
Development of visualization
software for parcel delivery
algorithms
Final Report

L.S. Cras | S.R. Dahrs | A.S. Gielisse | L.R.M. Nikkels | J. Ruiter

Al
m
en

de
B.
V.

Development of
visualization software
for parcel delivery

algorithms
Final Report

by

L.S. Cras | S.R. Dahrs | A.S. Gielisse | L.R.M. Nikkels | J. Ruiter

to obtain the degree of Bachelor of Science
at the Delft University of Technology.

Project duration: April 20, 2020 – July 3, 2020
Supervisors: Ir. C.A. Hermans, Almende B.V., client

Dr. M.T.J. Spaan, TU Delft, coach
Ir. O.W. Visser, TU Delft, coordinator
Dr. H. Wang, TU Delft, coordinator

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Preface
This document is the final report for the TI3806 Bachelor End Project course offered by the TU Delft as
part of the Bachelor’s degree in Computer Science and Engineering. This report contains all important
information concerning the 11-week project, of which two weeks were spent researching and the other
nine weeks were spent actively implementing a web application for the company Almende B.V.

We would like to take the opportunity to thank everyone who guided and supported us during this
project. This includes Andries Stam, Veerle van der Tas and especially Carlos Hermans from Almende
B.V. who were continuously involved in research and development and provided us with feedback.
A special thanks also goes out to our TU Delft supervisor, Dr. Matthijs Spaan, from the Software
Technology department. His guidance and insights in the development and research phase were of
great help.

L.S. Cras | S.R. Dahrs | A.S. Gielisse | L.R.M. Nikkels | J. Ruiter
Delft, June 2020

iii

Summary
Almende B.V., a technologically innovative and research-oriented company, has been working on a
new algorithm that optimizes routes for parcel delivery trucks. The algorithm contains novel features,
like including the possible use of autonomous vehicles, that are at this moment in time not taken into
account in existing route optimization algorithms and thus visualization applications. To this end and to
get a more tangible overview of the algorithm’s behavior and performance, they requested to have a
customized visualization tool developed. This report describes the process and results of developing
such a tool. The tool is presented as a single-page application and has been partly depicted on the cover
of this document1. The goal of the project is to have a more clear overview of the routing algorithm’s
capabilities, by showing its unique features on a map and displaying statistics on the side. In addition,
comparing the algorithm to existing ones should provide added insights into the (expected) benefits
of the new algorithm. The main purpose of the tool developed in this project is to show insight into
the workings of the algorithm and to help with enhancing and developing the algorithm. An added
side-bonus is that the tool can also be used to show the performance to various groups of interested
parties.

The first two weeks of the project were spent on researching the principles of data visualization and
then diving into the best way to visualize the algorithm being designed by Almende B.V. Examples of
questions that were asked and answered are ‘what are the most important characteristics of such algo-
rithms’ and ‘how can we best convey the performance of those characteristics while also highlighting
why this performance is the way it is’. We also spent time looking for potential platforms and implemen-
tation details for the visualization tools such as on which library to build the frontend, etc. Answers to the
questions posed above resulted in the decision to create both a map showcasing the routes, vehicles,
deliveries, and more, but also a view of the various performance indicators in the form of statistics. The
map can then form the basis for understanding why a certain performance indicator lands on a certain
result. The most important characteristics that were decided on being shown are indicators including
but not limited to cost, time and kilometers driven. These statistics are easily extendable, for whenever
the need to inspect another aspect of the algorithms performance becomes necessary.

The final solution is a web application that rewrites the output of different routing algorithms to a
standardized format on the server and sends this data to the frontend, where the routes are subse-
quently displayed in the map view and statistics are calculated for it. The code is designed according
to framework standards and the product’s interface is designed to be intuitive and user-friendly. While
some aspects of the tool turned out to be not (yet) completely perfect in the final stages of the project,
the visualization tool implements all major and most minor requested features and sheds light on the
unique features of the algorithm. It can be concluded that the end product indeed solves the problems
raised by Almende B.V.

1More visual representations of the application, including descriptions, can be found in chapter 3

v

Contents

1 Introduction 1

2 Problem Definition and Problem Analysis 3
2.1 Visualization . 3
2.2 Purposes . 3
2.3 Autonomously Traversable Roads. 4
2.4 Package Handovers . 4
2.5 Comparison Mode . 4
2.6 Requirements. 4

3 Design 7
3.1 Code Design . 7

3.1.1 Assets . 7
3.1.2 Backend design. 8
3.1.3 Frontend design . 8

3.2 Application layout. 8
3.2.1 Map . 11
3.2.2 Statistics . 15
3.2.3 Control panel . 16

4 Implementation 25
4.1 Frontend . 25

4.1.1 Map . 25
4.1.2 Statistics . 27

4.2 Backend. 27
4.2.1 Structure . 27

4.3 API . 28
4.3.1 Map routing . 28

5 Process Evaluation and Recommendations 29
5.1 COVID-19 response . 29

5.1.1 Collaboration within the team . 29
5.1.2 Collaboration with the client . 30

5.2 Methods. 30
5.2.1 Scrum . 30
5.2.2 Gitlab . 31

5.3 Quality assurance . 31
5.3.1 Tests . 31
5.3.2 Static code quality . 32

6 Product Evaluation and Recommendations 33
6.1 Evaluation of requirements. 33
6.2 Evaluation of design decisions. 36

6.2.1 Real time statistics updates . 36
6.2.2 Unexpected Almende output . 36
6.2.3 Animation playback. 36
6.2.4 Aggregated statistics . 37
6.2.5 Additional features . 37

vii

viii Contents

6.3 Recommendations . 38
6.3.1 Visited markers . 38
6.3.2 Number of parcels . 38
6.3.3 Autonomous roads . 38
6.3.4 Delivery point generation. 38
6.3.5 Could haves . 38

7 Conclusion 39

A Infosheet 41

B Project Description 43

C SIG feedback 45
C.1 Feedback . 45

C.1.1 Duplication . 45
C.1.2 Unit size. 46

C.2 Results . 46
C.2.1 Complexities . 46
C.2.2 Evaluation. 47

C.3 Conclusion . 48

D Research Report 49
D.1 Introduction . 49
D.2 Problem analysis . 49
D.3 Data visualization. 50

D.3.1 Definitions. 50
D.3.2 Principles of data visualization . 51
D.3.3 Data visualization on maps . 52

D.4 Visualization platforms . 52
D.4.1 Considerations . 53
D.4.2 Platform providers . 53
D.4.3 Motivation . 56

D.5 Related work . 57
D.6 Visualizing the parcel delivery algorithm . 57

D.6.1 Scalability . 58
D.6.2 Visualization of autonomous vehicles . 58
D.6.3 Robustness visualization . 58
D.6.4 Algorithms . 59

D.7 Conclusion . 59

Glossary 61

Bibliography 63

1
Introduction

Efficient algorithms are essential for optimizing cost when offering a parcel delivery service. In its
essence, a parcel delivery algorithm is a generalized and more elaborated variant of the traveling
salesman problem, also known as a vehicle routing problem. Improvements in the efficiency of these
algorithms are continuously being researched and developed, as technological developments progress.

Almende B.V. is a company that is currently working on one such innovative routing algorithm in
cooperation with a master’s student from the Delft University of Technology, Veerle van der Tas, and
an external client, namely the algorithm is being designed as part of the I-Cave (Integrated Coopera-
tive Automated Vehicles) research program. More specifically they are researching the benefits and
applications of a fleet of autonomous vehicles in the problem space of parcel delivery systems. As part
of that project, Veerle van der Tas is working in cooperation with employees from Almende B.V. on an
algorithm taking into account that some roads may allow for traversal by autonomous vehicles which
would eliminate human labor and with it costs for part of the delivery process in addition packages can
be turned over between trucks, allowing for more efficient distribution over the course of a day.

Since the use case described above is fairly specific some of these features are not supported by
existing route visualization tools, it is for this reason they requested the development of a customized
application that would visualize the algorithm’s output in a comprehensivemanner for both development
as well as showcasing of the algorithm. In chapter 2, the scope and exact definition of the problem will
be discussed more extensively.

To help with testing, analyzing and developing this visualization application, the best ways to visu-
alize the properties, behaviors and heuristics of algorithms such as the one they are creating, but also
of already existing parcel delivery algorithms, were researched in the early stages of the project. The
results of this research as well as research in ways to develop the tool itself can be found in Appendix D.

After the research phase, development started which includes the design and implementation of the
application. Chapter 3 describes the design and the design goals that would serve as guidelines for
developing the tool. This concerns both the design of the code and structure as well as the visual design
of the tool itself. The technical details of the proposed solutions are discussed more comprehensively
in chapter 4 about the implementation.

Something that sets this project apart from those conducted in a ‘normal’ setting is the fact that
no in-person meetings have taken place between the team members or between the team and the
client at any point during the project. This is due to the measures that were raised in response to
the COVID-19 pandemic. Because of this, teamwork was limited to online meetings only, which made
communication and teamwork more difficult and much scarcer than when the whole team (and client)
could be together five days a week from nine to five. This also took away the experience that could
be gained from working on the premises of Almende and getting to know their employees and office
atmosphere. Chapter 5 discusses how this situation was handled more in depth and talks about other
methodologies that were used to aid in this situation.

Aside from this, developing the visualization tool came with a number of implementation challenges.
For example, during the first four weeks of developing the visualization tool, development is based
on the OpenRouteService output, i.e. output of a ‘standard’ routing algorithm, because Almende’s
algorithm is still being developed. After five weeks, sample output data of the algorithm of Almende B.V.

1

2 1. Introduction

was provided, and this proved to have quite some conceptual differences with the OpenRouteService
data that had been used, which resulted in a number of implementation challenges. These challenges
were eventually overcome, mostly at the cost of time and some precision, after which the tool could
visualize both Almende’s algorithm, and the OpenRouteService algorithm. Chapter 6 elaborates on
this challenge, and on the other challenges faced during development as well as their solutions.

Finally, chapter 7 concludes the findings and end-results of this project.

2
Problem Definition and Problem Analysis

The problem definition for this project has changed slightly towards the end of the project, but was
mainly defined within the first two weeks. The title of this project, which can be found in Appendix B
along with the original project description, already illustrates what the problem would look like: “devel-
opment of visualization software for parcel delivery algorithms.” Even though this might sound rather
straight forward, there is a lot more to it; the problem definition included things like autonomous vehi-
cles, autonomously traversable roads, the possibility of packages being handed over from one truck to
another on the way, and the possibility to compare algorithms.

