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Introduction 1

In the past decades automated imaging systems have become common tools in a
wide range of settings, i.e. not only in science and industry but also in our daily
life. With increasing amounts of generated data and utilisation of imaging systems
the need for automated image processing and analysis techniques grows day by day.
For an example of these systems one can think of e.g. photo and video cameras, CT
and MRI scanners, microscopes and telescopes. All these systems require somekind
of interpretation by human or machine.

A crude division of the field of image processing is to divide it into a qualitative
and quantitative part. On the qualitative side the human visual system (HVS) excels
and is still unrivalled after half a century of scientific progress. Image processing can
assist the HVS to make interpretation of images easier by transforming the data in
such a way that it better matches the characteristics of the HVS. In other words, im-
age processing should enhance desired features and suppress the others, especially
noise. Examples of these techniques are non-linear contrast enhancements, multi-
frame super-resolution reconstruction techniques and (non)-linear filter schemes.
When, however, quantitative aspects become more important, computerised meth-
ods are superior to the HVS. Such superiority arises in the first place from the fact the
HVS is not designed to measure but to recognise. Therefore applications that require
measurements with high accuracy, repeatability or objectivity benefit the most from
automated image processing. Applications that provide data in need for thousands
of measurements just benefit from the savings in man-power and spares the operator
the boredom of repeated tasks.

1.1 Problem

We recognise that virtual all image information is embedded in intensity and/or
spectral transitions giving rise to boundaries. This implicates that regions with lit-
tle variation in measurement values are essentially void of information. Structural
image variations can in overwhelming majority be locally described by lines, edges
or surfaces boundaries. In addition to contrast and scale, the orientation of these
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transitions plays the most important role in many vision, image analysis and recog-
nition tasks. The HVS incorporates brain cells that give selective responses to each
of these transitions individually [14]. Images are thus transformed into a redundant
representation in the brain which allows for easier analysis. In the case of highly
structured image content or when multiple simple structures are present this en-
ables recognition. In generic image processing only simple neighbourhoods can be
handled. A generic filter is not aware that the neighborhood it is applied to may
be composed of multiple instances of simple structures. These filters yield a single
output value that cannot be interpreted in terms of the constituent simple structures.
Note that local averaging filters give meaningful results in homogeneous regions
that are hampered by noise, but fail when the filter support includes a transition, i.e.
edge or line. A first derivative filter is the proper tool to process/analyze edges, but
fail when multiple edges (including lines) are within the filter kernel. To be able to
apply these generic filters to ”complex” or multimodal neighbourhoods, i.e. regions
with multiple oriented simple structures such as crossing lines, the unentanglement
into simpler neighbourhoods is an attractive option.

In this thesis we will first focus on quantitative orientation measurements in mul-
timodal regions. This to enable direct recognition or segmentation as well as the
application of image processing on these simpler constituencies. Several different
new approaches are introduced and compared to existing work. We want to make
clear that we do not enhance the image content but try to perform measurements
such that direct detection is possible also in multimodal image regions. Once the
underlying simpler image building blocks, mostly lines and edges, are found sub-
sequent image analysis can perform measurements a lot easier. For the application
of image processing and analysis we focus on one class of these simpler neighbour-
hoods: curvilinear objects. To be more specific we aim to automatically analyse DNA
molecules imaged in transmission electron microscopy (TEM) and atomic force mi-
croscopy (AFM). As such the two main technical topics in this thesis are:

• multi-valued orientation measurements in complex neighbourhoods, and

• distance transforms and minimum cost path methods for the extraction of the
medial axis of curvilinear structures.

Single Orientation Neighbourhoods

Let us first discuss the nature of simple building blocks before we move to com-
plexer neighbourhoods and explain our approaches. In essence, orientation is the
axis along which the intensity variations in a local neighbourhood in an image oc-
cur. As orientation in practice is a property of a local neighbourhood or window
and not a global property, Granlund and Knutsson introduced the concept of simple
neighbourhoods [56, 62, 38, 51]. Simple functions or neighbourhoods can be seen as
structures which vary along one or more dimensions but are constant in the other di-
mensions. Examples of such structures are lines, planes and edges. Mathematically
a simple neighbourhood with rank r is present in a scalar image f : Rn → R if we
can write:

f(x) = g(vT1 x, ...,v
T
r x) (1.1)
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Figure 1.1: (a) A simple function with an arbitrary signal along the translation variant axis
v and a constant signal along the translation invariant axis (dashed line). (b)
Similar as in (a) but with two superimposed simple structures, i.e. two crossing
lines.

with g a function of r < n arguments, x ∈ Rn the Euclidean coordinate and vi the
column vectors representing the r non-constant dimensions. As illustrated by Fig.
1.1(a), the direction of the vector representing the non-constant dimensions of a sim-
ple function is not unique. To avoid this ambiguity the property of orientation is
introduced:

The orientation of a simple n-D neighbourhood can be specified by either
the n− r orthogonal axes in which the neighbourhood is translation invari-
ant or by the r axes that are orthogonal to the translation invariant axes.

For example the orientation of a line in 3D is given by its axis of symmetry but also
by a set of axes spanning the plane perpendicular to this axis. The reverse holds for
planes, e.g. the axes spanning the plane represent the translation invariant axes but
more intuitive is the use of its complement i.e. the normal to the plane. As in this
thesis the highest dimensionality we consider is 3D, we always choose a single axis
representation. In higher dimensions, objects exist with a rank higher than one and a
complement which also has a rank higher than one, which means that multiple axes
are needed for the description of the orientation of such a structure (see Fig. 1.2).

Orientation estimation in simple neighbourhoods has been considered in the lit-
erature for a long time, see e.g. [9, 49, 40, 46, 105]. The measurement of orientation
can be the final goal but it can also serve as a starting point for further analysis steps
like curvature estimation [53, 108, 111], directed diffusion [154, 104, 45] or texture
characterisation [32]. Historically, image processing algorithms are designed for sim-
ple neighbourhoods. Therefore numerous methods show an excellent performance
on isolated structures but few of them can cope with more complex neighbourhoods
where the assumption of isolation no longer holds, i.e. in regions where multiple
image primitives overlap, touch or cross.
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Figure 1.2: Diagram relating simple functions to structures and dimensionality.

1.2 Approaches

1.2.1 Multi orientation estimation

So far we considered the presence of a single structure in a local neighbourhood. Ob-
viously not all regions in an image can be represented by a single simple function.
We can, however, describe most regions as a composition of these simple structures
each with its own orientation, see Fig. 1.1(b). In practice, the number of orienta-
tions that cross in a local neighbourhood is small. If considering random placement
of line-like structures in 2D for the moment, then it is clear that these lines will in-
tersect, but the chance that more than two cross in the same point is small. As the
dimensionality increases the likelihood of crossing events decreases further. Hence,
multi-orientation estimation in images is only considered for a few (2,3,4) overlap-
ping image primitives.

Existing literature on multi orientation analysis can roughly be divided in two
classes: a tensor based and a filterbank based approach. The first class builds upon
the structure tensor introduced for single orientation analysis by Zenzo [161], Bigün
and Granlund [8] and Kass and Witkin [67]. Only recently, efforts have been made
to extent this approach to multiple orientations. These efforts have followed two
paths, either by introducing higher order tensors were the traditional tensor is often
a limited case or by a non-linear averaging approach which leads to non linear ten-
sors. Shizawa and Iso [130] introduced the concept of ideally∗ overlapping image
primitives followed by Aach et al. [1] and Mota et al. [92]. From the assumption
that the underlying primitives are translation invariant they derived a minimisation
criterion. They translated this criterion in a tensor representation, where the eigen-
vectors are mixed orientation vectors. Although the principle is easily extended to
more than two overlapping patterns there is so far no efficient way of decomposing
the mixed vectors into the orientation vector of the underlying image primitives. In
Herberthson et al. [61] outer products are applied to orientation pairs. The method
yields an analytical solution for pairs of orientations. Brox et al. [16] introduced the
non-linear structure tensor in which the classical Gaussian regularization is replaced

∗each primitative is assumed to be truely translation invariant along the orientation axis.
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by a discontinuity preserving nonlinear diffusion allowing for orientation estimates
in close proximity of e.g. crossings and junctions. Moltz et al. [90] constructed a
histogram of orientations in a neighbourhood where the orientations are calculated
with a structure tensor on a smaller scale. The second class in literature on multiple
orientation is based on a rotated set of orientation selective filters [55, 49, 7, 40, 41].
These filters are widely used for image processing tasks like detection of bifurcations,
crossings and corners, optic flow estimation and line segmentation. To obtain a high
angular resolution, however, a huge amount of filters is required. To get a better
trade-off between orientation selectivity and computational demands Freeman and
Adelson [46] introduced the concept of steerable filters, i.e. the response from a fil-
ter for a specific orientation can be calculated as a linear combination of a relative
small set of basis filters [6, 99, 88, 60, 51, 4]. Walters [153] was the first to see orienta-
tion as a independent variable, i.e. to see orientation as a separate dimension in the
image space. In the literature this concept is known under different names: orien-
tation space, orientation scores, orientation channels and orientation bundles. Most
authors use a filterbank with orientation selective filters to construct the orientation
dimension(s) [160, 66, 18, 51, 153, 46, 84, 45, 44]. Vliet and Verbeek [148] proposed a
local Hough transform as basis for the construction of an orientation space. The ap-
proach by Michelet et al. [89], not fitting either of the mentioned classes , proposes a
recursive iterative approach to minimise the local difference between the image and
a neighbourhood model of straight lines.

The first part of this thesis is dedicated to the detection of these multimodal re-
gions and subsequent orientation estimation of its constituents. Each image primi-
tive carries its own information. In complex neighbourhoods, however, this informa-
tion becomes entangled as the contributions of the respective underlying structures
are mixed. Mixing is not only caused by overlap, e.g. also during image formation
and image analysis mixing can occur. In unimodal regions this will normally only
cause some blurring leaving the orientation information untouched, this is unfor-
tunately not the case in multimodal and highly curved regions. As such the true
challenge of orientation measurements in multimodal regions becomes to disentan-
gle the contributions of the underlying structures.
Several approaches to solve this problem are pursued in this thesis, i.e. methods
based on

• orientation selective filters: filters which only select a small band of orienta-
tions are used to build an orientation histogram expressing the evidence for
the presence of each orientation.

• symmetry: the symmetry in the orientation tensor map is utilised to detect and
estimate the orientation of saddle points and crossings.

• streamlines: streamlines are used to connect points in complex neighbour-
hoods to locations where the underlying structure is unimodal.

• orderless-clustering orientation analysis: when each image primitive is anal-
ysed separately a distinct orientation can be found. As such analysing the ori-
entations in a multimodal regions should lead to multiple orientation clusters.

• spatio-clustering orientation analysis: similar to the previous approach only
the spatial connectivity between pixels is taken into account.
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(a) (b)

Figure 1.3: (a) Huygens’ principle, each source on wave front acts as new source from which
the envelope constitutes a new wave front. (b) Fastest path, dotted line, over a
winding road with the centreline denoted by the dashed line.

1.2.2 Path extraction from locally one-dimensional objects

Restriction from all possible simple neighbourhoods to one class of these simple
neighbourhoods, curved line-like objects, sets the scope for the rest of this work. The
goal is to automatically analyse DNA molecules in 2D images acquired by Trans-
mission Electron Microscopy (TEM) and Atomic Force Microscopy (AFM). In the
following we also assume that any complex neighbourhoods in the images are al-
ready disentangled by suitable methods to resolve these neighbourhoods into sim-
pler substructures. Post-processing of the structures is treated as if they were stored
in separated images. This is, however, not necessary if dedicated algorithms are
implemented for the path extractions that match the chosen representation.

The analysis of DNA properties from 2D images is based on statistical chain de-
scriptors which rely on tracing of the DNA backbone or centreline. Please refer to
Fig. 1.5 for a typical TEM image and a path through the centreline of a molecule. To
this end the shape of the centreline of the individual molecules is analysed to esti-
mate the statistical properties of the ensemble. The result is used to answer questions
with regard to the dimensionality of the adhered DNA in relation to the flexibility
of the polymer chain in solution. With this application in mind, we hence forth pose
a few requirements for the centreline extraction method. Most importantly, the cen-
treline extraction method should be able to cope with varying contrasts along the
structure. The contrast is affected by variations in the density of the staining of the
molecule which in turn makes the strand appear as beads on a string. Furthermore,
the path extraction should yield a continuous and differentiable representation of the
centreline; no model is to be imposed. The method should also not rely on accurate
segmentations of the object and finally the method should yield a description of the
centreline with a subpixel accuracy and precision. This last requirement is crucial to
draw sustained conclusions from properties derived from correlation effects such as
the tangent-tangent correlation of the DNA over distances of a few nanometers only,
which are imaged onto a few pixels.

The extraction of centrelines of stringlike objects is a commonly encountered
problem in image processing. Examples can be found in application areas such as
medical image processing in X-ray angiographs, traffic lane surveillance and track-
ing of tubular structures in biological cells. In the following we review the literature
on existing techniques to find the medial axis or centreline of stringlike objects. One
of the first methods to be published was the grassfire propagation algorithm by Blum
[10] in 1967. Imagine a dry grass patch, the object, which is set on fire on the bound-
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ary. The fire is free to propagate inwards with constant speed. Whenever the fire
fronts meet, the fire is quenched. The points where the fire was quenched forms
the skeleton or medial axis of the object. Also well known is the Voronoi diagram
approach. The Voronoi diagram of the object depicts boundaries at equal distance
from at least two boundary points, as such the medial axis is a subset of the Voronoi
diagram. Probably the most well known method is the thinning approach or bi-
nary skeletonisation [125, 143, 12, 131, 64]. This method iteratively peels off a binary
shape while preserving its geometrical and topological features. All these methods
yield a discrete skeleton of the object either in the form of a set of connected points or
as a connected set of line segments. These methods rely on an accurate segmentation
of the object prior to processing and are as such generally sensitive to noise.

The following methods do not rely on an accurate segmentation of the object and
work directly on the grayvalue representation of the image. This representation is
first transformed such that it can function as a potential which is to be minimised
subsequently to yield the medial axis. One method is known as the active contour
or snake method [68, 22]: starting from some initial contour the method tries to
minimise the energy in the contour, where the energy is the sum of an internal and
external source. This external energy should be minimal at the actual contour and
the internal energy should be minimal for the expected shape of the contour. As such
only when the internal energy is constant no model is imposed. Another existing
method is the minimum cost path approach [117, 139, 141, 136, 126, 79]. This method
minimises a cumulative cost, i.e. the sum of some gray values, along a path between
two points, where the cost-function forms a channel in which the local minima lie
exactly along the centreline of the object, see Fig. 1.4. The cost function can be just the
grayvalue representation of the image or a transformation of it. The latter method is
taken as a starting point as it potentially fulfils all our requirements for the centreline
extraction for the DNA backbone. The existing methods on minimum cost paths will
now be discussed, their shortcomings exposed and we will improve on them to suit
our application.

Minimum cost paths

The minimum cost path problem is encountered in various research areas of science
and engineering like acoustics, optics, optimisation theory and path planning. Basi-
cally it is applicable to any problem which can be formulated as the search for the
fastest path through a medium (with a spatial varying speed function). In optics
the problem corresponds to finding the path that a ray of light follows between the
light source and observer while traversing a medium with a space-variant refractive
index. As such Huygens’ principle is applicable, i.e. each point on the wavefront
can be seen as a secondary source from which the envelope constitutes a new wave-
front, see Fig. 1.3(a). The construction of the wavefront for discrete maps, such as
a pixel grid, was first solved for the image processing domain by Dijkstra [30]. His
idea is applicable to a wider range of problems and allows for an ordered approach.
According to the Huygens principle one must use point sources to get the correct
solution. Due to difficulties modelling the wavefront correctly as spherical waves
and accounting for their interaction this is not yet achieved in image processing. The
earliest wavefront models relied on chamfers to describe the local metric which in-
troduces significant deviations from the exact solution [117, 139]. Later, the local
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(a) (b) (c)

Figure 1.4: (a). Synthetic curvilinear object, used as cost function to derive the cumulative
cost map with respect to x. The isochrone lines denote the cumalative cost map
(gray value denotes time) and the white dashed line denotes the backpropagated
minimum cost path with the start of the descent marked by o and the end point
by x. (b-c). Respectively the cost and cumulative cost map of (a) depicted as
height map.

wavefronts were modelled as planar waves [136, 126, 79] which reduced the errors.
In this thesis we introduce a new scheme to model the wave locally as a circu-

lar/spherical wave. This yields exact results for space-invariant cost functions where
earlier approaches did not, and it yields improved results for space variant cost func-
tions. As stated in the previous section, we are interested in a method which yields
an accurate description of the centreline of curvilinear objects. The minimum cost
path approach, however, does not find it: they tend to cut the corner. This behaviour
is caused by the same reason a race car driver takes the inner bend, i.e. although the
maximum attainable speed is lower in the innerbend the path is much shorter result-
ing in an overall faster arrival at the finish, compare Fig. 1.3(b). Note, however, that
on a straight road the car will follow a straight track. Here we present a new iterative
approach to solve this problem based on just this observation, i.e. the corner cutting
problem is non existent for straight linear structures. In the image domain the cost
function is represented by grayvalues and their transitions are locally smooth, dis-
regarding noise and assuming proper sampling of a bandlimited input. The image
formation process for TEM and AFM can in our case be modelled as a convolution of
the sample with the point spread function or impulse response of the imaging sys-
tem. This leads inevitably to a blurring/smoothing of the object and the greyvalues
at the edges. If the grayvalue landscape is chosen as the cost function of the object it
is therefore a smooth valley and not infinitely steep. In turn, this smoothness leads
inevitably to the cutting of corners in minimum cost path approaches.

DNA deformations near charged surfaces

Deoxyribonucleic acid (DNA) is a very important cell structural element, which de-
termines the level of gene expression by virtue of its interaction with regulatory
proteins. It consists of two polymers each with a sugar phosphate backbone con-
nected into a double helix by the bases, Adenin, Guanin, Cytosin and Thymin. The
micromechanics of DNA can be described by several models, the best known of
which is the wormlike chain (WLC) model for semi-flexible polymers [76, 77]. It de-
scribes the polymer as an elastic homogeneous rod. Note that other models, such
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Figure 1.5: (a) DNA molecules stained with uranyl acetate and visualised by transmission
electron microscopy. (b) Single molecule with superimposed the extracted cen-
treline of the molecule. The images are kindly provided by Dr. Dmitry Cherny,
PhD, Dr.Sc.

as the freely joint chain, which describe the polymer as a chain which only bends at
the joints yield the same descriptors given sufficiently long molecules with respect
to their stiffness [122, 15]. In the WLC model the polymers are described by their
bending rigidity which is the only free parameter of the model. The characteristic
bending length scale is called the persistence length P . One can derive various char-
acteristic functions to describe ensembles of these polymers based on R(l) and θ(l),
respectively the point-to-point distance and orientation difference as function of the
contour length l. Examples of these functions are the kurtosis, the mean squared
end-to-end distance and the orientation correlation function, all of which can be de-
rived by averaging over all possible conformations [76]. All these functions depend
on the persistence length P which denotes the stiffness of the polymer. Comparing
these descriptors with distributions derived from measurements of DNA molecules
allows for the validation or possible rejection of the WLC model in the first place and
for measuring the persistence length in the second place. All these statistical descrip-
tors can only be computed after the centreline of the DNA backbone has been found
from the images. Now it is also evident why it is so important to extract the medial
axis to such a high degree of precision and why subpixel localisation is absolutely
mandatory.

Here we use TEM and AFM to characterise the flexibility of double-stranded
DNA. The analysis of long polymers like DNA with microscopic techniques requires
the deposition of the molecules on a surface in a dried state. Adhering the DNA to
a surface will cause the loss of one degree of freedom and can possibly induce dis-
tortions in the DNA. In the literature there is a fair agreement that the persistence
length of DNA in solution is close to 50 nm, given certain solution conditions. There
is, however, still discussion on the conformational state of adhered molecules, i.e.
if the molecules are in a 2D or 3D state, or even a fractal state. Any deviation of
a found persistence length from the literature value is often interpreted as a three-
dimensional state of imaged DNA due to surface trapping by lack of a better ex-
planation [63, 138, 93]. The 2D state indicates an equilibrium state close to binding
while the 3D state would indicate trapping in which the 3D state before adhering
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is partly preserved. In this thesis we answer the questions regarding the adhered
state of the molecules as well as the question of induced deformations during the
adhering process by providing a combination of dedicated image processing and a
model describing the statistical behaviour of DNA molecules confined to a plane. By
extending the number of statistical quantities, we prove a two-dimensional equilib-
rium state of immobilised molecules.

1.3 Structure of the thesis

The first part of this thesis focuses on orientation estimation in multi orientation re-
gions. These regions are of utmost importance as single orientation regions cross
here and as such carry most of the image information. Traditional image processing
produces erroneous output in these regions despite of there importance. Once we
can determine where in the image these complex regions are located we can pro-
ceed to determine the orientation of the constituents after which a detection step is
applied to the (redundant) representation, permitting disentanglement. Although
the methods presented in the first part of the thesis vary considerably, all methods
adhere to this scheme.

In Chapter 2 we extend the orientation space transform from traditional 2D to
3D. This extends the redundant representation from a 2D+ϕ to a 3D+(ϕ, ϑ) repre-
sentation. Here we use a filterbank based approach and we introduce a set of new
orientation selective filters, a multi resolution orientation sampling grid and a novel
way to visualise the resulting 5D orientation space. A new crossing detector is intro-
duced in Chapter 3 based on the detection of multiple orientations in a local region.
This method utilises symmetry properties in the gradient field of an image to de-
tect and determine the orientations present in crossings and saddlepoints. Chapter 4
introduces yet another method, based on streamlines, to detect junctions or corners
and accurately measure the orientations of underlying image primitives. In Chap-
ters 5 and 6 new multimodal orientation analysis methods are presented based on
clustering of the gradient fields. The clustering is performed in an orderless fashion
(Chapter 5) and in a spatio-orientation approach utilising the orientation pureness of
each individual pixel (Chapter 6). These methods disentangle multi-modal regions
and assign each pixel a unimodal structure. The unimodal regions allow in turn for
standard orientation analysis methods.

A special class of these unimodal regions are curvilinear objects; in our applica-
tion double stranded DNA (dsDNA). We want to apply image processing to auto-
matically analyse images of DNA obtained by TEM and AFM. The biophysical prop-
erties of DNA are classically described by the worm like chain model (WLC) with
the persistence length as only free parameter. The formulae describing ensemble av-
erages as the end-to-end distance or the tangent-tangent correlation of this model
scale with dimensionality, that is only the persistence length is scaled. We answer
the question wether imaging of DNA on a flat support really can give a clear indica-
tion of the dimensional state of the deposited DNA. Next to that we investigate the
flexibility of DNA over very short distances (< 10 nm) as recent studies indicate a
deviation from the WLC here. To this end we developed the necessary tools to find
the centreline of curvilinear structures. We start with a review of existing distance
transforms in Chapter 7 and then present a distance transform based on a circular
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wave approximation as an alternative to the well known planar wave approxima-
tion which increased the limited accuracy and precision of older methods. To extract
centrelines, the ”cutting of corners” effect associated with minimum cost paths is
addressed in Chapter 8. We present an iterative approach that does not suffer from
this defect. Finally in Chapter 9 we apply all the above to the flexibility analysis of
DNA near charged surfaces.





3D-Orientation space;
filters and sampling

2

abstract∗

The orientation space transform is a concept that can deal with multiple oriented
structures at a single location. In this paper we extend the orientation space trans-
form to 3D images producing a 5D orientation space (x, y, z, φ, θ). We employ a tun-
able, orientation selective quadrature filter to detect edges and planes and a separate
filter for detecting lines. We propose a multi-resolution sampling grid based on the
icosahedron. We also propose a method to visualise the resulting 5D space. The
method can be used in many applications like (parametric) curve and plane extrac-
tion, texture characterisation and curvature estimation.

2.1 Introduction

Three-dimensional images can be seen as compositions of numerous simple struc-
tures like planes, textures, edges and lines. Therefore multiple oriented structures
can be present at a single point. Here we will describe a method which can deal with
such occurrences in 3D. Detectors developed in the past, like the tensor approach
[8, 9, 72], can handle single oriented structures but often fail on non-isolated struc-
tures. Therefore we present a multi orientation analysis as first proposed by Walters
[153] and later implemented in 2D by e.g. Ginkel [51]. In our multi-orientation anal-
ysis, we probe to see how much oriented structure is present that exhibits the probe
orientation. We filter the image with rotated versions of an orientation-selective tem-
plate filter m and stack the accumulated evidence in two extra angular dimensions

Im(x, φ, θ) = I(x)∗m(x;φ, θ). (2.1)

∗The content of this chapter has been published in: F.G.A. Faas and L.J. van Vliet. 3d-orientation
space; filters and sampling. In J. Bigün and T. Gustavsson, editors, SCIA’03, Proceedings of the 13th
Scandinavian Conference on Image Analysis (Göteborg, Sweden), LNCS 2749, pages 36–42. Springer, June
29 -July 2 2003 [35].
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Here x contains the spatial dimensions, x, y and z. The template orientation is given
by φ and θ. With φ the counterclockwise angle in the xy-plane measured from the
positive x-axis, ranging from 0 to 2π, and θ measures the angular distance from the
positive z-axis, with θ ranging from 0 to π. The asterisk denotes the convolution
operator.
Now let us define orientation for line and plane-like structures. When we draw a
line through the centre of a unit sphere we will find two intersection points. These
points can be specified by their respective θ and φ coordinates. Both pairs of {θ, φ}-
coordinates can be used as orientation but to avoid ambiguities we have to drop one
pair. So let us now define the orientation of a line as the pair of coordinates for which:
θ ∈ [0, π/2〉 or θ = π/2 ∧ φ ∈ [0, π〉. For a plane we adopt the same formulation in
which the line is replaced by the normal to the plane.
Note that this coordinate representation contains discontinuities due to the fact that
φ and (π/2 − θ) are modulo 2π and π/2 respectively. However these discontinuities
pose no problems for further filtering as they are coordinate discontinuities which
can be easily dealt with by applying a standard boundary extension technique. This
in contrast to the tensor approach in which the filter output is discontinuous, the
output therefore has to be remapped for further processing in most cases [73].
Further we will show a few ways of visualising the results of the orientation space
transform.

2.2 3D-Orientation space: filter design

In designing our filters the first thing to realize is the trade-off between orientation
selectivity and localisation. By increasing the orientation selectivity the filter be-
comes more extended and loses localisation, i.e. the filter response changes slowly
along the long axes of the filter. We want to treat the orientation and scale selectivity
separately, therefore the filter is made polar separable in Fourier space, see e.g. [74],

F{m}(f ;φi, θi) = Mrad(f)Mang(φ, θ;φi, θi) with f = |f |. (2.2)

With f = (f, φ, θ) the spherical coordinates in Fourier space. Now the radial function
specifies the scale and the angular part the selectivity of the filter. Proper sampling
and discretization of the resulting orientation space require that the input image, as
well as the filters, are band-limited. For correct sampling along the φ and θ axes the
filters should be radial and angular band-limited [46, 51].
In 2D, lines and edges can be treated equally using quadrature filters. In 3D, there
is a similar relation between edges and planes. However the line appears as a new
structure which requires separate treatment and has no associated quadrature struc-
ture. Therefore we design two filters, one for line like structures and a quadrature
filter for planar structures. Furthermore the 3D filters used are generalisations of a
2D filter presented in [51, Chap. 3].
The angular part of the filters is defined as:

Mang(φ, θ;φi, θi) = M(f ,ψi) = 2e
− 1

2
ρ2

σ2
s , (2.3)
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Figure 2.1: (a) Planar quadrature filter Mi , with ξ, η and ν the Cartesian Fourier coordinates
and filter orientation angles {φi, θi}. (b) The same as (a) but for the line filter. The
parameters used for these filters: fc = 0.2, bf = 0.16.

where

ρ =

{
∠(f ,ψi) plane filter(spatial)
π/2− ∠(f ,ψi) line filter(spatial),

(2.4)

with

ψi =

cos(φi) sin(θi)
sin(φi) sin(θi)

cos(θi)

 , (2.5)

and

σ = 2 arccos(1− 2/N). (2.6)

The orientation selectivity σ is found by equating the surface area of the unit hemi-
sphere, S = 2π, with N times the area Scone. Here Scone is given by the intersection of
S with a solid cone with opening angle σ. In this formulation the orientation selec-
tivity can be increased by raising N and the sampling distance is approximately 1σ
as required by band-limiting the Gaussian [145, Chap. 2]. The quadrature structure
for the planar filter only requires that the filter is zero for ρ > π/2, this is approxi-
mately satisfied, as for N ≥ 15 the 3σ radius lies well within π/2. Now let us define
the radial part of the filter [51],

Mrad =

(
f

fc

)(fc
bf

)2

e
−
(
f2−fc2

2bf
2

)
(2.7)

This Gaussian-like function has a bandwidth bf and an central frequency fc. An
advantage of this filter over a true Gaussian of bandwidth bf and centre frequency
fc is a guaranteed zero response to constant signals. The resulting plane filter has a
droplet shape and the line filter has a donut shape as footprint in Fourier space, see
Fig. 2.1.
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(a)

I J
F

(b) (c)

Figure 2.2: (a) Icosahedron, platonic solid with largest number of faces. (b) Unfolded icosa-
hedron. (c) Hexagonal grid at one face of the icosahedron

2.3 3D-Orientation space: sampling grid

Sampling the orientation space by N samples requires filtering image I(x) with N
rotated copies of an elongated template filter m, such that its principle axis coincides
with orientation {φi, θi}. The result, Im(x, φi, θi) is a 5D-orientation space. Now let
us look at how to distribute the N orientations, ψi over one hemisphere, i.e. here the
upper half of the unit sphere. We only need to address the upper half as we cannot
distinguish between opposite directions.
Ideally the angular distance from each point to its direct neighbours should be con-
stant, at least for 3D volume images like those acquired with MRI. But in cases where
the human perception is mimicked this is does not hold, e.g. our perception of
speed is not uniform across spatial frequencies [7]. As there is no general solution
for the problem of distributing a set of points equidistant over a sphere [119], we
have adopted a grid based on the icosahedron inspired by [31]. The icosahedron is
the largest of the platonic solids and has 20 identical faces consisting of equilateral
triangles and 12 vertices, Fig. 2.2(a) and (b). On each of the faces we impose a hexag-
onal grid. This grid is then projected on the unit sphere to obtain the orientations
(Fig. 2.2). This pixelisation scheme is symmetric in the origin and allows easy in-
dexation (addressing). We can easily change the number of points by imposing a
finer/courser hexagonal grid on the faces of the icosahedron. The number of points
is given by N = 5n2 − 10n + 6 with n the number of points on a single side of a face
(n = 2). Furthermore the grid is hexagonal with the exception of the vertex-points
of the icosahedron which are pentagonal. Points are indexed with three indices as
shown in Fig. 2.2(b). Index F denotes a strip of 4 faces while I and J are subindices on
this strip. Note that the points on the border of the strip should be treated differently
to avoid multiple indexation of a single orientation. This scheme allows us to easily
find the neighboring orientations which is useful for connectivity issues.

