[9] A model tree (MT) is a hierarchical (or tree-like)
modular model which has splitting rules in nonterminal
nodes and linear regression functions at the leaves of the
tree. The M5 algorithm constructs progressively hierarchical
linear models that relate the input data to the corresponding
values of output by dividing the input space. The input data
is either associated with a leaf or is split into subsets and the
same process is applied recursively to the subsets. The
splitting criterion for the M5 algorithm is based on treating
the standard deviation of the output values that reach a node
as a measure of the error at that node, and calculating the
expected reduction in error as a result of testing each
attribute at that node. After examining all possible splits,
M5 chooses the one that maximizes the expected error
reduction. The MT is analogous to a piecewise linear
function, learns efficiently, and can tackle tasks with very
high dimensionality: up to hundreds of variables. As com-
pared to other machine learning techniques, MT learning is
fast and the results are interpretable. Details of MT and its
M5 algorithm can be found elsewhere [see, e.g., Witten and
Frank, 2000; Solomatine and Dulal, 2003].

2.2. Cluster Analysis

[10] The objective of cluster analysis is to partition a data
set into subsets (clusters), so that the data in each subset
share some common trait: often proximity according to
some defined similarly measure. There are basically three
types of clustering algorithms: exclusive, overlapping, and
hierarchical. In the first case, the data are grouped in such a
way that each data point belongs to a definite cluster and it
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cannot be included in another cluster. The example of this
type of clustering is ‘‘K-means’’ clustering. On the contrary,
the second type, the overlapping clustering uses fuzzy sets
[Zadeh, 1965] to cluster data, so that each data point
belongs to several clusters with some degree of so-called
fuzzy membership in the range [0, 1]. The best-known
method of fuzzy clustering is the ‘‘fuzzy C-means’’ [Bezdek,
1981]. There are also nonfuzzy clustering methods leading
to overlapping clusters, such as those based on the mixture
of Gaussians. A hierarchical clustering algorithm finds
successive clusters splitting the previously established clus-
ters. Detailed description of the clustering algorithms can be
found elsewhere [see, e.g., Mitchell, 1997].

3. Methodology

[11] The historical model residuals (errors) between the
model prediction ŷ and the observed data y are the best
available quantitative indicators of the discrepancy between
the model and the real-world system or process, and they
provide valuable information that can be used to assess the
predictive uncertainty. The residuals and their distribution
are often the functions of the model input variables and can
be predicted by building separate model mapping of the
input space to the model residuals or even the pdf of error.
In other words, the idea here is to learn the relationship
between the distribution of the model errors and the input
variables and to use this information to predict the distri-
bution of the model error when it predicts the output
variable (e.g., runoff) in the future. It is assumed that the
process model error is a proper indicator of model uncer-
tainty and explained as follows.
[12] A deterministic model M of a real-world system

predicting a system output variable y* given input vector
x(x 2 X) is considered. Let y be the measurement of an
unknown true value y*, made with error ey. Various types of
errors propagate through the model M while predicting the
observed output y and have the following form:

y ¼ y*þ ey ¼ M x; qð Þ þ es þ eq þ ex þ ey ð1Þ

where q is a vector of the model parameters values, es, eq,
and ex, are the errors associated with the model structure M,
parameter q and input vector x, respectively. In most
practical cases, it is difficult to estimate the error compo-
nents of equation (1) unless some important assumptions are
made. Thus, the different components that contribute to the
total model error are generally treated as a single lumped
variable and equation (1) can be reformulated as

y ¼ ŷþ e ð2Þ

where ŷ is the model output and e is the total remaining (or
residual) error. The UNEEC method estimates the uncer-
tainty associated with the given model structure M, and
parameter set q by analyzing historical model residuals e
which is an aggregate effect of all sources of error. Thus, the
uncertainty estimated with the UNEEC method is consistent
only for the given model structure and the parameter set q. It
does not mean that the model structure and parameter
uncertainty are ignored, but it is assumed that the uncer-
tainty associated with the wrong model structure, inaccurate

parameter values, and observational errors (if any) are
manifested implicitly in the model residuals. This type of
uncertainty analysis based on the model residuals is differ-
ent from the classical uncertainty analysis methods where
uncertainty of parameters, input data (presented by pdf) or
plausible model structures are propagated to the pdf of the
output.
[13] The UNEEC method starts by selecting the single

best model structure from the plausible model structures in
reproducing the observed behavior of the system. This
ensures that the uncertainty associated with the wrong
choice of the model structure is reduced as much as
possible. Then it requires the prior identification of an
optimal model parameter set, which can be achieved by
calibration procedure aimed at minimizing some error
function. This ensures minimizing the uncertainty associated
with inaccurate estimate of parameter values. Observational
errors can be reduced by the improved observational tech-
niques and understanding of the characteristics of such
errors. Of course, the model error e cannot be eliminated
completely. The aim here is to build a model to estimate the
pdf of the model error e conditioned to the input and/or state
variables of the process model. Since the predictive uncer-
tainty of the model output is more important than the pdf of
the model error, the latter is then transferred to the predictive
uncertainty by using information on the model predictions
(described later in the section). Note that even when the
optimal process model is used to produce a deterministic
prediction, it does not, however, exclude the possibility of
using some combination (ensemble) of ‘‘good’’ (but not
optimal) models having the same structure but different in
the values of the parameters, which could result from a
Monte Carlo exercise.
[14] The UNEEC method consists of three main parts:

(1) clustering; (2) estimation of the error probability distri-
bution for clusters; and (3) building the overall model of the
error probability distribution. These parts are described in
this section (see Figure 1).

