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Abstract

Links play a significant role in the functioning of a complex network. The aim of this thesis is to study
the links in a weighted network by introducing two new concepts. The link betweenness centrality of
a link is defined as the fraction of shortest paths between all pairs of nodes in a graph that traverses
that link. Although link betweenness is a widely known measure that characterizes the link, we
introduce the concept, link weight tolerance, to understand the extent to which the weight of the link
can be increased or decreased such that the shortest paths in the graph are unaffected, therefore
the link betweenness of the links remain the same. We develop a method to generate the positive
and negative tolerance of a link. We use examples to illustrate the algorithm and discuss the results.
Prior to introducing this concept, in addition to surveying existing network theory measures, we also
analyse the metric, betweenness centrality and describe the methods used to generate weighted and
unweighted random graphs. To extend the concept of link betweenness, we introduce the second
concept, link tension. Link tension provides the information related to the ability of the link to handle
transmission of data and shows us the links that are important in a network.
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1
Introduction

Various models in nature and society can be visualized as a graph network. A graph is simply a
representation of real-world system as a mathematical model, where quest for a path between two
nodes in a graph is few of the problems that is usually observed. The criteria for optimality are quite
often evaluated in terms of the weights that are associated with the links of the graph. When data
flows through the network, it causes load on each of the nodes and links called betweenness. The
betweenness of a node or a link depends on the shortest path between each node pair in a graph
where, the shortest paths rely on the link set and the link weights. When a link weight changes,
this may affect the shortest path between the node pairs. Each link has a tolerance zone and the
link weight may vary within the tolerance boundaries without affecting the shortest path between the
node pairs.

Nodes have always been the most common entity to be studied in a network compared to the
links. Identifying and understanding critical nodes and links is an important issue. Based on the
location and who they are connected with, nodes and links can have different importance. Studying
the importance of links in a network can help in identification of links that could be susceptible or
vulnerable to attacks. In this thesis therefore, we introduce two new concepts related to links in a
weighted network: weight tolerance of a link and link tension.

1.1. Research Question
The aim of the thesis is to define and develop a method to determine the link weight tolerance for
a single link. The link weight tolerance for a single link indicates how much the weight of that link
may vary without affecting the shortest paths for all node pairs. The thesis is developed by building
a strong graph theoretic study by constructing various models of random graphs and obtaining var-
ious distribution of few graph measures. As discussed earlier, links in a weighted network are least
explored. A change in the link weight may affect a shortest path in the network, therefore affecting its
link betweenness measure. To understand the extent to which the weight of a link can be changed
to maintain the same shortest paths, brings us to the following research questions:

• How can we determine the positive and negative link weight tolerance for a single link?

• What is the relation between link betweenness and link weight tolerance? When we have the
link betweenness, does that tell us how weight-tolerant that link is.

Further, to understand the transmission of data through links in a weighted network, we define a new
metric, link tension. Link tension is the product of link betweenness and weight of a link, which brings
us to the secondary research question

• What does the measure link tension tell us about a link ?

1.2. Thesis Outline
Chapter 2 contains a review and a discussion of few graph measures from complex network theory
for unweighted and weighted graphs. This chapter also covers the previous work done on the mea-
sures including, betweenness centrality. Chapter 3 is about graph theory, which introduces various

1



2 1. Introduction

terminology related to a graph. The first section, Section 3.1, gives a formal definition of a graph
and types of graphs. In section 3.2, types of regular graphs is discussed. The discussion of regular
graphs is followed by directed and undirected graphs, weighted and non-weighted graphs in sec-
tion 3.3 and 3.4 respectively. Section 3.5 is an exposition of a few other graph measures, which
characterizes the graph. In section 3.6, three classical random graph models - Erdos Renyi random
graph, Small world graph, Scale free graphs are reviewed prior to their generation which is discussed
in chapter 5. Chapter 4 provides an extensive description of the measure betweenness centrality.
Section 4.1 provides the definition for node betweenness. Section 4.2 explains link betweenness
and section 4.3 describes betweenness centrality in weighted networks. In Section 4.4, variants of
betweenness centrality are discussed. Its application in various fields are also discussed. Chapter
5 is dedicated to the generation of graphs. This chapter has three main sections describing the con-
struction of three important graph models as three types - unweighted graphs, directed graphs and
weighted graphs. Alongside its construction various distributions for the three classes of graphs are
also generated. Chapter 6 introduces a new concept, link weight tolerance. This chapter describes
the algorithm used to obtain the weight tolerance of a link in a graph and uses an example to describe
it. Chapter 7 introduces another new concept - link tension. A formal definition is provided for the
metric. Distribution for this metric is obtained for all three classes of the graph. Lastly, Chapter 8 pro-
vides the conclusions which consists of the contributions made through this thesis and the possible
future work.



2
Literature Survey

The purpose of this chapter is to provide some background and insight into the metrics of non-
weighted and weighted complex networks, with emphasis on its existing work alongside its rela-
tionship between the topology and dynamical behavior of such complex networks. Betweenness
centrality is one such measure that is often used in social and computer communication networks
to analyze and understand the behaviour of the network. In this chapter, along with betweenness
centrality, a few other metrics are also discussed.

Complex networks come under the territory of graph theory and have been extensively studied in
the past few years. In the past decade, research in complex networks has taken various directions
and has witnessed massive growth as networks with regular, irregular shapes and various structures,
sizes with thousands to millions of nodes have been analyzed. Watts and Strogatz’s (WS) interpre-
tation on small world networks which was published in 1998 [13] followed by Barabási and Albert’s
work on scale-free networks [12] have paved the way for studies on properties of real world networks.
Some of the real world networks include the World Wide Web, neural networks, metabolic networks,
social networks, telephony networks and transportation networks. A set of unexpected results have
been obtained when networks from areas were compared and analysed, one of the significant issues
is related to the structure of the network. Research has been conducted to define new measures and
concepts to distinguish the topology of real world networks. To execute this, unifying and common
principles besides the statistical properties of the real world networks were identified. Correlations
in node degree also helps in distinguishing real world networks which can be achieved with shortest
paths between any two nodes. Degree of a node is the number of links that are connected to it from
the other nodes. For a node i, its degree can be given as

𝑘። = ∑
።,፣∈ፍ

𝑎።፣ (2.1)

where

𝑎።፣ = {
1, if a link exists between nodes i and node j
0, otherwise

where 𝑎።፣ is an element of adjacency matrix A which is used to represent a finite graph (a graph with
finite number of nodes and links) G.

Probability distribution of these degree over the entire network is the degree distribution (D) of
the graph. Each node has various connections. The degree of a node tells us whether it is central
or not, i.e. whether the node is more connected or not. However, nodes with smaller degree could
also be crucial as such nodes could connect different regions of a network. Network characterization
is affected by the most central nodes making their identification necessary. Network modelling has
become significant after such empirical findings, leading to modelling of network growth in real world
topology to have a better understanding of its evolution and dynamic behaviour. The distribution
function P(k) characterizes the spread in the node degree which provides a probability for a node
with k links that was selected at random. Maximum of the nodes in a random graph have the same
degree approximately similar to the average degree k due to the random placement of the links. For
random graphs in particular, the degree distribution shows a Poisson distribution making a peak at

3



4 2. Literature Survey

k (average degree). But the degree distribution for some other complex networks like the internet,
World Wide Web deviates from the Poisson distribution to a power law tail. For a Watts Strogatz
small world model, each node has the same degree k given p=0. When p is non zero, a disorder
is introduced in the network which in turn broadens the degree distribution but the average degree
remains equal to k.

In some models [22], [16], [17], [18], there is no systematic method for analysing degree distribu-
tion as they assume the node number with degree to be continuous. For networks with multiple links
and loops, Bollobas et al. [24] provided a rigorous method to solve degree distribution. However,
the method is applicable only for networks with multiple links and loops. For uncorrelated networks,
its statistical properties are determined by the degree distribution. But, in several cases of real world
networks, they are correlated, making introduction of conditional probability 𝑃(𝑘ᖣ ∣ 𝑘) necessary [25].
This conditional probability can be defined as the probability of a link from a node with degree k
pointing to a node of degree k’.

In social networks, each link has a particular strength and weighted links carry essential informa-
tion related to a network. The weight of a link has the potential to affect the connectivity of a network
which is further explored through this thesis. Cases of complex networks where their link weights
are known, helps to establish a better overview of the system. Weight or cost of a link is its associ-
ated numerical value which aids in representing a graphical structure. Yook et al. [65] presented a
weighted network model where preferential attachment drives the connection weights, connectivity
of the nodes and the structure of the network. A weighted evolving network model was proposed by
Zhang et al. It [66] suggests assignment of stochastic weights to the links. For a weighted network,
the degree of a node (𝑘።) is protracted to weighted degree or strength (𝑠።) of a node which is the sum
of the weights of all links incident to node i.

𝑠። = ∑
።∈(።)

𝑤።፣ (2.2)

where 𝑤።፣ is the weight of the link between node i and node j. The connectivity and weight of the
links is taken into account by this metric. The degree distribution of a weighted network is similarly
extended to strength distribution P(s), which can be defined as the probability of a node that its
strength is s. Barrat et al. in [74] indicates that the strength distribution also obeys power law,
𝑃(𝑠) ∼ 𝑠ዅፚ, where a is a constant.

Watts and Strogatz [13] introduced the concept of clustering coefficient (C) in 1998 to ”quantify
the structural properties” of a graph which can be further defined as the measure of the extent to
which the nodes tend to cluster together. Let us consider a graph G=(N,L) where N is the set of
all the nodes in the graph and L is the set of all the links (𝑥 ∼ 𝑦) in the graph. Let us define three
nodes x, y and z where (𝑥 ∼ 𝑦) belongs to L and (𝑦 ∼ 𝑧) belongs to L, the clustering coefficient
gives the likeliness that (𝑥 ∼ 𝑧) also belongs to L. Newman defined another version of this metric
known as the global clustering coefficient [42]. Triplets of nodes make up this metric. This triplet is
formed by three nodes that are connected either to two or three links that are undirected. Clustering
coefficient is the ratio of the number of triplets that are connected by three links to the total number
of the triplets. Luce and Perry (1949) made the first attempt to measure this metric [44].

𝐶 = 3𝑥𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑇𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑠
𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑇𝑟𝑖𝑝𝑙𝑒𝑡𝑠 (2.3)

On the other hand, the local clustering coefficient is developed on the basis of local density [45]
[46]. To determine whether a graph exhibits small world network properties, Watts and Strogatz
used this metric to measure it. The clustering coefficient in random graphs is C=p when the links are
distributed at random. In comparison to the random networks, the clustering coefficient of the real
world networks is higher [47]. In random networks, probability that two neighbours of a particular
node are connected is equal to the probability that two nodes are selected at random. Clustering
coefficient in the case of regular lattice (p=0) depends only on the topology and not on the size of
the lattice. Barrat in 2000 [14] introduced a different definition of C based on the dependence of
clustering coefficient on p. The definition of clustering coefficient C(p) is described in [14] as the
ratio of number of links between the neighbours of a node to the average number of links possible
between those neighbours.
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Variants of Weighted Clustering Coefficient Author

Cፋ Lopez-Fernandez et al. [69]
Cፁ Barrat et al. [74]
Cፙ Zhang et al. [67]
Cፎ Onnela et al. [70]
Cፒ Serrano et al. [71]
Cፇ Holme et al. [72]

Table 2.1: List of variants of weighted clustering coefficients

Although clustering coefficient have been defined only for non-weighted networks, few authors have
generalized clustering coefficient to take link weights into consideration. Table 2.1 lists the variants
of weighted clustering coefficients and their respective authors. Lopez-Fernandez et al. [69] in 2004
defined a clustering coefficient for weighted networks without normalizing the weights.

𝐶ፋ፰,። = ∑
፣,፤∈(።)

𝑤፣፤
𝑘።(𝑘። − 1)

(2.4)

where 𝑤፣፤ is the weight of the link connecting the nodes j and k, 𝑘። is the degree of node i. Barrat et
al. (2004) [74] proposed a formula which was used for scientific collaboration networks and airports.
The weights in [74]’s formula is not normalized.

𝐶ፁ፰,። =
1

𝑠።(𝑘። − 1)
∑
፣,፤

𝑤።፣ +𝑤።፤
2 (𝑎።፣𝑎፣፤𝑎፤።) (2.5)

where ፰ᑚᑛዄ፰ᑚᑜ
ኼ is the average of the weights of the links between node i and its neighbours j and k.

In the definition provided by Zhang et al. (2005) [67], the weights used are normalized.

𝐶ፙ፰,። =
∑፣ ∑፤ 𝑤።፣𝑤፣፤𝑤፤።

(∑፣ 𝑤።፣)ኼ − ∑፣(𝑤።፣)ኼ
(2.6)

As per Onnela et al. (2005) [70], the definition of clustering coefficient is,

𝐶ፎ፰,። =
𝑤።፣𝑤፣፤𝑤

Ꮃ
Ꮅ
፤።

𝑘።(𝑘። − 1)
(2.7)

where (𝑤።፣𝑤፣፤𝑤፤።)
Ꮃ
Ꮅ is the intensity of the triangle ijk. Geometric mean of the link weights is put to

use in this formula. A different version of Lopez-Fernandez formula was proposed by Li et. al. in
2005 [73]. In the Serrano et al.’s (2006) version [71],

𝐶ፒ፰,። =
∑፣ ∑፤ 𝑤።፣𝑤።፤𝑎፤፣
(𝑠።)ኼ(1 − 𝑌።)

(2.8)

where 𝑌። = ∑፣(
፰ᑚᑛ
፬ᑚ
)ኼ is named as the disparity. Similar to non-weighted clustering coefficient, this

formula has a probabilistic interpretation as it makes use of average weights along with the degree
of the node. Holme et al. [72] proposed a similar definition as Zhang et al. [67] except, in [72], it is
divided by max(𝑤።፣) i.e.

𝐶ፇ፰,። =
∑፣ ∑፤ 𝑤።፣𝑤፣፤𝑤፤።

𝑚𝑎𝑥(𝑤።፣)∑፣ ∑፤ጽ፣ 𝑤።፣𝑤።፤
(2.9)

Newman and Girvan [26] introduced the definition of modularity (Q) which is used to measure
the strength of modules of a network. Modularity is the fraction of the links which comes under
a given group subtracting the likely fraction if the links were randomly distributed with a defined
probability p. Modularity defined by Newman and Girvan is to evaluate community structures in
binary networks. The modules could be of the form of graphs, clusters or communities. The value
of modularity could be either positive or negative where in positive and large values of modularity
indicate a presence of community structure. The partitioning is better when the value of modularity is
large due to the deviation from the null case. This problem has been addressed by several authors
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who have proposed various optimization heuristics [28], [29], [30], [31] as the the number of partitions
grow exponentially typically equal to the Bell or exponential numbers [32]. Modularity optimization is
a non-deterministic polynomial-time hard (NP-hard) problem [27]. Modularity optimization tends to
provide only single partition which is not sufficient for multi-scale systems and it fails to detect smaller
communities since it undergoes a resolution limit. This resolution limit does not allow all modules to
be compatible with the system architecture.

