
ADome
Implementing CAN
in a multi­sensor
measurement setup
A. J. Becoy & R. Zhang

Bsc Thesis

ADome
Implementing CAN in a

multi­sensor measurement
setup

by

A. J. Becoy & R. Zhang

to obtain the degree of Bachelor of Science in Electrical Engineering,
at the Delft University of Technology,

to be defended publicly on Monday June 28, 2021 at 09:00 AM.

Student numbers: 4904494 & 4835182
Project duration: June 19, 2021 – June 18, 2021
Thesis committee: Dr. M. Spirito, Associate Professor, ELCA, TU Delft, supervisor

Msc. F. A. Musters, Parttime Reseacher, ELCA, TU Delft, supervisor
Prof. Dr. L. C. N. de Vreede, Full Professor, ELCA, TU Delft
Dr. M. Alonso­del Pino, Assistant Professor, Terahertz Sensing,TU Delft

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Abstract
This thesis focuses on improving the readout of the ADome by implementing MCUs at each antenna
probe, enabling local sampling andmemory storage. The serial communication protocols CAN, SPI and
I2C are considered and compared with one another. Ultimately, CAN is decided due to its robustness
and simplicity which make the system cheap and ensures that the measurement will not get corrupted
during transmission. Moreover, implementations of the new readout protocol are able to obtain mea­
surement data store information at the local MCU. Test setups verification showed that antenna location
can be stored and retrieved. Furthermore, the readout protocol is able to acquire multiple samples from
the ADC locally.

iii

Preface
This thesis is written in context of the Bachelor Graduation Project. The project was proposed by Dr.
M. Spirito and Msc F. Musters. The latter developed the ADome concept during his master studies
and is currently still engaging on researching and improving the ADome. The concept is a multi­probe
measurement array, able to characterize antenna radiation patterns in real­time without moving parts.

After being introduced to the sub­projects of the ADome, we were really curious about improving
the readout process by inserting micro­controllers at each probe to improve the readout process and
expand the functionatlies of the ADome. Furthermore, we were really fascinated by the communication
protocol Controller Area Network (CAN).

At this point, we would like to show our gratitude to the Delft University of Technology for teaching
us the knowledge and giving us the opportunity to complete our bachelor degree. We have enjoyed
the whole education period in the past three years.

Furthermore, we would like to thank Dr. M. Spirito, Msc F. Musters and R. Coesoij for their super­
vision and support throughout the project. You gave us many useful feedback and taught us how to
be an professional engineer. Furthermore, we are also grateful for our entire team for displaying their
competence, their assistance and camaraderie.

Finally, we would like to thank our friends and family for their unconditional support. Without them,
we would not have been at where we are right now.

A. J. Becoy & R. Zhang
Delft, June 2021

v

Contents

1 Introduction 1

2 Programme of Requirements 5

3 Analysis of Communication Protocols 7
3.1 Controller Area Network . 7
3.2 Serial Peripheral Interface . 7
3.3 Inter­integrated Circuit . 7
3.4 Comparison . 8

4 Theory 9
4.1 Controller Area Network . 9

4.1.1 Bus and bus states . 9
4.1.2 Transceivers and message coding . 10
4.1.3 Message Frames . 11
4.1.4 Error detection and management . 13
4.1.5 Bit timing . 14

4.2 bxCAN . 15
4.2.1 Transmission . 15
4.2.2 Reception . 16

4.3 Embedded Flash Memory . 17

5 Readout Protocols 19
5.1 Current Readout Protocol . 19
5.2 New Readout Protocol . 19

6 Implementation 23
6.1 Localisation scheme . 23
6.2 Readout scheme . 24
6.3 Initialisation . 26

6.3.1 Obtaining an ID . 26
6.3.2 Configuration the filters. 27
6.3.3 Verifying identified nodes. 27

7 Verification 29
7.1 Localisation scheme . 29
7.2 Readout scheme . 30

8 Conclusion 31

A Software for Prototype Readout 35
A.1 Main File . 35
A.2 General Scheme Functions . 38
A.3 Measurement Functions . 39
A.4 Localization functions . 40
A.5 Local Startup functions . 42
A.6 Local Memory functions . 44
A.7 Local CAN functions . 46
A.8 Local Serial and Antenna functions . 47

vii

1
Introduction

Devices for the second frequency range of 5G­NR are currently being developed. With this move
to higher frequencies substantially more bandwidth will become available, allowing for higher data
throughput. However, higher frequencies also complicate the development of the communication sys­
tems. Developments in wireless communication ever move towards higher frequency bands. Most
recently, the first frequency range of the 5G standard for telecommunication is starting to become
more adopted into mainstream consumer technology, with frequencies still below 6 GHz. The second
frequency range foreseen for 5G, however, will range into the millimeter­wave spectrum.

At these higher frequencies, to compensate for the increased free­space loss and increase directiv­
ity of the system, antennas are often combined into arrays to use beamforming. These arrays are fre­
quently designed as a monolithic entity to enable further miniaturisation. This makes individual testing
of subsystems very complicated to impossible, increasing the relevance of over­the­air (OTA) testing.

In its current form, OTA characterization is a cumbersome process. The most used method involves
near­ or far­field scanning using a single probe that moves around the antenna­under­test (AUT). An­
other widely used technique is often known as a Compact Test Range (CATR), where a secondary
feed antenna is used with a precisely manufactured reflector to create a region of plane waves where
the AUT is placed. The AUT is then rotated in this field of plane waves to measure the response for
different angles.

These methods both share weaknesses: they are relatively slow, due to only being able to measure
a single point at a time. They require mechanical elements, increasing complexity and points of failure.
Additionally, current testing methods typically use a network analyzer in their testing, requiring large
lengths of RF cables to the AUT and probing elements.

To solve this problem, the ADome concept has been proposed [1]. The ADome consists of de­
tectors arranged in a half­sphere, each with its own antenna and RMS power detector, allowing the
calculation of received power to take place at the node itself. It is a far­field measurement method, but
the far­field distance at 5G mm­wave frequencies and above is sufficiently small that it comfortable fits
into a regular laboratory. A picture of the structure of the current version can be seen in figure 1.2.
A number of projects were carried out by this group to improve the current ADome prototype. These
projects are mostly disconnected from each other as they all consider a different part of the system.

The first project is a new readout protocol. As the sensing probes acquire the measurements lo­
cally, the need of a readout protocol becomes necessary for the computer to process these data. The
current implementation in the ADome is limited in its functionalities. Antenna probes locations must be
computed manually, making it not user­friendly and difficult to use in case of large number of sensing
antennas. Furthermore, the probes are not able to store any information, such as its own location.
Therefore, a new readout protocol using CAN is proposed where a micro­controller unit (MCU) is inte­
grated at each probe to allow local sampling and readout along with non­volatile memory storage. Due
to the presence of local MCUs, the potential functionalities of the ADome can be extended.

The second project concerns an optical calibration system. At the moment, the location of each
sensor node needs to be measured and entered manually in the readout system. This project pro­
poses a method to automatically determine the positions of the antennas in the dome. This is done
using a camera mounted in the center of the ADome. The antennas will be recognized from the images

1

2 1. Introduction

Figure 1.1: The concept of the ADome structure. Figure 1.2: Implementation of the ADome concept with sensing
probes visible and a gimbal to steer the antenna pointing direc­
tion.

taken by the camera using computer vision algorithms and the location in the images is mapped to a
location in the dome.

The third project is an uncertainty assessment of the sensing nodes. The ADome sensing nodes
use a RMS power detector to measure the received power. This project aims to characterize the mea­
surement uncertainty of the detector for different excitations. A simulation testbench of the measure­
ment setups is also created to allow assessing the impact of changes in the system without needing
to change the physical setup. Characterizations is done for single­ and multi­tone signals at different
frequency and power levels.

State­of­the­art analysis
Digital communication protocols are widely used in many applications. Automotive industries have
been using a communication protocol since the 90s, i.e. the Controller Area Network (CAN) developed
by Robert Bosch GmbH [2]. CAN found its popularity namely due to its high­reliability multi­node com­
munication with maximal data rate of 1 Mb/s without point­to­point wiring, therefore reducing the costs
and weights significantly for the manufacturers [3]. Due to rapid development of the automotive indus­
try, new protocols derived from CAN to accommodate the growth of Electrical Control Units (ECUs)
[4]. In modern vehicles nowadays, bus protocols such as FlexRay, Local Interconnect Network (LIN),
Media Oriented System Transport (MOST) are used for their designated purposes [5]. Nevertheless,
CAN is still being applied this industry such as in hybrid electric vehicle [6].

CAN has not only been adapted in the automotive industries, but it is also applicable in radio
astronomy. The renowned observatory Combined Array for Research in Millimetre­wave Astronomy
(CARMA) has adopted the CANmodules in its monitor and control systems, each with specific functions
such as antenna decoder readout and oscillator tuning [7]. Furthermore, CAN has its application in data
distribution service (DDS). CAN enables a service to process an information from a large number of
sensor measurements to be compacted in few data packets, further reducing the time to snapshot of
the state of an environment and supporting real­time requirements [8].
Furthermore, Bosch also provides an alternative and faster version of CAN called CAN with Flexible
Data­Rate (CAN FD) [9]. Compared to original CAN, CAN FD has increased bit rates up to 5 Mb/s and
a more robust error­detection algorithm, and can hold more data per transmission [10]. As of 2018,
designers and automotive manufacturers in the US, Europe and Asia has been planning to transition
their applications from the CAN to CAN FD [11].

Document Structure
The topic of this thesis is the design and implementation of the new readout protocol for the ADome.
Chapter 2 specifies the programme of requirements of the new system. Chapter 3 introduces and
compares several communication protocols with each other to point out why CAN is the most obvious

3

choice for the readout protocol. Chapter 4 discusses the CAN theory in detail. Furthermore, the STMi­
croelectronics implementation of CAN, the bxCAN, is explained. Chapter 5 briefly introduces the old
readout implementation of the ADome and why it is necessary to have a new readout system. The
implementation and verification of the improved implementation can be found in Chapter 6. Finally,
Chapter 8 discusses whether the requirements of the new system has been met and also suggests
future improvements.

2
Programme of Requirements

The system should be complying with the requirements below. These are divided into functional and
non­functional requirements.

1. Functional Requirements

• The full readout process must be real­time, i.e. less than 25 ms.
• The system must be able to retrieve 32­bit measurement data from each antenna probe.
• The system must only execute operations requested from the PC.
• The MCU cables and their functionality should not disturb the radiation pattern measurement
itself.

• Each MCU must be able to store properties such as its localisation information.

2. Non­Functional Requirements

• Each device in the system should be interchangeable with barely any effort required.
• The bus in the system should accommodate at least 100 devices simultaneously.
• The user should be able to communicate the system from the host via the serial port.

5

3
Analysis of Communication Protocols

This chapter discusses several serial communication protocols and explains the reason behind the
choice for CAN. Popular communication protocols such as SPI and I2C are briefly introduced. Some
protocols mentioned in the state­of­the­art analysis are not considered due to their cost­complexity
factor and are also becoming rare in recent times.

3.1. Controller Area Network
Controller Area Network (CAN) is an asynchronous, multi­master, robust serial communication bus
using multi­cast communication [12]. Each device connected to the bus is its own master and therefore
can transmit or request messages to and from another device or more. The transmitted messages
can be formatted in different structures, each fulfilling a different purpose. Furthermore, CAN uses
differential signalling between two bus lines in twisted­pair to transmit these messages. The differential
signalling and twisted­pair create noise immunity. CAN operates at data rated from 20 kbit/s to 1
Mbit/s depending on the programming of the so­called bit timing beforehand. In addition to these, it
also implements built­in error checkings such as collision detection and avoidance by arbitration on
message priority, and cyclic redundancy check. These are the part that makes CAN robust.

3.2. Serial Peripheral Interface
Serial Peripheral Interface (SPI) is a high­speed (usually up to 60 MHz) synchronous communication
protocol with four bus lines: Serial Clock (SCKL), Master In Slave Out (MISO), Master Out Slave In
(MOSI) and Chip Select (CS). The CS bus line is used to select a slave [13]. In case of multiple slaves,
additional CS lines are required. For instance, with ten devices one would require 13 lines. This would
the make SPI not immensely scalable as one works with increasing number of devices.
The message size of SPI is arbitrary, dependent on the design of the application.

3.3. Inter­integrated Circuit
Inter­integrated Circuit (I2C) is a synchronous, multi­master, serial communication bus [14]. It is mainly
used for many similarities between seemingly unrelated designs such as intelligent controls, general­
purpose circuits and application­oriented circuits.

I2C has the following features. It consists of bidirectional two­wire bus which allows all I2C­bus
compatible devices to communicate with each other. These two bus lines consist of a serial data
line (SDA) and a serial clock line (SCL). SDA is responsible for transferring data between the master
and slave, whereas SCL carries the clock signal. Each device connected to the bus has a unique
address and simple master/slave relationships with other devices, both of which are software­driven.
And since it is a multi­master bus, it contains an error scheme with detects collisions from transmission
of multiple devices, and prevents data corruption via arbitration. Furthermore, it has two directions of
data transfers, bidirectional and unidirectional. The former offers several modes each has a maximum
data rate ranging from 400 kbit/s to 3.4 Mbit/s, and the latter offers data rates up to 5 Mbit/s. Finally,

7

8 3. Analysis of Communication Protocols

I2C even has on­chip filtering which prevents spikes to occur on the bus line in order to prevent data
integrity.

3.4. Comparison
The described serial communication protocols are compared on several points, this can be seen in
Table 3.1.

CAN SPI I2C
Synchronicity Asynchronous Synchronous Synchronous

Wiring complexity Simple to implement
new devices

Increasingly complex
when more devices
implemented

Simple to implement
new devices

Maximal speed 1.0 Mbit/s 60 Mbit/s 3.4 Mbit/s

No. of masters and slaves Multi­masters One master to
many slaves Multi­masters

Message format Multiple structures None 1
Different bus lines required 2 3 + Number of slaves 2
Noise immunity High Low Medium

Error detection
and handling

•CSMA/CD+AMP
•Frame check
•Bit monitoring
•CRC

None •CSMA/CD
•Arbitration

Table 3.1: This describes the main differences between the described serial communication protocols: CAN, SPI and I2C.

Firstly, SPI and I2C are synchronous because both use a clock line, while CAN is asynchronous
since all of the devices have their particular clock specifically programmed for CAN communication.