3.1. Clustering the Data

[15] Clustering of data is an important step of the UNEEC
method. Its goal is to partition the data into several natural
groups that can be interpreted. By data we understand here
the vectors of some variable (input) space, and the input
space here means not only input variables of the process
model, but also all the relevant state variables which
characterizes different mechanism of the modeled process,
e.g., runoff generation process. The input data which belong
to the same cluster will have similar characteristics and
correspond to similar real-life situations. Furthermore, the
distributions of the model errors within different clusters
have different characteristics. This seems to be a strong
assumption of the UNEEC method, which would be rea-
sonable to test before applying it. In hydrological modeling
this assumption seems to be quite natural: a hydrological
model is often inaccurate in simulating extreme events (high
consecutive rainfalls) which can be identified in one group
by the process of clustering: resulting in high model
residuals (wide error distribution). When data in each
cluster belong to a certain ‘‘class’’ (in this case, a hydro-
logical situation), local error models can be built: they will
be more robust and accurate than the global model which is
fitted on the whole data.
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[16] Before clustering the input space, the most relevant
input variables should be selected from the data D. Since
clustering is unsupervised learning where desired output of
the system being studied is not known in advance, the
selection of the variables in application to the process model
are done by incorporating domain (hydrological) knowl-
edge. The data set Xc is the matrix of input data constructed
from the data D for partitioning into several natural groups
(clusters). Additional analysis between model residuals and
variables constituting D may be needed to choose the
adequate variables for building Xc from D. Often Xc

encompasses the variables of D and additional lagged
vectors of some variables of D based on correlation and/
or average mutual information (AMI) analysis.

3.2. Estimating Probability Distribution of the
Process Model Error

[17] Typically the process model is nonlinear and con-
tains many parameters. This will hinder the analytical
estimation of the pdf of the model error. Thus the empirical
pdf of the model error for each cluster is independently
estimated by analyzing historical model residuals on the
calibration data. In order to avoid a biased estimate of pdf or
its quantiles of the model error, it is important to check if
there is any overfitting by the process model on the
calibration data. It is also possible to use leave-one-out
cross validation [see, e.g., Cawley et al., 2004] to overcome
the bias estimate of the quantiles if the computational
burden of running the process model is not prohibitive.
However, such a cross-validation technique may be imprac-
tical in hydrological modeling because of computational
load resulting from training multiple models. Another
solution is to use a separate calibration sample data set that

has not been used to calibrate the model, provided enough
data are available. Note that when dealing with limited
calibration data, the empirical distribution might be a very
poor approximation of the theoretical distribution, so the
reliability of such a method depends on the availability of
data.
[18] Since the pdf of the model error is estimated for each

cluster, it depends on the clustering method used. For
example, in the case of K-means clustering where each
instance of data belongs to only one cluster, the quantiles
are taken from the empirical error distribution for each
cluster independently. However, in the case of fuzzy clus-
tering method (FCM) where each instance belongs to more
than one cluster, and is associated with several membership
functions, the computation of the quantiles should take this
into account. The following expression gives the pth [0, 1]
quantile of the model error for cluster i:

ec
p
i ¼ et t :

Xt

k¼1

mi;k < p
Xn

t¼1

mi;t ð3Þ

where t is the maximum integer value running from unity
that satisfies the above inequality, et is the residual
associated with the tth data (data are sorted with respect
to the associated residual), and mi,t is the membership
function of the tth data to cluster i. This is not the only way
of calculating quantiles for fuzzy clusters, and we tested
several of them before choosing the one presented;
unfortunately the space available does not allow for
providing the details. An alternative would be to use the
threshold of the membership degree in selecting the points
to be included in sorting for each cluster.

Figure 1. The generalized framework of the uncertainty estimation based on local errors and clustering
(UNEEC) method. The UNEEC method has three steps: clustering, estimation of the probability
distribution of the model error, and building model U for probability distribution of the error. Once the
model U is trained in the calibration data set (Xu), the model can be used to predict the probability
distribution of the model error for the new data input.
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3.3. Building a Model for Probability Distribution of
the Process Model Error

[19] In order to estimate or predict the pdf of the process
model error (or some quantiles of it) for the unseen input
vectors, a machine learning model was built which will
have predictive power after being trained using the calibra-
tion data. This model is referred to as an ‘‘uncertainty
model’’ U and can be built using several approaches [see
Shrestha and Solomatine, 2008]. In this paper, the nonlinear
regression method (e.g., model tree) is used.
[20] In order to train the model U, the pdf (or its

quantiles) of the model error has to be estimated for the
individual input data vector where the information about
the model residuals is known. Since the empirical pdf of the
model error for the clusters are already computed following
the method described in section 3.2, the input data being the
member of the clusters share this information of distribu-
tion. However, it is worth mentioning that the estimation of
quantiles for the individual input data vector depends on
the types of clustering techniques employed. For example,
in K-means clustering the input data share the same infor-
mation of pdf of the error for a particular cluster, thus
ignoring the variation of the error distribution inside the
cluster. However, there are other possibilities such as using
distance function (distance between the centers of the cluster
to the input vector) as a weight to vary error distribution.
[21] In the case of fuzzy clustering an approach that can

be termed ‘‘fuzzy committee’’ is used to compute the
quantiles for each individual input data vector and given by

e
p
t ¼

Xc

i¼1

m2=m
i;t ec

p
i =

Xc

i¼1

m2=m
i;t ð4Þ

where et
p is the pth quantile of the pdf of the error for tth

input data, eci
p is the pth quantile of the pdf of the error for

cluster i, and m is the smoothing exponential coefficient. It
should be noted that equation (4) is indeed a soft
combination of the quantiles of each cluster depending
upon the membership function values. This formulation has
an additional advantage of smoothing of the quantiles across
the input data. The smoothing can be increased with a
higher value of m.
[22] Once the quantiles of the pdf of the model error for

each example in the training data are obtained, machine
learning model U (that estimates the underlying functional
relationships between the input vector xu and the computed
quantiles) is constructed:

ep ¼ Up xu; qpð Þ ð5Þ

where qp is the parameters vector of the model Up for the
pth quantile. Please note that the calibration data set for
model U is (Xu, e

