TUDelft

LLM of Babel: Evaluation of LLMs on code for non-English
use-cases

Maksym Ziemlewski
EEMCS, Delft University of Technology, The Netherlands

Supervisor(s): Prof. Dr. Arie van Deursen, Assistant Prof. Dr. Maliheh Izadi, ir. Jonathan Katzy

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements
For the Bachelor of Computer Science and Engineering
June 23, 2024

Name of the student: Maksym Ziemlewski
Final project course: CSE3000 Research Project
Thesis committee: Prof. Dr. Arie van Deursen, Assistant Prof. Dr. Maliheh Izadi, Assistant Prof. Dr. Gosia Migut

An electronic version of this thesis is available at http://repository.tudelft.nl/.

LLM of Babel: Evaluation of LLMs on code for non-English
use-cases

Maksym Ziemlewski
Delft University of Technology
Delft, Netherlands

ABSTRACT

This research evaluates the performance of Meta’s Code Llama
7B model in generating comments for Java code written in Polish.
Using a mixed-methods approach, we conduct both quantitative
and qualitative methods to discover the model’s accuracy and limi-
tations. We preprocess a dataset of Polish Java code from GitHub,
apply a Fill-in-the-Middle objective for code comment completion,
and evaluate the results using BLEU and ROUGE-L metrics. Ad-
ditionally, we manually evaluate approximately 1150 generated
comments and document the encountered errors. Based on the find-
ings, we iteratively develop a taxonomy of errors using an open
coding approach.

Through an expert evaluation, we discover the limitation of
the BLEU metric in assessing comment quality for non-English
languages, showing substantial differences with human evaluation.
Our research identifies the most frequent errors in code comment
completion in Polish, which are the generation of code snippets,
copying context, late termination, hallucinations and repetitions.
Only 25.2% of the generated comments were classified to be correct.
This study is a part of the broader research about multiple models
across various non-English languages. We aim to contribute to raise
the awareness of large language models for code accessibility in
non-English environments, therefore improving their inclusivity.

KEYWORDS

Language Models, Evaluation, non-English, Code Llama, Code Com-
ment Completion, Error Taxonomy, Open Coding, Error Classifica-
tion

1 INTRODUCTION

In recent years, the integration of Large Language Models (LLMs)
into software development has significantly increased, driven by
multiple factors, such as boosting the productivity of developers
[32], generating tests [23], and improving the quality of the sys-
tem and software documentation [5, 10]. LLMs, such as OpenATI’s
ChatGPT! models, have shown promise in aiding programmers
of varying proficiency levels and are increasingly considered for
educational purposes [4].

However, a persistent challenge still stands out: the disparity
in performance across multiple natural languages [13]. While sig-
nificant attention has been directed towards evaluating LLMs for
English, research in other languages has been notably limited [12].
The exploration of LLM evaluation and performance metrics outside
of English-speaking contexts remains under-explored.

https://en.wikipedia.org/wiki/ChatGPT

Most of the research has focused on English-based benchmarks
[27], which results in biases and sub-optimal performance for non-
English contexts [13]. Addressing this gap is crucial. This research
investigates the performance of Meta’s Code Llama?, particularly
in comment completion when coding in non-English languages,
with a focus on Polish. By investigating this model, this study aims
to highlight the limitations and errors encountered in generating
comments for code in Polish.

This research is part of a collaborative effort to assess LLM
capabilities in diverse natural languages for comment generation in
Java®. The mutual goal is to identify and categorise problems that
arise when generating comments in different languages. This paper
covers the assessment for Polish, thereby contributing to develop a
taxonomy of limitations for multiple natural languages.

The motivation for this research is to enhance LLM accessibility
for developers worldwide and propagation of multilingual program-
ming practices. We want to raise the awareness about the acces-
sibility of the models for non-English speakers and non-English
use cases. By systematically evaluating LLMs’ performance in non-
English settings, the study aims to contribute to the enhancement
of software development tailored to multiple linguistic needs.

The paper has the following structure: We start with our research
questions, followed by related works section. In the methodology
section, we detail our research design, including data preparation,
data collection, and dataset preprocessing techniques used. Quanti-
tative and qualitative analyses are then described, along with the
open coding process.

Next, we present dataset statistics with more insights about the
Polish dataset as well as information about the language and its
differences with comparison to English. The results section follows.
The discussion reflects on the implications and limitations of our
findings. Responsible research and ethics regarding datasets are
addressed.

Research Questions

The main research question is: How does Code Llama perform in
comment generation in Java when applied in Polish language
settings? Sub-questions to add more structure to this research
include:

(RQ1) How often does Code Llama generate erroneous comments
for code written in Polish?

(RQ2) What are the most frequent types of limitations encountered
in comment generation for code written in Polish?

(RQ3) What is the influence of temperature parameter for code
comment completion in Java for the Polish language?

2https://llama.meta.com/code-1llama
Swww.oracle.com/java

https://en.wikipedia.org/wiki/ChatGPT
https://llama.meta.com/code-llama
www.oracle.com/java

TU Delft, June 23, 2024, Netherlands

2 RELATED WORKS

Research on the evaluation of Large Language Models (LLMs) across
multiple languages has highlighted several key areas.

Evaluations of LLMs for specific languages, not limited to code,
reveal poor performance for Llama 2, which Code Llama is based
on [26]. Llama was performing the worst in comparison to other
models in Indonesian and African languages, probably due to its
English and code-centric training corpus [12, 20].

New discoveries in the field highlight a substantial multilingual
bias in non-English LLM code generation [28], which was previ-
ously underexplored. It was found that Code Llama 34B exhibits a
big performance gap between code generation with instructions in
English and Chinese, noting a performance decrease of 37.8% in the
Pass@1 metric when Chinese instructions were used. The results
indicate a significant bias in language models regarding their ability
to understand various natural languages when generating code.

General evaluations of LLMs, not specific to code, were also
comprehensively reviewed. The main takeaways indicate that LLMs
are primarily evaluated on English data, which can lead to poor
multilingual performance, particularly for non-Latin languages and
resource-limited languages [6]. Additionally, research measuring
the performance of LLMs across multiple non-English languages
and ranking these languages based on LLM performance on them
highlights several discoveries that align with the statement that
LLMs perform sub-optimally in non-English languages [13]. The
results show a strong correlation between Llama 2’s performance
in different languages and the proportion of the pre-training corpus.
It is worth noting that Llama 2, the base model for Code Llama,
has an 89.7% English training corpus [26]. Although not focused on
code-specific assessment, this benchmark can be used to measure
the performance of LLMs in a given language.

In contrast, evaluations of models for code have primarily fo-
cused on English, emphasising English-based benchmarks [1, 8, 30].
Findings from the evaluation of existing largest language models
for code suggest that blending natural languages in the training
corpus may enhance code language modelling [30]. Regarding Code
Llama, research validating the quality of LLM-generated code in-
dicates that it maintains 100% syntax correctness and 64% format
correctness when generating documentation from code [1].