Secondly, SPI is typically used in point­to­point communication and it requires four different bus
lines. It relatively simple with small number of nodes, however it will become increasingly complex as
more devices are applied as an additional bus line is requirement for each additional slave. Further­
more, SPI has no message format thus it is up to the engineer to design a message format in order to
achieve the requirements. CAN and I2C, on the other hand, are multi­master two­wire buses. These
minimum number of bus lines reduce the expense for wiring and thus the complexity itself. Devices
can be easily added and removed to and from these buses due to their wiring configurations. Despite
the increasing complexity of SPI, it has a significantly higher maximal data transfer speed. I2C is only
a bit faster than CAN, its maximal speed differs only by a factor of three.

Thirdly, CAN has a higher noise immunity due to its twisted­pair and differential signals. This makes
CAN more robust compared to other two communication protocols.

Lastly, CAN and I2C has implemented some error detection and handling, where SPI has none.
Therefore, SPI requires additional programming in order to mitigate errors. Comparing CAN to I2C,
CAN has a greater number of error detection and handling schemes.

In conclusion, since the ADome depends on obtaining accurate measurements and the ability to
add or replace new nodes, CAN would be the more appropriate choice. CAN is fairly simple and cheap,
and devices can be easily implemented. It is also an remarkably robust in which the data is highly un­
likely to be corrupted by noise and interruptions of other devices. And if errors do occur, it would be
guaranteed to be recognised by Cyclic Redundancy Check (CRC) of the receiver and this receiver will
send an error frame to the bus lines such that all devices are notified of this erroneous message.

4
Theory

This chapter describes the comprehensive theory of CAN according to the ISO 11898­1 standard and
the embedded Flashmemory that are used to improve the readout protocol and expand the functionality
of the ADome.

4.1. Controller Area Network
CAN is a serial bus system serving as a communication protocol that supports distributed control sys­
tems [2], [15], [16], as seen in Figure 4.1. It is a multi­master bus that uses multi­cast communication,
this means that any device connected to the bus can transmit a message depending on the availability
of the bus. This message will be broadcasted to all devices on the bus, and these receive the message
and determine whether it is of its interest. This can be seen in Figure 4.2.

Figure 4.1: The CAN bus with devices connected to it. The bus is a twisted­pair and has bus terminator connecting to each of
its end for noise immunity. This will be further elaborated [15, Figure 12­1, p.467].

4.1.1. Bus and bus states
The bus consists of a twisted­pair of two wires, CAN High (CAN­H) and CAN Low (CAN­L), which uses
differential signalling. The devices are connected to this bus in a parallel configuration. Moreover, the
wires are terminated with a resistor of 120Ω on each of their end together. These properties benefit
is noise­immunity, such as opting for differential signalling compared to common­mode signalling. In
addition, the wires are biased at the voltage level of 2.5V. The bus can be either in one of the following
two states: dominant or recessive. In the dominant state, each of the two wires is put into its own
respective voltage potential. CAN­H is driven to 3.5V and CAN­L to 1.5V. Using a simple equation to
determine the differential voltage:

Vdiff = VCANH − VCANL. (4.1)

9

10 4. Theory

Figure 4.2: An example of specific devices on the CAN bus. Each message from one end is broadcasted on the bus and goes
toward one end or more depending on their importance for these devices [15, Figure 12­3, p.470].

The differential voltage of the dominant state is 2.0V. To explain why it is called dominant, knowing the
devices are connected in a wired­AND configuration, multiple devices can change the bus state to the
dominant state. The advantage of this will be further elaborated in Section 4.1.4. The recessive state,
on the other hand, both wires are instead driven to identical voltage potential of 2.5V. This gives a
differential voltage of 0V. An illustration displaying the differential signalling against time 𝑡 can be seen
in Figure 4.3.

Figure 4.3: The bus state of the voltage levels of both CAN wires VCANH and VCANL as time advances [15, Figure 12­5, p.471].

In practice, the voltages are never exact and are always subdued by various noises. In order to de­
termine the bus state through Eq. 4.1 while aiming to mitigate errors caused by these noises, voltages
asymmetries are thus imposed. If Vdiff ≤ 0.5V, the bus is considered to be in the recessive state. If
Vdiff ≥ 0.9V, the bus is instead considered to be in the dominant state. Any other voltage potential,
0.5V ≤ Vdiff ≤ 0.9V, the bus is then considered to be in undefined. This region exists in order to differ­
entiate the two states more properly and thus holds as a buffer between the two states for the purpose
of reducing errors due to noise.

Furthermore, the dominant state can be regarded as logic ’0’. During this state, the devices con­
nected to this bus must detect that a device among them is using the bus. The recessive state should
be therefore regarded as logic ’1’, and during this state the bus is idle and any device may use the
bus to transmit. Once the bus is idle, any device may transmit, recalling the fact that the devices are
connected in a wired­AND configuration.

4.1.2. Transceivers and message coding
Since the bus can be driven in two states, the transmitted messages on the bus are encoded in a
sequence of logical bits. CAN uses a two­level signalling mechanism called the non­return­to­zero

4.1. Controller Area Network 11

(NRZ) bit encoding. Using this signalling mechanism, the logics can be more easily distinguished
identified from one another as compared to rteturn­to­zero (RZ) bit encoding, as seen in Figure 4.4. A
bit is transmitted for every clock cycle. This clock cycle is determined by the bit timing which is further
elaborated in Section 4.1.5.

Figure 4.4: Comparison of the RZ encoding and the NRZ encoding [15, Figure 12­6, p.472].

Furthermore, every device transmits and reads the messages on the bus via its transceiver, as
seen in Figure 4.5. In principle, the particular CAN controller within the device transmits a logical bit of
a message to the transceiver sequentially. The transceiver then converts the logic to its corresponding
bus state. For the reception of messages from the bus, the approach is contrariwise to the transmission.

Figure 4.5: A schematic of the MCU connected to its CAN transceiver via the CAN Rx and CAN Tx ports. The CAN transceiver
acts as a buffer between the MCU and the CAN bus [15, Figure 12­4, p.470].

4.1.3. Message Frames
Eachmessage on the bus is transmitted as a data packet called a frame. This data packet is constructed
out of a message identification, necessary protocol information, a header, the data it may want to
transmit, and the footer. Furthermore, CAN also allows for multiple different types of frames, each
fulfills a specific purpose. These frames are further explained as followed:

• Data frame: This data packet contains any kind of data from one device to another or more.

• Remote frame: This data packet is used to request other devices for specific type of data.

• Error frame: This data packet is sent from any device when this device detects an error on the
bus.

• Overload frame: This data packet is used to notify other devices to delay in order to acquire more
time to process the receiving data.

12 4. Theory

• Interframe space: This particular frame is used to separate data frames (or remote frames) alto­
gether.

There are two kinds of data/remote frame: standard and extended. Firstly, the standard data frame
is, as the name suggests, the conventional form of formatting the data packet. The composition of the
standard data frame can be seen in Figure 4.6.

Figure 4.6: A standard data frame and its constituent fields [2, p.3].

This frame has a total length ranging from 37 bits to 101 bits, depending how many data is sent in
this message. Furthermore, it also consists of the following fields in sequential order, including their
corresponding bit­length:

1. Start of Frame (SOF) ­ 1 bit: this bit indicates that a device or more are pulling the bus to the
dominant state.

2. Arbitration Field ­ 12 bits.

(a) Identifier ­ 11 bits: this field indicates the identification of the message. It can be addressed
arbitrarily by the implementation. The most significant bit (MSB) is transmitted first.

(b) Remote Transmission Request (RTR) bit ­ 1 bit: this bit indicates whether the frame is a
remote frame. This bit is dominant in data frame and recessive in remote frame.

3. Control field ­ 6 bits.

(a) Reserved r0 ­ 2 bits: these two bits are reserved for future expansion and thus are left
dominant.

(b) Data length code (DLC) ­ 4 bits: these four bits together form a binary number which signifies
the number of bytes present in the data field. Values larger than eight may not be used [2,
p.12]. The MSB is transmitted first.

4. Data field­ 0 to 8 bytes: this field contains the data that the device wants to transmit. MSB is
transmitted first.

5. Cyclic Redundancy Check (CRC) field ­ 16 bit.

(a) CRC sequence ­ 15 bit: this field is indicates the CRC code including the SOF bit, arbitration
field, control field and the whole data field. Further description of the CRC is elaborated
hereafter.

(b) CRC delimiter ­ 1 bit: this recessive bit indicates the end of the CRC field.

6. Acknowledgement (ACK) field ­ 2 bit.

(a) ACK slot ­ 1 bit: this dominant bit notifies the other devices to acknowledge the receipt of
the frame.

(b) ACK delimiter ­ 1 bit: this recessive bit indicates the end of the acknowledgement field.

7. End of Frame (EOF) ­ 7 bit: this whole field is pulled up at recessive state.

The main difference between a remote frame from a data frame is that the remote frame has its
RTR bit is driven to recessive, and there is no data field and therefore its DLC in the control field may
be ignored by the CAN controller. However, the DLC can be also instead for requesting the length of
data frame and any other functionality in higher levels that the designer may wish to use.

The newer version of CAN introduces extended format [2]. The purpose of this format is to extend

4.1. Controller Area Network 13

Figure 4.7: An extended data frame and its constituent fields. [2, p.4].

the limit of the standard identifier from 11­bit to 29­bit. In the extended format, the reserved bits are used
and the arbitration field is extended with additional 20 bits after the 11­bit message ID. The composition
of the extended format compared to the standard format can be seen in Figure 4.7.

There are few new bits introduced, in sequential order:

1. Substitute Remote Request (SRR) bit: This bit prevents messages in extended format to receive
higher priority over the standard format. Therefore, this bit is set to recessive.

2. Extended Identification (IDE) bit: This bit is set to recessive to indicate that the message frame
is in extended format.

3. Extended Identifier ­ 18 bits: This field extends the standard arbitration field.

Finally, the devices on the bus can also transmit other variants of frames in order to achieve certain
objectives, as previously mentioned.
One such frame is the error frame. This is used whenever a device detects an error during transmission
or reception and wants to let other devices know about the errors. Each error frame may consist one
of the two error flags: active and passive. An active error flag consists of six consecutive dominant
bits which should disrupt the bus traffic. This error frame then has the priority to take over the bus and
letting other devices know about an urgent error such as transmit error or arbitration error, more on this
in Section 4.1.4. A passive error flag consists of six recessive dominant bits. This error flag may notify
other devices about an uncritical error, however it will not disrupt the bus traffic.
Overload frame is transmitted when a receiver requires more time to process a message on the bus.
Finally, the interframe space is used to separate successive data and/or remote frames from one an­
other, so that those frames will not get mixed up. These frames are internally­driven, meaning that they
will be automatically written and transmitted in the CAN controller of each device.

4.1.4. Error detection and management
CAN has a considerably big arsenal of error detection schemes at its disposal, in order for CAN to work
properly without any errors and inconveniences as much as possible.

Recall that each message frame contains a CRC value to verify the validity of the message. If the
receiver determines no error as result of examining a frame and its CRC, then the receiver will acknowl­
edge the receipt of the message. And if there are no devices to acknowledge the message frame, the
transmitter will then know that there was an error during transmission.

In addition, each transmitter performs a frame check and bit monitoring while transmitting a mes­
sage. During frame check, if the transmitter detects the bus to be in the dominant state for any of the
fixed bits within the frame which are the CRC delimiter, the acknowledgement delimiter, EOF and the
interframe space, the transmitter then aborts the transmission and generates an error frame. In bit
monitoring, if the transmitter detects a wrong bit on the bus such that it the value is different from what
it was attempting to transmit, the transmitter aborts the transmission and generate the corresponding
error frame. Note that the bit monitoring does not occur during the transmission of the arbitration field,
because this field is determines which message gains the priority to be on the transmitted first.

The error detection scheme used for the arbitration field is the Carrier Sense Multiple Access with
Collision Detection and Arbitration on Message Priority (CSMA/CD+AMP) protocol. This is used con­
sidering only one message may materialise on the bus and the fact that CAN uses multi­cast commu­
nication. It is therefore sensible for CAN to adopt a method to avoid collisions of multiple messages
simultaneously appearing on the bus.

CSMA ensures that each device connected to the bus is idle and waits for a given time before it can
attempt to send a message [16]. Next, CD+AMP is a technique on how to handle and resolve when a
transmitter detects a collision. One could argue that this technique is partially of the principle of CSMA

14 4. Theory

Collision Avoidance (CSMA/CA) whereby the devices avoid further collisions by becoming idle after
the detection of a collision. The main idea of this technique is to prioritise the message with the lowest
identifier value. This method holds both for the standard and extended format.

Whenever multiple devices each tries to transmit a message, it would have to first synchronise itself
with other devices. For this reason, all devices that want to transmit start at the header, field by field,
simultaneously. When the transmitting devices reach at the transmission of the identifier field, AMP
will handle the collision. Knowing the fact that the devices on the bus are connected in a wired­AND
configuration, any device that tries to pull up the bus to the recessive state will be easily brought down
by the another device or more that tries to pull down the bus to the dominant state. Therefore, any
device that tries to transmit a message of a higher message ID will soon be overwritten from those that
has lower values, bit­wise. This leads to a message with the lowest message ID obtaining the priority
of being transmitted broadcast first. The devices that each are transmitting a message of the higher
message IDs will abort transmission and become idle for the time being. After the transmission of the
successful message, the other devices will retransmit and CSMA/CD+AMP plays its part again. This
cycle goes on until all devices have transmitted their messages. An example for the arbitration scheme
of the transmission of three separate messages each with different message ID can be seen in Fig­
ure 4.8. Whenever one or more transmitters (that are transmitting the recessive bit) detect a collision
on a given time, they abort their transmissions and goes idle.

Figure 4.8: An example of arbitration during transmission of multiple devices on two different occassions. [2, p.5].

4.1.5. Bit timing
As mentioned in Section 4.1.4, the message transmission from every device is synchronous. Despite
the fact that each device has its own internal clock, it has to have another clock system in order for it to
synchronise with the data transmission on the bus. This is determined by the design choice of the the
time required to transmit a bit on the bus. However, note that the new clock system and the nominal bit
time are not the same. Rather, the new clock system defines a new time unit called time quantum TQ.
This time unit is derived from a programmed clock frequency designated for CAN. In addition to this,
some fraction of the clock in the transmitter is determined by the bit rate prescaler. Each transmitted
bit may consist time quanta ranging from eight to a maximum of 25 time quanta with each segment
contains different number of time quanta.

CAN divides the nominal bit time into four time segments in sequential order: a synchronisation
segment, a propagation segment, and two phase buffer segments. This can be seen in Figure 4.9.

