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Executive Summary
Near-Earth asteroids are of particular interest for investigation from a range of fields of research. Many
of these objects were created at the formation of the Solar System, and relative to the planets and
larger bodies, they have undergone very little compositional change since then. Analysis of these
asteroids can provide insight into the materials and processes present at the formation of the Solar
System and the conditions that allowed life to form on Earth. Further, an impact from one of these
asteroids could cause catastrophic damage on the Earth, so classification and analysis of the orbit of
asteroids can allow for longer-term prediction of impacts and thus mitigation strategies. The limited
resource availability on Earth could eventually drive the need to extract materials from extraterrestrial
bodies. Knowledge of the composition of asteroids can allow for accurate selection of targets for space
mining to provide these materials.

Co-orbital asteroids orbit the Sun in a near 1:1 mean motion resonance with the Earth, which means
that the orbital distance of the asteroid, as well as the orbit time, is very similar to that of the Earth. Due to
the similarity with the Earth’s orbit, it has been suggested that these asteroidsmay possibly have formed
at a similar time to the Earth. Analysis of these co-orbital asteroids may be able to allow researchers
gain further insight into the mechanisms and processes surrounding the formation of Earth and the
accompanying life. There have been a number of previous missions to near-Earth asteroids, both fly-
by analysis missions and sample returns. However, to date there has been no mission specifically to
a co-orbital asteroid.

Solar sailing is an increasingly popular low-thrust propulsion method for missions, due to the contin-
uous and endless thrust generation capabilities. Solar sails use large, highly reflective surfaces known
as sails to reflect incident solar radiation pressure and generate thrust. Maneuvering of the solar sail
relative to the incident sunlight can control the direction in which the spacecraft travels. Solar sails
require no fuel, and the total mission lifetime is limited only by the life of the sail itself. This propellant-
less method of propulsion has been investigated for a wide range of applications, such as near-Earth
asteroid rendezvous, interplanetary trajectories, or space debris removal.

The research undertaken in this thesis aims to build upon the previous research into solar sailing,
especially theoretical missions designed to multiple near-Earth asteroids. The developed research
objective of this thesis is to find time- and encounter-optimal solar sailing trajectories to multiple co-
orbital near-Earth asteroids, and this objective is supported by three developed research questions.
This research assumes an ideal sail model, which means that any effects due to absorption, diffuse
reflection, thermal emission, or wrinkling are neglected, and the sail is assumed to specularly reflect
all of the incident radiation. The dynamical model used for the motion of the solar sail assumes that
only the Sun, and the Earth-Moon system exert gravitational influence on the spacecraft, and the only
thrust acceleration comes from the solar sail.

A Monte-Carlo algorithm is developed which is capable of generating sequences of asteroids that
can be visited using a fixed-angle control law for each transfer between asteroids. This means that
the cone and clock angles which control the angle of the sail relative to the incident solar radiation are
fixed for each transfer between target asteroids. This algorithm selects control angles of the sail at
random through a Monte-Carlo search, and the solar sail trajectory with these angles is generated and
analysed with regard to asteroid fly-bys. Tuning is performed on this algorithm, and it is ran a number of
times to generate different sequences of asteroids to visit. Thesemultiple runs are performed due to the
random Monte-Carlo element of the algorithm, and the large variance in potential sail angles and target
asteroids. Each of these multiple runs of the algorithm can result in a different sequence of asteroids
to visit. Following the generation of a sequence, the first fly-by of this trajectory is optimised to reduce
the relative fly-by distance and velocity, without compromising the subsequent fly-bys of the trajectory.
This optimisation is performed with PSOPT, a pseudospectral collocation method implementation.

The developed sequence generation algorithm is capable of generating trajectories that encounter
18 asteroids within the nominal mission duration of 10 years, using near-term predicted technology
levels for the solar sail. The optimisation of the first leg reduces the fly-by distance by 99.95% compared
to the fixed control transfer, from 307, 702 km to 158.73 km, while the relative fly-by velocity was reduced
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vi 0. Executive Summary

by 9.68%, from 4.79 km/s to 4.33 km/s. This high relative velocity is due to the set up of the sequence
selection algorithm, which neglects relative velocity and considers only relative fly-by distance. Further
analysis is performed on the first leg by removing the constraints on the fly-by time and optimising for
the relative position and velocity. It is found that the velocity can be reduced to below 1 km/s, at the
expense of a much further fly-by distance.

It can be concluded that the implementation of the sequence selection algorithm is capable of gen-
erating trajectories with many fly-bys, however the set up may result in sub-optimal fly-by velocities as
the algorithm does not take the relative velocity into account. The optimisation method implemented
through PSOPT can be considered suitable for this problem, as there is a significant reduction in fly-by
distance and a slight decrease in fly-by velocity. Further work could be undertaken on the optimisation
of the remaining fly-bys of the trajectory, or adapting the algorithm to include a relative velocity when
considering fly-bys.
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1
Introduction

This chapter introduces the work undertaken in the thesis. Firstly, the relevance of the thesis work is
described in section 1.1, where the targets, co-orbital near-Earth asteroids, are described. Following
this, the concept of solar sailing is described, along with some background surrounding the develop-
ment of solar sailing, in section 1.2. The research objective and related questions of this thesis work
are defined in section 1.3. Finally, the structure of the entire thesis report is provided in section 1.4.

1.1. Co-Orbital Near-Earth Asteroids
A near-Earth Object (NEO) is generally defined as any asteroid or comet whose orbital approach brings
it to within 1.3 Astronomical Units (AU) of the Sun [1]. Both asteroids and comets are remnants from
the formation of the solar system, but asteroids consist of metals and rocky materials and are located
nearer the Sun, while comets consist of ice, dust, rockymaterials and organic compounds and generally
originate in the outer solar system [2]. According to the National Aeronautics and Space Administration
(NASA) Jet Propulsion Laboratory (JPL) Center for Near-Earth Object Studies (CNEOS), over 29, 000
near-Earth asteroids (NEAs) that have been detected as of August 20221.

1.1.1. Reasons to Visit Asteroids
It is known that the solar system formed from a disk of gas, dust, and particulate matter orbiting our
Sun. Past studies of meteorite samples have shown that this was a relatively fast process, occurring
over a timescale of at most a few million years [3]. However, the composition of these materials in the
early solar system is not exactly known, due to the compositional changes that the planets underwent
during development, due to the high temperatures and pressures present [4]. Similarly, the processes
that allowed for the formation of life on Earth are unclear. It is unknown whether life developed from the
materials that were present during the formation of Earth, or if the source was an extraterrestrial delivery
mechanism in the form of an asteroid, comet or similar. Multiple scenarios and possibilities have been
theorised and shown to be feasible, but there is no clear evidence for one specific mechanism [5].

Asteroids that were created during the formation of the solar system may be able to provide insight
into the primitive materials present during this period. Further knowledge and analysis of these aster-
oids may therefore be able to deepen our understanding of the processes surrounding the formation
of the Earth and other planets, and the conditions with which life on Earth could form. It is therefore
desirable to analyse asteroids to gain more information on their compositions and similar properties,
the easiest of which to visit will be the NEAs as they are closest to Earth.

Another reason for visiting and analysing NEAs is for the purpose of planetary defence. If a large
enough asteroid were to impact the Earth the effects could be catastrophic for human population, ei-
ther local or global depending on the impact, and even asteroids less than 20 meters in diameter can
cause fatalities [6]. Visiting a NEA allows for closer analysis and thus more certainty in the composition
and properties. This allows for more accurate classification of the asteroid and its orbital parameters.

1Jet Propulsion Laboratory. CNEOS Discovery Statistics. Available at https://cneos.jpl.nasa.gov/stats/totals.
html. [Access Date: 02 August 2022]

1

https://cneos.jpl.nasa.gov/stats/totals.html
https://cneos.jpl.nasa.gov/stats/totals.html


2 1. Introduction

CNEOS has a monitoring system that analyses NEA orbits and computes impact probabilities for po-
tentially hazardous NEAs [7]. Visiting a NEA, especially one with a larger impact probability will allow
for more accurate classification and computation of the orbit, and thus allowing for longer preparation
time if an asteroid is found to be Earth-bound.

Beyond scientific research and planetary defence, the use of asteroids for space mining and similar
extraction of resources in the solar system can alleviate the issues with shortages and limitations on the
Earth. Asteroids, especially NEAs, that are rich in resources that may be sought-after on Earth could be
mined for their materials and then the resources transported back to Earth. There are a large number
of steps required in the selection, set-up, and operation of a terrestrial mine, and these are present for
space mining too. The exploratory phase involves determination of the location and dispersion of the
desired resource, as well as the logistics of access and operation [8]. Performing a fly-by of a NEA
allows for a more accurate classification of the constituent materials of the asteroid which is necessary
for the exploratory phase.

1.1.2. Co-Orbital Asteroid Characteristics
The definition of co-orbital asteroids varies slightly among research papers and books. The classifi-
cation can be asteroid and case-dependent. Marcos and Marcos have carried out a vast amount of
research into the subject of co-orbital asteroids (see [9–12]). They define a co-orbital asteroid as one
with an orbital period of between 362 and 368 days [13] which equates to a co-orbital zone of ∼ 0.994
AU to ∼ 1.006 AU. NASA’s JPL small body database (SBDB)2 provides accurate orbital properties and
ephemerides for small bodies (asteroids, comets, etc.) in the solar system. A list of 63 asteroids, and
their Kepler elements in the Sun-centered J2000 inertial reference frame, that meet the orbital period
criteria can be accessed through the SBDB, and the study in this paper is limited to these asteroids.
This list can be seen in tabular form in the appendix of the journal article in chapter 2.

Co-orbital objects share a 1:1 mean motion resonance with each other as they orbit a common
central object, i.e. both objects complete one orbit about the central body in the same length of time
[13]. This means that both objects share a very similar semi-major axis, 𝑎. Earth’s co-orbital asteroids
are a subset of NEAs which follow a co-orbital configuration with Earth. There are three main co-orbital
NEA configurations, which are dependant on the mean longitude difference between the asteroid and
the planet, 𝜙, defined by Brasser et al. [14] as

𝜙 = 𝜆𝑎 − 𝜆𝑝 (1.1)

where 𝜆𝑎 is the mean longitude of the asteroid and 𝜆𝑝 is the mean longitude of the planet.
The most well-known type of co-orbital objects are Trojan asteroids which follow the tadpole (TP)

orbits seen in Figure 1.1. Tadpole orbits are defined where 𝜙 librates around 𝜙 = ±60∘, which is around
either the L4 or L5 Lagrange point [15]. There are 23 co-orbital NEAs in tadpole orbits.

Horseshoe (HS) orbits librate around 𝜙 = 180∘, and the grey line in Figure 1.1 shows a possible
horseshoe orbit in a Sun-Planet synodic reference frame. There are 13 co-orbital NEAs following
horseshoe orbits.

The final type of co-orbital asteroid is known as a quasi-satellite (QS), where the asteroid appears
to orbit the planet in retrograde motion, but is not gravitationally-bound to the planet [10]. The motion
of a co-orbital asteroid in a quasi-satellite configuration is shown as the red contour in Figure 1.1. The
object orbits outside the planet’s Hill sphere or sphere of influence and the trajectory of the asteroid will
never cross the Hill sphere of the planet [16]. A quasi-satellite typically orbits with a larger eccentricity
than the planet, and the mean longitude difference librates around 𝜙 = 0∘. There are 27 co-orbital
NEAs in quasi-satellite configuration about the Earth.

Similar to all NEAs, co-orbital asteroids can give insight on the history and development of the solar
system. Theories around the Jovian Trojan satellites originally suggested that they formed alongside
Jupiter at similar heliocentric distances, but more recent theories suggest they may have formed over
a wider range of distances [18]. Studies of the co-orbital asteroids of Earth may uncover details around
their origin, similar to the study of Jupiter’s Trojan asteroids. This may give further insight into the
conditions during the formation of the solar system, and potentially the components that were present
during the formation of life on Earth.
2Jet Propulsion Laboratory. Small Body Database. Available at https://ssd.jpl.nasa.gov/horizons/ [Access Date:
13 June 2022]
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Figure 1.1: Co-orbital asteroid contours. Adapted from [17]

1.2. Solar Sailing
Solar sails have become increasingly popular due to their continuous and endless thrust generation
capabilities. By reflecting incident photons from the Sun off a highly reflective surface known as the
sail, a thrust is generated [19, 20]. These sails can be maneuvered relative to the incident sunlight
in order to control the direction in which the thrust of the spacecraft will act. Contrary to traditional
propulsion methods, solar sails require no propellant to generate thrust which can make them lighter
and longer-lasting in comparison, depending on the sail size and structure mass. This can lead to a
decrease in mission costs due to the lack of propellant needed. Further, solar sailing can be used
to create trajectories that have previously been deemed infeasible or difficult, such as high-inclination
orbits about the Sun, or displaced orbits high above the ecliptic plane [19].

The theoretical basis of light exerting a pressure was experimentally proven in 1901 [21], which
is the theory on which solar sailing is based, but it was not until the 1970s that solar sail mission
concepts were seriously explored or considered. Further, the first mission to implement and fully test
solar sailing was the Japan Aerospace Exploration Agency (JAXA) Interplanetary Kite-craft Accelerated
by Radiation Of the Sun (IKAROS) mission, which launched in 2010 [22, 23]. Later in 2010, the NASA
launched NanoSAIL-D2, and this deployed a solar sail from its CubeSat structure in 2011 [24]. The
Planetary Society have launched two solar sailing missions - LightSail 1 in 2015 and LightSail 2 in
2019 [25, 26]. NASA’s NEA Scout and Advanced Composite Solar Sail System (ACS3) are upcoming
planned missions to implement and test solar sailing [27, 28].

NEA Scout is the first planned solar sail mission to visit a NEA [27], however there have been a wide
range of conceptual missions designed that use various types of solar sailing to visit NEAs. In particular,
Heiligers et al. [29] designed a solar sailing mission to asteroid 2016 HO3, which is a co-orbital quasi-
satellite of Earth. While the mission design of that paper focused on a visit to a single asteroid, the
thesis research presented here will focus on developing a trajectory to visit multiple co-orbital NEAs. A
team from the University of Tokyo and JAXA designed a return mission from the Sun-Earth L2 point to
a NEA [30]. Similar to the mission designed from L2, trajectories to observe multiple NEAs in one flight
using solar sailing have been analysed [31, 32].

The introduction of solar sailing acceleration to a mission allows surfaces of equilibria beyond the
five classical Lagrange points to exist. Equilibrium points that lie along the line between the Sun and
classical Lagrange points are referred to as sub-Lagrange points, and are denoted as SL1 through
SL5. In particular, the sub-Lagrange points SL1 and SL2 are investigated in this thesis as the possible
starting locations of the trajectory. It is assumed that the solar sailing spacecraft will take a ride share
to either of these equilibrium points, and the full trajectory design begins at either equilibrium point.

The work in this thesis will focus on furthering the research around the development of solar sailing
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missions to co-orbital NEAs, and builds on previous publications in this area. To date there has not
been a theoretical mission designed to multiple co-orbital near-Earth asteroids. The mission developed
in this thesis is the first to use solar sailing to visit multiple co-orbital near-Earth asteroids in a single
mission.