p), where Xu is input data constructed from
X described below, ep is a vector of pth quantiles. Thus
model U, after being trained on input data Xu, encapsulates
the pdf of the model error and maps the input xu to the pdf
or quantiles of the process model error. It is worthwhile
noting that the model U can take any form, from linear to
nonlinear regression function such as an artificial neural
network (ANN). The choice of the model depends on the
complexity of the problem to be handled and the availability

of data. Once the model U is trained on the calibration
data Xu, it can be employed to estimate the quantiles or
the pdf of the model error for the new data input.
[23] As previously mentioned, the predicted quantiles of

the pdf of the model error should be transferred to a more
meaningful and understandable entity: predictive uncertainty
of the model output. The quantile of the predictive uncer-
tainty of the model output can be estimated as

yp ¼ ŷþ ep ð6Þ

where yp is the pth quantile of the model output. One can
see that equation (6) is the reformulation of equation (2). In
order to estimate, for example, 90% prediction interval, it is
necessary to build two models, U5 and U95, that will predict
5% and 95% quantiles, respectively.
[24] The issue here is to construct the calibration data Xu

to build the regression model U. In most practical cases,
data set Xu can be constructed from the set D. Since the
nature of models M and U is very different, additional
analysis such as correlation or AMI analysis between the
quantiles of the error pdf and the variables constituting D is
needed to choose the adequate variables with proper lags.
For example, if model M is a conceptual hydrological
model, it would typically use rainfall (Rt) and evapotrans-
piration (Et) as input variables to simulate the output
variable runoff (Qt). However, the uncertainty model U,
whose aim is to predict the pdf of the error of the simulated
runoff, may be trained with the possible combination of
rainfall and evapotranspiration (or effective rainfall), their
past (lagged) values, the lagged values of runoff, and,
possibly, their combinations.

3.4. Validation of the UNEEC Method

[25] The UNEEC method is validated by (1) measuring
predictive capability of uncertainty model U (e.g., using
root-mean-squared error); (2) measuring the statistics of the
uncertainty estimation; and (3) visualizing plots of predic-
tion intervals with the observed hydrograph.
[26] Validation of model U, however, is not straightfor-

ward owing to the following. A validation procedure typi-
cally assumes that for a new situation (in our case, new
values of rainfall, runoff, etc.) it is possible to compare the
output variable value calculated by the model (say, 5%
quantile calculated by the model U5) to the corresponding
‘‘measured’’ value. However, it is impossible to measure the
value of a quantile (in this case a 5% quantile) (whereas it is
possible to validate the performance of model M since it is
possible to measure runoff). One may argue that if there is a
large validation data set available, it is possible to generate
the quantiles in the validation data set either (1) directly
from the whole set or (2) from the clusters found in the
validation set using the same procedure used when building
model U. However, in option 1 the comparison would not
be fair since model U uses different (local, cluster-based)
models of uncertainty, and in option 2 the clusters generated
will be different from those generated during building of U
and hence comparison would not be proper either. We use
an alternative method to validate the model U proposed by
Shrestha et al. [2006].
[27] Calibration data Xu was divided into two parts:

training data, which constitutes major part of the calibration
data (in this study, 67%), were selected randomly from the
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calibration pool without replacement. The training data are
used to train the model U. The remaining data from the pool
is the cross-validation (or test) data set which is used to
perform ‘‘intermediate’’ tests of model U with the purpose
to select its structure, parameters and the input variables.
Random (or close to random) selection ensures statistical
similarity of these data sets. Once the model U is tested on
the cross-validation (test) data set, the model U with the best
structure can be retrained on the full calibration data so as to
increase its accuracy.
[28] Even though the quantiles of the model error pdf

and, consequently, the quantiles of the model output are not
observable in the validation data set, it is interesting to
know if the distribution of the observed data fits the
distribution predicted by model U. When predicting only
two quantiles (or prediction interval, PI), this problem is
equivalent to counting how many of the observed values are
inside the prediction interval. In this case, validation of the
UNEEC method can be done by evaluating two statistics:
prediction interval coverage probability (PICP) and mean
prediction interval (MPI). The former statistic measures the
probability that the observed values lie within the estimated
PIs. The latter statistic computes the average width of the
PIs and gives an indication of the model uncertainty. In
principle, these measures can also be computed individually
for each cluster by training a classifier that would be able to
attribute the new input vectors to one of the clusters or by
computing the distance between the new input vectors and
the cluster centroid vectors.

4. Application

4.1. Study Area

[29] The area selected for this study is the Bagmati
catchment in Nepal. It lies in the central mountainous region
of country and encompasses nearly 3700 km2 within Nepal
and reaches the Ganges River in India. The catchment area

draining to the gauging station at Pandheradobhan is about
2900 km2 (see Figure 2) and it covers the Kathmandu valley
including the source of the Bagmati River at Shivapuri and
surrounding Mahabharat mountain ranges. The catchment
covers eight districts of Nepal and is a perennial water body
of Kathmandu. The length of the main channel is about
195 km within Nepal and 134 km above the gauging station.
[30] Time series data of rainfall of three stations (Kath-

mandu, Hariharpurgadhi, and Daman) within the basin with
a daily resolution for 8 years (1988 to 1995) was collected.
The mean areal rainfall was calculated using Thiessen
polygons. Although this method is not recommended for
mountainous regions, the mean rainfall is consistent with
the long-term average annual rainfall computed with the
isohyetal method [Chalise et al., 1996]. The long-term
mean annual rainfall of the catchment is about 1500 mm
with 90% of the rainfall occurring during the four months of
the monsoon season (June to September). Daily flows were
recorded from only one station at Pandheradobhan. Long-
term mean annual discharge of the river at the station is
151 m3/s but the annual discharge varied from 96.8 m3/s in
1977 to 252.3 m3/s in 1987 [Department of Hydrology and
Meteorology, 1998]. The daily potential evapotranspiration
was computed using the modified Penman method recom-
mended by FAO [Allen et al., 1998].
[31] Two thousand daily records from 1 January 1988 to

22 June 1993 were selected for calibration of the process
model (in this study the HBV hydrological model, see
section 4.2) and data from 23 June 1993 to 31 December
1995 was used for the validation (verification) of the
process model. The first two months of calibration data
were used as a warming-up period and hence excluded in
the study. The separation of the 8 years of data into
calibration and validation was done on the basis of previous
studies. These data sets were used with all uncertainty
analysis methods employed in this study.