2.1. Visualization
Gaining insight from data that is normally extremely difficult to read for humans can be of great impor-
tance for any business decision. Visualizing parcel delivery algorithms could, therefore, not only be a
useful aid in the development of such an algorithm but also in the decision making process of Almende.
Logically, the idea of showing a map on which vehicles drive around would be the first step towards a
gaining knowledge of how a parcel delivery algorithm behaves. This is the base of the problem defini-
tion from which there was worked towards the end-product. In the sections below, a problem definition
will be provided for each of the individual problems that were ought to be addressed. It will be described
in detail what information was available at the time and which problem definitions were created from
that.

2.2. Purposes
The visualization has two main purposes: debug during development and presentation to customers.
Both of these purposes were taken into consideration when forming the problem definition. ‘Debug
during development’ means that the visualization can be used during the development of the algorithm.
By seeing actual vehicles drive rather than having raw text data, it should be way more clear what the
idea behind the found solution to the parcel delivery problem is. On the other hand, this visualization
tool should be usable when convincing a potential customer of an algorithm that the newly developed
algorithm is significantly better than the one it could replace. This further expands on the initial problem
definition, namely that making a comparison between different algorithms must be possible, which will
be discussed further in section 2.5.

So, in conclusion, the goal is to build a visualization tool that can convince and prove to both the
developers, and the potential customers that the parcel delivery algorithm that is developed, is signifi-
cantly better than another parcel delivery algorithm. That way, the developers can be sure that if they
are convinced of their algorithm, they can also convince their potential clients with it through an easily
understandable platform. Another benefit of integrating the visualization application with the develop-
ment of the algorithm it was fine-tuned for, is the fact that the developer of the algorithm is familiar with
the visualization, can possibly make alterations to it down the road, and knows all its features so that
they can optimize their presentations for customers.

3

4 2. Problem Definition and Problem Analysis

2.3. Autonomously Traversable Roads
As part of the I-Cave research challenge that Almende will participate in, autonomously traversable
roads are a must for the visualization. The idea behind this is that not all roads within a parcel trans-
portation network have to be driven by humans, but may be driven autonomously (without the presence
of a driver) in case a given road allows this. Intuitively, taking an autonomously traversable road would
be preferred over being required to have an active driver present. If a given algorithm were to make
the decision to take a non-autonomously traversable road, it should be visually clear why this decision
is made instead of taking a possibly nearby autonomously traversable road. Vice versa, if an algorithm
were to take a large detour just to be able to drive a short distance autonomously, this would likely not
be desirable. Having a good visualization on which roads can be driven autonomously plays a large
role in the visualization, which is why this is one of the problems from which the final problem definition
was built up. The actual decisions that were made in an attempt to solve this problem are discussed
in the design chapter (3).

2.4. Package Handovers
In traditional parcel delivery systems, packages that are addressed to a destination within a certain area,
are first sorted and sent to a distribution center in the vicinity of the delivery location. From there, the
package is loaded on a truck which will then drive round delivering all the packages to their destinations.
This inhibits same-day deliveries, even when the distance that needs to be driven is relatively small,
because the truck can not receive new packages while driving. Almende is exploring a somewhat
different idea. This idea is that trucks do not only pickup all their packages at the beginning, but these
trucks can also receive new packages while delivering other ones by meeting up with different trucks
that are also delivering packages. Whether the concept of handing over packages brings sufficient
improvement in flexibility and or robustness should become apparent from the visualization tool. In
either case, the actual result of whether it does is not part of the scope of this project, as the sole aim
of the project is providing a good visualization of a given scenario. The problem here is: how does one
visualize that a given package was handed over? Does one simply put a marker on the map? This
brings lots of new problems when lots of these handovers happen, as it is very easy to lose control of
the visualization. The description above is the base foundation of the problem definition for visualizing
package handovers. Also for this problem definition; the actual decisions that were made in an attempt
to solve this problem are discussed in the design chapter (3).

2.5. Comparison Mode
The comparison mode is one of the requirements of Almende that played a vital role in the development
of this visualization tool. How would one visualize something like robustness? With robustness is
meant: how prone is a given solution to small mistakes and failures like a road block or a sick driver?
The problem definition for this was rather straight forward, but quite difficult to solve. Because how
does one visually explain this robustness without having to know the exact works of the algorithm?
The problem obviously required that two solutions should be comparable. Putting both solutions on
a single map seems like an obvious choice, but after giving it more thought, this would not give the
desired overview as things could be confused or get cluttered easily. Therefore using two separate
maps would be the most logical solution. However, the initial problem definition stated that simplicity
was of great importance, thus keeping everything on a single page were a must. Therefore the problem
definition becomes more complex, because visualizing two solutions on a single page could become
packed, thus not providing the desired overview. The actual decisions that were made in an attempt to
solve this problem are discussed in the design chapter (3).

2.6. Requirements
With all the main features evaluated, a list of requirements was constructed in collaboration with the
client. These requirements were set up according to the MoSCoW method and are listed in the re-
search report in Appendix D. For readability purposes, the requirements are repeated in the enumer-
ation below. Subsection 6.1 contains a second overview of all the requirements and whether they are
completed or not, accompanied by a brief evaluation.

2.6. Requirements 5

1. Must haves

(a) The visualization program has to be accessible in a web browser. This makes it easy for the
client to use it on any computer they want.

(b) To benchmark the performance of Almende’s algorithm against other similar algorithms, the
final product must have the ability to visualize other algorithms that try to solve the parcel
delivery problem.

(c) The vehicles and their planned route must be visualized on a map. Handovers of pack-
ages, pick-up points and packages should be clearly visible. New orders should update the
map accordingly. It must be distinguishable whether a route is for autonomous vehicles,
controlled vehicles, or a hybrid.

(d) Important metrics of the algorithm, such as cost and robustness, must be visualized in a
clear and understandable way,most likely in the form of a chart. These charts are to be
updated in real-time as the simulation progresses. The metrics must be broken down into
granular parts.

(e) The visualization has to display the chosen algorithm with its properties.
(f) For the client it is valuable if they can use the code base without any problems for future

development. If the product needs improvement after the project finishes, they must be able
to easily work with the code.

2. Should haves

(a) In order to present more information while keeping the map clutter-free, a clear overview of
the different orders, their accompanying deliverers and the routes of these deliverers should
be visible in an ordered list visible to the user.

(b) The end-product should be able to scale up, showing a bigger area at once with-out cluttering
the screen and maintaining a good, but probably less granular overview of the simulation
and workings of the chosen algorithm.

(c) In order to prevent outliers and be more sure of the end-result, the visualization tool should
give users the option to per-form random simulations multiple times with the same algorithm
at once, and then give the average solution.

(d) When something happens that the user misses or wants to focus on, there should be an
option to pause, or play back the simulation. The user should also be able to skip-forward if
they would like to speed up the simulation.

(e) To properly analyze Almende’s algorithm,it is useful to aggregate some statistics. With those
aggregations you can deduct average behavior of the algorithm.

3. Could haves

(a) In order to convey more meaning with-out cluttering the screen, sounds can be utilized in
the end product to make the user aware of certain events taking place. These sound cues
should then change with different scales of the visualization.

(b) The user can interact with the live visualization. For instance, he can manually block a road
and see how the algorithm deals with that.

4. Won’t haves

(a) Seeing as showing the visualization in 3D does not add much value, except for maybe the
wow-factor, and the amount of work that would go into adding this feature, it will not be
implemented for the end-product.

(b) Because the visualization contains a lot of information that needs to be presented to the user,
and because this feature also requires a lot of work, without adding much value (because
the product can also be viewed on a browser on a phone), a mobile application for either
android, iOS or both will not be developed.

3
Design

In this chapter, design decision throughout the product are substantiated and elaborated upon. The
design aspects are split into code design, which entails the structure of the code and its interfaces,
(section 3.1), and the layout of the application, which encompasses the visual design choices that a
user interacts with (section 3.2).

3.1. Code Design
One of the client’s first requirements is to have the final product on a web server. This makes the
application easily accessible at any location and on any device (although the application is optimized
for pc’s). When designing a web application, it is common practice to split the implementation of the
application in three parts: backend code, or server-side code, which should handle heavy computa-
tions and sensitive information; frontend code, or client-side code, which should be aimed at shaping
the layout of the content it received from the backend; and a database, which stores the data that is
used and displayed in the backend and frontend. Figure 3.1 contains an overview of the setup for the
visualization application, and each component is separately elaborated upon in this section.

Figure 3.1: A high level diagram of the visualization application’s setup.

3.1.1. Assets
It is common practice for web applications to abstract data from code as much as possible. As a conse-
quence, databases are often stored on separate servers or hosted by external parties. For the Almende
parcel delivery visualization tool there was decided not to use such a separate/external database for the
following reasons: first and foremost, the data that is used for the visualization is created on-the-fly. On
every input change or settings change, the underlying routing algorithm will be asked to recalculate its
routes and send these to the visualization application. This means there would only be a small speedup
on the initial loading of the screen, when using stored routes and statistics. This speed improvement
is considered marginal, and especially cumbersome considering the extra costs of hosting a database.
Nevertheless, the application still requires to have access to initial input data for the algorithms to be
visualized. In the implementation this data is saved on the web server in the ./assets/ folder. This
folder has a size of 6MB, 99.67% of which is taken up by a read-only GeoJSON file that contains all

7

8 3. Design

potentially autonomous roads in The Netherlands. The rest of the files are input variables and settings
that are used on load of the implemented algorithms for the visualization, such as delivery locations,
depots, vehicles and an input scenario.

3.1.2. Backend design
The backend of the Almende parcel delivery visualization makes requests to the actual routing al-
gorithms and translates these to a format that is interpretable by the frontend. In addition, it loads
information about the implemented algorithms and (potentially) autonomous roads. Finally, it is also
in charge of changing settings and generating sample delivery locations. There is a wide range of
programming languages and frameworks that can be used to implement backend functions, the most
commonly used languages for this are PHP, Python, Java and C++. For the Almende parcel delivery
visualization algorithm it was decided to use the language Python and framework FastAPI. Elaboration
on these choices and corresponding argumentation can be found in the research report (Appendix D),
which contains the research that was conducted before the start of the implementation of the visual-
ization. For readability purposes, figure 3.2 contains an overview of the final version of the backend’s
file structure.

The backend file structure was initially that of a standard FastAPI application: the home folder con-
tained a file ./main.py and config.py and a folder ./routes, which contained the code executed
on requests. Later, to accommodate for tests, the functional code was moved to a folder ./appli-
cation and tests were constructed in a separate folder ./tests. Section 4.2 contains more details
about the implementation of the backend.

3.1.3. Frontend design
As mentioned in section 3.1, frontend code should shape the data it receives from the backend in a
clear and user-friendly manner. For the project at hand, this means the frontend should accommodate
a map that displays the routes calculated by the algorithms, along with the events and special actions
that occur. In addition, there should be some statistics or dashboard with metrics, and finally, some
way for the user to set animation settings or input settings.