1.3. Research Objectives
Sections 1.1 and 1.2 outline the relevancy of visiting co-orbital near-Earth asteroids, and the potential
role that solar sailing can play in visiting these asteroids. Based on these descriptions, and the findings
of the Literature Study [33], the focus of this thesis will be on finding and optimising solar sail trajectories
that visit sequences of co-orbital near-Earth asteroids. Thus, the following research objective, which
will guide the thesis work, has been formulated:

To find time- and encounter-optimal solar sailing trajectories to multiple co-orbital near-
Earth asteroids.

The objective of this research is to develop solar sailing trajectories to visit as many co-orbital near-
Earth asteroids in as short a time period as possible.

The achieving of this objective is supported by the following research questions:

1. Can solar sailing be used as a propulsion method to visit multiple co-orbital asteroids in a given
mission length, and if so, how many asteroids can be visited?

2. Which of the co-linear artificial Lagrange points, SL1 or SL2, provides an initial position for more
optimal trajectories?

3. How do the relative fly-by distances and velocities compare for a fixed-angle control law and an
optimised control law?

1.4. Report Structure
The research objective and related questions outlined in section 1.3 will be addressed in chapter 2,
which is the main section of the thesis report. This chapter is written in the format of a journal article,
specifically the format of the American Institute of Aeronautics and Astronautics (AIAA). Writing the
main body of the thesis in this form allows the thesis work to be readily submitted to this journal. The
journal article is titled Solar Sailing Trajectory Design to Multiple Co-Orbital Near-Earth Asteroids.

This article begins with another abstract and introduction in Section I, which are more condensed
than those present in the thesis report itself. Following this, the dynamical model used in the re-
search is introduced in Section II, and an explanation of the target asteroids and the conversion of
their ephemerides is provided in Section III. Section IV defines the problem being investigated and
some related decisions and assumptions. The method that has been developed to generate initial se-
quences of asteroids to target is described in Section V, which ends with a description of the chosen
initial trajectory. Section VI describes the optimisation of the first leg of this trajectory, first with the
definition of the optimal control problem of the thesis, then presenting the results of the optimisation.
Finally, Section VII contains the conclusions of the results of the research.

Following the journal article, chapter 3 contains the discussion and conclusion of the results found
in the article. In this chapter, the research questions will be addressed and some recommendations
will be put forward for work that can follow the findings of this research. Subsequently, Appendix A
presents the verification and validation of the dynamical models and numerical techniques that have
been utilised during this research.
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Solar Sailing Trajectory Design to Multiple Co-Orbital
Near-Earth Asteroids

Cian Buckley∗

Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, 2629HS Delft, The Netherlands

This paper investigates the use of solar sailing propulsion to visit as many co-orbital near-

Earth asteroids (NEAs) as possible, within a fixed time-frame. This research builds on previous

publications, which have shown solar sailing to be a suitable propulsion method to visit NEAs.

The dynamics of this problem are modelled within the Solar Sail Augmented Circular Re-

stricted Three-Body Problem (CR3BPS), and assume a near-term solar sailing technology

level. A sequence generation algorithm is developed which generates trajectories to visit mul-

tiple co-orbital NEAs beginning at either the artificial co-linear equilibrium point SL1 or SL2.

This algorithm develops trajectories with fixed controls to transfer between target asteroids,

using Monte Carlo simulations to propagate a wide range of random combinations of settings

before selecting those that perform the best. It is shown that the tuning performed within this

research can generate a trajectory that enables 18 asteroid fly-bys within the selected nominal

mission lifetime of ten years. Following this sequence generation, the first fly-by of the trajec-

tory is optimised as proof of concept that each leg of the trajectory can be optimised for fly-by

distance and velocity. An optimal control problem is developed, which is then implemented

and solved using direct pseudospectral methods. The solution to this optimal control problem

reduces the fly-by distance by 99.95 %, down to 158.73 km, while reducing the fly-by velocity

by 9.68 % to 4.33 km/s.

Nomenclature

Latin Symbols 𝑡 = Time

𝑎 = Semi-major axis 𝑇 = Orbital period

𝒂𝑠 = acceleration vector within 𝐶 (𝑥, 𝑦, 𝑧) 𝑈 = Effective potential

�̄� = Jacobian Matrix 𝒖(𝑡) = Control vector of the spacecraft

𝐶 (𝑥, 𝑦, 𝑧) = Synodic Sun-(Earth+Moon) reference

frame

𝑉 = Gravitational potential

∗Graduate Student, Faculty of Aerospace Engineering,c.p.buckley@student.tudelft.nl



𝑒 = eccentricity Δ𝑣 = Relative velocity between spacecraft and

target asteroid

𝐸 = Eccentric anomaly 𝒙 = State vector of spacecraft within 𝐶 (𝑥, 𝑦, 𝑧)

𝐸𝐴𝑆𝑇 = Individual asteroid encounter 𝒙(𝑡) = State vector of the spacecraft at time 𝑡

𝒉 = Decision variables vector 0̄ = Zero Matrix

𝑰 = Identity matrix Greek Symbols

𝐽 = Objective function 𝛼 = Cone angle

𝑚 = Mass of small body �̃� = Real part of eigenvalue

𝑚1, 𝑚2 = Mass of primary bodies 𝛽 = Lightness number

𝑀 = Mean anomaly 𝛽 = Imaginary part of eigenvalue

�̄� = Gravity gradient matrix 𝛿 = Clock angle

𝑛 = Mean motion of the Earth 𝜖 = Small perturbation

�̂� = Unit vector normal to sail surface 𝛾 = Eigenvalues

�̄� = Radiation gradient matrix 𝜇 = Mass ratio

𝒓 = Position vector within C(x,y,z) Ω = Right ascension of the ascending node

𝒓1, 𝒓2 = Position vectors relative to 𝑚1, 𝑚2 𝜔 = Argument of periapsis

Δ𝑟 = Relative distance between spacecraft and

target asteroid

𝜓 = Rotation angle

�̄� = Rotation matrix 𝜃 = True anomaly

𝑆(𝒓1, �̂�, �̂�) = Sail-centered reference frame 𝜻 = Eigenvector

I. Introduction

Solar sailing is a method of spacecraft propulsion that uses large reflective surfaces known as sails to generate a

thrust from incident solar radiation pressure (SRP). As a concept it is not a new idea, however, its implementation

has only become possible in the last number of years due to advancements in technology. The Japan Aerospace

Exploration Agency (JAXA) Interplanetary Kite-craft Accelerated by Radiation Of the Sun (IKAROS) mission was

the first mission to fully implement and test solar sailing when it was launched in 2010 [1, 2]. Later in 2010, the

National Aeronautics and Space Administration (NASA) launched NanoSAIL-D2, and this deployed a solar sail from

its CubeSat structure in 2011 [3]. The Planetary Society have launched two solar sailing missions - LightSail 1 in

2015 and LightSail 2 in 2019 [4, 5]. NASA’s near-Earth Asteroid Scout (NEA Scout) is a mission due to launch in late

2022, which will utilise solar sailing to visit a near-Earth asteroid [6]. NASA’s Advanced Composite Solar Sail System

(ACS3) mission will test new solar sailing technology, and is planned for launch in 2023 [7]. Many other mission
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concepts utilising solar sailing have been developed (e.g. see [8–13]), demonstrating the interest in this technology

and the potential it holds.

As of August 2022, there are more than 29,000 near-Earth asteroids (NEAs) that have been discovered and

characterised by NASA’s Jet Propulsion Laboratory (JPL) Center for Near Earth Object Studies (CNEOS)∗. There are

a wide range of motivations to visit these NEAs. Analysis of the composition and materials of these asteroids can

uncover more details surrounding the formation of the Earth and the solar system, including the conditions during

formation and the materials present [14]. Planetary defence is another reason for detailed analysis and classification

of near-Earth asteroids. If an asteroid is on a trajectory that could impact Earth, the damage could be catastrophic,

and the determination of asteroid trajectories in more detail allows further advance warning and thus mitigation

strategies. Further, space mining could be a future solution to shortages of materials on Earth, and knowledge around

the composition of asteroids is key to select targets for this mining [15]. There have been a number of previous missions

to near-Earth asteroids, including both fly-bys and sample return missions [16–23].

Co-orbital asteroids are a subset of near-Earth asteroids that share a 1:1 mean motion resonance with Earth, and

are described as having a period of between 362 and 368 days [24]. These asteroids can take the form of tadpole

orbits (TP), horseshoe orbits (HS), or quasi-satellites (QS). Similar to near-Earth asteroids, co-orbital asteroids can

give insight into the history and development of the Earth and solar system. Co-orbital asteroids of Earth are relatively

easy to access from our planet, which makes them interesting and attractive targets for in-situ analysis [25] or sample

return missions [26]. Co-orbital NEAs also have an increased probability of becoming Earth impactors, so further

classification and analysis can aid in future planetary defense efforts [27]. To date there have been 63 discovered NEAs

that fall under the definition of a co-orbital NEA† - 23 co-orbital asteroids in tadpole orbits, 13 in horseshoe orbits, and

27 quasi-satellites.

NEA Scout is the first planned solar sail mission to visit a NEA [6], however there have been a wide range of

concepts missions designed that use various types of solar sailing to visit NEAs. In particular, Heiligers et al. [28]

designed a solar sailing mission to asteroid 2016 HO3, which is a co-orbital quasi-satellite of Earth. A team from the

University of Tokyo and JAXA designed a return mission from the Sun-Earth L2 point to a NEA [29]. Trajectories to

observe multiple NEAs in one flight using solar sailing have been analysed [30, 31]. The research carried out in this

paper aims to complement and build on these previous publications. To date there has not been a theoretical mission

designed to multiple co-orbital near-Earth asteroids. The mission developed in this paper is the first to use solar sailing

to visit multiple co-orbital near-Earth asteroids in a single mission.

In particular, the objective of the research in this paper is to find a trajectory that visits as many near-Earth co-orbital

asteroids as possible, in a fixed time-frame, using only a solar sail as the propulsion method. The dynamics of the
∗Jet Propulsion Laboratory. CNEOS Discovery Statistics. Available at https://cneos.jpl.nasa.gov/stats/totals.html. [Access

Date: 02 August 2022]
†Jet Propulsion Laboratory. Small Body Database. Available at https://ssd.jpl.nasa.gov/horizons/ [Access Date: 13 June 2022]
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spacecraft are modelled within the Sun-(Earth+Moon) Solar Sail Augmented Circular Restricted Three-Body Problem

(CR3BPS). While the traditional Circular Restricted Three-Body Problem (CR3BP) exhibits five equilibrium points,

the introduction of a solar sail acceleration allows equilibria to exist beyond these five locations. Utilised in this

research are the artificial sub-Lagrange equilibrium points, SL1 and SL2, which exist in the vicinity of the traditional L1

and L2 Lagrange points, but are located closer to the Sun due to the additional solar sail acceleration. The spacecraft

is assumed to take a ride-share to either the SL1 or SL2 Artificial Equilibrium Point (AEP), at which stage the sail will

deploy and the spacecraft’s motion will only be influenced by SRP acting on the sail. A sequence generation algorithm

is developed which generates sequences of asteroids to visit. Starting at either the SL1 or SL2 point, a trajectory with

fixed angles with respect to the incident sunlight is generated to travel to a co-orbital NEA. From this first asteroid,

another trajectory is generated to travel to a second asteroid. This process is then repeated to generate a sequence of

asteroids until a nominal mission lifetime is reached. Following the generation of a sequence of asteroids to visit, the

first asteroid fly-by is optimised as a proof-of-concept that the generated sequence can be optimised to reduce relative

fly-by distance and velocity. While the initial sequence generation focuses solely on finding trajectories that fly as close

to asteroids as possible, the optimisation also focuses on reducing the relative velocity between the asteroid and the

spacecraft.

This paper is organised as follows. Section II introduces the dynamical model used to represent the solar sailing

motion. Following this, Section III discusses the target co-orbital asteroids and the conversion of their ephemerides

into the Sun-(Earth+Moon) synodic reference frame. The problem is fully defined in Section IV, before the method

of generating the sequence of asteroids to visit is fully developed in Section V. Optimisation of the first leg of this

trajectory, including the optimal control problem, is developed in Section VI. Finally, conclusions on the results of

the sequence generation and optimisation are discussed in Section VII. The appendix of the paper contains a table of

the target asteroids selected for analysis in this research, and a flowchart for the process of selecting the sequences of

asteroids to visit.

II. Dynamics
This section presents the models used in the paper’s investigation, namely, the CR3BPS and solar sail steering.

The equilibrium points within the CR3BPS and an analysis of their stability are also discussed. The target asteroids

selected for this mission all have orbits in relative proximity to the Earth and will not approach any other bodies in the

solar system in their near-term predicted orbits. Similarly, the gravitational acceleration of the Earth-Moon system and

the Sun are the main gravitational forces acting on the spacecraft. The eccentricity, 𝑒, of the orbit of the Earth around

the Sun is very close to zero (𝑒 = 0.016710 [32]), and for the purpose of this research is assumed to be zero. Due

to the relative proximity of the target asteroids and the solar sailing spacecraft to the Earth and Moon, the dynamical

framework chosen to represent this problem is the Sun-(Earth+Moon) CR3BPS, where the Earth-Moon system is
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assumed to be a single body. The CR3BPS has been extensively used in previous solar sailing mission design, see e.g.,

[9, 28, 33].

A. Acceleration Model

The CR3BP describes the motion of an infinitesimally small body, 𝑚, under the gravitational influence of two

primary bodies, 𝑚1 and 𝑚2, which orbit their common center-of-mass in perfect circles [34]. A schematic of the

CR3BP can be seen in Figure 1. In this paper the primary body, 𝑚1, is the Sun, the primary body, 𝑚2, is the

Earth-Moon system, and the third body, 𝑚, is the solar sailing spacecraft. The reference frame selected to define the

dynamics of the spacecraft and the asteroids is the synodic Sun-(Earth+Moon) reference frame 𝐶 (𝑥, 𝑦, 𝑧). The frame

𝐶 (𝑥, 𝑦, 𝑧) is centered on the Sun-(Earth+Moon) barycenter, with the 𝑥−axis pointing towards the center of mass of

the Earth+Moon system, the 𝑧−axis perpendicular to the orbital plane of the Earth+Moon system about the Sun, and

the 𝑦−axis completes the right-handed reference frame. The 𝐶 (𝑥, 𝑦, 𝑧) reference frame rotates at a constant angular

velocity, 𝜔, around the 𝑧-axis.

Fig. 1 Schematic of the circular restricted three-body problem (adapted from Heiligers et al. [28]).

The units of mass, distance, and time are normalized in the CR3BP. The unit of mass is taken as the total mass of

the system, i.e. 𝑚1 + 𝑚2 = 1. Introducing the mass ratio 𝜇 = 𝑚2
𝑚1+𝑚2

, the masses of the Sun and Earth-Moon system

become 𝑚1 = 1 − 𝜇 and 𝑚2 = 𝜇, respectively. In this paper, the mass ratio is taken as 𝜇 = 3.04086372908 × 10−6 ‡.