As real systems are expressed better through weighted networks, it is necessary for the com-
munity structures to take link weights into consideration. Newman suggested that modularity can be
generalized to weighted networks [82] in the following way:

𝑄፰ = 1
2𝑤 ∑

።፣
[𝑤።፣ −

𝑠።𝑠፣
2𝑤 𝛿[𝑐።𝑐፣]] (2.10)

where w is the summation of all the link weights in the network and 𝑠።, 𝑠፣ are the strength of nodes
i, j respectively. The nodes i, j belong to the community 𝑐።, 𝑐፣ respectively. A structure is called
a community when it consists of a group of nodes that are closely connected to each other but
sparsely connected to other densely connected groups in the network [83]. The formula 2.10 takes
into account link existence, describing the community in weighted networks. It can be interpreted
from formula 2.10 that, within the group the relations of nodes are close but between the groups, the
relations of nodes are distant. Through generalized modularity and community structure, definitive
divisions of networks into communities becomes possible.

When high degree nodes in a network are connected to various other nodes with high degree and
low degree nodes are connected to other low degree nodes, the network is said to be assortative.
Newman et al. introduced assortativity for undirected and non-weighted graphs in [52]. When high
degree nodes are connected to low degree nodes and low degree nodes are connected to higher
degree nodes, the network is termed as disassortative. Degree assortativity (𝜌ፃ) is expressed in
a scalar form which falls in the range [−1 ≤ 𝜌 ≤ 1]. Information about robustness, structure and
dynamic behaviour of a network is provided by this metric.

Chang et al. [78] studied assortativity for weighted networks. Chang et al. in [78] used the
strength of the node for defining assortativity of weighted networks. This indicates that the nodes
with similar or opposing strength tend to bond with one another. Leung and Chu [79] also studied
assortativity for weighted networks and defined a definition for it, 𝜌፰. As observed in [79], weighted
assortativity and assortativity for the same network when weights are removed can be different. For
a single node, distribution of link weight was studied by Wang et al. [80].

There are not many studies that have proposed a quantity which can measure directly the corre-
lations of degree while including link weight. Leung et al. in [81] introduces weight evolution model
where they define the weighted assortativity coefficient, 𝜌፰ which can measure the tendency of hav-
ing a high weighted link between two nodes having similar degrees. This model also takes into
consideration the nonlinear growth of number of links, strength preferential attachment and evolution
of weights in exiting links.

Centrality is another important aspect in social networks analysis, betweenness being the most
prominent measure among them which was introduced by Anthonisse (1971) [64] and Freeman
(1977) [33]. Borgatti and Everett (2006) [62] described betweenness as a measure of mediation.
Among the few centrality measures, betweenness centrality is one of the important classes which
is used to measure the extent to which a node comes on the path between other nodes. Freeman
introduced the simplest and popular form of betweenness measure (termed simply as ’betweenness’)
that is widely used [33]. In a shortest path dependent network for flow of information, betweenness
metric can aid in the measurement of how much information will flow through a certain node or
link. Practically, in real life networks, information or anything else does not necessarily follow a
shortest path [35]. Usually, information that is flowing though a network like a message or news
follows a random path and not an ideal route to reach a destination. There has been no proof for
the participants in the experiment of the well known small world experiment of Milgram [38] and the
experiment by Dodds et al. 2003 [39] to have successfully taken a direct possible route even though
they were instructed to do so. It is therefore necessary to include a non-shortest path while measuring
betweenness for a realistic approach. When all paths or walks in a graph are considered, there is a
high probability of double counting certain links as few paths can share the same set of links. This
problem was addressed by Freeman et al. [35] by considering only link-disjoint paths, i.e. paths that
share no links.
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Instead of shortest paths, betweenness centrality based on random walks was proposed by New-
man [85]. Variants of betweenness centrality like link betweenness, group betweenness, distance-
scaled betweenness and bounded-scaled betweenness was reviewed by Brandes [86]. Apart from
reviewing betweenness centrality based on shortest paths, Brandes [86] mentions algorithms to effi-
ciently compute each of the variants and identifies the necessity to develop an efficient algorithm for
recomputation of betweenness centrality.

Wang et al. [40] studied the betweenness centrality in weighted networks and proved that the links
with smaller weight tend to carry greater traffic. Alongside this, they showed that the extreme value
index, topology structure and the strength of link weight disorder influences the negative correlation
between link betweenness and link weight. Kwangho Park et al. [41] used betweenness measure
to characterize the weighted network and introduced exponential and algebraic scaling laws which
governs betweenness as the function link weight and degree. In complex networks, these laws help
in identifying nodes that are influential in terms of physical function.

Joong Lee et al. [87] provided an efficient algorithm to update betweenness centrality by iden-
tifying a set of nodes whose betweenness centrality is most likely to change and to update the be-
tweenness centralities by using the betweenness centrality of the nodes in the set and the number
of nodes not in the set.

Although betweennessmeasure considers the global network and is capable of assessing whether
a node lies on the shortest path between two nodes, it has its limitations like at instances when the
majority of the nodes does not lie on the shortest path between any two nodes, the betweenness
score for that node is zero. Measures defined by Freeman’s work in 1978 [36] are specified only for
the binary networks (i.e. a link either exists between a a pair of nodes or not). Barrat et al. 2004 [20],
Brandes 2001 [34], Newman 2001 [43], have made several attempts to generalize Freeman’s (1978)
[36] measure which is based on the three node centrality. But the attempts made have focused only
on the link weights and not on the number of links based on which the initial measure is based. Barrat
et al. (2004) [20] extended the degree to weighted networks and defined it as the sum of the weights
of the connections to the node. Newman (2001) [43] and Brandes (2001) [34] introduced extensions
of the closeness and betweenness centrality measure which were dependent on Dijkstra’s algorithm
for the shortest path which gives a least costly path. Since these three attempts only consider the
link weight, it skips considering the number of links (ties) which is the basis of Freeman’s work. To
extend the work of betweenness, in this thesis we extend the work by introducing the concepts link
weight tolerance and link tension. Weight tolerance of a link in a weighted network could possibly
have an effect on the shortest path between two nodes and thereby on the betweenness centrality
of a node and a link.





3
Graph Theory

This chapter provides a formal definition of graphs and introduces network models and basic termi-
nology related to graph theory. Graph theory is a sub-field of discrete mathematics where graphs are
studied, which can be further applied to describe pairwise relationships between objects. Leonhard
Euler in 1735 proved the first theorem of graph theory, who also provided the solution to the Seven
Bridges of Konigsberg problem [61]. Graph theory can be used to study various real life applications,
for example - social networks, biological networks, computer networks, transportation networks etc.

3.1. Graph
A graph can be defined as G = (𝒩, ℒ), where 𝒩 constitutes the set of elements called nodes (ver-
tices), where ∣ 𝒩 ∣ = number of nodes N and ℒ ⊆ 𝑥, 𝑦 ∣ (𝑥, 𝑦) ∈ 𝑁ኼ ∧ 𝑥 ≠ 𝑦 constitutes the set of links
which connects the nodes, also known as the edges, where ∣ ℒ ∣ = number of links L. The nodes x
and y of a link 𝑥 ∼ 𝑦 are called the endpoints of the link. When a graph has an empty set of nodes
and thereby empty set of links, it is called an empty graph or a null graph. The nodes correspond to

Figure 3.1: Example of a graph

the dots in Figure 3.1, and the links correspond to the lines, with 10 nodes and 19 links. The graph
in figure 3.1 can be expressed in the form of G = (𝒩, ℒ)) as

𝒩 = {0,1,2,3,4,5,6,7,8,9}
ℒ = { (0,2), (0,4), (0,6), (0,7), (0,8), (1,6), (1,7), (1,8), (1,9), (2,4), (2,7), (2,8), (3,4), (4,7), (4,9), (5,7),
(5,9), (7,8), (8,9) }

A simple graph is a graph that is unweighted, undirected and has no self-loops or multiple links
between a node pair. A loop is a link that connects a node to itself. A multi-graph allows self loops
and multiple links i.e. links that have same end nodes, two nodes may have multiple links connect-
ing them. A generalized term for referring probability distribution over graphs is called a random

9
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graph. Description of random graphs can be easily provided by the random process that generates
the graphs or its probability distribution. Random graphs are generated by initially defining a set of
n isolated nodes and then successively adding links between the nodes in a random manner. There
are various models of random graphs which have different probability distribution on graphs which is
explained in later part of this chapter.

3.1.1. Complete graph
A graph consisting of n nodes, where every single node is connected to every other node through
a link is called a complete graph (𝐾፧). For a graph with n nodes, each node has a degree of 𝑛 − 1,
and there are ፧(፧ዅኻ)

ኼ links. The connectivity of the nodes is maximum for a complete graph as the
set of nodes that can disconnect the graph is the complete set of nodes. An empty graph is the
complement of a complete graph.

Figure 3.2: Example of a complete graph

Figure 3.2 displays an example of a complete graph with 6 nodes, where each node is connected
to five other nodes, i.e. each node has a degree of 5.

3.1.2. Bipartite graph
A graph where the set of nodes is decomposed into two independent and disjoint sets such that the
links do not connect any two nodes from the same set is called a bipartite graph. No two nodes of
the same set in a bipartite graph are adjacent to each other. In a bipartite graph when every pair of
graph nodes in the two sets are adjacent, it is called a complete bipartite graph.

Figure 3.3: Example of a bipartite graph
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Figure 3.4: Example of a complete bipartite graph

In figure 3.3, there are two set of nodes - {a,b,c} and {1,2,3,4}. The nodes from the set {a,b,c} are
only connected to the nodes from the set {1,2,3,4} and not to the nodes from the same set. Figure
3.4 displays a complete bipartite graph with two nodes in one set and four in another. Each node
from one set is connected to all the nodes from the other set.

3.1.3. Complement of a graph
A complement or inverse of a graph G is a graph 𝐺 consisting of the same set of nodes as G, but
two nodes in 𝐺 are adjacent if and only if the same two nodes are not adjacent are in G. To construct
a complement of a graph, 𝐺, all the missing links to form a complete graph is filled and all the links
that exist in G are removed. In the first subplot of figure 3.5, it represents a graph G with 6 nodes,
the second subplot represent the complement of the graph G, consisting of links between the nodes
which was absent in G.

L in G = { (0,1), (0,2), (0,3), (0,4), (0,5), (1,3), (2,3), (2,4), (4,5) }
L in 𝐺 = { (1,2), (1,4), (1,5), (2,5), (3,4), (3,5) }

Figure 3.5: Example of an undirected graph G and its complement ፆᑔ

3.1.4. Line graph
A line graph is derived from graphG by associating a node with each link of the graph i.e links in graph
G become nodes in the corresponding line graph. For a graph G, the line graph L(G) is generated by
connecting two nodes with a link only when the corresponding links of G have a node in common. In
a line graph, each node represents a link of G and two nodes become adjacent in L(G) only when the
corresponding links in G have a common endpoint. For a directed line graph L(G), the nodes belong
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to the link set of G where links are directed from 𝑙ኻ to 𝑙ኼ, where the head of 𝑙ኻ is touching the tail of
𝑙ኼ. For an undirected graph in figure 3.6 (a), figure 3.6 (b) is the undirected line graph L(G). For an
directed graph in figure 3.7 (a), figure 3.7 (b) is the directed line graph L(G).

(a) Example of a graph G (b) Line graph L(G)

Figure 3.6: Example of a Line graph with 5 nodes

(a) Example of a directed graph G (b) Example of a directed line graph L(G)

Figure 3.7: Example of a directed line graph

3.2. Regular graphs
A regular graph can be described as a graph where every node has the same degree. When a regular
graph has nodes with degree k, is termed as k-regular graph. A regular graph where every adjacent
and non-adjacent pair of nodes have same number of neighbours in common, it is called a strongly
regular graph. Figure 3.8 shows a 2-regular graph with 6 nodes. Figure 3.9 shows a strongly regular
graph with 6 nodes and each node has 3 links connected to it.

Figure 3.8: Example of a k-regular graph, k=2
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Figure 3.9: Example of a strongly regular graph with 6 nodes

3.2.1. Tree graph
A tree graph is a simple, undirected, connected and a graph with no cycle with a set of line segments
that are connected at their ends without any closed loops. Tree graphs are bipartite graph with n
nodes and n-1 links. The points at which the links connect are called fork and the segments are
called branches. The last nodes and segments at their ends are called tree leaves. A tree graph
where each node has same degree is called as a regular tree graph, while when a tree graph has
nodes with various degrees, it is called non-regular tree graph.

Figure 3.10: Example of a regular tree graph with 7 nodes

Figure 3.11: Example of an non-regular tree graph with 13 nodes

The height of a node is the number of links on the longest path from the root node (origin node)
to a leaf. A leaf node has a height of 0. The height of a tree is same as the height of its root node.
Figure 3.10 display a regular graph with height 2. Figure 3.11 displays a tree graph with 13 nodes,
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12 links and 7 leaves. The nodes that make leaves of the graph are { 11, 12, 13, 7, 8, 9, 10 }. The
height of this non-regular tree graph is 3.

3.2.2. Star graph

A bipartite graph where one node is part of one set and the rest of the nodes belong to the other set,
it forms a star graph 𝑆፧. In a star graph that comprises n nodes, n-1 nodes are connected to a single
node. A star graph is also a tree graph since it has one internal node and (n-1) leaves.

Figure 3.12: Example of a star graph with 11 nodes

In figure 3.12, a star graph consists of 11 nodes with 10 nodes connected to one node. Ten nodes
have its degree as 1 and one node has a degree as 10.

3.2.3. Circle graph

A circle or a cycle graph 𝐶፧ is a graph that has minimum of three nodes connected to each other in
a chain, with the starting node and last node connected to each other. The number of links in the
graph is equal to the number of nodes where each node has its degree as two since every node has
two links emerging from it. Figure 3.13 displays a circle graph with 8 nodes. This graph consists of a
single cycle connecting all the nodes. A directed circle graph has a directed trail as shown in figure
3.14.

Figure 3.13: Example of a cycle graph with 8 nodes
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Figure 3.14: Example of a directed cycle graph graph with 8 nodes

3.2.4. Lattice graph

A lattice graph is a regular structure constituting of nodes that are connected to specific number of
neighbours. There are various types of lattice - square lattice, ring lattice, spherical lattice, cubic
lattice. A square lattice of size n is a (𝑛 × 𝑛) two-dimensional grid which contains 𝑁 = 𝑛ኼ nodes.
Each node in a square lattice except the ones in the four boundaries, have four incident links to their
respective four closest neighbours. Figure 3.15 displays a square lattice graph with N=100.