Client-side code for web applications usually exists of HTML, CSS and JavaScript. There are nu-
merous JavaScript frameworks that can be used to simplify and modularize this code structure. The
research report in Appendix D contains a presentation of different framework options and their advan-
tages and disadvantages. From this research it was concluded that Vue1 would be used as framework
for the frontend.

The parcel delivery visualization is a single-page application, which means all desired compo-
nents should be visible in a single view and the page should not have to be reloaded to refresh
data/components. With Vue, one can create so-called Vue Components, which are blocks of code
that can be a mix of HTML, JavaScript and CSS. By passing parameters to these components, they
can be reused with different data, hereby minimizing code duplication and size. It is common practice
to place such a Vue Component in a separate file. In a single-page application, this leads to a de-
pendency structure where there is one main file that in turn contains the main component, and these
can then each be broken down into smaller components. The component dependency structure of the
frontend is displayed in Figure 3.3. As can be seen in the figure, the first-level components correspond
to the main features that should be available in the application: a map, statistics, settings and a table
with algorithm properties, and they are combined into one application by the MainFrame component.
The next section will elaborate upon the visual representation of these components.

3.2. Application layout
The main purpose of the final product is to visualize the routes chosen by a routing algorithm, therefore
the map view is the center of the design and the component that draws one’s attention when landing
on the page. To display the other features of the application, two collapsible sidebars are added. The
rightmost sidebar contains statistics regarding the displayed algorithm(s). It has multiple tabs, including
the statistics of the current run, boxplot statistics for the selected algorithm(s) and, when the application
is in comparison mode, comparison statistics. The sidebar on the left can be seen as the control panel
of the application, here the user can manage algorithm settings, e.g. which algorithm to display, and
1https://vuejs.org/

https://vuejs.org/

3.2. Application layout 9

Fi
gu

re
3.
2:

Th
e
fil
e
st
ru
ct
ur
e
of

th
e
vi
su

al
iz
at
io
n
ap

pl
ic
at
io
n’
s
ba

ck
en

d
(e
xc
lu
di
ng

ex
te
rn
al

de
pe

nd
en

ci
es

)

10 3. Design

Figure
3.3:The

com
ponentdependency

structure
ofthe

visualization
application’s

frontend
(excluding

externaldependencies)

3.2. Application layout 11

Figure 3.4: The layout of the landing page of the Almende parcel delivery algorithm visualization application.

animation playback settings, e.g. the speed of the vehicles. The following sections will dive deeper
into the specifics of each of the features described above. For readability, a screenshot of the landing
page is included in Figure 3.4.

3.2.1. Map
The four main elements on themap are routes, delivery locations, depot locations, andmoving vehicles.
Next to that, there is the double map view, also referred to as ‘comparison mode’, and there are some
special features specifically relevant to the novel Almende routing algorithm.

Basics
Each route is identified by a color and a number, which corresponds directly with the color and number
of the vehicle that drives the route. The tooltip of a route displays a very brief summary of the route:
its id, the total distance and total time. The routes’ colors are the identifiers for the vehicles throughout
the application, especially used to easily relate statistics with the routes on the map. The number of
different colors grows linearly with the number of vehicles/routes on the map. The initial colors of the
routes are primary colors, next secondary colors, and finally other colors. When choosing the colors, it
was deemed important to make sure all colors appear to be of equal ‘weight’, i.e. their brightness and
distinction is roughly equal to each other. Overall, the colors are meant to each stand out against the
bland, pastel map background. A single route and collection of routes can be seen in Figure 3.5.

Delivery locations are displayed as markers on specific points on the map. They each have a unique
id and their color corresponds to the color of the vehicle that eventually drops off the package. Each
delivery point also has a tooltip with brief summary: id, distance traveled from its pickup location, and
time elapsed since pickup. To visualize the status of the delivery, the background of the marker is either
white, which means it is yet to be delivered, or black, which means it has been delivered already. A
delivery layout before and after delivery can be seen in Figure 3.6 and the tooltip in Figure 3.7a.

Depot locations are displayed as markers as well. They have a different icon in the marker than the
deliveries and their color does not relate to a vehicle/route, since multiple vehicles can use the same
depot. At the top right of the depot marker is a badge that displays the number of parcels present at that
depot. When this number is more than 0, the depot marker is ‘active’, which is visualized by having the
background white and icon black. When the depot has no parcels stored, the background is black and
icon white. At the tooltip, when hovering over a depot marker, it displays the ids of the parcels present
at that depot. A depot layout when active and inactive can be found in Figure 3.8 and the tooltip in
Figure 3.7b.

12 3. Design

(a) The layout of a multitude of routes: a full map view. (Situation:
after delivery.)

(b) The layout of a single route + tooltip. (Situation: after
delivery.)

Figure 3.5: The layout of the map view.

(a) The layout of a delivery marker before the package has been
delivered.

(b) The layout of a delivery marker after the package has been
delivered.

Figure 3.6: The layout of a delivery marker before and after delivery.

(a) The layout of a single delivery + tooltip. (b) The layout of a single depot + tooltip.

Figure 3.7: The layout of a delivery marker and deopt marker with tooltip.

3.2. Application layout 13

(a) The layout of a depot marker before a vehicle picks up all of
its parcels.

(b) The layout of a depot marker after a vehicle picks up all of its
parcels. (There was also an occurrence of a mode change at the

depot.)

Figure 3.8: The layout of a depot before and after pickup.

(a) The layout of a single vehicle in manual mode + tooltip. (b) The layout of a single vehicle in autonomous mode.

Figure 3.9: The layout of a vehicle before and after mode change.

The vehicles that are moving over the route lines are the animated part of the visualization. Their
movement can be managed in the control panel (subsection 3.2.3). While the vehicle icons are always
black, the icon itself may change during playback: it is either a car symbol (for obvious reasons) or a
robot icon to symbolize that the vehicle drives autonomously. Like the depot, the vehicle has a badge
on its top right corner, that indicates the current storage inside the vehicle along with its maximum
storage capacity. This badge is also used to indicate which vehicle it is, by having its background in
the corresponding color. When hovering over the vehicle, the tooltip displays the vehicle’s id, which
parcels are in its storage space, and the current mode (‘Autonomous’ vs ‘Manual’). A vehicle closeup
and layout when driving autonomously and manually can be found in Figure 3.9.

Novel features
The visual entities described above are entities that are a part of most routing algorithms. However,
the algorithm designed by Almende comes with a number of novel features that make it unique. These
features are the possible presence of autonomous vehicles, possible occurrence of handovers of pack-
ages, and the inclusion of (forced or unforced) delays.

As mentioned in the section above, to accommodate for the autonomous vehicles, the visualization
changes the vehicle icon to a robot to indicate autonomous driving. The mode changes are likely
to occur at the location of a different stop (i.e. a depot or delivery point) and the change of vehicle
icon is considered clear enough in these cases, but if the mode change would occur on its own, there
would be a mode change marker at that point on the map that indicates where the change happens.
As aforementioned, the layout of a vehicle when driving autonomously and manually can be found in
Figure 3.9. Additionally, there is a button on the map view that loads an overlay of all roads in The
Netherlands that have speed limit 80 km/h or higher, which should give an indication of which roads

14 3. Design

could be traversed by autonomous vehicles (in the near future). The layout of this overlay can be found
in Figure 3.10a.

(a) The layout of the overlay of roads possibly passable by
autonomous vehicles. The roads marked are Dutch roads with

speed limit 80 km/h or more.

(b) The layout of the overlay of a package’s traveled route.
Situation: the yellow vehicle picks the delivery up at the depot on
the left. It brings it to the depot at the bottom (handover). There,
the blue vehicle picks it up and takes it along until it reaches its

delivery location and drops it off.

Figure 3.10: The layout of the highways overlay and the delivery route overlay.

Another new feature is the possibility of package handovers. More specifically, a package can be
picked up at a depot by vehicle 1 and then handed over to another vehicle 2, which delivers it to its final
destination. During the handover, the package could be staying at some location for a while until the
other vehicle picks it up, or it may happen instantaneously. To visualize this feature, the counters of the
vehicles and their storage are updated accordingly during a handover. Additionally, when a package is
at a stop location (depot or delivery), the marker at that location will be updated with a +1 in a badge
at the top right corner. Depots always have such a badge, delivery markers will only have one in such
a situation. In case the handover takes place at a different location, this location will be marked with a
special handover marker, and this marker will be updated with a badge when a package is present at
that location. For an example handover event, refer to Figure 3.11. Another function to help visualize
the occurrence of handovers is the display of the route that a single delivery takes. This single route is
visualized as a partly transparent, thick black overlay on top of the existing colorful routes. This route
appears when one clicks on a delivery and it should maintain all other information while showing that it
may or may not have traveled over different colored routes. An example can be found in Figure 3.10b.

As for the inclusion of vehicle delays, these are simply represented by having the moving marker
that represents the vehicle stand still for the duration of the delay. This duration is accordingly scaled
with the speed factor that is set in the simulation manager.

Comparison mode
Since the goal of the visualization should be to verify the efficiency and robustness of the routing algo-
rithms, the possibility to visually compare routing decisions between different algorithms or scenarios
is valuable. For this reason a ‘comparison mode’ is implemented. There had been some debate on
what this comparison mode should look like, there were multiple options: Display both algorithms in
one map view, with one color representing one algorithm; Let users simply open a new tab in their
browser with a separate instance of the whole application; Or display two separate map views side by
side in the same application. Having users open a new tab was decided to be undesirable because it
makes it hard to visualize comparison statistics and makes the application less complete as a whole.
Eventually, it was decided to use the split map view, because it would allow keeping the most details
about both algorithms without becoming too cluttered. It splits the map view in two and loads a second
map view with the desired second algorithm displayed. Since the application is meant for scientific
investigation into the algorithm’s behavior, the assumption was made that users would have access to
a larger screen to use the application on, and so the double map view would not be too crowded.

The comparison mode shows the two maps side by side and allows to zoom in and out and pan
each map view separately. The animation of the vehicles is still managed via the single control panel

3.2. Application layout 15

(a) The layout of a package handover before the handover takes
place. Parcel 13 is now in the storage of vehicle 4 and will be

handed over at depot 3.

(b) The layout of a package handover when vehicle 4 has
handed over the parcel and the parcel is waiting for pickup at the

depot. Parcel 13 is now at depot 3.

Figure 3.11: The layout of a handover before and after vehicle 1 hands it over.

(a) The layout of a package handover when vehicle 2 has picked
up the parcel from the depot. Parcel 13 is now in the storage of

vehicle 3.