The synchronisation segment always consists of one time segment and this allows the devices to
synchronise with one another. The propagation segment is used to compensate the physical delay that
may occur in the network. The two phase buffer segments is used to compensate for errors appearing
in the phases of the edges before and after the sample point, respectively. The second phase buffer
segment has to have greater number of time quanta than that of the first phase buffer segment.

Each of these last three segments has a number of time quanta ranging from 1 to a maximum of 8.

4.2. bxCAN 15

Figure 4.9: Bit time and its four constituent segments and the corresponding sample point [15, Figure 12­10, p.478].

The sample point, which lies between the two phase buffer segments, is the logical value for which the
devices must interpret.

The nominal bit time, and in turn the bit rate, is determined by programming several of these afore­
mentioned bit timing components. For STM32, which will be used in Chapter 6, the bit timing is deter­
mined by programming prescaler for time quanta, and the number of time quanta for the bit segment
1 (the propagation and the first phase buffer segments), bit segment 2 (the second phaser buffer seg­
ment) and the resynchronisation jump width.

The resynchronisation jump width is an additional parameter which is necessary to resynchronise
the receiver clock based on the recessive­to­dominant falling edges. This is done by either by extend­
ing the first phase buffer segment or shortening the second phase buffer segment. The width of these
adjustments TSJW is described by the following inequalities:

0 < TSJW ≤ 4TQ. (4.2)

In order for the devices to be on the same level, the devices need to be synchronised with each
other. The synchronisation of the devices appear at the start of the each by the falling edge of the SOF
bits, and on each recessive­to­dominant falling edge in a message transmission.
In addition to synchronisation, bit stuffing is introduced which allows for the devices connected to the
bus to resynchronise with the data in case of long consecutive runs of the same logical value. Recall
that the error frame consists of six or more identical bits. Therefore, in order for other frames not to be
mistaken as error frames, transmitter inserts a bit after five consecutive and identical bits a bit of the
opposite value which alters the message. Vice versa for the receivers where it removes this bit. This
also ensures that there are sufficient number of recessive­to­dominant falling edges for the devices to
stay synchronised with one another.

4.2. bxCAN
Finally, to conclude the section on the principle of CAN bus, it is appropriate to outline the additional
features that appear in the CAN peripheral interface of the MCU called Basic Extended CAN (bxCAN)
[17]. This version supports standard and extended data frames, it also supports time triggered com­
munication mode to schedule transmission based on time and achieve time synchronisation, allows for
bit rates up to 1Mbit/s, and is designed to manage three simultaneous, to­be transmitted messages
per transceiver efficiently. The bxCAN has many main features, however, only the ones that are highly
effective into the design of the new and smart readout protocol will be mentioned in this thesis.

4.2.1. Transmission
When a device wants to transmit multiple messages at once, the transmission of one message usually
takes more time than the program in the STM32 itself and sudden multiple transmission of messages
would create transmission errors. In order to circumvent this problem, the bxCAN therefore implements
three transmit mailboxes. Each of these mailboxes stores one message that the device wants to trans­
mit. The order of which these stored messages are sent depend on which the Transmission Scheduler
decides which mailbox goes first. The Transmission Scheduler is configurable either to prioritise the
transmission of messages depending on the time sent, First In First Out (FIFO) priority, or in the order
of the mailboxes itself.

16 4. Theory

When a stored message is sent, the corresponding transmit mailbox is emptied and becomes ac­
cessible for the next message. If the mailboxes of a device are fully filled and this device requests to
send an additional message, it will detect a transmit error. This problem is up to the engineer to design
a way to handle this. Lastly, a time stamp can be applied on the SOF. One receiver or more could then
read on which exact time this message is sent.

4.2.2. Reception
In contrast to transmit mailboxes, bxCAN has two separate receive FIFO mailboxes where each can
hold up to three messages at a time. When a device wants to read and copy a message stored into
a receive FIFO, it will read the first message that has arrived. After reading this message, it is then
removed and the message after it will be the next one in line. When a receive FIFO is fully filled and
it receives another message, the new message will either replace the last received message in the
receive FIFO or be discarded.

Furthermore, messages are first filtered on their identifiers through one or more filter banks before
they reach the receive FIFOs. This is a great feature because it is performed on the background. When
a message goes through a filter bank, it will be accepted to the corresponding receive FIFO that the
filter bank is assigned to if it fulfills certain criteria. Otherwise the message will move on the next filter
bank. After it reaches the final filter bank and has not yet fulfilled any criteria, the message will then
be finally discarded. An example of this can be seen in Figure 4.10. The number corresponding to the
filter bank of which matches with the message ID can be retrieved as the Filter Match Index (FMI).

Figure 4.10: An illustration of a message ID of a received message passing through a number of filter banks. The message ID
ultimately matches with the identifier #4 of the list of IDs in filter bank number two and the message gets placed into the receive
FIFO. The number of the filter bank of which matches with the message ID can be retrieved as the Filter Match Index (FMI) [18].

The criteria that messages must fulfils depend on the message ID and which one of the two filter
modes in a given filter bank is activated: ID list mode and ID mask mode. In ID list mode, there can
be up to four IDs the messages must contain in order to be accepted. In ID mask mode, in order for a
message to be accepted, its message ID is masked and compared to the filter ID, as described in the
following condition:

IDmessage & IDmask = IDmessage & IDfilter, (4.3)

where IDmessage, mask and IDfilter are the the message ID, mask and filter ID, in bits, respectively. This

4.3. Embedded Flash Memory 17

filter mode can accept huge number of different IDs depending on the combination of the mask and the
filter ID. Each bit has its use in masking: bit ’1’ means compare, whereas bit ’0’ means don’t care [12].
For instance, one could use the mask 0xFFFF to such that the message ID has to exactly match with
the filter ID. Whereas the filter ID and mask 0x0 means that all message IDs are welcome instead.

4.3. Embedded Flash Memory
The Flash memory is a non­volatile memory able to store digital information and retain it even when
the power of the device is switched off. It is a type of Electrical Electrically Erasable Programmable
Read­Only Memory (EEPROM). The embedded Flash in the STM32L432KC MCU integrated circuit
(IC) has a total size of 256 Kbytes, divided into 128 pages for arbitrary memory retention. A page
is defined as a block of memory mapped to a set of addresses [19]. Each of these pages has 2048
available addresses, giving a total of 2 Kbytes available for use. [18].

Embedded Flash memory (FLASH) RM0394

78/1600 RM0394 Rev 4

the entire double word cannot be written anymore, even with the value 0x0000
0000 0000 0000.

– Option bytes for user configuration.

The memory organization is based on a main area and an information block as shown in
Table 8.

3.3.2 Error code correction (ECC)

Data in Flash memory are 72-bits words: 8 bits are added per double word (64 bits). The
ECC mechanism supports:

• One error detection and correction

• Two errors detection

When one error is detected and corrected, the flag ECCC (ECC correction) is set in Flash
ECC register (FLASH_ECCR). If ECCCIE is set, an interrupt is generated.

When two errors are detected, a flag ECCD (ECC detection) is set in FLASH_ECCR
register. In this case, a NMI is generated.

When an ECC error is detected, the address of the failing double word saved in
ADDR_ECC[20:0] in the FLASH_ECCR register. ADDR_ECC[2:0] are always cleared.

When ECCC or ECCD is set, ADDR_ECC not updated if a new ECC error occurs.
FLASH_ECCR is updated only when ECC flags are cleared.

Table 8. Flash module - single bank organization

Flash area Flash memory addresses
Size

(bytes)
Name

Main memory

0x0800 0000 - 0x0800 07FF 2 K Page 0

0x0800 0800 - 0x0800 0FFF 2 K Page 1

0x0800 1000 - 0x0800 17FF 2 K Page 2

0x0800 1800 - 0x0800 1FFF 2 K Page 3

- - -

0x0801 F800 - 0x0801 FFFF 2 K Page 63(1)

1. Main Flash memory space of 128K devices is limited to page 63.

- - -

0x0803 F800 - 0x0803 FFFF 2 K Page 127(2)

2. Main Flash memory space of 256K devices is limited to page 127.

- - -

0x0807 F800 - 0x0807 FFFF 2 K Page 255(3)

3. Main Flash memory space of 512K devices is limited to page 255.

Information block

0x1FFF 0000 - 0x1FFF 6FFF 28 K System memory

0x1FFF 7000 - 0x1FFF 73FF 1 K OTP area

0x1FFF 7800 - 0x1FFF 780F 16 Option bytes

Figure 4.11: Embedded Flash Memory Organization: The STM32L432KC can use page number 0 ­ 127, each with 2 Kbytes of
size [18, p.78].

As shown in Figure 4.11, each page can store up to 2 Kbytes of data. The default state of the flash
is 1. Turning a 1 into 0 is called byte programming. Turning a 0 into 1 is called erasing.

5
Readout Protocols

In this chapter, the implementation of the new readout protocol is described. The advantages and
disadvantages of the new prototype, compared to the current integration in the ADome, are also dis­
cussed. First, a brief introduction is given to the old readout protocol. Then, the new readout protocol
is introduced and finally, a comparison is made between the two.

For both implementations, the readout is done by retrieving data bit­wise from the 12­bit ADCs,
which are connected to the power meters consecutively.

5.1. Current Readout Protocol
The old readout protocol, depicted in Figure 5.1, is currently integrated in the ADome using Serial Pe­
ripheral Interface (SPI) communication protocol with logic elements to send the measurement data to
the computer. The SPI buses are connected to ADCs of the probes. Using enable signals, the data
from the ADCs are transmitted to the MCU through the logic elements. As shown in Figure 5.1, the
probes are serially connected which introduces dependencies between them. A failure in one of the
nodes could lead to data losses of the subsequent nodes. Furthermore, one has to design the structure
of the data packet and apply error­detection schemes and handling in order to decrease the likelihood
of passing errors into the PC. This would heavily increase the complexity of the system.

Furthermore, this protocol is only able to acquire one data sample at one node at a time. The
computer can request multiple successive readout instructions and perform data averaging at the com­
puter itself to acquire a more representative measurement. The number of messages present on the
bus lines NMessage is therefore:

NMessage = NNodes × NReadout (5.1)

where NNodes is the total number of nodes and Nsample the number of samples. This means that an
increase of nodes or number of samples would lead to more traffic on the bus and therefore, resulting
in a higher probability of bit and bus error.

5.2. New Readout Protocol
The new readout protocol, depicted in Figure 5.2, uses the CAN standard to communicate between the
antenna nodes as mentioned in Chapter 1. The concept of one host and multiple slaves is still present
in this readout since the main functionality of the system is to transfer measurement data from every
node to the PC. Due to the presence of MCUs at each node, multiple data sampling from the ADC and
data averaging are performed locally. This allows the number of readout messages on the bus lines to
be:

NMessage = NNodes (5.2)

Therefore, the bus lines have less traffic compared to the current implementation, resulting in a more
robust communication. Although the CAN messages have a longer frame, which could lead to a higher
chance of bit errors to occur. The error detection schemes implemented in the CAN protocols will
manage this issue as described in Section 4.1.4. Nevertheless, the increment of bits in the messages

19

20 5. Readout Protocols

ADC

ADC

Logic

Pol 1

Pol 2

Probe 1

.
.

.

Continuous

Readout

(SPI Bus)

.
.

.

MCU

Readout

(USB)

Supply

ADC

ADC

Logic

ADC

ADC

Logic

Pol 1

Pol 2

Pol 1

Pol 2

Probe N

Probe 2

Figure 5.1: The schematic of the current setup which is used to read out all the antenna points.

could lead to a rise of the full readout time. However, inasmuch as the duration of this process can yet
be considered as real­time for the user, the system requirements are still fulfilled.

5.2. New Readout Protocol 21

Figure 5.2: The schematic of the new setup which is used to operate on all the antenna points. The 120 Ω termination resistor
of the CAN bus is also shown.

6
Implementation

In this chapter, the working of the new readout protocol is further elaborated. As described in Figure 5.2,
Each node has a MCU in order to process CAN and its functionality. This MCU is the ultra­low­power
microcontroller STM32L432KC that has a built­in CAN interfaces bxCAN, an embedded Flash memory
of 256 KByte and a unique 96­bit ID that differentiates one MCU from another [17]. Moreover, each
node connects to the bus via the CAN transceiver CAN FD 4 Click which is compatible for CAN FD as
well as the original CAN [20].
There are two kinds of nodes: the host and the slaves. The slaves are responsible for creating mea­
surements, whereby the host is responsible for managing which actions the slaves should do and act
as a port between the bus and the PC. Aside from sending data between these kinds of nodes, they
should also be able to request the other to do certain a task or more. These requests have in the form
of data frames with DLC of one. In the data field, the request may contain one of the following codes
and their corresponding description:

• REQUEST_MEASUREMENT_START ­ Host requests the slaves to start creatingmeasurements.

• REQUEST_LOCALISATION_START ­ Host requests the slaves to start localisation.

• REQUEST_LOCALISATION_READY ­ Host induces a slave to be localised.

• REQUEST_LOCALISATION_ACK ­ Host acknowledges a slave that it has been localised and
be ready to receive its location data.

• REQUEST_INITIALISATION_WARN ­ A slave warns the host that it has not yet been localised.

Nodes can differentiate these codes, because they are defined and known to the devices beforehand.
The schematic on the process of the new readout protocol both for the host and the slaves can be seen
in Figure 6.1. After the initialisation of the MCUs, the user may wish to either to obtain measurements
or to localise the nodes. The latter may be necessary in case nodes have been interchanged. The
main design of the measurement readouts, the localisation and the initiation of the MCUs are further
explained in the following sections.

6.1. Localisation scheme
Considering the fact that the devices on the bus should be effortlessly interchangeable, this means that
the any device may not have yet been assigned to an angular location. Therefore, the localisation of
each node is required. The localisation scheme ensures that the slaves are identified by figuring out
their angular positions, in terms of the azimuth angle 𝜙 and the polar angle 𝜃. The schematic of this
scheme can be seen in Figure 6.2.

This consists of two stages: the collection of identifiers and localisation of each node. During
the collection of identifiers, the host requests by sending a remote frame containing the code RE­
QUEST_LOCALISATION_START in the DLC. The slaves receives the the remote frame and recog­
nise the code to start localising by returning a remote frame containing their unique ID. In the meantime,

23

24 6. Implementation

Figure 6.1: The flowchart diagram of the new readout protocol where the readout and localisation schemes are considered as
black boxes for the meantime.

the host starts a timer and collects the incoming remote frames successively. When a host receives a
remote frame, it collects the ID of the message from which node it originates from and store it into a list.
Then the host resets the timer and collects another remote frame. When there is no frame to receive,
the timer runs out, and the host finds a total number of identified nodes 𝑁 and moves on two the next
stage.