4.2. Process Model: Conceptual Hydrological
Model HBV

[32] A simplified version of the HBV-96 model (see
Figure 3) was used as the process model to simulate river
flows for the case study. The HBV model [Bergström, 1976]
is a rainfall runoff model, which includes conceptual
numerical descriptions of hydrological processes at the
catchment scale. The model consists of subroutines for the
meteorological interpolation, snow accumulation and melt,
evapotranspiration estimation, a soil moisture accounting
procedure, routines for runoff generation, and finally, a
simple routing procedure between the subbasins and in
lakes. It is possible to run the model separately for several
subbasins and then add the contributions from all the
subbasins. For the basins of considerable elevation range,
subdivision into elevation zones can also be made. This
subdivision is made for the snow and soil moisture routines
only. Each elevation zone can further be divided into
different vegetation zones (e.g., forested and nonforested
areas).
[33] Input data are observations of precipitation, air tem-

perature and estimates of potential evapotranspiration. The
time step is usually one day, but it is possible to use shorter
time steps. The evaporation values used are normally
monthly averages although it is possible to use daily values.
Air temperature data are used for calculations of snow

Figure 2. Location map of the Bagmati catchment
considered in this study. Triangles denote the rainfall
stations, and circles denote the discharge gauging stations.
Discharge measured at Pandheradobhan is used for the
analysis (adopted from Solomatine et al. [2008] with
permission from Blackwell).
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accumulation and melt. It can also be used to adjust
potential evaporation when the temperature deviates from
normal values, or to calculate the potential evaporation. The
detailed description of the model can be found, e.g., in the
work by Lindström et al. [1997].

5. Results and Discussions

5.1. Analysis of the Simulation Results

[34] A version of the HBV model with 13 parameters
(4 parameters for snow, 4 for soil, and 5 for the response
routine) was used. Since there is no snowfall in the
catchment, the snow routine was excluded leaving only
9 parameters (see Table 1). The model was first calibrated
using the global optimization routine, adaptive cluster
covering algorithm, ACCO [Solomatine et al., 1999] to
find the best set of parameters, and subsequently the manual
adjustments of the parameters was made. ACCO is a
random search global optimization algorithm which was
implemented in the global optimization tool, GLOBE
(available at http://www.data-machine.com).
[35] The ranges of parameters values for automatic cali-

bration were set on the basis of the ranges of calibrated

values from the other model applications [e.g., Braun and
Renner, 1992] and the hydrologic knowledge of the catch-
ment. The ranges were extended when the solutions were
found near the border of the parameter ranges and recali-
bration of the model was done with the extended ranges of
the parameters. The model was calibrated using the Nash
and Sutcliffe [1970] efficiency (Reff) as the objective func-
tion. Finally, manual fine tuning of the parameters followed
the automatic procedure by visual comparison of the observed
and simulated hydrographs.
[36] The Reff value of 0.83 was obtained for the calibra-

tion period; this value corresponds to the root-mean-squared
error (RMSE) value of 92.31 m3/s. The model was subse-
quently validated by simulating the flows for the indepen-
dent validation data set. The Reff was 0.87 for this period
with the RMSE value of 127.6 m3/s. Please note that the
standard deviation of the observed discharge in the valida-
tion period is 54% higher than that in the calibration period
and this apparently affects the increased performance in the
validation period with respect to Reff. The simulated and
observed hydrographs along with rainfall and simulation
error are shown in Figure 4.

Figure 3. Schematic representation of the HBV-96 model (after Lindström et al. [1997]) with routines
for snow, soil, and runoff response (reproduced from Shrestha and Solomatine [2008] with permission
from the International Association for Hydraulic Research).

Table 1. Ranges and Optimal Values of the HBV Model Parametersa

Parameter Description and Unit

Ranges

Calibrated ValueMinimum Maximum

FC Maximum soil moisture content (mm) 50 550 450
LP Limit for potential evapotranspiration 0.3 1 0.90
ALFA Response box parameter 0 4 0.1339
BETA Exponential parameter in soil routine 1 6 1.0604
K Recession coefficient for upper tank (day) 0.05 0.5 0.3
K4 Recession coefficient for lower tank (day) 0.01 0.3 0.04664
PERC Maximum flow from upper to lower tank (mm/day) 0 8 7.5
CFLUX Maximum value of capillary flow (mm/day) 0 1 0.0004
MAXBAS Transfer function parameter (day) 1 3 2.02

aThe uniform ranges of parameters are used for calibration of the Hydrologiska Byråns Vattenbalansmodell (HBV) model using the adaptive cluster
covering algorithm and for analysis of the parameter uncertainty of the HBV model by the generalized likelihood uncertainty estimation method.
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5.2. Analysis of the Model Residuals

[37] The analysis of the model residuals in the calibration
period shows that the model residuals are highly correlated
with the observed flows. Most of the high flows have
relatively high residuals whereas the low flows have small
residuals. The presence of heteroscedasticity in the residuals
is observed as well. The normal probability plots of the
residuals in the calibration and in the validation periods
show that the residuals are not normally distributed.
Kolmogorov-Smirnov and Lilliefors [Lilliefors, 1967] tests
support this hypothesis. These tests of normality and
homoscedasticity suggest that in order to provide a reliable
estimation of the model uncertainty, the transformations of
model residuals will be required if statistical methods are
to be applied.