(b) The layout of comparison mode on load. Left: Almende
algorithm. Right: OpenRouteService.

Figure 3.12: The layout of a handover after vehicle 2 picks it up and the layout of comparison mode on load.

and the animation playback (start, pause, fast forward) has effect on both map views simultaneously.
The layout of the map view in comparison mode can be seen in Figure 3.12 and Figure 3.13.

3.2.2. Statistics
To get insights into the metrics of routing algorithms, statistics are of great help. They can visualize
divergences, metrics on a timeline and cumulative and aggregated results. For the Almende parcel
delivery algorithm visualization, these statistics are displayed in the bar on the right of the application.
Beneath the tabs navigation menu, a small text summarizes the behavior of the algorithm displayed.
Below are the charts, ordered in different categories, that will be described below.

Vehicle statistics
The first thing a user sees on the statistics bar is an overview of the vehicles at play. This also functions
to identify the colors of the vehicles on the map view and associate the correct number. The list is
expandable and opens a view with details about the vehicle. These details include a short description
of the route taken by this vehicle and a bar chart that shows the time elapsed between each delivery.
The layout of the drop-down menu when it is closed and when it is expanded is visible in Figure 3.14.

Algorithm statistics
Below the vehicles menu are all the other charts that display information about the currently displayed
routes in the map view. All metrics are calculated separately per vehicle, so the user can easily detect

16 3. Design

(a) The layout of comparison mode during simultaneous
animation playback. Left: Almende algorithm. Right:

OpenRouteService.

(b) The layout of comparison mode with single zoom. Left:
Almende algorithm. Right: OpenRouteService.

Figure 3.13: The layout of comparison mode in different scenarios.

outliers or unexpected behavior and relate it to the right location and timing on the map. There are
three bar charts available: one for the total distances, one for the stop counts and one for the total
costs. Additionally, there are three line charts that the display the packages delivered, the distance and
the costs over time. The layout of the charts can be found in Figure 3.15, 3.16 and 3.17.

Box plots
In addition to the statistics about the current routing schedule, there is also the possibility to review
average, aggregated results for the algorithm displayed. To visualize this, box plots are put to use.
These charts can be found in a separate tab, because they are not directly related to the routes on the
main map view. The layout of these box plots can be found in Figure 3.18 and Figure 3.19a.

Comparison statistics
When the application is in comparison mode, a user logically wants to compare the two algorithms
or scenarios also when it comes to statistics. To accommodate for this feature, the second algorithm
also gets a dedicated tab with the same statistics as the first algorithm had in single mode. The user
would also like to see the statistics side-by-side and so an extra tab appears in the tab menu, that says
‘compare algorithms’. When this tab is selected, the user has access to six charts that accumulate the
data of both algorithms displayed. The charts visualize the packages delivered over time and distance
over time in line charts and the total values for distance, time, cost, and idle time in bar charts. The
layout of these charts can be seen in Figure 3.21 and 3.22.

Additionally, the charts in the box plot tab are extended with a second data pair, which also allows to
compare the aggregated data on the two algorithms as well. The layout of the box plot tab in comparison
mode can be found in Figure 3.20 and 3.19b.

Full screen statistics
Finally, to allow users to focus solely on the statistics, and to view them in larger format, the statistics
panel can be expanded to a full screen format. The full screen version maintains all the same charts,
and has one additional full width bar chart. This new chart visualizes the time it takes each vehicle to
deliver its 𝑛 package. The layout of the full screen statistics can be found in Figure 3.23 and 3.24.

3.2.3. Control panel
Lastly, there are a number of variables and settings used throughout the application that a user would
want to manage. To fulfill this need, the left panel of the application serves as a control panel, where one
can manage the algorithm they would like to see, the input settings of this algorithm and the animation
playback of the map view.

3.2. Application layout 17

(a) The layout of the vehicle statistics menu when it is collapsed. (b) The layout of the vehicle statistics menu when it is expanded.

Figure 3.14: The vehicle statistics.

(a) The layout of the bar chart that displays the distance per
vehicle.

(b) The layout of the bar chart that displays the number of stops
per vehicle.

Figure 3.15: The algorithm specific statistics.

(a) The layout of the bar chart that displays the costs per vehicle. (b) The layout of the line chart that displays the packages
delivered over time per vehicle.

Figure 3.16: The algorithm specific statistics.

18 3. Design

(a) The layout of the line chart that displays distance over time
per vehicle.

(b) The layout of the line chart that displays the costs over time
per vehicle.

Figure 3.17: The algorithm specific statistics.

(a) The layout of the box plot that displays the total distance
traveled of a routing schedule, with active tooltip.

(b) The layout of the box plot that displays the total travel time of
a routing schedule.

Figure 3.18: The box plots.

(a) The layout of the box plot that displays the total costs of a
routing schedule.

(b) The layout of the box plot that displays the total distance
traveled of a routing schedule in comparison mode, with active

tooltip.

Figure 3.19: The box plots in single mode and comparison mode.

3.2. Application layout 19

(a) The layout of the box plot that displays the total travel time of
a routing schedule in comparison mode.

(b) The layout of the box plot that displays the total costs of a
routing schedule in comparison mode.

Figure 3.20: The box plots in comparison mode.

(a) The layout of the line chart that compares the packages
delivered over time between selected algorithms.

(b) The layout of the line chart that compares the traveled
distance over time between selected algorithms.

Figure 3.21: The comparison statistics.

(a) The layout of the bar chart that compares the total distance
and time between selected algorithms.

(b) The layout of the bar chart that compares the costs and idle
time between selected algorithms.

Figure 3.22: The comparison statistics.

20 3. Design

(a) The layout of full screen mode of the statistics for a single
algorithm: top half.

(b) The layout of full screen mode of the statistics for a single
algorithm: bottom half.

Figure 3.23: The statistics in full screen mode.

(a) The layout of full screen mode of the statistics box plots in
comparison mode.

(b) The layout of full screen mode of the statistics for comparison
mode.

Figure 3.24: The statistics in full screen mode.

Algorithm selection and overview
The parcel delivery algorithm visualization application supports two routing algorithms: the generic
OpenRouteService Optimization algorithm, and the newly developed Almende algorithm. In a simple
drop-down select menu, a user can select the algorithm they would like to see.

Directly below this menu, the user can switch to comparison mode with a simple switch that triggers
the appearance of a second algorithm drop-down menu. Once the user selects which algorithm they
would like to compare the first with, the whole layout reloads. The algorithm selection functions can be
seen in Figure 3.25.

To avoid any confusion on which algorithms are being displayed, there is a small properties table in
the control panel that displays the names of the algorithms. There is also a row that provides information
about the application itself, indicating the current working version. The layout of this table can be found
in Figure 3.26a.

Settings
At the very top of the control panel there is a ‘Settings’ button. Clicking this button opens a dialog in
which all settings that are not of immediate necessity reside. The settings are divided into categories
and these appear as tabs at the top of the dialog. The categories are: general settings, order settings,
and one or two algorithm specific settings, depending on whether the application is in comparison
mode.

The general settings include a single setting: the default algorithm to use on page load. This is the
only setting that makes a permanent change to the data on the server, all the other settings are just
used in session. The general settings tab can be seen in Figure 3.26b.

The next tab contains the order settings. With the sliders, users can set the number of orders to
generate, and with what radius they should be rendered around the depot(s). Once these settings
are saved, users can see them working when they randomize the delivery points. Randomization of
delivery points is a feature that is only supported for the OpenRouteService algorithm. At the moment of
development, the input format of the Almende algorithm was not known yet, and later it was not feasible
to adapt the implementation to make it work for the Almende algorithm as well, since the format deviates
greatly from that of OpenRouteService and it was not considered a priority at that time. Concretely,

3.2. Application layout 21

(a) The layout of the algorithm selection drop-down with an
algorithm selected.

(b) The layout of the algorithm selection drop-down with the
drop-down active.

(c) The layout of the algorithm selection menu during activation of
the comparison mode with no second algorithm selected yet.

(d) The layout of the algorithm selection menu with an active
comparison mode.

Figure 3.25: The layout of the algorithm selection menu.

this means that the part of the input that determines the locations of delivery points cannot be altered
for the Almende algorithm. However, other input settings work for both algorithms, as described in the
next paragraph. The order settings tab can be seen in Figure 3.27.

Aside from the global settings, there are also settings that are specific to each supported algorithm
and their own input formats. To account for their differences and to not lose valuable input aspects,
each algorithm has its own menu. Moreover, when an algorithm is in comparison mode with itself, each
instance gets its own settings tab, so that a user can alter the settings of one instance, like the vehicle
capacity or driver costs, and compare the effects that this has on the routes and statistics with the
unaltered version. The layout of the settings for the Almende algorithms can be found in Figure 3.31
and that for the OpenRouteService algorithm can be found in Figure 3.29 en 3.30.

Simulation manager
The last control item in the panel is the simulationmanager. With this simplemenu the vehicle animation
on the map can be managed. The slider on top moves along with the animation to show the current
position in time. The head of the slider can also be dragged to a point in time to move the vehicles
on the map to this time position. To start and pause the animation, a user simply clicks on the blue
dual play/pause button. The gray arrow button in the middle can be used to reset the vehicles to their
start positions. Lastly, the speed of the animation playback can be managed with the speed multitude
drop-down selector. The options in the drop-down are all factors of the true speed that the vehicle
would have on the route and range between 1 and 600 times the actual speed. The default is set to
100 times the actual speed. The layout of the simulation manager can be seen in Figure 3.28.

22 3. Design

(a) The layout of the properties
table when the application is in
comparison mode with two

instances of the Almende algorithm.

(b) The layout of the general settings tab in the settings popup dialog.

Figure 3.26: The properties table and the general settings.

Figure 3.27: The layout of the order settings tab in the settings popup dialog.

(a) The defeault layout of the simulation manager. (b) The layout of the simulation manager without and with the
speed factor drop-down selector active.

Figure 3.28: The simulation manager layout.

3.2. Application layout 23

Figure 3.29: The layout of the OpenRouteService input settings tab in the settings popup dialog, with the vehicles per depot
drop-down menu active.

Figure 3.30: The layout of the OpenRouteService input settings tab in the settings popup dialog, with the order per vehicle (i.e.
vehicle capacity) drop-down menu active.

24 3. Design

Figure 3.31: The layout of the Almende algorithm input settings tab in the settings popup dialog, when the application is in
comparison mode with two instances of the Almende algorithm.

4
Implementation

In this chapter, the process of implementation is outlined, as well as the various challenges that arose
during the project. In section 4.1, the implementation details of the frontend part of the application are
highlighted. In section 4.2, the backend implementation of the application is explained further. Lastly,
in section 4.3 the use of APIs is discussed.