Similarly, evaluations of code comment completion, discovering
the superiority of transformer architecture over an n-gram model
[18], have also been based on English data. Error analysis in LLM-
generated code, without a focus on non-English contexts, resulted
in obtaining a taxonomy of the ten most frequent bug patterns [25].
Research on code explanation generation reveals that a big part of
the automatically generated content is of good quality, however
again with an English-centric approach.

Lastly, concepts and research related to code comments were
also summarised, discussing automatic generation technology and
the evaluation of comment quality, but focused solely on English
[31].

This body of work highlights the gap in evaluating LLMs for
code comment completion in non-English languages, which this
study aims to address.

Maksym Ziemlewski

3 METHODOLOGY

To investigate the performance of Meta’s Code Llama in generating
comments for code written in Polish, this study employs a mixed-
methods approach combining quantitative and qualitative research
methods. This methodology ensures a thorough evaluation of the
model’s capabilities and limitations in a non-English programming
context.

3.1 Data Preprocessing

The initial step involves preprocessing the dataset to ensure that
it meets the requirements for analysis. Java files containing code
written in Polish are collected from GitHub. These files are filtered
based on the following criteria:

o Exclude files that are too long (exceeding 8192 tokens) to
avoid surpassing the context window and giving the model
too much irrelevant information that could degrade perfor-
mance [16]. Although Code Llama was trained on sequences
of 16k tokens [22], the 8192 tokens were used as the max-
imum length for consistency with all models, which have
shorter context window than Code Llama.

¢ Exclude files that do not contain comments for the
code.

3.2 Comment Masking and Fill-in-the-Middle
Technique

To prepare the data for the Fill-in-the-Middle (FIM) task, we identify
and mask out the comments in Java files using regular expressions.
We retain the first three words of each block comment and first two
words of each inline comment to provide the model with contextual
information about the language to generate in. Afterwards, we
mask the remainder with a special Code Llama token " <SUF>". For
block comments, we ensure that the model recognises the comment
boundaries by including the "*/" delimiter after the special token to
signify the end of the comment block. For inline comments, we use
"\n" as a delimiter. Subsequently, we add two more tokens, "<PRE>
" at the beginning of the file and " <MID>" at the end of the file. This
masking process is crucial for applying the Fill-in-the-Middle with
prefix-suffix-middle technique, which allows the model to generate
comments based on the surrounding context of the code [3]. This
method utilises both left and right contexts, which is crucial for
accurately predicting comments in a programming environment.
The span masking process is visualised in Figure 1, which depicts
an example Java file, and Figure 2 with special tokens highlighted
in orange, which shows the same file after span masking has been
applied to prepare it for FIM.

3.3 Random Selection

To perform manual labelling of errors and qualitative analysis, we
narrowed down the dataset described in subsection 4.1, obtained so
through the filtering and mapping outlined in previous subsections
3.1 and 3.2. To avoid biases that might arise from large repositories
with many faulty files or misplaced comments, we sampled one ran-
dom comment per repository. This approach limits the influence of
single authors or repositories with numerous poor contributions. It
also ensures a representative sample of block and inline comments,

LLM of Babel: Evaluation of LLMs on code for non-English use-cases

public class SimpleClass {

1

2

3 /%%
4 * This method greets the person with the provided name.

5 *

6 * @param name The name of the person to greet.

7 * @return A String containing a personalized greeting message.
8

9

*/

public String sayHello(String name) {
10 return "Hello, " + name + "!";
11 }
12}

Figure 1: Example Java File Without Processing

as they were uniformly sampled from all detected comments, pre-
serving the real world distribution of those two types of comments
in code. The resulting dataset consists of 959 random comments
from different repositories, and is released online*. Manual labelling
and classification of encountered errors were conducted on this
dataset.

3.4 Quantitative Analysis

Post-generation, we evaluate the performance of Code Llama using
established quantitative metrics such as BLEU [21] and ROUGE-L
[14]. BLEU calculates the precision of n-grams between the gen-
erated and original comments, while ROUGE-L is recall oriented
and considers sentence-level structure similarity [29], capturing
the overall meaning and context. We use a smoothing method 4
for BLEU computation [7]. BLEU-4 is less effective for comments
shorter than 4 words. This can misrepresent the model’s perfor-
mance, especially for extremely short inline comments, which might
receive lower scores despite being accurate in eyes of an expert
[2]. Using these metrics, we aim investigate how the generated
comments differ from the original comments, which are treated as
ground truth. Based on these results, we will be able to partially an-
swer (RQ1) by investigating how many of the generated comments
closely resemble the original ones, based on their BLEU and ROUGE
scores. To fully answer this question, we will further explore the
correctness of the generated comments in the qualitative part of
this study, described in Section 3.5.

3.5 Qualitative Analysis and Open Coding in
Taxonomy Development

To answer (RQ1) and (RQ2), and to discover how LLMs fail in non-
English settings, this research employs the open coding method in
qualitative analysis. Open coding allows us to derive conclusions
from qualitative data without any underlying assumptions about
it beforehand. This approach enables insights to emerge naturally
from the data rather than forcing it into predefined categories. The
transparent process of open coding enhances the validity of this
research by ensuring that the analysis is grounded in the data itself,
therefore reducing researcher bias.

We iteratively create and improve the labels describing the en-
countered error types in the generated comments from the dataset
described in Section 3.3 by manually evaluating them. As we gain

“4https://huggingface.co/datasets/mziem/predicts-label

TU Delft, June 23, 2024, Netherlands

1 public class SimpleClass {

2

3 /**

4 * This method gr‘eets

5 */

6 public String sayHello(String name) {
7 return "Hello, " + name + "!";

8 }

0[]

Figure 2: Java File Prepared for FIM

more understanding from the data with manual labelling, we re-
vise the categories during multiple rounds of discussion to reflect
our findings. By these means, we develop a broad taxonomy of
errors encountered in comments generated in multiple non-English
languages. Continuously improving categories as new error types
appear ensures their relevance to the data. The goal of this tax-
onomy is to provide a basis for understanding how LLMs fail in
non-English comment generation, offering insights that can guide
future improvements in multilingual model performance. Besides
the error categories, we introduce additional label for good predic-
tions, as well as an "Excluded" category for comments that were
excluded from the analysis. As each file is an individual case, we de-
cided to leave the decision about excluding the file from analysis to
each of the experts. However, in the guidelines about file exclusion
we recommend to exclude detected comments which (a) contain
commented-out code, (b) are URLs, (c) only contain @author with
the name, (d) are TODO comments, (e) are in a file with too little
content to comment on, and (f) are in the file with no Polish context,
or are not in Polish themselves. Examples of excluded comments
can be seen in Appendix B.

Additionally, the analysis of the frequency of error categories,
their distribution, popular patterns found, most interesting in-
stances, and other qualitative aspects will be included in the results
to provide a thorough understanding of the frequent errors.