During this stage, the host goes through the list of identifiers and requests one slave at a time to
be localised by sending a data frame containing the code REQUEST_LOCALISATION_READY . This
actuates the slave to activate its LED upon receiving the request, therefore one LED is on in the whole
system at a time. The PC should localise the angular position of the LED via the optical part, which is
outside the scope of this project. After this, the PC sends the location in two 32­bit angles to the host.
The host saves the ID of the localised slave and its location into a list. In addition, the host assigns this
slave a node number 𝑛 which goes sequentially in the list 0 ≤ 𝑛 ≤ 𝑁. Afterwards, it then requests the
localised slave with a data frame containing the code REQUEST_LOCALISATION_ACK so that the
slave may deactivate its LED and be ready to receive the location. After this, the host transmits data
frame containing the location which the slave then receives and saves into its own flash memory. After
this, the host moves on to the next slave until all identified slaves are localised. Finally, the host sends
a copy of the list of slaves and their locations to the PC. This ensures that the locations will not need
to be sent at every obtainment of measurements.

6.2. Readout scheme
The readout scheme on obtaining the measurements of a given moment is fairly straightforward. The
schematic of the readout scheme can be seen in Figure 6.3.

The host requests measurements by sending a data frame to all. This data frame contains the code
REQUEST_MEASUREMENT_STARTS. Each slave obtains the remote frame and recognise the code
as a catalyst to create measurements. Then it creates an arbitrary number of successive measure­
ments from each of the coupled antennas which then averages them in a 12­bit value. This data gets
extended to a 16­bit to another 16­bit data of a different polarisation, giving a total data field of 32 bits.

6.2. Readout scheme 25

Figure 6.2: The flowchart diagram of performing out localisation where the measurement scheme is considered as a black box
for the meantime.

26 6. Implementation

Figure 6.3: The flowchart diagram of performing out measurements where the localisation scheme is considered as a black box
for the meantime.

This extension ensures that the PC can easily differentiate the two data of different polarisations as two
bytes. Finally, the slave transmits its 32­bit data in a data frame including its particular node number
towards the host. In practice, there may be 100 or more transmissions simultaneously. CAN handles
this issue via CSMA/CD+AMP as described in Section 4.1.4, prioritising the transmissions based on
the message identifiers incrementally.

In the meantime, after the transmission of the request from the host and assuming that the host
knows the total number of slaves beforehand, it will collect all incoming data frames successively.
When a data frame is collected, the host retrieves the ID of the message from which node it originates
from, and the associated two 12­bit data. The ID and the data are then saved into a list of measure­
ments. This cycle goes on until the host has collected a measurement from each node. This list of
measurements is then sent to the PC.

6.3. Initialisation
The initialisation of a MCU is subdivided into the three stages: obtaining an ID, configuring the filters,
and verifying identified slaves within the system.

6.3.1. Obtaining an ID
When the system is switched on, the MCUs are first initialised in order for them to work as intended.
During the initialisation, the ID of the given MCU is determined first. Each MCU has a unique and
pre­programmed 96­bit digit that is based on the identity of the wafer and the location on that wafer it
originated from. So, the 32­bit word that describes the location is used to calculate the ID. The reason
for this is that the available that the available MCUs are all made of the same wafer, they only differ from
each other from their positions. This word consists of the X and Y coordinates, each containing a value
of 16 bits, in arbitrary position respectively. The 11­bit ID, which is the size of the standard identifier, is
calculated through the bit­wise AND & and bit­wise OR | operators, as described in Equation 6.1.

((X & 0xFF00) | (X & 0x00FF)) & 0x3FE, (6.1)

whereX is the 32­bit word describing the X and Y coordinates on the wafer of theMCU. Using 0x3FE as
mask limits the range of the calculation. This gives a range of identifiers from 0x000 to 0x3FE, giving a

6.3. Initialisation 27

total of 1022 different nodes each with a different ID. However, there will be an issue when two devices
require the same ID after calculation and this would create an arbitration error during transmission.
This issue requires further solution in the future.
The MSB of the ID field 0x400 is reserved for a node to receive messages that is specifically made
for it. To obtain its receiver ID, it calculates by taking its message ID with 0x400 in a bit­wise OR (OR)
operator, as described in Equation 6.2.

0x400 ≤ XID OR 0x400 ≤ 0x7FE, (6.2)

whereXID is the 11­bit ID of the node. The ID 0x7FF is left reserved for the broadcast ID which appears
in every broadcast message that come from the host to all of the slaves. The host is determined by
selecting a device via its ID.

6.3.2. Configuration the filters
After determining the IDs, the filters which is used to block insignificant messages are implemented.

Firstly, the host requires a particular receive FIFO which receives all message identifiers in the
range of 0x000 to 0x3FE. This channel is achieved by creating a filter in ID mask mode where the
filter ID is assigned with value of 0x400 and a filter mask of 0x3FE. Using these IDs, the filter allows
the messages containing the IDs within the prescribed range into the particular channel.

Secondly, each slave has two different channels: particular and broadcast. Both channels use the
filtering ID list mode. The particular channel is used to retrieve messages that are only intended for this
given node. To achieve this, this channel uses the receiver ID of this node. The broadcast channel, on
the other hand, is used to retrieve messages that are intended for all slaves. This has the broadcast
ID of the host as the filter ID.

6.3.3. Verifying identified nodes
Finally, all of the nodes will verify their angular location in their flash memory. This will the system more
smart. The host starts a timer and reads every incoming message in the meantime. Meanwhile, each
slave reads the flash memory allocated to the location. There are two scenarios:

1. If the slave finds an arbitrary value, it does nothing. If the host does not receive any message
and the timer runs out, the host acknowledges that all slaves have been localised. However, note
that this method does not prevent a swap or more between localised slaves in the system.

2. If it does found to be empty, the slave warns the host by sending a data frame containing the
code REQUEST_INITIALISATION_WARN. When the host receives this message or more after
the timer runs out, it then sends a notification to the PC to warn that one slave or more are
unidentified and thus the system needs to start localising.

7
Verification

In this chapter, two of the implementations discussed in Chapter 6 will be verified. The setup that is
used to verify the implementations consists of one host and two slaves, this can be seen in Figure 7.1.
The slave nodes are connected to the antenna which are exposed to a RF source.

Figure 7.1: The setup of the verification with three nodes attached to the ADome.

7.1. Localisation scheme
The verification of the localisation scheme and the initialisation is as followed. Firstly, the total number
of slaves that the host has identified must be equivalent to the actual number of slaves terminated to the
bus.The transmission of the locations from the PC host to their associated nodes via the host must be
validated as well. In order to verify the second stage of the localisation scheme, a localisation algorithm
must be implemented in the ADome. This has not yet been fulfilled. Therefore, a test case has been
in which dummy locations has been created. During the localisation of each node, the dummy angular
position, the azimuth angle 𝜙 and the polar angle 𝜃, are created in the PC. This position is generated
in steps of 𝜋/12 rad for every increasing node number 𝑛, where 𝜃 lags behind 𝜙. as described in the
following two equations:

𝜙 = 𝜋
12(𝑛 + 1), (7.1)

𝜃 = 𝜋
12𝑛. (7.2)

29

30 7. Verification

Each of the two slaves should attain the prescribed value for each property as described in Table 7.1.
Afterwards, the host return the this data to the PC via the serial port.

Node 1 Node 2
Node number 0 1
Device ID 57 60
𝜙 𝜋/12 (15∘) 𝜋/6 (30∘)
𝜃 0 𝜋/12 (15∘)

Table 7.1: The two nodes and their associated properties.

In Figure 7.2, the result of the localisation scheme from the PC can be seen. It is shown that the
total number of found slaves is equal to the actual number of slaves in setup. Therefore, validating the
first stage of the localisation scheme. Furthermore, the host has also successfully assigned the other
properties to their associated slaves.

The total number of slaves: 2
 Node Number: 0 1
 Azimuth Angle: 15 30
 Polar Angle: 0 15
 Device ID: 57 60

Figure 7.2: Result showing the properties of each node. The properties of the second node are shifted to the right. All angles
are in degrees.

7.2. Readout scheme
The verification of the readout scheme is performed with two slaves terminated to one host. In addition,
this setup is also verified where the slave is in and out of the line of sight of a powered, transmitting
antenna, respectively. This setup can be seen in Figure 7.1. As described in Section 6.2, the PC
requests the host via serial port to initiate the slave to create measurements. The slave activates its
ADCs and obtain the two 12­bit measurement data from each of them. Then the slave sends this data
towards the host and the host in turns sends it to the PC via serial port.

As Figure. 7.3 and 7.4 shows, the resulting data is in mV voltages while the data being received are
in bits. This conversion follows the following equation:

Vv,hdata =
Vref

2ADCbits − 1 (7.3)

where Vv,hdata is the retrieved data in V. Vref is the reference voltage 2.048 V [1]. The ADCbits are the
12­bits data from one polarisation.

The found voltages for the horizontal polarisation of the antenna VANTH−LOS and that of the vertical
VANTV−LOS for which the slave is in the line of sight can be in seen in Figure 7.3. VANTH−OOS and
VANTV−OOS for which the slave is out of the line of sight can be in seen in Figure 7.4. The slave
appears to send the appropriate value as VANTH−OOS < VANTH−LOS and VANTV−OOS < VANTV−LOS.

Figure 7.3: Voltage readout of the slave that is in the line
of the powered antenna.

Figure 7.4: Voltage readout of the slave that is out of the
line of the powered antenna.

As these measurements data are obtained from the slaves, the CAN implementation of this proto­
type can directly be verified as data transmission are possible.

8
Conclusion

This project serves as a study to improve the functionality of a static multi­probe measurement setup
also known as the ADome. To be specific, a new system is proposed to improve the readout process of
the dome and also extends the functionalities of it, such as information storage without losing this while
no power is supplied. In this thesis, popular communications such as CAN, SPI and I2C are briefly
studied and the choice for CAN is explained.

The speed of CAN allows real­time communication. However, the exact duration of the readout
process cannot be determined due to insufficient time for testing. From the MATLAB readout process,
the results were immediately obtained after sending the command and therefore, the process is real­
time for the user. Whether this still holds for large number of nodes, the prototype should be able to be
integrated in the ADome.

Furthermore, the ADome is able to acquire multiple measurement data from the ADCs locally and
average this to obtain a more representable data, therefore reducing the bus traffic compared to the
current ADome readout setup. Despite the reduction of speed over the bus lines, it still complies to
the ”real­time” requirement. Besides, the location of the antennas are stored in their own memory due
to the embedded Flash memory in their IC processor. This creates a more user­friendly environment
as the locations are not manually inserted anymore to compute the radiation pattern. Finally, the new
implementation introduces robustness in the system and reduces the amount of wire required in the
ADome . Hence, the cabling costs are reduced but the costs of the antenna nodes are increased due
to the local MCU.

As a conclusion, the new proposed implementation with CAN allows a simple and a low­cost system
to be implemented in the ADome. A prototype was built and its functionalities are tested to fulfil the
requirements. Therefore, it is recommended to put this new subsystem in use for the ADome.

Future work
Although the prototype of the new system complies to the requirements, the system can still be im­
proved:

• The current state cannot be used in case of large number of sensing probes as this would create
extremely difficult wiring problems between the MCU and the antennas. Therefore, it is recom­
mended to develop a PCB of this prototype. This would reduce the costs of the MCU as only the
processor IC is required instead of the entire evaluation board. Furthermore, the CAN transceiver
can also be directly integrated on the PCB.

• Further inspection of the determination of the standard identifier. Currently, it only uses the the
unique location of an arbitrary wafer. An arbitration error will occur when two MCUs were origi­
nated in identical wafer location but each from a different wafer.

• The new readout protocol could benefit from transitioning to CAN FD which would increase the
data rate up to 5 Mb/s, can hold up to 64 bytes per message and makes the system more robust.

31

Bibliography
[1] F. Musters, “Real­time 3D characterization of antenna systems,” MSc Thesis, Delft University Of

Technology, 2019.
[2] CAN Specification Version 2.0, Robert Bosch GmbH, 1991.
[3] T. Nolte, H. Hansson, and L. Lo Bello, “Automotive communications­past, current and future,”

Jan. 2005. DOI: 10.1109/ETFA.2005.1612631.
[4] A. Albert and R. Gmbh, “Comparison of event­triggered and time­triggered concepts with regard

to distributed control systems,” Embedded World, vol. 171902, pp. 235–252, Jan. 2004.
[5] P. Carsten, T. Andel, M. Yampolskiy, and J. Mcdonald, “In­vehicle networks,” pp. 1–8, Apr. 2015.

DOI: 10.1145/2746266.2746267.
[6] K. Ismail, A. Muharam, and M. Pratama, “Design of CAN bus for research applications purpose

hybrid electric vehicle using ARM microcontroller,” Energy Procedia,
[7] D.Woody, B.Wiitala, S. Scott, J. Lamb, R. Lawrence, C. Giovanine, S. Fredsti, A. Beard, C. Pryke,

M. Loh, C. Greer, J. Cartwright, C. Gutierrez­Kraybill, A. Bolatto, and S. Muchovej, “Controller­
area­network bus control and monitor system for a radio astronomy interferometer,” The Review
of scientific instruments, vol. 78, p. 094 501, Oct. 2007. DOI: 10.1063/1.2780135.

[8] R. Rekik and S. Hasnaoui, “Application of a CAN BUS transport for DDS Middleware,” IEEE
Xplore,

[9] CAN with Flexible Data­Rate, Robert Bosch GmbH, 2012.
[10] K. Lennartsson, “Comparing CAN FD with Classical CAN,”
[11] O. Esparza, W. Leichtfried, and F. González, “Transitioning applications from CAN 2.0 to CAN

FD,” CAN in Automation,
[12] M. di Natale, H. Zeng, P. Giusto, and A. Ghosal, Understanding and Using the Controller Area

Network Communication Protocol: Theory and Practice, 1st ed. Springer­Verlag New York, 2012.
[13] L. E. Frenzel, Chapter Thirty­Five ­ Serial Peripheral Interface (SPI), L. E. Frenzel, Ed. Oxford:

Newnes, 2016, pp. 143–145.
[14] I2C­bus specification and user manual, NXP Semiconductors, 1982.
[15] B. Demuth and D. Eisenrach, Designing Embedded Internet Devices. Newnes, 2003.
[16] D. Paret and R. Riesc, Multiplexed Networks for Embedded Systems: CAN, LIN, FlexRay, Safe­

by­Wire..Wiley, 2007.
[17] STM32L432KB STM32L432KC, STMicroelectronics, 2018.
[18] STM32L41xxx/42xxx/43xxx/44xxx/45xxx/46xxx Advanced Arm®­based 32­bit MCUs, RM0394

Rev 4, STMicroelectronics, 2018.
[19] D. Patterson and J. L. Hennessy, Computer Organization and Design ­ The Hardware/Software

Interface. Morgan Kaufman, 2014.
[20] CAN FD 4 Click, Mikroelektronika D.O.O., 2015.

