P5

Gerjan Agterhuis - 4497309 - 30/06/2021

Architectural design crossovers: City of the future

Image 1 - Front page
Energy in the city
Photo - edited
[View of the Gas silo on the F.
aan de Lusthofstraat. Taken
from the gas factory on the
Oostzeedijk, 02 October 1908]

- Research
 - Theory
 - Strategy
 - Location analysis
- Design
- Building technology
 - Construction
 - Climate
 - Detail
- Energy system

Research

Problem statement

Image 2: Green tech park concept (Studio Marco Vermeulen)

- "As of 2011, more than 52% of the global population lives in urban areas. In 2006, urban areas accounted for 67–76% of energy use and 71–76% of energy-related CO2 emissions. By 2050, the urban population is expected to increase to 5.6–7.1 billion, or 64–69% of world population" (IPCC)
- "The sheer quantity of renewable energy that needs to be generated to sustain humanity may require us to regard, at least conceptually, every landscape as an energy landscape" (Stermke, S., & van den Dobbelsteen, A., 2012)

Motivation

Image 3: Renewable energy share in total energy usage

- The Netherlands as one of the worst performing countries in the EU
- Complexity of population density

% of total

Trends

Image 4: Total investment in start-ups in energy sector

- Growing desire to fulfil the energy demand with renewable energy
- Grid relies on centralized energy systems
- Rising cost of energy
- Net-positive architecture > Urban self-sustainability
- Maturing renewable energy production technologies
- Clean energy production earmarked as one of the promising economic fields for the recovering economy in a post-Covid economy by European Commission

Investments per year in energy sector

Research question

Image 2: Green tech park concept (Studio Marco Vermeulen)

How can sustainable energy systems be integrated in urban areas through spatial planning and design?

Image 5: Position paper conclusions

Public life

Urban design

	Building envelop performance	(Zanon & Verones, 2013)
	Urban morphology	(Zanon & Verones, 2013; Vandevyvere & Stremke, 2012)
	Compactness	(Zanon & Verones, 2013)
N	Orientation	(Vandevyvere & Stremke, 2012)
11	Exchange of heat between functions	(Vandevyvere & Stremke, 2012)
	Integration of decen- tralized plants for district heating	(Vandevyvere & Stremke, 2012)
11	Application of geother- mal/deep soil heat in larger building blocks	(Vandevyvere & Stremke, 2012)
$\stackrel{\Phi}{\longrightarrow}$	Mix of functions	(Stremke & Van den Dobbelsteen, 2012)
	Integration with urban functions (as city branding strategy)	(Sijmons et al., 2014)
	Area development	(Daamen & Van der Linden, 2020)

Strategy

Image 6: Energy hub systems

Strategy

Image 7: Scale of the Energy Hub

- Focus on envelop design
- Integration through morphological adaptation

- Focus on compactness
- Complementary neighbourhood functions

- Focus on appropriateness and local initiatives
- Publicness around perimeter

- Focus on public interiors
- Energy experience
- Urban functions

XL

Strategy

Image 8: Programmatic framework

Primary program

- 1. Geothermal plant
- 2. Biomass plant
- 3. Biogas/Biofuel plant
- 4. Electricity production
- 5. Electricity storage
- 6. Cold-Heat storage
- 7. Maintenance room
- 8. Loading bay

Secundary program

- 1. Heat exchange trough local functions
- 2. Interior circulation
- space
- 3. Exterior functions (facade program)

Tertiary program

- 1. Learning environ-
- ment
- through local functions
- 3. Thermal spa

2. Heat exchange

- 4. Public pool
- 5. Botanic garden
- 6. Urban farming
- 7. Modal hub/Car-sharing hub
- 8. Waste collection and separation
- 9. Lookout point
- 10. Museum
- 11. Start-ups

Image 13: Educational facilities

Location analysis

Image 14: District heating system

Location analysis

Image 15: Combining urban functions

Image 16
Energy in the city
Photo - edited
[View of the Gas silo on the F.
aan de Lusthofstraat. Taken
from the gas factory on the
Oostzeedijk, 02 October 1908]

Design

Design concept

Image 17: Design/Research framework

Decentralized energy systems

- 1. Interweaving of public functions and private/production space
- 2. Development of cold to hot is visible
- 3. Making clear the paths of the energy systems and making the installations insightful for visitors

Design concept

Image 18: Three layers of the design

Decentralized system management, Learning environment

Representative architecture (Representation on regional scale)

Production landscape, interaction with public, history of production in Rotterdam

Form studies

Image 19: Traditional architecture

The traditional warehouse shape

Form studies

Image 20: Mixing functions

The introduction of public program and secundary energy systems

Form studies

Image 21: Reorganization of program

Re-organization of the primary functions

Form studies

Image 22: Functional alignment

Stacking and intersection

Design

Image 23: Architecture and content

Recreating the representative facade

Form studies

Image 24: Modularity

Recreating the representative facade

Image 25: Roof plan

Image 26: Ground floor

Isometric plans

Image 27: Ground floor

Image 28: Second floor

Image 29: Second floor

Image 30: Third floor

Floor plans

Sections

Image 35: Longitudinal section

Sections Image 36: Functional section

Sections Section

Sections Image 38: Functional section

Image 39: North and South facade

Building technology

Load bearing elements

Image 42: Isometric structure model

- Concrete (situ cast, prefab)
- Column and truss (glass and opaque)
- Steel structure

Image 43: Zones in section

- **A1** Office and education
- A2 Public space
- **B1** Factory climate
- **B2** Public swimming pool

HVAC infrastructure *Image 44:* Ventilation in cross section

Load bearing / Building technology structure - visible networks

Through pipes in longitudinal direction

Pipes in cross direction in lowered ceiling (only in class rooms and offices)

HVAC infrastructure

Climate strategies

Image 47: Winter scenario

Image 48: 1:20 Facade fragment

Image 51: Roof detail

Building technology

Image 52: Floor detail

Image 53: Underside floor detail

D3

Image 54: Foundation detail

D4

Image 55: Horizontal detail

City of the future

Image 56: Perspective section

Factorization - Standardized

replaceable)

facade panel (removable, movable,

Relevant elements

Building technology - Truss like ceiling system as flexible infrastructure space Factorization - standardized window frame Basement - expansion opportunities Public space as education spaces -Colour coded pipes and cables

Energy

Image 58: System diagram

Image 59: Infrastructure in model

P5

Gerjan Agterhuis - 4497309 - 30/06/2021

Architectural design crossovers: City of the future

Image 61 - Closing page
Energy in the city
Photo - edited
[View of the Gas silo on the F.
aan de Lusthofstraat. Taken
from the gas factory on the
Oostzeedijk, 02 October 1908]