The unit of distance is taken as the distance between the Sun and the Earth-Moon system (1 AU, 149.5979 × 109 m

[32]), while the unit of time is the inverse of the rotational angular velocity 1
𝜔 . Thus, one revolution of the reference

frame (i.e. one year) is given by 2𝜋.

The motion of a body within the synodic reference frame, with the assumptions introduced previously, is described

by [28]

¥𝒓 + 2𝝎 × ¤𝒓 + 𝝎 × (𝝎 × 𝒓) = 𝒂𝑠 − ∇𝑉 (1)

where 𝒓 = [𝑥, 𝑦, 𝑧]𝑇 is the position vector of the spacecraft 𝑚 in the synodic reference frame𝐶 (𝑥, 𝑦, 𝑧), 𝝎 = [0, 0, 1]𝑇

‡𝑚𝐸𝑎𝑟𝑡ℎ = 5.9736 × 1024 kg, 𝑚𝑀𝑜𝑜𝑛 = 7.348 × 1022 kg, 𝑚𝑆𝑢𝑛 = 1.9886 × 1030 [32].
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is the angular velocity vector of the reference frame, 𝒂𝑠 is the acceleration of the spacecraft due to the solar sail, and 𝑉

is the gravitational potential given by

𝑉 = −
(
1 − 𝜇

𝑟1
+ 𝜇

𝑟2

)
(2)

where 𝑟1 and 𝑟2 are the magnitudes of the position vectors of the spacecraft relative to the Sun and Earth-Moon system

respectively: 𝒓1 = [𝑥 + 𝜇, 𝑦, 𝑧]𝑇 , 𝒓2 = [𝑥 − (1 − 𝜇), 𝑦, 𝑧]𝑇 as can be seen in Figure 1.

Introducing an effective potential 𝑈, the system can be rewritten as

¥𝒓 + 2𝝎 × 𝒓 = 𝒂𝑠 − ∇𝑈 (3)

where the effective potential 𝑈 is given by

𝑈 = −
(
1 − 𝜇

𝑟1
+ 𝜇

𝑟2

)
− 1

2

(
𝑥2 + 𝑦2

)
(4)

In this study, the solar sail model assumed is an ideal sail, which is perfectly flat with perfect specular reflection of

the incident photons. This model neglects any effects of absorption, diffuse reflection, thermal emission, or wrinkling

[35, 36]. For an ideal solar sail, in the dimensionless units introduced previously, the acceleration due to SRP acting

on the sail 𝒂𝑠 is given by [35]

𝒂𝑠 = 𝛽
1 − 𝜇

𝑟2
1

(𝒓1 · �̂�)2 �̂� (5)

where 𝛽 is the lightness number of the solar sail, which is a measure of the effectiveness of the sail, and �̂� is the unit

vector normal to the surface of the solar sail, so the acceleration acts perpendicular to the sail surface.

The lightness number, 𝛽, is a function of the sail area to spacecraft mass ratio, and can also be defined as the ratio

of solar radiation pressure acceleration to solar gravitational acceleration [10, 37, 38]. Values for the lightness numbers

of previous missions, and the predicted lightness numbers of upcoming missions, are tabulated in Table 1. Near-term

predicted technology levels for solar sailing are expected to allow lightness number of up to 𝛽 = 0.04 [39].

Mission Lightness Number 𝛽
IKAROS ∼ 0.001 [9]

NanoSAIL-D2 0.00385 [9]
LightSail 2 0.0098 [5]
NEA Scout ∼ 0.01 (predicted) [39]

ACS3 ∼ 0.01 (predicted) [39]

Table 1 Past and predicted lightness number, 𝛽, values of solar sailing missions.
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B. Solar Sail Steering

The acceleration due to the SRP acting on the solar sail is dependent on the orientation of the sail, as can be

seen from the normal component �̂� in Eq. 5 and in Figure 2. This normal vector determines both the direction and

magnitude of the acceleration of the spacecraft due to solar sailing. The normal vector can be defined through two

angles - the cone and clock angles, 𝛼 and 𝛿, respectively. These angles define the solar sail’s orientation relative to the

direction of sunlight, which is directed along the Sun-sail line 𝒓1. A new reference frame 𝑆(𝒓1, �̂�, �̂�) can be defined

in which to define the cone and clock angles. The two remaining axes are defined as in Figure 2: �̂� = 𝒛 × 𝒓1 and

�̂� = 𝒓1 × �̂�. The cone angle is the angle between the normal vector �̂� and the Sun-sail vector 𝒓1, while the clock angle

Fig. 2 Solar sail cone and clock angles as defined in reference frame 𝑆(𝒓1, �̂�, �̂�).

is the angle between the projection of �̂� onto the ( �̂�, �̂�)-plane and �̂�. Thus, the sail orientation can be defined within

frame 𝑆(𝒓1, �̂�, �̂�) as [35]

�̂�|𝑆 =



cos𝛼

sin𝛼 sin 𝛿

sin𝛼 cos 𝛿


(6)

The unit normal vector �̂� cannot point towards the Sun, as this would imply an acceleration in the direction of the Sun

due to SRP. Therefore (𝒓1 · �̂�) = cos𝛼 ≥ 0, which implies that 𝛼 ∈ [− 𝜋
2 ,

𝜋
2 ] [8]. The clock angle can take values of

𝛿 ∈ [0, 𝜋] which ensures that �̂� can point in all possible directions away from the Sun.

Through a reference frame transformation matrix, the normal vector �̂� can be transformed from the sail-centered

reference frame 𝑆(𝒓1, �̂�, �̂�) to the Sun-(Earth+Moon) synodic reference frame 𝐶 (𝑥, 𝑦, 𝑧) through

�̂� = �̂�|𝐶 = [𝒓1 �̂� �̂�] �̂�|𝑆 (7)
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C. Equilibrium Points

Equilibrium points are stationary solutions to systems of differential equations. For the CR3BPS, the equilibrium

points are locations in the 𝐶 (𝑥, 𝑦, 𝑧) frame where a solar sailing object placed at rest will remain at rest. No net

acceleration will act on a body placed, with no velocity, at one of these points, i.e. ¥𝒓 = ¤𝒓 = 0. Substituting these

conditions into Eq. 3 allows the location of equilibrium points in the CR3BPS to be found through

∇𝑈 = 𝒂𝑠 = 𝛽
1 − 𝜇

𝑟2
1

(𝒓1 · �̂�)2 �̂� (8)

For a body where the SRP acting on it is negligible (i.e. 𝛽 = 0), Eq. 8 can be simplified to ∇𝑈 = 0. Solving this

equation allows for the five classical, well-known equilibrium points to be found. These points are known as Lagrange

points, as they were first discovered by Lagrange in 1772 [34].

The introduction of a solar sail acceleration into the dynamical model allows surfaces of artificial equilibria, known

as AEPs, to exist. The locations of these AEPs can be found by solving Eq. 8, which can only be satisfied if ∇𝑈 acts in

the same direction as the sail normal �̂�. This imposes a constraint on the required solar sail orientation, which can be

found through �̂� = ∇𝑈
|∇𝑈 | . Taking the dot product of both sides of Eq. 8 with �̂� and rearranging, the required lightness

number for an AEP to exist can be calculated as follows [35]

𝛽 =
𝑟2

1
1 − 𝜇

∇𝑈 · �̂�
(𝒓1 · �̂�)2 (9)

AEPs that lie along the line between the Sun and the traditional Lagrange points are referred to as sub-Lagrange points,

and are denoted as SL1 through SL5. The 𝑥-coordinates of the SL1 and SL2 for 𝛽 = 0.04 are given in Table 2.

Point 𝑥-coordinate
SL1 0.98298982
SL2 1.00708364

Table 2 SL1 and SL2 𝑥-coordinates for 𝛽 = 0.04.

D. Stability of Equilibria

An equilibrium point can be considered stable if the motion of the body remains bounded to the vicinity of the

equilibrium point when a small displacement or perturbation is imposed upon the body. The stability of an equilibrium

point can be analysed numerically by linearising the system around the equilibrium point and finding the Jacobian
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matrix, �̄�, of this linearised system, where the Jacobian is defined as [35, 40]

�̄� =


0̄ 𝑰

�̄� − �̄� 2𝜽

 ; 𝜽 =



0 1 0

−1 0 0

0 0 0


(10)

where 0̄ denotes a 3 × 3 zero matrix, 𝑰 is a 3 × 3 identity matrix, and �̄� and �̄� are the radiation and gravity gradient

matrices respectively [35], as given by

�̄� =



𝑎𝑥𝑥 𝑎𝑥𝑦 𝑎𝑥𝑧

𝑎𝑦𝑥 𝑎𝑦𝑦 𝑎𝑦𝑧

𝑎𝑧𝑥 𝑎𝑧𝑦 𝑎𝑧𝑧


, �̄� =



𝑈𝑥𝑥 𝑈𝑥𝑦 𝑈𝑥𝑧

𝑈𝑦𝑥 𝑈𝑦𝑦 𝑈𝑦𝑧

𝑈𝑧𝑥 𝑈𝑧𝑦 𝑈𝑧𝑧


(11)

where, as an example, 𝑎𝑥𝑦 is the partial derivative of the 𝑥 component of the solar sail acceleration 𝒂𝑠 , with respect to

𝑦, and 𝑈𝑥𝑦 is the partial derivative of the 𝑥 component of the gradient of the effective potential ∇𝑈, with respect to 𝑦.

Motion in the vicinity of these equilibrium points depends on the stability of the points, which is given through the

eigenvalues

𝛾𝑖 = ±�̃� ± 𝛽𝑖 (12)

where 𝛾𝑖 is an eigenvalue of the Jacobian �̄�, ±�̃� is the real part of the eigenvalue, and ±𝛽𝑖 is the imaginary part of the

eigenvalue.

The co-linear AEPs have eigenvalues given by 𝛾1,2 = ±�̃� and 𝛾3,4 = ±𝛽𝑖. Exciting the motion associated with

the imaginary eigenvalues, 𝛾3,4, gives stable periodic motion around the Lagrange points, while exciting the motion

associated with the real eigenvalues, 𝛾1,2, gives unstable motion to or from the Lagrange points, known as invariant

manifolds [40]. The eigenvalue associated with the positive real part, 𝛾2 = +�̃�, is associated with stable motion

towards the Lagrange point, while the eigenvalue associated with the negative real part, 𝛾1 = −�̃�, is associated with

unstable motion away from the Lagrange point. To model these manifolds, a small perturbation can be applied to the

spacecraft’s state at an equilibrium point in the direction of the unstable eigenvectors, 𝜻1,2, which are associated with

the eigenvalues, 𝛾1,2, through

𝒙0,𝑈 = 𝒙𝑆𝐿 ± 𝜖𝜻1 (13a)

𝒙0,𝑆 = 𝒙𝑆𝐿 ± 𝜖𝜻2 (13b)
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where 𝒙0,𝑈 = [𝒓 ¤𝒓]𝑇 is the initial perturbed state vector of the spacecraft associated with unstable motion, 𝒙0,𝑆 = [𝒓 ¤𝒓]𝑇

is the initial perturbed state vector of the spacecraft associated with stable motion, 𝒙𝑆𝐿 is the state vector of the spacecraft

at an artificial Lagrange point, 𝜖 is a small perturbation in the order of 10−4 to 10−6 [40, 41], 𝜻1 is a unit eigenvector

associated to the negative real eigenvalue, 𝛾1, and 𝜻2 is a unit eigenvector associated to the positive real eigenvalue, 𝛾2.

Stable manifolds towards the equilibrium point can be obtained by integrating the perturbed state, 𝒙0,𝑆 , in Eq. 13b

backwards in time, while unstable manifolds away from the equilibrium point can be obtained by integrating the

perturbed state, 𝒙0,𝑈 , in Eq. 13a forwards in time. These unstable manifolds can be from either the (S)L1 or (S)L2

(artificial) equilibrium point, and the initial state of the manifold can be perturbed in either the direction of the unstable

eigenvector, 𝜻1, or opposite the direction of the unstable eigenvector (i.e. −𝜻1). For conciseness, from here on, an initial

perturbed state vector in the direction of the eigenvector, i.e. 𝒙0 = 𝒙𝑆𝐿 + 𝜖𝜻1, is referred to as a positive perturbation,

while an initial perturbed state vector in the direction opposite the eigenvector, i.e. 𝒙0 = 𝒙𝑆𝐿 − 𝜖𝜻1, is referred to as

a negative perturbation. These unstable manifolds are used as the initial part of the trajectory designed in this paper.

The stable and unstable manifolds to and from the artificial equilibrium points, SL1 and SL2, for a solar sail lightness

Fig. 3 Stable and unstable manifolds to and from the artificial equilibrium points for a solar sail lightness
number of 𝛽 = 0.04.

number of 𝛽 = 0.04 can be seen in Figure 3. A zoomed view about the Earth and the SL2 point can also be seen in this

figure.
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III. Target Asteroids
There is no formal quantitative definition of co-orbital asteroids. However, Marcos and Marcos have performed

extensive research on co-orbital asteroids and their properties (see [24–26, 42]). They define a co-orbital asteroid

as having an orbital period of between 362 and 368 days [24], which equates to a co-orbital semi-major axis range

of ∼0.994 AU to ∼1.006 AU. NASA’s JPL Small Body Database (SBDB)§ provides accurate orbital properties and

ephemerides for small bodies (asteroids, comets, etc.) in the solar system. A list of 63 asteroids that meet the orbital

period criteria can be accessed through the SBDB, and the study in this paper is limited to these asteroids. There are

23 co-orbital asteroids in tadpole orbits, 13 in horseshoe orbits, and 27 quasi-satellites. The Kepler elements and orbit

type of these 63 asteroids in the Sun-centered J2000 inertial reference frame can be found in Table 10 in the Appendix.

The J2000 inertial frame, 𝐽 (𝑥𝐽 , 𝑦𝐽 , 𝑧𝐽 ), is based on the position and motion of the Earth on 1 January 2000 at 12:00

Terrestrial Time. The 𝑥𝐽 -axis of this reference frame lies on the vernal equinox, while the 𝑧𝐽 -axis is normal to the

Earth’s spin axis [43]. The 𝑦𝐽 -axis completes the right-hand reference frame.

The ephemerides of these co-orbital asteroids are retrieved from the SBDB over a period of 20 years to allow for

a range of initial possible launch dates. These ephemerides provide the position and velocity of each asteroid within

the 𝐽 (𝑥𝐽 , 𝑦𝐽 , 𝑧𝐽 ) frame. A time step for each measurement of one day is chosen, as this gives a balance between

efficiency of the program and accuracy of the results. These position and velocity vectors are converted into the

𝐶 (𝑥, 𝑦, 𝑧) reference frame through a reference frame rotation and translation, as discussed below. This reference frame

transformation allows for the trajectory of the solar sail spacecraft to be directly compared to the motion of the target

asteroids.