33

https://doi.org/10.1109/ETFA.2005.1612631
https://doi.org/10.1145/2746266.2746267
https://doi.org/10.1063/1.2780135

A
Software for Prototype Readout

A.1. Main File
1 / *
2 * app l i ca t ion_main . c
3 *
4 * Created on : May 24 , 2021
5 * Author : Alexander James Becoy & Remy Zhang
6 * Pro jec t : BAP ADome Subpro ject 1
7 *
8 * /
9 # inc lude ”main . h ”
10 # inc lude <vector >
11 using namespace std ;
12

13 / * *** * /
14 / * Local s t r u c t vec to r . * /
15 / * *** * /
16

17 s t r u c t NodeInformat ion
18 {
19 i n t NodeNumber ; / * Ranges from 1 to N, where N = t o t a l number o f s laves . * /
20 u in t32_ t AzimuthAngle ; / * The l o ca t i o n o f the s lave i n term of i t s azimuth angle .

* /
21 u in t32_ t PolarAngle ; / * The l o ca t i o n o f the s lave i n term of i t s po la r angle .

* /
22 u in t32_ t deviceID ; / * The found standard i d e n t i f i e r o f the unique MCU of the s lave .

* /
23 u i n t 8_ t data [TX_DLC_MEASUREMENT] ; / * The found measurement data from the H and V antennas

of a given moment . * /
24 } ;
25

26 NodeInformat ion myNodeInformation ; / * I n fo rma t i on o f t h i s given slave . * /
27 vector <NodeInformation > n ; / * L i s t o f i d e n t i f i e d s laves . * /
28

29

30

31 / * *** * /
32 / * Local va r i ab l es . * /
33 / * *** * /
34 CAN_FilterTypeDef sF i l t e rCon f i g ;
35

36 u i n t 8_ t TxData_Measurements [TX_DLC_MEASUREMENT] ;
37 u in t32_ t TxMailbox ;
38 u in t32_ t CAN_STDID ;
39 u in t32_ t CAN_ID_RX;
40

41 i n t Node_Number ;
42 i n t Warn ing_Loca l iza t ion ;
43 i n t Slaves_Completed ;
44 i n t S laves_Tota l ;

35

36 A. Software for Prototype Readout

45 i n t Slave_Found ;
46

47 i n t data [2 00] ;
48 i n t Serial_Command_Local izat ion , Serial_Command_Measurement , DataType ;
49 v o l a t i l e u i n t 8_ t UARTRX[2] ; / / Small bu f f e r f o r saving UART RX data command
50 UART_HandleTypeDef *p_huart2 ; / / l o c a l re ference to UART2
51

52 / / i n t numOfNodes = 1; / / can be var ied by inpu t
53 i n t sampleDelayUs = 20; / / can be var ied by inpu t
54 i n t DataBuf fer [2] ;
55

56 __IO ITSta tus UartReady = RESET; / / Flag i n d i c a t i n g RX data ava i l ab l e on UART2
57

58

59

60 / * *** * /
61 / * Local f unc t i on pro to types . * /
62 / * *** * /
63

64 / * Measurement f unc t i on pro to types * /
65 vo id slaveProcess (CAN_HandleTypeDef *hcan) ;
66 vo id sendRequest (CAN_HandleTypeDef *hcan , u i n t32_ t SetSTDID , u i n t32_ t RequestType) ;
67

68 / * I d l e pro to types * /
69 vo id hostCompleteMeasurements (CAN_HandleTypeDef *hcan) ;
70 vo id slaveSendMeasurements (CAN_HandleTypeDef *hcan) ;
71

72 / * Loca l i z a t i on f unc t i on pro to types * /
73 vo id hos tS t a r t L o ca l i z a t i o n (CAN_HandleTypeDef *hcan) ;
74 vo id s laveContendLoca l iza t ion (CAN_HandleTypeDef *hcan) ;
75 vo id s l a veCo l l e c t Loca l i z a t i o n (CAN_HandleTypeDef *hcan) ;
76

77 / * Local s t a r t up f unc t i on pro to types * /
78 vo id CAN_F i l t e r_ In i t (CAN_HandleTypeDef *hcan , u i n t32_ t CAN_ID_TX , u i n t32_ t CAN_ID_RX,

u in t32_ t setBank , u i n t32_ t setFIFO) ;
79 vo id i n i t a l i z eChanne l (CAN_HandleTypeDef *hcan , u i n t32_ t CAN_ID_TX , u i n t32_ t CAN_ID_RX) ;
80 vo id h o s t I n i t i a l i z e L o c a t i o n (CAN_HandleTypeDef *hcan) ;
81 vo id s l a v e I n i t i a l i z e L o c a t i o n (CAN_HandleTypeDef *hcan) ;
82

83 / * Local memory f unc t i on pro to types * /
84 vo id f lashDeleteNodes (vo id) ;
85 vo id f lashErase (u i n t32_ t PageNumber) ;
86 vo id f l ashOverwr i t e (u i n t32_ t PageNumber , u i n t 32_ t DataIndex , u i n t64_ t Data) ;
87 u in t64_ t f lashRead (u i n t32_ t PageNumber , u i n t32_ t DataIndex) ;
88

89 / * Local CAN func t i on pro to types * /
90 vo id sendMessage (CAN_HandleTypeDef *hcan , u i n t32_ t SetId , u i n t 32_ t SetRTR , u in t32_ t SetDLC ,

u i n t 8_ t TxData []) ;
91 vo id wai tTransmiss ion (CAN_HandleTypeDef *hcan) ;
92 RxMessageTypeDef readMessage (CAN_HandleTypeDef *hcan , u i n t 8_ t RxData [] , u i n t 32_ t checkFIFO) ;
93 i n t c he c kPa r t i c u l a r F i l l e d (CAN_HandleTypeDef *hcan) ;
94 i n t checkBroadcastF i l led (CAN_HandleTypeDef *hcan) ;
95

96 / * Local s e r i a l and antenna func t i on pro to types * /
97 i n t readADCBits (i n t Po l a r i z a t i o n) ;
98 / / vo id s endSh i f t S t a r t b i t s (vo id) ;
99 / / vo id selectNextAntenna (vo id) ;
100 vo id sendDataSer ia l (i n t DataType) ;
101 vo id updateSerialCommunicat ion (CAN_HandleTypeDef *hcan) ;
102

103 / * *** * /
104 / * Local main app l i c a t i o n func t i ons . * /
105 / * *** * /
106

107 vo id a p p l i c a t i o n _ i n i t (CAN_HandleTypeDef *hcan , UART_HandleTypeDef * huar t2)
108 {
109 p_huart2 = huar t2 ; / / Save po i n t e r to UART in va r i ab l e
110 / / Make sure a l l s i gna l s are low at beginning
111 HAL_GPIO_WritePin (LD3_GPIO_Port , LD3_Pin ,GPIO_PIN_RESET) ;
112 HAL_GPIO_WritePin (SCLK_GPIO_Port , SCLK_Pin , GPIO_PIN_RESET) ;
113 HAL_GPIO_WritePin (EnableConversion_GPIO_Port , EnableConversion_Pin , GPIO_PIN_RESET) ;

A.1. Main File 37

114 HAL_GPIO_WritePin (PowerMeterStartBit_GPIO_Port , PowerMeterStar tBi t_Pin , GPIO_PIN_RESET) ;
115 HAL_GPIO_WritePin (ADCStartBit_H_GPIO_Port , ADCStartBit_H_Pin , GPIO_PIN_SET) ;
116 HAL_GPIO_WritePin (ADCStartBit_V_GPIO_Port , ADCStartBit_V_Pin , GPIO_PIN_SET) ;
117

118 / * I n i t i a l i z e the standard i d e n t i f i e r f o r the node . * /
119 u in t32_ t Id_Bu f fe r ;
120 I d_Bu f fe r = ((HAL_GetUIDw0 () & 0x0FF00000) >> 0xC) + (HAL_GetUIDw0 () & 0x000000FF) ;
121 CAN_STDID = Id_Bu f fe r & 0x3FF ;
122

123 / * I d e n t i f y which MCU i s the host . * /
124 i f (CAN_STDID == CAN_ID_HOST_IDENTIFIER)
125 CAN_STDID = CAN_ID_TX_HOST;
126 else
127 {
128 CAN_ID_RX = CAN_STDID | 0x400 ;
129 Slaves_Tota l = 1 ;
130 }
131

132 / * I n i t i a l i z e the f i l t e r s f o r the host and the slaves . * /
133 i n i t a l i z eChanne l (hcan , CAN_STDID, CAN_ID_RX) ;
134

135 / * Determine whether a s lave or more are un i d en t i f i e d . * /
136 i f (CAN_STDID == CAN_ID_TX_HOST)
137 h o s t I n i t i a l i z e L o c a t i o n (hcan) ;
138 else
139 s l a v e I n i t i a l i z e L o c a t i o n (hcan) ;
140

141 char t e x t [] = ” I n s e r t the f o l l ow i ng commands : \ nB# ,b# = Number o f boards \nD# ,d# = Sample
delay i n us \nM# ,m# = Ret r ieve data ” ;

142 whi le (HAL_UART_Transmit_IT (p_huart2 , (u i n t 8_ t *) t ex t , s t r l e n (t e x t)) != HAL_OK) ;
143 HAL_Delay (100) ;
144 }
145

146 i n t app l i ca t ion_main (CAN_HandleTypeDef *hcan)
147 {
148 updateSerialCommunicat ion (hcan) ; / * Check on any rece ived commands . * /
149 i f (CAN_STDID == CAN_ID_TX_HOST)
150 {
151

152 i f (Serial_Command_Measurement == SERIAL_COMMAND_ENABLED)
153 {
154 sendRequest (hcan , CAN_ID_TX_HOST, REQUEST_MEASUREMENT_START) ;
155 hostCompleteMeasurements (hcan) ;
156 delayUS_ASM(10) ;
157 sendDataSer ia l (SERIAL_COMMAND_MEASUREMENT) ;
158 Serial_Command_Measurement = 0 ;
159 }
160 else i f (Serial_Command_Local izat ion == SERIAL_COMMAND_ENABLED)
161 {
162 sendRequest (hcan , CAN_ID_TX_HOST, REQUEST_LOCALIZATION_START) ;
163 hos tS t a r t L o ca l i z a t i o n (hcan) ;
164 sendDataSer ia l (SERIAL_COMMAND_LOCALIZATION) ;
165 Serial_Command_Local izat ion = 0;
166 }
167 }
168 else
169 {
170 slaveProcess (hcan) ;
171 }
172

173 r e t u rn 1 ;
174 }

38 A. Software for Prototype Readout

A.2. General Scheme Functions

1 vo id slaveProcess (CAN_HandleTypeDef *hcan)
2 {
3 / * The whole process o f the antenna nodes . This f unc t i on processes by probing f o r request

messages sent by
4 * the host MCU node .
5 * /
6 u i n t 8_ t RequestCode [TX_DLC_REQUEST] ; / * Declare the ar ray to s to re the request . * /
7 s t a t i c RxMessageTypeDef RequestMessage ;
8

9 i f (c he c kPa r t i c u l a r F i l l e d (hcan)) / * Check whether the node rece ived a request i n i t s
p a r t i c u l a r channel . * /

10 {
11 RequestMessage = readMessage (hcan , RequestCode , CAN_FILTER_PARTICULAR) ; / * Co l l e c t the

request code . * /
12 i f (RequestMessage .DLC == TX_DLC_REQUEST)
13 {
14 swi tch (RequestCode [ARR_REQUEST_LOCATION]) / * Determine the type of request . * /
15 {
16 case REQUEST_LOCALIZATION_READY: / * Host requests a p a r t i c u l a r to be l o ca l i z ed .

* /
17 HAL_GPIO_WritePin (LD3_GPIO_Port , LD3_Pin ,GPIO_PIN_SET) ;
18 break ;
19 case REQUEST_LOCALIZATION_ACK: / * Host completed l o c a l i z i n g a p a r t i c u l a r node .

* /
20 HAL_GPIO_WritePin (LD3_GPIO_Port , LD3_Pin ,GPIO_PIN_RESET) ;
21 s l a veCo l l e c t Loca l i z a t i o n (hcan) ;
22 break ;
23 de f au l t : / * False alarm and do noth ing . * /
24 break ;
25 }
26 }
27 }
28

29 i f (checkBroadcastF i l led (hcan)) / * Check whether the node rece ived a request i n i t s
broadcast channel . * /

30 {
31 RequestMessage = readMessage (hcan , RequestCode , CAN_FILTER_BROADCAST) ; / * Co l l e c t the

request code . * /
32 i f (RequestMessage .DLC == TX_DLC_REQUEST)
33 {
34 swi tch (RequestCode [ARR_REQUEST_LOCATION]) / * Determine the type of request . * /
35 {
36 case REQUEST_MEASUREMENT_START: / * Host s t a r t s measurement scheme . * /
37 slaveSendMeasurements (hcan) ;
38 break ;
39 case REQUEST_LOCALIZATION_START: / * Host s t a r t s l o c a l i z a t i o n scheme . * /
40 Slave_Found = 0;
41 f lashDeleteNodes () ;
42 s laveContendLoca l iza t ion (hcan) ;
43 de f au l t : / * False alarm and do noth ing . * /
44 break ;
45 }
46 }
47 }
48