2.4 Test experiments and visualisation

Now let us look how we can visualise orientation space. Therefore we investigate a
simple image of a fork structure constructed from three line segments with a Gaus-
sian profile of 1σ, see Fig. 2.3(a). The image size is 753 voxels and the parameters
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Figure 2.3: (a) isosurface of a fork-structure with a size of 753 voxels. (b-d) isosurface of
Im(x, φc, θc) for the three orientations c, with the highest responses.(e-f) Polar
Voronoi diagrams of the voxel closest to the intersection point of the three line
segments for an orientation space of respectively 81 and 181 sample orientations.

used for calculating the orientation space are (fc,bf ,N )=(0.2,0.16,181). Figs. 2.3(b-d)
show isosurfaces of the response of three filters on the fork image, where the tree
filters are those with the highest responses. As can be seen the orientation space
response is smooth and contains local orientation information. To use orientation
space for segmenting the image, the oriented structures which are in this case line
segments, should be resolved. Now we assume two structures can be resolved if the
minimum response between the two is less than half the maximum response. This
states that the minimum angle between the oriented structures must be larger than
4
√

ln2σ according to [51]. As the minimum angle of separation in our image is 35◦

the minimum number of sampling orientations required is 140. Now we will show
the output of two angular resolutions with respectively 81 and 181 sampling orien-
tations. Let us inspect the angular responses of these two spaces for the centre voxel
where the three line segments meet. In Fig. 2.3(e-f) we show two polar Voronoi plots
of the angular response of the two orientation spaces. A Voronoi cell is defined as
the set of orientations closer to φi than to all other φj 6=i. In the plot each Voronoi
cell has a gray value corresponding to the height of the orientation space response.
In the plot, θ is the radial and φ the angular coordinate. Orientation (φ, θ)=(0,0) can
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(a) (b)

Figure 2.4: (a) isosurface of a Gaussian line. (b) the corresponding 5D orientation space of
the 27 voxels of the image in (a).

be found in the centre of the plot and orientations with θ = π/2 can be found on
the inner solid circle. In Fig. 2.3(e) we can see three peaks. But the two peaks cen-
tered around (0,π/2) and (0,3/2π) belong to one and the same orientation since a
line through the centre of a sphere yields two crossings at opposite sides. More in-
teresting is the other peak with the elliptical shape. This shape indicates that the
underlying structure(s) are not resolved, as predicted by the angular resolution cri-
terion. In Fig. 2.3(f) the number of sampling orientations is increased from 81 to 181.
As can be seen the responses of the two lines are now nicely resolved. Therefore,
only the orientation space with 181 sampling points can be used to segment the fork
image.
Now let us look at another visualisation method for a 5D orientation space. In Fig.
2.4(a) we show an image with a line through its centre. In Fig. 2.4(b) we plot the
orientation space (46 sample orientations) of the 27 voxels in the centre of the image.
On the individual spheres the Voronoi cells are plotted in the same way as for the
polar Voronoi plot. With orientation {φ, θ} = {0, 0} on top of the spheres and all
spheres rotated through an angle π around the φ-axis. In the image we see that the
response is localised and drops off very quickly with the distance to the line. It is
actually possible to prove it has a Gaussian profile.
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2.5 Conclusions

We have extended the principle of orientation space to 3D images by designing ori-
entation selective line and plane/edge filters. After an elaborate search for sampling
grids on a sphere we selected a multi-scale grid based on the icosahedron which al-
lows easy addressing. We presented methods to visualise the resulting 5D structure.
The method can deal with multiple intersecting oriented structures and contains lo-
cal orientation information. In the future we will try to produce an orientation space
formulation which is sparse and local. This to limit the computational burden and
memory consumption. Further we will investigate some interesting applications of
the orientation space approach.





A crossing detector based on
the structure tensor

3

abstract∗

A new crossing detector is presented which also permits orientation estimation of
the underlying structures. The method relies on well established tools such as the
structure tensor, the double angle mapping and descriptors for second order varia-
tions. The performance of our joint crossing detector and multi-orientation estima-
tor is relatively independent of the angular separation of the underlying unimodal
structures.

3.1 Introduction

The structure tensor [8] and its nonlinear variations [16] yield a reliable estimate of
orientation on unimodal structures. It fails where unimodal structures overlap (or
cross). In this paper we present a method based on the structure tensor to divide
the image around crossings in unimodal regions. Using the 4-fold symmetry of the
orientation map at line crossings (or saddle points in checkerboard patterns) we are
able to achieve a high response independent of the angular separations of the un-
derlying lines. This in contrast to e.g. the Harris Stephens crossing detector [58] and
variations thereof [114, 135, 50, 42, 128, 70] for which the response drops significantly
with decreasing angular separation. Our new method is reasonably fast, has a good
angular selectivity and yields good localisation. This is particularly important for
camera calibration in which the crossings of checkerboard patterns (or other fidu-
cials) need to be located with sub-pixel accuracy in many different poses. Another
key application in molecular biology requires the detection and characterisation of
overlapping bio-polymers such as DNA strands deposited on a surface for AFM or
TEM imaging.

∗The content of this chapter has been published in: F. G. A. Faas and L. J. van Vliet. A crossing
detector based on the structure tensor. In J. Blanc-Talon, W. Philips, D. C. Popescu, and P. Scheunders,
editors, ACIVS 2007, Advanced Concepts for Intelligent Vision Systems, 9th International Conference, (Delft,
The Netherlands), LNCS 4678, pages 212–220, August 28-31 2007 [34].
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Figure 3.1: (a) Sketch of crossing lines A and B with respectively orientations θA and θB .
The dashed lines denote the major axes of the detected saddle point at the cross-
ing with respective orientations θ1 and θ2. The dashed regions denote the areas
in which the measured orientation by the GST in the circular region is approxi-
mately constant. In sketch (b) the same crossing is denoted. The circular arrow
denotes the track along which the orientation response of the GST is sketched in
subfigure (c)(phase wrapping is assumed absent).

3.2 Method

The key observation to our method is the following. Applying the gradient struc-
ture tensor [8, 58](GST) to a crossing of linear structures results in an orientation
pattern with a saddle point structure, i.e. regions of uniform orientation bounded by
the bisectors of the underlying crossing (Fig. 3.1). Hence detection of these saddle
points will yield a crossing detector. After the orientation of these saddle points is
determined one can divide the local neighbourhood of a crossing in four regions, i.e.
wedges with an opening angle of π

2
radians. The antipodal wedges can form two

bow ties, see the regions in Fig. 3.1(a) labelled with respectively θA and θB for lines
A andB. Applying the gradient structure tensor to these regions separately, either to
the bow tie or to the wedges separately, yields a reliable local orientation estimate for
each arm or line of the crossing separately. As the location of the crossing is already
detected, the orientation estimate of the four wedges can be converted to direction
estimates pointing away from the crossing’s centre. In this section we will briefly
describe the four steps of our method.

Transform crossings into saddle shaped structures:

In the first step of our algorithm we determine the local orientation by means of the
GST. The GST, T (I), is the averaged dyadic product of the gradient field∇I of image
I , in which the overhead bar denotes local averaging.

T (I) = ∇I∇IT with ∇I = [Ix, Iy]
T. (3.1)

In this tensor representation two antipodal vectors are mapped on top of eachother.
Where the antipodal vectors cancel out in an averaging step, the corresponding ten-
sor representations reinforce eachother. Now the directional gradient power is max-
imised for angle θ

tan 2θ = 2Ix Iy / (I2
x − I2

y ) (3.2)
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(a) (b) (c) (d)

Figure 3.2: (a) Synthetic image of a cross. (b) Orientation determined by GST clearly showing
phase wrapping (BW transitions). (c-d) The double angle mapping of (b) with
respectively in (c-d) the cosine and sin of the double angle of (b).

where θ denotes the orientation of the gradients of the unimodal structure. This cor-
responds to the orientation of the eigenvector belonging to the largest eigenvalue. In
Fig. 3.1(a) the saddle point structure of the orientation field of the GST is sketched.
This saddle point structure is caused by the averaging nature of the GST which treats
the local neighbourhood as a single structure, i.e. when one of the arms is domi-
nant in the analysis window it will dominate the orientation result as well. Only
when both lines are visible an averaged orientation will be obtained, see Fig. 3.1(b-
c). Due to this averaging property of the GST the orientation field will look like a
Voronoi tessellation of the underlying structures, i.e. in case of crossing lines a cross
is formed by the internal bisectors of the lines, see Fig. 3.1(a). Although the GST
gives an excellent characterisation of the local orientation, the angle representation
of Eq. 3.2 suffers from phase wrapping, i.e. the resulting orientation is modulo π
radians. This causes large jumps in the orientation image where the angle jumps
from 0 to π radians while in reality these orientations are identical. In Fig. 3.2(a-b)
we show respectively a synthetic crossing and the orientation estimate by means of
the GST. Where the latter clearly shows phase wrapping events.
To solve the phase jumps caused by phase wrapping we apply a double angle map-
ping to the measured orientation.

θ → (cos 2θ, sin 2θ) (3.3)

Note that the double angle is closely related to the GST. As shown in [55] this map-
ping preserves the angular metric, gives a continuous mapping and preserves the
local structure. In Fig. 3.2(c-d) the double angle representation is shown for the im-
age in Fig. 3.2(b). It clearly shows that the phase wrapping events, BW transitions,
in Fig. 3.2(b), are absent after the double angle mapping, Fig. 3.2(c-d).

Generate candidate crossings from second order shape descriptors:

The phase unwrapped orientation gives rise to a saddle structure. This structure is
more pronounced for large angles of separation, i.e. for lines crossing at an angle of
π
2

radians it is maximised. Therefore a saddle point candidate generator is needed
which separates the magnitude of the saddle point from the shape descriptor which
characterises the structure type. To this end we explore the second order structure
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[26]. A structure vector f is presented with three components to describe the second
order structure based on the Hessian matrix. These three components are respec-
tively the angle β which denotes the orientation of the structure, κ which denotes
the structure type and f which denotes the structure strength. These descriptors are
based on the spherical harmonics which constitute an orthonormal basis in contrast
to the second order derivatives which are not independent. However, the second or-
der spherical harmonics Jij can be expressed in terms of the second order derivatives
Jab as follows  J20

 = 1√
3

 (Jxx + Jyy)
J21

√
2 (Jxx − Jyy)

J22

√
8 Jxy

(3.4)

Now we can express the structure vector f in terms of the spherical harmonics for
image J as,

f (J) =

 f
 =

 | (J20, J21, J22) |
β arg(J21, J22)

κ arctan(J20/
√
J 2

21 + J 2
22 )

(3.5)

For |κ| = π
2

the structure can be described as a blob structure, for |κ| = π
6

as ridges/valleys
and for |κ| = π

3
we have the pure second order derivatives. The pure saddle struc-

ture is located at |κ| = 0.
The double angle representation results in two κ images, i.e. one for the sine and
cosine term. These images are combined in one structure descriptor κ′ based on the
corresponding structure strength, i.e.

κ′(θ) =

{
κ(cos 2θ) if f(cos 2θ) > f(sin 2θ)

κ(sin 2θ) elsewhere
(3.6)

To detect candidate saddle points we apply a threshold to the |κ′| image,

Saddle(θ) =

{
1 if |κ′| ≤ κth with κth = π

12

0 else
(3.7)

where κth is chosen as the middle value between the pure saddle point at |κ′| = 0
and the line structures at |κ′| = π

6
.

Detect crossings using a second order magnitude measure:

After we generated the candidate saddle points we want to assign a magnitude mea-
sure to each candidate based on the structure strength to confine the candidates to
regions where structure is present, i.e. noise can also give rise to saddle points on
a small scale. As f(θ) based terms are dependent on the angular separation of the
crossing, another energy measure is needed to reduce the angular dependency of the
detector. The measure of our choice is the curvature-signed second order strength in
I ,

E(I) = sign(κ(I)) |f(I)| (3.8)
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where the sign term is introduced to be able to distinguish between the crest of a line
and its edges, i.e. on a ridge the curvature is positive but on the flanks the curvature
is negative. Thresholding the energy image yields the candidate regions based on
the structure strength in I ,

Energy =

{
1 if E≷Eth with Eth = threshold({E(I)|E≷0})
0 else

(3.9)

where the comparison direction depends on the structure of interest, i.e. black lines
on a white background or vice versa. Eth is determined by an isodata threshold on
respectively the positive or negative data inE(I), the threshold type can of course be
adapted to a particular problem. Now we combine the Energy and Saddle images
by an AND operation. Furthermore, to remove spurious detections, we require the
detected regions to be larger than SA pixels.

Detector = {x|x ∈ Saddle ∧ x ∈ Energy ∧ Area(x) > SA} (3.10)

where the area SA is defined as the minimum cross section of two lines of width w
intersecting under an angle φ, i.e. SA = w2. Of course, the line width of the line is a
combination of the true width of the line, the PSF of the imaging device and size of
the derivative kernels and as such has to be set to a suitable value for the problem at
hand.

Analyse orientation of lines composing the crossing:

The algorithm continues with the analysis of the orientation of the lines from which
the crossing is composed. Therefore, first the centre of gravity is determined for
each connected region in the detector image, which serves as location of the detected
crossing. Further analsis is performed with these points as point of origin. The value
of β at these points now gives the orientation of the saddle points (the β responses
on the double angle representation are combined in a similar fashion as those for κ
in Eq. 3.6). At these points the gradient information is analysed by means of the GST
in the bow tie shaped region. The bow tie is constructed by the major axes of the
saddle point, i.e. given by lines through the local point of origin with orientation β
and β + π

2
. The eigenvector belonging to the largest eigenvalue of the GST for each

bow tie gives the orientation of the underlying structure.
The size of the gradients (Gaussian derivatives of scale σg) must be small to avoid
unnecessary signal suppression. The size of the tensor smoothing (Gaussian filter of
scale σt) is usually three to five times larger than the gradient size. The size of the
second derivatives is set identical to the size of tensor smoothing.

3.3 Results

First we test the algorithm on synthetic data, i.e. crossing lines with an angular
separation between 0 and π

2
radians, see e.g. Fig. 3.2(a). In Fig. 3.3 we show

the results for lines with a Gaussian line profile of σline = 1 and a SNR of respec-
tively 10 dB and 25dB after addition of Gaussian noise. The signal to noise ratio
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Figure 3.3: Top row figures show the distance between the true crossing centre and the mea-
sured centre as a function of the angular separation of the lines for true positives.
The middle row shows the measured angular separation of the true crossings (in
blue) and the false positives (in red). The plots on the bottom row show the angu-
lar deviation of the measured orientations from the true orientations of the lines
for true positives. The left and right column show the results for 10dB and 25 dB
respectively. For each separation angle 100 realizations were made.

is defined as SNR = 20 log (contrast/σnoise). For each angular separation 100 real-
izations are obtained with randomly selected sub-pixel position and orientation of
the structures. All derivatives and averages are computed with Gaussian kernels
(σg = 1, σt = σs = 4). Note that for both noise levels the same settings were used.
The region in which the orientations of the lines were measured, complies to the size
of the tensor smoothing. Further, the analysis window is set to a region within 100
pixels from the crossing centre. Keep this in mind as the number of false positives are
expected to scale linearly with this value. On the top row of Fig. 3.3 the distance from
the true centre is depicted, where the numbers denote the number of false negatives.
True positives are detections closest to the true centre and at a maximum distance of
2 pixels. All other detections are marked as false positives. The high number of false
negatives for small angles is attributed to the the fact that a crossing resembles more
and more a line with decreasing angular separation resulting in a poor localisation.
The increase in the number of false negatives for large separations in the high noise
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(a)

(b)

Figure 3.4: (a) Image of a deformed miniaturised clay dike model with a superimposed grid.
Courtesy of GeoDelft, The Netherlands. (b) Checker board image. In both images
the white dashed lines denote the orientation estimates of the detected crossings
while the black dashed lines show the major axes of the saddle point regions.
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Figure 3.5: DNA molecules labelled with uranyl acetate and visualised by transmission elec-
tron microscopy. The images are kindly provided by Dr. D. Cherny, PhD, Dr.Sc.
The examples show (self) crossing DNA strands, the white dashed lines show the
orientation estimates of the detected crossings while the black dashed lines show
the major axes of the saddle point regions.

realizations is not fully understood, but can be lowered in exchange for more false
positives with small separation angles. On the middle row of Fig. 3.3 the measured
angular separation is plotted as a function of the true angular separation, where the
numbers denote the number of false positives. The plots clearly show that the false
positives can be easily separated from the true positives for separation angles larger
than ≈ π

10
, and even smaller for the low noise case. The figures on the right denote

the error in the orientation estimation of the crossing lines.
In Fig. 3.5 and 3.4 we show some examples on real data. The images represent re-
spectively DNA strands, a deformed clay dike model and a checker board. For these
images SA =

√
(1 + σ2

t ), i.e. the width of the detected lines is put to 1. The settings
for the first order derivatives, tensor smoothing/second derivatives and the cutoff
radius of the wedges are respectively (σg, σt) = (2, 10),(1, 4) and (1, 6) for the clay
dike, checker board and DNA images.The clay dike image is produced by line scan-
ning and suffers from striping. To overcome this problem the tensor smoothing is
set to a relative high value. In all three images the black dashed lines denote the
major axes of the saddle points whereas the white dashed lines denote the measured
orientations of the underlying lines.



3.4 CONCLUSIONS 35

3.4 Conclusions

The presented crossing detector is relatively insensitive to the angular separation of
constituent lines/edges. False positives can easily be removed by setting a simple
threshold on the angular separation. The detector also allows for an accurate orien-
tation estimation of the underlying structures and performs well on noisy data. We
believe this can be a good tool for camera calibration on checkerboard images due
to its independence of the angular separation between the linear structures (pose
independence). Further it can be used for the analysis of (self)overlapping line-like
objects. The low number of parameters can be adjusted easily to the problem at hand
where the values are intuitive to determine. For the first order derivatives we like to
keep the footprints as small as possible. The tensor and second order footprints can
be kept at the same value where the value is dependent on the spatial separation of
crossings as well as the noise properties of the image at hand. The same is true for
the final orientation measurements of the underlying structures. The size of the bow
ties are

√
2 time the size of the tensor smoothing.





Junction detection and multi-
orientation analysis using
streamlines

4

abstract∗

We present a novel method to detect multimodal regions composed of linear struc-
tures and measure the orientations in these regions, i.e. at line X-sings, T-junctions
and Y-forks. In such complex regions an orientation detector should unmix the con-
tributions of the unimodal structures. In our approach we first define a (streamline)
divergence metric and apply it to our streamline field to detect junctions. After this
step we select all streamlines that intersect a circle of radius r around the junction
twice, cluster the intersection points and compute the direction per cluster. This
yields a multimodal descriptor of the local orientations in the vicinity of the de-
tected junctions. The method is suited for global analysis and has moderate memory
requirements.

4.1 Introduction

Several well known tools exist for the detection, localisation and characterisation of
unimodal linear structures based on the structure tensor and the Hessian matrix.
For multimodal structures the detection can still rely on the structure tensor [55], as
demonstrated by the Harris-Stephens corner detector [58]. However these methods
cannot unmix the responses from the composing structures. Most detectors have a
response which decreases strongly with decreasing angular separation between the
composing structures. The filterbank approach [46, 52, 35] is a well known method
for the analysis of multimodal regions. However, its excellent angular selectivity is
combined with a poor localisation.

∗The content of this chapter has been published in: F. G. A. Faas and L. J. van Vliet. Junction
detection and multi-orientation analysis using streamlines. In W. G. Kropatsch, M. Kampel, and A.
Hanbury, editors, CAIP 2007, Computer Analysis of Images and Patterns, 12th International Conference,
(Vienna, Austria), pages 718–725, August 27-29 2007 [39].



38 JUNCTION DETECTION AND MULTI-ORIENTATION ANALYSIS USING STREAMLINES

(a)

•
(b)

br

bAbA bAbA

bB
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bBbB

bC bCbCbC
(c)

Figure 4.1: (a) Artificial Y-junction with orientation field (gray overlay) and three streamlines
(green). (b) Orientation field with a streamline starting from the black dot in the
center. (c) Sketch of a Y-junction (dashed lines) with some streamlines around
the junction center. The circle labeled with r denotes the distance from the center
at which the orientation field is sampled and the labeling of the streamlines is
performed. The letters denote the (double) labeling of the streamlines.

The key observation to our method is the following: any X-sing, T-junction or
Y-fork is composed of a few unimodal structures (line or edge segments). At X,T,Y-
transitions a single measure for orientation, e.g. by means of the structure tensor,
yields a weighted sum of orientations of the constituent elements. Moving away
from the centre of the junction toward one of the unimodal structures, the measure
will approach that of a unimodal structure.

In this paper we present a streamline based method which connects the unimodal
regions to multimodal regions, e.g. the arms of a junction to the junction itself. The
streamlines are constructed from a vector field that represents the local structure.
This method allows us to accurately locate junctions and crossings and at the same
time measures the attributes of the underlying unimodal structures. The method
offers a good angular selectivity within a relatively small analysis window.

4.2 Method

Our method comprises five steps. The first step is to find a suitable vector field
which describes the local structure in a consistent way, see Fig. 4.1(a-b). Second, this
vector field is used to calculate streamlines at each pixel position. Third, a streamline
divergence metric is introduced which yields a high value for multimodal structures
and a low value on simple linear structures. Fourth, a suitable threshold is applied
to detect the multimodal structures. After merging fragmented responses, the cen-
tre point of the junction is determined. Fifth, we procede with the analysis of the
streamlines in a region around the junction centre, see Fig. 4.1(c). To that end we
define a circle with radius r centered at the junction. A suitable streamline should
cross this circle twice, i.e. once for each of the unimodal structures it connects. The
points where the streamlines intersect with the circle defines the new endpoints. The
set of all endpoints will give rise to clusters, i.e. one cluster for each unimodal struc-
ture in the junction. These clusters are analysed and each streamline is assigned two
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Figure 4.2: (a) Typical dendrogram for a X-sing, depicting the cluster distance measure (ver-
tical) composed of individual streamlines (horizontal). (b) Sketch of the distance
measure dpq between the streamlinesP andQ at a distance s from the respective
starting points P (0) and Q(0). (c) Sketch of the intrinsic scale (here denoted by
dmax) of the intersection of two lines of width w.

labels, one for each unimodal structure it belongs to. For each cluster we compute
the average direction over the endpoints of the streamlines that belong to the same
cluster.

step one: vector field

A suitable vector field in this framework follows the underlying local structure in
the image and is smooth and continuous. The vector field should be well defined on
both even and odd structures, i.e. respectively along the bottom of the valley and
along the edge of linear structures. We assume, without loss of generality, a white
background and dark foreground throughout this paper.
The vector field in this paper is created by means of a set of rotated quadrature filters
which are combined into a tensor representation. An eigensystem analysis gives the
vector field. The tensor is constructed from quadrature filters as described by [72].
The quadrature filter is constructed by means of the generalised Hilbert transform

Fi = G(|u|, σF )H(u · ni) (u · ni)2 (4.1)

withG an isotropic Gaussian transfer function,H the Heaviside function and the last
factor a quadratic cosine term to select the radial polynomial as well as the angular
response. The orientation vectors ni are defined as ni = [cos(π

3
i), sin(π

3
i)]T with

i = 0, 1, 2. The 2D tensor T is defined as

T =
∑
i=1,2,3

|qi|(ninTi − I) (4.2)

with qi the response of the ith quadrature filter in the spatial domain. Now the vector
field is given by the eigenvector belonging to the smallest eigenvalue.
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step two: streamlines

A streamline is a line which is everywhere tangent to the local flow field. Mathemat-
ically this can be stated as

dx

ds
∝ u(x) and x(s0) = x0 (4.3)

with u the vector field and x(s) the parameterised streamline. Further, point x0

denotes a point on the streamline, i.e. the point of origin. In here a streamline is
defined as a curve which is tangent to the local structure. As even structures have
no direction, the flow vector is equally well described by two antipodal vectors, cre-
ating possible phase jumps between neighboring points. To solve this phase jump
problem locally , i.e. at position x(s) on the streamline, the flow field is given by one
of the two antipodal vectors which produces the smallest angle with respect to the
tangent vector of the streamline at x(s). As such the flow field is defined with respect
to a local point of origin and the propagation direction of the streamline. Further, the
start direction, i.e. u(so) of the streamline is ambiguous as there is no history to de-
termine the tangent vector. This is not a problem as the curve of interest is centered
around the point x0 and extends along the structure in both directions for a distance
l resulting in a streamline of length 2l with parameter s running from −l to l along
the curve, i.e. from one end to the other end. Here s is the position along the contour
measured from the centre point. The streamlines are implemented by means of a
first order method.

step three: streamline divergence metric

Two streamlines originating from points close together, on say one arm of the junc-
tion, can end up in two different arms separated by a significant distance, dpq , see
Fig. 4.2(b). Our junction detector is based on this observation. For each pixel the
streamlines in a neighbourhood are analysed and the maximum separation between
the reference streamline and the streamlines in the neighbourhood are determined.
We compute the distance between two streamlines at a distance ld (measured along
the streamline) away from the pixel to be inspected. Summing over the line distances
in the neighbourhood yields a high value in the proximity of a junction.
The streamline, P , through point p has to be compared to the test streamline, Q,
through point q, where q lies in the neighbourhood of p. The first step in comput-
ing the maximum separation between two streamlines is to align them with respect
to the streamline at the point of interest p. This is necessary because the ’positive’
direction of the streamline is ambiguous along line structures in the image. After
alignment the two streamlines in negative direction converge and in the positive di-
rection diverge. Now the distance between the two streams P and Q is defined as
the distance between the points on the streams with a distance ld to their respective
origin measured in the aligned positive direction;

dpq = |(P (ld)−Q(ld))− (P (0)−Q(0))| (4.4)

where the second term is the translation vector between the streamline centres, see
Fig. 4.2(b). Now we sum the distances between the streamline at p and those in the
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local neighbourhood N to get a ’streamline divergence’ measure dp at p;

dp =
∑
∀q∈N

dpq (4.5)

in which the size of neighbourhood N reflects the intrinsic scale of the constituting
unimodal structures. The intrinsic scale is defined by the width of the line segments
or the length of the edge slope. It is by definition larger or equal to the support of
the overall Point Spread Function of optics and filters and can be measured by the
method of Dijk [29].

step four: detection of junctions

The aforementioned ’streamline divergence’ measure also gives reasonably high re-
sponses in the (noisy) background. We suppress these points by multiplying with
the certainty of the Hessian matrix which is close to zero in the background. A mea-
sure based on the tensor T is rejected as its response is not selective and not localised
enough due to the quadrature filters. Therefore we use the more localised certainty
measure based on the Hessian matrix as presented in [26] to select our regions of
interest, basically the valley regions. This certainty measure can be stated as

c = |f20, f21, f22| =
√
f 2
xx + f 2

yy −
2

3
fxxfyy +

8

3
f 2
xy (4.6)

where f2i, with i ∈ {0, 1, 2}, denote the spherical harmonics of second order and
{fxx, fxy, fyy} the second order spatial derivatives. This certainty deviates from the
norm of second order derivatives, i.e c 6= |fxx, fxy, fyy|, as it corrects for the fact that
the second order spatial derivatives do not form an orthogonal basis [26] while the
spherical harmonics of the second order do. Now an isodata (two-means) threshold
[107] on the measure c is performed resulting in regions with a pronounced second
order structure. As we are only interested in the valleys, the following restriction is
introduced |λ1| > |λ2| ∧ λ1 > 0 where λi is the ith eigenvalue of the Hessian matrix
with λ1 > λ2. The regions for which one of the restrictions fails is put to zero in the
response image. Of course, other nonlinear weightings can also be applied to sup-
press the background.
Now we can apply a simple threshold to the cleaned response image (just above the
distinct background peak of the corresponding histogram) to get points where the
streamlines show a high degree of divergence. Right at the junctions eddies may oc-
cur due to a lack of translational invariance. Hence we get a relatively low response
at the centres of these junctions. However close to these vortexes the divergence of
the streamlines is very high. Therefore we include a step in which we merge the di-
vergence responses in a neighbourhood equal to the intrinsic scale of the underlying
structure. Now we have identified the junctions we use the centre of gravity of those
regions as the position of the junctions. The localisation can be further refined by
finding the points of minimum distance to the found centre point on all streamlines
in the junction region. From these points a new centre of gravity can be calculated
and if necessary this can be iterated. In our implementation the last step of refining
the localisation is not performed as the localisation was good enough for our aim of
demonstrating the algorithm.
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step five: direction estimation

In the metric subsection we aligned streamlines on a pair by pair basis. In this para-
graph we will cluster them such that they are labelled with the two labels of the two
unimodal structures they connect. This is done by a simple hierarchical clustering
method and applying a threshold at dsep to the dendrogram, see Fig. 4.2(a). In Fig.
4.1(c) a junction is shown with a number of streams each with two labels, i.e. A, B or
C. We define a circle with radius r centered around the junction centre. Now from
all streamlines the intersections with this circle are determined, i.e. each streamline
should cross this circle twice. Based on these points we will label our streamlines. r
should be chosen such that the circle is larger than the size of the mixed zone and on
the other hand as small as possible to avoid mixing with neighboring junctions. The
longest ’diameter’, dmax, of the mixed zone depends on the intrinsic scale of the con-
stituent unimodal structures and the smallest angle α between them, see Fig. 4.2(c).
Note that we have directional information due to the fact that the orientation ”vec-
tors” can be oriented such that they point away from the junction centre. These
vectors can therefore be averaged in each cluster i.e. no structure tensor is necessary
as all vectors are mapped in the same direction, i.e. away from the junction. This
average is used as direction estimate. The directional information of the streamlines
is sampled at r, see Fig. 4.1(c).

4.3 Results

Fig. 4.3(a) and (b) show respectively a small part of the vascular system in the
retina of an eye and a deformed miniaturised claydike model with a superimposed
grid. The overlays in both images show the locations of the detected crossings (red
crosses), the circles on which the directions are measured and the measured orienta-
tions (colored lines). The minimum distance between clusters is set to dsep = 1 which
means that clusters separated by a distance smaller than dsep in the dendrogram are
merged. Further we set r and ld to identical values, i.e. r = ld = 7 and r = ld = 8 for
respectively the retina and claydike image. These values roughly correspond to the
scale of the crossings in the images. Further at a distance ld from the junction centre
the streamlines are in general parallel to the unimodal structures. As can be seen all
crossings are detected. The direction estimate for one of the arms of left middle junc-
tion in the retina image is a bit off. This is a consequence of the very low contrast, i.e.
the influence of the noise on the vector field is more severe if the contrast is low. Fig.
4.3(c-d) show respectively the ’streamline divergence’ before and after background
suppression using the second order certainty measure.

4.4 Discussion and conclusions

Preliminary testing of our method shows excellent detection and characterisation for
a modest window size. The junction detection is dependent on the local structure
and as such relatively independent of the local contrast. Furthermore, the angular
selectivity can be increased by increasing the labelling distance r. Another nice as-
pect of the method is that it automatically selects a mode, i.e. it selects the number
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(a) (b)

(c) (d)

Figure 4.3: (a) Blowup of a retina image (courtesy National Eye Institute, U.S. National Insti-
tute of Health). (b) Image of a deformed miniaturized claydike model with a su-
perimposed grid. Courtesy of GeoDelft, The Netherlands. In overlay: the dashed
circles denote the analysis window and the colored lines at the circle denote the
measured orientations at their intersection with the circle. With r = ld = 7 and
r = ld = 8 or respectively image a and b. (c) The distance metric of the image
in b. (d) The distance metric for the image b after setting the points where the
Hessian is uncertain to zero.
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of unimodal structures at the junction.
The implementation used can easily be improved e.g. by means of higher order
streamline methods. This should decrease the influence of noise and should refine
the streamlines. Furthermore one could think of averaging the orientation informa-
tion over a larger area to obtain a more robust estimate, .i.e. at this moment the
streams are only sampled were they cross a circle of radius r which makes the orien-
tation susceptible to noise.
We state that the labelling of the streamlines can be performed at approximately the
same distance from the junction centre as the detection of the junctions, i.e. ld ≈ r,
because both parameters are directly related to the intrinsic size of the junctions. As
shown in Fig. 4.2(c) we can relate the minimum angle of separation α to the width w
of the unimodal structures. As such as a rule of thumb we state that r ≤ 2w

sin 1
2
α

which
ensures that the entire mixed zone is enclosed. As such the parameters are basically
reduced to an angular resolution parameter α and the width of the unimodal struc-
tures.
Optionally one could perform the clustering and the direction measurements at dif-
ferent positions along the streamlines. As the intrinsic scale of junctions can differ
over the image one could make r and ld position dependent [50]. This could also
minimise interaction of structures in close proximity of each other. After inspection
of the individual steps of the algorithm we estimate that the time complexity of the
algorithm is approximately a factor of 10 higher than that of a eigensystem analysis
of the gradient structure tensor. Further the data complexity is low and only widely
accepted tools are used.



Multi orientation analysis
by decomposing the structure
tensor and clustering

5

abstract∗

The structure tensor yields an excellent characterisation of the local dimensionality
and the corresponding orientation for simple neighbourhoods, i.e. neighbourhoods
exhibiting a single orientation. We show that we can disentangle crossing struc-
tures if the tensor scale is much larger than the gradient scale. Mapping the gradient
vectors to a continuous orientation representation yields a 1

2
D(D + 1)-dimensional

feature vector per pixel. Clustering of the vectors in this new space allows identi-
fication of multiple orientations. Each cluster of gradient vectors can be separately
analysed using the structure tensor approach. Proper clustering yields an unbiased
estimate of the underlying orientations.

5.1 Introduction

The structure tensor is a powerful tool for the analysis and characterisation of struc-
tures in multi-dimensional images. [58] and [8] developed the structure tensor inde-
pendently for solving two completely different tasks in image processing and com-
puter vision. Without formulating a tensor and before it was discovered, [67] pre-
sented an algorithm for estimating the average local orientation in 2D images of line
patterns using the double angle representation [55]. Their orientation estimator fits
nicely into the tensor framework.