3.6 LLM Temperature Experiment Setup

In LLMs, the temperature is the value that influences the probabili-
ties of the model’s output. It is used in activations functions, such
as softmax, to normalise the output to a probabilistic distribution
[19]. Adjusting the temperature parameter can make the output
more deterministic (lower temperature) or more random (higher
temperature).

i ezl T

softmax(zj) = =——— (1)

(2
e

ft iT)= ———
softmax(z;, T) 5, T

1: Basic Softmax Formula 2: Softmax with Temperature

To answer (RQ3), we collected 120 comments which were cor-
rectly predicted by the model in the basis evaluation described
in Section 3.5. A correct prediction indicates that the model can
properly handle the files in the basic settings. Then, we re-run the
generation on all 120 for five different temperature values: 0.1, 0.3,

https://huggingface.co/datasets/mziem/predicts-label

TU Delft, June 23, 2024, Netherlands

0.5, 0.7, and 0.9. Then, we manually analyse the predicted content to
measure the influence of the temperature parameter to the quality
of generation, and discover potential dependencies.

3.7 Error Tracking and Iterative Refinement

Throughout the project, we iteratively refine the taxonomy in three
cycles, incorporating new categories of errors in multiple languages
as they emerge. This process accurately reflects the types of errors
encountered in non-English programming settings.

To maintain consistency in error classification, we ensure evalu-
ation is conducted with uniform parameters across multiple models
and languages within broader research that this paper is a part of.
This includes using the same maximum length for generated out-
puts (set at 95th percentile of all original comment lengths, which is
116 tokens in the case of the Polish dataset), using the same dataset
mapping and filtering that is described in Section 3.1, and defining
strict inclusion and exclusion criteria for each of the categories.
These measures minimise bias during the labelling process. Con-
sistency is crucial for accurately comparing the performance of
different models and languages.

4 DATA

This section describes the dataset utilised for analysis, examining
its structure and providing insights into its composition and char-
acteristics. This dataset serves as the foundation for subsequent
analyses and experiments conducted within this study.

4.1 Dataset

After performing all mapping and filtering outlined in the previous
subsections (3.1 and 3.2) the final dataset emerges. That dataset
serves as a basis for sampling of individual comments, described in
subsection 3.3. It is accessible online® and contains 13,556 comments
in Polish from 2,216 unique files extracted from the initial dataset.
We have gathered a total of 9,643 block comments and 3,913 line
comments. An examination of the dataset reveals some insights
regarding comment length and their distribution. Average original
comment length is 103.5 characters with a median length of 63
characters. That translates to average of 39.4 tokens per comment
and median of 24 tokens per comment. A visual representation of
the distribution of original comment token lengths is provided in
Figure 3.

When performing further analysis on the dataset for the purpose
of error labelling of generated comments, we discovered several
shortcomings in some instances in the dataset. Comments that are
too short and files that are lacking sufficient context for meaningful
comments, are excluded from further consideration. Additionally,
comments containing only auto-generated content such as licences,
or single author tags are also excluded. This ensures the integrity
and relevance of the dataset for subsequent analysis and conclusions
drawn in the end.

4.2 Language

Polish language has several characteristics that distinguish it from
other languages, potentially leading to errors in generation if Polish

Shttps://huggingface.co/datasets/mziem/all_results

Maksym Ziemlewski

3000

2500

2000

Frequency
@
o
(=}

1000

500

IIIII Wil
50 75 100 125 150 175 200

Comment Length (tokens)

0 25

Figure 3: Comment Token Length Distribution

is underrepresented in the training dataset. One of the main dif-
ferences is the extension of the standard Latin alphabet with nine
additional characters (g, ¢, ¢, 1, 13, 6, §, Z, z). The presence of these
additional characters, which can change the meaning and pronun-
ciation of the words, introduces complexity that may challenge the
model. Many people, especially in informal communication or any
other form that needs to only be practical or understandable, omit
those diacritics in writing (e.g., changing "3" with "a", "6" with "o").
In this research it was noticed that substantial amount of people
also omit them in code comments. This requires the model to learn
additional relations between multiple tokens, which effectively en-
code the same meaning of the word in the training phase. Therefore,
the model might encounter difficulties with generating grammat-
ically correct comments and not replicate this "lazy" approach in
writing, resulting in erroneous generation.

There are numerous differences in the grammar as well. Polish
is characterised by a high degree of inflection, with seven cases
(nominative, genitive, dative, accusative, instrumental, locative, and
vocative). This contrasts with English, which relies more on word
order and prepositions rather than cases. Moreover, Polish verbs
have aspects (imperfective and perfective) that indicate whether an
action is ongoing or completed, adding another layer of complexity
not present in the same way in English, which needs to be captured
by the model with already limited training data available in Pol-
ish. Additionally, Polish nouns are gendered (masculine, feminine,
neuter) and the gender affects adjective and verb conjugation. Al-
though the basic word order in Polish is SVO (subject-verb-object), it
is much more flexible due to the inflectional nature of the language,
which allows for variations in word arrangement. This flexibility
and rich morphology of Polish may lead the model to be more
prone to producing grammatical errors compared to languages
with a more rigid word order.

Polish constitutes only 0.09% of Llama 2 training data [26], so
this sparse occurrence in the dataset might lead to the model hav-
ing difficulties in this language. Authors underline that Llama 2’s
proficiency in non-English languages is limited, hence Code Llama
which is based on it, can encounter similar complications.

https://huggingface.co/datasets/mziem/all_results

LLM of Babel: Evaluation of LLMs on code for non-English use-cases

B BLEU Score
300 ROUGE-L F1 Score

Frequency

Score

Figure 4: ROUGE-L F1 and BLEU Scores Distribution

5 RESULTS

This section covers the findings from both quantitative and quali-
tative analysis. All of the results are based on the dataset used for
manual labelling, which was obtained through random sampling
described in Section 3.3 and is accessible online?.

5.1 OQuantitative

BLEU and ROUGE-L scores, which distributions are depicted on
Figure 4, compare the similarity between original comment found in
the GitHub sample, and the comment predicted by the model. Scores
range from 0 to 1, with values close to 1 indicating large similarity of
two texts. Most BLEU scores are close to 0, while ROUGE-L scores
are more uniformly distributed, although the majority being in [0,
0.3] range. BLEU measures the exact similarity between reference
and candidate texts, which means that if the generated comment
uses different sentence structure, it will receive a low score, even
though it might still have the correct meaning. In contrast, ROUGE
is commonly used for text summarisation, since it captures the
important content of the candidate text, leading to higher scores in
the distribution. In the tail of the distribution there is a significant
break in the trend, with considerably many files have scores close
to 1. This is due to relatively short, mostly inline comments which
were predicted correctly, word to word with the reference.

Figure 5 shows a strong correlation between BLEU and ROUGE-
L scores. This relation is further investigated in Figure 6, where a
scatter plot illustrates the shape of it. Together, these visualisations
show that BLEU and ROUGE-L metrics are complementary, jointly
expressing the quality of the predicted comments. Higher scores
in both metrics corresponding to higher-quality predictions and
lower scores indicating poor predictions.

What is an interesting finding, is that both scores appear to have
negligible correlation with length (in tokens) of the file. BLEU and
ROUGE-L scores have 0.14 and 0.12 correlation coefficients with
file length measured in tokens respectively, as also can be seen on
Figure 5. This indicates, that Code Llama’s performance does not
deprecate with the length of the context given to the model, up to
8192 which is the upper boundary set in Section 3.1. The size of
the file does not influence the quality of the prediction in
Polish negatively.