The provided ephemeris files contain the asteroids’ states within the J2000 reference frame. The state vector is

provided as

𝒙𝐴 |𝐽 = [𝒓𝐴 ¤𝒓𝐴]𝑇 (14)

This state vector can be converted to the synodic Sun-(Earth+Moon) reference frame through


𝑥
𝑦
𝑧

𝐶 (𝑥,𝑦,𝑧)

= �̄�


𝑥
𝑦
𝑧

 𝐽 (𝑥𝐽 ,𝑦𝐽 ,𝑧𝐽 ) +

−𝜇
0
0

 (15a)


¤𝑥
¤𝑦
¤𝑧

𝐶 (𝑥,𝑦,𝑧)

= �̄�
©­­«

¤𝑥
¤𝑦
¤𝑧

 𝐽 (𝑥𝐽 ,𝑦𝐽 ,𝑧𝐽 ) + 𝝎 ×

𝑥
𝑦
𝑧

 𝐽 (𝑥𝐽 ,𝑦𝐽 ,𝑧𝐽 )
ª®®¬ (15b)

where �̄� is a rotation matrix and 𝝎 is the angular velocity vector of the synodic reference frame.
§Jet Propulsion Laboratory. Small Body Database. Available at https://ssd.jpl.nasa.gov/horizons/ [Access Date: 13 June 2022]
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The rotation matrix, �̄� is calculated through

�̄� =



cos𝜓 − sin𝜓 0

sin𝜓 cos𝜓 0

0 0 1


(16)

where 𝜓 is the rotation angle and is simply the sum of the right ascension of the ascending node of the Earth, Ω, the

argument of periapsis of the Earth, 𝜔, and the instantaneous true anomaly of the Earth, 𝜃, i.e. 𝜓 = Ω + 𝜔 + 𝜃. For

two-body motion, the values of Ω and 𝜔 are fixed, and this assumption is valid in this paper due to the assumption that

the solar sailing spacecraft exerts no gravitational influence on the two larger masses. Fixed values of Ω = 359.9958◦

and 𝜔 = 104.4542◦ are extracted from the SBDB for the Earth about the Sun at a reference time 𝑡0 at 00:00 on January

1st 2023.

An initial true anomaly at time 𝑡0 of 𝜃0 = 355.6651◦ is taken from the SBDB. Again, due to the assumption of

circular motion, the instantaneous true anomaly 𝜃 at time 𝑡 can be calculated based on the time difference since the

reference time (𝑡 − 𝑡0), and the initial true anomaly as follows [44]

𝜃 = 𝑛(𝑡 − 𝑡0) + 𝜃0 (17)

where 𝑛 is the mean motion as calculated through

𝑛 =

√
𝜇𝑆

𝑎3
𝐸

(18)

where 𝜇𝑆 is the gravitational constant of the central body (the Sun in this case), and 𝑎𝐸 is the semi-major axis of the

Earth.

This process is repeated for each time step of the asteroid ephemeris file. These updated target asteroid ephemerides

are directly compared to the trajectory of the spacecraft to determine the relative motion.

IV. Problem Definition
This section introduces and defines the problem that is investigated in this paper. The objective of the mission is

fully explained, before a set of mission assumptions are introduced, and the methodology with which the problem will

be set up and solved is defined.
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A. Problem Objective

The objective of this study is to find a spacecraft trajectory to encounter as many co-orbital near-Earth asteroids

as possible in a fixed time-frame, using solar radiation pressure on a solar sail as the only source of propulsion. It is

assumed that the spacecraft will ride-share with a a larger mission to either the Sun-Earth L1 or L2 point, and that

the initial position of the spacecraft is either SL1 or SL2. Future planned missions to the Sun-Earth Lagrange points

include NASA’s Interstellar Mapping and Acceleration Probe (IMAP) mission to L1 in 2025 [45] and ESA’s PLAnetary

Transits and Oscillations of stars (PLATO) mission to L2 in 2026 [46]. Based off these planned missions, the initial date

at which the spacecraft will leave the the AEP is constrained to a two year window, from January 1st 2025 to December

31st 2026. The nominal mission duration is taken to be ten years. Solar sailing provides theoretically limitless thrust

capabilities, and assuming no problems are encountered, the mission could be extended beyond ten years. However,

due to the slightly unstable nature of co-orbital asteroids, more uncertainties are introduced to the ephemerides as time

progresses. For this reason, the balanced nominal duration of ten years is selected. The lightness number used in this

research is selected as 𝛽 = 0.04, which is based on near-term estimates for feasible lightness numbers [39].

B. Methodology

A sequence generation algorithm is developed in MATLAB(R), which uses Monte Carlo (MC) simulations to

generate sequences of fixed-angle trajectories from one asteroid to another. A search space analysis on the first leg of

the trajectory is carried out to determine feasible and infeasible cone and clock angles, 𝛼 and 𝛿, for the beginning of the

trajectory. The results from this analysis are implemented into a full initial trajectory development. Some tuning of the

developed algorithm for sequence and trajectory generation is carried out. After sufficient tuning, the chosen settings

are implemented and an initial trajectory is developed, with a fixed cone and clock angle for each leg. This initial

trajectory contains multiple fly-bys of co-orbital near-Earth asteroids within the nominal ten year mission lifetime.

The first fly-by of this initial trajectory is then optimised using PSOPT, which is a C++ implementation of direct

pseudospectral methods [47]. This optimisation is performed to investigate whether the trajectory of the spacecraft

can be modified to reduce the relative distance and velocity between it and the asteroid. The optimisation is set up in

such a way as to not compromise the following legs of the trajectory. Optimising the first fly-by can act as a proof of

concept that subsequent fly-bys can be optimised.

V. Initial Trajectory Design
This section describes the development of an algorithm to generate fixed-angle sequential trajectories to multiple

co-orbital near-Earth asteroids. This algorithm generates a trajectory that maximises the number of fly-bys of target

asteroids within the nominal mission lifetime. These trajectories contain multiple legs, where each leg has a fixed

cone angle, 𝛼, and a fixed clock angle, 𝛿, referred to as a fixed-angle control law. Each leg brings the spacecraft to the
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vicinity of a target asteroid, and the leg is terminated when the relative distance between the spacecraft and the asteroid

is minimised. There are a number of parameters which can be varied within this algorithm, and these are tested and

tuned before a final full trajectory is generated.

A. Objective Function

The objective of this research is to encounter as many co-orbital asteroids as possible within a nominal ten year

mission lifetime. The objective function to be maximised, 𝐽0, for the generation of the initial trajectory is thus defined

as

𝐽0 =
∑

𝐸𝐴𝑆𝑇 (19)

where 𝐸𝐴𝑆𝑇 is an individual asteroid encounter.

After conversion from the inertial 𝐽 (𝑥𝐽 , 𝑦𝐽 , 𝑧𝐽 ) reference frame to the synodic 𝐶 (𝑥, 𝑦, 𝑧) reference frame, the

maximum change in position of an asteroid over a single time step is found to be in the region of 106 km. Therefore,

any asteroid encounter for the initial analysis is assumed to occur when the spacecraft’s position is within 5 × 105 km

of an asteroid.

In the case that multiple trajectories have the same objective function but comprise of different target asteroids, the

optimal trajectory will be selected as the one in which the flight time is minimised.

B. Sequence Generation Algorithm

A flowchart of the operation of the developed algorithm can be seen in Figure 13 in the Appendix, with an

explanation of each step in Table 12.

Code is developed in MATLAB(R) to build up a trajectory leg by leg. Each leg is propagated forward for two years

using a Runge-Kutta 4(5) integrator implemented through the ode45.m function in MATLAB(R). The decision variables

for each leg of the algorithm are

𝒉𝑖 = [𝛼𝑖 𝛿𝑖 𝑡0,𝑖 𝒙0,𝑖]𝑇 (20)

where 𝑖 refers to the leg number, 𝛼𝑖 and 𝛿𝑖 are the cone and clock angles of the solar sail, 𝑡0,𝑖 is the initial propagation

time, and 𝒙0,𝑖 is the initial state of the spacecraft.

The cone and clock angles, 𝛼 and 𝛿, are randomly selected from within their given bounds of 𝛼 ∈
[
− 𝜋

2 ,
𝜋
2
]
,

𝛿 ∈ [0, 𝜋], and kept constant over the whole leg. For the first leg, the initial time, 𝑡0, is randomly selected from the two

year departure window of 1 Jan 2025 to 31 Dec 2026, and the initial state of the spacecraft, 𝒙0, is selected as either a

positive or negative perturbation from either the SL1 or SL2 artificial equilibrium points For subsequent legs, the initial

time is the time at which a fly-by occurred for the previous leg, and the initial state of the spacecraft is the state of the
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spacecraft when a fly-by occurred on the previous leg, i.e.

𝑡0,𝑖 = 𝑡 𝑓 ,𝑖−1 (21a)

𝒙0,𝑖 = 𝒙 𝑓 ,𝑖−1 (21b)

where 𝑓 refers to the instant a fly-by occurred.

Over these two years the motion of the spacecraft relative to the target asteroids is analysed to determine if the

fly-by conditions have been met. The decision variables that give trajectories where fly-by conditions are met are

then ranked based on the transfer time to their target asteroid - shorter transfer times are classified as more optimal.

A number of these initial legs are then carried forward to the second leg. The initial condition of the second leg is

the spacecraft’s state at the time step where an asteroid fly-by occurred. Again, cone and clock angles are randomly

selected, and the trajectory is propagated forward for a maximum of two years, while the motion relative to the target

asteroids is analysed. If no asteroid is encountered, according to the 5 × 105 km threshold, within the leg’s two year

length, the minimum fly-by distance of all the target asteroids is used to rank the trajectories, and the initial condition

for the next leg is taken as the condition at the asteroid where the closest fly-by occurs. This process is repeated until

the nominal mission lifetime of ten years is reached.

Constraints are placed on the motion of the spacecraft to ensure its trajectory does not bring it too close to either

the Sun or the Earth-Moon system. If the spacecraft ventures too close to either of these bodies, the gravitational

acceleration is too strong and the spacecraft is eventually pulled into the body. This trajectory is both inefficient to

calculate and provides no possible asteroid fly-bys. For this reason, the propagation of the trajectory of the solar

sail spacecraft is terminated if the spacecraft comes within 0.3 AU of the Sun, or 0.005 AU (∼ 750, 000 km) of

the Earth-Moon system. A constraint on the maximum distance from the Sun that the spacecraft can travel is also

implemented at 2 AU from the Sun. The orbits of the target asteroids are all well within these constraints, so none are

excluded.

The developed algorithm has a number of settings that can be varied, which effect the performance of the algorithm

and number of fly-bys that the resulting trajectories contain. Analysis on these settings is performed to determine the

combination that gives the most fly-bys in the ten year period. The setting that are tested are the initial state, the random

number generation method, the number of previous runs to carry forward to the next leg, and the number of Monte

Carlo simulations to perform at each leg. The proportion of runs to carry forward to the next leg is rounded to the next

whole number if it does not provide a whole number value.

15



C. Initial Search Space Analysis

Before the developed code is used to generate a suitable initial trajectory, the search space of the first leg is analysed.

This analysis is performed to determine feasible and infeasible initial settings.

A grid search is performed on the initial leg of the trajectory after these terminal conditions are implemented. The

cone angle is varied between 𝛼 ∈
[
− 𝜋

2 ,
𝜋
2
]
, while the clock angle is varied between 𝛿 ∈ [0, 𝜋], each at a resolution

of 5◦. The results are shown in Figure 4 to Figure 7, where the left plot of each figure shows cone and clock angle

combinations that result in early termination of the trajectory, and the plot on the right of each figure shows the range

of trajectories that do not terminate early. Note the differing scales for the termination time.

Fig. 4 Search space analysis for the first leg from SL1 with a positive perturbation.

Fig. 5 Search space analysis for the first leg from SL1 with a negative perturbation.
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Fig. 6 Search space analysis for the first leg from SL2 with a positive perturbation.

Fig. 7 Search space analysis for the first leg from SL2 with a negative perturbation.

When comparing these solar sail trajectories to the trajectories of the asteroids within the possible time frame,

it appears that there are asteroids that cannot be reached using the fixed-angle control law from any date within the

possible range. A list of asteroids that can be encountered from each of these starting conditions is given in Table 11

in the Appendix, where SL1, + refers to a positive perturbation from SL1, etc. If an asteroid can not be encountered

from the selected starting condition, i.e. there is a No in Table 11, the ephemeris of the asteroid are not compared to

the trajectory of the spacecraft for the first leg, thus decreasing computational time for the first leg. Similarly, if the

randomly generated cone and clock angle combination in the first leg of the sequence is contained in the infeasible

combinations found in the grid searches, the algorithm generates a new combination until the trajectory does not
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terminate early.

Further, it is determined that a positive perturbation from SL1 can reach more asteroids than a negative perturbation,

and a negative perturbation from SL1 can not reach any asteroids that are not reached through a positive perturbation,

i.e., the set of asteroids reached from a negative SL1 perturbation is a subset of those reached from a positive SL1

perturbation. The opposite is true for SL2, with the targets reached from a positive perturbation being a subset of the

targets reached through a negative perturbation. This leads to a reduction in the initial conditions that are implemented

from four to two. The possible initial conditions can be seen in Equation 22.

𝒙0 = 𝒙𝑆𝐿1 + 𝜖𝜻1,𝑆𝐿1 (22a)

𝒙0 = 𝒙𝑆𝐿2 − 𝜖𝜻1,𝑆𝐿2 (22b)

where 𝜻1,𝑆𝐿1 and 𝜻1,𝑆𝐿2 are the unit eigenvectors associated with the negative real eigenvalues for SL1 and SL2,

respectively.

Further analysis is performed on these two initial conditions. The initial generation algorithm is run for 30 varying

seeds, with the standard in-built MATLAB(R) Random Number Generator (RNG), elitism of 1%, and 1000 MC runs per

leg for each of the two initial conditions in Equation 22. The definition of these parameters is provided in subsection V.D.

The results are shown in Table 3, which shows a considerably higher number of fly-bys for the positive perturbation

from SL1 compared to the negative perturbation from SL2. Therefore it is decided to use the positive perturbation from

SL1 to generate the initial trajectory.

SL1 SL2

Minimum 8 5
Maximum 13 10

Mean 10.83 7.25

Table 3 Number of asteroid fly-bys for differing starting conditions.

D. Sequence Generation Algorithm Tuning

Testing and tuning of the sequence generation code is performed, using the findings from the search space analysis

for the first leg. Little analysis can be performed on subsequent legs of the trajectory, as there is a wide range of

possible ending conditions of the first leg. The parameters related to the sequence generation algorithm that can be

varied are as follows.

1) The random number generator (RNG): Random values for the decision variables in 𝒉𝑖 in Equation 20 are

generated at each leg, and the method of generating random numbers to select these decision variables can be

varied.
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2) The proportion of elitism: Each subsequent leg after the first is started from the end point of a previous leg,

selected from a subset of the best-performing trajectories (i.e. closest fly-bys in the shortest time), and the

proportion of previous legs to carry forward for use as the starting location of the next leg can be varied.

3) The number of random samples to generate at each leg: A Monte Carlo (MC) search is performed at each leg

to identify the best performing combinations of solar sail settings, and the number of MC runs to perform can

be adjusted.

The parameters are sequentially tested and the findings for each parameter are used for testing of subsequent

parameters.