4.1. Frontend
The frontend of the application is the most important because the purpose of this tool is to visualize.
Therefore, a lot of attention was paid to this area in order to make sure that it conveyed the necessary
information in a clear and understandable manner.

4.1.1. Map
From the research, it was concluded that the best way to approach showing the map with the corre-
sponding visualizations was by utilizing a python package called Folium on the backend. Folium was
chosen because it works seamlessly with the data that is processed and output on the backend. At
first, this seemed to work great, but over the course of the first week of development, limitations in how
the map was to be rendered in the frontend became apparent. Namely, Folium had a method which
created a leaflet map for the user. But sending the HTML code from the backend to the frontend was
not great code design and Folium had no other ways of sending its data to a frontend map. Because
of this, the group decided to switch from Folium to a GeoJSON centered backend and a leaflet library
designed to be used with Vue, the framework used to build the frontend. GeoJSON is a specific JSON
standard used to denote information in a geographic context.

Markers
After the choice was made to use Leaflet for the map part of the visualization, a way to show the
locations of depots and delivery points on the map was needed. In Leaflet, points can be shown on the
map in the way of markers. But because these markers needed to be declared in the html beforehand,
and the delivery points were received on the fly from the backend this had to be done differently. Luckily,
Leaflet allows for a user to define a layer that visualizes a GeoJSON object directly. In this layer, points
defined in the GeoJSON, as opposed to lines, are automatically rendered as markers. These points
can also be dynamically styled with the help of some special functions, that were especially badly
documented however. Both delivery points and depots were rendered on the map in this manner.
When hovering a certain delivery or depot, extra information is displayed in a tooltip, such as the time
it takes before the package is delivered, and how many kilometers have been driven up until that point.

Routes
Routes, much like the markers discussed above, are also rendered directly in the GeoJSON layer of
the map. Because routes can be multiple kilometers long and most roads are anything but straight,
poly-lines are used, that is a line with (potentially) very many intermediate points that the line goes
through on its way to the end-point. These routes are then colored according to the vehicle they belong

25

26 4. Implementation

to. After the basic implementation of showing the routes had been finished, a feature was added to
be able to only show a certain route when clicking on that route. This is helpful when the screen is
cluttered and the user wants to focus on a single delivery route. Lastly, after a demo was shown to the
client in a later stage, he requested a feature to be able to see the route that was driven for a specific
delivery. Because of hand-overs, the package to be delivered at that place could have been handed
over between delivery trucks along the way, therefore this route might span several routes. To calculate
this, the frontend alone was not capable enough because it was unaware of packages and their routes.
Instead the routes are analyzed on the backend and the corresponding joined route is then sent to the
frontend on activation of this feature.

Another feature that has to do with visualizing routes is the overlay toggle that shows which roads
can be driven autonomously and which roads are not. Initially, in the absence of input with concrete
autonomously traversable roads, this was implemented by generating a very large GeoJSON file that
contains all roads in The Netherlands with a speed limit of 80km/h and over. The frontend requests
this file when toggled on and displays the roads as an overlay. The reason for showing highways as
possibly autonomously traversable roads was because the client had indicated in the initial phases that
the autonomous vehicles were likely to be deployed on larger roads. After the implementation, when
the format of the output was handed over by Almende, the feature lost some of its value because the
output required the visualization tool to find routes between the delivery points. Therefore, the route
chosen by the visualization tool is not guaranteed to be the same route that was used to generate the
output. If the road chosen by Almende’s algorithm was designated to be autonomously driven, it cannot
be guaranteed that the chosen road is the same, and that the chosen road from the visualization tool
is also autonomously-enabled. However, this does mean that the overlay can be used to provide an
indication of which routes were actually taken by the autonomous vehicles. More about the computed
routes is described in the next paragraph about the vehicles.

Vehicles
Another feature on the map requested by Almende, is the possibility to see in which order the parcels
are delivered. Although one could visit all markers on a certain route one by one to see if the trav-
eled distance increased since the previous marker, it was decided to go for the less cluttered way
of implementing a simulation manager. This manager controls some special markers on the map,
namely moving markers. Like normal Leaflet markers they appear on top of the map, however the
Leaflet.MovingMarker1 plugin is able to follow a poly-line. And because routes are composed of
poly-lines, the markers, depicted as vehicles, can move on the roads. The simulation manager consists
of a play/pause and reset button, a speed selector and a time slider; they control the vehicles depicted
on the map.

In the development process of this feature, it was discovered that the output of Almende’s algorithm
only contains the destinations, rather than also the routes. Like the autonomous roads in the previous
paragraph, the computed routes by the visualization tool therefore might not be the same as intended
by Almende. After a discussion with the client, this turned out to not be a problem, as the routes can’t
differ that much.

During a meeting with the client, it turned out to be useful to see if a vehicle has visited a location
already. In order to visualize that, the moving marker has to know where on the route it is located. The
harder part of this implementation is to know where on its route the vehicle visits the marker in question,
as the locations to visit are close to the route but not on a road. As a workaround it was decided to
check multiple times per second if the vehicle is close to a marker. If that is the case, the corresponding
marker will change its color.

Because Almende’s algorithm works with hand-overs and these can not always be perfected such
that there is no idle or waiting time for one of the trucks, either the receiving or giving party will probably
have to wait a short amount of time for the other party to arrive, adding the ability for the tool to be able
to show the car standing still was, due to initial implementation, more difficult than it appears on the
surface. This is due to the fact that the vehicles are animated from start to finish and stopping the ani-
mation, although possible would mess up the timing in some edge cases. Luckily, the implementation
choice also had another way of fitting in the stops that was less error prone. Namely by adding stations
along the way in the animation.

1https://github.com/ewoken/Leaflet.MovingMarker

https://github.com/ewoken/Leaflet.MovingMarker

4.2. Backend 27

4.1.2. Statistics
One of the main features of the application, next to the map view, is the ability to look at statistics
concerning the algorithm(s) displayed. Every statistic chart is made with the library vue-chartjs2,
which is a wrapper for Chart.js in Vue. This library supports a multitude of different charts, like bar
charts, line charts, scatter charts and pie charts, and allows for easy extensibility. In the final product,
only bar charts and line charts are used, which also came forward as the most reliable types of charts
in the research report (Appendix D).

To get started, the base charts were loaded from vue-chartjs into corresponding Vue components
(i.e. LineChart.vue and BarChart.vue), so that they could be called at multiple locations in the code.
The chart data and chart layout options are both adjustable per chart because they are passed along
as props.

Initially, the component structure was as follows: In the main statistics component, the different
compartments are combined, such as the list of vehicles and the list of charts. In the list of charts
component, a new chart file wasmade for every chart, to perform the necessary statistical computations
and call the correct base chart with this data.

After doing the first SIG submission and finding out that such a structure results in a lot of (unnec-
essary) code duplication, the details of which are described in Appendix C, this approach was altered.
In the final version, all option generation methods are contained in the same JavaScript file, to reduce
code duplication on subroutines, and the data generation methods are spread over two JavaScript files.
Moreover, for each base chart type, a parent component is made with additional styling in the shape
of a Vue card. In the statistics list components, these chart cards are called and the correct data and
options are calculated via the imported JavaScript files, and then passed along to the card components
as props.

4.2. Backend
The backend is completely written in Python and developed with the use of the FastAPI web framework.
A couple features of this framework are really useful. For instance, it uses model classes for input and
output validation. Another feature that is convenient, is the automatic API documentation generation.
It looks at the method definitions, which include the input and output model classes, and generates
documentation according to the OpenAPI standards.

The backend is entirely responsible for calculating and optimizing routes. It is set up to be an API
that is completely stateless. The motivation for this is that it would be relatively simple to connect a
different frontend, for example a mobile app, to the backend.

4.2.1. Structure
The file structure of the backend was initially that of a standard FastAPI application: the home folder
contained a file main.py, config.py, requirements.txt and a folder routes. The file require-
ments.txt contains a list of packages that should be installed in order to modify and run the applica-
tion. The config file contains the settings of the application, which in this case translates to reading
from the protected environment file which contains, for example, the value of the API key for the Open-
RouteService API. The routes folder contains the code that is executed on client requests (section
4.3 gives a more detailed description). The main.py file ties the application together and determines
the middleware (such as the allowed origins and headers). The Pydantic models and data dependency
methods, as described in section 4.3, are contained in the separate folders models and dependen-
cies, respectively.

Later, to accommodate automated testing with pythons’s pytest library, the entire backend applica-
tion is moved to a new folder application. Next to that, a new folder tests is created in which the
automated tests are put. Additionally, a new file setup.py is made to setup and validate the structure
of the application. The final structure allows to run the tests by running pytest and the application by
running python application/main.py.

2https://vue-chartjs.org/

https://vue-chartjs.org/

28 4. Implementation

4.3. API
To interact with the frontend, it is necessary to send data back and forth, which is where the API comes
into play. The API is structured as follows. There are multiple endpoints, also called routes. These
endpoints are grouped in functional categories: autonomous, compare, map, orders, settings. These
groups of endpoints each have their own file residing in the routes directory, and are referenced in
the main file to create some structure in the codebase. The separate endpoint files get their own URL
prefix, which is equal to their category as enumerated above.

Also, each endpoint specifies and validates its input format using a Pydantic model. If the input
does not meet the desired format, a HTTP 422 Unprocessable Entity error is thrown automatically by
FastAPI. Also the output format is specified using a Pydantic model class, and is also automatically
validated before the response is sent. All these model classes are grouped categorically in separate
files that are located in the models directory of the backend.

Apart from data validation in interaction with the frontend, there is also data validation for read-
ing and writing input/data files. The python library pandas is used for reading and writing to file.
After a read, the tuples are cast to instances of a Pydantic model. To avoid code duplication and
avoid defining file locations multiple times, the backend is supplemented with single file dependen-
cies/data_dependencies.py that contains these methods that can read from data in the assets
folder.

4.3.1. Map routing
For calculating and optimizing routes between locations, a copy of the OpenRouteService API is hosted
locally and used. OpenRouteService is an open source routing service that consumes free geopgrah-
pic data from Openstreetmap. It is used to simply calculate routes between points, but also as a
comparison algorithm using the optimization feature in the public API. OpenRouteService can output
it’s results in multiple formats. Since the frontend uses Leaflet, which can visualize GeoJSON data,
OpenRouteService is instructed to output the data in GeoJSON format.

For optimizing routes, given a set of vehicles and deliveries, the public OpenRouteService API with
personalized API key is used. However, calculating routes using a set of coordinates, is part of the open
source OpenRouteService code. There is a Docker container instance of OpenRouteService running
on the server maintained by Almende. The advantages of having this instance are that, contrary to the
API, there is no set limit of requests that can be performed, and that the performance is better since
the OpenRouteService instance and the actual visualization application run on the same machine.