TU Delft, June 23, 2024, Netherlands

BLEU Score File Length

ROUGE-L F1 Score

File Length BLEU Score ROUGE-L F1 Score

Figure 5: Correlation Heatmap Between Metrics and File
Length.

ROUGE-L F1 Score

0.0 0.2 04 0.6 0.8 1.0
BLEU Score

Figure 6: BLEU vs. ROUGE-L F1

5.2 Error Taxonomy

Through iterative collaboration we obtained the error taxonomy,
which is visualised on Table 1. More elaborated version, with exact
descriptions and inclusion criteria for each of the categories can
be found in Appendix A. When manually analysing the predicted
comments, the errors were classified to one of the 27 categories
positioned as the leaf nodes in the presented taxonomy tree. Only
the errors in the leaf nodes have the unique code, which is later
used for analysis. The counts of errors in the table are based on
the final iteration of labelling, which was done under the presented
version of the taxonomy, and consisted of 420 comments.

As a result of manual analysis of the 420 comments from the
dataset using an open coding approach, we determined the distribu-
tion of errors visualised in Figure 7. Errors that occurred only once
were excluded from the plot for better readability. These include
verbatim repetition, omission of identifier and plurality grammar

TU Delft, June 23, 2024, Netherlands

Table 1: Taxonomy of failure categories

Failure category plus label ID Count
Model-Specific Errors 229
| (MS-IG) Incoherent Generation 3
L (MS-CC) Copy Context 72
L Memorisation 12
(MS-ME1) Contains PII 11
(MS-MEZ2) Contains URL 1
(MS-ME3) Verbatim Memorisation 0
| Repetition 63
r:(MS—REl) Pattern Repetition 24
(MS-RE2) Verbatim Repetition 39
| (MS-ET) Early Termination 8
L_ (MS-LT) Late Termination 71
Linguistic Errors 76
| Grammar 63
| (LG-GR1) Plurality 1
| (LG-GR2) Conjugation 11
| (LG-GR3) Gendering 5
| (LG-GR4) Spelling 12
| (LG-GR5) Capitalisation 0
L_ (LG-GR6) Cohesion 34
| Wrong Language
| (LG-WL1) Undesired Translation 3
L (LG-WL2) Incorrect Language
L (LG-IS) Incorrect Synonym
Semantic Errors 218
| Hallucination 91
(SE-HA1) Misplaced Facts 18
(SE-HA2) Contextual Discrepancy 13
(SE-HA3) Educated Guess 60
| Code Snippet Inclusion 88
(SE-CS1) Commented out code 14
(SE-CS2) Code Intended to Run 74
| (SE-MD) Missing Details 28
L_ (SE-TS) Too Specific 11
Syntax Errors 11
L Incorrect Comment Format 11
r:(ST-IFl) Style Inconsistency 10
(ST-IF2) Omitted Identifier 1

Miscellaneous

errors. Verbatim memorisation and capitalisation, which did not
occur at all, were also omitted. Additionally, 67 comments were
excluded from the analysis due to bad quality of original comment,
and 106 comments were classified as good predictions.

To answer (RQ1), we can draw conclusions from the qualita-
tive analysis. 25.2% of predicted comments were manually
classified as correct.

From the distribution of encountered error categories we can
derive the answer to (RQ2). The three most frequent errors are

Maksym Ziemlewski

Olllllllllllllllll-..---

VS 95 N &G o> N /\ e &> NOL LS
Fef VY\‘* LN AN «\%‘0 o‘g” R 3 RO
g N

Frequency
N
(o2} @ o
o o o

N
o

N
=1

SENE 0%@‘% SEE S
Labels

Figure 7: Distribution of Error Categories

generating code snippets, copying the surrounding context
verbatim and late termination of prediction, with 74, 72 and
71 instances respectively. Aside from the categories omitted in the
plot, Code Llama almost never has issues with errors in "Wrong
Language" category, nor does it produce incoherent outputs.

We encountered many linguistic errors, especially in grammar,
compared to other languages. Code Llama produced a comment
with a grammatical mistake 63 times, hence in 15% of all predictions.
More than half of these errors were related to cohesion. In compar-
ison to other languages in our broader study of multiple languages,
grammatical errors were generated the most often in Polish. This
represents model’s issues in handling an highly inflected language
like Polish, which has a complex grammatical structure.

An interesting error pattern identified concerns the exclusion
of a whitespace character at the end of the remained comment. By
not including a space after the last word of the original comment,
the model is prone to producing spelling mistakes. The decision
not to include a space was made to avoid informing the model
that it should proceed with a new word. Instead, we leave that
decision up to the model, allowing it to decide to continue the last
word. We experienced the issue in 25 instances, so 5.95% of the
labelled comments in the final round, where the model continued
the last word which always lead to erroneous generation. The issue
was addressed before and is related to generating from the middle
of a token [11]. This also affects the rest of the generation, often
disturbing the cohesiveness of the sentence. The issue is not specific
to Polish language, and should be treated as a model shortcoming
in training. Examples of such generations can be seen in Appendix
B.

5.3 Temperature Influence

To measure the influence of the temperature on the quality of
generated comments and answer (RQ3), we first evaluated the
comments with ROUGE-L F1 score, the same way it is described in
Section 3.4. First, we analysed the results quantitatively only with
ROUGE-L metric, as BLEU has proven itself to not be additionally
informative. Figure 8 shows the distribution of ROUGE-L F1 scores
for each temperature. We can observe the best performance for
lowest temperature values, 0.1 and 0.3. For higher temperatures,
ROUGE-L F1 scores tend to decrease.

LLM of Babel: Evaluation of LLMs on code for non-English use-cases

i

Température

S)

o
©

o
o

N
IS

ROUGE-L F1 Score
o
)

o
o

Figure 8: Box Plot of ROUGE-L F1 Scores Across Different
Temperatures

1_0 —

IAccuracyI
0.2 B Accurate
Partially Accurate
| Inaccurate
I

0.0
0.1

o
oo

Proportion
o
o

o
i

Temperatu re

Figure 9: Accuracy Summary by Temperature

We can verify the findings with a qualitative analysis. Manual
analysis of 50 comments with five different temperatures was con-
ducted, resulting in 250 samples reviewed. We evaluate each of the
comments as "Accurate”, "Partially Accurate” or "Inaccurate”, to
give additional insight about the quality of the comment besides
error categories. "Partially Accurate” category represents the com-
ments that were of satisfactory quality, with minor errors that do
not critically influence the usability of the comment (i.e. a minor
grammatical mistake, containing code snippet that is useful in the
context). "Accurate” comments are the ones without any error de-
tected. "Inaccurate” category was assigned to comment with critical
errors in them, which cannot be accepted as a useful prediction by a
human (i.e. severe hallucination, copying context without purpose).
From Figure 9 we can conclude that the tendency revealed with
ROUGE-L metrics is in fact correct, as with increasing temperature,
less accurate generations occur. With increasing temperature
value in generation, the quality of generated comments in
Polish decrease.