Figure 3.15: Example of a square lattice graph with N=100

3.3. Directed and Undirected graphs

On the basis of the link orientation, graphs can be classified either as directed or as undirected. These
graphs are significant in the process of communication in a network. Let’s consider a pair of nodes
i and j to be connected by a link, and the nodes are indexed from 1 to N. The orientation of the link,
i.e. the ordering of the the pair of nodes that defines a link is not significant for an undirected graph.
If there is an undirected link connecting the nodes i and j, then the nodes i and j can communicate
with each other from either one of the nodes. The ordering of this pair is important for the directed
graph as the links have an orientation. If the link connecting the nodes i and j is directed towards
j, the communication is possible only one way from node i to node j and not in the other direction.
However, if there exists another link connecting the same nodes, directed towards node i, then node
j can communicate with node i. Figure 3.16 (a) displays an undirected graph with 5 nodes, 3.16 (b)
displays a directed graph with 10 nodes where each link is directed towards a node.
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(a) Example of an Undirected graph (b) Example of a Directed graph

Figure 3.16: Directed and Undirected graphs

3.4. Weighted and Non-weighted graphs
A graph that has links without weight associated to it, is called a non-weighted graph. Non-weighted
graphs display the relationship between two nodes in a binary form, i.e. the two nodes are either
connected or not connected. Social network is a prominent example of non-weighted graphs. When
links in a graph have a numerical value associated to it, known as weight, it is a weighted graph.
The relationship among the nodes have a magnitude in a weighted graph. A weighted graph with
every link having a non-negative number is represented in figure 3.17 (a). Figure 3.17 (b) displays a
non-weighted graph

(a) Example of a weighted graph (b) Example of a Non-weighted graph

Figure 3.17: Weighted and Non-weighted graphs

3.5. Neighbourhood
In an undirected network, two nodes are said to be adjacent if there exists a link that connects the
two nodes. In an undirected graph G, neighbourhood of node i, 𝜋። is the set of nodes in G that are
adjacent to node i. If there are two nodes i and j in a directed network, node i is said to be adjacent
to node j if there is a directed link from node i to j connecting them. If a directed link is absent from
node j to i, j is not adjacent to node i. Every node present in the neighbourhood 𝜋። is a neighbour of
of node i. In the case of a directed network, only when there is a directed link from node i to the set
of nodes j, the nodes become part of the neighbourhood 𝜋።. Links that are directed from node j to i
does not become part of the neighbourhood 𝜋።. Figure 3.18 illustrates adjacent nodes in case of a
directed link. Figure 3.19 (a) shows neighbourhood of node i in an undirected graph, figure 3.19 (b)
shows neighbourhood of node i in a graph with directed links.
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Figure 3.18: Illustration of adjacent nodes

(a) Neighbourhood of node i in undirected links (b) Neighbourhood of node i with directed links

Figure 3.19: Neighbourhood

3.6. Graph Metrics
A graph metric can be defined as topological information defined over a graph which helps in under-
standing and analysing of the graphs when they are subjected to constraints.

3.6.1. Degree, Mean degree and Degree distribution
The degree of a node i, 𝑘። is the number of links that are incident to node i. In a graph of n nodes,
a node with degree 𝑛 − 1 (maximum degree) is called the dominating node. When a node has zero
degree, it is isolated. For an undirected graph, degree of a node i can be defined as the number of
links between node i and various other nodes in the graph. For a directed graph, degree can be of
two types - in-degree and out-degree. If a link emerging from node i is going away from the node i.e.
it is directed away from node i, it is called an out-link; if the link is directed towards node i, it is known
as an in-link. In the case of a regular graph, each node has the same degree, while in a complete
graph (a simple undirected graph where every pair of distinct nodes is connected by a unique link), all
the nodes have maximum degree (n-1). To study real networks such as internet and social networks,
degree distribution plays an important role. Degree distribution provides the probability distribution
of the nodes over the entire network. The degree distribution of a network P(k) can be defined as
the fraction of nodes in the network that have degree k. In a network, among n nodes, if 𝑛፤ nodes
have degree as k, then P(k) = ፧ᑜ

፧ . For a random network modelled by Erdos and Renyi, the degree
distribution behaves like a binomial distribution [3]. Some popular networks like world wide web and
internet are found to follow a degree distribution very similar to that of Power law, 𝑃(𝑘) ∼ 𝐾ዅ᎐, where
𝛾 is a constant, with 2 ≤ 𝛾 ≤ 3.

3.6.2. Connectivity, Walk, Path
A sequence of distinct nodes such that two consecutive nodes are adjacent, makes a path. When
graph G has any two nodes in it linked by a path, it is termed as connected. A walk in the graph G
is a sequence of finite or infinite steps which connects a sequence of nodes. Here, a finite walk is a
sequence of steps (𝑙ኻ, 𝑙ኼ, ...𝑙፧ዅኻ) for a sequence of nodes (𝑛ኻ,𝑛ኼ..𝑛፧) whereas the infinite walk has a
sequence of links and nodes without the first and last node. A walk with all distinct links is known as
a trail. A path can also be defined as a trail with all distinct nodes. In a directed graph, a sequence
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of links pointing in the same direction connecting a sequence of nodes forms a directed path.

Connectivity defines whether a graph is connected or disconnected. A graph is said to be con-
nected if there exists a path between every pair of node. There must exist a path to traverse from
one node to any other node in the graph. This is called the connectivity of a graph. In general,
connectivity can be of two types: node connectivity and link connectivity. The node connectivity of
an incomplete graph can be defined as the minimum number of nodes that are to be removed to
make it disconnected. Similarly the minimum number of links that needs to be removed to discon-
nect the graph is called as link connectivity. In the case of a complete graph, going by the above
definition, node connectivity cannot be determined since deleting of the nodes does not disconnect
the graph. The robustness of the graph increases with node or link connectivity. But both these
connectivity measures do not consider the significance of the deleted nodes or links. Even though
a graph is disconnected into two or more components, it could function well if the amount of traffic
is low. Therefore, two graphs may not be equally robust though they have same the node or link
connectivity.

3.6.3. Shortest path and Average path length

Shortest path in a network provides the fastest and optimal path from a source to the destination
making it a significant aspect for effective communication in comparison to various other paths that
connect the source to the destination. All the shortest path lengths of a graph G can be represented
in a shortest path matrix 𝑋 where each entry is the length of the shortest path from node i to node
j. The largest value of the entry in the matrix is called the diameter of the graph. Mean or average
shortest path length is the mean of the shortest path lengths among the over all couple of nodes
which provides a typical measure of separation between two nodes. Network topology is quantified
by the metric average path length which aids in serving various inferences for neural networks and
their evolution. It can be simply defined as the average number of links that must be traversed in the
shortest path between any two pair of nodes i and j. This metric tends to lose its meaning for graphs
where each node is accessible from any other node in the network.

3.7. Incidence matrix and Adjacency matrix

For a graph G, the incidence matrix is a n x m matrix B with 𝑏።፤ as its elements, n and m are the
number of nodes and links respectively. Here, each row corresponds to a node and each column
corresponds to a link such that if 𝑙፤ is a link joining node i and node j, then for undirected graphs 𝑏።፤
and 𝑏፣፤ value becomes 1 and rest of the elements of column k are 0. The matrix in equation 3.1
shows an example of an incidence matrix for the simple graph (a graph that is unweighted, undirected
without any loops or multiple links) displayed in figure 3.20.

Figure 3.20: Example of a simple graph
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𝐵 =
⎡
⎢
⎢
⎣

1 1 1
1 0 0
0 1 0
0 0 1

⎤
⎥
⎥
⎦

(3.1)

An adjacency matrix or a connection matrix is a square matrix which is used to represent a finite
graph. The elements of this matrix, 𝑎።፣, indicate whether pairs of nodes are adjacent to each other
or not. For an undirected graph, the adjacency matrix is symmetric, i.e. 𝑎።፣ = 𝑎፣። and 𝐴 = 𝐴ፓ . For a
graph G, the adjacency matrix A is a n x n matrix where 𝑎።፣ = 1 if there is a link that connects node
i and node j, otherwise 𝑎።፣ = 0. This matrix consists of zeroes in the diagonal for all simple graphs
with no self loops. If the graph is weighted, a weighted adjacency matrix W is defined where the
elements of the adjacency matrix are the weights of the link 𝑤።፣ instead of 𝑎።፣. The matrix in equation
3.2 is an example of the adjacency matrix for the displayed non-weighted graph in figure 3.20.

𝐴 =
⎡
⎢
⎢
⎣

0 1 1 1
1 0 0 0
1 0 0 0
1 0 0 0

⎤
⎥
⎥
⎦

(3.2)

For the weighted graph shown in figure 3.16 (a), thematrixW in equation 3.3 is its weighted adjacency
matrix.

𝑊 =
⎡
⎢
⎢
⎢
⎣

0 5 9 0 0
5 0 7 0 2
9 7 0 1 0
0 0 1 0 0
0 2 0 0 0

⎤
⎥
⎥
⎥
⎦

(3.3)

3.8. Graph models
This section briefly introduces the various models of Random graphs. Construction of the graphs is
explained in detail in Chapter 5.

3.8.1. Erdos Renyi Random Graphs
In the year 1959, Paul Erdös and Alfrèd Reńyi were the pioneers to study Random graphs in detail
to provide a probabilistic construction for these type of graphs, popularly know as Erdös-Reńyi (ER)
random graph models [1]. Random networks stand as the starting juncture in terms of structural
complexity. Random network is characterized by n number of nodes and probability p defining the
existence of a link between any pair of nodes and has no articulate structure. Gilbert [2] also made
independent contribution related to randomgraphs. Randomgraphs have several applications, which
are defined in the network theory work of Newman 2002 [4]. Percolation theory also makes use of
random graphs. Random graphs have been compared to percolation bonds in The probabilistic
methods by Alon and Spencer [5]. The Erdös-Reńyi random graph model consists of two models.
Gilbert [2] introduced the first model, represented by G(N,p). This includes all the links L of the link
set [𝑁ኼ] with probability p in the random graphs. In the second model, the G(N,L) model has an
empty graph with n nodes and m links from [𝑁ኼ] are added at random to the graph. Development
of a random graph goes through an evolution beginning with a set of n isolated nodes and then
the graph is further constructed by addition of links in a random manner. A connected graph is
eventually obtained by the collection of graphs produced at different stages connected by links with
larger probability p.

Despite few similarities, random graphs vary from the real-world networks in two particular ways
[47], [15]. First one being clustering, which is observed in the real world networks is absent in the
Erdos-Renyi model as pointed out by Watts and Strogatz [8], [6]. Clustering is seen in the network
only if the probability of two nodes being connected by a link is greater when the nodes in question
have a common neighbour. This can be comprehended as there exists another node in the network
to which they are both attached. Clustering coefficient was introduced by Watts and Strogatz to
measure this clustering. Another difference that is observed between random graphs and the real-
world networks is the degree distribution. As pointed out by Albert and Barabassi [47], the degree
distribution of random graphs is binomial which is a type of poisson distribution which is not seen in
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the case of the real-world networks. The degree distribution of real world networks is seen to be a
power law distribution for few and exponential distribution for the others.

3.8.2. Small world networks
The classical model of small world networks was studied by Watts and Strogatz in 1998 [6], typically
known as the WS model, consists of an undirected graph with n nodes that are connected to k
nearest neighbours, for a defined value k. The average path length and clustering coefficient of
regular graphs are high as they are well connected to the neighbours only. The clustering coefficient
is high in regular graphs due to the formation of triads by the well connected neighbors. Nodes that
are distant lie far apart from other nodes making the average path length higher in regular graphs
[77]. The regular graph is then introduced with randomness by rewiring a few edges to connect
distant nodes, this reduces the average path length and generates the small world network.

Traditionally, small world networks have average path length similar to a random network and
clustering coefficient similar to that of a lattice network. But this definition is not always successful
in differentiating a true small world network from those that are very similar to lattice or random
structures. Qawi et al. proposed a metric [7], omega (small-world metric) which compares the path
length to random network alongside comparing clustering coefficient to an equivalent lattice network
to identify a small world network. Watts and Alpha published another model on small world networks
which takes into account two diverse graph models - ordered and random [8]. As per the author in
[8], the ordered world graphs consists of disconnected cliques called caves. This type of graph is
clustered and consists of 𝑛/(𝑘 + 1) caves or simply cliques that are isolated, thereby naming them
caveman graphs. Each of these caves is a complete graph, consisting of several nodes connected
to one another but no link exists to connect nodes from two different caves. Whenever a new node
enters a cave, it instantly gets connected with every other node in the cave. As the nodes in the cave
form triads, it results in high clustering coefficient. In the world of random graph models, every node
can communicate with each other regardless of the connectivity it formerly had. The probability of
two nodes connecting is equal in the model, making the connections that are newly formed to appear
in a random manner. The way these two models interact, new set of rules could be established to
build a network gradually where connections among nodes are made based on one of the two rules
of interaction. Among these two diverse world of networks, few sets of networks exhibit a manner
of interaction which falls in the equilibrium of randomness and orderly behaviour with high clustering
coefficient as well as low average path length due to random connection of nodes. This results in a
balance between a random graph and an ordered graph, generating small world networks.

Besides the classical model by Watts and Strogatz, Newman and Watts introduced a modified
model of the classical WS model where new links are added between a pair of nodes in a random
way without disconnecting the existing links, instead of just rewiring the links between the nodes [9].
This modified model ensures that all regions stay connected and is simpler to analyse and derive
mathematical conclusions.

Kasturirangan also proposed a new method to generate small world networks [10]. Unlike the
classical WS model, the proposed idea by the author suggests that small world networks can be
generated due to multiple scales of network that are formed by nodes with high degree. This in
turn reduces the average path length of the network. High degree nodes are randomly introduced
to a regular network to generate small world networks. This model is different from the WS model
due to the fact that well defined boundaries are not formed between the well connected nodes when
random edges are introduced. A more realistic model was proposed by Kleinberg [11] which tries to
understand given a regular network, how short paths occur. Kleinberg argues that the WS model is
a poor representation of few real world situations as shortcuts connect nodes promptly which falls
far apart with uniform probability. In the model proposed by Kleinberg, the links are added randomly
to a regular network but there is a decrease in the probability of the link being added with respect to
the distance as measured in the regular graph.

3.8.3. Scale free networks
Erdos-Renyi graph model and small world networks exhibit a common feature which is the homo-
geneity of the degree distribution of a network which undergoes an exponential decay, exhibits power
law, . Many of the complex networks like social networks, software dependency networks, protein-
protein interaction network are few of the example of a scale free network. Barabási and Albert in
1999 did exceptional work on describing scale free networks [12]. The Barabási and Albert model
(BA) encompasses the power law tail of degree distribution. The authors argued that many of the
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existing models fail to consider two significant factors. The first factor, existing models are static
unlike the real world networks which are dynamic. When links are added or rearranged in a network,
the number of nodes remain static/fixed through the forming process making it dissimilar to the real
world networks. Second factor, probabilities assumed for small world and random graphs when new
links are created are uniform which is also unlike the real world networks. The authors propose that
in a scale free network, for the purpose of self-organization, the two main elements are preferential
attachment and growth.

Given a same size of network while considering a same average degree, the average path length
of scale free networks is observed to be smaller compared to that of random networks. Bollobas et
al. proposed a model for directed scale-free graphs that considers the two factors which is described
in [12] and is dependent on the in- and out-degrees.