49 }
50

51 vo id sendRequest (CAN_HandleTypeDef *hcan , u i n t32_ t SetSTDID , u i n t32_ t RequestType)
52 {
53 / * This f unc t i on a l lows MCUs create and send request to a l l o ther nodes . * /
54 u i n t 8_ t RequestMessage [TX_DLC_REQUEST] = { (u i n t 8_ t) RequestType } ; / * I n i t i a l i z e the ar ray

f o r t ransmiss ion o f request . * /
55 sendMessage (hcan , SetSTDID , CAN_RTR_DATA, TX_DLC_REQUEST, RequestMessage) ; / * Send request

to a l l o ther nodes . * /
56 }

A.3. Measurement Functions 39

A.3. Measurement Functions
1 / *−−

* /
2 / * MEASUREMENT FUNCTIONS. * /
3 / *−−

* /
4

5 vo id hostCompleteMeasurements (CAN_HandleTypeDef *hcan)
6 {
7 / * This f unc t i on c o l l e c t s a measurement o f each antenna of a given t ime
8 * and v e r i f i e s whether a l l antenna nodes have completed the measurements .
9 * /
10 HAL_GPIO_WritePin (LD3_GPIO_Port , LD3_Pin ,GPIO_PIN_SET) ; / * DEBUG * /
11 RxMessageTypeDef Measurements_Message ;
12 u i n t 8_ t Measurements_Data [TX_DLC_MEASUREMENT] ; / * Declare ar ray to save the data o f the

rece ived measurements . * /
13

14 Slaves_Completed = 0; / * I n i t i a t e s laves counter . * /
15

16 / * Co l l e c t a measurement o f each antenna node . * /
17 whi le (Slaves_Completed < Slaves_Tota l)
18 {
19 i f (c he c kPa r t i c u l a r F i l l e d (hcan)) / * I f message i s a r r i ved i n the rece ived channel . * /
20 {
21 Measurements_Message = readMessage (hcan , Measurements_Data , CAN_RX_PARTICULAR) ;
22

23 / * Co l l e c t the rece ived message from a node . * /
24 n [Measurements_Message . StdId] . data [0] = Measurements_Data [0] ;
25 n [Measurements_Message . StdId] . data [1] = Measurements_Data [1] ;
26 n [Measurements_Message . StdId] . data [2] = Measurements_Data [2] ;
27 n [Measurements_Message . StdId] . data [3] = Measurements_Data [3] ;
28

29 Slaves_Completed++; / * A measurement o f a node i s co l l ec ted , move to the next antenna
node . * /

30 }
31 }
32

33 HAL_GPIO_WritePin (LD3_GPIO_Port , LD3_Pin ,GPIO_PIN_RESET) ; / * DEBUG * /
34 }
35

36 vo id slaveSendMeasurements (CAN_HandleTypeDef *hcan)
37 {
38 / * This f unc t i on d r i ves the antenna node to c o l l e c t the measurements from the antenna
39 * through the ADC. A f t e r a shor t delay to compensate the t ime the host needs to i n i t i a l i z e
40 * hostCompleteMeasurements () , t h i s i s then sent to the host MCU.
41 * /
42 HAL_GPIO_WritePin (LD3_GPIO_Port , LD3_Pin ,GPIO_PIN_SET) ; / * DEBUG* /
43 u i n t 8_ t TxData [TX_DLC_MEASUREMENT] ; / * Declare the ar ray to s to re the to be sent

measurement . * /
44 const i n t Max_ I te ra t ion = 254; / * Number o f i t e r a t i o n s N f o r which the measurement

should average from . * /
45 i n t i , ADC_Data_H , ADC_Data_V ;
46 i n t Averaged_Data_H , Averaged_Data_V ; / * The found averaged data f o r each antenna of

d i f f e r e n t p o l a r i z a t i o n . * /
47

48 DataBuf fer [POLARIZATION_V] = DataBuf fer [POLARIZATION_H] = 0; / * I n i t i a l i z e the bu f f e r s f o r
data . * /

49 Averaged_Data_H = Averaged_Data_V = 0; / * I n i t i a l i z e the va r i ab l es f o r
averaged data . * /

50

51 / * I t e r a t e N measurements and sum them i n t o data bu f f e r . * /
52 f o r (i = 0 ; i < Max_ I te ra t ion ; i ++)
53 {
54 ADC_Data_V = readADCBits (POLARIZATION_V) ; / / Read out 12 or 14 b i t s value from adc of

both antennas
55 ADC_Data_H = readADCBits (POLARIZATION_H) ; / / Read out 12 or 14 b i t s value from adc of

both antennas
56 DataBuf fer [POLARIZATION_V] = DataBuf fer [POLARIZATION_V] + ADC_Data_V ;
57 DataBuf fer [POLARIZATION_H] = DataBuf fer [POLARIZATION_H] + ADC_Data_H ;
58 delayUS_ASM(1) ;

40 A. Software for Prototype Readout

59 }
60

61 / * Average the found measurements and send i t to the host . * /
62 Averaged_Data_V = DataBuf fer [POLARIZATION_V] / Max_ I te ra t ion ;
63 Averaged_Data_H = DataBuf fer [POLARIZATION_H] / Max_ I te ra t ion ;
64 TxData [0] = (Averaged_Data_V & 0xFF00) >> 8;
65 TxData [1] = (Averaged_Data_V & 0x00FF) ;
66 TxData [2] = (Averaged_Data_H & 0xFF00) >> 8;
67 TxData [3] = (Averaged_Data_H & 0x00FF) ;
68

69 sendMessage (hcan , Node_Number , CAN_RTR_DATA, TX_DLC_MEASUREMENT, TxData) ; / * Send the
measurements to the host MCU. * /

70 wai tTransmiss ion (hcan) ; / * Wait u n t i l the message i s success fu l l y sent . * /
71

72 HAL_GPIO_WritePin (LD3_GPIO_Port , LD3_Pin ,GPIO_PIN_RESET) ; / * DEBUG* /
73 }

A.4. Localization functions
1 / *−−

* /
2 / * LOCALIZATION FUNCTIONS. * /
3 / *−−

* /
4

5 vo id hos tS t a r t L o ca l i z a t i o n (CAN_HandleTypeDef *hcan)
6 {
7 RxMessageTypeDef Request_Message ; / * Rx header f o r the remote frame of a found node

v ia i t s remote frame . * /
8 u in t32_ t Timestamp_Start ; / * Declare va r i ab l es to s to re s t a r t i n g timestamp f o r

t imer . * /
9

10 i n t Number_Nodes_Found ; / * I n i t i a l i z e a va r i ab l e to s to re the number o f nodes
t ha t have yet been found . * /

11 u i n t 8_ t Empty_Data [TX_DLC_REMOTE] ; / * Declare a n u l l a r ray to ” s to re ” the remote
frame . * /

12

13 Timestamp_Start = HAL_GetTick () ; / * Set the t imer . * /
14 Number_Nodes_Found = 0; / * Set the node counter to zero . * /
15 n . c l ea r () ; / * Clear the prev ious l i s t o f nodes . * /
16

17 / * Find a l l the nodes . * /
18 whi le (HAL_GetTick () − Timestamp_Start < 3000)
19 {
20 i f (c he c kPa r t i c u l a r F i l l e d (hcan)) / * Determine i f a node has been found through i t s

remote frame . * /
21 {
22 Request_Message = readMessage (hcan , Empty_Data , CAN_FILTER_PARTICULAR) ; / * Ret r ieve the

header o f the found node . * /
23

24 / * Stack t h i s node in fo rma t i on i n t o the l i s t o f nodes n . * /
25 myNodeInformation .NodeNumber = Number_Nodes_Found ;
26 myNodeInformation . deviceID = Request_Message . StdId ;
27 n . push_back (myNodeInformation) ;
28

29 Number_Nodes_Found++;
30 Timestamp_Start = HAL_GetTick () ; / * Reset the t imer . * /
31 }
32 }
33

34 HAL_GPIO_WritePin (GPIOB, GPIO_PIN_3 , GPIO_PIN_SET) ; / * Debug * /
35

36 u i n t 8_ t Node_Index ; / * Declare a va r i ab l e to i t e r a t e over the stored ar ray o f standard
i d e n t i f i e r s . * /

37 u i n t 8_ t Message_NodeNumber [1] ;
38 u i n t 8_ t Message_Location [TX_DLC_LOCATION] = {0x00 ,0 x00 ,0 x00 ,0 x00 ,0 x00 ,0 x00 ,0 x00 ,0 x00 } ; / *

I n i t i a l i z e a tese t l o ca t i o n * /
39 u in t32_ t CAN_ID_RX_UID ;
40

A.4. Localization functions 41

41 f o r (Node_Index = 0; Node_Index < Number_Nodes_Found ; Node_Index++)
42 {
43 CAN_ID_RX_UID = n [Node_Index] . deviceID | 0x400 ;
44 Message_NodeNumber [0] = (u i n t 8_ t) Node_Index ;
45

46 sendRequest (hcan , CAN_ID_RX_UID , REQUEST_LOCALIZATION_READY) ;
47

48 / * *** * /
49 / * COMPUTER LOCALIZATION PART. * /
50 / * *** * /
51 Message_Location [3] = (Node_Index + 1) * 15; / * DEBUG * /
52 Message_Location [7] = (Node_Index) *15;
53

54 / * Stack t h i s node in fo rma t i on i n t o the l i s t o f nodes n . * /
55 n [Node_Index] . AzimuthAngle = Message_Location [3] ;
56 n [Node_Index] . PolarAngle = Message_Location [7] ;
57

58 sendRequest (hcan , CAN_ID_RX_UID , REQUEST_LOCALIZATION_ACK) ;
59 wai tTransmiss ion (hcan) ;
60

61 HAL_Delay (100) ;
62

63 sendMessage (hcan , CAN_ID_RX_UID , CAN_RTR_DATA, 1 , Message_NodeNumber) ; / * Send the node
number . * /

64 wai tTransmiss ion (hcan) ;
65 sendMessage (hcan , CAN_ID_RX_UID , CAN_RTR_DATA, TX_DLC_LOCATION, Message_Location) ; / *

Theta and phi angles . * /
66 wai tTransmiss ion (hcan) ;
67

68 HAL_Delay (100) ; / * Make the p a r t i c u l a r have enough t ime to save the i n f o i n the FLASH * /
69 }
70

71 HAL_GPIO_WritePin (GPIOB, GPIO_PIN_3 , GPIO_PIN_RESET) ;
72 Slaves_Tota l = n . s ize () ;
73 }
74

75 vo id s laveContendLoca l iza t ion (CAN_HandleTypeDef *hcan)
76 {
77 / * Send request to the host to be l o ca l i z ed . * /
78 i f (Slave_Found == 0)
79 {
80 u i n t 8_ t Remote_Data [TX_DLC_REMOTE] ;
81 HAL_Delay (100) ;
82 sendMessage (hcan , CAN_STDID, CAN_RTR_REMOTE, TX_DLC_REMOTE, Remote_Data) ;
83

84 Slave_Found = 1;
85 }
86 }
87

88 vo id s l a veCo l l e c t Loca l i z a t i o n (CAN_HandleTypeDef *hcan)
89 {
90 / * Obtain the in fo rma t i on o f node number and l o ca t i o n o f t h i s node . * /
91 RxMessageTypeDef Local izat ions_Message ;
92 u i n t 8_ t RxMessage_NodeNumber [1] ;
93 u i n t 8_ t RxMessage_Angles [TX_DLC_LOCATION] ;
94

95 u in t64_ t Node_UID ;
96 u in t64_ t Node_AzimuthAngle , Node_PolarAngle ;
97 i n t LoopIndex ;
98

99 i n t Message_Received = 0;
100 whi le (! Message_Received)
101 {
102 i f (c he c kPa r t i c u l a r F i l l e d (hcan))
103 {
104 / * Ret r ieve i t s p a r t i c u l a r node number . * /
105 Local izat ions_Message = readMessage (hcan , RxMessage_NodeNumber , CAN_RX_PARTICULAR) ;
106 Node_UID = (u in t64_ t) RxMessage_NodeNumber [0] ;
107

108 / * Ret r ieve i t s p a r t i c u l a r l o ca t i o n i n terms of angles . * /
109 Local izat ions_Message = readMessage (hcan , RxMessage_Angles , CAN_RX_PARTICULAR) ;

42 A. Software for Prototype Readout

110

111 / * Assemble the rece ived messages i n t o t h e i r corresponding datatype . * /
112 Node_AzimuthAngle = Node_PolarAngle = 0;
113 f o r (LoopIndex = 0; LoopIndex < TX_DLC_LOCATION; LoopIndex++)
114 {
115 i f (LoopIndex < 4) / * Ret r ieve the azimuth angle ph i . * /
116 {
117 Node_AzimuthAngle = Node_AzimuthAngle | RxMessage_Angles [LoopIndex] ;
118 i f (LoopIndex < 3)
119 Node_AzimuthAngle = Node_AzimuthAngle << 8;
120 }
121 else / * Ret r ieve the po la r angle the ta . * /
122 {
123 Node_PolarAngle = Node_PolarAngle | RxMessage_Angles [LoopIndex] ;
124 i f (LoopIndex < 7)
125 Node_PolarAngle = Node_PolarAngle << 8;
126 }
127 }
128

129 Message_Received = 1;
130 }
131 }
132

133 / * Save the in fo rma t i on i n t o the Flash memory . * /
134 f l ashOverwr i t e (PAGE_UID, NODE_NUMBER_PARTICULAR, Node_UID) ;
135 f l ashOverwr i t e (PAGE_AZIMUTH, NODE_NUMBER_PARTICULAR, Node_AzimuthAngle) ;
136 f l ashOverwr i t e (PAGE_POLAR, NODE_NUMBER_PARTICULAR, Node_PolarAngle) ;
137

138 }

A.5. Local Startup functions
1 / *−−

* /
2 / * INITIALIZATION FUNCTIONS. * /
3 / *−−

* /
4

5 vo id CAN_F i l t e r_ In i t (CAN_HandleTypeDef *hcan , u i n t32_ t CAN_ID_TX , u i n t32_ t CAN_ID_RX,
u in t32_ t setBank , u i n t32_ t setFIFO)

6 {
7 CAN_FilterTypeDef sF i l t e rCon f i g ; / * Declare the con f i gu r a t i o n o f the RX FIFO . * /
8

9 sF i l t e rCon f i g . F i l t e rS ca l e = CAN_FILTERSCALE_16BIT ;
10

11 i f (CAN_ID_TX == CAN_ID_HOST)
12 {
13 sF i l t e rCon f i g . F i l t e rBank = CAN_FILTERBANK_PARTICULAR;
14 sF i l t e rCon f i g . F i l te rMode = CAN_FILTERMODE_IDMASK;
15 sF i l t e rCon f i g . F i l t e r I dH i g h = 0;
16 sF i l t e rCon f i g . F i l t e r I dLow = 0;
17 sF i l t e rCon f i g . F i l te rMask IdH igh = CAN_FILTERMASK_HOST << CAN_FILTERSTDID_SHIFT ;
18 sF i l t e rCon f i g . F i l terMaskIdLow = CAN_FILTERMASK_HOST << CAN_FILTERSTDID_SHIFT ;
19 }
20 else
21 {
22 u in t32_ t F i l t e r I D ;
23 sF i l t e rCon f i g . F i l te rMode = CAN_FILTERMODE_IDLIST ;
24