1. Random Number Generator

Two RNGs are compared to determine their performance within the sequence generation algorithm. The in-built

RNG in MATLAB(R), which is called through the rand.m function, returns a randomly selected distribution on the open

interval (0, 1). A quasi-random Sobol sequence is called through the sobolset.m function to also generate a uniform

distribution of points in the open interval (0, 1). The Sobol sequence selects values from a highly uniform distribution

of points within a hyper-sphere [48].

The in-built RNG in MATLAB(R) is implemented with a fixed seed to allow for reproducibility. Similarly, to increase

the possible values that the variables can take, and to allow reproducibility, the Sobol sequence is sampled at a random

point along its distribution depending on the seed value.

The performance of the developed algorithm with the in-built RNG and the quasi-random Sobol sequence are

compared. As the parameters for the in-built RNG are the same as those in the previous section, the findings from

Table 3 are re-used. The sequence generation algorithm is run for the Sobol sequence sampled randomly with 30

different seed values, 1000 MC samples per leg, and elitism of 1%. The starting location is fixed at SL1 based on the

previous results.

rand.m Sobol
Minimum 8 9
Maximum 13 13

Mean 10.83 11.50

Table 4 Number of asteroid fly-bys for differing RNGs.

It can be seen that there is a slight improvement in the results when the Sobol sequence is used over the in-built

RNG in MATLAB(R). The minimum number of fly-bys found and the mean both increase, but the maximum is the same

for both the Sobol and the rand.m function. Due to the better performance on average, the Sobol method is selected as

the chosen random number generator.
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2. Elitism

The proportion of current trajectories to use when generating the next leg of the trajectory can have a significant

effect on the performance of the algorithm. This proportion of current trajectories carried forward is referred to as

elitism. At each step of the algorithm, the trajectories are ranked based on the most encounters within the shortest flight

time. The elitism proportion of these trajectories are brought forward to be used as starting conditions for the next leg

of the trajectory. In the case of the elitism resulting in a non-whole number, the number of legs carried forward is

rounded up to the nearest integer.

Testing of this elitism proportion is carried out to determine the best performing proportion of current legs to carry

forward at each stage of the trajectory. Similar to the previous parameters tested, a range of seed numbers for each

setting is implemented. Elitism values of 1%, 0.5%, and 0.1% are tested with the Sobol sequence and 1000 MC runs

per leg, for 30 different seed values. The results of this testing can be seen in Table 5. It can be seen that an elitism

1% 0.5% 0.1%
Minimum 9 10 8
Maximum 13 16 15

Mean 11.50 13.90 13.16

Table 5 Number of asteroid fly-bys for differing elitism values.

value of 0.5% provides the best results for both the minimum, maximum, and mean. This value is thus chosen as the

parameter value for the final sequence generation.

3. Monte Carlo Runs per Leg

Finally, the number of MC runs to perform at each leg is tested. Increasing this value increases the number of

samples for cone and clock angle that can be selected which improves the performance of the algorithm, but it also

decreases the speed at which full trajectories can be generated. A compromise thus needs to be found that balances the

performance of the algorithm with the run time.

MC runs per leg values of 1000, 2500, and 5000 are tested for each leg with 20 different seed values, with the Sobol

sequence generator and elitism of 0.5%. The run-time is greatly increased with an increase in the number of MC runs

per leg, so the number of various seed values to test is decreased from 30 to 20. Parallel processing is employed within

MATLAB(R) to reduce the total run time. As can be seen in Table 6, increasing the number of random trajectories

generated at each leg from 1000 to 2500 led to an increase in the average and maximum number of encounters over the

ten year period. However, increasing beyond 2500 per leg resulted in considerably longer computation time, with no

improvement on the maximum number of encounters, and only a slight increase in the average number of encounters.

Thus, a value of 2500 MC runs is selected to be performed at each leg of the sequence generation algorithm.
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1000 2500 5000
Minimum 10 12 13
Maximum 16 17 17

Mean 13.90 15.16 15.33
Average Run Time [min] 21 50 126

Table 6 Number of asteroid fly-bys and average run time for differing numbers of MC runs performed at each
leg.

E. Finalised Initial Trajectory

The chosen parameter values are implemented and the algorithm is run for 30 different seeds values. The final

settings and parameter values and ranges can be seen in Table 7.

Parameter Selection or range
Initial condition, 𝒙0,1 SL1, positive perturbation as in Equation 22a
Initial time, 𝑡0,1 ∈ [1 Jan 2025, 31 Dec 2026]
Cone angle, 𝛼 [rad] ∈

[
− 𝜋

2 ,
𝜋
2
]

Clock angle, 𝛿 [rad] ∈ [0, 𝜋]
RNG Sobol sequence
Elitism 0.5 %
MC runs per leg 2500
Seed values ∈ [5368111, 5368141]

Table 7 Sequence generation chosen parameter values.

Due to the complex nature of the problem, and the large number of possible sequences of asteroids, each run with

a different seed value produces a different result. The trajectory with the most encounters from each of the developed

trajectories with varying seeds is selected. This trajectory has 18 total fly-bys of 15 unique asteroids within the nominal

mission lifetime of ten years, with the final fly-by occurring after 9.02 years. The trajectory viewed on the 𝑥 − 𝑦 and

𝑥 − 𝑧 planes can be seen in Figure 8. The full control profile for the entire mission can also be seen here. This full

trajectory departs the SL1 point on the 7th of July, 2026. The fixed cone and clock angles, 𝛼 and 𝛿, as well as the fly-by

distance of each asteroid and transfer time between targets can be seen in Table 8.

VI. Optimisation
This section discusses the optimisation of the first fly-by of the initial trajectory generated in Section V. The

optimisation of the first fly-by is provided as a proof of concept for the rest of the trajectory. Firstly, the optimal control

problem which is to be solved is introduced, and some tuning of the optimisation software is discussed. A description

of the initial guess used as input to the optimisation software is then provided. Finally, the optimised solution is

presented and discussed.
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Fig. 8 Full solar sailing initial trajectory viewed in the 𝑥 − 𝑦 and 𝑥 − 𝑧 planes and full control profile.

A. Optimal Control Problem

During the initial trajectory design phase, an encounter was taken as a fly-by within 5 × 105 km of an asteroid. In

this section, however, the relative fly-by distance and velocity between the solar sailing spacecraft and the asteroid is

minimised. This optimisation is performed for one fly-by of the initial trajectory as a proof of concept that each fly-by

can be optimised individually. The optimisation of the first fly-by is performed by optimising the first two legs of the

trajectory - the leg from SL1 to the first target asteroid, and the leg from the first target to the second target, with the

objective of re-joining the initial fixed-angle developed trajectory at the fly-by of the second asteroid. This ensures that

the optimisation of the first fly-by does not hinder any further elements of the trajectory.

1. Leg 1

The objective function, 𝐽1, for the first leg of the trajectory is

𝐽1 = Δ𝑟 (1) + 𝑤Δ𝑣 (1) (23)

where Δ𝑟 (1) = |𝒓 (1)𝑓 − 𝒓 (1)𝑎𝑠𝑡, 𝑓 | and Δ𝑣 (1) = |𝒗 (1)𝑓 − 𝒗 (1)𝑎𝑠𝑡, 𝑓 | are the relative position and velocity respectively between the

spacecraft and the target asteroid at the final time of the first leg, 𝑡 (1)𝑓 , 𝒓 (1)𝑓 = 𝒓 (𝑡 (1)𝑓 ) and 𝒗 (1)𝑓 = 𝒗(𝑡 (1)𝑓 ) are the final

position and velocity vectors of the spacecraft, 𝒓 (1)𝑎𝑠𝑡, 𝑓 = 𝒓𝑎𝑠𝑡 (𝑡 (1)𝑓 ) and 𝒗 (1)𝑎𝑠𝑡, 𝑓 = 𝒗𝑎𝑠𝑡 (𝑡 (1)𝑓 ) are the final position and

velocity vectors of the target asteroid, and 𝑤 is a weight for the relative velocity.

The goal of the optimisation is to find the states, 𝒙 (1) (𝑡), and controls, 𝒖 (1) (𝑡), that minimise Eq. 23 while satisfying

the dynamics in Eq. 1 as well as a set of boundary constraints. The state vector, 𝒙 (1) (𝑡), refers to the position and
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Leg Cone Angle, 𝛼 [◦] Clock Angle, 𝛿 [◦] Fly-by Distance [km] Flight Time [days] Fly-by Date Target Asteroid
1 47.31 116.16 307702.40 87.71 03-Oct-26 2020 GE1
2 58.16 53.56 426592.93 174.66 26-Mar-27 2021 GN1
3 32.64 137.18 434969.06 168.71 11-Sep-27 2005 QQ87
4 -30.51 88.83 496219.28 18.61 30-Sep-27 2020 TH6
5 -27.63 80.65 419607.65 406.48 09-Nov-28 2019 SB6
6 68.63 115.82 450347.46 219.39 17-Jun-29 2021 BA
7 41.69 69.08 447909.54 73.53 29-Aug-29 2015 SO2
8 -54.94 83.15 487291.59 72.27 09-Nov-29 2015 YA
9 33.35 167.23 443346.64 149.27 08-Apr-30 2021 XS4
10 -10.97 145.89 470736.86 220.13 14-Nov-30 2018 PN22
11 -24.78 21.75 397484.29 100.55 22-Feb-31 2019 VL5
12 24.32 130.85 324486.45 330.33 19-Jan-32 2015 SO2
13 44.68 71.15 450440.39 183.99 21-Jul-32 2019 YB4
14 -33.84 119.24 413020.53 257.54 04-Apr-33 2020 TH6
15 -21.91 104.83 359357.28 235.23 25-Nov-33 2018 XW2
16 49.91 148.34 265905.52 208.45 22-Jun-34 2016 CO246
17 -49.46 33.77 499834.17 158.75 28-Nov-34 2017 YQ5
18 49.52 46.68 258702.24 228.70 14-Jul-35 2019 YB4

Table 8 Trajectory settings for each leg.

velocity vectors of the spacecraft within the CR3BP:

𝒙 (1) (𝑡) = [𝒓 ¤𝒓]𝑇 = [𝑥(𝑡) 𝑦(𝑡) 𝑧(𝑡) ¤𝑥(𝑡) ¤𝑦(𝑡) ¤𝑧(𝑡)]𝑇 (24)

The initial state of the first leg needs to match the perturbed state at the SL1 point as in Equation 22a, and the

objective is for the final state to coincide with the asteroid’s state vector at time 𝑡 𝑓 , i.e.

𝒙(𝑡 (1)0 ) = 𝒙 (1)
0 = 𝒙𝑆𝐿1 + 𝜖𝜻1,𝑆𝐿1 (25a)

𝒙(𝑡 (1)𝑓 ) = 𝒙 (1)
𝑓 = 𝒙𝑎𝑠𝑡, 𝑓 (25b)

where 𝒙𝑎𝑠𝑡, 𝑓 is the state vector of the asteroid at time 𝑡 𝑓 .

Suitable bounds are placed on the state vector as follows

[0.8 − 0.1 − 0.05 − 0.1 − 0.1 − 0.1]𝑇 ≤ 𝒙 (1) (𝑡) ≤ [1.0 0.3 0.05 0.1 0.15 0.1]𝑇 (26)

The controls are defined as the cone and clock angles of the solar sail:

𝒖 (1) (𝑡) = [𝛼 𝛿]𝑇 (27)
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with the following imposed bounds: [
−𝜋

2
0
]𝑇

≤ 𝒖 (1) (𝑡) ≤
[ 𝜋
2

𝜋
]𝑇

(28)

Bounds on the initial and final time are also specified to ensure the trajectory targets the first asteroid near the the

initially determined fly-by date (see the first row in Table 8), which will also ensure that the second target asteroid can be

reached after the first fly-by. Bounds of ±5 days are placed on the initial time. The departure time is time-independent

and can theoretically take any value, as long as the trajectory returns to the initial trajectory at the fly-by of the second

asteroid.

2. Leg 2

The second leg of the trajectory is optimised after the first, with the objective of re-joining the initial fixed-angle

developed trajectory at the fly-by of the second asteroid. The objective function for the second leg of the trajectory is

𝐽2 = Δ𝑟 (2) + 𝑤Δ𝑣 (2) (29)

where Δ𝑟 (2) and Δ𝑣 (2) are the relative distance and velocity between the spacecraft and the second target asteroid at

the end of the second leg, and 𝑤 is the same weight as in Equation 23.

The initial time for the second leg, 𝑡 (2)0 , is set as the final time of the first leg, i.e. 𝑡 (2)0 = 𝑡 (1)𝑓 , while the final time of

the second leg, 𝑡 (2)𝑓 , is set to the fly-by time of the second asteroid in the initially developed trajectory, i.e. 26th March

2027 (see Table 8). The initial state of the second leg, 𝒙(𝑡 (2)0 ) = 𝒙 (2)
0 , is set to the final state of the optimised first leg,

i.e. 𝒙 (2)
0 = 𝒙 (1)

𝑓 , and the objective of the second leg is to coincide with the state at fly-by of the second asteroid in the

initially developed trajectory.

The bounds imposed on the state and control vectors for the second leg are the same as for the first leg, as in

Equation 26 and Equation 28.

3. PSOPT

The optimal control problems defined above is solved using PSOPT, an open-source direct pseudospectral method

implemented in C++ [47]. PSOPT has been used for the optimisation of solar sailing missions in previous studies

[8, 10, 28]. PSOPT directly discretizes the original optimal control problem over the continuous time interval into a

finite number of collocation points (nodes). Either Legendre or Chebyshev polynomials can be used to approximate

the state profile at the nodes, and in this case only Legendre polynomials are used. PSOPT formulates an NLP problem,

which is then interfaced to the solver IPOPT (Interior Point OPTimiser), and then numerically solved [49]. PSOPT

ensures that the dynamics are satisfied and the constraints are met only at the nodes of the solution. The PSOPT

solution can be re-integrated to verify the validity of the solution and determine if the constraints and dynamics are
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satisfied along the entire solution.

4. Optimiser Tuning

A grid search is performed to analyse combinations of convergence tolerances and initial mesh sizes in PSOPT and

IPOPT. The results of this grid search can be seen in Figure 9. Due to the complex nature of this problem, PSOPT fails

Fig. 9 Grid search results for PSOPT initial mesh size and tolerance.

to find an optimal solution for many combinations of mesh size and tolerance, as can be seen in Figure 9. An initial

mesh size of 50 nodes and a convergence tolerance of 5 × 10−4 is selected from Figure 9, and a maximum number of

iterations of 1000 is enforced.

Testing is then performed on the bounds for the final time of the first leg, 𝑡 (1)𝑓 , to determine a suitable constraint

value. Similarly, values for the weight in the objective function, 𝑤, are tested to determine a suitable value. The results

from the testing of both of these parameters can be seen in Figure 10, where the left plot contains the final time bounds

testing, and the right plot contains weight testing results. It is found that bounds of ±4.5 days on the final time provides

converged results with the lowest objective function value. This is therefore chosen as the parameter value for the final

optimisation. The value for the weight in the objective function, 𝑤, is chosen as 10−3, as this gives a considerably lower

relative fly-by distance, and a reduction in relative fly-by velocity. These parameters are combined and implemented

in PSOPT to find the optimised solution.