Model Reference

BA model [12]
BA tree [12]

Huberman–Adamic model [48]
Static model [49]

Accelerated growth model [18]
Fitness model [50]
PIN model [51]

Hierarchical Network [75]

Table 3.1: List of various scale free networks

Table 3.1 lists the diverse model of scale free networks alongside its network size, N. Fitness model,
another model of scale free network, has its emphasis on fitness and eliminates the preferential
attachment rule [76]. For every node i, fitness 𝑥። is introduced which is a measure of importance or
rank of a node. Instead of assigning a link between two nodes i and j with a probability p, which is
similar for all the pair of node, probability 𝑝(𝑥። , 𝑥፣) is used.

Hierarchical network model, a model of scale free networks proposed by Ravasz et al. [75],
considers that many networks are modular in nature as they can be identified by groups of nodes
which are interconnected and have sparsely connected nodes outside the group of nodes they belong
to. These modules are combined with each other to form a hierarchical network.The preferential
attachment for the BAmodel was expanded to nonlinear by Krapivsky et al. [16]. In a non preferential
attachment, hubs are absent or have small hubs compared to the scale free network with linear
preferential attachment. Linear preferential attachment is the only case for which power law degree
distribution can be obtained with the rate equation method. Preferential attachment in which the
probability of attachment is proportional to the degree of the target node is called linear preferential
attachment. Dorogovtsev et al. [18] also established a simple model on the basis of selection of
nodes. Beginning with three nodes that are connected, this model selects a link at random from
the existing set of links and then its ends are tied to a newly generated node. This model’s degree
distribution displayed power-law form with the method of master equation. All the links in the models
of [22], [16], [17], [18] are equivalent which is the common property exhibited among them. For a
network to carry on its basic functionalities, it is necessary to have variation in interaction strengths
[19]. Combination of new links and nodes, and the dynamic evolution of the weights is proposed
by Barrat et al. [20] for the growth of the weighted networks in a model which is based on weight
driven systems in real life that exhibits scale free properties. Scale free networks are generated with
varying power-law exponents [21] by generalizing the model [20] through weight driven preferential
attachment of new nodes to existing nodes.





4
Betweenness Centrality

This chapter explains the metric betweenness centrality. Section 4.1 provides the definition for node
betweenness centrality and section 4.2 describes link betweenness. Betweenness centrality for
weighted graphs is explained in section 4.4. The various variants of betweenness is described in
section 4.5.

4.1. Betweenness for unweighted and undirected graphs
In the analysis for various network data models, betweenness centrality plays an important role.
Bavelas [37] in 1948 introduced this concept of betweenness centrality which can be defined as a
measure based on the shortest paths in a graph. The principle of the measure betweenness cen-
trality is based on the concept that an individual could be connected weakly and distant from others
but could also be a significant intermediary. For example, let us consider exchange of information
between individuals in a network. The individual can have control over the communication depending
on the strength of his/her intermediary role. This individual can influence the network by disrupting
or filtering the information flowing in the network. The coordination of the network is assured by this
individual. A node or a link has the potential to control the flow of information in the network, making
betweenness centrality important.

Betweenness measure also provides a measure of the load carried by the nodes and links in a
network. The conventional definition of betweenness centrality was provided by Anthonisse (1971)
[64] and Freeman (1977) [33] independently. Anthonisse defined the amount of flow through a node
or link as ”rush” due to a unit flow that is induced on all pairs of nodes. As described by Anthonisse, the
distribution of unit flow is uniform among all the shortest path connecting the two nodes. Importance
of a link or a node is indicated by the betweenness value of the respective node or link.

The distribution of node and link betweenness centrality is determined by the topology of the
network. The distribution could be either uniform or non-uniform. When the node betweenness dis-
tribution is uniform, it implies that every node has same value of betweenness centrality. While, when
the node betweenness distribution is non-uniform, few nodes may have higher values of between-
ness centrality compared to others. This implies that the nodes that have high value of betweenness
centrality are more vulnerable than others.

In a connected graph, for each pair of nodes, there exists at least one shortest path between the
nodes in a way that either the number of links that the path encounters or the sum of the weight of
the links is kept to a minimum. The number of these shortest paths that passes through a particular
node defines its betweenness centrality. When there is only one shortest path that connects each
pair of nodes, determining betweenness centrality becomes fairly simple as the intermediate nodes
can have control over the communication between the pair of other nodes. But in the cases when
there are multiple shortest paths linking a pair of nodes, the intermediate nodes tend to lose their
control.

4.2. Node betweenness
Freeman [33] describes betweenness centrality of a graph as the mean difference between the cen-
trality measure of themost central node and other nodes. It quantifies the amount of times a particular
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node has to be traversed to connect a pair of nodes. Betweenness centrality of a node v in a graph
G=(N,L) as described in [33] can be calculated in the following manner :

• Considering each pair of nodes (x,y) in the graph and finding all shortest paths between them.

• For each of these pairs, finding the number of shortest paths that passes through the node v.

• The ratio of number of shortest paths passing through the node v to the total number of shortest
paths between the pair of node (x,y) is obtained .

Expression for betweenness centrality is given as below,

𝐶ፁ = ∑
፱ጽ፲ጽ፯∈ፍ

𝜎፱፲(𝑣)
𝜎፱፲

(4.1)

where 𝜎፱፲ represents the number of shortest paths with nodes x and y as their end nodes and 𝜎፱፲(𝑣)
is the number of shortest paths that include node v in the path [33].

Figure 4.1: Example of an undirected graph (G)

In the graph from the figure 4.1, for the node pair (x,y), node v plays a significant role as it
is required for any path that leads to node y. For a complete graph 𝐾፧, the node betweenness
centrality is zero since no node lies in the path of a shortest path as the length of each shortest path
is one. To get 𝐶ፁ in the range [0,1], as the betweenness centrality increases with the number of
nodes in the network, division by the number of pair of nodes excluding the node v can be done,
where for undirected graphs the expression is (፧ዅኻ)(፧ዅኼ)

ኼ and (𝑛 − 1)(𝑛 − 2) for directed graphs,
here n is the number of nodes in the giant component. Figure 4.2 displays an undirected graph with
betweeness centrality value of each node, which shows that few nodes are more likely to be in the
path of communication between other nodes.
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Figure 4.2: Example of an undirected graph (G) with betweeness value of each node

Figure 4.3, 4.4, 4.5, shows node betweenness distributions for three classes of random graphs.

Figure 4.3: Node betweenness distribution of Erdos-Renyi graph with 1000 nodes

Figure 4.4: Node betweenness distribution of Watts-Stogartz smallworld graph with 1000 nodes



26 4. Betweenness Centrality

Figure 4.5: Node betweenness distribution of Barabasi-Albert scale free graph with 1000 nodes

4.3. Link betweenness centrality
Similar to node betweenness, Girvan and Newman [84] extended this concept to the cases of links
defining it as “link betweenness“. Link betweenness of a link is the number of shortest paths between
a pair of nodes that passes through it. Link betweenness is obtained by replacing 𝜎፱፲(𝑣) in the
definition of node betweenness by 𝜎፱፲(𝑙), where l is a link [34]. In a graph containing groups and
communities that are connected loosely by few links, these links have greater chances of having
high link betweenness since many shortest paths will traverse these links. When one of these links
which connects two groups is removed, the groups get separated. Link betweenness in normalized
by multiplying the value by the factor ኼ

፧(፧ዅኻ) , where n is the number of nodes in a graph.

𝐶፥ፁ = ∑
፱ጽ፲ጽ፯∈ፍ

𝜎፱፲(𝑙)
𝜎፱፲

(4.2)

Figure 4.6, 4.7, 4.8, shows link betweenness distributions for three classes of random graphs.

Figure 4.6: Link betweenness distribution for Erdos-Renyi graph with n=1000 and p=0.5
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Figure 4.7: Link betweenness distribution for Watts-Stogartz smallworld graph n=1000 and p=0.5

Figure 4.8: Link betweenness distribution for Barabasi-Albert scale free graph with final nodes, n=1000 and p=0.5

4.4. Betweenness centrality for weighted graphs
In a weighted graph, nodes connected by links are not treated as binary (i.e. either a link is present
or absent) interactions. Another dimension of heterogeneity is added to the network by weighing
the links in terms of capacity, influence. Newman (2001) [43] in his model used weighted node
betweenness to identify most important persons in a social network. Instead of physical distances
between the two persons, in Newman’s model the link weight corresponds to the inverse strength of
the relation between the two of them. It can be inferred from here that information is passed by people
having strong relations/connections and does not necessarily follow the shortest path. In addition to
betweenness based on shortest paths, flow betweenness is one of the significant extensions to it.
Flow betweenness of a node v can be defined as the fraction of path through node v when maximum
flow is transmitted from source x to destination y over all pairs of (x,y). Unlike shortest-path and flow
based betweenness, which takes into account only a particular set of available path, random walk
betweenness on the other hand considers all paths between nodes which is useful for identifying
nodes that have high centrality even when they do not lie on the shortest path or on the the path of
maximum flow.
Betweenness takes a significant amount of time to be computed. An algorithm proposed by Brandes
[34] calculates betweenness at a faster rate which needs O(nm) time, where n is the number of
nodes and m is the number of links. Apart from reducing the amount of time, this algorithm does not
assume the network to be binary and also allows betweenness to be calculated for weighted network.
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In the case of weighted graphs, time taken is 𝑂(𝑛𝑚 + 𝑛ኼ𝑙𝑜𝑔𝑛). However, this algorithm by Brandes
considers only the sum of link weights and fails to provide focus on the count of ties on paths. This
algorithm is a generalized form of Freeman’s (1991) [35] flow measure which takes into account
the fact that in a weighted network, compared to the paths with few weakly connected intermediate
nodes, paths with more intermediate nodes have better and quicker transaction between two nodes.

4.5. Variants of Betweenness centrality
There are various variants of betweenness centrality which are listed in table 4.1.

Variants of Betweenness Centrality Author

k-betweenness 𝐶ፁ(፤) Borgatti and Everett [62]
Length-scaled betweenness 𝐶ፁᑕᑚᑤᑥ Borgatti and Everett [62]
Linear scaled betweenness 𝐶ፁ፥።፧ Geisberger [54]

Group betweenness 𝐶ፁ(𝐶) Everett and Borgatti [63]

Table 4.1: List of variants of Betweenness Centrality

Borgatti and Everett (2006) [62] defined k-betweenness of a node to model a realistic network rela-
tions. It can be defined as the sum of dependencies of pairs that include only shortest paths of length
that is bounded by a constant k. Formula for k-betweenness of a node v can be defined as below

𝐶ፁ(፤)(𝑣) = ∑
፱,፲∈∶፝።፬፭(፱,፲)ጾ፤

𝜎(𝑥, 𝑦 ∣ 𝑣)
𝜎(𝑥, 𝑦) (4.3)

Variant of the above mentioned betweenness definition is the length scaled betweenness [62], which
considers paths that are not the shortest paths but weighs in shortest path as inversely proportional
to their length in the following manner:

𝐶ፁᑕᑚᑤᑥ = ∑
፱ጽ፲∈ፍ

1
𝑑𝑖𝑠𝑡(𝑥, 𝑦) .

𝜎(𝑥, 𝑦 ∣ 𝑣)
𝜎(𝑥, 𝑦) (4.4)

The principle behind this variant is that, the longer a length of a path, less valuable it could be to
control it. Since the length of the shortest path is the only factor that is scaled here, it is termed as
length scaled betweenness. In contrast to the length scaled betweenness where the dependency is
on length of the shortest path, linear scale betweenness is dependent on the relative distance of a
node v from the source x [54]. The node v gets more influential when it is far away from the source
x and thereby closer to the target y. This linear scaled betweenness is given by

𝐶ፁ፥።፧ = ∑
፱ጽ፲∈ፍ

𝑑𝑖𝑠𝑡(𝑥, 𝑣)
𝑑𝑖𝑠𝑡(𝑥, 𝑦) .

𝜎(𝑥, 𝑦 ∣ 𝑣)
𝜎(𝑥, 𝑦) (4.5)

In 1999, Everett and Borgatti [63] introduced group betweenness

𝐶ፁ(𝐶) = ∑
፱ጺ፲

𝜎፱,፲(𝐶)
𝜎፱,፲

(4.6)

where 𝑥, 𝑦 ∉ 𝐶, 𝐶 ⊆ 𝑁 i.e. C is a subset of a graph with node setN, 𝜎፱,፲ is the number of shortest paths
connecting x to y, 𝜎፱,፲(𝐶) counts the number of shortest paths connecting (x, y) passing through C
(any node of C).

Group betweenness can be defined as the proportion of shortest paths that connect the pairs
which are not part of the group, passing through the group. But this measure considers each indi-
vidual in the group separately, thus giving more general results. A more accurate measure for group
betweenness is provided by Kolaczyk et al. in [92], but the measure is applicable only for simple
graphs and is not flexible to be used for other centralities measures.

For the betweenness centrality of a multigraph, i.e. a graph in which loops (which can be ignored)
and multiple links connecting the same pair of nodes are allowed, the number of shortest paths
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connecting two nodes depends on the multiplicity of their links: tripling a link of a path results in three
different paths of the same length, because either copy of the tripled link can be used. If more than
one link has multiplicity larger than one, then any instance of one link combined with any instance of
another link yields a different path, so that the total number of paths obtained from a generic path is
the product of the multiplicities of its links.

When betweenness centrality is computed in the traditional manner [33], Brandes [34] points
out that extra information than necessary is being determined which acts as its weakness. This is
because the approach involves defining the pair dependency of a node pair (x,y) on an intermediary
node v by the ratio of shortest path between the nodes (x,y) such that the intermediary node v lies
on all shortest paths between (x,y). Brandes [34] aggregated path counts from various source nodes
in the network to build a faster algorithm.

Although the algorithm proposed by Brandes [34] is faster than the algorithm by Freeman in [33],
many researchers believe that the computation algorithm by Brandes is still costly for larger networks.
To fasten the process of computation, an approximate value instead of an exact value of betweenness
can be used as an alternative. An estimation method for betweenness was proposed by Brandes
et al. [53], where computation of betweenness was based on different selection strategies of node
sources in order to check the approximation quality. Another variant to compute approximate be-
tweenness centrality was given by Geisberger et al. [54] with the help of bisection scaling algorithm.
Following this, a linear time approximation algorithm was suggested by Makarychev [55] to find the
ordering of the nodes that maximizes the constraint for betweenness. For scale free graphs, Bader
et al. [56] presented a parallel algorithm to compute betweenness centrality.

Applications of betweenness centrality is diverse and can be implemented across several disci-
plines. The magnitude of a node’s role in the flow of information across a network is provided by
betweenness centrality. By using this, the most influential and prominent nodes in the network are
identified which is significant in identification of critical junctions in transportation, nodes in biological
networks, documents in World Wide Web. Betweenness centrality in real life networks was studied
by Holme [57] who described the relationship of traffic density to betweenness; Jin et al. [58] used
betweenness centrality to identify nodes that are potentially harmful in an electric grid; to detect the
most central residues in protein-protein complex structures, Leydesdorff [59] also used betweenness
centrality.