TU Delft, June 23, 2024, Netherlands

6 DISCUSSION

The results show that while the model demonstrates some pro-
ficiency in generating accurate comments, it also faces several
challenges inherent to non-English languages, particularly Polish,
which we discuss below.

6.1 Implication

One primary observation is that the taxonomy developed through
iterative discussions covers various non-English languages, leading
to categories that may not be relevant for Polish. For instance, the
capitalisation (LG-GR5) category, common in Greek, was absent
in the Polish dataset. On the other hand, grammatical mistakes oc-
curred frequently for Polish, while none were generated for Chinese.
This highlights the issue of certain errors being specific to individ-
ual languages, complicating the task of tailoring the taxonomy to
ensure universality and accuracy for all non-English languages. Our
taxonomy might not capture the intricacies in various languages,
as African or Indonesian languages, indicating the need for a more
diverse languages are needed.

Another critical issue is Code Llama’s difficulty in determining
the appropriate endpoint for comment generation. Instead of con-
cluding with a meaningful comment, the model often generates
irrelevant code or repeats itself. This likely stems from the train-
ing data, which mostly consists of uncommented code, leading to
struggles with producing descriptive comments [24]. Among all
code snippet generations (SE-CS2), 54.05% were associated with
late termination (MS-LT) errors, and 52.7% were linked to repetition
errors (MS-RE1 and MS-RE2). Furthermore, the Code Llama model
frequently copies context (MS-CC) and exhibits "educated guess-
ing" (SE-HA3), potentially due to a lack of extensive training data,
leading to repeated or nonsense content. This issue compounds
with the model’s struggles with Polish grammar, particularly in
longer and more complex comments. While language models han-
dle English grammar well [15], Code Llama produced multiple
grammatical errors, primarily incoherent sentences, followed by
spelling mistakes.

When it comes to the quality of generated comments, mentioned
issues can be critically detrimental, leading to decreased trust in
LLMs and Al systems in general. Perceived performance and use-
fulness are the dominant factors in the acceptance of new Al tech-
nologies by users [9, 17]. As LLMs are still a relatively new and
significant breakthrough in the Al field, it is crucial for model cre-
ators to build and maintain user trust. The model’s inability to
produce meaningful comments, while hallucinating or copy-
ing context, severely degrades perceived usability and trust
in such technology.

Authors of Llama’s and Code Llama’s technical reports are not
entirely transparent about the origins of the data used for train-
ing, making it unclear if the issue stems from it. However, Polish
files encountered on GitHub during our evaluation often lacked
descriptive comments or used a very simplified language which
is not syntactically correct (e.g., parts of sentences in short forms,
avoiding Polish diacritics like "a," "I," etc.). Code Llama’s struggles
in generating contextually appropriate comments suggest the lack
of diverse and well-annotated training data. The lack of descrip-
tive and technically correct Polish comments on platforms like

TU Delft, June 23, 2024, Netherlands

GitHub intensifies this problem and reveals a broader issue in AI
and LLMs: the quality of the training data significantly impacts the
model’s performance, especially in less commonly used languages.
If the training data contains flawed or overly simplified examples,
the model will inevitably reproduce these errors. This underscores
the importance of using high-quality and diverse datasets to train
models. Improving data quality and transparency in Al training
processes is crucial for developing more reliable LLMs.

One of the main findings in this research is the unsatisfactory
efficacy of BLEU. Our expert evaluation has proven that 25.2% of
comments were good predictions, without any errors. The differ-
ence between BLEU scores, presented on Figure 4, and expert
evaluations suggests that BLEU is not a suitable metric for
assessing the quality of code comments in non-English lan-
guages. BLEU is a universally used metric, which is well known
in the field. However, this finding indicates a need for utilising
more reliable evaluation metrics that can better reflect the quality
of generated comments.

The percentage of correct comments (25.2%) demonstrates that
there is substantial room for improvement in the model’s perfor-
mance in Polish. Enhanced training data and more accurate eval-
uation methodologies are necessary for non-English languages.
What is more, the model’s struggles with Polish grammar empha-
sise the importance of language-specific training and evaluation
methodologies. Addressing these challenges is crucial for improv-
ing the model’s performance in generating accurate and coherent
comments not only for English.

6.2 Recommendations

Based on our findings, we recommend the following steps to im-
prove the performance of models like Code Llama in generating
code comments for non-English languages:

(1) Improvement in Training Data: Create more diverse and
well-annotated training datasets, also for languages other
than English. Including a multiple languages and ensuring
the datasets contain accurate and descriptive comments will
help the model learn to generate better comments.

(2) Addition of Grammatically Sophisticated Data: With
the data which is not exclusively related to code and is more
sophisticated, the trained models might encounter less gram-
matical issues in other languages, as it is the case for English.

(3) Use of Alternative Evaluation Metrics: Use other metrics
for automated qualitative analysis of generated comments.
While BLEU has proven unsuitable, and Rouge-L was only
somewhat better, more effective metrics are needed to accu-
rately assess the quality of generated comments.

6.3 Future work

To build on our findings, future work should extend the evaluation
to other non-English languages. Additionally, it is crucial to en-
courage greater transparency from model creators regarding their
training procedures and origins of data. This will aid in the repro-
duction and improvement of models, allowing researchers to better
understand and address existing limitations.

Maksym Ziemlewski

Future models should also limit comments that contain code
commented out in the training corpus. This will improve the qual-
ity of the training data by preventing the model from generating
commented-out code, which is generally useless and incorrect.

Moreover, given the limitations of BLEU in our study; it is es-
sential to develop alternative evaluation metrics that are better
suited for assessing the quality of code comments. Encouraging re-
searchers to create and adopt these new metrics will help establish
more reliable standards for automated qualitative analysis.

6.4 Limitations

e Language Scope: This study focuses exclusively on Polish,
with no English benchmark for comparison, which may limit
the comparison between English and other languages.

¢ Bias in Labelling: There is potential bias from individual
labellers, which could affect the accuracy of error classifica-
tion and analysis. Although we implemented strict inclusion
criteria for each error to minimise bias, complete mitigation
may not be possible.

e Model Out-of-Scope Usage: The authors of Code Llama
state that the use of the model in languages other than Eng-
lish is considered out of scope. This limits inclusivity and
may impact the model’s performance.

7 CONCLUSION

In this paper we study the performance of Meta’s Code Llama 7B
model in generating comments for Java code written in Polish.

Through qualitative analysis using an open coding approach,
we identified common error categories in comment generation,
resulting in a taxonomy of errors for non-English languages. The
most frequent errors in 900 manually analysed generations included
the inclusion of code snippets, copying context, and late termination.
Polish language-specific challenges, such as frequent grammatical
errors and the generation of incomplete or incoherent comments,
underline the model’s limitations in handling complex syntax.

We highlight the weakness of BLEU as a metric for evaluating
code comment quality in non-English languages like Polish. Signif-
icant differences between BLEU scores and expert human analysis
suggest the need for more suitable evaluation metrics.

Our findings encourage the inclusion of diverse languages in the
training corpuses of large language models. Models predominantly
trained on English data struggle to generate accurate and contex-
tually appropriate comments in languages with distinct linguistic
features. Notably, only 25.2% of the comments were classified as
correct, leaving the space for a significant improvement.