5.3. Clustering

[38] The clustering is performed using Fuzzy C-means
algorithm based on the previous experience [Shrestha and
Solomatine, 2006, 2008]. Selection of the input variables
and the optimal number of clusters is discussed in sections
5.3.1 and 5.3.2.
5.3.1. Selection of the Input Variables
[39] Several approaches have been reported in the litera-

ture [e.g., Guyon and Elisseeff, 2003; Bowden et al., 2005]
to select the model input variables; we follow the similar
approaches. The input variables Xc used in clustering are
constructed from the rainfall, the potential evapotranspira-
tion, and the observed discharge. Several structures of the
input data including the lagged variables were considered
following the analysis of the correlation and AMI between
the rainfall, runoff, and evapotranspiration with the model

residuals. It appeared that the inclusion of the potential
evapotranspiration does not improve the results obtained for
the cross-validation data set, and it can be said that its
inclusion would introduce ‘‘confusion’’ into the model. For
example, during the low flow season (i.e., the dry season of
April and May) there is very high potential evapotranspira-
tion due to the hot weather in this period. The calibration of
the hydrological model shows that the model captures the
low flow reasonably well. However, this hydrological
condition (low flow, negligible or zero rainfall, and very
high potential evapotranspiration) is not identified as low
flow season in clustering. So it was decided not to include
the potential evapotranspiration as a separate variable, but
rather to use the effective rainfall (rainfall minus evapo-
transpiration for rainfall greater than evapotranspiration, and
zero otherwise). The following conventions are used
throughout this manuscript while defining the input varia-
bles: REt�t, effective rainfall at time t�t; Qt�t, discharge
at time t�t; et, model residuals at time t; t, lag time (0, 1,
2, . . ., tmax).
[40] After some trials with the different input combina-

tions the following variables were selected for clustering:
REt and Qt. The principle of parsimony was followed by
avoiding the use of a large number of inputs. In addition to
this the absolute values of model residuals were used, which
explicitly forced the input data having similar values of the
model residuals to be in one group. Since the rainfall and
discharge have different units with different orders of
magnitude and their values do not represent the same
quantities, all input variables were normalized to the inter-
val [0, 1]. This can prevent the model from being dominated

Figure 4. Simulated discharge for the Bagmati catchment for a validation period. The top and bottom
show the precipitation and model errors, respectively, during the same period.
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by variables with large values, and is commonly used in
machine learning techniques.
5.3.2. Selection of the Number of Clusters
[41] An important issue in clustering is to identify the

optimal number of clusters. Three validation indices are
used to select the optimal number of clusters: partition index
(SC), separation index (S), and Xie-Beni index (XB)
[Bensaid et al., 1996; Xie and Beni, 1991]. The comparison
of the indices shows that the optimal number of clusters is 5.
[42] Figure 5 depicts the sensitivity of uncertainty mea-

sures to the number of clusters c. It is observed that MPI
decreases with the increase of c. However, in the case of
PICP there is no obvious pattern. The MPI fluctuates around
the value 97.5% after c = 5. At c = 5, MPI and deviation of
PICP from the desired confidence level (i.e., 90%) is

smaller compared to those with c = 6. This value is also
consistent with the previous research by Shrestha and
Solomatine [2006] which has shown that this value is
reasonable to represent the different situations related to
the runoff generation process.
5.3.3. Analysis of Clusters
[43] Figure 6 shows fuzzy clustering of the input exam-

ples. The input variables (effective rainfall REt (Figure 6a)
and discharge Qt (Figure 6b)) are on the abscissa, and the
model residuals are on the ordinate. Please note that each
input data belongs to all 5 clusters with different degrees of
membership. However, on the plot the cluster which has the
maximum membership function is shown. It is observed
that there is a well-defined pattern of model residuals with
the input variables such as REt and Qt. One can see that the
high flows and the high (effective) rainfall generally have
higher values of model residuals, and this is identified well
by the clustering process (cluster C3). On the other hand,
the conditions characterized by the low flows are also
separated into one cluster (cluster C1) which has a very
low value of the model residuals.
[44] Figure 7 presents the separation of the hydrograph

with respect to the different clusters. One may notice that
the majority of the flows have the highest membership in
cluster C1 which can be interpreted as the base flow. The
peaks and most of the high flows are attributed to cluster
C3. Some high flows, especially in the recession part of the
hydrograph, are attributed to cluster C5, because these
examples have less or no rainfall and cannot be grouped
into C3 which has high values of both flow and rainfall. It
can be said that Fuzzy C-means clustering was able to
identify the clusters corresponding to the various mecha-
nisms of the runoff generation process, such as peak flow
with high rainfall, high flow with no or less rainfall
(recession part of the hydrograph) and base flow, etc.

Figure 5. Sensitivity of the statistics of uncertainty
measures with the number of clusters for the calibration
period. Prediction interval coverage probability (PICP)
measures the probability that the observed discharge values
lie within the estimated prediction intervals. Mean predic-
tion interval (MPI) is the average width of the prediction
intervals.

Figure 6. Fuzzy clustering of the input data in the calibration period (from 1 January 1988 to 22 June
1993) showing (a) effective rainfall and (b) discharge. The labels C1 through C5 indicate the cluster ID.
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5.4. Selection of the Input Variables for the
Uncertainty Model U

[45] In order to select the most important influencing
variables for the uncertainty model U, an approach similar
to the one used for clustering was followed. Correlation
analysis and AMI analysis between input variables REt and
Qt (including lags) and the quantiles of the model error were
conduced. Figure 8a shows the correlation coefficient and
AMI of REt and its lagged variables up to 7 days, i.e.,
REt�1, REt�2, . . ., REt�7 with the 5% and 95% quantiles. It
is observed that the variables REt and REt�1 are strongly
correlated with both the quantiles, so these two variables are
included in the input vector xu.
[46] The correlation and AMI analyses between Qt and

the quantiles of the model error are presented in Figure 8b.
It is also observed that Qt and Qt�1 are strongly correlated

with the quantiles. Although the lag 2 variable Qt�2 also has
high correlation, only Qt and Qt�1 were included in the
input vector. The reason is that the flow Qt is highly
autocorrelated and inclusion of too many lagged variables
of Qt may lead to the redundancy of the model structure.
Note that during the model application, Qt is not available
and we use its approximation made by model M. Although
the simulated Qt may bring additional uncertainty to model
U, our experiments have shown that this approach resulted
in the more accurate model U (in terms of PICP and MPI).