Betweenness centrality plays an important role in detection of communities also. A community
detection technique was proposed by Newman et al. [26] which involves repeated removal of links
with highest betweenness centrality value from the network. As an alternate to this, Pinney et al. [60]
devised an algorithm for community detection where node betweenness determines the network
decomposition instead of link betweenness. The weakness in these algorithms as pointed out by
Newman et al. [26] is the cost involved in computation and repeated calculation of all-pair shortest
paths when the links are removed. For the unweighted graph in figure 4.9 with 8 nodes, figure 4.10
is the visualization of node degree and node betweenness of all its nodes. Figure 4.11 shows the
value trends of link betweenness and link degree, where link degree can be defined as the number
of incident links to the nodes on the end-points of the link, subtracted by two. From figure 4.10 and
4.11, we can observe that the nodes and links with high degree have high betweenness.

Figure 4.9: Example of an unweighted graph with 8 nodes
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Figure 4.10: Node betweenness and Node degree for the nodes in figure 4.9

Figure 4.11: Link betweenness and Link degree for the links in figure 4.9



5
Generation of Graphs

This chapter explains the method and algorithm used to generate non-weighted graphs and weighted
Erdos renyi random graph, Watts and Strogatz small world graph and Barabasi Albert scale free
graph.

Python language is used to generate the graphs in this thesis, as it is a powerful programming
language which can be flexibly used to build network algorithms and represent networks. Graphs are
represented using a package called NetworkX, the most commonly used network library in Python for
the manipulation, creation and studying of structures, studying the function and dynamics of complex
networks. Matplotlib is another library of Python that has been used for graphical representation of the
graphs generated. For generation of non-weighted and directed graphs stochastic graph generators
has been used. The concept used for generation of weighted networks has also been described in
the chapter.

5.1. Non-weighted and non-directed graphs

When a graph in which a link does not have any cost or weight associated with it, it is called an
unweighted graph. All the links in the unweighted graph have unit weight. This section describes the
functions used to generate unweighted random graphs.

5.1.1. Non-weighted Erdos Renyi Graph

Erdos Renyi model of the form G(n,p) is a random graph with n nodes where each possible link
has probability p of existing. The ”erdos_renyi_graph” function, part of the NetworkX library is used
to generate a non-weighted ER graph which returns a G(n,p) random graph and chooses each of
the possible links with probability p. The parameters of the function include: number of nodes (n),
probability of link creation (p). Figure 5.1 displays a generated unweighted Erdos Renyi graph with
n=200 and p=0.5.

31



32 5. Generation of Graphs

Figure 5.1: Example of the generated non-weighted Erdos Renyi graph with n=200 and p=0.5

5.1.2. Non-weighted Small World graph
Duncan Watts and Steven Strogatz in 1998 proposed the idea of small world phenomenon [6]. Watts
and Strogatz consider two types of graphs in their model, namely: regular graphs and random graphs.
Every node has exactly the same number of neighbours in the case of regular graphs, while nodes
are connected at random in random graphs. Clustering coefficient and path length are two imperative
properties that are taken into account to model their small world network similar to a social network.
The following steps are followed to build a small world network from a regular graph as proposed by
Watts and Strogatz:

1. Beginning with a regular graph constituting n number of nodes and k neighbours
2. Choosing a subset of links to rewire and replacing themwith random links. Probability p controls

the extent to which a graph can be random where p is the probability of a link to be rewired.
If p=1, the graph is completely random; p=0 results in a regular graph. An ideal small world
network with high clustering and small average distance is attained with an intermediate value
of p.

Small world networks by Watts and Strogatz which is a non-weighted graph by default is gen-
erated using ”𝑤𝑎𝑡𝑡𝑠_𝑠𝑡𝑟𝑜𝑔𝑎𝑡𝑧_𝑔𝑟𝑎𝑝ℎ”, a built-in function in NetworkX library. However, since this
function can return a disconnected graph, ”𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑_𝑤𝑎𝑡𝑡𝑠_𝑠𝑡𝑟𝑜𝑔𝑎𝑡𝑧_𝑔𝑟𝑎𝑝ℎ” is used. Unlike
”𝑤𝑎𝑡𝑡𝑠_𝑠𝑡𝑟𝑜𝑔𝑎𝑡𝑧_𝑔𝑟𝑎𝑝ℎ”, this function generates a connected network by repeated generation of
Watts-Strogatz small-world graphs. The function requires a set of parameters to be user defined:
number of nodes (n), number of nearest neighbours to be connected (k), probability of rewiring each
link (p), the number of attempts to generate a connected graph (tries). Figure 5.2 displays a gener-
ated unweighted Watts Strogatz graph with n=200 and p=0.5 and k=2.

Figure 5.2: Example of the generated non-weighted Small world graph with n=200 and p=0.5
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5.1.3. Non-weighted Scale free graph
The Barabasi–Albert model is one of the many proposed models that generate scale-free networks.
Barabasi and Albert [12] characterized the structure of real world networks in their work “Emergence
of Scaling in Random Networks” based on which scale free graph is generated in this section.

There are two essential properties of the scale free model proposed by Barabasi and Albert which
differentiates them from the small world network by Watts and Strogatz, they are :

• Growth: Unlike regular graphs that start with fixed number of nodes, scale free graph by
Barabasi and Albert begins with a small graph and nodes are added subsequently, one at
a time. The number of nodes increase gradually with time.

• Preferential attachment: Whenever a new node is added, it is more likely to connect to a node
which has connections to large number of nodes. The graph begins with 𝑚ኺ initial nodes and
adding a new node with 𝑚 ≤ 𝑚ኺ links to connect the new node to m different nodes that are
already existing in the graph. Nodes that have higher degree tend to have stronger ability to
attract links added to a network. This phenomenon is called as ”rich gets richer” or the Matthew
effect [88].

To generate scale free graph by Barabasi and Albert, Python’s NetworkX built-in function is used
which returns a random graph using Barabási-Albert preferential attachment model. Through this
function, a graph is grown with n new nodes attaching themselves to m links that are preferentially
attached to existing nodes with high degree, where n is the number of nodes to be achieved and m
is the number of links to attach from a new node to the existing nodes. The parameters n and m are
user defined. Figure 5.3 displays the generated unweighted Barabasi and Albert scale graph with
n=200 nodes and m=4.

Figure 5.3: Example of the generated non-weighted Scale free graph with n=200 and m=4

5.2. Directed and non-weighted graphs
When a set of nodes is connected by directed links, where each link connects an ordered pair of
nodes, it is called a directed graph or a digraph. In a directed graph, a link points from the first node
in the pair and points to the second node in the pair. Simple directed graphs have no loops and no
multiple arrows with same source and target nodes. This section describes the generation of directed
random graphs.

5.2.1. Directed Erdos-Renyi Graph
To generate a directed Erdos-Renyi graph, the same function used to generate the unweighted Erdos-
Renyi graph is used. The ”erdos_renyi_graph” function when used to generate directed Erdos-Renyi
graph (by passing a ’true’ parameter for direction), uses a directed graph object to create a directed
random graph of the form G(n,p), where n are the number of nodes and each possible link has
probability p of existing. The random graph is built by connecting nodes randomly and each link
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is included in the graph with probability p independent from every other link. Figure 5.4 shows a
generated directed Erdos Renyi graph with n=15 and p=0.5.

Figure 5.4: Example of a generated directed, non-weighted Erdos Renyi graph with n=15 and p=0.5

5.2.2. Directed Small World Graph
A directed Watts and stogartz small world network is constructed by first creating a directed ring
lattice, using a directed graph object from NetworkX library. The number of nearest neighbours to be
connected (k) and probability of rewiring each link (p) are user defined. Following this, the subset of
links are chosen which are to be rewired and are replaced with random links to form a directed and
a non-weighted small world graph. Figure 5.5 shows a generated directed and non-weighted small
world graph with n=10 and k=4.

Figure 5.5: Example of a generated directed small world graph with n=10 and k=4

5.2.3. Directed Scale free Graph
A directed scale free graph is generated using the function scale_free_graph function fromNetworkX,
based on the paper by Bollobas et al. [90]. Bollobas et al. define three probabilities 𝛼, 𝛽, 𝛾 such that
𝛼 + 𝛽 + 𝛾 = 1. Two other factors, 𝛿(𝑖𝑛) and 𝛿(𝑜𝑢𝑡) are also defined which are the bias for choosing
nodes from in-degree distribution and out-degree distribution respectively. With 𝛼 as probability, a
new node v is added with a link from v to an existing node w. With 𝛽 as probability, a link is added
from an existing node v to an existing node w, where the nodes v and w are chosen independently.
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With 𝛾 as probability, a new node w is added and a link from an existing node v to w is added. This
model of scale free graph grow with preferential attachment depending on the in- and out-degrees,
where the in- and out- degree distribution are power laws. Figure 5.6 shows the generated directed
scale free graph with n=20.

Figure 5.6: Example of a generated directed scale free graph with n=20

5.3. Weighted Graphs
Unlike a non-weighted graph which does not have relationships in terms of magnitude, a weighted
graph in simple terms can be defined as a graph where each link is associated with a numerical
value, called weight. A network grows by addition of new nodes and new nodes are preferentially
attached to existing nodes among several neighbours. But all the links in the network cannot be
viewed as the same since interaction of weights between nodes are different in many real-world
networks. These weighted networks in reality have links with varying strengths. Such networks
include social networks where connections between individuals could be either weak or strong; food
web, metabolic networks, transportation network, business transactions, cardiovascular network are
few examples of weighted networks in nature.

Newman [43] in his work has showed that better characterization can be achieved by assignment
of weights to the links between scientists. Significance of weak links among species for stability of
ecosystem is still being discussed [19]. Weighted networks are generally represented by a weighted
adjacency matrix 𝑊 which specifies the weight of the links in a network. Measure of the properties
of the networks in terms of actual weight is obtained by the strength of the node which is the sum of
all the link weights connected to the node. This measure provides all the information related to the
node’s connectivity and weight of its links. In this section, three classes of weighted random graphs
are constructed and few distributions are also obtained, namely:

• Node degree distribution

• Link degree distribution (link degree is the number of incident links to the nodes on the end-
points of the link, subtracted by two)

• Node strength distribution (node strength is the sum of the weights of its incident links)

• Link weight distribution
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• Link strength distribution (Link strength is the sum of strength of the nodes on the end-points
of the link, subtracted by two times the weight of the link)

5.3.1. Weighted Erdos Renyi Graph

The Erdos Renyi (ER) model acts as the prototype for all the unweighted graphs and is a reference for
properties of real world networks. The Erdos Renyi graph of the form G(N, L) has N nodes and set of
L links connected by a probability p. Most of the weighted random graphs that have been developed
are either defined to imitate the properties of real networks by generalizing the rules of unweighted
graphs or adding weights to the links by keeping few real world properties fixed and randomizing
other aspects of the graph. Weighted Erdos Renyi graph in this thesis is also generated by adding
weights to the links and aim to reproduce the properties of Erdos Renyi graph. The weighted Erdos
Renyi graph is built by initially defining the required number of nodes (n) and desired probability (p) for
link creation. The number of links (m) that is observed in the Erdos renyi graph is𝑚 = 𝑝∗𝑛(𝑛−1)/2.
Following this, the range for the link weights are set. Finally, using a graph object of NetworkX, an
empty graph is created to add the desired nodes and links. To this empty graph, first the defined
number of nodes are added. Links are then added as per probability p with their respective weights
in a user defined range to the graph. Based on the number of links, a list of same number of weights
are generated within the range that was set. Each link is then set a random weight from the list of
weights that was generated. To generate a directed, weighted Erdos Renyi graph, it is constructed
by following the same method but instead, a directed graph object from NetworkX is used. From
the developed random graph, the above mentioned distributions are obtained which is seen in figure
5.9, 5.10, 5.11, 5.12, 5.13. The generated weighted non-directed Erdos Renyi graph is displayed in
figure 5.7, with n=10 and p=0.5, figure 5.8 displays a weighted, directed Erdos Renyi graph with n=
and p=0.5

Figure 5.7: Example of a generated weighted, non-directed Erdos Renyi graph with n=10 and p=0.5
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Figure 5.8: Example of a generated weighted, directed Erdos Renyi graph with n=10 and p=0.5

Figure 5.9: Degree distribution of Erdos Renyi graph with n=1000 and p=0.5

Figure 5.10: Node Strength distribution of Erdos Renyi graph with n=1000 and p=0.5
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Figure 5.11: Link weight distribution of Erdos Renyi graph with n=1000 and p=0.5

Figure 5.12: Link Degree distribution of Erdos Renyi graph with n=1000 and p=0.5

Figure 5.13: Link strength distribution of Erdos Renyi graph with n=1000 and p=0.5

5.3.2. Weighted Small world graph
In this thesis, the generation of weighted small world graph is inspired by the model explained by
Watts and Strogatz following which weights are added to the links. A regular graph is constructed
in the form of a ring lattice and rewired as per Watts and Strogatz. In this ring lattice consisting of n
nodes, they are arranged in a circular form where each node is connected to k nearest neighbours.
Watts and Strogatz in their work handle links in a particular order and rewire each of them with a
probability p. When a link is rewired, the first node is left unchanged and the second node is chosen
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at random. Self loops or multiples links with more than one link between the same two nodes are
avoided. When links are being rewired from node u to v, a replacement for node v is necessary.
This is computed by subtracting u and its neighbours from the set of nodes. Following this, the new
node is chosen randomly from the new node set using python’s NumPy randommodule. Existing link
between u and v is removed and the new link from u and the computed new node is added. Using the
edge weight attribute from NetworkX library, each link is given a weight by mapping the weight to all
the links in the graph from the edge weight dictionary. The edge weight dictionary consists of a list of
weights that are randomly generated for all the links in the graph. In this manner, the weighted small
world network is generated. To generate a weighted directed small world graph, similar procedure
is followed, but the ring lattice is replaced with a directed ring lattice using a directed graph object
from NetworkX library. Figure 5.14 displays a generated weighted, non-directed Watts and Stogartz
small world graph with n=8 and k=4 and figure 5.15 shows a generated weighted, directed Watts and
Stogartz small world graph with n=8 and k=4.

Figure 5.14: Example of a generated weighted, non-directed Watts and Stogartz small world graph with n=8 and k=4

Figure 5.15: Example of a generated weighted, directed Watts and Stogartz small world graph with n=8 and k=4
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Figure 5.16: Degree distribution of Watts and Stogartz model with n=1000 and k=4

Figure 5.17: Node strength distribution of Watts and Stogartz model with n=1000 and k=4

Figure 5.18: Link weight distribution of Watts and Stogartz model with n=1000 and k=4
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Figure 5.19: Link degree distribution of Watts and Stogartz model with n=1000 and k=4

Figure 5.20: Link strength distribution of Watts and Stogartz model with n=1000 and k=4

Figures 5.16, 5.17, 5.18, 5.19, 5.20 show various distributions that are generated for the weighted
small world graph.