5. Initial Guess

PSOPT requires an initial guess as input in order to generate an optimal solution. This input contains the time,

states, and control vectors of the initial guess. In the problem investigated in this paper, the initial guess is taken as
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Fig. 10 Parameter testing on the bounds of the final time of the first leg, and objective function weight, 𝑤.

the fixed-angle trajectory for each leg of the initial trajectory design. The trajectory and control profile can be seen in

Figure 8.

B. Results

The described optimal control problem is implemented in PSOPT and solved. Mesh refinement is performed in

PSOPT by interpolating a previous solution onto a new mesh which has a larger number of nodes. The initial number

of nodes, 50, is refined to 100 and then 150 nodes consecutively for both the first and second legs. The first and second

legs are solved separately, with the findings from the optimisation of the first leg used as input and constraints for the

second leg. The resulting relative fly-by distance and velocity for both legs, as well as the departure and fly-by dates of

the initial and optimised solutions can be seen in Table 9. It can be seen that there is a significant reduction in the fly-by

Leg 1 Leg 2
Initial Guess PSOPT Solution Initial Guess PSOPT Solution

Relative Fly-by Distance [km] 307, 702 158.73 426, 593 426, 593
Relative Fly-by Velocity [km/s] 4.7923 4.3282 3.4083 3.4083
Departure Date 7th July 2026 5th July 2026 3rd October 2026 6th October 2026
Fly-by Date 3rd October 2026 6th October 2026 26th March 2027 26th March 2027

Table 9 Initial guess and PSOPT solution results.

distance, as well as a slight decrease in the relative fly-by velocity of the first target. The flight time is also slightly

longer, departing two days earlier than the initial guess and arriving a day later. It can also be seen that the fly-by

conditions of the second leg coincide exactly for both the initial guess and the PSOPT solution, validating the return
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of the optimised trajectory to the initial trajectory. The trajectory and control profile found by PSOPT can be seen in

Figure 11. The light blue and pink lines in the trajectory plots are the first and second leg solutions found by PSOPT

respectively. The light blue line in the control angle plot in the bottom right is the solution cone angle for the entire

two legs, 𝛼𝑆𝑂𝐿 , while the pink line is the solution clock angle, 𝛿𝑆𝑂𝐿 . It can be seen in both Table 9 and Figure 11 that

the spacecraft travels much closer to the asteroid than with the initial guess. This closer fly-by is obtained by a much

more complex control profile than the fixed-angle control profile from the sequence generation algorithm.
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Fig. 11 Initial guess and PSOPT solution trajectories and control profiles.

C. Solution Re-integration

Re-integration can be performed to verify the validity of the PSOPT solution and determine if the constraints

and dynamics are satisfied along the entire solution. This re-integration is performed by integrating the state of the

spacecraft from the initial to the final solution times, from the initial condition of the PSOPT solution. The controls,

𝒖(𝑡) are interpolated from the PSOPT control solution at each integration time step using the MATLAB(R) built-in linear

interpolation method, interp1.m. The difference between the final state of the PSOPT solution and the re-integrated

solution indicates the validity of the PSOPT implementation. The re-integrated solution is presented in Figure 12,

where it can be seen the re-integration matches the PSOPT solution very closely. The position and velocity errors at

the end of the re-integration are 41.6721× 10−6 and 32.0351× 10−6 in dimensionless units, respectively. These values

are below the selected PSOPT tolerance of 5 × 10−4, thus verifying the solution.
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VII. Conclusion
It has been shown in this paper that solar sailing is a suitable means of propulsion to rendezvous with multiple

co-orbital NEAs during one mission, within a set of assumed mission constraints. A trajectory to multiple co-orbital

NEAs within a nominal mission lifetime is developed, and the first two legs of this trajectory are optimised for relative

fly-by distance and velocity between the spacecraft and the first target asteroid. Firstly, an algorithm is developed for

generating sequences of asteroids that can be visited using a solar sail with a fixed-angle control law for each leg. This

algorithm can produce solar sail trajectories that travel from asteroid to asteroid using fixed cone and clock angles. This

algorithm is tuned before producing the final sequence of asteroids to visit for this research. Finally, the first fly-by of

this trajectory is optimised for fly-by distance and velocity, as a proof of concept that each leg can be optimised. This

optimised first fly-by does not hinder the remainder of the trajectory, as the state at the second fly-by of the optimised

solution and of the initial trajectory are the same.

It has been shown that the developed sequence generation algorithm is capable of developing trajectories with many

fly-bys within the nominal mission lifetime. The finalised fixed-angle control law trajectory in this research contains 18

fly-bys of 15 unique asteroids, which is roughly a fly-by every six months of flight. However, analysis of the algorithm

has shown that varying the seed number varies the number of fly-bys largely, so it is possible that running the algorithm

with a larger number of seed values would result in even more fly-bys. The bounds on the initial time could also be

increased to account for a wider range of departure dates, which would lead to different sequences of targets to visit and
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possibly a larger number of fly-bys for the same mission time. A mission trajectory with 18 fly-bys would significantly

reduce the cost of missions to asteroids, as there is only one development and launch cost for the entire mission rather

than for each target. It can be concluded that this developed algorithm is an effective method of generating sequences

of asteroids to visit with fixed-angle solar sail transfers between targets.

It has also been shown that the relative fly-by distance and velocity between the spacecraft and the target can be

significantly reduced using an optimisation stage. The relative distance of the first fly-by was reduced from 307, 702

km to 158.73 km, which is a 99.95% reduction, while the relative velocity was reduced from 4.7923 km/s to 4.3282

km/s, which is a reduction of 9.68%. This shows that a direct pseudospectral method, implemented through PSOPT,

is a suitable method of optimising the initial trajectory.

The developed sequence generation algorithm focuses on finding trajectories that are within a minimum fly-by

distance of a target asteroid, and neglects the relative velocity of this fly-by. This can lead to fly-bys with quite a large

relative velocity, which can be sub-optimal conditions for analysis to take part during a fly-by, and also reduces the time

in vicinity of the target. The sequence generation algorithm could be adjusted to include a weighted relative velocity,

which would allow for trajectories that are more suitable for analysis of a target. This would likely reduce the number

of fly-bys that occur within the mission lifetime.

The proposed solar sailing trajectory developed in this paper would be an effective method of visiting and analysing

multiple asteroids within the same mission. This mission could help further investigate the target asteroids, which

would benefit research into the early solar system, help to classify the asteroids for planetary defence, or analyse the

asteroids for future space mining.
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Appendix

Table 10 Co-Orbital asteroids.
Asteroid Full Name Semi-major axis,

𝑎 [𝐴𝑈]

Eccentricity, 𝑒 [-] Inclination, 𝑖 [◦] Orbital period, 𝑇

[𝑑𝑎𝑦𝑠]

Orbit Type

522684 (2016 JP) 0.9941 0.3834 11.3279 362.0361 QS

(2019 AE3) 0.9942 0.0997 14.8251 362.1006 TP

(2019 YB4) 0.9942 0.1925 0.54 362.1018 TP

(2019 EO) 0.9942 0.5325 9.3486 362.105 QS

(2007 FN3) 0.9946 0.2652 48.589 362.2931 HS

(2015 SO2) 0.9947 0.1088 9.1664 362.3324 HS

(2020 GE1) 0.9947 0.0855 7.7413 362.3773 TP

(2017 BG136) 0.9948 0.0525 27.6097 362.4148 TP

(2018 PN22) 0.9952 0.0441 4.4177 362.6242 HS

(2015 YA) 0.9954 0.2797 1.6186 362.7157 QS

(2009 WY104) 0.9955 0.2234 26.8007 362.7676 HS

(2009 HE60) 0.9955 0.2645 1.5832 362.7768 TP

(2019 HS2) 0.9956 0.2154 19.5494 362.8461 TP

(2021 BZ) 0.9956 0.3042 19.2866 362.8492 TP

(2009 PC) 0.9956 0.3427 7.0915 362.8615 QS

(2021 RE12) 0.9956 0.3658 21.7539 362.8697 QS

(2021 OT) 0.9958 0.3002 16.481 362.9471 QS

(2016 CO246) 0.9963 0.1261 6.2986 363.2172 TP

(2017 YQ5) 0.9972 0.1684 16.9824 363.7123 TP

(2018 XW2) 0.9974 0.3019 19.7377 363.8176 QS

(2017 SL16) 0.9975 0.1519 8.7934 363.8969 QS

3753 Cruithne (1986
TO)

0.9977 0.515 19.8068 364.0025 HS

(2021 XS4) 0.9977 0.189 14.6444 364.017 HS

(2021 EY1) 0.9977 0.455 6.0293 364.0231 HS

(2019 XQ1) 0.9979 0.2826 8.4997 364.0853 TP

85770 (1998 UP1) 0.998 0.3452 33.1796 364.188 HS

(2021 VH) 0.9983 0.1731 0.6128 364.3437 HS

(2017 XQ60) 0.9984 0.215 27.1923 364.3863 TP

(2021 GN1) 0.9988 0.1893 26.8994 364.5875 QS

(2014 OL339) 0.9989 0.4609 10.1852 364.6489 QS

(2010 TK7) 0.999 0.1905 20.8996 364.7049 TP

(2021 KO2) 0.999 0.4243 16.8215 364.7224 QS
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(2021 UN7) 0.9991 0.3935 20.2835 364.7757 TP

(2016 CA138) 0.9995 0.0486 27.7271 364.9646 TP

(2019 VL5) 0.9999 0.2793 1.6589 365.2246 TP

(2020 PN1) 1.0002 0.1252 4.9479 365.3536 HS

(2020 CX1) 1.0006 0.1631 12.7414 365.5895 QS

(2020 XL5) 1.0007 0.3871 13.8474 365.6607 TP

(2005 QQ87) 1.001 0.3017 33.9712 365.7925 TP

469219 Kamo‘oalewa
(2016 HO3)

1.0011 0.103 7.7889 365.8802 QS

255071 (2005 UH6) 1.0011 0.6324 2.6394 365.8847 HS

164207 (2004 GU9) 1.0013 0.136 13.6505 365.9584 QS

138852 (2000 WN10) 1.0013 0.2981 21.5108 365.9949 TP

(2020 PP1) 1.0014 0.0726 5.8991 366.032 QS

277810 (2006 FV35) 1.0015 0.3775 7.104 366.0519 QS

(2013 LX28) 1.0016 0.4519 49.9756 366.1499 QS

(2018 AN2) 1.002 0.1543 22.0747 366.3708 QS

441987 (2010 NY65) 1.0027 0.3704 11.5538 366.7242 TP

(2019 SB6) 1.003 0.266 7.1942 366.8864 QS

(2021 BA) 1.0031 0.2309 12.4696 366.9781 QS

(2019 GM1) 1.0035 0.0713 6.7415 367.1825 QS

419624 (2010 SO16) 1.0036 0.0754 14.5155 367.2296 HS

523728 (2014 ON344) 1.0037 0.3418 25.6937 367.2643 QS

(2014 HL199) 1.0038 0.2144 5.3991 367.3164 TP

(2021 TC1) 1.0041 0.2468 2.3095 367.4803 QS

138175 (2000 EE104) 1.0041 0.2931 5.2379 367.4857 TP

(2008 CQ116) 1.0041 0.1972 20.9921 367.4877 HS

(2015 XX169) 1.0043 0.1851 7.5983 367.59 TP

(2018 VB4) 1.0044 0.5979 13.5143 367.6745 QS

(2015 YQ1) 1.0045 0.404 2.4843 367.7049 QS

(2021 QH2) 1.0045 0.2864 10.3945 367.7193 QS

(2019 XS) 1.0045 0.3264 4.4472 367.7412 TP

(2020 TH6) 1.0047 0.2142 4.231 367.8407 QS
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Table 11 Asteroids that can be reached from positive and negative perturbations from SL1 and SL2.
Asteroid Name SL1, + SL1, - SL2, + SL2, -

522684 (2016 JP) Yes Yes No No

(2019 AE3) Yes No No No

(2019 EO) Yes Yes No No

(2019 YB4) Yes Yes No No

(2007 FN3) Yes Yes No No

(2015 SO2) Yes Yes No No

(2020 GE1) Yes Yes No No

(2017 BG136) Yes Yes No No

(2018 PN22) Yes No No No

(2015 YA) Yes Yes No No

(2009 HE60) Yes Yes No No

(2009 WY104) Yes Yes No No

(2009 PC) No No No No

(2019 HS2) Yes Yes No No

(2021 BZ) Yes Yes No No

(2021 RE12) No No No No

(2021 OT) Yes Yes No No

(2016 CO246) Yes Yes No No

(2017 YQ5) Yes Yes No No

(2018 XW2) Yes Yes No No

(2017 SL16) Yes Yes No No

(2021 EY1) Yes Yes No No

(2021 XS4) Yes No No No

3753 Cruithne (1986
TO)

Yes Yes No No

(2019 XQ1) Yes Yes No No

85770 (1998 UP1) No No No No

(2021 VH) Yes Yes No Yes

(2017 XQ60) Yes Yes No No

(2021 GN1) Yes Yes No No

(2014 OL339) No No No No

(2010 TK7) Yes Yes No No

(2021 KO2) Yes Yes No No

(2021 UN7) No No No No

(2016 CA138) Yes Yes No No

(2019 VL5) Yes Yes No No
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(2020 PN1) Yes Yes No No

(2020 CX1) Yes Yes No No

(2020 XL5) Yes Yes No No

(2005 QQ87) Yes Yes No No

255071 (2005 UH6) Yes No No No

469219 Kamo‘oalewa
(2016 HO3)

Yes Yes No No

138852 (2000 WN10) Yes No Yes Yes

164207 (2004 GU9) Yes Yes Yes Yes

(2020 PP1) Yes Yes No No

277810 (2006 FV35) No No No No

(2013 LX28) Yes Yes No No

(2018 AN2) Yes Yes No No

441987 (2010 NY65) No No No No

(2019 SB6) Yes Yes No No

(2021 BA) Yes Yes No No

(2019 GM1) Yes Yes Yes Yes

419624 (2010 SO16) No No No No

523728 (2014 ON344) No No No No

(2014 HL199) Yes Yes No Yes

(2008 CQ116) No No No No

(2021 TC1) No No No No

138175 (2000 EE104) Yes Yes No No

(2015 XX169) Yes Yes No No

(2018 VB4) No No No No

(2015 YQ1) Yes Yes No No

(2019 XS) Yes Yes No No

(2021 QH2) Yes Yes Yes Yes

(2020 TH6) Yes Yes No No

37



Fig. 13 Sequence selection flowchart

Step Name Description
1. Start. Start the sequence selection

algorithm.
2. First leg

check.
Check if the current leg is the first
leg of the trajectory.

3. Initial leg
variables.

If it is the first leg, randomly
generate an initial date, cone, and
clock angle.

4. Sequential
leg
variables.

If it is not the first leg, randomly
select a previous leg carried
forward from step 12 to use as the
starting point, as well as cone and
clock angles.