When applied to a neighbourhood of unimodal structures (lines, planes, and
edges of a single orientation) the eigenvalues of the tensor allow estimation of the

∗The content of this chapter has been published in: L.J. van Vliet and F.G.A Faas. Multi-orientation
analysis by decomposing the structure tensor and clustering. In ICPR18, Proceedings 18th International
Conference on Pattern Recognition, pages 856–860, Los Alamitos, Hong Kong, August 21-24 2006. IEEE
Computer Society Press [146].
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local dimensionality [69]. The eigenvectors yield the orientation of the correspond-
ing image features. The fundamental property of the structure tensor that caused
its enormous popularity is indisputably the fact that antipodal vectors are mapped
onto the identical tensor representations,M(v) =M(−v). This allows averaging of
mapped vectors without running into problems caused by cancelling of vectors with
opposite direction.
When applying the structure tensor to multi-modal neighbourhoods, the contribu-
tion of different underlying structures, each having their own orientation, will be
combined into a gradient-squared weighted averaged orientation. This average ori-
entation is in general different from the orientation of any of the contributing struc-
tures. Hence, the real underlying structures cannot be disentangled. This is the
major shortcoming of the structure tensor. To disentangle contributions based on
their orientation one may employ a filter bank with a very large number of slightly
rotated orientation-selective filters [51]. However, in many practical situations (cor-
ners, T-junctions, Y-forks, X-sings), a decomposition into two or three orientations
and a background term is sufficient.
This paper proposes a novel method that combines unsupervised pattern recogni-
tion with image processing. It employs cluster analysis to divide the local gradient
vectors that would normally construct a single tensor into a limited number of clus-
ters. For each cluster in that neighbourhood we construct a separate tensor. Proper
clustering groups vectors that resemble each other and therefore belong to the same
image feature. The sum of structure tensors per cluster is identical to the standard
structure tensor. In subsection 5.2 we will first introduce the mapping that consti-
tutes the structure tensor and present a the algorithm for decomposing the structure
tensor into representations for each individual oriented structure. Subsection 5.3
presents an evaluation of the decomposition method applied to crossing line struc-
tures in 2D. Subsection 5.4 discusses the extension to 3D, the parameters, and the
angular resolution.

5.2 Joint spatial-feature method

Combining image processing and pattern recognition enables joint spatial and feature-
space methods in solving difficult problems in image analysis such as the segmen-
tation and analysis of complex neighbourhoods including X-sings, T-junction, and
Y-forks.

5.2.1 Structure tensor

Gradient vectors in D-dimensional space can be mapped to a representation in which
antipodal vectors become identical. The orientation tensor T is a mapping with
T : RD → RD×D

T (g) = ggT , with g = ∇I (5.1)

The structure tensor is a linear combination, i.e. a weighted sum, of orientation
tensors in a local neighbourhood.

T (g) = ggT (5.2)
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The overhead bar denotes local averaging. In 2D, the tensor becomes

T2D(g)

(
g2
1 g1g2

g1g2 g2
2

)
(5.3)

The directional gradient-power in direction φ denoted by the vector n̂ = (cosϕ, sinϕ)T

is

Gϕ = n̂T T 2D n̂

=
1

2
(g2

1 + g2
2) +

1

2
(g2

1 − g2
2) cos(2ϕ) + g1g2 sin 2ϕ

=
1

2
(g2

1 + g2
2) +

1

2

√
(g2

1 − g2
2)2 + 4(g1g2)2 cos(2(ϕ− θ))

(5.4)

with ϕ = θ the direction that maximises Gϕ and

tan 2θ =
g2
1 − g2

2

2g1g2

(5.5)

The eigenvalues λ1 and λ2 follow directly from Eq. 5.4 by substituting respectively
ϕ = θ and ϕ = θ + 1

2
π. The eigenvalues can be used to describe the local anisotropy

A

A =
λ1 − λ2

λ1 + λ2

(5.6)

A closed-form solution for the eigenvalues and eigenvectors in 3D exists [51]. After
that we have to rely on numerical solutions. [69] generalised the 2D estimate of local
anisotropy to normalised measures for string-ness and plate-ness in 3D.

5.2.2 Decomposing the structure tensor

To avoid mixing of multiple oriented lines, edge and/or other oriented structures
into a single structure tensor we need to divide the gradient vectors inside a local
neighbourhood into clusters that represent a unimodal oriented line/edge structure.
In the algorithm described below we choose for a clustering of the vectors after map-
ping. To retrieve directional information we need to inspect the symmetry of the
clusters of vectors. The algorithm outlined in Algorithm 5.1 works in arbitrary di-
mensions. Note that the method has three parameters: the scale of the Gaussian
derivative, the neighbourhood size, and the umber of clusters in k-means. The latter
will be kept constant, since we apply the algorithm to the output pixels of Harris’
[58] corner detector.



Algorithm 5.1

1. Compute gradient vectors at scale σg of a D-dimensional image I

g ≡ ∇(σg)I ≡ ∇(I ∗ g(σg))

with g(σg) an isotropic D-dimensional Gaussian kernel of scale σg.

2. Map the gradient vectors to an orientation tensor representation using a map-
pingM : RD → RD×D

M(g) = ‖g‖−nggT
with n to select the normalisation. Note that structure tensor has no built-in
normalisation (n = 0), but the Knutsson mapping [73, 72, 110] normalises the
dyadic vector product to satisfy unique stretch property, i.e. ‖δM(g)‖ = c‖δg‖
for ‖g‖ = const. We set n = 1, which maps the gradient vectors of a region
with constant slope (ramp edge) onto an isotropic cluster.

3. Put the unique elements ofMij(g), i.e. the 1
2
D(D+ 1) upper diagonal elements

satisfying i+ j ≤ D + 1 , in a column vector v

vT = (M1,1 . . .M1,D, . . . ,Mi,1 . . .Mi,D−i+1, . . . ,MD,1)

4. Define a local neighbourhood of tensors M(gi), with i = 1, . . . , N . Store the
corresponding vectors vi in a matrix V .

V T = (v1 v2 . . .vN)

5. Apply a k-means clustering to the collection of mapped gradient vectors. The
initial value for k is three, i.e. one higher than the amount of clusters to be
detected at a corner, T-junction, or X-sing. The last cluster should collect the
background pixels, which manifest themselves as small random vectors. The k-
means clustering is applied to matrix V , in which each row is a point in 1

2
D(D+

1)-dimensional space
ω = kmeans(V, k)

with ω the vector with labels (indicating the clusters) corresponding to the rows
of V .

6. The gradient vectors gi and the orientation tensorsM(gi) inside a local neigh-
bourhood are now divided into k clusters. Compute the structure Mc(g) for
each cluster c, where label c ranges from 1 to k.

7. Compute the system of eigenvectors and eigenvalues ofMc(g) for each of the
k classes.
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Figure 5.1: Input image of a deformed miniaturised clay-dike model with a superimposed
grid. Courtesy of GeoDelft, The Netherlands.

5.3 Results

We illustrate this novel technique by applying it to the image depicted in Fig. 5.1.
To assess the shear deformations of a miniaturised clay-dike model after applying a
300 fold gravitation pull, we need accurate orientation estimation of both grid axes
at each crossing. The output of the procedure for σg = 0.9 and a neighbourhood size
of 19 × 19 pixels is depicted in Fig. 5.2. The crossings can easily be detected using
the structure tensor based corner detector by [58]. After this we apply the proposed
algorithm to all crossings found. The algorithm has two important scale parameters:
the scale of the gradient operator σg and the size of the local neighbourhood, i.e. the
size of the tensor smoothing.

Figure 5.2: Results superimposed on the scalar input image. Parameters: σg = 0.9, size
19× 19 pixels, k = 3
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Table 5.1: Eigenvalues, anisotropy and orientation of the structure tensor applied to the clus-
ters for various sizes of the Gaussian derivatives (c.f. Fig. 5.3). The neighbourhood
size is 19× 19.

σg label λ1 λ2 A ϕ
0.6 * 11.65 1.00 0.84 0.06

+ 3.19 1.33 0.41 1.54
o 21.35 0.59 0.95 -1.53

{*,+,o} 5.67 3.27 0.27 -0.78
0.9 * 9.98 0.62 0.88 0.05

o 14.75 0.55 0.93 -1.53
+ 1.76 1.16 0.21 1.45

{*,+,o} 4.22 2.89 0.19 -0.76

σg label λ1 λ2 A ϕ
1.2 * 7.99 0.30 0.93 0.07

+ 1.32 0.99 0.14 -1.51
o 10.79 0.55 0.90 -1.54

{*,+,o} 3.06 2.54 0.09 -0.70
1.5 * 6.51 0.27 0.92 0.06

+ 1.08 0.92 0.08 1.24
o 7.71 0.64 0.85 -1.54

{*,+,o} 2.38 2.19 0.04 -0.35

(a) (b)

(c) (d)

Figure 5.3: Scatter plot of the endpoints of the gradient vectors in a local neighbourhood after
clustering (labels are assigned arbitrary). Parameters: (a) σg = 0.6; (b) σg = 0.9;
(c) σg = 1.2; (d) σg = 1.5; neighbourhood size 19× 19.
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Table 5.2: Eigenvalues, anisotropy and orientation of the structure tensor applied to the clus-
ters for various sizes of the local neighbourhood (c.f. Fig. 5.4). The size of the
Gaussian derivatives is 0.9

size label λ1 λ2 A ϕ
19× 19 + 14.50 0.54 0.93 -1.54

* 1.67 1.17 0.18 1.44
o 9.98 0.62 0.88 0.05

{*,+,o} 4.22 2.89 0.19 -0.76
15× 15 + 9.80 0.74 0.86 0.04

* 2.12 1.41 0.20 1.26
o 13.99 0.67 0.91 -1.54

{*,+,o} 4.98 3.22 0.22 -0.74

size label λ1 λ2 A ϕ
11× 11 o 7.47 1.25 0.71 -0.30

* 9.76 0.57 0.89 1.08
+ 13.43 0.99 0.86 -1.30

{*,+,o} 7.63 3.52 0.37 -0.74
7× 7 + 11.72 1.43 0.78 1.44

* 8.31 1.16 0.76 0.44
o 8.26 1.06 0.77 -0.89

{*,+,o} 7.63 3.52 0.37 -0.74

(a) (b)

(c) (d)

Figure 5.4: Scatter plot of the endpoints of the gradient vectors in a local neighborhood after
clustering (labels are assigned arbitrary). Parameters: σg = 0.9; (a) size 19 × 19;
(b) size 15× 15; (c) size 11× 11; (d) size 7× 7.
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5.3.1 Gradient scale dependency

To study the dependency on the scale of the gradient operator we apply the method
to images of scale σg = {0.6, 0.9, 1.2, 1.5}. We keep the neighbourhood size constant
around a randomly selected cross-point of Fig. 5.1. The results are depicted in Fig.
5.3. The ordering of the clusters is random, due to the random initialisation of the k-
means clustering algorithm. From the systems of eigenvalues and eigenvectors after
clustering one can derive that the orientation and anisotropy of the clusters remain
stable (c.f Table 5.1).

5.3.2 Neighbourhood scale dependency

To study the dependency on the size of the local neighbourhood we reduce the size
from 19×19 to 7×7. The scale of the gradient operator was kept constant at σg = 0.9.
This size was selected because it corresponds critical sampling of the Gaussian kernel
[147] and therefore causes no spurious blurring of high-frequency image features.
The results are depicted in Fig. 5.4. The ordering of the clusters is again random, due
to the random initialisation of the k-means clustering algorithm. From the systems
of eigenvalues and eigenvectors after clustering one can derive that the orientation
and anisotropy of the clusters remain stable (c.f Table 5.2) for tensor sizes of 19× 19
down to 15× 15. A further decrease of the size yields a decomposition in which the
clusters have approximately the same anisotropy. A 7 × 7 neighbourhood clearly
does not satisfy the constraint that the vectors must be independent of each other.

5.4 Discussion and conclusions

Decomposing the structure tensor allows analysis and subsequent representation of
multiple oriented structures inside a local neighbourhood. The method is very fast,
robust, and offers an excellent alternative to the computationally expensive filter-
bank methods [52, 51].

5.4.1 Extension to 3D

Extension of this principle to three-dimensional structures is not straightforward. In
3D we must discriminate between planar (plates and edges) and line (strings) struc-
tures. Where planar structures form compact clusters after mapping of the gradient
vectors, analogous to the proposed 2-D method, this does not hold for lines. Lines
form compact clusters after mapping of the directional vectors which points along
the orientation of minimal amplitude variation. These directional vectors cannot be
uniquely determined for symmetry reasons. However, the mapping in our algorithm
overcomes this problem.

5.4.2 Parameter choice

The proposed algorithm has three parameters: the scale of the Gaussian derivatives,
the neighbourhood size, and the number of clusters. The Gaussian derivative should
correspond to the scale of the underlying structures. The (Gaussian) scale σs of lines
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and edges can be found by wavelet decomposition [82, 29]. Using this space-variant
scale removes high-frequency noise and avoid spurious blurring, hence optimising
the signal-to-noise ratio of the image. Note that the minimum size for the Gaussian
derivatives is σg ≥ 0.9. The neighbourhood size must be at least a few times larger
than the apparent scale σa , i.e. the aforementioned scale of image structures after ap-
plying the Gaussian derivatives, σ2

a = σ2
s +σ2

g . We define the effective spatial support
of a Gaussian kernel as four times its standard deviation σa. The tensor smoothing
and hence the neighbourhood size must be at least three times the apparent scale,
hence σt ≥ 5 or a neighbourhood size larger than 15 × 15. The number of clusters
was set fixed to three. This is allowed since we apply the method to pre-selected
pixel found by Harris’ corner detection. More advanced clustering strategies tak-
ing advantage of typical cluster size and shape or pair-wise clustering methods with
build-in order selection can easily replace the k-means method used so far.

5.4.3 Angular resolution

The angular resolution of the proposed algorithm is defined as the minimal differ-
ence in orientation between two overlapping lines that can be discriminated by clus-
tering. Filter-bank methods for characterisation of complex neighbourhoods, neigh-
bourhoods that consist of multiple instances of simple structures such as lines and
edges, employ rotated version of an orientation selective filter. These methods ex-
hibit the property that the angular resolution adheres to an uncertainty principle.
The product of angular resolution and neighbour size is constant [52]. The proposed
method with σg = 0.9 and a neighbourhood size of 19 × 19 yields an angular reso-
lution of approximately 25 degrees. Note that we need resolution in amplitude to
separate structures from background and we need resolution in orientation to dis-
tinguish multiple instances of oriented structures.





Multi orientation analysis com-
bining the structure tensor and
unsupervised clustering.

6

abstract
The structure tensor yields an excellent characterisation of the local dimensional-
ity and the corresponding orientation for simple neighbourhoods, i.e. neighbour-
hoods exhibiting a single orientation. If the analysis window contains contributions
of multiple orientations, the output of the structure tensor cannot be used to find the
properties of the constituents. We show that we can disentangle multi modal struc-
tures if the analysis window (tensor scale) is much larger than the gradient scale.
A continuous orientation representation is used to derive a distance measure indi-
cating the orientation pureness of each pixel. Based on this measure each point is
assigned to the purest point in the local neighbourhood likely to originate from the
same mode. The orientation vectors of these purest points are used to describe the
local orientation structure. Clustering of these vectors in the continuous orientation
representation allows identification of multiple orientations. The orientation vec-
tors in each cluster can be separately analysed using the structure tensor approach.
Proper clustering yields an estimate of the corresponding orientation.

6.1 Introduction

The structure tensor is a powerful tool for the analysis and characterisation of struc-
tures in multi-dimensional images. It was developed independently in [8] and [58]
to solve two completely different tasks in respectively image processing and com-
puter vision. Without formulating a tensor and before it was discovered, Kass and
Witkin [67] presented an algorithm for estimating the average local orientation in 2D
images of line patterns using the double angle representation [55]. Their orientation
estimator fits nicely into the tensor framework.
When applied to a neighbourhood of unimodal structures (lines, planes, and edges
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of a single orientation) the eigenvalues of the tensor allow estimation of the local
dimensionality. The eigenvectors yield the orientation of the corresponding image
features. The fundamental property of the structure tensor that caused its enormous
popularity is indisputably the fact that antipodal vectors are mapped onto the same
point. This allows averaging of mapped vectors without running into problems
caused by cancelling of vectors with opposite direction. The structure tensor can also
be used to construct a powerful salient point detector [58] that has become a stan-
dard tool in many computer vision applications. If the structure tensor is applied to
multi-modal neighbourhoods, the contribution of the various orientations cannot be
disentangled. This is one of the major shortcomings of the structure tensor. To dis-
entangle contributions based on their orientation one must employ a filter bank with
a large number of slightly rotated orientation selective filters [52, 46]. However, for
many practical situations decomposition into two or three orientations and a back-
ground term is sufficient. This paper presents a novel joint spatio-feature clustering
method to decompose the local neighbourhood, that would normally yield a single
tensor, into a limited number of clusters. For each cluster in that neighbourhood we
construct a separate tensor. Proper clustering results in vector ensembles in which
the contributing vectors belong to the same underlying image feature.
In section 6.2 we present the building blocks of our method for orientation measure-
ments in multimodal regions followed by the outline of the method. In section 6.3
we demonstrate the accuracy of the method on artificial data and the performance
on real data.

6.2 Method

Image structures are often represented by vector fields, such as the gradient field.
Such a vector field can be mapped to a manifold in higher dimensional space. Points
on such a manifold generally can be mapped back to the original space. However
mixing points on the manifold, e.g. by taking a linear combination, yields a point
that is not necessarily part of the manifold. In this paper this happens when points
originating from different image structures are averaged. The distance to the mani-
fold can be used to construct a ”pureness” measure. In a novel spatio-feature cluster-
ing step all points are assigned to the purest example in which spatial connectivity
restricts the trajectories in feature space. After that the assumed unimodal regions
are clustered to merge fragmented regions.

6.2.1 Structure Tensor

A vector field in n-dimensional space can be mapped to a representation in which
antipodal vectors become indistinguishable. The orientation tensor T : Rn → Rn×n

is such a mapping:
T (v) = vvT (6.1)

Avaraging the orientation tensors in a local neighbourhood leads to the structure
tensor:

T (v) = vvT (6.2)
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where the overhead bar denotes local averaging, e.g. by Gaussian weighting. The
directional power along the axis described by the unit vector n̂ is given by:

Tn = n̂T T n̂. (6.3)

In 2D n̂ can be put into polar coordinates, i.e. n = [cos(ϕn), sin(ϕn)]T , reducing Eq.
6.3 to

Tn =
1

2
(v2
x + v2

y) +
1

2
(v2
x − v2

y) cos (2ϕn) + vxvy sin (2ϕn)

=
1

2
(v2
x + v2

y) +
1

2

√
(v2
x − v2

y)
2 + 4(vxvy)2 cos(2(ϕn − θ))

(6.4)

with θ the orientation that maximises Tn. Now θ is given by

tan 2θ =
2vxvy

v2
x − v2

y

(6.5)

The eigenvalues λ1 and λ2 follow directly from Eq. 6.4 by substituting respectively
ϕn = θ and ϕn = θ+ 1

2
π . A closed-form solution for the eigenvalues and eigenvectors

in 3D is given by Van Kempen [69]. However for higher image dimensionalities
one has to rely on numerical solutions. As a whole this tensor describes the local
vector field characteristics, i.e. the eigenvalues indicate the underlying certainty of
the vector structure to be aligned with the respective eigenvector directions.
A common way to describe the orientation structure of unimodal structures is based
on the gradient structure tensor (GST)

T = T (∇σgI) (6.6)

where∇σgI denotes the gradient vector field and σg the scale of the Gaussian deriva-
tive kernels.

6.2.2 Vector field

We require a vector representation which yields compact clusters around the orien-
tation axis of the structure. Compact in the sense that the vectors are closely packed,
and in which both antipodal vectors represent the orientation axis of the underlying
unimodal structure. The compactness is required to keep a subsequent clustering
step as simple and reliable as possible.
In 2D, the gradient vector is the obvious candidate for the vector field. The required
vector field is obtained by rotating the gradient vector through an angle of π

2
radians

to align the vector field with the orientation axis of line like structures. As such the
required vector field is given by

v = Rπ
2
∇σgI (6.7)

where Rπ
2

denotes a rotation matrix for a rotation over an angle of π
2

rad. For planar
structures the rotation of the gradient field is not necessary as it is already aligned
with the orientation of the structure. Alternatives are a quadrature filter [72] and the
structure tensor approach which also yield reliable results in regions where antipo-
dal vectors are present, e.g. on opposite sides of the crest of a line. These methods
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are however rejected for the 2D case as they introduce additional mixing of the un-
derlying structures.
In 3D, the gradient field is of no use as it does not yield compact clusters for line like
structures. Therefore we propose to extract the vector field from the eigensystem of
the structure tensor. For line like objects the direction of the vector field is given by
the eigenvector associated with the smallest eigenvalue. This vector is used as the
gradient energy for line like structures is confined to the subspace perpendicular to
the symmetry axis of the structure. This in contrast to planar objects for which the
gradient energy is centered around the axis normal to the planar structure which
coincides with the symmetry axis of the structure.
Although we choose the eigenvector corresponding to the least significant eigen-
value of the structure tensor as discriptor of the local orientation, its eigenvalue is
not a good measure for the certainty of the vector, i.e. the length of the vector. There-
fore we set the length of the vectors to the square root of the trace of the tensor, i.e.
the square root of the gradient energy present.
Mathematically the structure tensor can be written as:

T (v) = RTΛR (6.8)

with Λ = diag(λ1, λ2 . . . λn), R = (v1,v2 . . .vn) and vi the eigenvector corresponding
to eigenvalue λi of T . Assuming λi ≥ λi+1, the direction of the vector field is given
by the unit vector v̂n. Combined with the magnitude, the square root of the trace of
T̄ , the vector field is given by:

v = v̂n

√
Tr(T ). (6.9)

Throughout this paper the use of Gaussian derivative filters is assumed. The size
(standard deviation) of the Gaussian derivative and tensor smoothing kernels should
be kept as small as possible to minimise the cross talk between the individual under-
lying structures. The standard deviation of the gradient kernels can be set to ap-
proximately one , i.e. σg ≈ 1, [140]. Further, as a rule of thumb, the tensor smoothing
should be a factor 2 to 3 larger than the gradient smoothing. This factor is on the low
side compared to values reported in the literature. The value is just large enough to
reliably estimate the orientation axes of the underlying structure but small enough
to avoid excessive mixing of different modes.
Alternatively, for 3D line-like structures, one could derive a vector field based on
the second order structure. For example, the isophote curvature method yields the
vector corresponding to the axis with smallest curvature in the local isophote plane
[149]. Basically, the isophote curvature method in 3D rotates the Hessian matrix to
align with the gradient and the principal curvature directions in the isophote plane
perpendicular to the gradient vector. This approach is however not pursued in this
paper.

6.2.3 Orientation Mapping

So far we only required the clusters to be compact with respect to the orientation axis.
But this is not sufficient for clustering as antipodal vectors are mapped to different
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points in the cluster while sharing the same orientation and possibly magnitude, i.e.
this results in separate clusters. Therefore a mapping is required to remove the am-
biguity between the antipodal vectors.
We define a tensor, derived from the orientation tensor, as the dyadic product nor-
malised by the magnitude of the vector,

MT (v) =
v vT

|v| (6.10)

which is a symmetric tensor, hence the subscript T , and has as such only 1
2
n(n + 1)

independent elements, i.e. Mij = Mji, with n the number of dimensions. This
tensor can be reduced to an orientation mapping T : Rn → R 1

2
n(n+1) satisfying the

uniqueness, polar separability and uniform stretch property [73, 109]. The mapping
is constructed from the unique tensor elements of Eq. 6.10

M(v) = |v|−1(v1v1, . . . , vnvn,√
2 v1v2, . . . ,

√
2 v1vn,

. . .√
2 vivi+1, . . . ,

√
2 vivn,

. . .√
2 vn−1vn)

(6.11)

The first n terms correspond to the n diagonal elements while the remaining terms
correspond to the upper off-diagonal elements of the tensor. The factor

√
2 in front

of the off-diagonal tensor elements makes sure the Frobenius norm of the orienta-
tion tensor is conserved in the mapping, i.e. the Euclidean norm is conserved. The
Frobenius norm for a square matrix A is given by ‖A‖F =

√∑n
i=1

∑n
j=1 |Aij|2 =√

Tr(AA′). Note that the number of independent elements can be reduced further
by one more element, while preserving the aforementioned properties.
The orientation mapping of Eq. 6.11 gives a continuous but curved manifold in a
higher dimensional space. For n = 2 the mapping is identical to the double angle
representation [55]. As such all mapped vectors can be found on a cone in which
the distance from the focal point of the cone is the length of the original vector. Vec-
tors with equal magnitude are therefor mapped onto a circle embedded in a three-
dimensional space. Fig. 6.1(a) shows the manifold, i.e. cone (v2

1, v
2
2,
√

2 v1v2), de-
scribed by the 2D orientation mapping where the symmetry axis of the cone cor-
responds to the vector (1, 1, 0). In this space, parallel vectors are mapped onto a
straight line through the apex of the cone running over the manifold, e.g. the points
on the black dashed line. Orthogonal vectors are mapped onto opposite sides of the
cone, e.g. the black and gray dashed lines. In 3D the interpretation becomes more
difficult and is not easily visualised although an identical formulation can be used.
From geometric considerations it can be seen that averaging two points in the 3D-
mapping is analog to the 2D case, see e.g. [109]. For the sake of readability we will
refer to the mapped orientation vectors as s-vectors from here on.



(a) (b) (c)

(d) (e)

(f) (g) (h) (i)

Figure 6.1: (a) Sketch of the 2D orientation mapping, the cone denotes the manifold de-
fined by the mapping. The black and gray dashed lines denote two perpendic-
ular orientations on the cone. The half openings angle of the cone is denoted
by α and the symmetry axis off the cone is denoted by the dashed arrow. (b)
Plane through the cone defined by the two perpendicular orientations in (a). The
points on the dashed lines denote the mapping of two pure vectors while the
third point denotes the averaged mapping. (c) Sketch of the averaged mapping
around a t-junction (projection along the symmetry axis off the cone). The mesh
denotes the spatial connectivity between the points. (d) Averaged vectors for a
T-junction, the thick black solid lines denote the outline of the cone. The solid
lines between the averaged vectors denote the spatial connectivity between the
mapped points. The solid gray lines denote the pure orientations of the junction.
(e) Sketch of clustered sink points on the cone mantle. (f) Artificial junction with
some noise added, the yellow circle denotes the analysis window. (g) Unimodal-
ity map around the junction in (f). (h) Flow field of the points in the local analysis
window. (i) Segmented analysis window.
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6.2.4 Entangle and disentangle orientation vectors

A general inverse mapping from the higher dimensional space to a D-dimensional
vector space is not possible as points in the higher dimensional space do not nec-
essarily have a counter part in the original space. Further, element wise weighted
sums of points on a mainfold in such a space, e.g. tensor smoothing, results in points
which in general are not located on the original manifold. These two points show
that local averaging of the mapping is only permitted in regions with a unimodal
orientation field as only then the resulting vector is on or at least near the manifold
and hence the orientation estimate can be interpreted. Obviously, the last require-
ment is not fulfilled for multimodal structures as averaging two s-vectors with a
different orientation yields a s-vector inside the original mapping, e.g. a cone in 2D.
This property is used in the next step to unmix the region where unimodal structures
interact due the element wise averaging of the elements of the mapping.
Now let us define the element wise averaged mapping of Eq. 6.11 as

M(v) = (w1w1, . . . , wnwn,√
2w1w2, . . . ,

√
2w1wn,

. . .√
2wiwi+1, . . . ,

√
2wiwn,

. . .√
2wn−1wn) with wi = |v|− 1

2vi

(6.12)

where the overhead bar denotes local averaging. Here a Gaussian weighting is ap-
plied with a standard deviation of σs.
Fig. 6.1(b) shows a cross section through the cone in the 2D orientation mapping, i.e.
it depicts two perpendicular vectors mapped to opposite sides of the cone. Note that
the mean of these two s-vectors due to difference in magnitude is not found on the
symmetry axis of the cone but a bit off.

distance measure

As already stated, averaging the s-vectors in a multimodal region will cause the
resulting s-vector to move away from the manifold induced by the mapping. We
propose to use the distance from the manifold to construct a measure for the uni-
modality of the local environment. As the distance is proportional to the magnitude
of the mapped vector we are looking into a magnitude-invariant measure. For a
cone the angle between the cone mantle and a s-vector originating from the apex
of the cone is equal to half the opening angle of the cone minus the angle between
the s-vector with the symmetry axis of the cone. Note that the opening angle of
the orientation mapping is different from mapping to mapping but constant in each
mapping. Now let us define the S-vector corresponding to the symmetry s-vector of
the orientation mapping as

Si =

{
1 if 0 < i ≤ n,

0 if n < i ≤ 1
2
n(n+ 1).

(6.13)
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i.e. an s-vector which is one on the elements corresponding to the diagonal elements
of the tensor representation and zero for the off-diagonal elements. This s-vector
has a fixed angle with all vectors on the manifold defined by the mapping. Now we
introduce a distance map given by the angle between the averaged s-vectors denoted
byM and the symmetry axis of the cone denoted by S, i.e.

D(M, S) = αn − arccos

(
S · M
‖S‖ ‖M‖

)

= αn − arccos

 1√
n ‖M‖

1
2
n(n+1)∑
i=1

M(v)i

 (6.14)

with αn half the opening angle of the cone, where n denotes the dimensionality [109].
This distance measure depends on the angular separation of the mixed s-vectors
as well as the relative magnitude of the vectors. In 2D for example, mixing two s-
vectors with equal magnitude originating from two perpendicular vectors will result
in distance of 45o i.e. αn whereas two s-vectors originating from two vectors under
an angle of 45o will result in distance of ≈ 10o.
Note that Eq. 6.14 can also be derived directly from an element averaging of Eq. 6.10
given by

MT (v) =

(
v vT

|v|
)
. (6.15)

The angle between the manifold and the element-wise averaged tensorsM is given
by

D(M, S) = D(MT , I) = αn − arccos

( I ·MT

‖I‖F ‖MT‖F

)
(6.16)

where I denotes the identity matrix and ‖ · ‖F the Frobenius norm.
Fig. 6.1(b) shows the result of averaging two s-vectors that correspond to perpen-
dicular vectors in a 2D image sub-space. α denotes the angle between the symmetry
axis of the cone and the averaged s-vector, i.e. the distance is equal to αn − α.
The sketch in Fig. 6.1(c) depicts a top view of locally averaged s-vectors to a 2D
T-junction. In this case three modes are indicated with the three arrow heads. The
spatial connectivity between the mixed s-vectors is depicted by the mesh. Due to av-
eraging all s-points, i.e. mesh points can be found in the cone or on the cone wall in
case of a pure unimodal region. Note that the mesh due to averaging between three
modes can be found in the convex hull described by the three pure orientations at
least in a noiseless case. More general, the result of the weighted mean of a set of
initially pure s-vectors is confined to the convexhull described by the vectors from
which this weighted mean is constructed. Fig. 6.1(d) presents a 3D view of the mesh
generated in the local neighbourhood indicated by the yellow circle centered on the
fork in the image depicted in Fig. 6.1(f). The black dots indicate the low magnitude
vectors close to the apex of the cone while the coloured dots indicate the stronger
vectors. From this example we can clearly see the tendency of the s-vectors to form
laminae through the cone connecting the pure orientations. Further we can see that
the space inside the laminae is almost empty as the probability that a point belong-
ing equally to three modes is very unlikely, i.e. it is much more likely that a point
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belongs more or less to two pure structures than to three. This can of course be gen-
eralised, i.e. the probability to have equal contributions from m+1 pure orientations
is much lower than the chance to have equal contributions formm pure orientations.
This of course in the neighbourhood of a complex multimodal structure.
Fig. 6.1(g) shows the distance map of the image in Fig. 6.1(f). It clearly shows that
the distance values are maximal at the junction and drops towards the unimodal
regions.

region selection

The downhill gradient of the local distance landscape points to regions with less in-
teraction between modes, i.e. a smaller distance to the manifold. As such we can
apply a gradient descent type of algorithm, i.e. we connect each point in the local
neighbourhood to its downhill minimum [152]. The downhill minimum is found by
stepping to the neighbour with the lowest “distance” value and continuing so until
all neighbours have a distance greater or equal to the present point. Now clusters
are formed by points that share the same downhill minimum, i.e. downhill minima
work as sinks. Ideally, each region corresponds to a single unique mode. How-
ever this is often not the case if noise and other imperfections such as curved linear
structures can cause fragmentation of modes. Therefore we have to include a step
to merge fragmented structures (or structures with equal orientation). Fig. 6.1(h)
shows the flow field of the image in Fig. 6.1(f). This figure shows that all points in
the local neighbourhood flow to one of the three sink points. Note that the sinks on
the border of the local neighbourhood are not necessarily preserved if the neighbour-
hood size is increased. Also note that the number of sinks gives a upper limit for the
number of linear structures present in the local neighbourhood. Similarly, one can
never find more orientations than the number of clusters in the local neighbourhood.