5.5. Selection and Validation of the Uncertainty
Model U

[47] M5 model tree (MT) was used as an uncertainty
prediction model U. There are certain advantages of using
MT if compared to other machine learning methods; it is

Figure 7. Fuzzy clustering of the input data in the calibration period (from 1 January 1988 to 22 June
1993). The bottom shows the enlarged view of the monsoon event of 1990.

Figure 8. Average mutual information and correlation coefficient of 5% and 95% quantiles of the model
errors with (a) effective rainfall and (b) discharge. The thin dark line shows the 5% quantile, and the thick
gray line shows the 95% quantile.
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simple, easy, and fast to train. The results are interpretable,
understandable, and reproducible. Solomatine and Dulal
[2003] have shown that MT can be used as an alternative
to ANN in rainfall runoff modeling. There is only one
parameter in MT, the pruning factor (or, alternatively, the
minimum number of data allowed in each linear model
component), which controls the complexity of the model.
The following shows the structure of the input data for the
models U to predict 5% and 95% quantiles:

e5 ¼ U5 REt;REt�1; Qt;Qt�1; pfð Þ
e95 ¼ U95 REt ;REt�1; Qt;Qt�1; pfð Þ ð7Þ

where e5 and e95 are the 5% and 95% quantiles of the model
error, respectively, and pf is the pruning factor. The
following is the example of generated model tree by U5

for e5 with pf = 4:

Qt <= 73: LM1 (773)
Qt > 73:
j Qt <= 337:
j j REt <= 8.73:
j j j Qt�1 <= 255: LM2 (203)
j j j Qt�1 > 255: LM3 (74)
j j REt > 8.73: LM4 (77)
j Qt > 337: LM5 (173)

LM1: e5 = 11.7 + 1.73REt + 0.909REt�1 + 0.293Qt�1

+ 0.302Qt

LM2: e5 = 44.7 + 0.282REt + 0.15REt�1 + 0.0114Qt�1

+ 0.198Qt

LM3: e5 = 80.4 + 0.282REt + 1.6REt�1 + 0.0114Qt�1

+ 0.0405Qt

LM4: e5 = 44.3 + 3.22REt + 0.167REt�1 + 0.153Qt�1

+ 0.0242Qt

LM5: e5 = 146 + 1.7REt + 0.0706Qt�1 + 0.00895Qt

There are five linear models (namely LM1, LM2, LM3,
LM4, and LM5) generated for various intervals of Qt, REt,
and Qt�1. Note that numbers inside the parenthesis are the
numbers of the data vectors in the subsets. Similar structures
of the linear models are obtained for e95. Table 2 shows the
mean and standard deviation statistics of the generated
quantiles of the model error and performance of U 5 and U95

in training, cross-validation and calibration data sets.
[48] The mean and the standard deviation of the quantiles

on the training and cross-validation data sets are very
consistent with high variability of the original data. The
performances of the uncertainty models U as measured by
RMSE and Reff for 5% and 95% quantiles are quite
reasonable in both training and cross-validation data sets
in spite of the high variability of the quantiles. The RMSE
and Reff values of models U on the calibration data set are
quite consistent with those for the training and cross-
validation sets and this ensures the predictability of the
models U. Figure 9 depicts the scatterplot for the generated
quantiles and predicted quantiles in the cross-validation
data. It is observed that the both models are quite good
for approximating the relationship between the input space
variables and the quantiles of the model error.

Table 2. Mean and Standard Deviation Statistics of the 5% and 95% Quantiles of the Model Error, and the

Performances of Uncertainty Prediction Models Ua

Data Set Mean SD RMSE Reff

Training 73.60 (86.29) 77.54 (73.60) 28.44 (27.25) 0.87 (0.86)
Cross validation 67.36 (79.58) 71.75 (67.70) 26.69 (27.41) 0.86 (0.84)
Calibration 71.55 (84.07) 75.72 (71.76) 27.74 (26.70) 0.87 (0.86)

aPerformances are RMSE and Reff. The training and cross-validation data constitute 67% and 33%, respectively, of the
calibration data (data used to calibrate hydrological model). Values in parentheses correspond to statistics of 95% quantiles of
the model error and the performance of uncertainty prediction models U95. SD, RMSE, and Reff are standard deviation of
model errors, root-mean-squared error, and Nash-Sutcliffe efficiency between predicted and target values of the quantiles,
respectively.

Figure 9. Scatterplot of the predicted and the target quantiles of the model errors for (a) 5% and (b) 95%
quantiles in the cross-validation data (part of the calibration data).
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5.6. Analysis of the Process Model Uncertainty

[49] 5% and 95% quantiles of the model residuals were
computed for each of the clusters. Investigating the clusters
with their centers and quantiles reveals that the clusters with
high values of rainfall and runoff have the high values of the
quantiles, while the clusters with low values of rainfall and
runoff have the low values of the quantiles. Figure 10 shows
the observed discharge, the 90% hydrograph prediction
uncertainty and comparison to the other three methods.
The details of the comparison follow later. Figure 10a
highlights the flood event that occurred during the monsoon
of 1993. Interestingly enough the HBV model captures the
highest peak flow very well and consequently the peak flow
is bracketed by the predicted PIs. Figure 10b focuses on
another monsoon event during 1995. This event was under-
estimated by the HBV model. One can see that the estimated
uncertainty bound fails to enclose the highest peak discharge
of the 1995 monsoon.
[50] It was observed that 88.07% of the observed data

points are enclosed within the computed PIs. 6.4% of the
validation data points fall below the lower PI, whereas
5.53% data points fall above the upper PI. The average
width of the uncertainty bounds; that is, MPI is 165 m3/s.
This value is reasonable if compared with the order of

magnitude of the model error in the validation data. The
further analysis reveals that the distribution of the observed
discharge below the lower PI is relatively consistent with
the observed discharge. As far as the upper PI is concerned,
less data are outside in the low flow (range of 0–250 m3/s).
This means that the upper PIs are unnecessarily overesti-
mated. However, the width of the upper PI in the interme-
diate flows (range of 250–750 m3/s) is considerably
narrower.