5.3.3. Weighted Scale free graph
An algorithm was built based on Barabasi and Albert [12], to model the scale free graphs which is
originally a non-weighted graph. Since we aim to generate a weighted scale free graph, weights
are added to the links as a modification. The network begins with a complete graph with an initial
number of nodes, 𝑛ኺ, using a graph object. This parameter is user defined. Final number of nodes
to be achieved (n), the number of links to be attached (m) are also defined in prior. New nodes
are added to the network one at a time. Each time, a new node is connected with 𝑚 ≤ 𝑛ኺ links
which connects the newly added node to m existing nodes with a probability that is proportional to
the number of links that the existing nodes already have. Formally, the probability 𝑝። that the new
node is connected to node i is

𝑝። =
𝑘።
∑፣ 𝑘፣

where 𝑘። is the degree of node i and the sum is made over all pre-existing nodes j (i.e. the denom-
inator results in twice the current number of links in the network). Heavily linked nodes (hubs) tend
to quickly accumulate even more links, while nodes with only a few links are unlikely to be chosen
as the destination for a new link. The new nodes have a ”preference” to attach themselves to the
already heavily linked nodes. When links are added, its weight attribute is also added to form a
weighted scale free graph. This is done using the edge attribute function from NetworkX which maps
the weight to all the links in the graph from the edge weight dictionary. To develop a directed and
weighted scale free graph, similar procedure is followed except, a directed graph object is used to
generate a weighted, directed scale free graph. Figure 5.21 and 5.22 shows a generated weighted,
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non-directed and directed Barabasi Albert Scale free graph with n=10 and m=2, respectively. Figures
5.23, 5.24, 5.25, 5.26, 5.27 show various distributions that are generated for the weighted scale free
graph.

Figure 5.21: Example of a generated weighted, non-directed Barabasi Albert Scale free graph with n=10 and m=2

Figure 5.22: Example of a generated weighted, directed Barabasi Albert Scale free graph with n=10 and m=2

Figure 5.23: Degree distribution of Barabasi Albert Scale free graph with n=1000 and m=4
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Figure 5.24: Node strength distribution of of Barabasi Albert Scale free graph with n=1000 and m=4

Figure 5.25: Link weight distribution of of Barabasi Albert Scale free graph with n=1000 and m=4

Figure 5.26: Link degree distribution of of Barabasi Albert Scale free graph with n=1000 and m=4
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Figure 5.27: Link strength distribution of of Barabasi Albert Scale free graph with m=1000 and m=4



6
Link Weight Tolerance

This chapter introduces the concept Link weight tolerance in weighted graphs with positive weights.
Section 6.1 provides the definition of the link weight tolerance. Section 6.2 explains the algorithm
that is used to calculate the tolerance. Following this, section 6.3 illustrates the algorithm with two
examples. Section 6.4 contains the observations related to link weight tolerance.

6.1. Definition
Link weight Tolerance is defined as the tolerance for the weight of a link such that, as long as the
weight of the link stays within the tolerance, the shortest paths for all node pairs in the graph G
are not affected. Since the shortest path for all node pairs are not affected, the betweenness of the
nodes and the links remain unchanged. Link weight tolerance comprises two values namely- positive
tolerance Z፩, the value that can be added to the link weight, and negative tolerance 𝑍፧, which gives
us the value that can be decreased from the weight of the link.

6.2. Algorithm

Figure 6.1: Example of a graph

To obtain the link weight tolerance of a link, we consider a weighted undirected graph G in figure 6.1.
For a link l, that connects a node pair (𝑖 ∼ 𝑗), the number of shortest paths that traverse the link l,
governs the betweenness of the link. Each shortest path that traverses the link l connects two nodes
in the network. We know that the betweenness of link l is the accumulation of all betweenness con-
tributions caused by shortest paths between all node pairs in the network. The process of calculating

45
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the link weight tolerance of a link is divided into two parts:

1. Positive link weight tolerance 𝑍፩

2. Negative link weight tolerance 𝑍፧

6.2.1. Positive Link weight tolerance
To calculate positive link weight tolerance of link l, let us consider a shortest path between an arbitrary
node pair, node a and node b in graph G. The shortest path between the node pair may or may not
traverse link l. We are interested only in the shortest path that traverses l, the principle is that when
the weight of link l increases, at certain point the shortest path between node a and node b will no
longer traverse link l, but will take another path, which does not include link l, provided that such other
path exists. If a shortest path runs through link l to connect an arbitrary node pair, positive link weight
tolerance, 𝑍፩ tells us the value that can be added to the weight of link l, to maintain the same shortest
path. For a link l, the shortest path connecting an arbitrary node pair continues running through that
link when the weight of the link is increased with a value less than or equal to 𝑍፩.

Let us consider the network in figure 6.1 as graphG. To calculate the positive link weight tolerance
for link l (𝑖 ∼ 𝑗), the shortest path between node a and node b is calculated. The shortest path
between the node pair is calculated using the Dijkstra algorithm. The Dijkstra algorithm is used to
find a shortest path from a source node to a target node in a weighted graph. The algorithm creates
a tree of shortest path from the source node to all other nodes in the graph [91]. We term the length
of the shortest path between node a and node b in graph G as 𝑋፩.

To measure the shortest path between node a and node b when the shortest path does not
traverse link l, we remove the link l from graph G. This graph is now termed as G’, where 𝐺’=𝐺 − 𝑙.
The length of the shortest path between node a and node b in graphG’ is termed as 𝑌፩ where 𝑌፩ ≥ 𝑋፩.
The difference in the length of the shortest paths in graph G and G’ is 𝑍፩ = 𝑌፩ − 𝑋፩, which gives the
positive link weight tolerance for link l, relative to node pair (a,b).

The positive link weight tolerance 𝑍፩ for link l is determined relative to all node pairs (a,b) in the
graph. The lowest 𝑍፩ value that is obtained for link l when calculated for all the node pairs (a,b)
which traverses link l is the resultant positive link weight tolerance respective to it. Positive link
weight tolerance matrix 𝑃 is defined where each element in the matrix represents the positive link
weight tolerance for the respective node pair relative to link l. The matrix 𝑍𝑃 defines positive weight
tolerance for all the links in a graph, where the index of the matrix corresponds to the respective link.
While calculating positive link weight tolerance we consider three cases:

1. Case 1: The shortest path connecting a node pair (a,b) does not traverse link l. In such cases,
the shortest path between the node pair (a,b) does not contribute to the betweenness of link l.
Therefore, increase in the weight of link l does not affect the shortest path between the node
pair. Positive link weight tolerance value 𝑍፩ for such node pairs relative to link is assigned as
∞.

2. Case 2: There are more than one unique shortest paths connecting a node pair (a,b) - i.e. at
least one shortest path traverses link l, and the shortest paths do not traverse link l. In such
cases, the positive link weight tolerance value 𝑍፩ relative to link l is zero since, if the weight of
link l increases even by 1 (the smallest positive unit of weight in weighted graphs), the shortest
path between the node pair will not traverse link l anymore and will take the other shortest
path(s).

3. Case 3: There is only one shortest path between the node pair (a,b) and it traverses link l. In
such cases, the positive link weight tolerance value 𝑍፩ is calculated using the method 𝑍፩ =
𝑌፩ − 𝑋፩ as explained.
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(a) Example of a weighted graph G, where the
shortest path ፗᑡ is indicated by a dotted path

(b) Example of a weighted graph G, where the
shortest path remains unchanged when the

weight of link l is increased with a value less than
ፙᑡ

(c) Example of a weighted graph G, where the
shortest path changes when the weight of link l is

increased with a value beyond ፙᑡ

Figure 6.2: Example of how the shortest path changes in a weighted graph when the weight of link l increases

When the weight of link l increased by adding a value above 𝑍፩, the shortest path between node
a and node b no longer runs through link l. Figure 6.2 (a) displays an example of the shortest path 𝑋፩
(indicated as a dotted path) between the node pair (1,8) which runs through the link (3 ∼ 4). Figure
6.2 (b) shows us an unchanged shortest path between the node pair (1,8) when the weight of link l
(3 ∼ 4) is increased within the value of 𝑍፩. Figure 6.2 (c) shows a different shortest path between
(1,8) when the weight of link l (3 ∼ 4) is increased with a value beyond the value of 𝑍፩, the shortest
path does not traverse link l (3 ∼ 4) anymore. When weight of a link is increased with a value less
than 𝑍፩, the betweenness centrality of that link is maintained.

6.2.2. Negative link weight tolerance
To calculate the negative link weight tolerance, we consider graph G again where the shortest path
between the node pairs (a,b) does not traverse link l. The principle behind negative link weight
tolerance is that when the weight of link l decreases, then at a certain point the shortest path between
node a and node b starts to run through link l. Therefore, it is necessary to calculate the extent to
which the weight of link l has to be decreased such that the shortest path between node a and node
b begins to run through link l. For an arbitrary node pair (a,b), the shortest path between them may
or may not traverse link l. We are interested only in the shortest path that does not traverse link l,
so that we can determine the extent to which the weight of the link l has to be decreased, so that
the shortest path between a node pair (a,b) which did not traverse l previously, begins to traverse
it. For the node pairs whose shortest path already traverses l, negative link weight tolerance is not
necessary since decreasing the weight of link l will not affect their shortest path.

This process is carried out by determining the shortest path 𝑌፧ between any node pair node (a,b)
traversing link l. This shortest path 𝑌፧ can be calculated in two ways-

1. 𝑌፧ = (the shortest path between node a and node i) + (the weight of link l) + (the shortest path
between node j and node b), where (𝑖 ∼ 𝑗) is link l.
i.e. The path is -> a-i-j-b
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2. 𝑌፧ = (the shortest path between node a and node j) + (the weight of link l) + (the shortest path
between node i and node b), where (𝑖 ∼ 𝑗) is link l. i.e. The path is -> a-j-i-b

Figure 6.3: Illustration of ፗᑟ and ፘᑟ in a weighted graph to calculate negative link weight tolerance

Figure 6.3 displays a weighted graph where the shortest path 𝑌፧ via link l is shown as the dotted
path and the shortest path 𝑋፧ is shown in black between the node pair (a,b). Both these values are
calculated, the least of the two value is set as 𝑌፧. Following this, the shortest path 𝑋፧ is calculated
between node a and node b in graph G using the Dijkstra’s algorithm. The negative link weight
tolerance 𝑍፧ is the difference in the lengths 𝑌፧ and 𝑋፧, 𝑌፧ ≥ 𝑋፧ is calculated for all the node pairs
(a,b) in the graph G, 𝑍፧ = 𝑌፧ − 𝑋፧. The negative weight tolerance values relative to each node pair
for link l are represented in a negative link weight tolerance matrix, 𝑁. The lowest value obtained is
the negative link weight tolerance with respect to link l. Matrix 𝑍𝑁 is defined to represent negative
link weight tolerance for all the links in a graph, where the index of the matrix corresponds to the
respective link.

When the value for 𝑍፧ for a particular link, is calculated for all node pairs in the graph, some values
can be greater than the weight of link l itself. This tells us that for some node pairs, the shortest path
between them will traverse link l only when the weight of link l becomes negative. For such cases,
when 𝑍፧ is greater than the weight of link l, the value of 𝑍፧ for that node pair is assigned the value of
the weight of link l. So, the negative weight tolerance of a link can never be greater than the weight
of the link itself.

6.3. Illustration with an example
The illustration of the algorithm is carried out with two examples of weighted graphs.

6.3.1. Example 1
Let us a consider a weighted graph with 6 nodes to calculate the weight tolerance of the link (3 ∼ 4)
from the weighted graph displayed in figure 6.4. The link (3 ∼ 4 ) has the highest link betweenness
compared to other links in the graph, from the table 6.1. The first part of the process is to calculate the
positive link weight tolerance. Let us consider the weighted graph in figure 6.4 as graphG, and obtain
the length of the shortest path between each node pair in G, which we term as 𝑋፩. The shortest path
matrix is also computed, which is a square matrix representing shortest path between two nodes as
each element in the matrix X, as shown below-

𝑋 =

⎡
⎢
⎢
⎢
⎢
⎣

0 1 8 4 3 9
1 0 7 3 2 8
8 7 0 4 5 1
4 3 4 0 1 5
3 2 5 1 0 6
9 8 1 5 6 0

⎤
⎥
⎥
⎥
⎥
⎦

(6.1)
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Figure 6.4: An undirected weighted graph with 6 nodes

Link Link betweenness

(0,1) 0.333
(0,3) 0.0
(1,4) 0.533
(2,3) 0.533
(2,5) 0.333
(3,4) 0.6
(4,5) 0.0

Table 6.1: Link betweenness for graph in figure 6.4

After calculating all the shortest path length 𝑋፩ for graph G, the link (3 ∼ 4) for which the tolerance
is being calculated is removed from G. We call the new graph in which the link (3 ∼ 4 ) is absent as
graph G’. The length of the shortest path is calculated again for all node pairs with the absence of
the link (3 ∼ 4), termed as 𝑌፩. Table 6.2 tabulates the shortest paths for the graphs G and G’.

Node pairs Does the shortest path traverse link (3 ∼ 4) 𝑋፩ 𝑌፩
(0,1) No 1 1
(0,2) Yes 8 11
(0,3) Yes 4 7
(0,4) No 3 3
(0,5) Yes 9 10
(1,2) Yes 7 10
(1,3) Yes 3 8
(1,4) No 2 2
(1,5) Yes 8 9
(2,3) No 4 4
(2,4) Yes 5 8
(2,5) No 1 1
(3,4) Yes 1 10
(3,5) No 5 5
(4,5) Yes 6 7

Table 6.2: Positive link weight tolerance calculation

In Table 6.2, we can notice that not all node pairs depend on link (3 ∼ 4) to acquire the shortest path
between them. Since not every node pair depends on link (3 ∼ 4) to achieve the shortest path, we
consider only the node pairs whose shortest path traverses link (3 ∼ 4) to understand the extent
to which the weight of the link (3 ∼ 4) can be increased to maintain the same shortest path and
therefore the same betweenness. The node pairs that have same value of 𝑋፩ and 𝑌፩ do not have
their shortest path traverse link (3 ∼ 4) and therefore do not contribute to the link betweenness
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centrality for (3 ∼ 4). Thus, the positive link weight tolerance for such node pairs with respect to link
(3 ∼ 4) is ∞

Node pairs 𝑋፩ 𝑌፩ 𝑍፩
(0,2) 8 11 3
(0,3) 4 7 3
(0,5) 9 10 1
(1,2) 7 10 3
(1,3) 3 8 5
(1,5) 8 9 1
(2,4) 5 8 3
(3,4) 1 10 9

(4,5) 6 7 1

Table 6.3: Positive link weight tolerance calculation

Table 6.3 tabulates the 𝑍፩, which is the difference between 𝑌፩ and 𝑋፩ for the node pairs that are
affected by the removal of link (3 ∼ 4). The lowest value of 𝑍፩ from table 6.3 is 1, which tells us
that the weight of the link (3 ∼ 4) can be increased by 1 unit to retain all the shortest paths passing
through it. However, link betweeness centrality of a link is maintained when the weight of the link is
increased by a value less than 𝑍፩. Therefore, the weight of the link (3 ∼ 4) can be increased by a
value less than 1, to maintain the same link betweenness. The positive tolerance for each node pair
respective to link (3 ∼ 4) is represented through a square matrix as below-

𝑃 =

⎡
⎢
⎢
⎢
⎢
⎣

0 ∞ 3 3 ∞ 1
∞ 0 3 5 ∞ 1
3 3 0 ∞ 3 ∞
3 5 ∞ 0 9 ∞
∞ ∞ 3 9 0 1
1 1 ∞ ∞ 1 0

⎤
⎥
⎥
⎥
⎥
⎦

(6.2)

To calculate negative link weight tolerance, the first step is to calculate the length of the shortest path
𝑌፧ through link (3 ∼ 4). The value of 𝑌፧ for link (3 ∼ 4) is calculated for all the node pairs in the
graph. Following this, we calculate the shortest path 𝑋፧ among the same node pairs, which may or
may not traverse link (3 ∼ 4). The table 6.4 summarizes the calculated 𝑋፧, 𝑌፧ for all the node pairs
in the graph.