5
Process Evaluation and

Recommendations
A development process, especially when it involves multiple developers and stakeholders, is not nec-
essarily self-evident. This chapter will elaborate upon how this process came to be for this project and
how it influenced the collaboration and product. The current unique situation, where a pandemic domi-
nates the world and influences every aspect of normal life, also has effect on the development process
of this project. Section 5.1 will explain how this was handled. The tools and standardized development
methods used will be further explained in section 5.2, and section 5.3 will elaborate on how code quality
was maintained throughout development.

5.1. COVID-19 response
To put things into perspective, it should be clarified that this project was conducted from April 20 until
July 1 2020. A couple of weeks before the start of the project, it became apparent that the virus COVID-
19 was forming a real threat to the world and people’s individual health and it was officially declared to
be a pandemic. As a consequence, The Netherlands (and many other countries) went into lock-down,
which in practice meant that people should not be leaving their house unless they absolutely need to.

For this particular project, this meant that all work that had to be done for the completion of the
project took place at everyone’s home. If the pandemic would not have been in place for the duration
of the project, the project members would have worked at the office of Almende B.V. during workdays
from nine to five, as is common for full-time internships. While none of this has any influence on the
content of the project, one could imagine that this entirely different work method certainly influenced
the process, and likely the final result as well.

5.1.1. Collaboration within the team
The initial phases of a project are usually the most contact-intensive, because they require a lot of
brainstorming, getting familiar with the project’s content and everyone’s work ethic and simply getting
to know the people involved personally. Of the five students that took part in this project, only two
of them were already familiar with each other and the rest were strangers. Usually you get to know
people very well when you have to work with them every day, but this is less so when you never meet
in person or never spend more than an hour a day talking. To get through the initial exploratory stages
of the project as best as possible, it was decided early on to hold daily online meetings in the morning
to update each other on everyone’s progress and, if necessary, setbacks or uncertainties. This had the
added benefit of making everyone familiar with each other and perhaps also of reassuring everyone
that all team members were putting in the required effort.

In hindsight, this was probably a good decision and gave everyone still enough freedom to organize
their own day while at the same time keeping everyone in the same lane of thought. After a few weeks
of maintaining this strategy, the team decided that they were well attuned to each other and everyone
had found their place in the group, and so the daily meetings organically became redundant and were

29

30 5. Process Evaluation and Recommendations

abolished. Instead, the team would communicate primarily via WhatsApp and would still meet online if
there were ‘severe’ issues, and also before meetings with the TU Delft supervisor or client.

Overall, although the team members were not acquainted beforehand, everyone proved to be moti-
vated and nice to work with during the course of the project. This made collaboration, even under such
special circumstances and even though it may not have resulted in very deep personal connections, a
pleasant experience.

5.1.2. Collaboration with the client
Before going into technical details, it may be worth noting that the team members, on an individual and
personal level, may not have experienced the practicalities of this project in the way that they imagined
beforehand. Part of the appeal of such a project is getting a taste of what working at a real company
feels like, by going there every day and meeting the people who work there. Nonetheless, experiencing
the project as it was, came with a whole lot of different, meaningful lessons.

Throughout the project, there have been two ways of communication with the client. The first is
weekly meetings (usually on Friday) in which a demo was provided with the newly added features of
that sprint. This was also a moment where difficulties were discussed and the client would indicate
their expectations for the upcoming week(s). Oftentimes, a meeting like that would result in a number
of issues that would need to be followed up, because the client’s contact person, Carlos, would need to
discuss certain matters with other company staff before giving a definite answer. For such situations,
the communication channel that was used for the follow-up information was Slack.

Even though the combination of these two communication platforms was pleasant to work with and
the Almende B.V. representatives were always quick to respond, helpful and positively involved, there
are some aspects in the project where communication could have been better (chapter 6 elaborates
on these aspects). From the team, there was perhaps not a sufficiently investigative attitude from the
start and some assumptions were made that in hindsight should have been taken up for confirmation.
This is unfortunate, especially considering that the team does not necessarily regard themselves as
shy or hesitant by nature. Being present at the office of Almende and having daily interactions with the
project supervisors there, however informal these interactions may be, would perhaps have resulted in
a smoother and better aligned process.

These thoughts are of course based on speculation, and the main thing to take away is that com-
munication is key in any project and, especially if there may in the future be more cases of projects
that rely purely on online communication, it is recommended to take initiative and not hesitate to begin
a conversation on what may seem as a small issue or problem for later on.

5.2. Methods
There are many different frameworks, tools and ideas on how projects should be carried out, especially
projects that concern software development. Since section 5.1 focused on communication aspects of
the process, this section explores the tools that have been used to track progress and develop the
product.

5.2.1. Scrum
For Computer Science and Engineering students at TU Delft, scrum is a well-known methodology for
software development projects. It follows the agile approach, and is known to be especially valuable
for projects in small teams with a relatively small scope. It was therefore not a hard decision at the start
of the project that the scrum method would be used here as well.

Following this approach, the workload, at that stage defined as requirements but translated to ‘epics’
to use proper scrum terms, was divided into weekly (Monday up until Friday) sprints. After having
agreed with the client upon this roadmap, the team would divide the high-level requirements that were
scheduled for that week into small, manageable pieces of work (referred to as issues) on Mondays.
These were then divided among the team members such that everyone was tasked with an equal
workload.

This method worked well for this project for a number of reasons. First of all, as mentioned in
section 5.1, all forms of communication took place online, so in this situation where there is not a
lot of social control or interaction, one could easily lose track of what team members are up to. By
dividing the tasks in such small portions and being able to verify the progress of issues (explained in

5.3. Quality assurance 31

subsection 5.2.2), everyone has a clear overview of the project and its progress at all times.
Additionally, this project concerns the development of a web application, which has the benefit that

many team members had prior knowledge (at least from studies, but also from work experience) on
the programming languages that were used and their accompanying protocols. That, in combination
with the fact that in the early stages the development challenge lied more in the volume of tasks than
their difficulty, makes working in small incremental steps very rewarding and effective. This is because
most contributions are immediately visible in the product’s design and because someone else could
easily build on top of a newly added feature because it is quite intuitive. For a project like this one,
using scrum has proven to be effective and nice to work with and so it is certainly recommended for
future software development projects.

5.2.2. Gitlab
Scrum for software development would not be able to work without a proper version control system.
To accommodate for this need, it was decided to use Git through the community edition of GitLab,
which one of the team members could host on a server for free. GitLab comes with numerous built-in
features, next to version control, that helped the development process of the product.

To ensure code quality and to prevent having failing or unsafe versions of the product online, a
number of agreements were made among the team members in the first week of development, when it
comes to branching off and merging. Firstly, the master branch should always contains a safe, stand-
alone working version. Therefore, a new branch by the name of sprint-n was made at the start of every
sprint. Moreover, for every issue that a team member was going to take upon, they had to make a new
branch, sourcing from this sprint-n branch according to GitLab’s naming conventions that link issues
to branches. To set the code for an issue on the according sprint-n branch, a merge request had to be
made and had to be reviewed and approved by at least two group members before being allowed to
merge. By the end of a sprint, the branch sprint-n would be released to the master and the cycle would
repeat.

GitLab has a dedicated section to keep track of issues (see subsection 5.2.1). Grateful use was
made of it for the duration of this project. GitLab offers the option to create labels for issues (and
merge requests), which was used for putting the issue in different categories. Every issue would be
marked with one label to set its progress state (ranging from ‘sprint backlog’, ‘in progress’, ‘testing’ and
‘review needed’ to ‘done’), one label for its relative priority (1, 2, 3, 4 or 5) and one label to set the type
(‘backend feature’, ‘bug’, ‘enhancement’, ‘frontend feature’, ‘release’ and ‘testing’). Additionally, issues
are assigned a person responsible and a due date/milestone. The progress labels were used as pillars
in GitLab’s board view of the issues, and so it was always easy to see the sprint’s progress and tasks
at a glance.

5.3. Quality assurance
Several measures were in place for the duration of this project, that would ensure that the code main-
tained a high degree of quality. This includes an appropriate way of testing and the static verification
of code quality.

5.3.1. Tests
User tests
The final product is a visualization application, meaning that the development relies heavily on visual
elements, and, therefore, on the shaping of the application and data in the frontend. With Yarn and
Uvicorn (in combination with a virtual environment), that were used for package management and
the development of frontend and backend, respectively, each team member was able to run the web
application on their own computer. When these static servers are active and a change is made in the
code, the corresponding server forces a reload of the component that was altered in the browser that
runs the application, and so the changes are immediately visible. It comes therefore as no surprise
that user tests are the primary type of testing for this project.

User testing, or usability testing, is a type of testing where a user performs tasks on the application to
be tested, which should give insights into the application’s behavior and its intuitiveness. After making
an alteration in the frontend code base, a developer immediately looks at the result in the application,
and so it is convenient and easy to verify the correctness of the code. Since it is easy to develop

32 5. Process Evaluation and Recommendations

a tunnel vision on a specific element or task, reviewers of merge requests always applied user tests
on the branch to merge as well, hereby testing a combination of features to make sure they were not
broken. Throughout the development phase, this testing method has proved to pay off and work well.
It is, however, strictly recommended to indeed have other people than the developer perform these
user tests as well (instead of performing only static code tests), because sometimes changes in code
have undetected side-effects or behave unexpectedly on other people’s devices, due to differences in
operating systems or absent dependencies.

Automated tests
Automated testing for web applications is not commonly thought to have a lot of added value. In the
initial development phases, a number of tests were developed to verify frontend features, but these
tests would, for example, verify the existence of components in the browser, which could just as easily
be seen when simply opening the application. Frontend testing was therefore abolished after a few
weeks.

Testing backend code with automated tests is considered to be more valuable. The backend in its
current state serves only to parse routing algorithm output to GeoJSON. This means that any bugs in
the result would be visible in the frontend or in the application. In addition, all input and output, both
with data files and HTTP requests, is validated with Pydantic, as mentioned in section 4.2. For this
reason, extensive testing was omitted up to this point. A testing framework including small tests can
be found in the folder tests in which tests can be written for when a developer wants to extend the
application.

5.3.2. Static code quality
Code review
For this project, it is likely that the client will build further upon the final product and will perhaps mod-
ify it if the routing algorithm interfaces change. It is therefore desirable that the code is easy to read,
understandable and intuitive. Due to the team members’ background in Computer Science, it is to
be expected that they are to write code of a certain quality standard. When looking at the code with-
out running it, this entails, for example, the complexity of methods, method/file sizes, maintenance of
interfaces, and minimized duplication.