6. Comparison With the Other Methods

[51] In this section the results are compared with the
widely usedMonte Carlo method GLUE, the meta-Gaussian,
and the QR method. Note that the comparison with GLUE is
performed purely for illustration since the latter analyzes the
parametric uncertainty and other methods: the uncertainty
based on the analysis of the optimal (calibrated) model
residuals.

6.1. GLUE Method

[52] Experiment for the GLUE method [Beven and Binley,
1992] is setup as follows: (1) prior feasible ranges of
parameter values are set to be the same as those used
in automatic calibration of the HBV model (see Table 1);

Figure 10. A comparison of 90% prediction bounds (darker shaded region) estimated with (a and b) the
UNEEC method, (c and d) the generalized likelihood uncertainty estimation (GLUE) method, (e and f) the
meta-Gaussian method, and (g and h) the quantile regression method in the validation period. Figures 10a,
10c, 10e, and 10g show the monsoon period of 1993, and Figures 10b, 10d, 10f, and 10h show the
monsoon of 1995. The dots show the observed discharge; the line shows the simulated discharge.
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(2) likelihood measure was based on the Nash-Sutcliffe
efficiency criterion used also by Beven and Freer [2001];
(3) rejection threshold values was set to 0.7; (4) the number
of behavioral parameter sets was set to 25,000.
[53] The comparison results are reported in Figures 10c

and 10d. One may notice the differences among the pre-
diction bounds estimated by UNEEC and GLUE, but, again,
these two techniques are different in nature. The key
difference is that GLUE, as implemented here, accounts
only for parameter uncertainty whereas the UNEEC method
assumes the use of the optimal model and treats all other
sources of uncertainty in an aggregated form. Note that the
width of the prediction bounds obtained by the GLUE
method varies with the rejection threshold and the like-
lihood measure to a great extent. For example, the lower
rejection threshold produces relatively wider uncertainty
bounds. (It is well known that the chosen value of the
rejection threshold considerably influences the GLUE
results).
[54] It can be noticed that only 63.9% of the observed

discharge values in the validation data fall inside the 90%
prediction bounds estimated by the GLUE method. As
expected, the width of the prediction bounds is smaller than
of those obtained with the other methods. The average value
of the prediction bound width is 120.35 m3/s (see Figure 11).
The further detailed analysis reveals that only 6.51% of the
observed discharges are below lower PIs. The majority of the
observed flows (29.61%) fall above the upper PIs.

6.2. Meta-Gaussian Method

[55] The meta-Gaussian approach [see, e.g., Kelly and
Krzysztofowicz, 1997; Montanari and Brath, 2004] com-
putes model uncertainty by estimating the pdf of the model
error conditioned by the contemporary value of the simu-
lated river flow. In this approach, both model residuals and
simulated model outputs are transformed into the Gaussian
domain by normal quantile transform (NQT). The meta-
Gaussian approach is based on certain assumptions about
the model residuals: they should be Gaussian and homo-
scedastic. However, in practical application, some of these

basic assumptions are not satisfied (see Figure 6). Thus the
model residuals were transformed according to the outline
presented by Montanari and Brath [2004] to stabilize the
variance of the model residuals. The description of the
meta-Gaussian approach can be found in the work by
Montanari and Brath [2004].
[56] The 90% prediction bounds estimated with the meta-

Gaussian approach are shown in Figures 10e and 10f. Quite
interestingly, it is found that 90% (more accurately, 90.02%)
of the observed discharge values in validation data fall inside
the estimated 90% prediction bounds (see also Figure 11).
Further analysis of the results reveals that 3.7% of the
observed data are below the lower PI whereas 6.3% of data
are above the upper PI. However, one can see that the bounds
width is consistently larger and the average width of the
prediction bounds is 225.79 m3/s which is about 35% larger
than that estimated by the UNEEC method.

6.3. Quantile Regression Techniques

[57] Quantile regression (QR) introduced by Koenker and
Bassett [1978] is a statistical technique intended to estimate
the conditional quantile functions. Just as the classical linear
regression methods based on minimizing sums of squared
residuals enable one to estimate the models for conditional
mean of the response variable, given certain values of the
predictor variables, QR methods offer a mechanism for
building the models for the conditional median function,
and the full range of other conditional quantile functions.
Note that in opposition to UNEEC, QR is a linear regression
method and is based on the whole data set, and does not
include the local specialized nonlinear models as is done in
UNEEC.
[58] QR method was used to compute the 5% and 95%

error quantiles. The results are reported in Figures 10g and
10h. It is observed that 86.12% of the observed discharge
values in validation data fall inside the estimated 90%
prediction bounds (see Figure 11). Further analysis of the
results reveals that 4.01% of the observed data are below
the lower PI whereas 9.87% of data are above the upper PI.
The average width of the prediction bounds is 216.86 m3/s.