Node pairs Does the shortest path traverse (3 ∼ 4) 𝑌፧ 𝑋፧
(0,1) No 7 1
(0,2) Yes 8 8
(0,3) Yes 4 4
(0,4) No 5 3
(0,5) Yes 9 9
(1,2) Yes 7 7
(1,3) Yes 3 3
(1,4) No 4 2
(1,5) Yes 8 8
(2,3) No 6 4
(2,4) Yes 5 5
(2,5) No 11 1
(3,4) Yes 1 1
(3,5) No 7 5
(4,5) Yes 6 6

Table 6.4: Negative link weight tolerance calculation

From table 6.4, we are interested in the node pairs whose shortest path does not traverse the link
(3 ∼ 4). Table 6.5 summarizes the list of those node pairs and the calculated 𝑍፧. Since the difference
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between 𝑌፧ and 𝑋፧ is greater than the weight of link l (3 ∼ 4), 𝑍፧ for the node pairs is assigned the
value of the link weight, which is one. From table 6.5 we can observe that, the lowest 𝑍፧ value is
one, which becomes the negative link weight tolerance respective to link (3 ∼ 4).

Node pairs 𝑌፧ 𝑋፧ 𝑍፧
(0,1) 7 1 1
(0,4) 5 3 1
(1,4) 4 2 1
(2,3) 6 4 1
(2,5) 11 1 1
(3,5) 7 5 1

Table 6.5: Negative link weight tolerance calculation

Since we consider the weights of the links to be positive, in cases when the difference between 𝑌፧
and 𝑋፧ is greater than the weight of link, we assign value of 𝑍፧ as weight of the link itself. This is
because, if the difference between 𝑌፧ and 𝑋፧ is greater than the weight of link, the shortest path will
begin to traverse the link only when the weight of the link is negative. Therefore, to retain the value
of link weight as positive, as seen in table 6.5, 𝑍፧ for this case is not defined as 𝑌፧ −𝑋፧, but is given
the value of the weight of link (3 ∼ 4), which is 1. The negative link weight tolerance for all node pairs
respective to link (3 ∼ 4) is represented as elements of a square matrix is given as follows-

𝑁 =

⎡
⎢
⎢
⎢
⎢
⎣

0 1 0 0 1 0
1 0 0 0 1 0
0 0 0 1 0 1
0 0 1 0 0 1
1 1 0 0 0 0
0 0 1 1 0 0

⎤
⎥
⎥
⎥
⎥
⎦

(6.3)

The node pairs whose shortest path traverse link (3 ∼ 4), their 𝑍፧ is zero since their respective 𝑋፧
and 𝑌፧ values are the same. The node pairs whose shortest does not traverse link (3 ∼ 4), and
when the difference between their 𝑌፧ and 𝑋፧ is greater than the weight of link (3 ∼ 4), their 𝑍፧ is
one (weight of link (3 ∼ 4)). If the difference between their 𝑌፧ and 𝑋፧ is less than the weight of link
(3 ∼ 4), then their 𝑍፧ = 𝑌፧ − 𝑋፧, but such node pairs do not exist in this example. Table 6.6 lists 𝑍፩
and 𝑍፧ values for all node pairs for the graph in figure 6.4 relative to link (3 ∼ 4)

Node pairs 𝑍፩ 𝑍፧
(0,1) ∞ 1
(0,2) 3 0
(0,3) 3 0
(0,4) ∞ 1
(0,5) 1 0
(1,2) 3 0
(1,3) 5 0
(1,4) ∞ 1
(1,5) 1 0
(2,3) ∞ 1
(2,4) 3 0
(2,5) ∞ 1
(3,4) 9 0
(3,5) ∞ 1
(4,5) 1 0

Table 6.6: Summary of ፙᑡ and ፙᑟ values for all node pairs for the graph in figure 6.4 relative to link (ኽ ∼ ኾ)

Table 6.7 further summarizes the maximum and minimum values of positive and negative link weight
tolerance for all the links present in the graph displayed in figure 6.4. Matrix 𝑍𝑃 and 𝑍𝑁 are defined
for all the links in the graph.
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Link Link betweenness 𝑍፩ Maximum 𝑍፩ Minimum 𝑍፧ Maximum 𝑍፧ Minimum
(0,1) 0.333 9 3 1 0
(0,3) 0.0 ∞ ∞ 7 3
(1,4) 0.533 7 3 2 0
(2,3) 0.533 5 1 4 0
(2,5) 0.333 11 1 1 0
(3,4) 0.6 9 1 1 0
(4,5) 0.0 ∞ ∞ 7 1

Table 6.7: Link betweenness, ፙᑡ and ፙᑟ values for all the links for the graph in figure 6.2

𝑍𝑃 =

⎡
⎢
⎢
⎢
⎢
⎣

. 3 . ∞ . .
3 . . . 3 .
. . . 1 . 1
∞ . 1 . 1 .
. 3 . 1 . ∞
. . 1 . ∞ .

⎤
⎥
⎥
⎥
⎥
⎦

(6.4)

𝑍𝑁 =

⎡
⎢
⎢
⎢
⎢
⎣

. 0 . 3 . .
0 . . . 0 .
. . . 0 . 0
3 . 0 . 0 .
. 0 . 0 . 1
. . 0 . 1 .

⎤
⎥
⎥
⎥
⎥
⎦

(6.5)

Figure 6.5 and 6.6 display the maximum and minimum values of positive and negative link weight
tolerance for the graph in figure 6.4, respectively. Maximum 𝑍፩ for a link is the maximum tolerance
value which can be added to the weight of a link, such that at least one shortest path between any
node pair traverses it. Minimum 𝑍፩ for a link is the minimum value that can be added to the weight
of the link, such that all the shortest paths that initially traversed the link, continues to traverse it.
Minimum 𝑍፩ for a link is the positive weight tolerance of that link. Similarly, minimum 𝑍፧ for a link is
the negative tolerance weight tolerance for that link, such that when this value is reduced from the
weight of the link, the node pairs for which the shortest path did not traverse the link previously, at
least one of the shortest path begins to traverse the link. Maximum 𝑍፧ for a link is the weight of the
link itself since the negative tolerance cannot exceed the weight of the link.

Figure 6.5: Maximum and minimum values of ፙᑡ for figure 6.4
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Figure 6.6: Maximum and minimum values of ፙᑟ for figure 6.4

6.3.2. Example 2
Let us consider another example to illustrate the link weight tolerance, in a weighted graph of 5 nodes
for a link with the smallest link betweenness. For the weighted graph shown in figure 6.7, the link
(3 ∼ 4) has the smallest link betweenness as shown in table 6.8.

Figure 6.7: Example of an undirected weighted graph

The shortest path matrix for the weighted graph in figure 6.7 is represented as below-

𝑋 =
⎡
⎢
⎢
⎢
⎣

0 4 6 2 1
4 0 7 6 3
6 7 0 4 6
2 6 4 0 3
1 3 6 3 0

⎤
⎥
⎥
⎥
⎦

(6.6)

Link Link betweenness

(0,3) 0.4
(0,4) 0.4
(1,2) 0.1
(1,4) 0.3
(2,3) 0.2
(2,4) 0.1
(3,4) 0.0

Table 6.8: Link betweenness for graph in figure 6.7

Similar procedure as in example 1 is followed to calculate 𝑋፩, 𝑌፩ and 𝑍፩. Table 6.9 displays the 𝑋፩
and 𝑌፩ values for each node pair.
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Node pairs Does the shortest path traverse link (3 ∼ 4) 𝑋፩ 𝑌፩
(0,1) No 4 4
(0,2) No 6 6
(0,3) No 2 2
(0,4) No 1 1
(1,2) No 7 7
(1,3) No 6 6
(1,4) No 3 3
(2,3) No 4 4
(2,4) No 6 6
(3,4) No 3 3

Table 6.9: Positive link weight tolerance calculation

As seen in table 6.9, for all the node pairs, the shortest path does not traverse the link (3 ∼ 4) and
thus does not contribute to its link betweenness. Therefore, the positive link weight tolerance 𝑍፩ for
all the node pairs is ∞.

𝑃 =
⎡
⎢
⎢
⎢
⎣

0 ∞ ∞ ∞ ∞
∞ 0 ∞ ∞ ∞
∞ ∞ 0 ∞ ∞
∞ ∞ ∞ 0 ∞
∞ ∞ ∞ ∞ 0

⎤
⎥
⎥
⎥
⎦

(6.7)

The procedure as in example 1 is repeated to obtain negative link weight tolerance for link (3 ∼ 4) of
graph G.

Node pairs Does the shortest path traverse link (3 ∼ 4) 𝑌፧ 𝑋፧
(0,1) No 11 4
(0,2) No 11 6
(0,3) No 7 2
(0,4) No 8 1
(1,2) No 13 7
(1,3) No 9 6
(1,4) No 12 3
(2,3) No 12 4
(2,4) No 10 6
(3,4) No 6 3

Table 6.10: Negative link weight tolerance calculation

From table 6.10, since link (3 ∼ 4) does not lie in the shortest path for any of the node pairs, all of
them are considered to calculate the negative link weight tolerance.

Node pairs 𝑌፧ 𝑋፧ 𝑍፧
(0,1) 11 4 6
(0,2) 11 6 5
(0,3) 7 2 5
(0,4) 8 1 6
(1,2) 13 7 6
(1,3) 9 6 3
(1,4) 12 3 6
(2,3) 12 4 6
(2,4) 10 6 4
(3,4) 6 3 3

Table 6.11: Negative link weight tolerance calculation
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Table 6.11 lists the shortest path lengths and negative tolerance for each node pair respective to link
(3 ∼ 4). The negative link weight tolerance for link (3 ∼ 4) in matrix form is given as-

𝑁 =
⎡
⎢
⎢
⎢
⎣

0 6 5 5 6
6 0 6 3 6
5 6 0 6 4
5 3 6 0 3
6 6 4 3 0

⎤
⎥
⎥
⎥
⎦

(6.8)

The lowest value in the 𝑍፧ is 3, which gives us the negative link weight tolerance respective to
link (3 ∼ 4 ). Table 6.12 further summarizes maximum and minimum values of positive and negative
link weight tolerance for all the links present in the graph displayed in figure 6.7. Matrix 𝑍𝑃 and 𝑍𝑁
are defined for all the links in the graph.

Link Link betweenness 𝑍፩ Maximum 𝑍፩ Minimum 𝑍፧ Maximum 𝑍፧ Minimum
(0,3) 0.4 5 1 2 0
(0,4) 0.4 7 3 1 0
(1,2) 0.1 2 0 7 0
(1,4) 0.3 10 5 3 0
(2,3) 0.2 5 1 4 1
(2,4) 0.1 1 0 6 1
(3,4) 0.0 ∞ ∞ 6 3

Table 6.12: Link betweenness, ፙᑡ and ፙᑟ values for all the links for the graph in figure 6.7

𝑍𝑃 =
⎡
⎢
⎢
⎢
⎣

. . . 1 3

. . 0 . 5

. 0 . 1 0
1 . 1 . ∞
3 5 0 ∞ .

⎤
⎥
⎥
⎥
⎦

(6.9)

𝑍𝑁 =
⎡
⎢
⎢
⎢
⎣

. . . 0 0

. . 0 . 0

. 0 . 1 1
0 . 1 . 3
0 0 1 3 .

⎤
⎥
⎥
⎥
⎦

(6.10)

Figure 6.8 and figure 6.9 display the maximum and minimum values of positive and negative link
weight tolerance for the graph in figure 6.7, respectively.

Figure 6.8: Maximum and minimum values of ፙᑡ for figure 6.7
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Figure 6.9: Maximum and minimum values of ፙᑟ for figure 6.7

6.4. Observations
From the above two examples, we can observe that the links with high link betweenness have a
high positive link weight tolerance but a low negative link weight tolerance. While a link with zero
link betweenness cannot have a positive tolerance, i.e. 𝑍፩ for such a link is ∞ since that link does
not contribute to the shortest path between the node pairs in a network. But such links have a high
negative link weight tolerance since its link weight has to be decreased by 𝑍፧ for the shortest path to
traverse the link. To summarize,

• When 𝑍፩ of a link is ∞, it implies that no shortest path traverses the link i.e. when a link l with
one or more shortest paths running through it, and for each node pair that has its shortest path
running through that link, there are no other shortest paths when we would remove that link,
then 𝑍፩ for that link is ∞.

• When 𝑍፩ of a link is zero, it implies that when the weight of the link is increased even by one
unit, the shortest path between some pairs that initially traversed the link, will stop traversing it.
𝑍፩=0 is also observed for a link when for one or more of the shortest paths for a node pair (a,b)
running through that link, there are other shortest paths for that node pair (a,b) not traversing
that link.

• When 𝑍፩ of a link is any other positive value, it is the minimum value that can be added to the
weight of the link, to retain all the shortest path traversing the link i.e. it maintains the same link
betweenness of the link.

• When 𝑍፧ of a link is zero, it means that the shortest paths between all the node pairs already
traverses the link. This is observed for links with high link betweenness. 𝑍፧=0 is also observed
for a link when for one or more of the shortest paths for a node pair (a,b) running through that
link, there are other shortest paths for that node pair (a,b) not traversing that link.

• When 𝑍፧ of a link is the value of its link weight, it implies that a shortest path will never traverse
the link irrespective of how much the weight of the link is decreased.

• When 𝑍፧ of a link is any other positive value, it means that it is the minimum value that has to
be decreased from the link weight, such that a shortest path begins to traverse the link.

Positive and negative link weight tolerance therefore tells us the extent to which the weight of the
link can be increased or decreased without changing the link betweenness of a link and also tells us
the link weight at which a shortest path can begin or cease to traverse the link.



7
Link Tension in Weighted Graphs

This chapter introduces a new measure for weighted graphs, Link tension. Section 7.1 provides a
definition for link tension and section 7.2 provides link tension distribution graphs for three classes of
weighted random graph models. Section 7.3 contains a generic evaluation for link tension.