6.2.5 clustering

To cluster the fragmented regions we use a weighted k-means algorithm. The c data
points are represented by the orientation vectors of the sinks and the weights are
set to the size of the corresponding regions. As the algorithm is not guaranteed to
return a global optimum we obtain m+ 1 solutions for m+ 1 different initialisations,
in here we set m to the minimum of 10 and c! (in the latter case all permutations
are evaluated). The first initialisation of the algorithm is done with the sinks of the
k largest regions. The subsequent m initialisations are done by randomly picking k
sinks from all sinks. The best clustering, i.e. most compact, is accepted.

6.2.6 measurement

After segmentation and labelling we obtain k unimodal regions. Now we can apply
the structure tensor to the regions separately. This gives an unbiased orientation
estimate as long as the orientation vectors are evenly distributed around the true
orientation. In Fig. 6.1(e) a sketch is shown of the orientation vectors describing the
sinks, i.e. in the figure all vectors are mapped to the same magnitude ending up on
a circle. The size of the dots indicates the size of the region. The figure indicates
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6 sinks forming three solid compact clusters. One of these sinks is a small outlier
cluster which is assigned to the green cluster. Note that the assignment of such a
cluster is not significant to the end results as its weight in constructing the structure
tensor is low compared to the rest of the cluster.

6.2.7 Algorithm

To summarise, we present an outline of the algorithm including the parameters in-
volved at each step along the way.

1. First a vector field is created which is aligned with the orientation of the struc-
tures of interest. In 2D this field is derived directly from the gradient field
(Eq. 6.7). Hence only a single scale σg is needed for computing the gradi-
ent. In higher dimensions the vector field is obtained from the eigensystem of
the structure tensor (Eq. 6.9), which involves setting a gradient scale, σg, and
tensor scale, σt. To limit the cross-talk between individual modes small, the
smoothing parameters should be kept as small as possible. For moderate noise
conditions we propose the use of a σg ≈ 1 and σt ≈ 2σg.

2. From this representation a continuous orientation representation is derived
which is further smoothed in the local environment to obtain information on
the pureness of the underlying structure, see Eq. 6.12. This introduces an addi-
tional smoothing scale, σs ≈ 3σg, note that this smoothing is additional to the
already performed smoothing, i.e. the cumulative smoothing is approximately√

(σ2
g + σ2

t + σ2
s) ≈ 4σg.

3. From this averaged orientation mapping a distance map is constructed describ-
ing the pureness of the image point in question, see Eq. 6.14.

4. In a window with radius r, we apply an iso-data threshold [107] on the square-
root of the gradient energy to separate orientation carrying pixels from back-
ground pixels. This step basically simplifies the clustering as it removes the
low magnitude vectors. In 2D this removes points around the apex of the cone.
This step can be applied globally to the image whenever properties like shad-
ing and image blur are constant over the image.

5. The distance map, Eq. 6.11, is used to find regions around the local minima
in the distance map, i.e. regions contain connected points sharing the same
downhill minimum in the distance map. The properties of the minima are used
to describe the respective regions, thereby significantly reducing the number of
vectors to be processed.

6. To combine regions with the same orientation the descriptors of the regions are
clustered in k clusters by means of a weighted k-means clustering algorithm.
The weight of each region is equal to the number of points. Such regions are
represented by its sink (see step 5). This step can be replaced by a more com-
plex clustering algorithm which for example could pick the number of modes
automatically.
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7. For each of the k clustered regions a structure tensor is constructed based on
the vector field calculated in step one, in which the tensor averaging is uniform
over the cluster (except for the pixels below the iso-data threshold which have
zero weight). For each of these tensors the eigenvector corresponding to the
dominant eigenvalue is calculated and used as orientation descriptor of the
region.

6.3 Results

In this section we first apply our method to artificial bifurcations to determine the
accuracy and precision of method. Secondly the method is applied to some real-
world images to show possible applications.

6.3.1 Y-fork

To quantify the performance of the method it is applied to artificial Y-fork images,
i.e. a bifurcation in which the angle between the “standing leg”, A, and the other
two “arms”, B and C, is identical. As such the geometry of this structure can be
described by a single angle φ, i.e. φ = ∠AB = ∠AC while ∠BC = 2(π − φ). In 3D
the entire structure is located in a single randomly oriented plane.
The Y-forks where generated for angles φ ∈ [0, π] with a random pose, i.e. with
random subpixel position and random orientation for the structure as a whole. The
lines, “arms”, have a Gaussian line profile, i.e. I(s) = exp(− s2

2σ2
l
) with s the distance

from the centre of the line. We added respectively {10,15,20} dB Gaussian noise to
the images. Here the SNR is defined as 20log(σ−1

n ) dB with σn the standard deviation
of the noise and the implicit assumption of a line contrast equal to one, i.e. the
difference between foreground and background intensity is assumed one. For the
radius of the analysis window we used the values of 5, 10 and 15 pixels respectively.
The measurements are performed 200 times for each combination, e.g. noise level,
angle φ and radius of the analysis window. Throughout the experiment the values
for {σl, σg, σt, σs}were fixed at {1, 1, 2, 3}
The results are shown in Fig. 6.2, the left and right column respectively show the
results for the 2D and 3D case. The figures on the first row, Fig. 6.2(a-b), show the
mean angular deviation, d, for the three arms where d is given by

d = min
Pij

3∑
i=1

arccos |uT (φi)u(θj(i))| (6.17)

with φi the true and θj the measured orientations and u(·) = [cos(·), sin(·)]T . The
minimisation is over all permutions, P , of the measured orientations with respect to
the true orientations.
The second row of figures, Fig. 6.2(c-d), shows the bias in the estimated orientation
for each arm, i.e. A, B and C in the case of 15 dB noise. This bias measure is denoted
by di where di is given by

di = sign(u(φi) × u(θj(i))) arccos (|uT (φi)u(θj(i))|) (6.18)
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here the first factor determines if the angular deviation is clockwise or counter clock-
wise and the second factor determines the angular deviation itself. The permutation
between true and measured orientation is chosen in the same way as in the pre-
vious experiment. The {red,green,blue} lines respectively correspond to the arms
{A,B,C}. Note that the colour code is different between the figures in the first and
second row, i.e. in the first row the colours denote noise levels while in the second
row the colours denote the individual arms in a specific noise situation.
The third row, Fig. 6.2(e-f), shows cumulative histograms of the number regions be-
fore and after clustering in the local neighbourhood. The number of regions before
clustering is shown in the upper figure while the number of regions after clustering
is shown in the lower figure of each pair. The conditions are the same as for the bias
experiment, i.e. a noise level of 15 dB and a radius of 10 pixels for the local neigh-
bourhood. The post clustering figures are basically collapsed versions of their pre
clustering counter parts, i.e. with less starting regions than the required number of
orientations the algorithm will return the initial regions and in all other cases exactly
the required number.
For the interpretation of the results it is important to realise that leg A coincides with
the symmetry axis of the structure. Furthermore, there are three degenerate struc-
tures, i.e. structures in which the orientation of two or more lines coincide. These
structures are described by φ ∈ {0, π

2
, π}. Another point to keep in mind is the fact

that the results in the upper two rows of figures only refer to cases which yielded
the required number of orientations, i.e. whenever the algorithm yielded less orien-
tations than required the results where ignored in the analysis.
The most striking in the results is probably the bias behaviour in the 2D case. Nor-
mally the GST is unbiased however in this case the distribution of the orientations in
the assigned regions can become truncated. This is a result of the way k-means as-
signs clusters, which is basically a nearest mean assignment. This hard assignments
makes a choice for a single cluster while in overlapping regions points should be
assigned on the basis of the overlapping distributions of the underlying structures.
Whenever this truncation is not symmetrical around the true mean it will introduce
a bias. As the angular distance from arm A to arm B and C is equal, the trunca-
tion works identical on both sides of the underlying orientation distribution. Hence
the results for arm A (red) should be unbiased. However this is not the case for the
arms B and C (blue and green) for which the angular distance to their neighbours
is in general different for each neighbour and as such also the truncation will not be
symmetrical around the true mean. The absence of bias in the 3D case can be ex-
plained by the fact that in 3D the truncation will be highly confined to the plane of
the structure, i.e. out of plane the truncation effect will drop drastically. As such the
majority of the underlying distribution will be unaffected by the hard assignments
of the clustering method.
The cumulative histograms show clearly the effect of the degeneracy of the structure
for some cases, i.e. for φ = 0 the structure resembles a single half line with a single
orientation and as such often only one or two starting clusters are found. The same
is true for φ = π. For a T -junction , φ = π

2
, the effect is negligible as the presence of

arm A probably forces a watershed between arms A and B in the distance measure.
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Figure 6.2: Results of the Y-fork experiment with respectively the 2D and 3D results in the left
and right column. Figs. (a-b) show the mean deviation from the true orientation,
the {red,green,blue} lines correspond to the {10,15,20}dB cases. Figs. (c-d) show
the bias for the separate arms of the Y-fork for 15dB noise, the {red,green,blue}
lines correspond to the arms {A,B,C}. Figs. (e-f) show the cumulative his-
tograms of the number of regions before and after clustering in respectively the
upper and lower cumulative histogram, for 15dB noise and r = 10 px.
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6.3.2 Test images

claydike

The image in Fig. 6.3(a) shows a deformed miniaturised claydike model with a su-
perimposed grid. In this application the accuracy and precision are important to
characterise the stress and strain in the deformed grid. The measured orientations
are superimposed on the image where the length of the lines indicated the size of the
analysis window. For this test we put k at 2, i.e. crossings have two main orienta-
tions. The values of the parameters, i.e. [σg, σs, r, k] are set respectively at {2,4,15,2}.
We had to put r and σg to relatively high values due to scan artifacts in the image,
i.e. in the image horizontal smearing is present which affects the vector field. For
this test the points of interest were selected automatically [34]. In the case of simple
crossings the orientations of the underlying structures are nicely detected. In the
cases where the implicit assumption of a lineair structures is violated the estimates
can be a bit off as well as interfering structures are present.

leaf

The image in Fig. 6.3(b) shows a close up of the veins in a leaf. The detected orien-
tations are shown in the overlay as in the previous example. The rectangle indicates
the location of the enlarged region on the right. The values of the parameters, i.e.
[σg, σs, r, k], are set respectively at {1,3,10,3}. The orientations at the selected junc-
tions are detected nicely Although in some cases a human observer would indicate
less orientations, e.g. in the case of T-junctions two orientations would be more ap-
propriate.

checker board

The image in Fig. 6.3(c) shows a part of a checker board image. The checker board
pattern gives rise to crossings, only the upper right corner has a fork structure, hence
we put k = 2. The parameter values, i.e. [σg, σs, r, k], are set at respectively {1,2,10,2}.
In the insets we show a blowup of the corner for respectively k = 2 and k = 3. As
can be seen in the k = 3 case the orientations are detected correctly. The reduction of
k to two causes two regions to merge and hence the orientation measure in this new
region is in some sense the weighted average of orientations in the merged regions.
Note that the orientation estimate of this merged cluster is not exactly the half way
orientation but is closer to the orientation of the strongest edge.

6.4 Discussion and conclusions

The traditional structure tensor approach is only valid in unimodal regions. The ten-
sor regularisation step will mix the contributions of the underlying structures which
can not (easily) be disentangled afterwards. To address this problem we introduced
a distance measure which indicates the pureness of a local neighbourhood. This
measure makes use of the fact that when two modes are averaged in the orienta-
tion mapping the average moves away from the manifold enforced by the mapping.
Realizing that an inverse mapping is only possible for points on the manifold we
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(a)

(b)
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k = 2

k = 3

(c)

Figure 6.3: Test images with in overlay the detected orientations at a number of selected
points. (a) Image of a deformed miniaturised claydike model with a superim-
posed grid. Courtesy of GeoDelft, The Netherlands. The parameters {σg, σs r, k}
set to {2, 2, 4, 15}. (b). Image showing the venation of a leaf, with {σg, σs, r, k}
set to {1, 3, 10, 3} (c). Checkerboard image with parameters {σg, σs, r, k} set to
{1, 2, 10, 2}

assigned each pixel in the distance map, by means of a steepest descent, to the pixel
in the local neighbourhood with the smallest distance to the manifold. The pixels
with the same downhill minimum form in principle unimodal regions. Fragmented
regions are clustered, resulting in k regions where k should be the number of orien-
tations displayed by the underlying structures. After clustering, the structure tensor
can be applied to the resulting unimodal regions (clusters).
If the number of clusters cannot be determined one could skip the clustering step
which would result in a number of tensors equal to the number of regions in the lo-
cal neighbourhood. This option would result in a structure like that of the filterbank
approach [52, 46] but than sparse, i.e. each tensor and the size of the corresponding
region could be seen as a point along the orientation axis in a filterbank. Compared
to this well known method we can achieve a high angular selectivity with relatively
small analysis windows. An alternative approach is that of the non-linear structure
tensor [16]. Although in this method the diffusion, i.e. smoothing, is damped at dis-
continuities it is not able to return a multi valued description of the orientation field
in the local neighbourhood.
The computational cost of the non-linear structure tensor as well as the filterbank
approach is assumed to be as least as high as for our method, i.e. the filterbank
needs a large amount of filters for a good angular selectivity while the non-linear
structure tensor needs a large number of iterations. Our method has low memory
requirements due to the sparse nature. Our method is reasonably fast as the distance
map can be calculated globally. The first local step, i.e. the segmentation, is based on
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a steepest decent and is fast as only for a small fraction of points the entire descent
has to be done. The other points can use the results from completed runs whenever
they join the same path. The second local step, i.e. the clustering, is also reasonably
fast as the number of regions is very small which speeds up the clustering process
considerably when compared to a clustering directly on all points in the neighbour-
hood.
The method requires a few parameters. First of all a gradient scale and in 3D an
additional tensor scale which should be kept as small as possible to keep cross talk
to a minimum. Second, the smoothing in the orientation mapping should be of a
much larger scale as it should “see“ the different modes. Third the clustering neigh-
bourhood, i.e. analysis window, should be larger than the spatial extend of the multi-
modal structure. This as the vectors on the junctions do not represent the underlying
structures very well in general. Finally k sets the number of required orientations.
The bias behaviour we found in the 2D case results from truncation of the distri-
bution of the orientation field in the analysis window. This bias could possibly be
reduced by a clustering method which assigns soft labels, i.e. a method which re-
turns the probability of a point to belong to a certain cluster.
We did not address the problem of automatically picking the number of clusters k,
although an upper limit is set to the dimensionality by the number of regions in the
local neighbourhood. Furthermore, the method can easily return the results for e.g.
k = 1 to k = 5 without increasing the computational cost to much. By analysing
these results it could be possible to automatically pick the best value for k.
Our examples show the power of the method but we would like to stress that the
method is not confined to these applications. Other possible applications include
non-linear diffusion schemes, corner detection and texture segmentation and classi-
fication.
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7.1 Introduction

Finding the fastest path through a medium from start to finish is a problem that
arises in many areas of natural and engineering science. If the search space can be
represented by a (bi-)directional graph a solution can be found in a rather straight-
forward fashion using one of the many optimisation algorithms such as A*. It be-
comes complicated if the space is continuous and in the presence of a space-variant
speed function. In geometrical optics this problem corresponds to finding the path
light follows while travelling through a medium with a space-variant refractive in-
dex. In acoustical wave propagation it produces the path that a sound wave tra-
verses between source and receiver through a material with a space-variant acousti-
cal impedance. Similar problems arise in other fields of science and engineering, e.g.
path planning and image processing. In all cases it reduces to finding the fastest path
from source to destination through a medium. Both the source and the destination
are not necessarily limited to single points, but can be objects of a certain dimension-
ality and spatial extent, e.g. lines, planes, volumetric objects. This problem can be
written in the form of the Eikonal equation, a nonlinear partial differential equation
which can be derived from the Hamilton-Jacobi equations.
Solving the Eikonal equation is solving an optimisation problem, i.e. finding the
fastest path between source and destination. This minimisation problem can be
thought of as an outward propagating interface, a wave with arrival time U(x) and
propagation speed V (x). For a wavefront to move with speed V an infinitesimal
step dx requires an infinitesimal time-step dU or

dx = V dU. (7.1)

As information is only transferred along a time line, V is assumed to be strictly pos-
itive, which leads to the Eikonal equation:{

I = |∇U | for x ∈ Ω̄

U = 0 for x ∈ δΩ
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where I(x) is the inverse speed function, V −1, also referred to as cost function. The
cost function in geometrical optics is the refractive index, in acoustical wave propa-
gation the impedance. Further as boundary conditions the initial front, δΩ, is set to
have a zero arrival time.
So far we assumed the speed function to be isotropic, i.e. the local speed is inde-
pendent of the local propagation direction. In a more general way one can easily en-
vision speed functions that do depend on the orientation and curvature of the path
connected to the current point on the wavefront and hence orientation and curvature
dependent cost functions. Such an anisotropic cost function depends on properties
derived from the local neighbourhood and as such are not isotropic because, in gen-
eral the content of the neighbourhood itself is not isotropic.
As the solution of the Eikonal equation is the arrival time of the wavefront, a second
step is needed to obtain the minimum cost path connecting the point of interest to
the initial front. It can be shown that the minimum cost path is obtained by a gra-
dient descent from the point of interest to the initial front over the arrival time map.
Like a ball, with zero inertia, rolling down hill. The zero inertia is important as oth-
erwise the ball will try to keep moving in a straight line instead of instantaneously
following the projected force of gravity.

Background

Taking the Eikonal equation as a starting point, the equation was first solved for a
medium with a space-invariant cost function. For unit costs this boils down to the
Euclidean distance connecting a point of interest to the initial front (i.e. the source).
Hence, the arrival time and the distance travelled are identical. Similarly in optics
a space-invariant refractive index causes light rays to travel along straight lines, i.e.
the fastest path equals the shortest path.
Rosenfeld and Pfaltz [116] introduced the distance transform in which a local dis-
tance metric is propagated to obtain an approximate global Euclidean distance map.
The only consistent and therefor valid distance functions, are the ones that form a
metric. Any metric satisfies the following criteria for a distance function, d : X×X →
R+

0 :

d(x,y) = 0 if and only if x = y (identity of indiscernibles)
d(x,y) ≥ 0 (non-negativity)
d(x,y) = d(y,x) (symmetry relation)
d(x,y) ≤ d(x,p) + d(p,y) (triangle inequality)

Rosenfeld only gave exact solutions for the city block and chessboard metric which
respectively correspond to the L1 and L∞ norm. Rosenfeld and Pfaltz [116] also in-
troduced the octagonal distance transform which alternates between the city block
and chessboard metric to partially compensate the overestimate of the former by the
underestimate of the latter. To get a better approximation to the Euclidean distance
or L2 norm Montanari [91] introduced a metric, which gives the exact Euclidean
distance on the grid axes and the diagonals but makes errors in between. To min-
imise the maximum error Borgefors [11] introduced the Chamfer metric in which the
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metric coefficients are chosen such that the maximum error is minimised for all di-
rections. Danielsson [24] introduced a quasi Euclidean distance transform based on
a two component descriptor for the number of horizontal and vertical steps, quasi
as in a small number of cases small errors can be detected. The result is a vector at
every position, hence the name vector distance transform (VDT). This method was
later extended by Mullikin [94].
Parallell to the Euclidean distance transforms (EDT) the family of grey value weighted
distance transforms where developed. In which not the distance is measured but the
arrival time of the wavefront.
In Rutovitz [117] an algorithm was proposed in which the cumulative cost is lower
along a path with low pixel values. Levi and Montanari [78] introduced the Grey-
weighted skeleton for which the grey value distance is defined as the minimum cu-
mulative grey value sum along all possible paths. Another grey weighted distance
measure is that of the fall-distance, i.e. in a region which is strictly decreasing the
fall-distance is given by the length of the path of decent [118, 152]. Later Toivanen
[133] presented a distance transform based on grey value differences.
Verbeek and Verwer [139] introduced the grey value weighted distance transform
(GDT) based on the chamfer distances weighted with the local grey value, an exact
solution for a maximum finite difference gradient. Since the propagation directions
in the grey weighted distance transform are governed by the adopted chamfer only
a discrete set of propagation directions is allowed.
A method not suffering from the discrete set of propagation vectors is the fast march-
ing method (FMP). This method locally models a planar wave onto the underlying
cost function [136, 126]. Like the GDT and EDT it is not isotropic although the max-
imum error is an order of magnitude lower. As mentioned the Eikonal equation
propagates information only forward in time, i.e. along the gradient direction of
the arrival time of the wave front. This principle is used in the Euclidean distance
transform as presented by Verwer et al. [142] , the GDT as well as the Fast Marching
methods. The wave front is expanded by the Huygens principle. Point(s) on the
leading wave front work as a source for a new wave which updates all points ahead
of the wavefront. Where the principle is implemented by a Dijkstra like method [30].
To extract the minimum cost path from a given arrival time map a gradient descent
has to be applied. The descent is from some point of interest on the arrival time map
to some point on the initial front. The gradient can be obtained by various methods.
The simplest method is the binary descent in which the descent algorithm steps to
the lowest valued 8 connected neighbour until the point it self is the (local) mini-
mum. Applied to the arrivaltime map you end up at some point on the initial front.
Other methods use more regularization like the Runge-Kutta based methods.

Method

The distance transforms can be divided in chamfer, vector and fast marching based
transforms. The key differences between the aforementioned distance transforms is
the approximation in modelling the wave. In the chamfer methods a wave is only
allowed to travel over a discrete set of vectors which start and end at grid points. The
FMP method models a plane wave which also supplies the propagation direction,
i.e. the propagation direction is not limited to a small set of grid-based directions.
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Figure 7.1: (a) Propagation masks for 1D, (b) forward 2D propagation mask, (c) backward
2D propagation mask, (d) region processing for single seed, where region I and II
obtain their final values in respectively the first and second pass. (e) spiral image.

The former method is inherently discrete. The latter approximates the continuous
wavefront, which is a good approximation as long as the wavefront is sufficiently
straight. For (strongly) curved fronts this approximation breaks down. Therefor we
propose a method in which the wave is locally modelled as a spherical wave.
Another point of break down is that locally all paths are assumed straight which
again is the right assumption for uniform cost functions, but for space-variant cost
functions this assumption is violated and as such the minimum cost paths can be
strongly curved. However this error source is not investigated further in here as the
errors introduced by the modelling of the wave front dominated the total error. As a
solution one could think of a method which locally solves the Eikonal equation on a
planar cost function allowing the paths to bend locally. This method then converges
to the classical FM method in the limit of a infinite radius of curvature of the wave
front just as the spherical wave approximation.

7.2 Euclidean distance transform

For image processing tasks such as skeletonisation and segmentation one often needs
the distance between objects. Therefore a big effort has been put into finding fast and
accurate solutions to this problem. Finding the distance between objects is basically
a minimisation problem as one tries to find the minimum distance to some initial
front or source.
For a region of interest where the boundary is the initial front, a number of sequen-
tial algorithms have been developed, such as the two pass algorithm in Rosenfeld
and Kak [115] and a four pass algorithm in Danielsson [24].
The two pass algorithm first makes a forward pass and then a backward pass, e.g.
for 1D first from left to right and then in opposite direction. For 2D the forward
sweep is from the top left to the bottom right with a causal neighbourhood, i.e. all
top neighbours and the left nearest neighbour correspond to positions that have been
visited in the current forward sweep. For each point on the sweep front the mini-
mum cumulative sum is calculated for all points in the mask, i.e. the arrival times of
the mask pixels are increased by the respective metric distances and the minimum
value is accepted as arrival time for the pixel on which the mask is centered. The for-
ward and backward masks in 1D and 2D are shown in Fig. 7.1(a-c) and a simple 1D
example is given in in Table 7.1. This idea is easily extended to higher dimensions
see e.g. Borgefors [11].
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Table 7.1: Euclidean distance transform on a 1D image (1th row. The sec-
ond row contains the assigned distance values after the first
pass and the third row the final values. See Fig. 7.1(a) for the
propagation masks.

binary image 1 1 1 0 1 1 1 0 1 1 1 1 1 0 1
1th pass * * * 0 1 2 3 0 1 2 3 4 5 0 1
2nd pass 3 2 1 0 1 2 1 0 1 2 3 2 1 0 1

A big restriction on these sequential algorithms is the limited region of influence of
the points on the sweep front. This region is bassically a cone with a 135 degree
openings angle. Lets have a look at a simple example in which the boundary of the
region of interest is not the initial front. Assume a circular region of interest with a
single source point. The resulting distance map should be a cone with an 90 degree
opening angle at the bottom centered on the seed point,see Fig. 7.1(d). The first pass
will assign the correct values to area I while the second pass will do so for the union
of area I dilated by the reflected set. For constrained distance transforms (also called
geodesic distance transforms), many more passes through the image are needed de-
pendent on the geometry of the accessible space. A spiral clearly shows that the
required number of passes till convergence can be quite high, Fig. 7.1(e).
As the sequential algorithm is not suited very well for such a general case an or-
dered propagation algorithm was proposed by Verwer et al. [142]. The shortest path
is found by applying a uniform cost algorithm, a special case of the A∗ algorithm
combined with the bucket sort algorithm. There are two sets an open and closed set,
i.e. points to which the final value respectively is not yet and is assigned. The values
of the open set are stored in buckets of increasing value. All points except the start-
ing points, which are put in bucket with zero value, are put in a bucket with infinite
cost. At each step the bucket with the lowest value is emptied and its members ,if
not already, assigned to the closed set. Then the open connected nodes are updated
if the value of the generating node plus the arc length between the open and gen-
erating node is lower than the previous assigned value. This is continued until all
points are in the closed set.
Now lets have a look at the metric. The natural metric for a Euclidean distance mea-
sure is just the Euclidean distance, e.g. for a 3×3 metric 1 for a tower step and

√
2

for a single bishop step. Borgefors showed that this is not optimal and introduced
the integer based chamfer metric in which the maximum error is minimised. Verwer
[141] published unbiased chamfer values, unbiased on average as none of these met-
rics are isotropic. This algorithm is referred to as EDT. For comparisons in this thesis
we will use the optimal chamfer coefficients as published by Verwer [141].
Danielsson [24] introduced the vector based distance transform (VDT). The algo-
rithm uses a two component vector to describe the distance for each pixel to the
closest boundary pixel. The original algorithm was a 2 pass algorithm. Later re-
placed by an ordered propagation algorithm in Ragnemalm [106]. The original VDT
suffered from small errors in a small number of specific configurations of boundary
pixels. These problems where cased by the local update scheme and were solved
by later algorithms. See for raster based error free Euclidean distance transforms
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Figure 7.2: (a) Geometry of the grey value distance transform. (b-c) Dijkstra algorithm ap-
plied to an image. The black, grey and white grid points correspond to respec-
tively set I, II and III. The point labelled R in (b) is the point in set II with the
lowest cumulative cost. The points marked with a question mark in (c) are the
points which have to be updated after the acceptation of R into set I.

e.g. Mullikin [94], Saito and Toriwaki [121] and for ordered propagation algorithms
Vincent [144], Ragnemalm [106], Eggers [33], Cuisenaire and Macq [23]. These al-
gorithms are out of the scope of this thesis and as such left as directions for the
interested reader.

7.3 Grey weighted distance transform

The original Grey weighted distance transform was introduced by Rutovitz [117].
It was based on a two pass algorithm like the one in Rosenfeld and Pfaltz [116] in
which first a pass is made from the upper left to the lower right followed by a pass in
opposite direction. Piper and Granum [100] showed that the convergence properties
of the GDT are comparable with that of the EDT in non convex regions, i.e. the 2
pass algorithm has to be iterated until convergence is reached Levi and Montanari
[78]. The number of iterations then depends on the number of reversing paths. For
sparse and complicated regions of interest a large number of iterations can be neces-
sary. Therefore these sequential algorithms are not suited for the general case. As the
sequential algorithm is dependent on the shape of the region of interest new propa-
gation based algorithms were proposed. The propagation based algorithms process
first points close to the initial front than points far away. An example is the recursive
algorithm which after a point is updated recursively updates its neighbours until the
entire recursive tree is processed. This limits the computational domain to the region
of interest. By choosing an suitable order in which the neighbours are processed
the performance can be increased. Although the recursive algorithm first processes
points close by, it does not take into account the grey values. An algorithm which
is generally more efficient than both the sequential and recursive approach is the
ordered propagation method. In this type of method the subsequent points are pro-
cessed based on their estimated arrivaltime. As such a front is propagated through
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the entire image domain while processing only points close to the advancing front.
As a result no iterations are needed and the image is traversed in an efficient way
”minimising” the amount of pixel visits. The grey weighted distance transform is
based on the Dijkstra algorithm, see Fig. 7.2 (b-c). Dijkstra [30] presented an efficient
method to find the shortest path on a finite graph from some root branch to each
other branch. This method returns a tree, i.e. a graph, with one and only one path
between every two nodes. The method is order O(nlogn) where n gives the number
of nodes. The nodes are generated in increasing order, i.e. O(n) as at each stage of the
algorithm one node is added to the definite tree. The logarithm is due to the sorting
process which decides which node is generated next. The algorithm utilises three
sets. Set I contains all nodes definitely assigned to the tree under construction. Set
II contains the nodes from which the next node is added to set I. Set III contains all
nodes which are not yet considered or already rejected. The algorithm is initialised
with all nodes but the root node put in set III where the root node is put in set II.
For each added node to set I two steps are required. First the node with the shortest
path length in set II is moved to set I and secondly the direct connected nodes are
updated. If such a direct connected node is part of set I nothing is to be done. For
a branch in set II the path length is updated if the value is lower than the old one.
And finally if a branch is in set III it is moved to set II and the calculated path length
is temporarily assigned to it. Only when a point is moved to set I its position in the
tree is finalised and as such the path length is also definitive. The update process is
repeated as long as set II contains nodes.
As for the Euclidean chamfer methods the propagation vectors are discrete and
bounded to the principle axes and diagonals (for the 3×3 metric) the graph also
immediately returns the lowest cost path from source to the point in question. For
methods presented here after this is not true as the propagation vectors generally
do not form a closed path from seed to the point of interest. As such a flow field
approach is needed to return form reference point to seed.