7. More Accurate Estimation of the Probability
Distribution

[59] In the previous sections, only 90% prediction inter-
vals, i.e., 5% and 95% quantiles, were estimated. In this
section, the applicability of the method to derive the more
accurate estimation of the pdf is demonstrated. Several
quantiles (such as 2.5, 5, 10:10:90, 95, 97.5%) were
computed for the calibration data after clustering of the
input space. Then regression models are trained for each
quantile independently:

ep ¼ Up REt;REt�1; Qt;Qt�1; pfð Þ ð8Þ

where p = 2.5, 5, 10:10:90, 95, 97.5%. In this experiment, a
total of 13 regression models have been trained. The trained
models Up were used to predict the quantiles on the
validation data set. Note that since MTs are used as
regression models, it takes only a couple of seconds to train
a single model, so the computational cost to estimate the full
distribution is not a major concern. However, this could be
an issue for computationally extensive algorithms, such as

Figure 11. A comparison of the statistics of uncertainty
estimated with the UNEEC, meta-Gaussian, GLUE, and
quantile regression methods in the validation period. The
statistics of the uncertainty are measured with PICP and
MPI.
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support vector machine or ANN with long records of input
data.
[60] The cumulative probability distribution (cdf) for the

peak discharge of the flood dated 21 July 1993 (the highest
peak event of the 1993 monsoon shown in Figure 10) is
shown in Figure 12a. The cdf computed from GLUE, meta-
Gaussian, and QR methods are also presented for compar-
ison. One can notice that the cdf computed from the
UNEEC method is relatively steep. The GLUE and QR
methods produce a comparatively flat cdf. For this partic-
ular flood event this means that the uncertainty is very high
as estimated by GLUE and QR and it is lower as predicted
by UNEEC. The meta-Gaussian method gives the interme-
diate results. Additional analysis of the cdf for the flood
event of 14 August 1995 supports the finding that the
uncertainty estimated with UNEEC is consistently lower
for the flood events (Figure 12b).
[61] Further analysis was performed in order to compute

PICPs and MPIs for various confidence levels ranging from
20% to 95%. The results are presented in Figure 13. As far
as the PICP is concerned, the ideal would be to follow the
thick gray line (Figure 13a). Points below this line indicate
that less data are bracketed by the uncertainty bounds. On
the other hand, if more data were enclosed in the uncertainty

bounds, the PICP line would be above the ideal line. It can
be seen that the PICPs computed with the meta-Gaussian
and QR methods are very close to the desired confidence
levels. GLUE produces consistently lower values of PICPs.
In UNEEC more data are enclosed at lower values of the
confidence levels.
[62] As far as the MPI is concerned, the GLUE method

generates relatively narrower uncertainty bounds (Figure 13b).
MPI estimated by UNEEC and meta-Gaussian methods are
comparable at the lower values of the confidence levels.
However, uncertainty bounds estimated by the meta-Gaussian
method increase faster as compared to those obtained with
UNEEC after 60% confidence levels. The MPI estimated with
the QR method is similar to that obtained with the meta-
Gaussian method.

8. Limitations and the Possible Extensions
of the Method

[63] This section discusses some issues concerning the
limitations and possible extensions of the UNEEC method.
Since the machine learning technique is the core of the
method, the problem of extrapolation, which is a well
known problem of machine learning techniques, is also

Figure 12. A comparison of estimation of cumulative probability distribution for peak discharges of the
monsoon period of (a) 1993 and (b) 1995.

Figure 13. A comparison of the statistics of uncertainty measures. (a) PICP. In an ideal case, the plot
between PICP and confidence level follows the thick gray line. (b) MPI for different values of the
confidence level.
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present. This means the results are reliable only within the
boundaries of the domain where the training data are given.
In order to avoid the problem of extrapolation, an attempt
should be made to ensure that the training data includes all
possible combinations of the events including the extremes,
and this is not always possible since the extremes tend to be
rather rare events.
[64] Another issue is that the reliability and accuracy of

the uncertainty analysis depend on the accuracy of the
regression models used, so attention should be given to this
aspect. For example, one could use the cross-validation data
set to check the accuracy of the model. Note, however, that
in the case study considered the regression models were
quite accurate.
[65] As mentioned before, this method relies on the

concept of optimality instead of equifinality. If the assump-
tion of the existence of a single ‘‘best’’ model is not valid,
then all of the models that are considered ‘‘good’’ should be
considered, as is done when the concept of equifinality is
adopted. This can be achieved by combining such models in
an ensemble, or by generating the metamodels of uncer-
tainty for each possible combination of the model structure
and parameter set, or even involving the uncertainty asso-
ciated with the input data. Consequently, instead of having a
single set of uncertainty bounds for each forecast, there will
be a set of such bounds generated. The authors are currently
exploring the applicability of the concept of equifinality and
the results will be reported in due course.

9. Conclusion

[66] The assessment of the total (overall) model uncer-
tainty of the optimal (calibrated) rainfall runoff models has
received relatively little attention in the research literature.
Most research typically focuses on one single source of
uncertainty and the majority of the studies are oriented
toward parametric uncertainty. There are many situations,
however, when the contribution of the parameter uncertainty
to the total uncertainty is smaller compared to the other
types, for instance input (rainfall) uncertainty or structure
uncertainty. The consequence of considering only paramet-
ric uncertainty is that the predictive uncertainty bounds
estimated are too narrow and thus considerable part of the
observed data fall outside these bounds. Furthermore, the
disaggregation of the total model uncertainty into its source
components is difficult, particularly in cases common to
hydrology where the model is nonlinear and complex and
different sources of uncertainty may interact.
[67] This paper presents an extension of the method

(termed UNEEC) developed earlier [Shrestha and
Solomatine, 2006, 2008] by making it possible to obtain
full pdf of the model output. The method is tested on a new
case study and compared to more uncertainty analysis
techniques. Our approach assumes the model error (mis-
match between the observed and modeled value) to be an
indication of model uncertainty. The novelty of the
approach is in the following: (1) no assumptions are made
about the pdf of residuals; (2) building the uncertainty
model specialized for a particular area of the state space
(hydrometeorological condition) which is identified by
fuzzy clustering; and (3) building the uncertainty model
using machine learning techniques.

[68] The presented method was used to estimate the
uncertainty (expressed as pdf) of a conceptual hydrological
HBV model applied to the Bagmati catchment in Nepal.
The comparisons with other uncertainty estimation methods
(GLUE, meta-Gaussian, and quantile regression) are also
reported. It is shown that the UNEEC method generates the
consistent and interpretable uncertainty estimates, and this
is an indicator that it can be a valuable tool for assessing
uncertainty of various predictive models.
[69] A number of possible extensions of the method are

suggested, and their feasibility and effectiveness are cur-
rently being explored.
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