7.1. Definition
In a graph, the ability of a node to communicate with various other nodes is inferred from its degree.
The greater the degree of a node, the higher is its connectability with other nodes as the number of
links emerging from the node is also greater. The connectability of the nodes can also be expressed
through the strength of the nodes in a weighted graph, which can be interpreted in two different
manners. Strength of a node 𝑠። was given a conventional definition by De Montis in [20], where 𝑠።
is defined as the sum of the weights of the links incident to the node. Since the strength of a node
quantifies the node connectability, there can be another interpretation for the weight of a link which
in turn defines the strength of a node. In the case of weighted graphs where the weight of a link
represents its distance or cost, we can point out that the higher the weight of a link, the smaller are
the chances for the link to add to the connectability of a node on an end of the link. The probability
for the link to add to the amount of connectability of a node is inversely proportional to the link weight
incident to that node. Therefore, the second interpretation of the strength of a node is the sum of
the inverse of the respective link weights and not the sum of the weights of the incident links [43].
In a weighted network, link weight is not a sufficient attribute to assess the significance of the link.
There is a need for quantization of link significance to generate efficient and robust networks. Usually,
Link betweenness, which is a metric based on shortest paths, is the measure predominantly used to
characterize the importance of a link.

The measurement of the importance of a link can be extended from link betweenness to link
tension, 𝑇፥. Link tension takes into account both link weight and weighted link betweenness to rank
the importance of a link i.e. to know the most significant link and the least significant link in a network.
The metric link tension is defined as,

𝑇፥ = 𝐶፥ፁ ∗ 𝑤፥ (7.1)

where 𝐶፥ፁ is the weighted betweenness of the link l and 𝑤፥ is the weight of the link l as shown in figure
7.1.

Figure 7.1: Link tension for link l
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To comprehend link tension, let us consider an electrical circuit. An electrical circuit is a network
with current flowing in a closed path in wires, where the wires and components in a circuit offer some
hindrance to the current flow, this hindrance is known as the resistance. From ohm’s law, voltage
can be defined as 𝑉 = 𝐼 ∗ 𝑅 where V is the voltage, I is the current and R is the resistance. Now, let
us consider link betweenness to be “link current” and link weight to be “link resistance”. The product
of these two measures yields “link tension” (or “link voltage”). In this manner, we can calculate link
tension for all the links in the graph. Link tension shows the capability of a link to carry information
from one node to another; the greater the link tension of a link, the greater is the capability of the
link to allow flow of data packets through it. Measuring link tension can help us to understand and
recognize the weak links and strong links in a network during an attack on a network since it can help
us identify the link with low or high weights and their ability to transmit information. Let us consider
the weighted undirected graph in figure 7.2.

Figure 7.2: Example of a weighted graph

In figure 7.2, the information from node 2 to node 4 can take the route through (2 ∼ 3)+(3 ∼ 4) or
(2 ∼ 1) + (1 ∼ 4). To know which path has better capability to transmit information, we sum the link
tension of the links involved in the route. When we calculate link tension values for both the paths,
we obtain

• Path 1: = 𝑇ኼ∼ኽ + 𝑇ኽ∼ኾ = 1.752

• Path 2: = 𝑇ኼ∼ኻ + 𝑇ኻ∼ኾ = 1.8

Though both the paths have the same shortest path value 6, the link tension values are different.
This tells us that the links in the latter path, (2 ∼ 1)+ (1 ∼ 4) have greater link importance and could
have better capability to handle transmission of data from node 2 to node 4. Figure 7.3 shows the
values of link tension for all the links in the weighted graph displayed in figure 7.2.

Link Link Betweenness Link Weight Link Tension

(1,2) 0.267 3 0.801
(1,4) 0.333 3 0.999
(2,3) 0.267 4 1.068
(2,5) 0.333 3 0.999
(3,4) 0.333 2 0.666
(4,6) 0.333 2 0.666

Table 7.1: Link betweenness, link weight and link tension values for figure 7.2

Table 7.1 lists the weighted link betweenness, link weight and links tension for all the links in figure
7.2.
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Figure 7.3: Link tension for all links in the graph displayed in figure 7.2

Let us now consider the weighted graph in figure 7.4 where few links have same weight but
different link betweenness and link tension.

Figure 7.4: Example of a weighted graph

Figure 7.5: Illustration of link tension and link betweenness for all the links in figure 7.4
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Figure 7.6: Illustration of link tension and link degree for all the links in figure 7.4

Link Link Betweenness Link Weight Link Tension

(1,2) 0.357 3 1.071
(1,3) 0.178 5 0.89
(1,4) 0.214 2 0.428
(1,5) 0.357 2 0.714
(2,3) 0.035 4 0.14
(2,7) 0.214 4 0.856
(3,7) 0.036 3 0.108
(4,5) 0.036 3 0.108
(4,6) 0.036 3 0.108
(4,8) 0.107 5 0.535
(5,6) 0.178 2 0.356
(5,8) 0.107 5 0.535
(6,8) 0.036 4 0.144

Table 7.2: Weighted Link betweenness, link weight and link tension values for figure 7.4

Table 7.2 lists the weighted link betweenness, link weight and links tension for all the links in figure
7.4. Links with same betweenness can have different link tension, as shown in table 7.4. For the
weighted graph in figure 7.4, figure 7.5 shows link tension and link betweenness comparison and
figure 7.6 shows a comparison between link tension and link degree. From figure 7.5 and 7.6, we
can observe that the links with high link betweenness have high link tension but not necessarily a
high link degree.

Two links can have the same link betweenness, like links (1 ∼ 3) and (5 ∼ 6) in figure 7.4, with
weight of link (1 ∼ 3) greater than the weight of link (5 ∼ 6). Link (1 ∼ 3) is therefore more important
than link (5 ∼ 6) since despite the higher weight of the link (1 ∼ 3), it has the same number of
shortest paths running through it as link (5 ∼ 6). Link tension aids in ranking the importance of the
link since the link tension values can be different for links with same betweenness, indicating that the
link with higher link tension is crucial and is better capable of handling flow of information through it.

7.2. Link tension distribution for different classes of graph
Figure 7.7 shows the link tension distribution for an Erdos Renyi weighted random graph instance with
n=1000 and p=0.5. The link tension distribution as observed in figure 7.7 is a binomial distribution
evolving into a Poisson distribution.
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Figure 7.7: Link tension distribution for weighted ER graph

Figure 7.8 shows the link tension distribution for a Watts Strogatz weighted small world graph
instance with n=1000 and k=4. The link tension distribution obtained for weighted Watts Strogatz
weighted small world model is a poisson distribution. This tells us that most of the links in the graph
have the same value of link tension.

Figure 7.8: Link tension distribution for weighted Watts Strogatz graph

Figure 7.9 shows the link tension distribution for a Barabasi Albert weighted scale free graph
instance with 1000 final nodes and initial nodes=10. The link tension distribution as observed in
figure 7.9 is a power law distribution. This distribution tells us that many links have a low value of link
tension and few links have higher value of link tension.
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Figure 7.9: Link tension distribution for weighted Barabasi Albert graph

7.3. Observations
Link tension as a metric, is an extension from link betweenness to rank the significance of a link in a
network. Through link tension, we are provided further information about the path taken between a
node pair and the capability of the path to handle transmission of data.

In the case of multiple shortest path between two node pairs, link tension can help us decide
the potential path which possesses the better capability to transfer information. Since this metric
considers weight of a link along with link betweenness, it is helpful in cases when two links have the
same betweenness and suggests that a link with higher weight has more importance.
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Conclusion

This chapter provides conclusions for this thesis. Section 8.1 describes the contributions made
through this thesis. Section 8.2 briefly discusses the future work that can be done related to this
thesis.

8.1. Contributions of this thesis
Analyzing the links in weighted networks is a significant step towards understanding their dynamic
behaviour. The goal of our research was to develop a method to obtain weight tolerance of a link
in a network. The primary research question of the thesis was to propose an algorithm to calculate
positive and negative weight tolerance of a link. The secondary research question was to understand
the ability of the link to handle transmission of data.

We started with reviewing few important graph measures of complex network theory: cluster-
ing coefficient, assortativity, modularity, betweenness centrality for both unweighted and weighted
graphs. We continued our research by studying the basic concepts of graph theory which includes
types of graphs, regular graphs, directed and undirected graphs, weighted and unweighted graphs,
degree of a node, random graph models and graph metrics. We then studied extensively about be-
tweenness centrality for both nodes and links. Then, we generate unweighted and weighted random
graph models (Erdos Renyi graphs, Small world graphs, Scale free graphs) and obtain few impor-
tant distributions for the generated graphs. Distribution of link strength which was obtained for three
classes of weighted random graph models, is a novel addition to chapter 5.

In the final parts of the thesis, we have proposed an algorithm to obtain the weight tolerance of
a link, both positive and negative tolerance. The positive tolerance obtained for a single link tells us
the extent to which the weight of the link can be increased, so as to maintain the same shortest path
between all node pairs. Similarly, the negative tolerance tells us the extent up to which weight of the
link has to be decreased, so that the shortest path between a node pair which did not traverse the
link previously, begins to traverse the link. We also discuss how the tolerance is for links with high
and low link betweenness.

In addition, the other concept introduced for the weighted networks is link tension. This measure
helps us to understand the capability of a link to handle data transmission. We also discuss how link
tension can be used to rank the importance of a link when two links have the same link betweenness.
Both the concepts that have been introduced gives us a new type of information related to the links
in a weighted network which can be further explored.

8.2. Future research
The concept of link weight tolerance and link tension which has been introduced in this thesis is for
undirected weighted graphs. The logical next step would be to extend both these concepts for di-
rected weighted graphs. This would include research on shortest paths in directed weighted graphs,
link betweenness centrality in directed weighted graphs. Tolerance of a link in weighted directed
graphs can help us understand the nature of links in directed graphs. Similarly, link tension in di-
rected graphs can help us determine the ability of a link to transmit information in a directed network.
Additionally, the weighted network in this thesis includes only positive link weights. Link weight tol-
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erance can be developed for weighted networks with negative link weights. Besides this, research
on more large-scale networks can also be a part of future work.
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A
Appendix

This appendix contains the Python code used in the thesis for the calculation of link weight tolerance
and link tension.

import networkx as nx
import numpy as np
from itertools import islice
from itertools import count
import itertools

#creates a graph object
G= nx.Graph()
# creating a sample graph by adding nodes and edges
G.add_edge(1,0,weight=1)
G.add_edge(1,4,weight=2)
G.add_edge(5,2,weight=1)
G.add_edge(3,0,weight=7)
G.add_edge(3,4,weight=1)
G.add_edge(5,4,weight=7)
G.add_edge(3,2,weight=4)

pairs= list ( itertools .combinations(range(6), 2))
print pairs
edgeweight= list(G.edges.data(’weight’))
maxw= max(edgeweight)
# list of X_p
for (u,v) in pairs :

path=nx.dijkstra_path(G,u,v, weight=’weight’)
xp=nx.dijkstra_path_length(G,u,v, weight=’weight’)
print path
print u,v,xp

lb=nx.edge_betweenness_centrality(G, normalized=True, weight=’weight’)

#link tolerance for 3~4
i=3
j=4

#Code to generate positive link weight tolerance calculation

result_x = np.array ([])
for (u,v) in pairs :

if (nx.has_path(G,u,v)==True):
sp_count=[p for p in nx.all_shortest_paths(G,source=u,target=v, weight=’weight’)]
count=len(sp_count)
if count>1:

x1=maxw
else:

x1=nx.dijkstra_path_length(G,u,v, weight=’weight’)
result_x = np.append(result_x, x1)

G.remove_edge(i,j)
result_y = np.array ([])
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for (u,v) in pairs :
y1=nx.dijkstra_path_length(G,u,v, weight=’weight’)
result_y = np.append(result_y, y1)

result_z=np.array ([])
result_z=np.subtract(result_y , result_x)
plt = result_z . tolist ()
plt_list =[ int ( i ) for i in plt ]
temp_list= zip(pairs , plt_list )

pt_list =[(u,v, i ) for ((u,v) , i ) in temp_list ]
p_list =[(u,v,np.nan) if i==0 else (u,v, i ) for (u,v, i ) in pt_list ]
plt_flist = p_list =[(u,v,0) if i < 0 else (u,v, i ) for (u,v, i ) in p_list ]

#Matrix representation for Zp

matrix=[[0 for x in range(n)] for y in range(m)]
matrix={}
for (u,v) in pairs :

matrix[u,v]= plt_flist [ j ][2]
matrix[v,u]= plt_flist [ j ][2]
j+=1

idx = np.array(matrix.keys())
vals = np.array(matrix.values())
# Get dimensions of output array based on max extents of indices
dims = idx.max(0)+2
# Setup output array and assign values into it indexed by those indices
out = np.zeros(dims,dtype=vals.dtype)
out[ idx [:,0], idx [:,1]] = vals
print out[:ዅ1,:ዅ1]

# Code to generate negative link weight tolerance
l=( i , j )
ij_w= H.get_edge_data(*l)
ij_weight=ij_w.get( ’weight’)
result_x2 = np.array ([])

for (u,v) in pairs :
x2_1=nx.dijkstra_path_length(H,u,i)+ ij_weight + nx.dijkstra_path_length(H,j ,v, weight=’weight’)
x2_2=nx.dijkstra_path_length(H,u,j)+ ij_weight + nx.dijkstra_path_length(H,i ,v, weight=’weight’)
x2= min(x2_1, x2_2)
result_x2 = np.append(result_x2, x2)

result_y2 = np.array ([])
for (u,v) in pairs :

y2=nx.dijkstra_path_length(H,u,v, weight=’weight’)
result_y2 = np.append(result_y2, y2)

result_z2 = np.array ([])
result_z2=np.subtract(result_x2,result_y2)
pltnt = result_z2. tolist ()
pltnt_list =[ int ( i ) for i in pltnt ]
tempnt_list= zip(pairs , pltnt_list )

ptnt_list =[(u,v, i ) for ((u,v) , i ) in tempnt_list ]
ptnt_flist =[(u,v, ij_weight ) if i > ij_weight else (u,v, i ) for (u,v, i ) in ptnt_list ]

# Matrix representation for Zn
matrixnt=[[0 for x in range(n)] for y in range(m)]
matrixnt={}
for (u,v) in pairs :

matrixnt [u,v]= ptnt_flist [ j ][2]
matrixnt [v,u]= ptnt_flist [ j ][2]
j+=1

idx2 = np.array(matrixnt .keys())
vals2 = np.array(matrixnt .values())
# Get dimensions of output array based on max extents of indices
dims2 = idx2.max(0)+2
# Setup output array and assign values into it indexed by those indices
outnt = np.zeros(dims2,dtype=vals2.dtype)
outnt [ idx2 [:,0], idx2 [:,1]] = vals2
print outnt[:ዅ1,:ዅ1]

# Link tension calculation
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# Weighted link betweenness for all the links in the graph
gblc=nx.edge_betweenness_centrality(g,normalized=True, weight=’weight’)
print (gblc)
l_b = gblc.values()
l_b1 = [round(num, 3) for num in l_b]
print (l_b1)
edgewidth = [ d[ ’weight’ ] for (u,v,d) in g.edges(data=True)]
edgeweight = [round(num) for num in edgewidth]
result_lt = np.array ([])

for (u,v) in g.edges:
l=(u,v)
uv_w= g.get_edge_data(*l)
uv_weight=uv_w.get(’weight’)
lb= gblc[u,v]
lt = uv_weight* lb
print (u,v, lt )
result_lt =np.append(result_lt, lt )

lt_list = result_lt . tolist ()
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