8 RESPONSIBLE RESEARCH

In conducting this research we prioritised work integrity, trans-
parency, and reproducibility. We used an open coding approach,
which does not assume any preconceived notions about the anal-
ysed data. This methodology enables us to identify patterns and
categorise data, ensuring that our findings are grounded in the data
itself rather than any biases or assumptions of researchers.

To ensure the reproducibility of our research, we have made all
datasets and code used in this study publicly available. By doing so,
we provide the necessary resources for other researchers to replicate

LLM of Babel: Evaluation of LLMs on code for non-English use-cases

our work, validate our findings, and build upon our research. The
code used in this research is available online in a public GitHub
repository®.

The dataset used for evaluation only contains the publicly avail-
able code. We did not train any new models from the data. This
approach ensures that our study remains within ethical boundaries
and leverages freely available resources.

Our research aims to bridge the gap in the accessibility of LLMs
for use cases outside of English. By focusing on generating com-
ments for Java code written in Polish, we address the often over-
looked needs of non-English programming environments. Our work
propagates the importance of inclusive technology that supports a
diverse range of languages and contexts.

ACKNOWLEDGMENTS

To our Supervisors, for their invaluable guidance during the en-
tire project and their excellent feedback. To Mark Zuckerberg, for
creating this awesome model, even though we know you’re just
trying to build an army of code-commenting robots. To my col-
leagues from the research group: thank you for our collaboration
and striving towards this common goal. Also, to the Polish program-
ming community for providing so many hilarious and unrelated
comments in the GitHub files. You kept me very much entertained
while conducting this mundane task of labelling.

REFERENCES

[1] Anisha Agarwal, Aaron Chan, Shubham Chandel, Jinu Jang, Shaun Miller,
Roshanak Zilouchian Moghaddam, Yevhen Mohylevskyy, Neel Sundaresan, and
Michele Tufano. 2024. Copilot Evaluation Harness: Evaluating LLM-Guided
Software Programming. arXiv:2402.14261 [cs.SE]

[2] Bogdan Babych. 2014. Automated MT evaluation metrics and their limitations. ,
464-470 pages.

[3] Mohammad Bavarian, Heewoo Jun, Nikolas Tezak, John Schulman, Christine
McLeavey, Jerry Tworek, and Mark Chen. 2022. Efficient Training of Language
Models to Fill in the Middle. arXiv:2207.14255 [cs.CL]

[4] Brett A. Becker, Paul Denny, James Finnie-Ansley, Andrew Luxton-Reilly, James

Prather, and Eddie Antonio Santos. 2023. Programming Is Hard - Or at Least It

Used to Be: Educational Opportunities and Challenges of Al Code Generation. In

Proceedings of the 54th ACM Technical Symposium on Computer Science Education

V. 1 (Toronto, Canada) (SIGCSE 2023). Association for Computing Machinery,

New York, NY, USA, 500-506. https://doi.org/10.1145/3545945.3569759

Lenz Belzner, Thomas Gabor, and Martin Wirsing. 2024. Large Language Model

Assisted Software Engineering: Prospects, Challenges, and a Case Study. In

Bridging the Gap Between Al and Reality, Bernhard Steffen (Ed.). Springer Nature

Switzerland, Cham, 355-374.

[6] Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Linyi Yang, Kaijie Zhu, Hao
Chen, Xiaoyuan Yi, Cunxiang Wang, Yidong Wang, et al. 2024. A survey on
evaluation of large language models. ACM Transactions on Intelligent Systems
and Technology 15, 3 (2024), 1-45.

[7] Boxing Chen and Colin Cherry. 2014. A Systematic Comparison of Smoothing
Techniques for Sentence-Level BLEU. In Proceedings of the Ninth Workshop on
Statistical Machine Translation, Ondfej Bojar, Christian Buck, Christian Feder-
mann, Barry Haddow, Philipp Koehn, Christof Monz, Matt Post, and Lucia Specia
(Eds.). Association for Computational Linguistics, Baltimore, Maryland, USA,
362-367. https://doi.org/10.3115/v1/W14-3346

[8] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de
Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg
Brockman, Alex Ray, Raul Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf,
Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder, Mikhail
Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fo-
tios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex
Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shan-
tanu Jain, William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Josh
Achiam, Vedant Misra, Evan Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob McGrew, Dario Amodei,

(5

=

Shttps://github.com/mziem/LLM- of-Babel

—
L

[10

[11

=
&

[13

[14

[15

=
&

(17

(18

[19

[20

)
=

[22

[24

[25]

[26]

TU Delft, June 23, 2024, Netherlands

Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. 2021. Evaluating Large
Language Models Trained on Code. arXiv:2107.03374 [cs.LG]

Hyesun Choung, Prabu David, and Arun Ross. 2023. Trust in Al and its role in
the acceptance of Al technologies. International Journal of Human—Computer
Interaction 39, 9 (2023), 1727-1739.

Mohammad Fraiwan and Natheer Khasawneh. 2023. A Review of ChatGPT
Applications in Education, Marketing, Software Engineering, and Healthcare:
Benefits, Drawbacks, and Research Directions. arXiv:2305.00237 [cs.CY]

M. Izadji, J. Katzy, T. van Dam, M. Otten, R. Popescu, and A. van Deursen. 2024.
Language Models for Code Completion: A Practical Evaluation. In 2024 IEEE/ACM
46th International Conference on Software Engineering (ICSE). IEEE Computer
Society, Los Alamitos, CA, USA, 956-968. https://doi.ieeecomputersociety.org/
Fajri Koto, Nurul Aisyah, Haonan Li, and Timothy Baldwin. 2023. Large Language
Models Only Pass Primary School Exams in Indonesia: A Comprehensive Test
on IndoMMLU. EMNLP 2023 - 2023 Conference on Empirical Methods in Natural
Language Processing, Proceedings (2023), 12359 — 12374.

Zihao Li, Yucheng Shi, Zirui Liu, Fan Yang, Ninghao Liu, and Mengnan Du.
2024. Quantifying Multilingual Performance of Large Language Models Across
Languages. arXiv:2404.11553 [cs.CL]

Chin-Yew Lin. 2004. ROUGE: A Package for Automatic Evaluation of Summaries.
In Text Summarization Branches Out. Association for Computational Linguistics,
Barcelona, Spain, 74-81. https://aclanthology.org/W04-1013

Tal Linzen, Emmanuel Dupoux, and Yoav Goldberg. 2016. Assessing the ability
of LSTMs to learn syntax-sensitive dependencies. Transactions of the Association
for Computational Linguistics 4 (2016), 521-535.

Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua,
Fabio Petroni, and Percy Liang. 2023. Lost in the Middle: How Language Models
Use Long Contexts. CoRR abs/2307.03172 (2023).