Table 7.2: The 2 pass grey weighted distance transform on a 1D signal. The bi-
nary image contains the region of interest were the inverse serves as
initial front. In the first pass the kernel is moved from left to right cal-
culating the grey weighted cumulative sum from the closest seed on
the left. The reverse pass updates the values of the first pass whenever
the cumulative sum from the right is lower than that from the left.

binary image 1 1 1 0 1 1 1 0 1 1 1 1 1 0 1
grey image 3 2 5 4 7 8 6 2 3 4 3 2 3 8 2
1th pass * * * 0 7 15 21 0 3 7 10 12 15 0 2
2nd pass 10 7 5 0 7 14 6 0 3 7 8 5 3 0 2

7.4 Fast marching: a plane wave front approach (FMP)

In the mid 1990’s the basis idea of the fastmarching algorithm was independently
proposed by Tsitsiklis [136] and Sethian [127]. The main improvement with respect
to the GDT lies in the modelling of the wavefront as a planar wave. The propagation
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definition:
· I cost image
· U arrival time image
· S set of points which constitute the initial front
· P set of points forming a narrowband consisting of already touched points but

which are still ahead of the front
· A accepted set, points behind the wavefront
· ci the Chamfer weights for the neighbours ni of xfront
initialisation:
· U(x)← 0 ∀x ∈ S
· U(x)←∞∀x 6∈ S
· P ← S
loop:
whileP 6= ∅
xfront ← argmin

x∈P
(U(x))

for {i|ni 6∈ A}
U(ni)← min(U(xfront) + ciI(ni), U(ni))
P ← P ∪ {ni}

end
P ← P\{xfront}
A← A ∪ {xfront}

end

Algorithm 7.1: Grey weighted distance transform

direction of the wavefront is free and determined by the data, i.e. the propagation
direction is not constrained to some privileged propagation vectors as for the GDT.
The minimisation of the global cost path is implemented with a similar Dijkstra [30]
like algorithm as the GDT. Sethian also proposed to apply a minimum heap sort
algorithm to extract the minimum node from the graph which is of the same com-
plexity as the Quicksort algorithm used for the GDT but has a better worse case
performance.
The Fast Marching algorithm utilises the Dijkstra algorithm to construct the wave-

front in a downstream fashion, i.e. points just ahead of the wavefront are ordered
and at each step the point with the lowest arrival time is fixed and the arrival times
of the not yet fixed 8-connected neighbours are updated. The update values are
obtained by constructing a planar wave to the underlying cost function and the al-
ready accepted neighbours. Further the method locally assumes the propagation
speed constant and the minimum cost path to be straight. Now let us look how a
point C is updated from the already fixed points A and B. Fig. 7.3 shows a planar
wave arriving at grid point C under an angle φ. As the propagation speed is con-
stant and the path is assumed to be locally straight the difference in arrivaltime UAC
between the plane wavefronts with arrivaltimes UC and UA is simply given by the
product of the distance between the wavefronts and the propagation cost. Therefor
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Figure 7.3: Geometry of a planar wave hitting grid point C under an angle φ. The dashed
lines denote the wavefront passing through the pointsA,B andC with respective
arrival times UA, UB and UC . The distance between wavefronts UA and UB is
denoted dAB .

the arrivaltime of the wavefront at point C is given by:

UC = UA + τ dAC (7.2)

where τ is the cost to travel a unit length through the grid cell and dAB the distance
between the wavefronts labelled UA and UB. Distance dAB and dAC are given by

dAB = sinφ, (7.3)
dAC = cosφ. (7.4)

Using the Pythagorean theorem or trigonometric identity, i.e. cos2 φ+ sin2 φ = 1, The
distance between the wavefronts passing through points A and C can be written as
a function of dAB

dAC =
√

1− d 2
AB (7.5)

The cost to travel unit distance between the wavefronts UA and UB is given by

τAB =
UAB
dAB

=
UA − UB

sinφ
,

(7.6)

where UAB is the difference in arrival time between the respective wavefronts. In
the planar approximation the cost function is flat therefore τAB in eq. 7.6 can be
substituted by τ , the unit travel cost in the grid cell

dAB =
UAB
τ

(7.7)
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combining eq. 7.7, eq. 7.5 and eq. 7.2 gives the arrivaltime of the wavefront passing
through point C along the minimum cost path through the grid cell

UC = UA + τ

√
1−

(UAB
τ

)2

= UA +
√
τ 2 − U2

AB

(7.8)

From this derivation based on the geometrical model it is not immediately clear why
this should be a minimum cost path. However realizing that the solution is unique
it should also be the minimum cost path. For the minimisation approach see e.g.
Lin [79]. Basically there are 8 ways to update the point C in this setup. In the origi-
nal algorithms presented by Sethian [127] and Tsitsiklis [136] updates of the arrival
time were only initiated by 4-connected neighbours. Although the latter already
proposed the 8-connected version, where the 4 connected algorithm is faster but less
accurate. Both methods were evaluated in Lin [79].
An outline of the 8 connected fastmarching algorithm is given in Algorithm 7.2. The
update function Υ is given by

Υ(A,B,C) =


UB + τ for UB ≤ UA

UA +
√

2τ for τ ≤ √2(UB − UA)

UB +
√
τ 2 − (UB − UA)2 else

(7.9)

where τ is the cost associated with the octant 4ABC. Which can be defined in dif-
ferent ways, e.g. the average of the gridcell or octant. The different cases in this
update function originate from the restriction that a point C updated from points A
and B should be approached with an angle φ ∈ [0, π

4
], i.e. the path should originate

from the line segment AB. The cases from top to bottom respectively correspond to
a solution approaching point C with an angle φ ≤ 0, φ ∈ [0, π

4
] and φ ≥ π

4
. Note that

there’s clipping of the angles for solutions originating from outside the octant. This
is allowed as long as the cost function is continuous which is not always the case,
i.e. when the cost in the octant is calculated as the average of the surrounding grid
cell a point is possibly already surrounded by 4 different cost values. To make the
Fast Marching better suited to cope with non flat cost functions one could think off
fitting a plane through the cost plane e.g. writing τ as a function of position in the
grid cell, e.g. τ(s, t) = τC + s(τC − τA) + t(τA − τB). And then minimising the sum,
UA+

∫ cosφ
0

τ(ζcosφ, ζsinφ) dζ . Unfortunately no solutions of practical use were found
although the cost function would be continuous.

7.5 Fast marching: spherical wave front (FMS)

Solving the Eikonal equations with the traditional FMP method is well suited for a
wavefront which is not strongly curved. On the other hand in the case of a strongly
curved wavefront the planar approximation fails and introduces significant errors.
In this paragraph a better suited variant of the FM algorithm is presented which uses
a circular approximation instead of a planar approximation to model the wave front.
The presented solution is not in closed form although the solution is unique and can
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definition:
· I cost image
· U arrival time image
· S set of points which constitute the initial front
· P set of points forming the narrowband consisting of already touched points but

which are still ahead of the front
· A accepted set, points behind the wavefront
· ni are the 4 connected neighbours of xfront
· Define xij as the jth element of {nj|(ni − xfront)⊥(nj − xfront)} for given ni
initialisation:
· Ux ← 0 ∀x ∈ S
· Ux ←∞∀x 6∈ S
· P ← S
loop:
whileP 6= ∅
xfront ← argmin

x∈P
(Ux)

for {i|ni 6∈ A}
for j ∈ {1, 2}
Uni ← min(Υ(xfront,xij,ni), Uni)
P ← P ∪ {ni}

end
end
P ← P\{xfront}
A← A ∪ {xfront}

end

Algorithm 7.2: Fast Marching: plane wave approximation

be found quickly by simple root finding algorithms.
As for the plane wave approximation the arrivaltime at point C is given by the sum
of the arrival time of the spherical wave at point A with the integrated cost to get
from wavefrontA toC. Locally a straight path and constant cost is assumed, therefor
the integrated cost is simply the distance dAC multiplied with the average cost along
AC.

UC = UA + τAC dAC (7.10)

where the distance between the wavefronts passing through A and C is given by

dAC = dCF − dAF
= R− dAF
= R−

√
R2 + 1− 2R cosφ

(7.11)

with R the radius of curvature and φ the propagation direction of the wavefront at
point C. Where dAF is obtained by applying the law of the cosines. Note further
that for large R the model converges to the planar model, i.e. the curvature of the
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Figure 7.4: Geometry of a circular wave hitting grid point C under an angle φ. The dashed
lines denote the wavefront passing through the pointsA,B andC with respective
arrival times UA, UB and UC . The distance between two wavefronts is denoted
dXX .

wavefront becomes negligible,

dAC
R→∞

= cosφ. (7.12)

The distance between the wavefronts A and B with respective arrival times UA and
UB is given by

dAB =
UA − UB
τAB

=
UAB
τAB

(7.13)

with UAB the difference in arrival time between the respective wavefronts. Indepen-
dently of the underlying cost function τAB is the average of the cost at points A and
B, i.e.

τAB =
IA + IB

2
(7.14)

From geometry on the other hand dAB can be written as

dAB(R, φ) = dAF − dBF
=
√
R2 + 1− 2Rcosφ

−
√
R2 + 2− 2R (cosφ+ sinφ)

(7.15)
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Figure 7.5: The function R(dAB, φ) shown as the dAB isolines. Following the cell boundary
(black dashed line), the isovalue increases from -1 at (R, tanφ) = (1, 0) to 1 at
(R, tanφ) = (

√
2, 1) with an 0.1 increment where the bold line is the dAB = 0

isoline. Valid focus points, i.e. points outside the grid cell, can be found on the
right of the black dashed line. At the grey dashed lines the isolines are horizontal.

Solving the set of equations formed by Eq. 7.13 and Eq. 7.15 reduces the solution
of the spherical wave model for given dAB to a function in R and phi. This function
is plotted in Fig. 7.5 in the form of iso dAB lines. The region of interest is confined
to focal points outside the grid cell (R ≥ cos−1 φ) which corresponds to the area
on the right of the black dashed line and cost paths originating from within ∠ACB
(0 ≤ φ ≤ π

4
). As such the region on the left of the black dashed line is only of

academic interest as all wavefronts represented by this region focus inside the grid
cell. Further the figure shows that the function φ(R, dAB) is single valued in the
region of interest.
Now we proceed by arguing that the radius of curvature R of the wavefront is only
varying slowly. As such R can be replaced by an estimate R̃ based on the already
constructed wavefront. If R̃ is assumed available, R in Eq. 7.15 can be replaced by R̃.
As such the system of equations reduces to a function in φ. As no analytical solution
was found an iterative approach was taken by means of the method of Newton (any
other root finding algorithm would also do). From here on this iterative solution will
be referred to as φ(R, dAB). Where the search range is given by φ ∈ [0, π

4
]. The radius

of curvature R̃ can be deduced from the propagation directions of the parent points
A and B. As we assume the wavefront to be diverging the lines through these points
spanned by the respective propagation vectors will focus at some point F behind the
current wavefront. [

s
t

]
=

[
cosψA cosψB
sinψA sinψB

]−1

(A−B) (7.16)
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F = A− s
[
cosψA
sinψA

]
(7.17)

With ψX the propagation direction at point X . Then the radius of curvature, R, is
approximated by the dCF .

R̃(ψA, ψB;A,B,C) =

{
|F − C| if ∠FAB ∈ [0, π

2
] ∧ ∠FBA ∈ [0, 3π

4
]

∞ else
(7.18)

the condition statement requires that the path is originating from ∠ACB. An alter-
native would be requiring some smoothness in the path and require that the angle
between the FC from the estimate is within some range from propagation direction
to be found in C.

Regularization

The propagation vector can be extracted from the method it self but when a bit more
regularization is required it can be derived by applying normalised convolution to
the known arrival time map with a suitable applicability function, e.g. Gaussian
weighting. The certainty at a point is 1 if accepted and 0 if not. A sufficient basis is
{1, x, y}. The coefficients for these basis functions supply the gradient vectors which
coincide with the normal vector of the wavefront, see e.g. [75, 155, 159].
The radius of curvature can be found with a similar regularization. On one hand by
calculating the isophote curvature on the known arrival time map with normalised
convolution. Which is not trivial as due to the build up of the wave front kernels
the certainty of the arrival time is zero in the Far set, unknown in the Near set and
1 in the Accepted set. Which means that the certainty is not randomly distributed
over the kernel but localised at and behind the wavefront which means in certain
cases that one cannot distinguish between higher and lower order kernels as such
normalised convolution is only applicable as the basis functions are distinguishable
which in general is not the case, i.e. for a 3×3 neighbourhood this already requires 7
points to be available with a reasonable certainty.
On the other hand the already proposed method based on the propagation directions
can be generalised by incorporating a larger neighbourhood and a weighting based
on the distance from the wavefront at A.

Symmetry breaking

In the special case a wavefront is constructed on the bottom of a ditch, where the cen-
tre line of this ditch is parallel to the grid and in the middle of two rows or columns,
the algorithm behaves in a strange way. Note that in this case the sampled cost func-
tion is flat in all grid cells centered on the centre line also the arrival times UA and UB
are equal. As a consequence the wave will behave as a spherical wave on a flat cost
function, i.e. the radius of curvature will increase along the centreline of the ditch in
the same way as it would along a radial line in the case of a flat costfunction with
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a single seed. This behaviour is caused by the modelling of the cost function by a
plane spanned by IA, IB and IC . To avoid this behaviour the sampling symmetry has
to be broken. This can be done by either rotating the local coordinate grid or space.
The solution at point C is needed therefore space has to be rotated. Therefor U and
I are rotated. To this objective a rotation of the grid is applied to fit the wavefront
after which the solution is rotated back to it’s original position. This assumes that the
interpolation used for the rotation uses sufficiently high order terms to describe the
valley. Therefor a second order polynomial is fitted in a least square sense onto the
cost function in a 4× 4 neighbourhood centered on the grid cell. Further a Gaussian
weighting is applied as function of the distance to the centre of the grid cell and a
unity standard deviation.
The angle of rotation is the angle for which the bottom of a fitted parabola through
the points IA IB and ID falls on the line BC, where D = A− AB with AB the vector
from A to B. Where the parabola is extracted from the polynomial fit.
The polynomial fit allows to make a more accurate interpolation of the cost function.
Therefor equation 7.10 can be replaced by

UC = UA +

∫ dAC

0

p(x) dl (7.19)

where p(x) is the second order polynomial fit with C as origin of the grid. Also the
arrival time has to be adjusted in this case. Which is simply done by correcting the
arrivaltime to the focal point over a distance to the focal point F . The correction is
only applied for dCF ≈ 5. Not for larger values as the wave becomes planar and the
correction infinite. A tapering would be better but would still involve an additional
parameter.

Initialisation

For algorithm 7.3 the propagation directions for the initial front are required, i.e. in
the spherical wave approximation the Neumann and Dirichlet boundary conditions
are required simultaneous. Which is a problem as for the initial set the propagation
directions can be multi valued ∗, e.g. an isolated seed acts as an isotropic source and
as such the propagation direction at this point seen from all the 8 connected neigh-
bours is different. To avoid such ambiguities a new set is created in which all points
on the boundary have a single propagation direction. This is achieved by defining a
new image domain which is the 8 dilated set of the principle initialisation set. The
GDT is applied on this set with as initial front the principle set, then the cost and
propagation vectors of the difference set are used as initialisation of algorithm 7.3.
Note that the arrival time on the principal set is constant therefor the propagation
direction in the connected cells has to be perpendicular to this initial front. For sin-
gle points this results in the propagation vectors of the GDT. On a elongated front
the points can be described as single sources and as such the GDT still gives the cor-
rect description under the assumption that the cost in the cell is constant. As metric
weights for the GDT the values 1 and

√
2 are to be used and not chamfer weights.

Note that the GDT can not be replaced by the FM algorithm as it will result in errors

∗in the imagedomain this can also happen in case of converging wavefronts
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Figure 7.6: Construction of the propagation directions of the initial set for a single sub pixel
seed. Points from grid cells with their centre (grey crosses) within 0.75 pixel ,in
city block distance (dashed square), of the seed point, S are added to the initial-
isation set. The propagation vectors in these points are given by the respective
difference vectors (arrows).

in the arrival time for 8 connected points. For example the cumulated cost to travel
from a isolated source point to a 8 connected point through a grid cell with unity
cost is for the FM method 1 + 1

2
instead of the true value which is

√
2.

For a single seed on the other hand we can start the algorithm with sub pixel ac-
curacy. To this end the grid points which make up the surrounding grid cell are
initialised with appropriate values. The propagation vectors are given by the differ-
ence vectors of the subpixel point with the surrounding grid points. The arrival time
is obtained by the product of the length of the difference vector with the cost in the
grid cell. When the subpixel point is situated on the boundary of a grid cell or at
exactly at a grid point, all the points in the touching grid cells are to be included in
the above initialisation. In practice however to make the initialisation better posed
for points close to the gridcell boundary more grid cells can be added to the initial-
isation. This is accomplished by adding grid cells whenever the city block distance
between the subpixel starting point and a grid cell centre is smaller than 3

4
. Other-

wise stated when the border of a grid cell is closer than 1
4

pixelwidth to the subpixel
seed point it is also used in the initialisation procedure. Note that the difference
vectors can span more than one cell. Therefor the arrival time at the grid points
is calculated as a cumulative weighted sum over the cells, where the local speed is
weighted with the distance travelled trough a specific grid cell.
A result of this pre initialisation step is that the algorithm is not initialised with a
initial front but with a set of points which are connected and have some arrival time
assigned to them. The latter should be kept in mind as in special cases the value
assigned to points in this seed set can be higher then the arrival time in the region of
interest.
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definition:
· I cost image
· U arrival time image
· φ angle of incidence image
· S set of points which constitute the initial front
· P set of points forming the narrowband consisting of already touched points but

which are still ahead of the front
· A accepted set, points behind the wavefront
· ni are the 4 connected neighbours of xfront
· Define xij as the jth element of {nj|(ni − xfront)⊥(nj − xfront)} for given ni
· τ is the cost in a grid cell
initialisation:

· Ux ←
{
Ux ∀x ∈ S
∞ ∀x 6∈ S

· ψx ← ψx ∀x ∈ S
· P ← S
loop:
while P 6= ∅
xfront ← argmin

x∈P
(Ux)

for {i|ni 6∈ A}
for j ∈ {1, 2}
R̃← R̃(ψA, ψB;A,B,C)
dxnixfront = τ−1 (Uxni − Uxfront)
φtmp ← φ(R̃, dxnixfront)

Utmp ← τ dAC(R̃, φtmp)
if(Utmp ≤ Uni)
Uni ← Utmp
Ψni ← Ψtmp

end
end

end
P ← P\{xfront}
A← A ∪ {xfront}

end

Algorithm 7.3: Fast Marching: spherical wave approximation
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7.6 Path Extraction

Now assume a arrival time map, U is obtained for a given cost function and given
initial front. The minimum cost path connecting some point on the map, Pend, with
a point on the initial front, Pstart, can be obtained by propagating in the direction
perpendicular to the iso arrival time contours [21]. This minimum cost path is always
tangent to the gradient of the arrival time, i.e. by following the gradient of the arrival
time map the minimum cost path can be obtained. In literature this type of descent,
i.e. following the flow of a vector field, is also referred to as streamlines.
A simple example is shown in Fig. 7.6, subfigure 7.7(b) shows the cost function with
superimposed the extracted path. Fig. 7.7(b) shows the isochrones of the arrivaltime
of a wave with the white point as starting point. Super imposed on these isochrones
is the unsigned gradient field, over which the stream line is calculated with the grey
point as starting point and the white as end point.
A simple way to obtain a stream line is by the Euler-forward method in which the
coordinates along the streamline are given by:{

x0 = Pend

xn+1 = xn + ∆l ∗ ∇T (xn)
. (7.20)

with ∆l the stepsize between the successive points and x0 the start point of the
stream line. More sophisticated methods are e.g. the Heun method and the Runge-
Kutta methods [71]. All these methods are prone to zigzagging if the vector field is
not sufficiently smooth. The paths, i.e. streamlines, presented in this thesis are cal-
culated with the build in functions of Matlab. The gradient fields are obtained from
the arrival time map by means of Gaussian derivative operators, with sigma .9 [145].
The minimum cost path for a GDT generated arrival time map is however obtained
differently as the discrete nature of the GDT often causes zigzagging in the stream-
lines. This zigzagging would result in an unreliable length and curvature estimation.
Therefor in case of a GDT generated arrival time map the descent is implemented as
a 8 connected descent, i.e. only kings moves are allowed in the descent. As such the
statistics as presented in [151] apply. The disadvantage is that length measurements
become unreliable for short separations of the begin and end point.

7.7 Comparison of the distance transforms

In this section the performace of the different presented distance transforms , i.e.
GDT, FMP and FMS, is compared while applied to a ”infinite” line, i.e. for a time
invariant wavefront. The arrival time of the test function has a hyperbolic profile
perpendicular to the orientation of the line:

T (x, y) = y + b

√
1 +

x2

a2
+ y0. (7.21)

with the x coordinate along the line and the y coordinate orthogonal to it, y0 deter-
mines the position of the T = 0 wave front on the x axis. The cost function is given



7.7 COMPARISON OF THE DISTANCE TRANSFORMS 91

(a) (b)

Figure 7.7: (a) A simple cost function (darker means a higher cost). (b) The arrival time
for the costfunction in (a) with the white dot as seed is shown as contourplot
where the time intervals between the contours are constant. The orientation of
the gradient field is superimposed. Both figures further shown the streamline
from the grey point to the white seed as calculated from the gradient field.

by the gradient magnitude of this function:

I =

√
1 +

b2 + x2

a4 + a2x2
(7.22)

with a > 0 and b > 0. The opening angle of the front is given by 2 arctan(a
b
), see Fig.

7.8(b). The parameters can be expressed in the more intuitive units:

b =
FWHM

2

√
(m− 1)(m+ 1)(1 + 3m)

3 +m
(7.23)

a =
FWHM

2

√
3− 8

3 +m
(7.24)

where FWHM and m are respectively the full width at half maximum of the line
and the suppremum of the cost function on a unbounded image domain. As such m
defines the contrast between foreground and background as the foreground is put
to unity. The function is analytic, tuneable and non flat i.e. there’s a slight ramp on
the sides of the line.
In this test a time invariant wave front is simulated and therefor the different algo-
rithms should stick to this wave front while it is translated along the line. To avoid
that the initialisation influences the result all points for which T < T0 (Fig. 7.8(e)
thick line) are initialised with the arrival time as prescribed by Eq. 7.21. In case of
the FMS also the local propagation direction is given for T < T0. In the example in
Fig. 7.8(e) the FMS algorithm (solid line) sticks best to the true wavefront (dotted
line) while the the isochrone of the FMP lags behind. The results of the GDT are not
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Figure 7.8: (a) Line profile, (b) isochrone, (c) cost function(a = 1, b = 1), (d) arrivaltime for
FMS on (c). (e) Isochrones, the tick line is the initialisation line, the dotted, dashed
and thin solid lines correspond respectively to the ground truth and results ob-
tained with the FMP and FMS algorithms. The isochrones are separated by equal
time intervals.

shown as the spread in the results is quite large as will be shown in the next experi-
ment.
Fig. 7.9(a) compares the angular dependence of the arrival time along random posi-
tioned lines at a distance of 20 px from the isochrone T0. The standard deviation is
shown as transparent grey patches. The GDT displays erratic behaviour as the GDT
is made unbiased for lines under random orientation. Or stated otherwise the ratio
between the number of moves, king and knight moves , is not constant along the
line under arbitrary rotation and translation. As the translation for the GDT only
results in a shifted version of the same ”infinite” binary line for a single orientation
little averaging occurs. The bias of the FMP is a much smoother function of orienta-
tion than the GDT. For the FM algorithms there’s not a clear cut explanation as more
variables enter the equation. The FMP shows some clipping artifacts due to the rel-
ative course interpolation of the cost function. In other words as the cost is assumed
constant in a grid cell the cost is overestimated on edges. This overestimation can
result in clipping which also can be observed for the FMP. As the cost is taken as
the average in a grid cell it is almost always overestimated on non flat cost functions
and as such explains the relative large error. Further more as the wavefront is as-
sumed planar it also introduces an overestimate for curved wavefronts (under the
assumption that the propagation direction is found correctly). The bias in the FMS
algorithm is almost angular independent the bias is assumed to originate from the
fact that the interpolating function is not fitting exactly to the hyperbolic profile and
slightly overestimates the cost function.
Fig. 7.9(b) compares the arrivaltime along randomly oriented and positioned lines.
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Figure 7.9: (a)Mean error in the arrival time on the symmetry axis of a ’hyperbolic’ line as
function of the orientation of the line at a distance of 20 px from the initial front
(FWHM=2 px, m=2), (b) same as in (a) but as function of the distance from the
initial front, i.e. the lines are random oriented. In both cases the position of the
lines is random.

The time is measured from isochrone T0. The mean error at 20 px corresponds with
the orientation averaged error in Fig. 7.9(a). As could be expected from the angular
dependence the FMS shows the smallest spread followed by the FMP and then GDT.
Concluding in regions in which the wavefront and or the cost function is strongly
curved the error of the FMS method is almost independent of orientation and as
such is much more suited to be made unbiased in particular cases in which the bias
can be estimated.

7.8 Inner track

Path extraction based on distance transforms suffers from one mayor drawback, the
paths extracted tend to take the inner bend for curved structures. This is just like a
racing car driver will take the inner bend to minimise the time needed to get from
start to finish. At the hart of this problem lies the Eikonal equation which minimises
the cumulative cost or time needed to travel along the path, exactly like an athlete
would do. A cartographer on the other hand would like to obtain the centre line
of the road which basically minimises the average cost along the line instead of the
time needed to travel along the path. So basically the inner track problem is only
a problem if on uses it for a type of path extraction for which it was not designed,
i.e. when then optimisation criterion differs from the one used. From our view point
it is a problem as our interest was triggered by the question if we could extract the
centre line of some DNA molecules in STM electron microscope images, see Chapter
9.
To investigate how severe this inner track problem is we introduce a cost function
with a Gaussian profile:

I(d;σ, c) = 1 + c (1− exp−
d2

2σ2 ) (7.25)
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Figure 7.10: Relative radius of the true minimal circular cost path as function of the radius
of the radius of the circular structure.

with d the distance to the centre line of the structure and c the contrast between
foreground and background with the foreground put at unity. Now the full width
at half maximum of the edge, FWHM , is related to the standard deviation of the
Gaussian profile, σ, as

FWHM = 2
√

2 ln2σ (7.26)

To find the exact solution of the Eikonal equation we numerically solve the following
equation:

r̂ = argmin(2πr̂ I(d;σ, c)) (7.27)

with r̂ the radius of the circular arch which minimises the cumulative cost along the
circle and d the shift inward of r̂ with respect to r. Where r is the true radius of the
structure and as such r̂ = r + d with d ≤ 0. Now the relative radius is defined as
the quotient of r and r̂. Fig. 7.10 shows this relative radius found for a circular cost
function with a cost profile described by Eq. 7.25 and c = 3. As can been from the
figure the relative error is largest for small radii and decreases for increasing radii,
i.e. when the arches become more line like and the inner track problem vanishes
as could be expected. For very small radii the error drops again to become 0 for
r = 0 but this regime is not visualised as on circular arches the profiles of the op-
posite points on the circle influence each other for a arc radius smaller than ≈4σ.
The broadest line FWHM = 4.0 obviously gives the worst results. Which can be
explained by the observation that the gradient of the profile for this value is lower
on the bottom of the profile and such the minimum cost path will move further in-
wards than in the FWHM = 1.5 case. For intermediate line widths one can safely
be interpolated between the shown lines to get a feeling for the error to be expected.
These values where key values in the next experiment, i.e. for smaller widths the
lines cannot be sampled correctly any more and for larger widths no further inter-
esting changes were found.
The simplest approach to minimise the innertrack problem is to scale the cost func-
tion, I , in a non lineair way. For example with a power function, Iα with α > 1.
This in effect reduces the width of the line. Note that a gradient is required for this



7.9 COMPARISON OF THE PATHS EXTRACTED WITH DISTANCE TRANSFORMS 95

method to work.
In the extraction of the centre line of a colon in medical image processing the inner
track problem is tackled by thresholding the image and then calculate the distance
transform from the colon wall. After inverting the result of the distance transform
it can be used as cost function for a grey weighted distance transform [27]. This
method is only usefull if the accuracy needed is moderate. Further the thresholding
procedure should be feasible and the line profile should be broad enough not to be
bothered by the binary colon wall.
Another approach could be to adapt the extracted path instead of the cost function
itself. The flawed extracted path is then taken as starting point. Points are allowed to
move along the line which coincides with the normal to the original line. Now each
point is moved in the direction in which locally the average cost drops. The points
are moved until a stable solution is reached or a sufficient number of iterations is
performed. To make this method robust to noise some regularization is probably
needed to keep the path smooth. This can for example be done by the sampling of
the cost function on a larger scale.
Another approach is by introducing a little tension in the path. The tension tries to
make the path contract as such it is in effect a curvature reducing term and counter
productive if one wants to minimise the inner track effect.
The last proposed method depends on the observation that for a path with low cur-
vature the inner track problem is small. Therefor a new method is proposed in which
the path is straightened to reduce the inner track problem, see Chapter 8. Therefor
at least two extractions are necessary, each successive extraction performed is done
on a deformed grid, where the deformation is based on the results of its predecessor.
The deformation is done in such a way that the precursor path is straightened. This
is done by subsampling the cost function at regular intervals along the path found
in the precursor step. At these points along the path the profile of the cost function
is extracted, perpendicular to the path and with sufficient width. This results in a
new cost image with the length along the path of the precessing path at one axis and
the signed distance to this path on the other axis. After a successive path extrac-
tion is performed the resulting distance to the previous path can be used to correct
the previous path. The process can be repeated several times depending on the ac-
curacy needed and the noise characteristics. Preliminary tests showed promissing
results. The method does not model the line profile nor does it put constraints on
the curvature of the path. On the other hand it assumes a gradient which pushes
the straightenend pathoutwards, i.e. it will not work on structures with a line profile
with flat regions.

7.9 Comparison of the paths extracted with distance
transforms

In this paragraph the presented path extraction method is evaluated for the different
distance transforms, i.e. GDT, FMP and FMS. In the comparison two view points
will be adopted. The first view point centres on the Eikonal equation and as such fo-
cuses on the point that a path should be a minimum cost path. From second vantage
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Figure 7.11: (a)Sketch of the experiment: the dashed line is a circular arc and serves as
ground truth, the solid curve represents a constructed path. l and l̂ denotes the
path length along the respective curves (solid,dashed) from S to respectively P
and P̂ where P̂ is the radial projection of P on the solid curve. d denotes the
distance between P and P̂ . (b) Same as (a) but for a straight path.

point the extracted path should describe the underlying structure as good as possi-
ble. When adopting the second viewpoint one should realize that the algorithms are
not designed to solve this problem and only converge in the limit when the curva-
ture becomes negligible.
The tests are performed on circular arches and straight line structures. The line pro-
file is given by Eq. 7.25 and the FWHM for this profile is given by Eq. 7.26. For the
circular arches and for the linear structures as well, c in Eq. 7.25 is put to 3. For an
circular arch shortcuts can occur, in that case the path through the centre to a point
on the opposite side of the arch has a lower cumulative cost than the path along the
structure. Overflow will occur for Imax 2πr& Imin 2r, assuming Imax is representative
for the cost in the inner part of the circle and Imin is representative for the cost at the
arch. As such the minimum value for c ≈ π

2
. This said, overflows are also prevented

by masking out the centre of the circle in the tests.
Fig. 7.11(a) shows a sketch of the test for the circular arches. The distance trans-
forms are started at point S while the streamlines are calculated from E to S. The
dashed path denotes the true centre line of the grey arch with radius r = dOP . Fur-
ther r̂ = dOP̂ where P̂ is the intersection point of the line dOP with the extracted line.
The length of the circular arch measured from S to P is denoted l while the distance
over the extracted path between S and P̂ is denoted l̂. The arc length between S and
P is for convenience reasons put to 2

3
π r. For the test the positions and orientations

of the arches were randomised. For each point 250 realizations were used. As not
all stream lines reached the start point the success rates for each noise realization is
denoted in the graphs. In the following figures the standard deviation is denoted as
hatched regions. Further note that the standard deviation is only calculated on the
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Figure 7.12: Measured relative radius for the GDT, FMP and FMS with the standard devi-
ation denoted by the respective “ \ “,“\“and”/” hatched regions. The dashed
line shows the true minimum cost path.

marked points and not in between.
The first Fig. 7.12 shows the relative radius found for the GDT, FMP and FMS. The
dashed line denotes the relative radius for true minimum cost paths on a noise free
cost function. The second Fig. 7.13 shows the relative radius of curvature which for
a circular line should coincide with the relative radius. Here the radius of curvature
is calculated as

r =
1

κ
=

(x′2 + y′2)−
3
2

x′y′′ − y′x′′ (7.28)

where the derivatives in here are taken with respect to the arc length. Which can be
easily derived from a cubic spline representation of the path, i.e. an piece wise poly-
nomial which is differentiable to 2 order. A length comparison is not provided as is
not distinguishable from a scaled version of the Fig. 7.12 with scalings factor π. Note
further that the extracted paths were interpolated by a cubic spline interpolation to
get the data at the disired points along the line [137, 86, 132].
Ideally the measurements would follow the dashed line in Fig. 7.12, clearly all al-
gorithms tend to cut the corner with respect to the true minimum cost path. I some
cases the GDT happens to perform best in terms of accuracy but this comes at the
cost of precision loss. Further the standard deviation is almost an order of magni-
tude larger than that of the FMP and FMS. The improved performance of the FMS
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Figure 7.13: Measured relative curvature for the FMP and FMS with the standard deviation
denoted by the respective “\“and”/” hatched regions.
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Figure 7.14: Difference in length between ground truth and measured values. The standard
deviation is shown as hatched patches.
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Figure 7.15: Shortest distance from the constructed path to the true line for the GDT, FMP
and FMS. The standard deviation is shown as hatched patches.

over the FMP is contributed to the fact that the FMP models the cost function as a
constant in the grid cell while the FMS fits a parabolic function.

Fig. 7.11(b) shows the straight line case of 7.11(a). The distance along the centre
line and the extracted path are denote as respectively l and l̂. While P̂ is the intersec-
tion point of the normal of the centreline with the extracted path. The distance dPP̂ is
denoted as d. Again the distance transforms are started from S and the streamlines
are started at E and flow to S.
Fig. 7.15 shows the average absolute distance from the the true centre line for ran-
dom oriented and positioned straight lines as function of the FWHM of the line pro-
file. Fig. 7.14 shows the length difference between l̂ and l, i.e. the measured length
and the true length along the path. The deviations are mainly caused by two mech-
anisms. First the extracted path is found parallel to the true path but slightly offset,
this causes a relative large |d|-value and a larger errors at the start of a path while
performing length measurements. The second reason is zigzagging which overesti-
mates the length measurement but leaves the |d|measurement relatively unharmed.
From investigation of the individual paths the first is concluded to be dominating
for the FMP based method. While the second explanation is dominant for the FMS
based extraction. The zigzagging of the FMS can be contributed to the fact that it is
a higher order algorithm that the FMP and as such is more sensitive to noise. The
offset effect of the FMP on the other can be contributed to the sampling of the cost
function which as the cost is averaged basically shifts the cost function. But as can
seen for low noise cases the offset, |d| and length measurements are for most ap-
plications fully acceptable, at least for the FM algorithms. For the GDT the length
measurement are not shown as the standard deviation of the length measurements
is about an order of magnitude higher than for the FM algorithms. The distance d
for the GDT could be expected to be in the range, [1

2
, 1

2

√
2] px as the average error

along grid directions is of the order of half a pixel width while for a diagonal path
this value increases to half the diagonal length, i.e. 1

2

√
2 px.