To verify whether these code qualifiers were kept in mind during development, this was agreed to
be the second important reviewing aspect (next to user testing, see subsection 5.3.1) when reviewing
merge requests. As aforementioned, at least two team members should have reviewed a code sub-
mission before merging it and with this agreement in place, the code that was going to be included in
the final product was assured to be of good quality.

Software Improvement Group
As part of the TI3806 Bachelor End Project course, the code base has to be uploaded twice to the
Software Improvement Group, which performs quantitative static code quality checking. The results
and evaluations of these submissions are enclosed in Appendix C.

6
Product Evaluation and

Recommendations
The algorithm that needs to be visualized contains numerous unique and novel features. It follows
from this that when visualizing these features, one finds themselves also in uncharted waters. Although
exciting and motivating, it can be challenging and requires some improvising at times. The combination
of this and the fact that for many project group members this was (one of) the first time(s) that they were
making a fully applied product for a real business, results into a steep personal learning curve for the
duration of the course. In some cases, one can only tell in hindsight whether an earlier choice was
correct or not. This chapter will elaborate on some of these choices. Subsection 6.1 evaluates whether
the requirements that were set upfront were feasible. Subsection 6.2 evaluates aspects that could have
gone better or may be improved during the design of the application. Finally, section 6.3 will dive into
recommendations for deployment and possible future developments.

6.1. Evaluation of requirements
The requirements as they were defined in the project plan and research report, are evaluated briefly in
Table 6.1. Some features require more explanations, these will be provided in section 6.2.

Table 6.1: A brief description of each requirement and whether it has been implemented and, if necessary, why not.

Category Requirement Completed? Discussion
Must
have

The visualisation program has to be ac-
cessible in a web browser. This makes it
easy for the client to use it on any com-
puter they want.

Yes The initial setup of frontend and back-
end was a quick, smooth process. More-
over, a docker file was created for the fi-
nal product, which made it east to upload
it onto the server as well.

Must
have

To benchmark the performance of Al-
mende’s algorithm against other similar
algorithms, the final product must have
the ability to visualize other algorithms
which try to solve the parcel delivery
problem.

Yes OpenRouteService was used from the
start of the development as alternative
routing algorithm. Perhaps more such al-
gorithms could have been supported.

33

34 6. Product Evaluation and Recommendations

Table 6.1: A brief description of each requirement and whether it has been implemented and, if necessary, why not.

Category Requirement Completed? Discussion
Must
have

The vehicles and their planned route
must be visualized on a map. Han-
dovers of packages, pick-up points and
packages should be clearly visible. New
orders should update the map accord-
ingly. It must be distinguishable whether
a route is for autonomous vehicles, con-
trolled vehicles, or a hybrid.

Mostly Most of the features in this requirement
have been implemented. The visualiza-
tion of autonomous/manual routes turned
out slightly different than planned, and is
now visualized by the icon of the vehi-
cle at a certain point on the route. Also,
all deliveries are visible from the first mo-
ment. Issues with timing are further de-
scribed in section 6.2.

Must
have

Important metrics of the algorithm, such
as cost and robustness, must be visual-
ized in a clear and understandable way,
most likely in the form of a chart. These
charts are to be updated in real-time as
the simulation progresses. The metrics
must be broken down into granular parts.

Mostly Most requirements are fulfilled. How-
ever, the charts are not updated in
sync with the simulation. In the devel-
opment phase, it was decided, in co-
determination with the client, that the
amount of work and complexity did not
weigh up against the benefits, consider-
ing there were already line charts that dis-
played the metrics over time. This deci-
sion is elaborated upon in section 6.2.

Must
have

Display of chosen algorithm with proper-
ties

Yes The visualized algorithm’s name is dis-
played in a small properties table in the
control panel.

Must
have

For the client it is valuable if they can
use the code base without any problems
for future development. If the product
needs improvement after the project fin-
ishes, they must be able to easily work
with the code.

Yes Throughout the project, it was made
sure that all code was properly docu-
mented. In addition, due to FastAPI’s
and Vue’s setup and coding practices,
the code is broken up into manageable
pieces by files/components. Also, fron-
tend and backend are written in com-
monly known programming languages;
JavaScript/HTML/CSS and Python, re-
spectively.

Should
have

In order to present more information
while keeping themap clutter free, a clear
overview of the different orders, their ac-
companying deliverers and the routes of
these deliverers should be visible in an
ordered list visible to the user.

No During the development phase of the
product, after the must have require-
ments were implemented, this require-
ment was left aside because the map
view, in combination with the simula-
tion and all the tooltips, provided a clear
enough image of the events. A list
would not be able to parallel this quality
overview.

Should
have

The end-product should be able to scale
up, showing a bigger area at once with-
out cluttering the screen and maintain-
ing a good, but probably less granular
overview of the simulation and workings
of the chosen algorithm.

Yes On page load, the map view focuses on
the bounding box of the outmost edges of
all routes, meaning all the routes should
be initially in the screen. The user can
choose to zoom in and the map markers
resize accordingly. In addition, if the map
view is zoomed out far, the map markers
disappear, so that a user can still distin-
guish routes without the map being too
cluttered.

6.1. Evaluation of requirements 35

Table 6.1: A brief description of each requirement and whether it has been implemented and, if necessary, why not.

Category Requirement Completed? Discussion
Should
have

In order to prevent outliers and be more
sure of the end-result, the visualization
tool should give users the option to per-
form random simulations multiple times
with the same algorithm at once, and
then give the average solution.

Partly The application supports the display of
aggregated statistics in the form of box
plots. However, the Almende algorithm
cannot be run at this point, and so there is
not valid data inside these box plots in the
final product. Section 6.2 contains some
more information on this subject.

Should
have

When something happens that the user
misses or wants to focus on, there should
be an option to pause, or play back the
simulation. The user should also be able
to skip-forward if they would like to speed
up the simulation.

Yes The control panel of the application al-
lows the user to pause, play and reset the
simulation. There is also a time slider that
a user can use to rewind or fast forward.
Additionally, the user can set the speed
of the simulation playback. Section 6.2
contains some more notes on the simu-
lation implementation.

Should
have

To properly analyze Almende’s algorithm,
it is useful to aggregate some statistics.
With those aggregations you can deduct
average behavior of the algorithm.

Partly The application supports the display of
aggregated statistics in the form of box
plots. However, the Almende algorithm
cannot be run at this point, and so there is
not valid data inside these box plots in the
final product. Section 6.2 contains some
more information on this subject.

Could
have

In order to convey more meaning with-
out cluttering the screen, sounds can be
utilized in the endproduct to make the
user aware of certain events taking place.
These sound cues should then change
with different scales of the visualization.

No Towards the final stages of development,
many high-end features that were al-
ready in place for the OpenRouteService
algorithm, still had to be implemented for
the Almende algorithm, once their out-
put was received. This meant that there
was not enough time to implement ex-
tra features and this specific feature was
also not considered important enough to
bench other features’ developments.

Could
have

The user can interact with the live visu-
alization. For instance, he can manually
block a road and see how the algorithm
deals with that.

No This feature turned out to be infeasible in
multiple ways. Aside from the fact that
the Almende algorithm was not ready for
deployment and that there was no time to
implement such a feature. There is the
added issue with relating the routes pro-
vided by Almende (without coordinates)
with points on the map. There is no way
of knowing that, once a user blocks a
road on themap, the removal of this edge
would have any effect on the output be-
cause there is no way of knowingwhether
it was ever really in the solution. Addi-
tionally, even if it would potentially calcu-
late a new route, this would not be visi-
ble on the map, because OpenRouteSer-
vice provides the routes displayed on the
map, not Almende directly. Section 6.2
elaborates upon this topic.

36 6. Product Evaluation and Recommendations

6.2. Evaluation of design decisions
6.2.1. Real time statistics updates
There is no real benefit in using real time statistics, when you also have access to statistics over time.
Implementing this feature would add a lot of complexity and global variables to maintain, without much
added value. As stated in the requirements on statistics, the provided charts are granular and calculated
per vehicle, and oftentimes per event, so a user should easily be able to trace a ‘moment’ in the statistics
back to that same moment in the simulation.

6.2.2. Unexpected Almende output
A big challenge in the development phase of the product arose when the Almende output format and
a sample output file were made available. At that point in time, the development phase had passed
the halfway mark and the product started to come together, when run with the OpenRouteService
algorithm. Up until that point it was always assumed, perhaps naively, that the Almende output would
be very similar to that of OpenRouteService. However, it was quite different in its approach and much
more oriented towards time steps, and less towards location. This would turn out to be a problem, both
in the frontend and backend.

In the frontend, it became clear that in the Almende output there was no indicator of the vehicle
location in between stops, and thus no route layout. The result was a collection of straight lines between
markers that took no notion of the underlying map structure. This is quite an essential part of the
visualization, so this needed to be fixed with a workaround.

The backend was an issue because OpenRouteService passes along a number of aggregated
and calculated values that are gratefully passed along to and used in the frontend. Most of these
aggregated values relied on distance, but also on past locations. It was therefore unfortunate that
the Almende output (at that point) passed no indicator of distance in its output. To account for this
(and the routing issue in the frontend), all intermediate segments between stops were passed to the
OpenRouteService directions’ API. This way, the coordinate values of the routes were now known and
the distances of every segment. These could be aggregated into total distance values (per route).

It must be stressed that this is a workaround, and not an ideal solution, because there is no way of
telling whether the routes that are displayed on screen are the actual chosen routes by the Almende
algorithm. This relates to the issue described in the last row of Table 6.1. This visualization of the
routes makes live interaction with the algorithm (as a possible future extension) very difficult to achieve
because such an interaction would very often rely on the vehicles’ locations and routes.

The issues as described above were a bit time-consuming. By the time the basics were fixed, there
was also still the need to implement support for the added features that are unique for the Almende
algorithm, like handovers and mode changes. It was perhaps an assessment error on the project
group members’ part that these events could easily be displayed with markers on the map. This was
eventually not the case because more often than not, these newly added features would take place
simultaneously/at the same location, so markers would simply overlap. To resolve this issue, the added
events were made clear with the help of the animation, which is described in the next section. This,
in turn, was time consuming as well. This meant that the last few weeks of development were spent
making the basic visualization features work for the Almende algorithm andmaking the special Almende
algorithm features work in the existing visualization. As a result, there was little time for perfecting other
aspects of the final product and working more on ‘Should have’ and ‘Could have’ requirements. In
hindsight, there should have been more communication with the client about the features and formats
of the Almende algorithm early on, because this would have saved time and stress in the end. This is
certainly one of the biggest learning/improvement points of this project and it will definitely be born in
mind when working on other projects later on.