25 i f (setFIFO == CAN_RX_PARTICULAR)
26 {
27 F i l t e r I D = CAN_ID_RX << CAN_FILTERSTDID_SHIFT ;
28 sF i l t e rCon f i g . F i l t e rBank = CAN_FILTERBANK_PARTICULAR;
29 }
30 else / * i f (setFIFO == CAN_RX_BROADCAST) * /
31 {
32 F i l t e r I D = CAN_ID_RX_SLAVE << CAN_FILTERSTDID_SHIFT ;
33 sF i l t e rCon f i g . F i l t e rBank = CAN_FILTERBANK_BROADCAST;
34 }

A.5. Local Startup functions 43

35

36 sF i l t e rCon f i g . F i l t e r I dH i g h = F i l t e r I D ;
37 sF i l t e rCon f i g . F i l t e r I dLow = F i l t e r I D ;
38 sF i l t e rCon f i g . F i l te rMask IdH igh = F i l t e r I D ;
39 sF i l t e rCon f i g . F i l terMaskIdLow = F i l t e r I D ;
40 }
41

42 sF i l t e rCon f i g . F i l terFIFOAssignment = setFIFO ;
43 sF i l t e rCon f i g . F i l t e r A c t i v a t i o n = ENABLE;
44 sF i l t e rCon f i g . S laveS ta r tF i l t e rBank = 0;
45

46 i f (HAL_CAN_ConfigFilter (hcan , &sF i l t e rCon f i g) != HAL_OK) / * Check whether the
con f i gu r a t i o n i s success fu l l y i n i t i a l i z e d . * /

47 {
48 Error_Handler () ; / * An e r r o r occurred dur ing the i n i t i a l i z a t i o n o f the f i l t e r

con f i gu r a t i o n . * /
49 }
50

51 }
52

53 vo id i n i t a l i z eChanne l (CAN_HandleTypeDef *hcan , u i n t32_ t CAN_ID_TX , u i n t32_ t CAN_ID_RX)
54 {
55 / * I n i t i a t e the CAN f i l t e r depending on the FIFO (FIFO0 or FIFO1) .
56 * FIFO1 i s the broadcast channel , which w i l l rece ive every message on the bus .
57 * FIFO0 i s the p a r t i c u l a r channel , which w i l l rece ive a l l messages t ha t i s s p e c i f i c a l l y

sent to t h i s node .
58 * /
59 i f (CAN_ID_TX == CAN_ID_HOST)
60 {
61 CAN_F i l t e r_ In i t (hcan , CAN_ID_TX , CAN_ID_RX, CAN_FILTERBANK_PARTICULAR,

CAN_FILTER_PARTICULAR) ; / * Pa r t i c u l a r channel . * /
62 }
63 else / * i f (CAN_ID_TX == CAN_ID_SLAVE) * /
64 {
65 CAN_F i l t e r_ In i t (hcan , CAN_ID_TX , CAN_ID_RX, CAN_FILTERBANK_PARTICULAR,

CAN_FILTER_PARTICULAR) ; / * Pa r t i c u l a r channel . * /
66 CAN_F i l t e r_ In i t (hcan , CAN_ID_TX , CAN_ID_RX, CAN_FILTERBANK_BROADCAST,

CAN_FILTER_BROADCAST) ; / * Broadcast channel . * /
67 }
68 }
69

70 vo id h o s t I n i t i a l i z e L o c a t i o n (CAN_HandleTypeDef *hcan)
71 {
72 HAL_GPIO_WritePin (GPIOB, GPIO_PIN_3 , GPIO_PIN_SET) ; / * DEBUG * /
73

74 RxMessageTypeDef I n i t i a l i z a t i ons_Message ;
75 u i n t 8_ t RequestCode [TX_DLC_REQUEST] ; / * Declare the ar ray to s to re the request . * /
76 u in t32_ t Timestamp_Start ; / * Declare va r i ab l es to s to re s t a r t i n g timestamp f o r t imer . * /
77

78 Timestamp_Start = HAL_GetTick () ;
79 Warn ing_Loca l iza t ion = 0;
80

81 Slaves_Tota l = 0 ;
82 / * Find a l l the nodes . * /
83 whi le (HAL_GetTick () − Timestamp_Start < 1000)
84 {
85 i f (c he c kPa r t i c u l a r F i l l e d (hcan))
86 {
87 I n i t i a l i z a t i ons_Message = readMessage (hcan , RequestCode , CAN_RX_PARTICULAR) ;
88

89 i f (RequestCode [ARR_REQUEST_LOCATION] == REQUEST_INITIALIZATION_WARN)
90 Warn ing_Loca l iza t ion = Warn ing_Loca l iza t ion + 1; / * SEND WARNING * /
91 else
92 Slaves_Tota l ++;
93

94 Timestamp_Start = HAL_GetTick () ;
95 }
96 }
97

98 / * Send to s e r i a l po r t about the s i t u a t i o n : u n i d e n t i f i e d nodes found or no issue . * /
99 i f (Warn ing_Loca l iza t ion > 0)

44 A. Software for Prototype Readout

100 {
101 char t e x t [] = ” There seems to be un i d en t i f i e d node (s) i n the system . \ n Please c a l i b r a t e

new loca t i ons to these nodes . ” ;
102 whi le (HAL_UART_Transmit_IT (p_huart2 , (u i n t 8_ t *) t ex t , s t r l e n (t e x t)) != HAL_OK) ;
103 HAL_Delay (100) ;
104 }
105

106 else
107 {
108 char t e x t [] = ” This system i s ready to use f o r measurements . \ n ” ;
109 whi le (HAL_UART_Transmit_IT (p_huart2 , (u i n t 8_ t *) t ex t , s t r l e n (t e x t)) != HAL_OK) ;
110 HAL_Delay (100) ;
111 }
112

113 HAL_GPIO_WritePin (GPIOB, GPIO_PIN_3 , GPIO_PIN_RESET) ; / * DEBUG * /
114 }
115

116 vo id s l a v e I n i t i a l i z e L o c a t i o n (CAN_HandleTypeDef *hcan)
117 {
118 HAL_GPIO_WritePin (GPIOB, GPIO_PIN_3 , GPIO_PIN_SET) ; / * DEBUG * /
119

120 u in t64_ t UID , Azimuth_Angle , Polar_Angle ;
121 UID = flashRead (PAGE_UID, NODE_NUMBER_PARTICULAR) ;
122 Azimuth_Angle = flashRead (PAGE_AZIMUTH, NODE_NUMBER_PARTICULAR) ;
123 Polar_Angle = flashRead (PAGE_POLAR, NODE_NUMBER_PARTICULAR) ;
124

125 i f ((UID == FLASH_64_EMPTY) | | (Azimuth_Angle == FLASH_64_EMPTY) | | (Polar_Angle ==
FLASH_64_EMPTY))

126 {
127 sendRequest (hcan , CAN_STDID, REQUEST_INITIALIZATION_WARN) ;
128 }
129 else
130 {
131 sendRequest (hcan , CAN_STDID, REQUEST_INITIALIZATION_ACK) ;
132 Node_Number = (u i n t32_ t) f lashRead (PAGE_UID, 0) ;
133 }
134

135 HAL_GPIO_WritePin (GPIOB, GPIO_PIN_3 , GPIO_PIN_RESET) ; / * DEBUG * /
136 }

A.6. Local Memory functions
1 / *−−

* /
2 / * FLASH MEMORY FUNCTIONS. * /
3 / *−−

* /
4

5 vo id f lashDeleteNodes (vo id)
6 {
7 / * This f unc t i on de le tes the pages t ha t usua l l y con ta in the in fo rma t i on o f each node . This

i s
8 * used before l o c a l i z a t i o n i n order to save the re l evan t and remove those t ha t are

i r r e l e v a n t . * /
9 f lashErase (PAGE_UID) ;
10 f lashErase (PAGE_AZIMUTH) ;
11 f lashErase (PAGE_POLAR) ;
12 }
13

14 vo id f lashErase (u i n t32_ t PageNumber)
15 {
16 / * Erases a whole FLASH page . * /
17 HAL_FLASH_Unlock () ; / * Unlock FLASH. * /
18

19 FLASH_EraseInitTypeDef F lashErase In i t ; / * I n i t i a l i z e erase typedef . * /
20 F lashErase In i t . TypeErase = FLASH_TYPEERASE_PAGES; / * Set type erase to de l e t i ng pages . * /
21 F lashErase In i t . Page = PageNumber ; / * S ta r t i n g page number to be dele ted . * /
22 F lashErase In i t . NbPages = MAX_PAGE_ERASE; / * Number o f pages to be dele ted = 1. * /
23 u in t32_ t PageError = 0 ; / * Set page e r r o r . * /

A.6. Local Memory functions 45

24 HAL_FLASHEx_Erase(& F lashErase In i t ,&PageError) ; / * Ca l l i ng the erase f unc t i on . * /
25

26 HAL_FLASH_Lock () ; / * Lock FLASH. * /
27 }
28

29 vo id f l ashOverwr i t e (u i n t32_ t PageNumber , u i n t 32_ t DataIndex , u i n t64_ t Data)
30 {
31 / * Overwr i tes a FLASH page wi th a new data . * /
32 u in t64_ t DataTemp [MAX_DOUBLEWORDS] ; / * I n i t i a l i z e temporary ar ray o f r e t r i e ved doublewords

o f given page number . * /
33 u in t32_ t LoopIndex ;
34 f o r (LoopIndex = 0; LoopIndex < MAX_DOUBLEWORDS; LoopIndex++) / * Store the o r i g i n a l data i n

the given page . * /
35 {
36 DataTemp [LoopIndex] = flashRead (PageNumber , LoopIndex) ; / * Store r e t r i e ved data i n t o the

temporary 32− b i t a r ray . * /
37 }
38

39 f lashErase (PageNumber) ; / * Erase the given page . * /
40

41 HAL_FLASH_Unlock () ; / * Unlock FLASH. * /
42 u in t32_ t PageAddress ; / * I n i t i a l i z e page address . * /
43 PageAddress = STARTING_ADDRESS + (PageNumber * PAGE_WIDTH) ; / * Get the corresponding

address o f the page number .
44 * Address 0x0800 0000 i s the s t a r t i n g address o f
45 * the FLASH memory , and 0x0800 i s the page s ize . * /
46

47 f o r (LoopIndex = 0; LoopIndex < MAX_DOUBLEWORDS; LoopIndex++) / * Return the o r i g i n a l data
before the page erase . * /

48 {
49 i f (LoopIndex != DataIndex) / * Compare i f the loop index i s on the des i red address to be

ove rw r i t t en . * /
50 HAL_FLASH_Program(FLASH_TYPEPROGRAM_DOUBLEWORD, PageAddress , DataTemp [LoopIndex]) ; / *

Wri te the o r i g i n a l data o f i t s
51 * corresponding page address . * /
52 else
53 HAL_FLASH_Program(FLASH_TYPEPROGRAM_DOUBLEWORD, PageAddress , Data) ; / * Overwr i te the

new data on
54 * the des i red address . * /
55 PageAddress = PageAddress + DOUBLEWORD_WIDTH; / * Move po i n t e r to the address o f the next

doubleword . * /
56 }
57 HAL_FLASH_Lock () ; / * Lock FLASH. * /
58 }
59

60 u in t64_ t f lashRead (u i n t32_ t PageNumber , u i n t32_ t DataIndex)
61 {
62 / * Reads the doubleword data on a given FLASH page number and the data index . * /
63 const u i n t 8_ t MAX_LENGTH = 2; / * Maximum constant to create a doubleword . * /
64 const u i n t 8_ t DOUBLEWORD_OFFSET = 32; / * Of fse t f o r second ha l f o f doubleword . * /
65 u in t32_ t PageAddress ; / * I n i t i a l i z e page address and data . * /
66 u in t32_ t * DataAddress ; / * I n i t i a l i z e data address . * /
67 u in t32_ t DataTemp [MAX_LENGTH] ; / * I n i t i a l i z e temporary ar ray o f r e t r i e ved data .

* /
68 u in t64_ t Data ; / * I n i t i a l i z e the storage va r i ab l e f o r data . * /
69

70 PageAddress = 0x08000000 + (PageNumber * 0x0800) ; / * Get the corresponding address o f the
page number .

71 Address 0x0800 0000 i s the s t a r t i n g address o f the
72 FLASH memory , and 0x0800 i s the page s ize . * /
73 i n t LoopIndex ; / * S ta r t i n g fo r − loop index . * /
74 f o r (LoopIndex = 0; LoopIndex < MAX_LENGTH; LoopIndex++)
75 {
76 DataAddress = (u i n t32_ t *) (PageAddress + (0 x0008 * DataIndex) + (0 x0004 * LoopIndex)) ;

/ * Calcu la te the address o f
77 the data based on the address o f the page number and the index of the des i red data . * /
78 DataTemp [LoopIndex] = *DataAddress ; / * Store the r e t r i e ved 32− b i t data i n

corresponding index . * /
79 }
80 i f (DataIndex % 2 != 0)
81 Data = ((u i n t64_ t)DataTemp [1] << DOUBLEWORD_OFFSET) | DataTemp [0] ; / * Append the

46 A. Software for Prototype Readout

r e t r i e ved 32− b i t i n t o a 64− b i t data . * /
82 else
83 Data = ((u i n t64_ t)DataTemp [0] << DOUBLEWORD_OFFSET) | DataTemp [1] ; / * Append the

r e t r i e ved 32− b i t i n t o a 64− b i t data . * /
84 r e t u rn Data ; / * Return the r e t r i e ved 64− b i t data . * /
85 }

A.7. Local CAN functions
1 / *−−

* /
2 / * LOCAL FUNCTIONS. * /
3 / *−−

* /
4

5 vo id sendMessage (CAN_HandleTypeDef *hcan , u i n t32_ t SetId , u i n t 32_ t SetRTR , u in t32_ t SetDLC ,
u i n t 8_ t TxData [])

6 {
7 / * Send the message v ia the CAN bus wi th the corresponding ID ,
8 * type o f frame , the leng th o f the data , and the data i t s e l f .
9 * /
10

11 CAN_TxHeaderTypeDef TxHeader ; / * Declare TX header to send the message . * /
12

13 TxHeader . IDE = CAN_ID_STD; / * Set the ID as standard i d e n t i f i e r . * /
14 TxHeader . StdId = Set Id ; / * Set the i n c i den t ID i n t o the header . * /
15 TxHeader . Ex t Id = 0; / * Set no extended ID i n t o the header . * /
16 TxHeader .RTR = SetRTR ; / * Set the message e i t h e r as data frame or remote frame .