5. Propagation. Propagate forward in time for two
years.

6. Fly-by
analysis.

Analyse the motion of the
spacecraft within the propagation
time relative to the target asteroids.

7. Check
number of
MC runs for
the current
leg.

Check if the number of times the
current leg has been randomly
generated has reached the total
number of MC runs to perform. If
not, repeat steps 2-6.

8. Check for
fly-bys

Check if any of the propagated legs
contain a fly-by distance of less
than 5 × 105 km.

9. Rank
optimal
fly-bys.

If there are fly-bys of less than
5 × 105 km, rank each fly-by in
ascending fly-by time, then rank all
other fly-bys by fly-by distance.

10. Rank
non-optimal
fly-bys.

If there are no fly-bys of less than
5 × 105 km, rank all trajectories
according to minimum fly-by
distance

11. Check
mission
lifetime.

Check if the nominal mission
lifetime of ten years has been
reached.

12. Carry
forward
previous
legs.

If the nominal mission lifetime has
not been reached, select a set
proportion of the optimal
trajectories to use as initial
conditions in step 4. Then repeat
steps 2-11.

13. Finish. If the nominal mission lifetime is
reached, return the trajectory with
the most rendezvous.

Table 12 Sequence selection steps
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3
Conclusions and Recommendations

The journal article in the main body of this thesis work investigated the generation and optimisation of
sequences of co-orbital asteroids to visit using only a solar sail as the propulsion method. This objective
can be split into two distinct sections - the first is the generation of fixed-angle trajectories to multiple
co-orbital NEAs, and the second is the optimisation of these trajectories. This chapter discusses the
conclusions related to these objectives, as well as introducing some recommendations for future work.
section 3.1 presents the conclusions reached in the thesis work by answering the research questions
which were introduced in section 1.3. This is followed by recommendations regarding future research
into this area, with possible development on the findings of this thesis in section 3.2.

3.1. Conclusions
The conclusions drawn on this thesis work are divided into answers for each of the research questions
outlined in section 1.3, followed by a reflection on the findings and the thesis methodology.

1. Can solar sailing be used as a propulsion method to visit multiple co-orbital asteroids in a given
mission length, and if so, how many asteroids can be visited?

The planned NEA Scout mission shows that solar sailing can theoretically be used as an effec-
tive propulsion method to visit a NEA [27]. Further, conceptual mission designs have shown
that solar sailing can be used to visit multiple NEAs in a single mission, reducing the cost and
increasing the scientific return of the mission [31, 32]. A theoretical solar sailing mission has
also been designed to the quasi-satellite, co-orbital asteroid, 2016 HO3 [29]. This past research
suggests that solar sailing is a suitable propulsion method to visit multiple co-orbital asteroids,
however to date there have been no missions designed or proposed to investigate this possi-
bility. Thus, the research carried out in this thesis aimed to further investigate the use of solar
sailing for this purpose.
The second element of this research question aims to investigate how efficient a solar sailing
mission to multiple co-orbital NEAs can be. This efficiency refers to the number of encounters
that can occur within a given mission lifetime. The developed sequence selection algorithm
which generates trajectories to multiple co-orbital NEAs with fixed cone and clock angles for
each transfer was capable of generating a trajectory with 18 encounters in just over 9 years,
which is an encounter on average every six months. This value is found with limited tuning of the
algorithm parameters, however it could conceivably be increased by running more simulations
with a larger range of seed values and different parameter settings.

2. Which of the co-linear artificial Lagrange points, SL1 or SL2, provides an initial position for more
optimal trajectories?

Both of the co-linear Artificial Equilibrium Points (AEPs), SL1 and SL2, were investigated in
this thesis to analyse their suitability as departure locations. These were selected initially to
investigate as there are upcoming planned missions to both the L1 and L2 Lagrange points
which could be used as a ride-share.
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46 3. Conclusions and Recommendations

An initial search space analysis was performed on combinations of cone and clock angles when
departing either the SL1 and SL2 point. This analysis determined that there is only a narrow
’window’ of suitable combinations from SL2 that do not intercept the Earth, whereas SL1 has
a wide range of possible combinations. This allows trajectories from SL1 to encounter a wider
range of targets, thus leading to trajectories with more encounters along the entire mission.
Therefore, a ride-share on a mission to the L1 point, such as NASA’s Interstellar Mapping and
Acceleration Probe (IMAP) mission to L1 in 2025 [34], would provide a more suitable starting
location for the mission. As proven in the journal article, the SL1 point provides a much larger
number of fly-bys than the SL2 point and is therefore selected as the initial location for the full
trajectory.
An initial search space analysis was performed on combinations of cone and clock angles when
departing either the SL1 and SL2 point. This analysis determined that there is only a narrow
’window’ of suitable combinations from SL2 that do not intercept the Earth, whereas SL1 has
a wide range of possible combinations. This allows trajectories from SL1 to encounter a wider
range of targets, thus leading to trajectories with more encounters along the entire mission.
Therefore, a ride-share on a mission to the L1 point, such as NASA’s Interstellar Mapping and
Acceleration Probe (IMAP) mission to L1 in 2025 [34], would provide a more suitable starting
location for the mission.

3. How do the relative fly-by distances and velocities compare for a fixed-angle control law and an
optimised control law?

A full trajectory is generated with the developed sequence selection algorithm. This trajectory
uses a fixed-angle control law for each transfer between asteroids, and considers a fly-by to
have occurred when the spacecraft comes within 5×105 km of a target, with no bounds on the
fly-by velocity. The first leg of the generated full trajectory is then optimised using pseudospec-
tral collocation methods through PSOPT.
In the results and conclusions sections of the journal article, it can be seen that implementing
PSOPT significantly improves the fly-by of the first leg. The optimised control law reduces the
relative fly-by distance from 307, 702 km to 158.73 km, which is a 99.95% reduction, while the
relative velocity was reduced from 4.7923 km/s to 4.3282 km/s, which is a reduction of 9.68%.
This is a significant improvement over the fixed-angle control law that is originally implemented
and demonstrates the importance of an optimisation stage. It is clear that the fly-by conditions
for the optimised control solution are significantly better than those for the fixed control law,
and based on these results each leg should be individually optimised for the fly-by conditions
to improve the overall mission.

These answers to the research questions display that it is feasible and suitable to use a solar sail
as a method of propulsion to visit multiple co-orbital NEAs. A solar sailing mission departing the AEP
SL1 can have 18 asteroid fly-bys within a mission duration of ten years. This mission could be used to
further analyse and classify the target asteroids, which could have research benefits for the investigation
into the early solar system, as well as aid in the development of planetary defense system and space
mining targets. The limitless propulsion available for a solar sailing mission makes it a very attractive
method for long term missions that can analyse multiple targets with one spacecraft. The overall cost
of investigating each of these targets would be significantly reduced in a mission with multiple fly-bys.

3.2. Recommendations
This section describes a range of recommendations for future work to build on the findings of this thesis.
These recommendations could improve the fly-by conditions of each asteroid as well as increase further
the number of asteroid fly-bys for a given mission time. These recommendations are split into three
categories: the dynamical model, the sequence generation scheme, and the optimisation.

• Dynamical Model

A higher-fidelity dynamical model could be implemented to more accurately investigate the
motion of a solar sail spacecraft targeting asteroids in the vicinity of the Earth. The implemented
Circular Restricted Three Body Problem (CR3BPS) assumes circular motion of the Earth-Moon
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system and the Sun around a common barycenter. In reality, however, the bodies orbit in
slightly elliptical motion. The Elliptical Restricted Three-Body Problem (ER3BP) is a slightly
more complex representation of the dynamics that accounts for this eccentricity in the orbits.
Implementing this may increase the accuracy of the findings.
Further, the CR3BPS assumes that there are no fourth-body perturbations acting on the sys-
tem. However, in reality, there will be slight gravitational attractions from the various other
bodies in the solar system. The influence of each of these bodies could be investigated to
determine if they will have a considerable effect on the motion of the spacecraft, and if so the
perturbation can be modelled as a fourth-body acceleration.
Similarly, the implemented dynamical model assumes no gravitational attraction from any of
the target asteroids. Depending on the mass of the asteroid, a close approach may perturb the
solar sail trajectory and influence the motion of the spacecraft. A similar fourth-body accelera-
tion model could be implemented for the vicinity of each asteroid to account for this influence,
should it prove to be considerable.
The research carried out in the paper assumes a ride-share to either the L1 or L2 Lagrange
points, and then assumes an initial starting location of either the SL1 or the SL2 sub-Lagrange
AEP. There is a disconnect between these Lagrange and sub-Lagrange points, and a con-
necting trajectory between L1 and SL1 is required in order to carry out the proposed mission.
Heiligers and McInnes [35] investigated solar sail trajectories between AEPs, and a similar
trajectory from L1 to SL1 could be implemented to overcome the disconnect in this research.
Finally, the solar sail acceleration model implemented in this research assumes an ideal sail
with purely specular reflection of the incident solar radiation. In reality, there will be elements
such as absorption, diffuse reflection, thermal emission [29, 36], or wrinkling [37, 38]. Each of
these components can reduce the acceleration generated by the sail from the incident solar
radiation pressure (SRP), which will have an effect on the trajectory of the spacecraft. Thus,
modelling these imperfections can lead to a more-accurate solution which accounts for realistic
influences on the performance of the sail. However, modelling these imperfections can require
more computational power, as the calculation of the acceleration of the spacecraft involves a
more complex equation with a larger number of variables, e.g. see [29]. A trade-off can be
performed to determine if it is worth including these effects.

• Sequence Generation

The sequence generation algorithm developed in this thesis project generates random control
angle values and analyses the motion of the spacecraft with these fixed settings. This algorithm
analyses only the relative position between the spacecraft and the target asteroid, and neglects
the relative velocity. As seen in the journal article section, this approach can lead to fly-bys with
quite a large relative velocity, which is sub-optimal for a rendezvous mission. The sequence
generation algorithm could be extended to include the relative velocity between the target and
the spacecraft. This could be included with a weight in order to find trajectories that minimise
both relative position and velocity.
Further, due to the large range of possible control angle values, launch date, and target as-
teroids, the algorithm can generate a different solution each time it is run with a different seed
value. The number of times the algorithm can be run is limited by computational power, but
running on a more powerful processor would increase the speed at which a solution can be
generated, and thus the algorithm can be run for a wider range of seed values producing dif-
ferent solutions. Similarly, increasing the number of random combinations to propagate and
analyse at each leg of the trajectory could increase the number of optimal fly-bys that would be
found. This is again limited by computational power. Increasing both the number of trajectories
generated for each leg and the number of times the algorithm is run could lead to an increase
from 18 in the number of possible fly-bys within the nominal ten year mission lifetime.
Finally, limited tuning was performed on the parameters of the sequence generation algorithm
that can be adjusted. Further testing and tuning of this algorithm could lead to a better combi-
nation of parameters that could generate sequences with a larger number of asteroid fly-bys.
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• Optimisation

The final section of the journal article focuses on the optimisation of the first asteroid fly-by. It
is clear from this section that the relative fly-by distance and velocity between the spacecraft
and target asteroid can be reduced using the PSOPT implementation. Thus, a clear next step
would be to further optimise each individual fly-by for the entire generated trajectory. This would
lead to a fully optimised control profile minimising the relative fly-by distance and velocity for
each target asteroid.
PSOPT can be set up to run a problem with a number of ’phases’, where each phase is opti-
mised individually and the optimisation process also ensures there are no disconnects between
phases, i.e. the end state of one phase matches the initial state of the next. In the journal arti-
cle research this process is performed manually, first optimising the fly-by and then using the
results for the second leg. The problem could be extended to include both legs as phases and
then the entire fly-by with both legs could be optimised as one solution. This is more complex
to set up. In theory, with sufficient time and processing power, the entire 18 fly-by trajectory
could be set up as 18 different phases in a single PSOPT problem, and the software could
optimise the entire trajectory as one solution.



A
Verification and Validation

This chapter discusses the verification and validation performed on the developed models and numeri-
cal techniques used throughout this thesis. These models and techniques are those used to obtain the
solar sailing trajectories to multiple near-Earth asteroids presented in this thesis work. The dynamical
model representing the Circular Restricted Three Body Problem (CR3BP), the solar sail model, and the
target asteroid model are developed and verified in section A.1. The numerical integration scheme se-
lected for use in this thesis is developed in section A.2. Finally, section A.3 discusses the optimisation
methods utilised in the final stage of this thesis.

A.1. Dynamical Model
The mission design in this thesis focuses on developing a solar sailing trajectory to multiple co-orbital
near-Earth asteroids. The dynamical framework used in this thesis that governs the motion of a solar
sailing spacecraft is the solar sail augmented Circular Restricted Three Body Problem (CR3BPS). A
dynamical model representing this CR3BPS is developed in MATLAB(R), first without a solar sailing
acceleration then including it.

A.1.1. Circular Restricted Three-Body Problem
The CR3BP describes the motion of an infinitesimally small body 𝑚 under the gravitational influence
of two primary bodies 𝑚1 and 𝑚2, which orbit their common center-of-mass in perfect circles [39]. The
mass of the first primary body, the Sun, is taken as 𝑚1 = 1.9886×1030 kg, while the mass of the Earth
is taken as 𝑚𝐸 = 5.9736 × 1024 kg, and the mass of the Moon is taken as 𝑚𝑀 = 7.348 × 1022 kg [40].
The Earth-Moon system is assumed to be a single body within the CR3BP and CR3BPS implemented
in this thesis, so the mass of the second primary body, 𝑚2, is taken as 𝑚2 = 𝑚𝐸 +𝑚𝑀.

The units of mass, distance, and time are normalized in the CR3BP and CR3BPS. The unit of mass
is taken as the total mass of the system, i.e. 𝑚1 +𝑚2 = 1. Introducing the mass ratio 𝜇 = 𝑚2

𝑚1+𝑚2
, the

masses of the Sun and Earth-Moon system become 𝑚1 = 1 − 𝜇 and 𝑚2 = 𝜇, respectively. This leads
to a mass ratio value of 𝜇 = 3.04086372908265 × 10−6.

A dynamical representation of the CR3BP is developed in MATLAB(R). To verify the correct imple-
mentation, the equilibrium (Lagrange) points of this system can be found. These points are locations
where the third body, 𝑚, when placed at rest, will have a net acceleration of zero. This means the
gravitational and centripetal accelerations acting on the third body, 𝑚, are balanced.

The acceleration of a body within the CR3BP is given by [29]

r̈+ 2𝝎 × r = −∇𝑈 (A.1)

where r = [𝑥, 𝑦, 𝑧]𝑇 is the position vector of 𝑚 in the synodic reference frame 𝐶(𝑥, 𝑦, 𝑧), 𝝎 = [0, 0, 1]𝑇
is the angular rotation vector of the reference frame, and 𝑈 is the effective potential. Assuming the
infinitesimally small body, 𝑚, in the CR3BP has zero initial velocity or acceleration, the acceleration of
this body can be reduced to r̈ = −∇𝑈 = 0. The fzero.m function inMATLAB(R) is used to find where the
total acceleration (the sum of the gravitational acceleration and centripetal acceleration) of the bodies
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50 A. Verification and Validation

is zero for the three co-linear Lagrange points, while the two triangular Lagrange points can be found
analytically. The calculated locations in dimensionless units of these Lagrange points are shown in
Table A.1. To verify the correct implementation of the fzero.m function and the analytical solution for
the triangular points, the acceleration of a body placed at each of these equilibrium points is calculated.
These accelerations are also shown in Table A.1, and these can be seen to be either zero or negligible
for all points. This verifies that these calculated points are equilibrium points.