Finding the minimum-cost
path without cutting corners
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abstract∗

Applying a minimum-cost path algorithm to find the path through the bottom of a
curvilinear valley yields a biased path through the inside of a corner. DNA molecules,
blood vessels, and neurite tracks are examples of string-like (network) structures,
whose minimum-cost path is cutting through corners and is less flexible than the
underlying centreline. Hence, the path is too short and its shape too stiff, which
hampers quantitative analysis. We developed a method which solves this problem
and results in a path whose distance to the true centreline is more than an order
of magnitude smaller in areas of high curvature. We first compute an initial path.
The principle behind our iterative algorithm is to deform the image space, using the
current path in such a way that curved string-like objects are straightened before
calculating a new path. A damping term in the deformation is needed to guarantee
convergence of the method.

8.1 Introduction

Algorithms for computing the minimum-cost path have played an important role
in various fields of science and engineering. These algorithms try to find the path
connecting a selected start and end point that minimises the integrated costs. In op-
tics, light rays travel along a minimum-cost path from source to destination. A wave
front of light propagates with a speed that depends inversely proportional on the
refractive index of the medium. A space varying velocity map suggests that the path
with the shortest arrival time will in general be longer than the Euclidean distance
between the start and end points. If you consider the local cost as the inverse of the
local speed, then calculating the minimum integrated cost corresponds to calculat-
ing the smallest possible arrival time from a start point to all points in the domain.

∗The content of this chapter has been published in: R. J. van Heekeren, F. G. A. Faas, and L. J. van
Vliet. Finding the minimum-cost path without cutting corners. In B. K. Ersbøll and K. Steenstrup
Pedersen, editors, SCIA, LNCS 4522, pages 263–272, June 10-14 2007 [59].
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Figure 8.1: DNA molecules labelled with uranyl acetate and visualised by transmission elec-
tron microscopy. The images are kindly provided by Dr. Dmitry Cherny, PhD,
Dr.Sc.

In many fields of science and engineering we encounter images of string-like struc-
tures in which the centreline conveys important information about the underlying
objects. Examples are DNA-strands (cf. Fig. 8.1), blood vessels, or neurite tracks.
The tracking results as depicted in [87] display exactly the problems that we are
addressing in this paper. The minimum-cost path does not follow the curvilinear
valley of the cost function, but is biased towards the inside of corners. In general,
the minimum-cost path is cutting corners, and is therefore shorter and stiffer than
the underlying centreline of the cost valley. Quantification of the bending energy
of DNA plays a key role in understanding cellular processes. To verify the compet-
ing models and measure the so-called persistence length, an accurate path through
these structures is required. The key to quantifying the length and shape of these
objects is to find the centreline of these objects. A minimum-cost path guarantees a
connected path that approximates this centreline even if the curvilinear object con-
tains small gaps and is corrupted by noise (cf. Fig. 8.1). Solving the bias problem of
minimum-cost path algorithms will be of utmost importance in many fields of sci-
ence and engineering.
A typical implementation of such a standard minimum-cost path approach consists
of the following steps:

• Define one start point in the image domain. Having an end point is not manda-
tory, but may assist in defining an early stopping criterion.

• Compute the minimum integrated cost from the starting point to all points in
the domain, or until the pre-defined end point has been reached.
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• Descend along the opposite gradient direction of the integrated cost image
from the end point to the start point. Due to the smoothness of the integrated
cost images one can obtain sub-pixel accuracy in the location of the minimum-
cost path.

The minimum integrated cost T is given as the minimum cumulative cost along
all possible pathsP connecting the start point S with any end pointE in our domain.
Or mathematically:

T = min
∀P SE

∫ E

S

I(P SE(l))dl (8.1)

with P SE(l) = (x(l), y(l)). This is equivalent to solving the Eikonal equation [13]

|∇u(x, y)| = I(x, y) (8.2)

in which I(x, y) denotes the local cost function and u(x, y) the local arrival time. For
uniform costs, the solution of the Eikonal equation is identical to the result given
by the (domain constrained) Euclidean distance transform. For space variant costs
we have the gray-weighted distance transform (GDT) [139, 133, 120, 43] and fast
marching (FM) algorithms [3, 25, 136]. Both methods are based on wave front prop-
agation. The GDT constructs a path using a superposition of cost-weighted basis
vectors, thereby quantising the local path direction to the directions of a set of basis
vectors in a 3x3 (or 5x5) neighbourhood. The FM algorithm models the wave front
by a straight front, which does not restrict the propagation direction to a limited set
of discrete directions. Both methods produce an image containing the minimum in-
tegrated cost from a starting point to all points in the domain.
The minimum-cost path can be obtained by a steepest descend (from the end point
back to the start point) along the opposite gradient direction of the integrated cost
map created by the aforementioned methods. Since the cost function is usually
smooth, the integrated cost function is even smoother. This permits sub-pixel ac-
curacy in computing the steps taken during the steepest descend. Due to the finite
step size and approximation errors in the aforementioned algorithms, the path will
not end exactly at the starting point but in very close (sub-pixel) proximity.
In section 8.2 we quantify the cutting corner problem for circular arcs with a Gaus-
sian line profile and present our iterative algorithm to solve it. In section 8.3 we
present quantitative results on the displacement error as a function of the number
of iterations and qualitative results on TEM images of uranyl acetate labelled DNA.
Section 8.4 presents the conclusions of our work.

8.2 Method

A correct implementation of a minimum-cost path algorithm applied to curved lin-
ear structures will always result in a path that is shorter and stiffer (less bending
energy) than the centreline of the underlying linear structure. Especially in highly
curved areas the minimum-cost path is cutting corners. The minimum-cost path
does not follow the path through the minimum of the cost function in curved areas.
To illustrate this we consider a circular path with a Gaussian cross-section

I(r, σ, c) = 1 + c (1− exp(−(r −Rc)
2

2σ2
)) (8.3)
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Figure 8.2: The relative radius (Rp/Rc) of the minimum-cost path for the Gaussian profile as
a function of centreline radius Rc.

with the cost contrast c = cb−cp
cp

, in which cb and cp are respectively the cost values of
the background and the path, and Rc the radius of curvature of the centreline. The
integrated cost of a circular path with radius r around such a circle is

T (r) = 2πr I(r, σ, c) = 2πr (1 + c (1− exp(−(r −Rc)
2

2σ2
))) (8.4)

To find the minimum-cost path, we calculated the radius Rp for which T (r) is min-
imised, Rp = argminT (r). Fig. 8.2 shows the relative radius Rp/Rc of the minimum-
cost paths for different values of line width σ and contrast c. The results suggest
that increasing the contrast or decreasing the line width (for example by scaling the
cost function: I(r) → Iα(r), α > 1)) of the cost function will reduce the bias in the
minimum-cost path. In practice the bias will be reduced by these measures to some
extent, but will never produce the desired smooth centreline path. This is shown by
considering the limit (c → ∞ or α → ∞), this will reduce the problem to a binary
problem discarding all the gray value information and therefore produce a rough,
binary skeleton type path instead of smooth centreline path. This skeleton path will
also be hampered and possibly even interrupted due to the presence of noise in the
original image. We claim to have developed an algorithm not based on increasing
the contrast or decreasing the line width which solves the bias problem and still finds
a smooth path, approximating the true centreline, through this class of objects.

Algorithm

Our method is based on the idea that a standard minimum-cost path algorithm such
as FM will only give the correct centreline path for straight string-like objects (as-
suming the start and end points are located on the centreline). Hence, the principle
behind our algorithm is to deform the image space in such a way that a curvilinear
object becomes straight. After an initial path through the object is extracted using a
standard minimum-cost path algorithm, two cubic splines are defined through the
data points found by a steepest descend; one for the x-values and one for y-values
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(a) (b) (c)

Figure 8.3: (a) The red line is the path extracted by a classical minimum-cost path algorithm,
the green line is the path after the first iteration and the blue line is the true cen-
treline of the object. (b) Zoomed in version of (a). (c) Deformed image obtained
by equi-distant sampling perpendicular to the initial (red) path. The green path
is the minimum cost path formed in the deformed image.

of the data points, using the distance from the end points along the path as the run-
ning variable. Using cubic splines guarantees that the path is continuous up to the
second derivative. As shown in Fig. 8.3(a-b), lines perpendicular to the splines sep-
arated by a distance of one pixel are defined. A new image Fig. 8.3(c) is sampled
using cubic interpolation on equi-distant points along these perpendicular lines. A
new minimum-cost path is calculated in the deformed space (the green line in Fig.
8.3(c)). This new path is again represented by two splines. Next, the perpendicular
distance between the centreline of the deformed image and the splines is calculated.
By defining points on the perpendicular lines in the original image with the same dis-
tance from the original path, the new path is transferred back to the original image
space. Two new splines are fitted through the coordinates of these points to produce
a new path. As shown in Fig. 8.3(a), this path is already much closer to the desired
centreline. Repeating the process described above yields a path that converges to the
true centreline of the object.

8.3 Results

We first tested our algorithm on synthetic data, allowing us to measure its perfor-
mance by comparing the results with a ground truth. Later we used images of DNA-
strands made using an electron microscope to examine its real world performance
qualitatively.

8.3.1 Synthetic Data

As synthetic data we used images of curved Gaussian line profiles, with a ninety
degrees change in orientation and a curvature radius Rc (Fig. 8.3(a)). The cross sec-
tion of this profile is defined as in Eq. 8.3. The algorithm was tested for different
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(a) (b)

Figure 8.4: (a) A low contrast (c = 1) image depicting the path converging to the true cen-
treline of the object. (b) A High contrast (c = 10) image depicting the oscillation
effect causing the path to lie alternately on either side of the true centreline of the
object. In both images the true centreline is denoted by the red dotted line.

Rc

Rp

(a)

Rc

Rp

(b)

Figure 8.5: (a) The first way to cut a corner. Notice the radius of the path (Rp) being larger
than the radius of the centrelineÂ (Rc). (b) The second way to cut a corner. Notice
the radius of the path (Rp) being smaller than the radius of the centreline (Rc).
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Figure 8.6: The mean of the RMS distance for twenty realizations as a function of the number
of iterations using low (c = 1) and high (c = 10) contrast and line width σ = 2.5.
For the cases with D = 0.7 the damping is switched on after four iterations.
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Figure 8.7: The mean of the RMS distance for twenty realizations as a function of the number
of iterations using low (c = 1) and high (c = 10) contrast and line width σ =
2.5. 5% Gaussian noise is added to the images. For the cases with D = 0.7 the
damping is switched on after four iterations.

centreline radii Rc, noise levels and contrast ratios c. As shown in Fig. 8.4(a) the first
iteration already results in a path which is significantly closer to the centreline. We
measured the performance by looking at the distance between the centreline of the
object and the path found using our algorithm. We computed the root-mean-square
(RMS) of the perpendicular distance between the path and the ground truth at ten
points separated by a pixel in the middle of the curve.
Initially this RMS error decreases for all the settings. However, after a number of it-
erations (one to three for the high contrast images and about six for the low contrast
images) it starts to increase for certain values of radiusRc and contrast level c. This is
due to an oscillation effect, which results in the paths lying alternately on either side
of the centreline of the object between successive iterations. The effect is depicted in
the close up of Fig. 8.4(b). We suspect it originates from the two fundamentally dif-
ferent ways to cut a corner. In Fig. 8.5 the two possible ways are shown. On the left
side the radius of the path Rp which cuts the corner is larger than the radius of the
centreline Rc of the object. In contrast to the situation on the right where the radius
of the path is smaller. Due to this sharper bend, we overcompensate for the bending
and hence change sign of the curvature in the deformed space. In cases with a bend
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Figure 8.8: Four TEM images of DNA-strands. The red line depicts the path found by a
standard minimum-cost path algorithm (FM). The green lines indicate the results
of our method after one and four iterations, the blue line after 25 iterations.

which is less sharp than the true centreline, we only partially compensate and hence
do not change the sign of the curvature. Therefore, the oscillating effect is only ob-
served when an intermediate path has a sharper bend than the true centreline of the
object and significantly cuts the corner.
To counteract this effect we introduced a damping term at the transition of the path
from the deformed space to the original image space. The damping is being reduced
exponentially. After N iterations the distance between the last and the new path in
the nth iteration is multiplied by a damping factor D(n−N) (D < 1). This damping
assures stable results. Elaborate testing has showed us that D = 0.7 is either the
optimal or near optimal over a wide range of values for c and Rc. Only very low
contrast settings require less damping to allow the path to reach the centreline.
In Fig. 8.6 the mean of the RMS distance of twenty realizations is plotted as a func-
tion of the number of iterations with low (c = 1) and high (c = 10) contrast settings
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and no noise added. The plots show that the RMS error decreases dramatically in
comparison with standard minimum-cost path algorithms (the 0th iteration) for all
radii and contrast levels. The damping is switched on after the fourth iteration. We
observed that the damping decreased the RMS distance on all high contrast images,
but on the low contrast images only for the curves with a large radius.
Fig. 8.7 shows the mean RMS distance for images with 5 percent Gaussian noise
added. The RMS distance slightly increases after a number of iterations. This is not
due to oscillating behaviour but caused by the fact that the path also adapt to the
noise pattern. For medium to high SNR’s the path corrections in the first iterations
are dominated by the signal. The iterative procedure should stop when the noise
becomes the dominant factor.

8.3.2 Real Data

The proposed algorithm has been extensively tested on transmission electron micro-
scope images of DNA-strands labelled with uranyl acetate to quantify their shape.
Empirically we deduced that twenty-five iterations were sufficient to reach a stable
result on all of the images. Because no oscillating behaviour was observed, no expo-
nential damping was used. Fig. 8.8 shows four typical results from the more than
thousand molecules that were processed. The red line is depicting the path found
by the fast marching algorithm, the blue indicates the final result after twenty-five
iterations, the green lines in between are the results after respectively one and four
iterations. Note that the final results describe the centreline of the object much better,
especially in regions with high curvature. The blue line follows the local minimum
of the cost function without cutting corners. This work permits the computation
of the persistence length of DNA with much greater accuracy, especially over small
distances. Earlier results always overestimated the persistence length in this regime
due to the stiffness of the minimum-cost path.

8.3.3 Computational Speed

The time needed for one iteration is comparable to the time needed to calculate a
classical minimal-cost path. Therefore, it is evident that the amount of computation
needed increases approximately linearly with the number of iterations. Note that
one often can limit the amount of image space to be evaluated after the first iteration,
hence reducing the computation time in subsequent iterations.

8.4 Conclusion

In this paper we present an improvement on minimum-cost path algorithms, which
significantly boosts their performance in describing the centreline of string-like ob-
jects. The method can be incorporated in any minimum-cost path algorithm. We
have demonstrated that our algorithm results in a path which corresponds much
better to the centreline of both simulated and real-world string-like objects. The
RMS displacement error decreases more then a factor of ten, especially in highly
curved areas. Displacement errors of several pixels can be repaired. The behaviour
depends on conditions such as contrast, noise level and line width. Under certain
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conditions, such as high contrast, the method only converges after incorporating
a damping term. Ten to twenty-five iterations are needed, using an exponentially
reducing damping term after several iterations. The method has been successfully
applied to several thousands of DNA molecules in high-resolution images obtained
by TEM and AFM. The paths we obtained on the images of DNA-strands follow the
valley through the cost function without cutting corners. Hence the length measure-
ment remains unbiased and the curvature is no longer underestimated. This is of ut-
most importance for measuring the bending energy of DNA-strands on a nanometer
scale.
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abstract∗

DNA is a very important cell structural element which determines the level of ex-
pression of genes by virtue of its interaction with regulatory proteins. We use elec-
tron (EM) and atomic force microscopy (AFM) to characterize the flexibility of double-
stranded DNA (about 150-950 nm long) close to a charged surface. Automated pro-
cedures for the extraction of DNA contours (∼ 10-120 nm for EM data and ∼ 10-
300 nm for AFM data) combined with new statistical chain descriptors indicate a
uniquely two-dimensional equilibration of the molecules on the substrate surface re-
gardless of the procedure of molecule mounting. However, in contrast to AFM, the
EM mounting leads to a noticeable decrease in DNA persistence length together with
decreased kurtosis. Analysis of local bending on short length scales (down to 6 nm
in the EM study) shows that DNA flexibility behaves as predicted by the worm-like
chain (WLC) model. We therefore argue that adhesion of DNA to a charged surface
may lead to additional static bending (kinking) of ∼ 5 degrees per dinucleotide step
without impairing the dynamic behavior of the DNA backbone. Implications of this
finding are discussed.

9.1 Introduction

DNA’s charge properties and its high flexibility allow irreversible adhering of molecules
onto a planar surface forming a two-dimensional (2D) object and thereby permitting
visualization by means of EM and AFM. In general, adhesion and immobilization
are achieved by virtue of ionic interactions between DNA phosphates and surface
charges. These processes lead to (i) a loss of one degree of freedom thereby dimin-

∗The content of this chapter has been published in: F. G. A. Faas, B. Rieger, L. J. van Vliet and
D. I. Cherny. DNA deformations near charged surfaces: Electron and atomic force microscopy views.
Biophysical Journal 97(8):1148-1157, 2009. [36].
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ishing the number of possible DNA configurations and (ii) potential distortions of
the DNA double helix reflected in notable alterations in DNA conformation(s) which
may lead to a change in the apparent persistence length. A quantitative description
of the apparent DNA conformation confined to a plane requires invoking the ex-
isting models for DNA conformation in solution (3D) and in plane as well. The
worm-like chain (WLC) model treats DNA as a continuous, inextensible (elastic)
rod and considers the deformations occurring at each infinitesimal point following
Hooke’s law[76, 77]. Another model is based on a discrete description of a DNA
polymer chain attributing its conformational flexibility to the thermal fluctuations in
the angles between adjacent basepairs [122]. Similar to the WLC model, the discrete
model describes DNA as a homopolymer. The main statistical quantities describ-
ing behavior of homopolymers by either model have similar analytical expressions
allowing the use of either description for the analysis purposes. Several extensions
were made towards a more realistic model, such as the inclusion of static bends or
kinks distributed randomly (in position and orientation) along the polymer chain
[123, 124, 102, 156, 157, 93].

Numerous examples demonstrate the power of EM and AFM in determination of
DNA persistence length and the conformational state of DNA confined to an imag-
ing plane [93, 48, 112, 113, 20, 97, 80, 158, 57, 83, 47, 138]. In many instances, the
persistence length calculated close to 50 nm [48, 112, 113, 20, 97, 158, 2, 95], a gen-
erally accepted value determined by other techniques exploiting mainly bulk mea-
surements [57, 83, 80]. However, smaller values (36 nm [17]) and larger values (∼
80-140 nm [93, 37, 162, 112]) were reported as well. In addition, there is disagree-
ment about the state of the deposited molecules: (i) either molecules equilibrate on
the imaging surface prior their adhesion (called 2D state), or (ii) molecules captured
(”trapped”) by the imaging surface without their equilibration leading to the confor-
mation reflecting a projection of 3D conformation in solution onto 2D plane (called
3D state). A mixture of both, 2D and 3D, states can be present for each molecule or
their ensemble depending on the deposition procedure and DNA length. Both, EM
and AFM provide evidence(s) for a 2D state [48, 47, 112] and a 3D one [63, 112, 138].
In this line, recent studies show that DNA flexibility may vary in a length dependent
manner exhibiting an increased flexibility (via spontaneous large-angle bends) over
distances <5 nm [158]. Even the break-down of the conventional elastic rod model
is suggested for short DNA fragments [85].

In this paper we will argue that successful analysis of 2D data sets requires both
dedicated image processing and a model describing the statistical behavior of DNA
molecules confined to a plane. We will show that DNA immobilized onto a surface
can exhibit a notable variation in persistence length, yet showing its chain statistics
as expected over long separation distances (in EM from 10 to 120 nm and in AFM
from 10 to 300 nm) along the contour. By extending the number of statistical quan-
tities we prove a 2D equilibrium state of immobilized molecules. A modification of
the homopolymer WLC model was required to provide an adequate description of
the DNA configuration in plane. To this end, we introduce local surface-induced
static bends leading to an averaged heteropolymer WLC model [122, 123, 124, 20].
We also argue that modulations in apparent DNA persistence length due to interac-
tions with the imaging surface are not a methodological artifact, but rather a general
property of DNA that also manifests itself upon interaction with protein surfaces.
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The developed software for the image and data analysis is provided as Matlab
(The Mathworks, USA) scripts which can be freely downloaded from
www.diplib.org/home22266. It provides the possibility to analyze images ob-
tained from either EM or AFM imaging given sufficient image quality and provide
DNA characterization as presented below. The software makes use of the Matlab
toolbox DIPimage (TU Delft, The Netherlands, www.diplib.org).

9.2 Results

9.2.1 Image processing and analysis

Recently, we developed an automated procedure for finding a path through the cen-
terline of string-like structures, such as DNA, obtained, for instance, by high reso-
lution imaging techniques [59]. Briefly, the method (see Materials and Methods) is
based on a minimum-cost path algorithm and allows determination of a path whose
distance to the true centerline is more than an order of magnitude smaller in areas
of high curvature than traditional algorithms. The method has been successfully ap-
plied to several thousands of DNA molecules on high-resolution images obtained
by EM and AFM. The paths extracted by this method stay in the middle of the DNA
strand without cutting corners. As a consequence, the length measurement remains
unbiased and the curvature is no longer underestimated. Fig. 9.1 shows a typical EM
micrograph of 474 bp long DNA fragment, an AFM image of a mixture of 474 and
2505 bp long DNA fragments and the convergence of DNA centerline (from red via
green to blue).

The method was validated by Monte-Carlo simulations of DNA molecules fol-
lowing WLC statistics in plane (see Materials and Methods). Validation of the method
allowed us to analyze not only full-length DNA fragments, but also short segments
after a magnification calibration. We found that isolated and non-self intersecting
strands behave identical to pieces of self-intersecting molecules, i.e. persistence
lengths consistent within 1 nm (data not shown). This is very advantageous as longer
molecules tend to intersect more and the chances of finding isolated molecules with-
out self- intersection decreases.

Average statistical quantities were calculated as a function of length along the
DNA based on all scored (without self-intersections) molecules as described in Mate-
rials and Methods after which we fitted by the corresponding formulae 9.4-9.6 to the
measured quantities. Special precautions were made to avoid intrinsic correlations
between measured quantities for different distances along the molecule. Figs. 9.2
and 9.3(a-c) exemplifies the results of estimations of persistence length calculated
from average squared end-to-end distance (Eq.9.4), average squared angular differ-
ence (Eq.9.5) and average cosine of angular difference (Eq.9.6), respectively. The
data show very good agreement with theoretical expectations and remarkable con-
sistency of persistence length calculated using different formulas. The uncertainty in
determining the persistence length due to the fitting was in the range of 1-2 nm. We
applied this procedure to the data drawn from various experiments and found very
good consistency among the fit results obtained from the different formulas (see Ta-
ble 9.1). Together with the Monte-Carlo simulations, the results on the experimental
data validate the procedure for image processing and data analysis.
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(a) (b)

(c) (d)

Figure 9.1: a) EM micrograph of 474 bp DNA fragment mounted onto polylysine film from 1
mM NaCl; b) and c) EM and AFM images of DNA digested with EcoRI and ScaI
(1144bp and 1837bp fragments respectively), and mounted from 5 mM Hepes,
pH 7.5, 10 mM KCl and 5 mM MgAc2; d) cartoon showing convergence of au-
tomatic iterative image processing (from red via green to blue) as described in
Materials and Methods to find the DNA backbone. Scale bars, 100 nm. Images
a,b and d are displayed using inverted grayscale.
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9.2.2 Dimensionality of surface immobilized DNA and its
persistence length

The statistical quantities for the conformation description of homopolymers in a 3D
are: 〈

R2
〉

3D
= 2P 2

3D

(
L

P3D

− 1 + e
− L
P3D

)
, (9.1)

〈cos θ〉3D = e
− L
P3D , (9.2)〈

θ2
〉

3D
=

2L

P3D

, (9.3)

where L is the length along the DNA (or contour length) between two points on a
polymer segment, P3D is the persistence length in 3D, θ is the angle between two
tangent vectors separated by a distance L along the DNA. The formulae 9.1-9.3 used
for the description of polymer chain statistics are similar for continuum (WLC) and
discrete models [76, 77, 122, 123] and do not account for self-avoiding behavior. For
the 2D case the corresponding formulae are [48, 112]〈

R2
〉

2D
= 2(2P3D)2

(
L

2P3D

− 1 + e
− L

2P3D

)
, (9.4)

〈cos θ〉2D = e
− L

2P3D , (9.5)〈
θ2
〉

2D
=

L

P3D

. (9.6)

Note that Eqs. 9.4-9.6 and Eqs.9.1-9.3 display identical mathematical structures. The
only difference is a scaling of the persistence length between 2D and 3D, i.e. with the
substitution 2P3D → P2D in Eq. 9.1-9.3 the formulas are identical. In the remainder of
this paper we will use P2D = 2P3D when explicitly referring to the 2D model. In view
of the above considerations, this implies that, in a strict sense, the persistence length
can be determined with an uncertainty factor of two in absence of prior knowledge
of the conformation dimensionality. To avoid this uncertainty, we computed the
average fourth moment of the end-to-end distance for the molecules and compared
the value with the model in 2D and 3D. For the WLC model the expression has been
derived in 3D [103]〈

R4
〉

3D
= 20

3
L2P 2

3D − 208
9
LP 3

3D + 856
27
P 4

3D − 8LP 3
3De

− L
P3D

−32P 4
3De

− L
P3D + 8

27
P 4

3De
− 3L
P3D . (9.7)

For 2D the expression is (see Eq. 9.29 and [129, Eq. C18])〈
R4
〉

2D
= 32L2P 2

3D − 240LP 3
3D + 696P 4

3D

−320

3
LP 3

3De
− L

2P3D − 6272

9
P 4

3De
− L

2P3D +
8

9
P 4

3De
− 2L
P3D . (9.8)

Importantly, the formulae for 〈R4〉 do not scale from 2D to 3D. However, the dif-
ference vanishes for lengths exceeding ∼ 500 bp, after which P3D =

√
6/5P2D. In

contrast, the difference 〈
D4
〉

=
(〈
R4
〉− 〈R2

〉2)
/L4 (9.9)
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Figure 9.2: Example of the data analysis for the 474 bp DNA fragment mounted onto polyly-
sine film from 1 mM NaCl and imaged by EM. a)-c) show estimates of the per-
sistence length based on 〈cos θ(L)〉 Eq.(9.5),

〈
R2(L)

〉
Eq.(9.4) and

〈
θ2(L)

〉
Eq.(9.6)

respectively; d) shows the number of unique used DNA strand elements to com-
pute the different descriptors per contour length L and the length distribution of
the analyzed molecules; e) shows the normalized difference (

〈
R4
〉 − 〈R2

〉2)/L4

Eq.(9.9) with fits for the 2D Eq.(9.8) and 3D Eq.(9.7) case; f) shows the kurtosis〈
θ4
〉
/
〈
θ2
〉2 (which is equal to 3 for θ normally distributed around zero).

does not vanish. Not even for a length up to 3000 bp and P3D ≈ 50 bp, after
which P3D =

√
3/2P2D (for P3D=100 bp the difference can be detected up to ∼5000

bp). Therefore, the quantity 〈D4〉 provides reliable means for determining the di-
mensionality of the deposited molecules and hence the persistence length by select-
ing the correct model. Methodologically, it means that we fit two sets of formulae
(9.1-9.3) and (9.7) respectively (9.4-9.6) and (9.8) to the quantities measured from the
experimental data. The test of Eq. (9.9) is used to make a proper choice for the di-
mensionality of the molecules and as a result determines the persistence length in
3D by selecting the corresponding set of formulae. The plots of 〈D4〉 for 2D and 3D
cases are depicted in Fig. 9.2(e). It is clearly seen that (i) the data can be described us-
ing the corresponding formula for 2D (Eq. 9.8) and (ii) the persistence length is very
close to those calculated using formulae (9.4-9.6). In contrast, using formula (9.7) we
failed to fit the data for all distance separations up to 120 nm. The depicted curve
is the closest approximation to the experimental data with P3D =35 nm. The DNA
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Figure 9.3: Example of the data analysis for 2981bp DNA with 10 mM KCl, 5 mM MgAc2

mounted on mica and imaged with AFM; a)-c) show estimates of the persistence
length based on 〈cos θ(L)〉 Eq.(9.5),

〈
R2(L)

〉
Eq.(9.4) and

〈
θ2(L)

〉
Eq.(9.6) respec-

tively; d) shows the number of unique used DNA strand elements to compute the
different descriptors per contour length L and the length distribution of the ana-
lyzed molecules; e) shows the normalized difference (

〈
R4
〉 − 〈R2

〉2)/L4 Eq.(9.9)
with fits for the 2D Eq.(9.8) and 3D Eq.(9.7) case; f) shows the kurtosis

〈
θ4
〉
/
〈
θ2
〉2

(which is equal to 3 for θ Gaussian distributed around zero).

molecules analyzed in Fig. 9.2 were 474 bp long and imaged by EM. Convincingly
we found also for longer strands imaged by AFM in Fig. 9.3(e) that 〈D4〉 best fits to
the 2D formulae thereby supporting the conclusion that the DNA was imaged in a
2D equilibrium state.

Having validated the image processing, data analysis and the usage of the cor-
responding formulae (9.4-9.6) and (9.8) we calculated persistence lengths of DNA
fragments ranging from 474 bp up to ∼3000 bp for different salt conditions ( NaCl
0-100 mM, KCl, MgAc2), buffer composition (Tris, Hepes), nature of the imaging
surface (glow-discharged carbon film, polylysine film) by EM and AFM. The results
show (compare Table 9.1) that all four quantities used for the persistence length cal-
culation give very similar results supporting our approach even further. It implies
that regardless of deposition and imaging conditions DNA molecules behave as 2D
polymers for lengths in the range ∼ 10 - 120 nm (EM data) or ∼ 10-300 nm (AFM
data). EM data show that the persistence length of the molecules deposited from
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1-100 mM NaCl is in the range 25-32 nm regardless of the nature of the deposition
surface (glow discharged carbon film or polylysine film). At zero NaCl concentration
we measured a smaller persistence length of 15-17 nm (not shown). Deposition from
the 5 mM MgAc2 and 10 mM KCl solutions led to a small but detectable decrease in
persistence length (22-24 nm). In contrast, using the latter conditions for the depo-
sition on a mica surface (AFM data) leads to a dramatic increase of the persistence
length to 80-90 nm as calculated by using either quantity (Table 9.1).

Mounting conditions Scored length P<R2> P<cos> P<θ2> P<D4> avg.
[µm]
(# molecules) [nm] [nm] [nm] [nm] [nm]

2.5mM NaCl1) ∼ 33 (210) 30 29 29 29 29
10mM NaCl1) ∼ 70 (451) 31 31 33 34 32
50mM NaCl1) ∼ 37 (235) 35 31 32 30 32
100mM NaCl1) ∼ 76 (490) 25 25 26 25 25
1 mM NaCl, polylisine2) ∼ 107 (685) 26 23 25 23 24
2.5 mM NaCl, polylisine2) ∼ 52 (332) 28 26 27 23 26
10 mM KCl, 5 mM MgAc3)

2 ∼ 134 23 20 22 23 22
10 mM KCl, 5 mM MgAc4)

2 ∼ 151 23 21 24 27 24
10 mM KCl, 5 mM MgAc5)

2 ∼ 112 21 19 22 26 22
10 mM KCl, 5 mM MgAc6)

2 ∼ 1000 89 80 81 66 79
10 mM KCl, 5 mM MgAc7)

2 ∼ 563 101 91 91 76 90

Table 9.1: Persistence length calculated using different statistical descriptors of the WLC
model for various mounting and imaging conditions. 1) 474 bp DNA fragment,
deposition onto glow discharged carbon film, EM data; 2) 474 bp fragment, depo-
sition onto polylysine film, EM data; 3) mixture of 1144bp and 1837 bp fragments,
deposition onto glow discharged carbon film, EM data; 4) 2981bp fragment, depo-
sition onto glow discharged carbon film, EM data; 5) mixture of 474 bp and 2507
bp fragments, deposition onto glow discharged carbon film, EM data; 6) 2981bp
fragment, deposition onto mica, AFM data; 7) mixture of 474 bp and 2507 bp frag-
ments, deposition onto mica, AFM data.