* /
17 TxHeader .DLC = SetDLC ; / * Set the leng th o f the data . * /
18 TxHeader . TransmitGlobalTime = DISABLE ; / * Disable the t ransmiss ion of the t ime of the

message sent . * /
19

20 i f (HAL_CAN_AddTxMessage(hcan , &TxHeader , TxData , &TxMailbox) != HAL_OK) / * Check whether
the message i s success fu l l y sent . * /

21 {
22 Error_Handler () ; / * An e r r o r occurred dur ing the t ransmiss ion . * /
23 }
24 }
25

26 vo id wai tTransmiss ion (CAN_HandleTypeDef *hcan)
27 {
28 / * Makes the MCU wai t u n t i l the message i s success fu l l y sent and removed from the mailbox .

* /
29 whi le (HAL_CAN_IsTxMessagePending (hcan , TxMailbox)) ;
30 }
31

32 RxMessageTypeDef readMessage (CAN_HandleTypeDef *hcan , u i n t 8_ t RxData [] , u i n t 32_ t checkFIFO)
33 {
34 / * Read the message depending on the given channel and re tu rns the corresponding standard

i d and the data leng th code . * /
35 RxMessageTypeDef RxMessage ;
36 CAN_RxHeaderTypeDef RxHeader ;
37

38 i f (checkFIFO == CAN_RX_PARTICULAR)
39 {
40 i f (c he c kPa r t i c u l a r F i l l e d (hcan)) / * Check whether a message i s a c t u a l l y rece ived i n the

given channel . * /
41 {
42 i f (HAL_CAN_GetRxMessage(hcan , CAN_RX_PARTICULAR, &RxHeader , RxData) != HAL_OK)
43 / * Check whether the reading of the rece ived message i s success fu l . * /
44 {
45 Error_Handler () ; / * An e r r o r occurred dur ing the reading o f the rece ived message . * /
46 }
47 }
48 }
49 else / * i f (checkFIFO == CAN_RX_BROADCAST) * /
50 {
51 i f (checkBroadcastF i l led (hcan))

A.8. Local Serial and Antenna functions 47

52 {
53 i f (HAL_CAN_GetRxMessage(hcan , CAN_RX_BROADCAST, &RxHeader , RxData) != HAL_OK)
54 / * Check whether the reading o f the rece ived message i s success fu l . * /
55 {
56 Error_Handler () ; / * An e r r o r occurred dur ing the reading of the rece ived message . * /
57 }
58 }
59 }
60 RxMessage . StdId = RxHeader . StdId ;
61 RxMessage .DLC = RxHeader .DLC;
62 r e t u rn RxMessage ;
63 }
64

65 i n t c he c kPa r t i c u l a r F i l l e d (CAN_HandleTypeDef *hcan) {
66

67 / * Check whether FIFO0 / p a r t i c u l a r channel i s f i l l e d w i th rece ived messages . * /
68 i f (HAL_CAN_GetRxFifoFil lLevel (hcan , CAN_RX_PARTICULAR) > 0)
69 r e t u rn FIFO_FILLED ; / * There i s a t l e as t one message in the p a r t i c u l a r channel . * /
70 else
71 r e t u rn FIFO_EMPTY; / * There i s no message in the p a r t i c u l a r channel . * /
72 }
73

74 i n t checkBroadcastF i l led (CAN_HandleTypeDef *hcan)
75 {
76 / * Check whether FIFO1 / broadcast channel i s f i l l e d w i th rece ived messages . * /
77 i f (HAL_CAN_GetRxFifoFil lLevel (hcan , CAN_RX_BROADCAST) > 0)
78 r e t u rn FIFO_FILLED ; / * There i s a t l e as t one message in the broadcast channel . * /
79 else
80 r e t u rn FIFO_EMPTY; / * There i s no message in the broadcast channel . * /
81 }

A.8. Local Serial and Antenna functions
1 / *−−

* /
2 / * LOCAL SERIAL AND ANTENNA FUNCTIONS. * /
3 / *−−

* /
4

5 i n t readADCBits (i n t Po l a r i z a t i o n)
6 {
7 / / Perform convers ion by r a i s i n g ch ip se l ec t / convers ion p in
8 / / Give pulse and wa i t sho r t t ime to a l low convers ion (min 1.4 ns)
9

10 HAL_GPIO_WritePin (PowerMeterStartBit_GPIO_Port , PowerMeterStar tBi t_Pin , GPIO_PIN_SET) ;
11

12 i n t i ;
13 i n t adc_read_value = 0;
14

15 i f (Po l a r i z a t i o n == POLARIZATION_V)
16 {
17 HAL_GPIO_WritePin (ADCStartBit_V_GPIO_Port , ADCStartBit_V_Pin , GPIO_PIN_RESET) ;
18 f o r (i = 0 ; i < ADC_bits ; i ++)
19 {
20 / / s e r i a l c lock i s g loba l f o r a l l boards
21 HAL_GPIO_WritePin (SCLK_GPIO_Port , SCLK_Pin , GPIO_PIN_SET) ;
22 i n t misoVal = (i n t) HAL_GPIO_ReadPin (ADCIN_V_GPIO_Port , ADCIN_V_Pin) ;
23 adc_read_value += (misoVal > 0) << (ADC_bits − i − 1) ;
24 HAL_GPIO_WritePin (SCLK_GPIO_Port , SCLK_Pin , GPIO_PIN_RESET) ;
25 }
26 HAL_GPIO_WritePin (ADCStartBit_V_GPIO_Port , ADCStartBit_V_Pin , GPIO_PIN_SET) ;
27 }
28 else / * i f (Po l a r i z a t i o n == POLARIZATION_H) * /
29 {
30 HAL_GPIO_WritePin (ADCStartBit_H_GPIO_Port , ADCStartBit_H_Pin , GPIO_PIN_RESET) ;
31 f o r (i = 0 ; i < ADC_bits ; i ++)
32 {
33 / / s e r i a l c lock i s g loba l f o r a l l boards
34 HAL_GPIO_WritePin (SCLK_GPIO_Port , SCLK_Pin , GPIO_PIN_SET) ;

48 A. Software for Prototype Readout

35 i n t misoVal = (i n t) HAL_GPIO_ReadPin (ADCIN_H_GPIO_Port , ADCIN_H_Pin) ;
36 adc_read_value += (misoVal > 0) << (ADC_bits − i − 1) ;
37 HAL_GPIO_WritePin (SCLK_GPIO_Port , SCLK_Pin , GPIO_PIN_RESET) ;
38 }
39 HAL_GPIO_WritePin (ADCStartBit_H_GPIO_Port , ADCStartBit_H_Pin , GPIO_PIN_SET) ;
40 }
41 HAL_GPIO_WritePin (PowerMeterStartBit_GPIO_Port , PowerMeterStar tBi t_Pin , GPIO_PIN_RESET) ;
42 r e t u rn adc_read_value ;
43 }
44

45

46 vo id updateSerialCommunicat ion (CAN_HandleTypeDef *hcan)
47 {
48 / / I f UART i s s t i l l busy , don ’ t bother to send / rece ive anyth ing
49 i f (HAL_UART_GetState (p_huart2) != HAL_UART_STATE_READY)
50 r e t u rn ;
51

52 i f (UartReady == SET) { / / I f something i s received , handle the command
53 / / Reset the s e r i a l commands .
54 UartReady = RESET;
55 Serial_Command_Measurement = Serial_Command_Local izat ion = 0;
56

57 / / Echo back the command f o r debugging
58 / / HAL_UART_Transmit_IT (p_huart2 , (u i n t 8_ t *) RXdata , 2) ;
59

60 char command = UARTRX[0] ;
61 i n t value = (i n t)UARTRX[1] ;
62

63 i f (command == ’ b ’ | | command == ’B ’) Slaves_Tota l = value ; / / Set Boards
64 i f (command == ’ d ’ | | command == ’D ’) sampleDelayUs = value ; / / Set sample delay

t ime
65

66 i f (command == ’m ’ | | command == ’M ’) Serial_Command_Measurement = 1 ; / / S t a r t
measurements

67 else Serial_Command_Measurement = 0 ;
68

69 i f (command == ’ c ’ | | command == ’C ’) Serial_Command_Local izat ion = 1; / / S t a r t
l o c a l i z a t i o n

70 else Serial_Command_Local izat ion = 0;
71 }
72 else
73 {
74 / / Send a RX command, the HAL l i b r a r y w i l l check i f i t was doing so al ready
75 HAL_UART_Receive_IT (p_huart2 , (u i n t 8_ t *) UARTRX, 2) ;
76 }
77

78 }
79

80

81

82 vo id app l i ca t ion_Data rece ived (vo id) {
83 / / To be ca l l ed from the HAL_UART_RxCpltCallback i n main . ck
84 / * Set t ransmiss ion f l a g : t r a n s f e r complete * /
85 UartReady = SET;
86 }
87

88 vo id sendDataSer ia l (i n t DataType)
89 {
90 / / Measurement Data Type
91 i f (DataType == SERIAL_COMMAND_MEASUREMENT)
92 {
93 i n t i ;
94 i n t numBytes = Slaves_Tota l * SERIAL_LENGTH_MEASUREMENTS;
95 u i n t 8_ t bytes [numBytes] ;
96

97 f o r (i = 0 ; i < numBytes ; i ++) {
98 i f (CAN_STDID == CAN_ID_HOST)
99 {
100 / * LSB f i r s t order . * /
101 bytes [(i *SERIAL_LENGTH_MEASUREMENTS) + 0] = n [i] . data [3] ;
102 bytes [(i *SERIAL_LENGTH_MEASUREMENTS) + 1] = n [i] . data [2] ;

A.8. Local Serial and Antenna functions 49

103 bytes [(i *SERIAL_LENGTH_MEASUREMENTS) + 2] = n [i] . data [1] ;
104 bytes [(i *SERIAL_LENGTH_MEASUREMENTS) + 3] = n [i] . data [0] ;
105 }
106 else / * i f (CAN_STDID == SLAVES) * /
107 {
108 / * LSB f i r s t order . * /
109 bytes [3] = TxData_Measurements [0] ;
110 bytes [2] = TxData_Measurements [1] ;
111 bytes [1] = TxData_Measurements [2] ;
112 bytes [0] = TxData_Measurements [3] ;
113 }
114 }
115

116 i n t loopcounter = 0 ;
117 whi le (HAL_UART_GetState (p_huart2) != HAL_UART_STATE_READY)
118 {
119 loopcounter ++;
120 }
121

122 HAL_UART_Transmit (p_huart2 , (u i n t 8_ t *) bytes , numBytes , HAL_MAX_DELAY) ;
123 }
124 / / Ca l i b r a t i o n Data Type
125 else i f (DataType == SERIAL_COMMAND_LOCALIZATION)
126 {
127

128 i n t numBytes = Slaves_Tota l * SERIAL_LENGTH_LOCALIZATION ;
129 i n t i ;
130 u in t32_ t NodeNumber , AzimuthAngle , PolarAngle , DeviceID ;
131 u i n t 8_ t bytes [numBytes] ;
132

133 bytes [0] = Slaves_Tota l ;
134

135 f o r (i = 0 ; i < Slaves_Tota l ; i ++) {
136

137 NodeNumber = (u i n t32_ t) n [i] . NodeNumber ;
138 AzimuthAngle = n [i] . AzimuthAngle ;
139 PolarAngle = n [i] . PolarAngle ;
140 DeviceID = n [i] . deviceID ;
141

142 / / Node Number (LSB f i r s t order)
143 bytes [(i *SERIAL_LENGTH_LOCALIZATION) + 1] = (NodeNumber & 0x000000FF) ;
144 bytes [(i *SERIAL_LENGTH_LOCALIZATION) + 2] = (NodeNumber & 0x0000FF00) >> 8;
145

146 / / Azimuth angle (LSB f i r s t order)
147 bytes [(i *SERIAL_LENGTH_LOCALIZATION) + 3] = (AzimuthAngle & 0x000000FF) ;
148 bytes [(i *SERIAL_LENGTH_LOCALIZATION) + 4] = (AzimuthAngle & 0x0000FF00) >> 8;
149 bytes [(i *SERIAL_LENGTH_LOCALIZATION) + 5] = (AzimuthAngle & 0x00FF0000) >> 16;
150 bytes [(i *SERIAL_LENGTH_LOCALIZATION) + 6] = (AzimuthAngle & 0xFF000000) >> 24;
151

152 / / Po lar angle (LSB f i r s t order)
153 bytes [(i *SERIAL_LENGTH_LOCALIZATION) + 7] = (PolarAngle & 0x000000FF) ;
154 bytes [(i *SERIAL_LENGTH_LOCALIZATION) + 8] = (PolarAngle & 0x0000FF00) >> 8;
155 bytes [(i *SERIAL_LENGTH_LOCALIZATION) + 9] = (PolarAngle & 0x00FF0000) >> 16;
156 bytes [(i *SERIAL_LENGTH_LOCALIZATION) + 10] = (PolarAngle & 0xFF000000) >> 24;
157

158 / / Device ID (LSB f i r s t order)
159 bytes [(i *SERIAL_LENGTH_LOCALIZATION) + 11] = (DeviceID & 0x000000FF) ;
160 bytes [(i *SERIAL_LENGTH_LOCALIZATION) + 12] = (DeviceID & 0x0000FF00) >> 8;
161 }
162

163 i n t loopcounter = 0 ;
164 / / Wait f o r UART to be ava i l ab le , to be sure the data w i l l be t r ansm i t t ed
165 whi le (HAL_UART_GetState (p_huart2) != HAL_UART_STATE_READY)
166 {
167 loopcounter ++;
168 }
169 HAL_UART_Transmit (p_huart2 , (u i n t 8_ t *) bytes , numBytes , HAL_MAX_DELAY) ;
170 }
171 / / For now , use non− i n t e r r u p t t ransmi t , f o r some reason using the _IT vers ion
172 / / and l e t t i n g o ther code run af terwards , the TX data gets cor rupted .
173 }

	Introduction
	Programme of Requirements
	Analysis of Communication Protocols
	Controller Area Network
	Serial Peripheral Interface
	Inter-integrated Circuit
	Comparison

	Theory
	Controller Area Network
	Bus and bus states
	Transceivers and message coding
	Message Frames
	Error detection and management
	Bit timing

	bxCAN
	Transmission
	Reception

	Embedded Flash Memory

	Readout Protocols
	Current Readout Protocol
	New Readout Protocol

	Implementation
	Localisation scheme
	Readout scheme
	Initialisation
	Obtaining an ID
	Configuration the filters
	Verifying identified nodes

	Verification
	Localisation scheme
	Readout scheme

	Conclusion
	Software for Prototype Readout
	Main File
	General Scheme Functions
	Measurement Functions
	Localization functions
	Local Startup functions
	Local Memory functions
	Local CAN functions
	Local Serial and Antenna functions