Table A.1: Calculated Lagrange point locations and accelerations.

x [-] y [-] z [-] 𝑎𝑥 [-] 𝑎𝑦 [-] 𝑎𝑧 [-]
L1 1.010075688 0 0 3.538836E-16 0 0
L2 0.989985500 0 0 3.295975E-16 0 0
L3 -1.000001267 0 0 -3.543357E-16 0 0
L4 0.499996959 0.866025404 0 -3.540661E-17 -3.482208E-17 0
L5 0.499996959 -0.866025404 0 -3.540661E-17 3.482208E-17 0

The Lagrange points within the Sun-(Earth+Moon) CR3BP can be seen in Figure A.1.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

x [-]

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

y
 [

-]

L1 L2L3

L4

L5

Sun

Earth + Moon

0.98 1 1.02

-0.01

0

0.01

L1 L2

Figure A.1: Lagrange points in the Sun-(Earth+Moon) CR3BP.

The implementation of the model can be compared to literature to verify that it has been correctly
developed. To verify this, a value from literature is used for the mass ratio and the Lagrange points
of this system can be found. Prado [41] uses a mass ratio value of 𝜇 = 0.0000030359 and finds the
locations of Lagrange points within this system. This mass ratio value is introduced to the developed
dynamical model and the Lagrange points are found in the same manner as above. These Lagrange
points in the literature [41] as well as the calculated points are provided in Table A.2. It can be seen that
these values match perfectly for the co-linear Lagrange points thus verifying the implementation, and
for the triangular points the only difference is a slight rounding difference at the sixth decimal place. It
can be assumed that this difference is negligible. Thus, the implementation of the dynamical model is
shown to be correct.

A.1.2. Solar Sail Model
After development and verification of the CR3BP model, the solar sail augmented CR3BPS is devel-
oped. The introduction of a solar sail allows for the generation of further equilibrium points not limited
to the Lagrange points in the classic CR3BP, known as AEPs. These AEPs depend on the lightness
number of the sail, 𝛽, and the sail orientation.

To verify the implementation of the solar sailing model, AEPs can be generated and compared
to values available in literature. The locations of the traditional Lagrange points L1 and L2 can be
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Table A.2: Comparison of Provided and Calculated Lagrange point locations.

Provided Values [41] Calculated Values
x [-] y [-] x [-] y [-]

L1 1.0100702 0 1.0100702 0
L2 0.9899909 0 0.9899909 0
L3 -1.0000013 0 -1.0000013 0
L4 0.4999969 0.8660254 0.4999970 0.8660254
L5 0.4999969 -0.8660254 0.4999970 -0.8660254

shifted with the introduction of a solar sail. Farrés et al. [42] provides locations of co-linear AEPs,
SL1and SL2, for varying sail lightness numbers. The mass ratio1 used to calculate these values is
𝜇 = 3.04042340206596 × 10−6. These provided values and those calculated using the developed
MATLAB(R) code for the thesis are provided in Table A.3, where 𝑥𝑆𝐿1 and 𝑥𝑆𝐿2 are the values of the
𝑥−coordinate of the AEPs SL1 and SL2, respectively. It can be seen that the calculated values match
those in the literature exactly, which verifies the implementation of the solar sail acceleration model.

Table A.3: Artificial Lagrange point 𝑥−locations provided in [42] and those calculated using the developed MATLAB(R) code.

Provided in [42] Calculated using MATLAB(R) code
Lightness number 𝛽 [-] 𝑥𝑆𝐿1 [-] 𝑥𝑆𝐿2 [-] 𝑥𝑆𝐿1 [-] 𝑥𝑆𝐿2 [-]
0.01 0.98873101897 1.00908250142 0.98873101897 1.00908250142
0.02 0.98716671573 1.00827979413 0.98716671573 1.00827979413
0.03 0.98525423949 1.00762463476 0.98525423949 1.00762463476
0.04 0.98299017728 1.00708319765 0.98299017728 1.00708319765
0.05 0.98040996743 1.00662972805 0.98040996743 1.00662972805

Further, the stability of these AEPs can be analysed by linearising the dynamical system, develop-
ing a Jacobian matrix, and calculating the eigenvalues (±�̃�, ±𝑖�̃�𝑖) of this Jacobian. The eigenvalues
associated with the Jacobian of the linearised system at the AEPs in Table A.3 are provided2. Similarly,
these eigenvalues are calculated in the MATLAB(R) code. These provided eigenvalues and those cal-
culated are given in Table A.4. It can be seen that the provided and calculated values match exactly,
thus verifying the implementation of the linearisation of the dynamics of the system. The calculated
eigenvalues have associated eigenvectors which are used to develop initial trajectories of the solar
sail spacecraft. The method of calculating the eigenvectors has been verified, thus the associated
eigenvectors are also verified.

Table A.4: Eigenvalues of AEPs

Provided Values
𝛽 𝑥𝑆𝐿1 �̃� �̃�1 �̃�2 𝑥𝑆𝐿2 �̃� �̃�1 �̃�2
0.01 0.98873 2.1408 1.8554 1.7779 1.0091 2.8875 2.3087 2.2421
0.02 0.98717 1.7847 1.6576 1.5745 1.0083 3.3052 2.5763 2.5152
0.03 0.98525 1.4763 1.4992 1.4122 1.0076 3.7303 2.854 2.7979
0.04 0.98299 1.2231 1.3818 1.2926 1.0071 4.1581 3.1376 3.086
0.05 0.98041 1.0259 1.3011 1.2107 1.0066 4.5854 3.424 3.3764

Calculated values from MATLAB(R) code
𝛽 𝑥𝑆𝐿1 �̃� �̃�1 �̃�2 𝑥𝑆𝐿2 �̃� �̃�1 �̃�2
0.01 0.98873101897 2.14076 1.8554 1.7779 1.00908250142 2.88751 2.3087 2.2421
0.02 0.98716671573 1.78466 1.6576 1.5745 1.00827979413 3.30517 2.5763 2.5152
0.03 0.98525423949 1.47628 1.4992 1.4122 1.00762463476 3.73030 2.8540 2.7979
0.04 0.98299017728 1.22313 1.3818 1.2926 1.00708319765 4.15807 3.1376 3.0860
0.05 0.98040996743 1.02589 1.3011 1.2107 1.00662972805 4.58536 3.4240 3.3764

1Provided by Jeannette Heiligers, co-author of [42]
2See footnote 1
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While Lagrange points in the CR3BP are limited to three co-linear points and two triangular points,
the introduction of a solar sail allows AEPs to exist outside of these locations. By varying the clock
and cone angles of the solar sail, regions of AEPs with varying lightness numbers can be developed.
Farrés and Jorba [43] developed regions of AEPs for varying lightness numbers around the Sun-Earth
L1 and L2 points. These regions can be seen for lightness number values of 𝛽 = 0.01 to 𝛽 = 0.05 in
Figure A.2a. Note, in A.2a, the Earth is placed at [(𝜇 − 1), 0, 0]𝑇 and the Sun is placed at [𝜇, 0, 0]𝑇
in the system. Other than this convention, the dynamics and results will be the same as placing the
Earth and Sun at [(1 − 𝜇), 0, 0]𝑇 and [−𝜇, 0, 0]𝑇 respectively. The thesis code is adapted to adopt this
convention, and Figure A.2a is reproduced as can be seen in Figure A.2b. It can be seen that the figure
is reproduced exactly, thus verifying this element of the thesis dynamical model. Note that the axes in
Figure A.2b have different scales, which are chosen to match the figure provided exactly.

(a) Regions of AEPs for varying lightness numbers [43]. (b) Regions of AEPs produced by the thesis code.

Figure A.2: AEP contours
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A.1.3. Asteroid Models
A database of the target asteroids is obtained from NASA’s Jet Propulsion Laboratory (JPL) Horizons3
system. The motion of each asteroid is obtained in a vector table for increments of one day over a
20 year period from 2023-2043. These vector tables include the position and velocity vectors of the
asteroids in the J2000 inertial reference frame. The dynamical model in this project is given in the Sun-
Earth synodic reference frame, so a reference frame transformation is required to model the motion
of the asteroids in this synodic reference frame. The positions of the asteroids are rotated around an
angle based on the right ascension of the ascending node Ω, the argument of periapsis 𝜔, and the true
anomaly 𝜃 of the Earth. For two-body motion the values of Ω and 𝜔 are fixed, and this assumption
is valid in this thesis due to the assumption that the solar sailing spacecraft exerts no gravitational
influence on the two larger masses. This more closely represents a circular orbit with no perturbations.
After this rotation is performed, the x-coordinates of the asteroids are shifted by −𝜇 to account for the
origin of the synodic reference frame not being at the center of the Sun.

Heiligers et al. [29] provide the trajectory of asteroid 469219 Kamo‘oalewa (2016 HO3) in a synodic
Sun-Earth reference frame. The developed thesis code to transform the motion of the asteroids is
tested on this asteroid over the same time period, 1960-2020. The motion of the asteroid as developed
by Heiligers et al. [29] is provided in Figure A.3a. This motion is recreated with the developed thesis
code and can be seen in Figure A.3b. It can be seen that these figures match, and thus the integration
of the asteroid models into the synodic Sun-Earth reference frame has been verified.

(a) Motion of Asteroid 2016 HO3 [29].
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(b) Motion of Asteroid 2016 HO3 from the developed MAT-
LAB(R) code.

Figure A.3: Asteroid 2016 HO3.

3Jet Propulsion Laboratory. Small Body Database. Available at https://ssd.jpl.nasa.gov/horizons/ [Access Date:
13 June 2022]

https://ssd.jpl.nasa.gov/horizons/
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A.2. Integration Scheme
Through [33], it was determined that a Runge-Kutta 4(5) integrator would be suitable as it has both
accuracy and speed of computation. This integrator is implemented directly in MATLAB(R) through
the supplied ode45.m function. The implementation of this integrator in the thesis project and more
specifically with the CR3BP is tested through propagation of CR3BP Halo orbits. Howell [44] performed
extensive research on periodic orbits in the CR3BP and provides initial conditions for some Halo orbits.
Initial conditions for a Halo orbit in a system with a mass ratio of 𝜇 = 0.04 are provided as follows [44]

x0 = [r0 ṙ𝑜]
𝑇 = [1.092791 0 0.309254 0 − 0.281140 0]𝑇 (A.2)

where x0 = [r0 ṙ0]
𝑇 is the initial state of the spacecraft at time 𝑡0. Testing is performed on these initial

conditions, by propagating the initial conditions forward in time for ten years with varying tolerance
values, to determine a suitable tolerance. Ten years is chosen as this is the upper limit of the mission
length considered in this thesis project.

The initial state provided, x0, lies on the 𝑥 − 𝑧 plane. The state vector of the spacecraft within
this Halo orbit is calculated when it crosses this plane after ten years and compared to the provided
initial state. The difference with respect to the initial conditions is used to measure the accuracy of the
integrator.

The results of this testing can be seen in Figure A.4, and it can be seen a tolerance of 10−9 provides
a balance of numerical accuracy and computational time. Using a lower tolerance increases the run
time required for the problem without increasing the accuracy of the results.
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Figure A.4: Integrator Tolerance Testing

The developed dynamical model is then propagated forward for ten years using the provided initial
conditions with a tolerance of 10−9. It can be seen in Figure A.5 that there is little deviation from the
Halo orbit with these provided initial conditions when propagated forward in time. The total deviation
after ten years is 7.6959 × 10−4 from the initial condition. Therefore the integration scheme can be
considered verified.
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Figure A.5: Halo orbit with initial conditions provided by Howell [44].

A.3. Optimisation
The optimal control problem developed in the thesis is solved using PSOPT, an open-source direct
pseudospectral method implemented in C++ [45]. PSOPT has been used for the optimisation of solar
sailing missions in previous studies [29, 36, 42]. The implementation of the dynamical model in C++
is verified by comparing sample inputs to the developed MATLAB(R) implementation which produces
the same output. The implementation of PSOPT is tested and verified by generating sample problems
with known solutions and checking if PSOPT can reach these known solutions. PSOPT requires an
initial guess as input to solve the optimal control problem. The PSOPT installation includes a number
of sample optimisation problems. A small number of these sample problems are initially implemented
to verify that PSOPT has been installed correctly.

Verification of a solar sailing problem implementation in PSOPT is performed by developing a rel-
atively simple initial control problem. This is in the form of a minimum control effort problem, which
is developed as follows. A known optimal trajectory with fixed cone and clock angles of 𝛼 = 30∘ and
𝛿 = 0∘ is propagated forward in time for one year with the developed MATLAB(R) code. The initial state
of the solar sail, x0, is selected randomly as

x0 = [0.95, 0.2, −0.1, 0, 0, 0]𝑇 (A.3)

A similar trajectory with fixed cone and clock angles of 𝛼 = 35∘ and 𝛿 = 0∘ is also propagated
forward in time for one year with the same initial state to be used as the initial guess. The bounds for
the initial and final states set equal to those found in the known optimal trajectory, and the initial and
final time bounds are set to exactly zero and one year respectively. PSOPT is set up to minimise the
objective function, 𝐽, as follows

𝐽 = ∫ |𝛼𝑜𝑢𝑡 − 𝛼𝑡𝑎𝑟𝑔𝑒𝑡| (A.4)

where 𝛼𝑜𝑢𝑡 is the cone angle output at each node from PSOPT, and 𝛼𝑡𝑎𝑟𝑔𝑒𝑡 is the known target cone
angle. In this case 𝛼𝑡𝑎𝑟𝑔𝑒𝑡 = 30∘. The integral symbol, ∫ indicates that this is an integrand cost function,
evaluated at each node.

This problem is implemented as described in PSOPT, using a consecutive mesh refinement of 50,
100, and 150 nodes, and a tolerance of 10−6. Figure A.6 displays the trajectories of the initial guess,
the known optimal solution, and the PSOPT solution. It can be seen that the initial and final states of
the PSOPT solution match the initial and final states of the known optimal solution exactly. Further,
the control angles for the initial guess and the PSOPT solution can be seen in Figure A.7. It can be
seen that the output cone angle 𝛼𝑜𝑢𝑡 matches the target cone angle of 𝛼 = 30∘. For this problem, no
constraints or bounds were placed on the clock angle. The PSOPT solution contains a time-variable
clock angle, 𝛿𝑜𝑢𝑡, which can be seen in Figure A.7.
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Figure A.6: PSOPT verification problem trajectories.

As all of the constraints placed on the problem are satisfied and the output cone angle, 𝛼𝑜𝑢𝑡, matches
the target, the PSOPT solution found here is considered an optimal solution even though it does not
match exactly with the known optimal input. As PSOPT converges to an optimal solution as desired,
the implementation of a solar sailing optimal control problem is considered verified.
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