9.2.3 Kurtosis and static bending of DNA

The homopolymer model describes the DNA flexibility by assuming an harmonic
potential in the bending angle θ. This model results in 〈θ〉 = 0. The kurtosis is
defined as

k =
〈θ4〉
〈θ2〉2 (9.10)

and is always equal to 3 regardless of the dimensionality of the molecules in this
model. We found that for AFM data the kurtosis is close to 3 for distances ∼ 50− 80
nm along the DNA; for longer distances it remains within the range 2.7-2.8 (see
Fig. 9.3(f)). However, for EM data the kurtosis was always below 3 showing a de-
crease to ∼ 2.5 for distances larger than 25 nm along the DNA (see Fig. 9.2(f)). For
a homopolymer model, a deviation of the kurtosis from the expected value may be
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Figure 9.4: Simulated kurtosis for a non-zero static bending of θstat = 5.3◦ a) probability
p = 0.5 and b) probability p = 0.53 of the sign. The simulation was performed on
500 molecules of 474bp chain length (see for details Materials and Methods) and
averaged over 500 independent realizations. The error bars indicate 1σ spread.

indicative for either an inadequate procedure for image processing and/or analysis,
or the presence of non-equilibrium processes during deposition. Another possibility
implies that harmonic potential accounting for DNA bending is still quadratic but
around a non-zero value (heteropolymer model). Having validated the image pro-
cessing, the data analysis and the applicability of the formulae used, we consider
the last possibility. Therefore we introduce a small, surface-induced static bending
at each dinucleotide step. For the simple assumption that all static bends occur in
plane with identical amplitude but random sign, we derived an expression for the
kurtosis accounting for the average static bending angle and separation distance (see
Online Supporting Material). The kurtosis for the heteropolymer model,

k = 3− 2

n

θ4
stat

(θ2
dyn + θ2

stat)
2
. (9.11)

shows that the kurtosis rapidly approaches 3 as the length along the DNA n in-
creases. In this case the sign of the static bends was chosen randomly with equal
probabilities. To calculate the average amplitude of the static bends we recall that
P ≈ 2

〈θ2dyn〉+〈θ2stat〉 where
〈
θ2
dyn

〉
and 〈θ2

stat〉 stand for the dynamic behavior of polymer

chain and static bending, respectively [134, 124]. Using an identical procedure for
DNA deposition as we used for EM analysis, Cognet et al. [20] found that for DNA

molecules confined to a plane θdyn ≈
√〈

θ2
dyn

〉
= 4.6◦/bp. Since we are looking for

angle displacement in 2D we have to use the corresponding value for the persistence
length. Our EM measurements show that P3D is in the range of 15-32 nm (see Table
9.1) what corresponds to P2D ∼ 90-190 bp. It means that θstat ≈

√〈θ2
stat〉 is in the

range 3.7◦ − 7.2◦.
For an intermediate value of θstat = 5.3◦ we performed Monte-Carlo simulations

of polymer chains and evaluated the expected kurtosis for different lengths along
the DNA n and different probabilities p of positive and negative sign of θ0. Given
the assumption of p = 0.5 and a large number of molecules (> 104), the kurtosis
is indeed exactly 3 for any n. If we decrease the number of molecules to similar
numbers as encountered in the experiments (∼ 500) we find a decrease of the kurtosis
with increasing n for any θstat 6= 0 (see Fig. 9.4) for any value of p. Higher values of p
yield smaller kurtosis for larger distances along the DNA similar to the experimental
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Figure 9.5: a) Fitted persistence length based on
〈
R2
〉
,
〈
θ2
〉

and 〈cos θ〉 as a function of the
distance length L along the DNA for the same molecules as in Fig. 9.2, b) fitted
persistence length (blue) for very short distances only based on the histograms
shown in c); c) negative logarithm − lnG Eq.(9.12) of occurrence of the deflection
angle θ for very short segments [L=3.02, 4.54, 6.05 nm]. The deflection angle
histogram is computed from a few thousand bends.

data, EM data in particular. Considering the fact that we only have a few hundred
molecules no conclusion can be drawn about the exact value of p. However, it must
be in the range 0.5±0.03 given the simulations. In control simulations with θstat = 0◦

the kurtosis was always 3 for any number of molecules.
Therefore, it becomes evident that the experimental data can be explained by a

modified homopolymer model accounting for static bending together with limited
sampling. However, in contrast to AFM data, EM data require that static bending
should be larger mostly due to surface-induced bending in addition to the intrinsic
dynamic and static bendings.

9.2.4 DNA bending at short distances

We investigated flexibility or bending of DNA over very short distances as done
by Wiggins et al. [158] in an AFM study. Their measurements imply that the elas-
tic energy of highly bent DNA conformations is lower than predicted by the WLC
model. That is, on short length scales, large angle bends occur more frequently than
predicted by the WLC. In Fig. 9.5(c) we computed the negative logarithm of the ob-
served bend angle probability distribution function G(θ;L) for short distances L for
the molecules investigated in Fig. 9.2. In Eq.(9.12) we have derived a formula (see
Online Supporting Material)
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G(θ, L) = erf

(√
P

2L

(
θ +

∆θ

2

))
− erf

(√
P

2L

(
θ − ∆θ

2

))
(9.12)

that takes binning effects in the probability density function of the bending angle θ
into account. This enables exact fitting of the persistence length also from the his-
togram. The fitted persistence length is depicted in Fig. 9.5(b) in blue. For three
distances along the DNA L = 3.02, 4.54 and 6.05 nm we found P ∼ 28 nm. We did
not find any deviation from a Gaussian distribution of the bend angles over any dis-
tance, and in particular not over short distances (see Fig. 9.5(c)). The data shown
here are typical for all investigated supports and mounting conditions used for EM.
For AFM data we could not investigate the bending on such short length scales due
to a lack of resolution.

9.3 Discussion

Microscopy techniques permit the analysis of conformations of long flexible poly-
mer molecules, DNA in particular, in a dried state. The analysis requires that (i)
molecules irreversibly adhere to an imaging surface and (ii) all segments along the
length should be imaged in an identical manner though possibly with some intensity
modulations reflecting the processes of molecule deposition and/or detection. How-
ever, these requirements do not ensure that the conformation of deposited molecules
will be unique (2D or 3D) and identical; moreover, molecules may be of mixed con-
formations. In addition, the apparent conformation of the molecules may depend
on their length. The conformational state of deposited molecules is traditionally an-
alyzed by fitting experimental datasets with the formulae accounting for statistical
properties of equilibrated molecules either in 2D or in 3D. Goodness of fit, the in-
trinsic conformity of the calculated values for the persistent length together with
agreement with literature data is often considered as a strong support for the tech-
niques used for molecules deposition and image analysis. In contrast, inconsistency
of the experimental data with theoretical expectations calculated using one of the
descriptors, e.g. < R2 >, is often interpreted as a result of non-equilibrium pro-
cesses prior to adhesion of the molecules, e.g. ”trapping” of the molecules by the
deposition surface [112]. Goodness of fit, however, only shows the validity of the
model used without guarantee that the persistence length will be close to ∼ 50 nm.
Deviation of the measured persistence length (using, e.g. 〈R2〉 descriptor) from the
expected value of ∼ 50 nm, in some instances, allowed authors to speculate about
the projection of 3D equilibrium DNA conformation onto 2D imaging plane [65].

Our data show that DNA molecules of∼500 - 3000 bp long deposited onto a solid
support (either glow-discharged carbon film or polylysine film or mica) behave as
an equilibrated 2D polymer chain for distances along the DNA up to ∼120 nm (EM
measurements, Fig. 9.2(e)) or 300 nm (AFM measurements, Fig. 9.4(e)), though of
different persistence length. The overall procedure used for EM imaging (deposition
onto glow-discharged carbon film together with uranyl staining) had been validated
in a sense that it does not change DNA dynamic behavior, i.e. < θ2

dyn > is close to
4.6◦ [20]. However, it does modulate the apparent persistence length. We believe that
these modulations of persistence length (decreasing) are mainly due to distortions of
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the DNA backbone. These distortions do not impair the harmonic potential of DNA
flexibility at each dinucleotide step since the conformation of the molecules along
long distances follow theoretical predictions with high accuracy. We rather believe
that adhesion to a charged (imaging) surface induces an additional static bending.
We note that intrinsic static bends, introduced to describe sequence-dependent DNA
deformations, i.e. curvature (reviewed in [124]), can account for ∼ 3◦ [54] on aver-
age for the molecules confined to a plane. Our data show that the static bending
should be in the range 3.7◦ − 7.2◦ (in plane), most probably close to 5◦ implying
that deposition onto carbon film or polylysine film induces additional DNA bend-
ing (kinking). In this line, AFM data showing the kurtosis in the range 2.7-2.8 are in
agreement with the heteropolymer model of DNA exhibiting intrinsic static bending
that is supported by our Monte-Carlo simulations (see Fig. 9.4).

In support of our conjecture of equilibrated 2D polymers we stress that confor-
mity of DNA conformation to the theoretical expectations was found for distances
along the DNA beyond 100-150 nm, a value after which a significant deviation of
DNA conformation from the WLC model is usually found [63, 138, 93, 101]. This
deviation is often interpreted as a 3D state of imaged DNA due surface ”trapping”
[63, 138, 93]. Fig. 9.3 shows that under our deposition/preparation conditions, DNA
conformation can be well fitted by any descriptor used here till separation distances
∼ 300 nm. Attempts to fit 〈R2〉 using scaling formulae for polymer wandering in 2D
or 3D as earlier suggested [63, 138] did not produce any physically relevant result.
Importantly, at all separation distances DNA behaves in accordance with the WLC
model for either combination of mounting/imaging conditions.

The whole analysis presented here is based on fitting the known homopolymer
formulae (9.4-9.6 and 9.8) to the experimental data. However, as we argued in the
case of EM mounting, an additional (induced) static bending is required; we have
to justify usage of these formulae for heteropolymer molecules. Using Monte-Carlo
simulation we generated a set of 474 bp long molecules using the harmonic poten-
tial with different values of < θdyn > (corresponding to P3D ranging from ∼ 20 nm
to ∼ 50 nm) and θstat = 5.3◦, and analyzed thus simulated molecules as described.
The results (see Fig. 9.10) clearly show that (i) fitting with formulae (9.4-9.6 and 9.8)
give similar values for the apparent persistence using either descriptor and (ii) thus
calculated apparent persistence length is in a good agreement with the effective per-
sistence length determined via Eq. 9.31. The kurtosis decreases from 3 to ∼ 2.5 as
the length along the DNA increases up to ∼ 100 nm in agreement with EM data. At-
tempts to fit the data with formula 9.7 corresponding to the 3D conformation of the
molecules, failed for distances beyond 40 nm implying their 2D state. Importantly,
fitting the model to short distances (4 nm and 6 nm) using Eq. 9.12 led to a persis-
tence length similar to those calculated using Eq. 9.4-9.6 and 9.8. Together, these
results validate the usage of the formulae 9.4-9.6 and 9.8 for the purpose of analysis
of heteropolymer molecules.

It is known that in general persistence length of DNA decreases as the concentra-
tion of monovalent cations increases in solution [57, 83, 5, 80] reaching a value close
to 50 nm. Similar behavior is observed for multivalent cations though the limiting
value for the persistence length may be somehow smaller [57, 83, 5, 80]. Deposition
onto negatively charged surface, e.g. freshly cleaved mica, mediated by the divalent
cations, e.g. Mg2+, may preserve persistence length close to 50 nm [112, 101]. At
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some instances higher values (∼ 80-140 nm) were reported [112, 93, 37, 162] using
< R2 > or < θ2 > descriptors. In the latter case a clear deviation from the expected
strait line was found [112] for separations > 100 nm indicative for the contribution
of excluded volume effects for molecules with contour lengths larger than 20 per-
sistence lengths. In our case, AFM data show that either descriptor can be fit by
the analytical formulas giving consisting values for the persistence length. Since the
goodness of fit was high for DNA separations in the range ∼ 15-300 nm (see Fig.
9.3), we infer that apparent persistence length was similar regardless of separation
along DNA contour implying small contribution of excluded volume effect. Thus,
our data are in accord with the results of Frontali et. al. [48, 47] showing absence of
excluded volume effect for cytochrome c adsorbed DNA with contour lengths up to
30 persistence lengths.

Large values for the persistence length can be explained by modulation of pre-
equilibrated DNA molecules close to the mica surface during rinsing step. Rinsing
of the sample and its drying, steps that are required for the fixation of DNA onto
surface and imaging in air, may lead to the modulation of apparent DNA confor-
mation as described [19] in a way depending on the forces occurred between pre-
equilibrated molecules and mica surface. Since at many instances rinsing buffer is a
pure water, the Debye length increases leading to an increase of persistence length
[48, 57, 83, 5]. Deposition from low salt buffer onto positive charged surfaces may
lead to a significant decreasing apparent persistence length from ∼ 40 nm to ∼ 11
nm in a manner depending on surface charge density [101]. The authors proposed
that surface charge density modulates a fractional neutralization of DNA phosphate
groups leading to a significant increase in DNA flexibility. We note that the glow-
discharged carbon film and polylysine film used here are positive charged surfaces.
Therefore, we cannot rule out this mechanism accounting for the decreased persis-
tence length of DNA molecules from EM experiments, though we believe that in-
duced DNA static bending (kinking) is a more favorable one in a view of notable
modulation of the kurtosis.

Recent studies by Wiggins et al. [158] and Mathew-Fenn et al. [85] argued that
the classical model of DNA duplex as an ideal elastic rod fails to describe either in-
creased DNA flexibility [158] or end-to-end distance distribution [85] on short length
scales of 5-10 nm. For instance Wiggins et al. [158] observed a non-Gaussian poten-
tial for the bend angle on these length scales. In our EM data we had the resolution
to test this finding. However, we do not see any deviation from a Gaussian distri-
bution of the bend angle down to 3 nm, i.e. we do not find more high angles in
the histograms of the negative logarithm − lnG(θ;L). Our estimation of the persis-
tence length P as a function of distance L on experimental data is consistent from
− lnG(θ;L) Eq.(9.12) and P (L), compare Fig. 9.5(b)). The fact that we do not ob-
serve an increased flexibility could be due to a lower persistence length of ∼ 20 nm
in comparison to ∼ 50 nm in their study. A lower persistence length (higher flexi-
bility) makes it less probably to observe deviations at the same separation distance
as in [158]. To observe angle fluctuation with the same probability we would need
to evaluate at the same P/L ratio, i.e. at separations L < 2 nm. This is beyond the
imaging resolution and the subsequent image analysis. Note that our Monte-Carlo
simulations of the three short length scales used show consistent estimation of P
down to separations of L = 4 nm for similar noise levels as observed in the EM
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images (see Fig. 9.8(d)). This rules out that the image processing algorithm is ”too
stiff” to follow the DNA backbone exactly. We always find more higher angles than
Gaussian distributed (see Fig. 9.5(c)), but with so little occurrence that no significant
conclusions can be drawn. Together, our findings do neither confirm nor contradict
these studies.

Lastly, we note that the analysis of specific DNA-protein complexes shows that
in many circumstances the DNA backbone may be significantly distorted (relative
to the solution structure) forming a bend or kink upon formation of specific DNA-
protein complex [28]. Recent data exploiting molecular dynamic simulations indi-
cate that DNA flexibility and deformability (so called ”indirect readout”) play a key
role in discrimination specific sequences and stabilization of the complex structure
upon interaction with proteins [98, 96]. We therefore speculate that deformations
of DNA backbone detected as induced bending/kinking upon its interaction with
highly charged surface is in agreement with these data. Moreover, this behavior of
DNA is an intrinsic property, the extent of which possibly modulated by the strength
of DNA -surface interactions.

9.4 Methods and Materials

Sample preparation

Supercoiled pPGM1 plasmid DNA (2981 bp) was purified using Qiagen kits (Hilden,
Germany) [19]. Linear DNA fragments were obtained after digestion with either
EcoRI (2981 bp fragment), EcoRI/ ScaI (1444 bp and 1837 bp fragment) or PvuII (474
bp and 2507 bp fragments) and purified using gel filtration chromatography on a
Superose 6 column (SMART system, Amersham Biosciences). A 474 bp fragment
was obtained by additional purification through an anion exchange Waters Gen-Pak
FAX column. All samples were stored in a buffer of 10 mM Tris-HCl, pH 7.5, 10 mM
NaCl, 0.1 mM Na3EDTA at a concentration of 200 - 400 µg/ml.

Electron & Atomic force microscopy

Two different procedures were used for the deposition of DNA molecules for elec-
tron microscopy [19]: adsorption to glow-discharged carbon film and to polylysine
film. The samples were analyzed with a Philips CM12 electron microscope in a dark-
field mode at a magnification of 28,000-35,000. The sampling density of the digital
images was 1.21 nm/pixel or 1.51 nm/px.
For AFM DNA was deposited onto the surface of freshly cleaved mica (Muscovite,
Plano GmbH, Germany). Samples were a drop of DNA solution (10 µl) at a concen-
tration of 2 µg/ml from buffer (B) was placed onto the surface of freshly cleaved
mica (Muscovite, Plano GmbH, Germany). Samples were scanned using a Digital
Instruments MultiMode scanning probe microscope Nanoscope IIIa (Veeco) operat-
ing in Tapping Mode. The sampling density of the digital images was 7.81 nm/pixel.
For details see Online Supporting Material.
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Image & Data analysis

The image analysis software was custom developed using in the Matlab toolbox DIP-
image. The software is provided as Matlab (The Mathworks, USA) scripts which can
be freely downloaded from
www.diplib.org/home22266. Shortly the algorithm uses an improved Fast Marching
algorithm [59] after identification of the relevant molecules to find the DNA center-
line. The image analysis algorithm was extensively validated on images generated
by Monte Carlo simulations. In the data analysis extra precaution was taken in sam-
pling the strands to avoid correlation. Reusing all data for computing the charac-
teristic quantities for each length along the DNA yield highly correlated points. To
avoid this, we divided each DNA strand into length segments randomly drawn from
a predefined set of lengths such that no piece of strand is used twice. For details see
Online Supporting Material.
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Supplementary Material

9.5 Sample preparation

Supercoiled pPGM1 plasmid DNA (2981 bp) was purified using Qiagen kits (Hilden,
Germany) as described in [19]. Linear DNA fragments were obtained after digestion
with either EcoRI (2981 bp fragment), EcoRI/ ScaI (1444 bp and 1837 bp fragment)
or PvuII (474 bp and 2507 bp fragments) and purified using gel filtration chromatog-
raphy on a Superose 6 column (SMART system, Amersham Biosciences). A 474 bp
fragment was obtained by additional purification through an anion exchange Waters
Gen-Pak FAX column. All samples were stored in a buffer of 10 mM Tris-HCl, pH
7.5, 10 mM NaCl, 0.1 mM Na3EDTA at a concentration of 200 - 400 µg/ml.

9.5.1 Electron microscopy

Two different procedures were used for the deposition of DNA molecules: adsorp-
tion to glow-discharged carbon film and to polylysine film [19]. In the first proce-
dure, a stock solution of DNA was 100-200 fold diluted either in buffer (A) contain-
ing 1 mM Tris-HCl, pH 7.5, 0-100 mM NaCl or in buffer (B) containing 5 mM Hepes,
pH 7.5, 5 mM MgAc2, 10 mM KCl. The final DNA concentration was 0.2-1 µg/ml.
A drop of this solution (6-8 µl) was placed onto the surface of carbon film mounted
on an EM grid. Carbon films, 3-4 nm thick, were glow-discharged in the presence of
pentylamine vapor (residual pressure 150 mTorr, discharge current 2-3 mA, duration
of discharge 30 seconds) as described elsewhere [19]. The adsorption was continued
for one to two minutes, then the grids were rinsed with a few drops of 2% (w/v)
aqueous uranyl acetate, blotted with filter paper and air-dried.

In the second procedure, adsorption to polylysine film was carried out as de-
scribed in [19]. In summary, carbon-coated EM grids were glow discharged in air
(residual pressure (200 mTorr, discharge current 8-9 mA, duration of discharge 30
seconds, Bal-Tec MED 020 coater) and immediately coated with poly-L-lysine (molec-
ular mass 2000, Sigma) by adding 8 µl of its aqueous solution at a concentration 3
µg/ml for one minute. The grids were then drained with a long tip connected to a
vacuum-connected aspirator and air dried. A drop of DNA solution (6-8 µl) buffer
(A) was placed onto the polylysine film and DNA was allowed to adsorb for 1.5-2
minutes. The grid was rinsed with a few drops of 2% (w/v) aqueous uranyl acetate,
blotted with filter paper and air-dried.

The samples were analyzed with a Philips CM12 electron microscope in a dark-
field mode at a magnification of 28,000-35,000. The negatives were scanned with a
DuoScan T2500 scanner (Agfa, Germany) at 600 - 1200 dpi. The sampling density
of the digital images was 1.21 nm/pixel or 1.51 nm/px (See Fig. 9.6 and 9.1). The
absolute value for DNA rise was found to be 0.32 - 0.33 nm. In Fig. 9.6 we show
a panel of images of various DNA fragments mounted under different conditions.
For printing, images were flattened using a high-pass filter with a radius of 250 pix-
els and subsequently adjusted for contrast/brightness with inverted grayscale using
Adobe PhotoshopTM.
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9.5.2 Atomic force microscopy

For AFM imaging samples were prepared as described [19]. Briefly, a drop of DNA
solution (10 µl) at a concentration of 2 µg/ml from buffer (B) was placed onto the
surface of freshly cleaved mica (Muscovite, Plano GmbH, Germany) for two min-
utes, then rinsed with 1 ml of water, blotted with filter paper; the remaining water
was blown away by the flow of compressed air. Samples were scanned using a Digi-
tal Instruments MultiMode scanning probe microscope Nanoscope IIIa (Veeco) oper-
ating in Tapping Mode. Scan rates varied from 3 to 5 Hz. Commercial silicon probes
TESP-100 (Veeco) with a typical resonant frequency of around 300 kHz or ultrasharp
NSC15 cantilevers (Mikromash, USA) were used throughout the experiments. The
sampling density of the digital images was 7.81 nm/pixel (See Fig. 9.6 and 9.1). The
absolute value for DNA rise was 0.31 nm in accordance with previously published
data [112].

9.6 Image analysis

The image analysis software was custom developed using in the Matlab toolbox
DIPimage [81]. The software is provided as Matlab (The Mathworks, USA) scripts
which can be freely downloaded from www.diplib.org/home22266. It provides
the possibility to analyze images obtained from either EM or AFM imaging given
sufficient image quality. A brief user manual and a few test images together with
presegmented DNA strands are provided to make the software easily accessible to
the field of experimental polymer studies on flat support.

Although the detection and tracing of the molecules was done fully automated,
a human supervisor could reject erroneously segmented or traced molecules in an
interactive step. After automated detection of DNA strands, a path through its cen-
terline is extracted by an improved Fast Marching algorithm [59] resulting in x, y
coordinate pairs tracing the molecule. They are resampled such that consecutive
pairs are separated by 1 nm along the centerline of the molecule. The actual process-
ing is divided into i) background subtraction, ii) coarse segmentation of the DNA
molecules, iii) end point refinement and iv) tracing the centerline of the molecules.
First, a gradually changing background is removed by the subtraction of a low pass
filtered version of the original image with a large filter kernel (Gaussian filter with
σ = 25 nm). This is equivalent to high-pass filtering and results in a background
corrected image I . See Fig. 9.1(a)) for an example before pre-processing.
The segmentation of the DNA strands is difficult due to the grainy structure caused
by uranyl staining in combination with the high-resolution of the EM. As a result, the
contrast along the molecules is far from constant and resembles a string of beads. To
reduce the intensity variation along the contour the images are smoothed in by co-
herency enhancing diffusion step [154], resulting in ICED. A single threshold is still
not sufficient, therefore we use an anchor skeleton [150] to segment the molecules,
i.e. a thinning operation in which the ”anchors” are not allowed to be removed. The
anchors are obtained by a relative low threshold, i.e. Ianchor = ICED < tlow and the
image to be thinned by Ihigh = ICED < thigh with tlow < thigh. From this skeleton all
branches, bifurcations and loops are removed such that the end points remain. In the
following we obtain a better estimate of the end-points of the strand. First a region
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Figure 9.6: Examples of EM (a-h) and AFM (i) images of DNA fragments deposited under
various conditions and used for measurements. a) 474 bp fragment, 2.5 mM
NaCl, carbon film, b) 474 bp fragment, 10 mM NaCl, carbon film, c) 474 bp frag-
ment, 50 mM NaCl, carbon film, d) 474 bp fragment, 100 mM NaCl, carbon film,
e) 474 bp fragment, 2.5 mM NaCl, polylysine, f) 2981 bp fragment, 50 mM NaCl,
carbon, g) 2981 bp fragment, 5 mM MgAc2, 10 mM KCl, carbon, h) mixture of
474 bp and 2507 bp fragments, 5 mM MgAc2, 10 mM KCl, carbon, i) mixture of
474 bp and 2507 bp fragments, 5 mM MgAc2, 10 mM KCl, mica. Scale bars, 100
nm.
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Figure 9.7: Monte-Carlo simulation of a 474 bp long DNA homopolymer with P = 55 bp
(18.7 nm) and added Gaussian and Poisson noise to match visually the experi-
mental data. Scale bar, 100 nm.

growing algorithm is applied to the pruned skeleton, i.e. the skeleton is allowed
to grow into regions for which I < tedge, where tedge is halfway between fore- and
background value of the flattened image I . From this generated mask we determine
the center point by a skeleton operation which removes loose ends. The point in the
mask with the largest distance, measured through the mask, from the mask center
is the first end point E1. The second end point E2 is given by the point in the mask
with the largest distance toE1. Now a new anchor skeleton is made of the mask with
E1 and E2 as the only anchors and the outcome is pruned. This skeleton is dilated to
serve as the final mask for the tracking algorithm. In cases where the dilation would
merge two regions or parts of one strand it is terminated at those specific positions.
The centerline of the DNA molecules is found using an improved Fast Marching al-
gorithm [59]. The centerline is the minimum-cost path between the two end points
E1 and E2. The minimum arrival time T along all possible paths P connecting the
two points within a single mask is given by

T = min
∀PE1→E2

∫
Icost(P (s)) ds (9.13)

where Icost is the cost map which is given by the inverse of the local travel speed.
Here the cost map is derived directly from the flattened images by Icost =

( I−min(I)
max(I)−min(I)

)α + 1, with α = 3. The minimum cost path from E1 to E2 is found by
solving the Eikonal equation

|∇U | = Icost (9.14)

with U the arrival time map and initial condition U(E1) = 0. We use a fast marching
algorithm [3] for solving Eq.(9.14). From the arrival time map the estimated center-
line can be extracted by descending along the opposite gradient direction starting at
point E2. Due to the smoothness of the integrated cost images one can obtain sub-
pixel accuracy in the location of the minimum-cost path. At this point we have a
sequence of points P (at spacing 1/3 of a pixel) tracing the DNA centerline from E1

to E2. Normal fast marching algorithms will always result in a path that is shorter
and stiffer than the centerline of the underlying one-dimensional structure unless
the structure is straight. To eliminate this problem the iterative scheme as presented
in [59] is used. This scheme basically deforms the image space such that in the de-
formed space the underlying structure becomes straight (see Fig. 9.1(c) where red
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Figure 9.8: Result for 500 Monte-Carlo simulated images of homopolymer 474 bp DNA
with P = 159 bp (52.7 nm) with (red) and without noise (blue). Only non
self-intersecting molecules are processed; a-c) show estimates of the persistence
length based on 〈cos θ(L)〉 Eq. 9.5 and

〈
θ2(L)

〉
Eq. 9.6 and

〈
R2(L)

〉
Eq. 9.4 respec-

tively; d) shows the negative logarithm − lnG Eq. 9.17 of the occurrence of the
deflection angle θ for L = 2, 4, 6 and 8 nm.

indicates the initial path and blue the path after 25 iterations upon convergence).
Finally, the endpoints are refined from the anchor skeleton with subpixel accuracy by
extending the strand along the tangent of the path and finding the closest point with
the value tedge. Fitting a b-spline through this new path gives a smooth piecewise
polynomial description of the DNA strand which is used in the actual data analy-
sis. Note that the end parts, i.e. the first/last 3 pixels, of the estimated centerline
are only used for the determination of the length of the DNA strands, for all other
measurements the data from these parts is ignored.

9.7 Image analysis validation

The image analysis algorithm was validated on images generated by Monte Carlo
simulations of the 2D WLC, i.e a homopolymer model with angle distribution ac-
cording to Eq.(9.17). The evaluation was performed on noise free images and on
images with added Gaussian and (correlated) Poisson noise to match visually the
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Figure 9.9: Part of an image generated with Monte-Carlo simulation of 474 bp DNA with
P = 55 bp (18.7 nm). The red line connects the simulated coordinates spaced
at one bp of the DNA strand. In blue is depicted the initial found centerline
and in green the finally used centerline; a) for the noise free case, b) for added
Gaussian and Poisson noise to visually match the experimental data. Scale: 1
pixel corresponds to 1 nm.

experimental data (see Fig. 9.7). A DNA strand was generated by adding Gaussian
blobs of σ = 1 nm at the simulated locations to a test image at spacings of 1 bp (im-
age sampling pitch 1 pixel = 1 nm). In Fig. 9.8 we depict the result of an analysis
applied to 500 simulated images containing DNA molecules of 474 bp length with
and without noise (only the non-self intersection molecules were processed).

The algorithm permitted estimation of the underlying persistence length, the kur-
tosis and the bend angle histogram. We validated the image processing method for
polymers with persistence lengths ranging from 18.7 nm to 52.7 nm (55 bp to 159
bp). The bias in the found persistence length values was about ∼ 5%, if the fit was
performed in the range L ∈ [0, 2P ]. The bias was always positive, i.e. the persis-
tence length was too high. The kurtosis was found to be constant with value 3. The
bending potential G(θ, L) was verified for L = 4, 6 and 8 nm and also here the fitted
persistence length was within 5% of the ground truth. Generally, the method per-
formed better on molecules with larger persistence length (stiffer), e.g. for P = 52.7
nm the error was <2%. Given the spread in the estimate of the persistence length
from the true simulated coordinates of ∼ 2% for 500 molecules and ∼ 4% if only the
non-self-intersecting molecules are considered, we conclude that the image process-
ing retrieves the correct coordinates of the DNA centerline. In Fig. 9.9 we show the
extracted centerlines for simulated images. The red line connects simulated DNA
positions, the blue line is the initial centerline found by the fast marching and the
green line shows the centerline by the iterative procedure [59]. The latter resembles
the ground truth (red) very well in the noise free case and even for the noisy case the
correspondence is good.

We observed that the apparent length distribution of the imaged 474 bp DNA as
shown in Fig. 9.2(d)) is narrow. Traditionally, the length of all molecules found is set
to the a-priori know length of the fragments for the analysis [112, 113]. However, the
narrow distribution stimulated us to calibrate the magnification once for all images
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and keep the apparent length differences for the imaged ensemble of polymer. A
comparison of both methods showed excellent agreement (found persistence length
within 0.2 nm which equals the fitting error). Therefore we used a magnification
calibration for all analysis. We emphasize that once the procedure is established, we
can use segments of the molecules for the measurements instead of full-length. This
greatly enhances the total scoreable length of DNA molecules in each data sets as
overlapping molecules can be analyzed in parts.

9.8 Data analysis

Given a set of coordinates that trace the DNA backbone we compute the statisti-
cal quantities such as 〈R2〉 as a function of the contour length l. Extra precaution
was taken in sampling the strands to avoid correlation between points in the graph.
Reusing all data for computing the quantities for each length along the DNA yields
highly correlated points, hence a smooth curve. To avoid this, we divided each DNA
strand into length segments randomly drawn from a predefined set of lengths, `i,
such that no piece of strand is used twice and the whole strand is used. The set is
given by `i = `max

n
i with 0 < i ≤ n, `max the maximum segment length and n the

number of different segments lengths; here n = 20 and `max ≈ 120 nm. This yields
a logarithmic length distribution of the segment lengths. In Fig. 9.2(d)) we show the
number of segments for the different lengths. The same procedure is applied to com-
pute the kurtosis (Figs. 9.2 and 9.4) and the bending angle histograms (Fig. 9.5). For
the latter we used n = 3 and `max = L. Furthermore, we investigated the influence of
pre-selecting non self-intersecting molecules only for the analysis. For a persistence
length of P = 18.7 nm less than 4% of 474 bp long molecules are expected to be self
intersecting (for P = 52.7 nm less than 1%). That is why we restrict the fitting to
L ∈ [0, 2P ]. Without this restriction, i.e. fitting 〈θ2〉 and < cos θ > over the entire
range, would yield a slight overestimation of P . The error bars given in the Figs. 9.2
and 9.5 show one standard deviation which is computed from 20 different random
draws `i from the same set of molecules. Thus the error bars are an indication for
the statistical reliability of that measurement point. For the kurtosis and 〈D4〉we ap-
plied error propagation to determine the standard deviation. For the bending angle
distribution − lnG(θ, l) we include the cumulative probability by evaluation of the
error function for the bins in the deflection angle. The offset of the distribution is not
neglected, see Eq. 9.12. Here a remark has to be made regarding the estimation of
the bending angle. The DNA molecules are not imaged infinitely sharp but blurred
due to the inherent width of DNA of ∼ 2 nm and the point spread function of the
imaging system. This effective blurring introduces correlation in the estimated tan-
gents and thus angles over short separation (L ≈ σ). From the evaluation on test
images we found that this correlation introduces an apparent shorting of the strand
when evaluating θ(L). The amount of apparent shorting was found to be equal to
the standard deviation of the Gaussian spot placed at the simulated coordinate. As a
consequence, a correction transformation of L→ L+σ in the evaluation of θ(L) was
applied. Obviously, this effect is strongest for small L ≈ σ and negligible for L� σ.
From EM data we estimated the effective blurring to correspond to a Gaussian of
σ = 1 nm. The evaluation of R(L) does not suffer from this as the center point is not
influenced by blurring.
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Figure 9.10: Example of the data analysis of a Monte-Carlo simulation of 500 heteropolymer
DNA molecules (474 bp long) with P = 150 bp (51.0 nm), θstat = 5.3◦ and
p = 0.5. Data are shown for i) all simulated strands (×) and ii) only the non self-
intersecting strands (◦). a)-b) show estimates of the persistence length based
on 〈cos θ(L)〉 Eq. 9.2 and

〈
R2(L)

〉
Eq. 9.1 respectively; c) shows the negative

logarithm − lnG Eq. 9.17 of the occurrence of the deflection angle θ for L = 4
and L = 6 nm; d) shows the normalized difference (

〈
R4
〉 − 〈R2

〉2)/L4 Eq. 9.9
with fits for the 2D Eq. 9.8 and 3D Eq. 9.7 case; e) shows the kurtosis

〈
θ4
〉
/
〈
θ2
〉2

(which is equal to 3 for θ Gaussian distributed around zero).