Xin Luo, Han Lj, Jie Zhang, and J.P. Shim. 2010. Examining multi-dimensional
trust and multi-faceted risk in initial acceptance of emerging technologies: An
empirical study of mobile banking services. Decision Support Systems 49, 2 (2010),
222-234. https://doi.org/10.1016/j.dss.2010.02.008

Antonio Mastropaolo, Emad Aghajani, Luca Pascarella, and Gabriele Bavota. 2021.
An empirical study on code comment completion. In 2021 IEEE International
Conference on Software Maintenance and Evolution (ICSME). IEEE, 159-170.
Shervin Minaee, Tomas Mikolov, Narjes Nikzad, Meysam Chenaghlu, Richard
Socher, Xavier Amatriain, and Jianfeng Gao. 2024. Large language models: A
survey. arXiv preprint arXiv:2402.06196 (2024).

Jessica Ojo, Kelechi Ogueji, Pontus Stenetorp, and David Ifeoluwa Ade-
lani. 2024. How good are Large Language Models on African Languages?
arXiv:2311.07978 [cs.CL]

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. BLEU: a
method for automatic evaluation of machine translation. In Proceedings of the 40th
Annual Meeting on Association for Computational Linguistics (Philadelphia, Penn-
sylvania) (ACL ’02). Association for Computational Linguistics, USA, 311-318.
https://doi.org/10.3115/1073083.1073135

Baptiste Roziére, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiao-
qing Ellen Tan, Yossi Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, Jérémy
Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna Bitton, Manish Bhatt, Cris-
tian Canton Ferrer, Aaron Grattafiori, Wenhan Xiong, Alexandre Défossez, Jade
Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas
Scialom, and Gabriel Synnaeve. 2023. Code Llama: Open Foundation Models for
Code.

Max Schifer, Sarah Nadi, Aryaz Eghbali, and Frank Tip. 2024. An Empirical
Evaluation of Using Large Language Models for Automated Unit Test Generation.
IEEE Transactions on Software Engineering 50, 1 (2024), 85-105. https://doi.org/
10.1109/TSE.2023.3334955

Demin Song, Honglin Guo, Yunhua Zhou, Shuhao Xing, Yudong Wang, Zifan
Song, Wenwei Zhang, Qipeng Guo, Hang Yan, Xipeng Qiu, et al. 2024. Code
Needs Comments: Enhancing Code LLMs with Comment Augmentation. arXiv
e-prints (2024), arXiv-2402.

Florian Tambon, Arghavan Moradi Dakhel, Amin Nikanjam, Foutse Khomh,
Michel C. Desmarais, and Giuliano Antoniol. 2024. Bugs in Large Language
Models Generated Code: An Empirical Study. arXiv:2403.08937 [cs.SE]

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yas-
mine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhos-
ale, Dan Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucu-
rull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia
Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini,
Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut
Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet,
Todor Mihaylov, Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew Poulton,
Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva,
Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh Tang, Ross
Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov,
Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas Scialom. 2023. Llama 2:

https://arxiv.org/abs/2402.14261
https://arxiv.org/abs/2207.14255
https://doi.org/10.1145/3545945.3569759
https://doi.org/10.3115/v1/W14-3346
https://github.com/mziem/LLM-of-Babel
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2305.00237
https://doi.ieeecomputersociety.org/
https://arxiv.org/abs/2404.11553
https://aclanthology.org/W04-1013
https://doi.org/10.1016/j.dss.2010.02.008
https://arxiv.org/abs/2311.07978
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.1109/TSE.2023.3334955
https://doi.org/10.1109/TSE.2023.3334955
https://arxiv.org/abs/2403.08937

TU Delft, June 23, 2024, Netherlands

Open Foundation and Fine-Tuned Chat Models. arXiv:2307.09288 [cs.CL]

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel
Bowman. 2018. GLUE: A Multi-Task Benchmark and Analysis Platform for
Natural Language Understanding. In Proceedings of the 2018 EMNLP Workshop
BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP. 353-355.
Chaozheng Wang, Zongjie Li, Cuiyun Gao, Wenxuan Wang, Ting Peng, Hailiang
Huang, Yuetang Deng, Shuai Wang, and Michael R. Lyu. 2024. Exploring Multi-
Lingual Bias of Large Code Models in Code Generation. arXiv:2404.19368 [cs.SE]
Wikipedia contributors. 2023. ROUGE (metric) — Wikipedia, The Free Ency-
clopedia. https://en.wikipedia.org/w/index.php?title=ROUGE_(metric)&oldid=
1187242316 [Online; accessed 10-June-2024].

Frank F Xu, Uri Alon, Graham Neubig, and Vincent Josua Hellendoorn. 2022. A
systematic evaluation of large language models of code. In Proceedings of the 6th
ACM SIGPLAN International Symposium on Machine Programming. 1-10.

Lele Zhao, Liping Zhang, and Sheng Yan. 2019. A Survey on Research of Code
Comment Auto Generation. Journal of Physics: Conference Series 1345, 3 (nov
2019), 032010. https://doi.org/10.1088/1742-6596/1345/3/032010

Albert Ziegler, Eirini Kalliamvakou, X. Alice Li, Andrew Rice, Devon Rifkin,
Shawn Simister, Ganesh Sittampalam, and Edward Aftandilian. 2022. Productivity
assessment of neural code completion. In Proceedings of the 6th ACM SIGPLAN
International Symposium on Machine Programming (San Diego, CA, USA) (MAPS
2022). Association for Computing Machinery, New York, NY, USA, 21-29. https:
//doi.org/10.1145/3520312.3534864

[27]

[28]

[29]

[30]

[31

[32

A TAXONOMY

This appendix contains the detailed descriptions of each error cate-
gory in the taxonomy. For each error category, the inclusion criteria
are given.

A.1 Model Specific Errors

Model specific errors are all errors which are related to the workings
of LLMs.

Incoherent Generation (MS-1G). Model outputs random words which
have no logic between them

Copy Context (MS-CC). Model copies the surrounding context ver-
batim

Memorisation. Model recognised the code to some capacity

(1) Contains PII (MS-ME1).
Personally identifiable information is included in the gen-
erated comment (fictional or did not occur in the original
prompt)

(2) Contains URL (MS-ME2).
URL for a file or repository is included

(3) Verbatim Memorization (MS-ME3).
1) The model memorized the content verbatim
2) the text would not be generated if not for memorization

Repetition. Model generates and repeats what it has already said
it in some capacity
(1) Pattern repetition (MS-RE1).
Model generated a repeating pattern: eg. 1,2,3,4,5,6,
(2) Verbatim repetition (MS-RE2).
Model generated verbatim repetition: eg. i am repeating i
am repeating i am repeating

Early Termination (MS-ET). Model stops generating in the middle
of prediction, while the comment is clearly not complete or did not
generate anything

Late Termination (MS-LT). The comment continues producing con-
tent even though it should have stopped earlier. e.g 1. When it

10

Maksym Ziemlewski

includes unnecessary empty tags (@version) 2. Continues adding
line comments even though it is unnecessary

A.2 Linguistic Errors

Linguistic errors are all errors related to the linguistic content of
the generated text

Grammar. Language is correct, grammatical mistake was made.