The experimentally found kurtosis as a function of contour length (see Fig. 9.2)
was compared to Monte Carlo simulations with static bending θ0 on a comparable
number of molecules as presented in the experiments (see Fig. 9.4). Also for this
simulations a non-overlapping logarithmic sampling of the polymers segments is
essential to judge the statistical spread in the result. Non-uniform probability, i.e.
p 6= 0.5, for left and right static bending was inspected in the same way, as well as an
alternative hypothesis p = 0, θ = 0.
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9.9 Derivation of the forth order moments of the
end-to-end distance in 2D

The energy required to bend a polymer molecule in two dimensions, i.e. a flexible
rod, is given by [77, §17-18]:

E =
Υ I θ2

2L
(9.15)

where θ is the angle between the tangent vectors to the rod separated by a distance
l along the polymer. The macroscopic quantities Young’s modulus Υ and area mo-
ment of inertia I of the molecule are related to the persistence length P ≡ P3D [77] by
Υ I = kBTP where kB is the Boltzmann constant and T is the absolute temperature.
The Boltzmann distribution of states is given by:

P(E) =
g(E) e

− E
kBT∫∞

0
g(E ′) e−

E′
kBT dE ′

. (9.16)

In our case the density of states g(E) is constant and as such can be dropped from
the equation. Combining the above equations gives the normalized probability dis-
tribution function for the bend angle θ:

G(θ, L) =
e−

θ2P
2L∫∞

−∞ e
− s2P

2L ds
=

√
P

2π L
e−

P θ2

2L . (9.17)

We must apply binning to calculate the histogram − lnG(θ, L) from the measure-
ments. For a bin size of ∆θ around a bin center θ we obtain

G(θ, L) = erf

(√
P

2L

(
θ +

∆θ

2

))
− erf

(√
P

2L

(
θ − ∆θ

2

))
. (9.18)

As we investigate the magnitude of θ a factor of 2 enters the above equation. Ne-
glecting the binning effect simplifies the formula to− lnG(θ, L) ∝ P

L
θ2 which is most

often seen in literature. However, such a plot cannot be used to judge the quality of
the persistence length fit. The average moments of the bend angle are given by

〈θn〉 =

∫ ∞
−∞

θnP(θ) dθ

= 2(n−2)/2 (1 + (−1)n)

(
L

P

)n/2
Γ

(
1 + n

2

) (9.19)

As our probability density function is even all odd moments for θ are zero, i.e. 〈θn〉 =
0 for n = 2k+1 and k ∈ N+. Note that the Gamma function for half integer arguments
is given by:

Γ(n+
1

2
) =

(2n)!
√
π

n! 22n
(9.20)

Combining Eq. 9.19 and Eq. 9.20 gives the even moments, i.e. n = 2k and k ∈ N+;

〈θn〉 =
n!

(n/2)!

(
L

2P

)n/2
(9.21)
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as such 〈θ2〉 = L
P

and 〈θ4〉 = 3L2

P 2 .
The first two moments of the cosine of the bend angle are given by:

〈cos θ〉 =

∫ ∞
−∞

cos θP(θ) dθ

= e−
L

2P

(9.22)

〈cos2 θ〉 =

∫ ∞
−∞

cos2 θP(θ) dθ

=
1

2

(
1 + e

−2L
P

) (9.23)

where both L and P are positive.
The Euclidean distance between points s and t on the curve separated by a dis-

tance L is given by R =
∫ L

0
u(s) ds with u(s) = [cos(θs), sin(θs)]

T the tangent vector
to the curve at contour position s. Now the average second order moment 〈R2〉 is
given by:

〈R2〉 =

∫ L

0

∫ L

0

〈u(s) · u(t)〉 dt ds

=

∫ L

0

∫ L

0

〈cos θs cos θt + sin θs sin θt〉 dt ds

= 2

∫ L

0

∫ t

0

〈cos (θs − θt)〉 ds dt = 2

∫ L

0

∫ t

0

e−
t−s
2P ds dt

= 4PL− 8P 2 + 8P 2e−
L
2P .

(9.24)

Note that the argument of the average cosine is always positive, as the length is al-
ways positive. With the average operator defined as 〈·〉 =

∫∞
−∞ ·G(θ, L)dθ the average

fourth order moment 〈R4〉 can be derived in a similar fashion:
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〈R4〉 =〈
∫ L

0

u(s) ds ·
∫ L

0

u(t) dt

∫ L

0

u(p) dp ·
∫ L

0

u(q) dq〉

=

∫ L

0

∫ L

0

∫ L

0

∫ L

0

〈u(s) · u(t)u(p) · u(q)〉 ds dt dp dq

=

∫ L

0

∫ L

0

∫ L

0

∫ L

0

〈cos(θs − θt) cos(θp − θq)〉 ds dt dp dq

=4
(∫ L

0

∫ t

0

∫ s

0

∫ q

0

〈·〉A1 dp dq ds dt+ 0 Lp q s t

∫ L

0

∫ L

s

∫ L

t

∫ L

p

〈·〉A2 dq dp dt ds+ 0 Lp qs t

∫ L

0

∫ t

0

∫ t

s

∫ s

0

〈·〉B1 dp dq ds dt+ 0 Lp qs t

∫ L

0

∫ t

0

∫ t

s

∫ L

t

〈·〉B2 dq dp ds dt+ 0 Lp qs t

∫ L

0

∫ t

0

∫ L

t

∫ s

0

〈·〉C1 dp dq ds dt+ 0 Lp qs t

∫ L

0

∫ t

0

∫ t

s

∫ q

s

〈·〉C2 dp dq ds dt
)

0 Lp qs t

=8
(∫ L

0

∫ t

0

∫ s

0

∫ q

0

〈·〉A1 dp dq ds dt+∫ L

0

∫ t

0

∫ t

s

∫ s

0

〈·〉B1 dp dq ds dt+∫ L

0

∫ t

0

∫ L

t

∫ s

0

〈·〉C1 dp dq ds dt
)

(9.25)

To handle the correlation between the different integration variables, the integration
is separated in to six parts (see above). In case A we have non overlapping segments
pq and st whereas in respectively case B these segments are partially overlapping.

〈·〉A1 = 〈cos (θs − θt) cos (θp − θq)〉
= 〈cos (θs − θt)〉〈cos (θp − θq)〉
= e−

t−s
2P e−

q−p
2P

(9.26)

〈·〉B1 = 〈cos (θs − θt) cos (θp − θq)〉
= 〈cos (θs − θp)〉〈cos (θq − θs) cos (θq − θs)〉〈cos (θt − θq)〉
= 〈cos (θs − θp)〉〈cos2 (θq − θs)〉〈cos (θt − θq)〉
= e−

s−p
2P e−

t−q
2P

1

2

(
1 + e−

2(q−s)
P

) (9.27)
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〈·〉C1 = 〈cos (θs − θt) cos (θp − θq)〉
= 〈cos (θs − θp) cos (θt − θs) cos (θt − θs)〉〈cos (θq − θt)〉
= 〈cos (θs − θp)〉〈cos2 (θt − θs)〉〈cos (θq − θt)〉
= e−

s−p
P e−

q−t
P

1

2

(
1 + e−

2(t−s)
P

) (9.28)

Combining these equations we obtain

〈R4〉 = 32L2P 2− 240LP 3 + 696P 4− 320

3
LP 3e−

L
2P − 6272

9
P 4e−

L
2P +

8

9
P 4e−

2L
P . (9.29)

9.10 Derivation of the kurtosis for the heteropolymer
model

For the purposes of analysis we make the following assumptions. First, we used the
Schellman [122] approach for the description of a DNA chain. Second, Schellman
also suggested that a bending potential can still be quadratic for the non-zero value
of static bend. This idea was later used by Cognet, leading to the following formula
of the bending potential

p(θi) = N−1/2e−
g′′i θ

2
i

2RT =
1√

2πσ2
e−

(θi−θi,stat)
2

2σ2 . (9.30)

Third, Schellman showed that a good approximation to the shape of real polymers
can be achieved by using the following formula for the persistence length P ∼ 1/(1−
〈cos θi,dyn〉 〈cos θi,stat〉) [124], where 〈cos θi,dyn〉 accounts for the dynamic behavior of
polymer chains and 〈cos θi,stat〉 for local static bending. The latter means averaging
of all static bending angles, i.e. along DNA position. In another words, it requires
double averaging. First, over an ensemble of molecules and second along the length
of the molecules. In view of small values for both 〈θi,dyn〉 and 〈θi,stat〉 (usually less
than about 5 degrees) we use the following formula [20]

P ≈ 2/
〈
θ2
〉
, (9.31)

where 〈θ2〉 =
〈
θ2
dyn

〉
+ 〈θ2

stat〉 [124]. Next, we have to keep in mind that according
to the measurement procedure all values for 〈cos θ〉 etc. are obtained using double
averaging, i.e. configurational and positional. To start the analysis let us consider
a segment of polymer chain with fixed first and last points (fixed length along the
DNA). This is configurational averaging similar to [48] with the difference that static
bending angles in plane are included. In the following we use short θ0 ≡ θstat and
σ ≡ θdyn. The angel θn over a length along the DNA n is

θn =
n∑
1

θi =
n∑
1

(θi − θ0
i + θ0

i ) =
n∑
1

(θi − θ0
i ) +

n∑
1

θ0
i =

n∑
1

∆i +
n∑
1

θ0
i , (9.32)
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with ∆i = θi − θ0
i and since

(
n∑
1

∆i

)2

=
n∑
1

∆2
i +

∑
i 6=j

∆i∆j . Using the harmonic

potential of (θi − θ0
i ) as in eq.(9.30) we have 〈∆2

i 〉 = σ2 and 〈∆4
i 〉 = 3σ4. From that

follows 〈(
n∑
1

∆i

)2〉
=

n∑
1

〈
∆2
i

〉
+
∑
i 6=j
〈∆i〉 〈∆j〉 = nσ2 , (9.33)

〈(
n∑
1

∆i

)4〉
=

n∑
1

〈
∆4
i

〉
+ 3

∑
i 6=j

〈
∆2
i

〉 〈
∆2
j

〉
+ 4

∑
i 6=j
〈∆i〉

〈
∆3
j

〉
︸ ︷︷ ︸

=0

(9.34)

= 3nσ4 + 6
n(n− 1)

2
σ4 = 3n2σ4 . (9.35)

Let us introduce A0
n =

n∑
1

θ0
i for the intrinsic bending over length n. Note that this is

identical for all molecules for a fixed length along the DNA. Thus we can write for
the moments

(θn)2 =

(
n∑
1

∆i

)2

+
(
A0
n

)2
+ 2A0

n

n∑
1

∆i (9.36)

(θn)4 =

(
n∑
1

∆i + A0
n

)4

(9.37)

and finally 〈
(θn)2〉 = nσ4 +

(
A0
n

)2 (9.38)〈
(θn)4〉 = 3n2σ4 + 6

(
A0
n

)2
nσ2 +

(
A0
n

)4
. (9.39)

It means for a fixed length along the DNA we get for the kurtosis

k = 3− 2(A0
n)4

(nσ2 + (An0 )2)2
. (9.40)

It is clear that the kurtosis is always smaller than 3 for any sequence exhibiting static
bending with A0

n 6= 0.
For our purposes we have to make the second averaging over the position, which

means that we have to average the higher moments of static angles, this leads to the
following formulas

k =
〈〈θ4

n〉〉
〈〈θ2

n〉〉2
(9.41)〈〈

θ2
n

〉〉
= nσ4 +

〈
(A0

n)2
〉

(9.42)〈〈
θ4
n

〉〉
= 3n2σ4 + 6

〈
(A0

n)2
〉
nσ2 +

〈
(A0

n)4
〉
. (9.43)

To simplify the calculations let us make the assumption that all static bends occur in
plane and behave independent of each other. Moreover, we consider that all static
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bends are equal in value, i.e. |θ0
i | = |θ0|. Let us also assume that the choice of sign

is random (plus or minus direction have equal probability of p = 0.5), implying that
the behavior of a ”frozen” polymer chain (no dynamic fluctuations) resembles a one
dimensional walk in terms of angles. From this it follows that〈

(A0
n)2
〉

= n(θ0)2 (9.44)〈
(A0

n)4
〉

= (θ0)4(3n2 − 2n) . (9.45)

Inserting eqs.(9.44,9.45) into eqs.(9.42,9.43) yields〈〈
θ2
n

〉〉
= nσ2 + n(θ0)2 (9.46)〈〈

θ4
n

〉〉
= 3n2σ4 + 6n(θ0)2nσ2 + (θ0)4(3n2 − 2n) (9.47)

and finally for the kurtosis k

k = 3− 2

n

(θ0)
4

(σ2 + (θ0)2)2
. (9.48)



Conclusions 10

This thesis deals with two image analysis topics. The first topic is orientation esti-
mation in multimodal regions, i.e. measuring the orientation of the constituents of
a complex region. The second topic adresses the problem of centreline extraction of
curvilinear structures for accurate shape analysis. Both tasks are closely related to
the task of orientation estimation. Although obvious for the first task, for the latter
task one has to realise that one can derive the shape properties from the centreline of
curvilinear objects and vice versa.

10.1 Multi Orientation estimation

This thesis shows several methods to determine the orientation of the constituents
in multi modal regions. At the core of most of these methods lies the task of disen-
tangling the orientation information and the subsequent assignment to the respec-
tive modes. We approach the problem in several distinct ways, each with its own
benefits and shortcomings on criteria such as computational complexity, memory
requirements, determined outcome and interpretability. This ranges from the some-
times hard to interpret outcome of the memory expensive filterbank methods to the
less determined outcome of the clustering based methods.
We started out with the extension of the orientation space concept to 3D, Chapter 2.
To this end a 3D filterbank was constructed with dedicated orientation selective fil-
ters for lines and planes. This resulted in a 3D → 5D mapping which basically adds
a 2D orientation histogram, containing the evidence for a particular orientation, to
each location in the 3D image. This method can solve some inherently difficult tasks
like separating crossing objects as well as orientation measurements in complex re-
gions. We had to create a new set of tunable 3D orientation selective filters as well
as a multi resolution grid for sampling. Furthermore, we introduced a novel way
to visualise the resulting 5D space. In a brute-force implementation, the memory
requirements can become huge i.e. approximately the number of filters used times
the size of the original image. Although increasing the computational complexity,
the method allows for a local approach where the orientation histogram is only con-
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structed in points of interest. The locality can be employed in a spatio-orientation
multi-resolution approach. Increasing the filter footprint increases the orientation
resolution (orientation selectivity) while sacrificing spatial resolution (the localisa-
tion).
Chapter 3 describes a method for the detection and orientation characterisation the
constituents of crossing lines and saddle points. The method is based on the follow-
ing observation: the structure tensor gives rise to saddle points in the orientation
map when applied to line crossings and (skewed) saddle points. This observation is
easily understood assuming the orientation of the average edge in the analysis win-
dow to be assigned to each pixel, the averaging nature of the structure tensor will
cause smooth transitions between uniform orientation regions. A second derivative
method is used for the detection, localisation and orientation estimation of these sad-
dle points in the orientation map. Based on this information the local neighbourhood
of each saddle point is segmented in two regions based on the bowtie in the saddle
points. The segmented regions are analysed by means of the structure tensor. Al-
though only applicable to a small subset of structures it can be a fast and powerfull
tool in determining e.g. projections and distortions by means of recorded checker-
board patterns.
In Chapter 4 we present a novel method for multi-orientation detection and analy-
sis based on streamlines. Here the orientation estimates in multimodal regions are
obtained by measuring the orientation of the constituents in regions where there is
almost no overlap or mixing. The connection between the unimodal and mixed re-
gions is established by means of streamlines which follow the local orientation of the
structure. Although only applicable to specific problems this method shows a good
angular selectivity and low memory requirements. Furthermore, the method relies
on the assumption of a high correspondence for the constituents in the mixed and
the respective unimodal regions. This assumption is true for straight lines but is ob-
viously flawed for curvilinear structures. This said we have given an estimate of the
region of interest needed to disentangle the different contributions which indicated
that mildly curved structures should not deteriorate the results to much.
The methods presented in Chapter 5 and Chapter 6 both combine pattern recognition
with image analysis techniques. These methods decompose the structure tensor to
allow analysis and subsequent representation of multiple oriented structures inside
a local neighbourhood. Both methods rely on the fact that oriented structures will
give rise to clustered regions in gradient space, i.e. points with similar orientations
will be mapped to a single axis in gradient space. To solve the ambiguity in the gra-
dient mapping, a transformation is used which maps antipodal vectors to the same
point. This results in compact clusters for points with the same orientation. These
clusters are then analysed by means of the k-means clustering algorithm. The result-
ing clusters are analysed separately by the structure tensor. The method presented in
Chapter 5 gives promissing results although spatial connectivity between the points
in the clusters is not required. The second method, i.e. Chapter 6, takes the spatial
connectivity into account by introducing a distance measure which allows for the
assignment of each pixel to the purest point in the local neighbourhood. Pure in the
sense that is originates from a single orientation mode. This point is assumed to be
representative for all points associated with it. This segmentation based on the pure-
ness of each point ensures that only spatially extended regions are taken into account
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and spatially uncorrelated points can be suppressed in the analysis. Finally, cluster-
ing of these spatially connected regions results in a mostly accurate segmentation
of the complex neighbourhood, after which the segmented regions can be analysed
separately. These methods are reasonably fast, robust, and offer an excellent alterna-
tive to the computationally and memory expensive filterbank methods. In this thesis
we used a hard labelling of points which in some cases gives rise to a small bias. To
correct for this, a soft labelling could be applied.

10.2 Distance transforms and path extraction for shape
analysis of curvilinear structures

The second part of this thesis starts out with a review of a selection of distance trans-
forms, Chapter 7. Although not initially intended to be applied to small curvilinear
structures we show that all existing methods cut the corner and do not accurately de-
lineate the centreline. We noted that the Euclidean, grey-weighted and fast-marching
distance transforms all rely on the Huygens principle and as such the wave propa-
gation should locally be modelled as a spherical wave. As such we introduced the
circular wave as a propagation model. Although no closed form solution was found,
the new method results in a more accurate distance map, i.e. compared to the afore-
mentioned methods. Furthermore, it gives exacts results on a flat cost function.
Although optimising distance transforms could possibly yield the true minimum
cost path, it does not give the true centreline of curvilinear structures. A minimum
costpath will always cut the corners and hence produce a smoothed version of the
true centreline. An iterative solution is presented in Chapter 8 to reduce this effect
for these structures. The proposed method is based on the observation that distance
transforms can yield the true centreline for linear objects when their curvature is
negligible. As such, by iteratively warping the cost function such that the minimum
cost path becomes a straight line, we are able to eliminate the cutting of corner effect.
The obtained paths after applying the inverse transformation give highly accurate
and precise estimates of the centreline. In some cases a damping term is necessary
to prevent small oscillations.
In Chapter 9 we apply the developed iterative minimum cost path algorithm to a
large set of DNA molecules prepared under different conditions and imaged with
transmission electron microscopy and atomic force microscopy. The analysis of long
polymers like DNA with these microscopy techniques requires the deposition of the
molecules on a surface in a dried state. This however does not ensure the dimension-
ality of the conformational state of the molecules. The molecules could be adhered
in an equilibrium state, i.e. a 2D state, or the state can be frozen at deposition lead-
ing to a 3D conformational state or even an intermediate state. Our data shows that
the molecules are adhered in a 2D dimensional state for different preparation condi-
tions and distances up to approximately 120 nm, although with different persistence
lengths for each condition. We argue that the difference in persistense length is due
to distortions in the DNA backbone which can be described by an additional static
bending at each nucleitide step of approximately 2◦. Where the additional DNA
bending (kinking) is assumed to be introduced by the deposition of the DNA onto a
charged imaging surface, i.e. carbon film or polylysine.





Isophote curvature A

The normalised gradient of an image I is given by

g =
∇I
|∇I| (A.1)

The basis defined by the isophote curvature,Biso , is given by the normalised gradi-
ent vector g and the two principal curvature vectors, vκ1 and vκ2 , i.e.

Biso = (g,vκ1 ,vκ2) (A.2)

The Hessian of I is given as

H =


∂2 I
∂x∂x

∂2 I
∂x∂y

∂2 I
∂x∂z

∂2 I
∂y∂x

∂2 I
∂y∂y

∂2 I
∂y∂z

∂2 I
∂z∂x

∂2 I
∂z∂y

∂2 I
∂z∂z

 (A.3)

Now we can choose an orthonormal basis with respect to the normalised gradient

Bg = (g,u,v) (A.4)

where the vectors u and v should be orthogonal and span the tangent plane to the
local structure in the image defined by g. This basis can be used to rotate the Hessian
H in such a way that the first basis vector coincides with the gradient direction.

H ′ = BT
gHBg =

 ∂2 I
∂g∂g

· ·
· ∂2 I

∂u∂u
∂2 I
∂u∂v

· ∂2 I
∂v∂u

∂2 I
∂v∂v

 (A.5)

the elements on the dots are not shown as they are not of interest for the calculation
of the isophote curvatures. Note that there is one degree of freedom left as u and v
can be rotated freely around the gradient axis. Now u and v are rotated in such a
way that the resulting vectors coincide with the principal curvature vectors. This is
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done by extraction the indicated 2 × 2 Hessian sub matrix from H ′. And perform-
ing an eigensystem analysis on this Hessian matrix. The eigenvalues, λ1 and λ2, of
this analysis are connected to the principal curvatures, κ1 and κ2, by the gradient
magnitude:

κi = − λi
|∇I| . (A.6)

And the resulting 2D eigenvectors, v1 and v2, correspond with the principal curva-
ture directions. Padding these eigenvectors with a zero in front gives the principal
curvature vectors in the 3D basisBg, i.e.

Bg′ = (g, (0,vT1 )T , (0,vT2 )T ) (A.7)

Returning to the original basis the isophote basis is given by

Biso = BgBg′ (A.8)



Summary

The orientation of curvilinear structures contains a wealth of information, which is
often only accessible after employing advanced image processing techniques. This
thesis presents solutions for two important problems when dealing with orientation
analysis in digital images: multi-valued orientation analysis for neighbourhoods
composed of multiple structures with different orientations and methods for the
automated extraction and analysis of curvilinear structures under noisy conditions.
The latter is applied to measure the flexibility of DNA under a range of experimental
conditions.

The first part of this thesis deals with orientation analysis in complex regions.
Complex or multi-modal neighbourhoods are regions that are composed of multiple
unimodal (simple) structures, i.e. lines and edges each with their own amplitude,
scale and orientation. Traditionally, orientation can only be measured accurately in
simple neighbourhoods. Most existing algorithms will consider a complete neigh-
bourhood and measure some sort of average orientation. In this thesis we have de-
veloped methods which can be applied to complex neighbourhoods. As such the
main challenge for orientation analysis in multi-modal regions is to disentangle the
orientation information, followed by orientation measurements in the resulting uni-
modal datasets. As multiple structures interfere during image formation, the orien-
tation information mixes as well. Note that many advance image filters for noise
suppression exaggerate this effect and make the task even more difficult.

We tackled this problem by inventing novel filtering and analysis schemes rang-
ing from generic to more application specific. We present a filterbank with rotated
versions of a 3D orientation selective filter for lines, planes and edges in 3D. Here
the filterbank scans the orientation dimensions and the filters capture the orientation
energy of structures within the selected orientation band. To avoid a data explosion
as in the filterbank approach, we use streamlines to convey orientation information
from unimodal regions into mixed regions like junctions and crossings. Alterna-
tively we present two methods to cluster the gradient structure tensor in a complex
neighbourhood, either with or without enforcing spatial relations in the local neigh-
bourhood.
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In the second part of this thesis we investigated the possibility of automated
shape extraction and analysis of curvilinear structures, with special interest in the ex-
traction and statistical shape properties of DNA molecules imaged by transmission
electron microscopy (TEM) and atomic force microscopy (AFM). First we present the
tools to extract the centreline of curvilinear structures based on minimum cost paths.
These methods are based on distance transforms employing an expanding wave
front but use different models to describe the expansion. We present a new distance
transform which models the wavefront locally by a circular rather than a planar
wave which increases the accuracy and precision with respect to existing methods.
Although optimising of distance transforms could yield a true minimum cost path,
it does not correspond to the centreline of curvilinear structures. Minimum cost path
algorithms will always minimise the total cost by cutting corners. We have therefore
introduced a novel iterative procedure which does not suffer from this effect and
yields highly accurate and precise estimates of the centreline of curvilinear struc-
tures, even under noisy conditions. This method is based on the observation that
the cutting the corner effect is non existent for linear objects when their curvature is
negligible.
Finally we apply this new procedure to analyse the flexibility of DNA near charged
surfaces. The analysis of DNA with AFM and TEM requires that the molecules are
deposited on a surface in a dried state. This does however not ensure the dimen-
sionality of the molecules. Our data shows that the molecules are adhered in a 2D
state for different preparation conditions and distances up to approximately 120 nm,
although with different persistence lengths for each condition. We argue that the dif-
ference in persistence length is due to distortions in the DNA backbone which can
be described by an additional static bending (kinking) at each nucleotide step of ap-
proximately 2 degrees. This additional DNA bending is assumed to be introduced
by the deposition of the DNA onto a charged imaging surface, i.e. carbon film or
polylysine.



Samenvatting

De oriëntatie van gekromde lineaire structuren bevat een weelde aan informatie die
vaak alleen toegankelijk wordt na toepassing van geavanceerde beeldbewerkings-
technieken. Dit proefschrift behandelt oplossingen voor twee belangrijke problemen
in het kader van oriëntatie analyse in digitale beelden: meervoudige oriëntatie ana-
lyse in omgevingen samengesteld uit meerdere structuren met verschillende oriën-
taties en de automatische extractie en analyse van gekromde lineaire structuren on-
der sterke ruiscondities. Waar de laatste is toegepast om de flexibiliteit van DNA te
bepalen onder een reeks van experimentele condities.

Het eerste deel van dit proefschrift behandelt oriëntatie analyses in complexe om-
gevingen. Complexe of multimodale omgevingen zijn regio’s die zijn samengesteld
uit meerdere unimodale structuren, bijvoorbeeld lijnen en randen elk met hun eigen
amplitude, schaal en oriëntatie. Oriëntatie kan normaalgesproken alleen nauwkeurig
gemeten worden in enkelvoudige omgevingen. De meeste bestaande methoden
beschouwen een omgeving als geheel en zullen als gevolg een min of meer gemid-
delde oriëntatie meten. In dit proefschrift hebben we methoden ontwikkeld die kun-
nen worden toegepast op complexe omgevingen. De belangrijkste stap bij oriëntatie-
metingen in complexe omgevingen is het ontwarren van de oriëntatie informatie,
gevolgd door metingen in de gevonden unimodale data. Deze taak wordt bemoei-
lijkt doordat complexe structuren interfereren gedurende de beeldacquisitie waar-
door de oriëntatie informatie gemengd raakt. De meeste geavanceeerde ruisonder-
drukkende filters zullen dit effect versterken.

Dit probleem hebben we aangepakt door het ontwikkelen van nieuwe filter- en
analyseschema’s, variërend van generiek tot applicatie specifiek. We presenteren
een filterbank met geroteerde versies van een 3D oriëntatie selectief filter voor lijn-
en, vlakken en randen in 3D. Deze filterbank scant de oriëntatie dimensies waar-
bij de filters de oriëntatie energie meten van de structuren binnen de geselecteerde
oriëntatie band. Om een data explosie zoals in de filterbankmethode te voorkomen,
introduceren we een op stroomlijnen gebaseerde methode om oriëntatie informatie
te transporteren van unimodale regio’s naar gemengde regio’s zoals splitsingen en
kruisingen. Ook presenteren we twee methoden om de gradiënt structuurtensor te
clusteren in een complexe omgeving. Enerzijds door het niet en anderzijds door het
wel meenemen van spatieële relaties in de omgeving.
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In het tweede deel van dit proefschrift bestuderen we de mogelijkheid van au-
tomatische vormextractie en analyse van gekromde structuren, met als doel de ex-
tractie en bepaling van statistische eigenschappen van DNA moleculen afgebeeld
met transmissie elektronen microscopie (TEM) en atomic force microscopie (AFM).
Eerst introduceren we, gebaseerd op minimum kosten paden methoden, het gereed-
schap om de middellijn van gekromde structuren te kunnen bepalen. Al deze me-
thoden zijn gebaseerd op afstandstransformaties die gebruik maken van een uit-
dijend golffront, waarbij gebruik wordt gemaakt van verschillende modellen om de
expansie te beschrijven. We stellen een nieuwe afstandstransformatie voor waarin
de expanderende golf wordt beschreven door een circulaire in plaats van een vlakke
golf. Dit vergroot de nauwkeurigheid en precisie vergeleken met andere methoden.
Hoewel het optimaliseren van afstandstransformaties kan leiden tot een exact mi-
nimum kostenpad, zal het niet corresponderen met de middellijn van gekromde li-
neaire structuren. Minimum kosten paden methoden zullen altijd de kosten proberen
te minimaliseren door het afsnijden van bochten. We hebben daarom een nieuwe
iteratieve procedure ontwikkeld die geen last heeft van dit effect en zeer precieze
schattingen geeft voor de middellijn van gekromde structuren, zelfs onder sterke
ruiscondities. Deze methode is gebaseerd op het feit dat het effect van het afsnijden
van bochten verwaarloosbaar is voor niet gekromde lineaire structuren.
Tot slot passen we deze nieuwe methode toe om de flexibiliteit van DNA te analy-
seren in de nabijheid van opgeladen oppervlakken. De analyse van DNA met AFM
en TEM vereist dat moleculen op een oppervlak worden opgebracht in een uitge-
droogde toestand. Dit legt echter niet de dimensionaliteit van de moleculen vast.
Onze gegevens laten zien dat de moleculen worden geadheerd in een 2D toestand
voor verschillende preparatietechnieken en lengtes tot ongeveer 120 nm, echter met
verschillende persistentie lengtes voor iedere conditie. We stellen dat de verschillen
in de gemeten persistentie lengte kan worden toegeschreven aan vervormingen in
de hoofdketen van het DNA. Hierbij beschrijven we deze vervorming als een ad-
ditionele statische buiging (knik) tussen iedere nucleotide van ongeveer 2 graden.
We veronderstellen dat deze additionele statische buiging wordt veroorzaakt door-
dat het DNA wordt opgebracht op een opgeladen oppervlak zoals koolstoffilm of
polylisine.
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[1] T. Aach, C. Mota, I. Stuke, M. Mühlich, and E. Barth. Analysis of superim-
posed oriented patterns. IEEE Transactions on Image Processing, 15(12):3690–
3700, 2006. Referred to on p.: 10

[2] J.A. Abels, F. Moreno-Herreo, T. van der Heijden, C. Dekker, and N.H. Dekker.
Single-molecule measurements of the persistence length of double-stranded
RNA. Biophysical Journal, 88:2737–2744, 2005. Referred to on p.: 112

[3] D. Adalsteinsson and J. A. Sethian. A fast level set method for propagating
interfaces. Journal of Computational Physics, 118(2):269–277, 1995. Referred to
on p.: 103, 130

[4] M.T. Andersson. Controllable Multidimensional Filters and Models in Low Level
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