(1) Plurality (LG-GR1).
Incorrect usage of plurality rules (the subject and verb in a
sentence do not agree in number. For example, "The book
are on the table" should be "The book is on the table.")
(2) Conjugation (LG-GR2).
Incorrect usage of conjugation rules
(3) Gendering (LG-GR3).
Incorrect gendering in case the language has gendered nouns
(4) Spelling (LG-GR4).
Incorrect spelling
Capitalisation (LG-GR5).
Prediction capitalizes letters that grammatically is not cor-
rect to capitalize: e.g all capitals, every word begins with
capital
Cohesion (LG-GR6).
a) Mistake in using a language that involves organizing
words and phrases that don’t make sense (incoherence).
b) Missing (or inappropriate usage of) a comma or a quota-
tion mark
c) Lack of local cohesion, which is logical and grammat-
ical consistency between consecutive, adjacent sentences
in paragraphs. Significant disorders of the coherence of the
statement are, for example, paragraphs built from a sequence
of sentences that are neither logically nor grammatically re-
lated to each other (a stream of loose thoughts, associations).
d) Syntax errors in writing refer to mistakes in the arrange-
ment of words and phrases in a sentence that violate the
rules of grammar and sentence structure
- Run-On Sentences: These happen when two or more inde-
pendent clauses are joined without appropriate punctuation
or conjunctions. For instance, "I like to read I also enjoy writ-
ing"
- Misplaced Modifiers: This error occurs when a word or
phrase is placed too far away from the word it is meant
to modify, leading to confusion or ambiguity. For example,
"Running quickly, the bus was missed." This suggests that
the bus was running quickly, not the person.
- Double Negatives: Using two negative words in a sentence
can create confusion or ambiguity. For example, "I don’t
want none of that" should be "I don’t want any of that"
- Lack of Parallel Structure: This occurs when a list of items
in a sentence is not presented in a parallel manner. For ex-
ample, "She likes hiking, to swim, and reading"" This should
be "She likes hiking, swimming, and reading"

G

=~

—
=)
~

Wrong language. The model predicts a comment (or significant
part of it) in a language other than the target language

https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2404.19368
https://en.wikipedia.org/w/index.php?title=ROUGE_(metric)&oldid=1187242316
https://en.wikipedia.org/w/index.php?title=ROUGE_(metric)&oldid=1187242316
https://doi.org/10.1088/1742-6596/1345/3/032010
https://doi.org/10.1145/3520312.3534864
https://doi.org/10.1145/3520312.3534864

LLM of Babel: Evaluation of LLMs on code for non-English use-cases

(1) Undesired translations (LG-WL1).
Translations that are correct but undesired in the language
because the words are seldomly used in that context.

(2) Incorrect language (LG-WL2).
The model predicts a comment (or significant part of it) in a
language other than the target language.

Usage of incorrect synonym (LG-1S). Usage of a similar word with
an incorrect meaning in context (e.g. home->house)

A.3 Semantic Errors

Semantic errors are all errors related to the semantics or meaning
of the generated content.

Hallucination. Category for hallucination generations, i.e. factu-
ally incorrect or not related to input prompt.

(1) Misplaced Facts (SE-HA1I).
Randomly inserted facts (such as names, dates, or events)
are present in the content and do not align with the context
or expected content. For example, referencing an event that
did not happen or mentioning the wrong/finctional person.
(2) Contextual Discrepancy (SE-HA2).
Hallucination not grounded in the provided context.
(3) Educated Guess (SE-HA3).
a) Syntactically correct but semantically or factually incor-
rect
b) Grounded in the provided context.

Code Snippet Inclusion. Model generates actual code outside of
comment

(1) Commented out code (SE-CS1).
Code that resides in a code block.

(2) Code intended to run (SE-CS2).
Code that the model intends to run.

Missing Details (SE-MD). Description does not fully describe the
content of the summarized code. Current information does not
describe the full functionality of code being summarized. Current
information does not describe the entire purpose of the summarized
code. Generated comment is too generic.

Too Specific (SE-TS). Model copies the surrounding context verba-
tim.

A.4 Syntax Errors

Syntax errors are all errors which are related to the syntax of the
comments.

Incorrect comment format. Model uses outdated format of javadoc.

Model uses comment format that is inconsistent with the standards.
Errors with javadoc format.

(1) Style Inconsistency (ST-IF1)
a) Model uses outdated format of javadoc
b) Model uses comment format that is inconsistent with the
standards
c) Model repeated auto-generated-comment like format which
is not informative enough, instead of generating an actual
description

TU Delft, June 23, 2024, Netherlands

d) Model does not follow the javadoc format that is present
in the rest of the file (if present format is correct)

(2) Omitted Identifier (ST-IF2)
a) Model starts enlisting @params, but misses some of them
b) Generation started with a tag @return but then doesn’t
have @params
c) Generated @params, but does not have @return for a
method that does not return void

A.5 Miscellaneous
Anything that does not fall into any of the above categories

B EXAMPLES OF CATEGORIES

This appendix contains the examples of selected error categories.

B.1 Errors Related to Token Splitting

(1) Original comment:

// DFS na tablicy standw - sprawdzenie wszystkich
mozliwos$ci wziecia setdw.

Masked-out comment:

// DFS na <SUF>

Predicted comment:

// DFS nawetrzymuje <rest of the generation where
late termination occured, omitted for clarity>
The word "nawetrzymuje" does not exist in Polish and is a
failed attempt of trying to generate something meaningful
in the middle of the token.

Original comment:

//bank ma liste bankomatow i klientoéw
Masked-out comment:

//bank ma <SUF>

Predicted comment:

//bank matoéw

The generated word does not make any sense in the provided
context and is an incomplete word for this context. This
erroneous generation is also caused by mid-token invocation.

—
S
~

B.2 Excluded comments

(1) /*x
* @author Marcin Milkowski
*/

(2) /*x
* K1 rowid
*
* @param field rowid B4
* @return RowId
*/
File contains Chinese characters.

(3) // How big do we draw our circle?
Comment is in English, not Polish.

(4) //1log(x) = z*(2+z"2x((2.0/3)+2"2*((2.0/5)))) Com-
ment is a mathematical formula, with no point to predict to
evaluate performance in Polish.

	Abstract
	1 Introduction
	2 Related Works
	3 Methodology
	3.1 Data Preprocessing
	3.2 Comment Masking and Fill-in-the-Middle Technique
	3.3 Random Selection
	3.4 Quantitative Analysis
	3.5 Qualitative Analysis and Open Coding in Taxonomy Development
	3.6 LLM Temperature Experiment Setup
	3.7 Error Tracking and Iterative Refinement

	4 Data
	4.1 Dataset
	4.2 Language

	5 Results
	5.1 Quantitative
	5.2 Error Taxonomy
	5.3 Temperature Influence

	6 Discussion
	6.1 Implication
	6.2 Recommendations
	6.3 Future work
	6.4 Limitations

	7 Conclusion
	8 Responsible Research
	Acknowledgments
	References
	A Taxonomy
	A.1 Model Specific Errors
	A.2 Linguistic Errors
	A.3 Semantic Errors
	A.4 Syntax Errors
	A.5 Miscellaneous

	B Examples of categories
	B.1 Errors Related to Token Splitting
	B.2 Excluded comments