6.2.3. Animation playback
Following the GeoJSON format that was used for OpenRouteService and interacts well with Leaflet, the
solutions provided by Almende were also translated to GeoJSON features. This meant that all events
and locations (deliveries and depots, but also: handovers and mode changes) were passed along as
‘Points’ on the map. This way of encoding the output data is very location-oriented.

It was decided towards the end of the project, that the Almende-specific map features should be
made visible in the animation. To make this work with already chosen and implemented moving ve-

6.2. Evaluation of design decisions 37

hicles, there was no other way but to track the location of the moving marker and see whether it had
passed a certain feature on the map. If this was indeed the case, it would fire an event like the change
of the icon of the vehicle from a car to a robot, to indicate autonomous driving.

This implementation is considered a workaround and would probably not be the preferred option in
hindsight. This feature was suggested by Almende in a later meeting, which is why we did not take
any such feature in account up front. However, the feature is rather obvious, so arguing that we should
have seen it coming is probably justified. The current solution should not be notable for most previews,
however, it comes with minor shortcomings as we will discuss. This is due to the fact that the animation
is re-enacting the traversal of the route and firing actions as it passes them, instead of traversing the
events in the output. The big difference is that in the former implementation, a vehicle could possible
‘miss’ a delivery, due to perhaps a lag in the animation, or the delivery marker not being close enough
to the route overlay (the latter is the biggest problem, which could simply be solved by keeping delivery
points preferably close to, or exactly on a route). If this would be the case, the parcel counter of the
vehicle would not be updated and the delivery wouldn’t be marked ‘delivered’, while in the actual output
this was the case.

It should be clear that these inconsistencies are undesirable. Unfortunately, this implementation
in combination with the simulation manager’s reset and rewind/fast forward options is not entirely pre-
dictable, as one might expect. Given the limitations of the options at the time, it all works as good as it
possibly could.

In hindsight, and with the knowledge of the present, that specifically being that there would be a lot
interaction with the moving marker, a different type of simulation might be a better choice. Perhaps one
that would be more time-oriented, rather than location-oriented. However, choosing the time-oriented
simulation would have its shortcomings as well when it comes to locations. The main (unsolvable)
problem here is that delivery points are not actual locations on the route. No matter how you look at it,
some kind of prediction has to be made as to which package belongs to which location on the route.
One could argue that this is more of a OSM-related issue, as their delivery route output contains a list
which does not contain the location you originally were planning the route for. Section 6.3 elaborates
on this topic.

6.2.4. Aggregated statistics
Combining multiple runs of a given algorithm in a single overview is a nice feature to have, so that
you can see the spread of your performance. Having a single well performing run, while others could
on-average be terrible, is not valuable. One such option to visualize multiple runs of a given algorithm
is done using boxplots. These boxplots are used on statistics that we already calculate for single
algorithms; for example their total distance, total time and total costs. One feature that we do not yet
support is the input of multiple runs for a single algorithm, since this would not at all be possible to
visualize on the route map. However, the functionality to accept such an input exists in the boxplot
overview. We then had a boxplot with a single statistic, which does not show anything at all. To
temporarily resolve this issue, we took the single measurement and randomly added a value within a
given range to test the boxplot functionality. This was repeated to obtain a random data distribution.
So, it should be noted that the actual information in the current boxplots for multiple runs is not sensible
at all; it is just a proof of concept. However, boxplots were also use for aggregate statistics within a
single run. An example of this is the distance that delivery trucks drive. One could easily put all those
distances of that single run into a boxplot to show the spread of the distances that the trucks travel.
This is were the boxplots were also used and this implementation is complete and working as it should.

6.2.5. Additional features
Even though some requirements are not completely fulfilled, there are some aspects of the final product
that are not present in the requirements, but are yet still added to the application, because the client
thought of it during the development phase, or because team members decided themselves that it
would have a lot of added value to include it.

The first and biggest feature is the inclusion of input settings. When looking at the list of requirements
the notion of input is not mentioned anywhere. During developments and test runs, however, it was
thought to be a nice added feature to be able to tweak the input settings, to run different scenarios and
to evaluate the effects of changes.

Directly related to this, is the possibility to randomize delivery locations. With this feature, all algo-

38 6. Product Evaluation and Recommendations

rithm settings remain the same, they are just run on a different scenario. This was also considered a
beneficial feature, especially to review the robustness of the algorithms under different inputs.

6.3. Recommendations
In the eleven weeks of this project, a lot of the Almende’s requirements can be considered as done.
Though, as time was limited, some features could be added to the visualization tool and some features
could be improved. These features are discussed below.

6.3.1. Visited markers
A part of the simulation manager is the option to see when a vehicle has visited a marker (which
represents a depot or delivery location). As remarked in subsection 4.1.1, the MovingMarker (which
represents a vehicle) is not able to see whether a marker has been visited. This has to do with the fact
that the marker is not exactly on the route, but only close to a route. The workaround to still be able
to see if a marker is visited, has the drawback that at a high simulation speed, sometimes a marker
is not noticed as visited. Also, when the time slider of the simulation manager is used to move to a
previous point in time, the markers are not yet able to change into the unvisited state again. This could
potentially be solved by linking a marker to a certain percentage of the route. As the MovingMarker
does keep track of the fraction of the route that is visited, the markers would in that case be able to see
if the vehicle already passed the percentage of the route it is located at.

6.3.2. Number of parcels
Besides the option to mark locations as visited, the simulation manager keeps track of the number of
parcels in a vehicle and depot. Also this option lacks the ability to notice changes in time, caused by
the time slider. As explained in the previous paragraph about ‘Visited markers’, also this problem could
be solved by linking the amount of parcels in vehicles and depots to the percentage of the route that
the vehicle is located at.

6.3.3. Autonomous roads
Another feature that could be improved, is the possibility to see where on the map autonomous roads
are located. In the current implementation of Almende’s algorithm, the vehicles are informed at which
location they should change their mode (to either autonomous or manual). Initially however, it was
assumed that roads would be marked as autonomous-enabled or not. For that reason, a button to
mark all dutch highways was implemented. In order to give this button a more relevant function again,
the parcel delivery algorithm should pass around all roads that are considered as autonomous.

6.3.4. Delivery point generation
In the final product, there is a button that randomizes delivery input points and reloads the algorithm
with the new delivery points. This feature can be valuable to verify the behavior of algorithms in different
scenarios. However, due to time issues, this functionality is only available for the OpenRouteService
algorithm, and not for Almende. However, the Almende algorithm uses a csv file with nodes as input,
and so it should be fairly easy to change delivery points to random nodes. It is recommended to
implement this feature to make the application more complete and because it should be a small effort.

6.3.5. Could haves
As described in Table 6.1, there was not enough time to work on the could haves. They might however
contain useful suggestions for further development, so they are repeated here.

When a visual representation of the algorithm alone is not structured enough anymore, it could be
useful to make use of sounds when newsworthy events on the map happen.

The second could have is the option to interact with the live visualization. Blocking a road on the
map, for instance, should make the vehicle find a new route. Or stopping a vehicle should cause the
parcels to be handed over to another vehicle, so they can still be delivered. As explained before, this
is not possible with the current version of Almende’s algorithm, but it might be useful to change this in
the future.

7
Conclusion

At the beginning of the project, Almende B.V. wished to have an application that would increase the
value of their developing routing algorithm by making it more tangible and understandable for both
developers and customers. This would be achieved by creating a visualization application that displays
the algorithm’s behavior and statistics. This visualization application is unique in the fact that it is fine-
tuned for the hypothetical situation where the vehicle fleet is expanded with autonomous vehicles and
in that it allows the comparison of such a situation to existing ‘traditional’ routing algorithms.

The main feature of the final product is its ability to display routes on a map, which includes delivery
points and depots, but also a simulation where the different vehicles at play move over the routes and
interact with events on the map. In addition, it displays multiple statistics with respect to cost, time and
distance in a side-bar overview or dashboard. All these features are also accessible for two algorithms
at the same time, to compare their strengths and weaknesses. Finally, the application allows interaction
with the displayed routing algorithm (when it is deployed) by changing input settings.

In the later stages of development, it turned out to be hard to adapt certain implementations to the
routing algorithm output provided by Almende B.V. The effect of this is mostly visible in the map view,
and specifically the animation playback. While it works good by default, the final implementation can
be unstable when used in combination with high playback speeds or the rewind/fast forward function.
This is mostly due to the short time that was available for implementing this option, and so this is
not something that cannot be improved further down the road, especially when the algorithm that is
currently being developed by Almende B.V. is in its final, stable stages of development as well.

At the moment of writing, the web application is running on a public server and parts of the applica-
tion have already been used by Almende B.V. to provide their client with more insight into the algorithm
that is visualized. It can be concluded that, while the application still may need to be tweaked or revised
in some aspects, the final product is in fact a user-friendly routing algorithm visualization application
that includes all the main requirements.

39

A
Infosheet

The info sheet can be found on the next page.

41

42 A. Infosheet

Development of visualization software for parcel delivery algorithms
Name of the client organization: Almende B.V.
Date of the final presentation: July 1, 2020

Description
Almende B.V. is a research-oriented innovative company that is in a collaboration with I-Cave (Inte-
grated Cooperative Automated VEhicles) to create an algorithm that schedules routes for parcel deliv-
eries, in which novel features such as autonomous vehicles and package handovers are applied. The
client has asked for an application that visualizes these novel aspects and the algorithm’s robustness.

To get an idea of the available options and existing relevant solutions, the initial research focused
on currently available (traditional) routing visualization applications, principles of data visualization to
work by, and the available platforms for map visualizations and web applications.

In hindsight, the biggest challenge of building the application was the fact that the input and output
of the novel algorithm diverged greatly from that of traditional scheduling algorithms and that these
formats were only known to us in a late stadium of development.

Given the Covid-19 regulations that were in place for the duration of this project, all communication
took place online. In the first few weeks we organized short, daily meetings to update each other, talk
through issues and get to know each other as well. Next to that, we used the Scrum methodology to
keep track of weekly deadlines and everyone’s assigned issues to maintain the planning.

The final product is a web application that is optimized for large screens, but accessible on many
different platforms and devices. The application relies mostly on the front-end (i.e. User Interface),
which was tested continuously through user tests. Roughly 80% of the initial requirements have been
fulfilled.

To extend the application in width and provide more comparison options, developers could add
support for more alternative routing algorithms. To extend the application in depth, it would be especially
interesting to be able to interact with the algorithm, by, for example blocking a road during playback
and observing its effect on the routes. This would, however, first require the algorithm to be able to run
live.

Team members
Luca Cras

Interests: Front-end design and development, Machine learning.
Contributions: Map, Vehicles, Autonomous roads, Design, Code Quality.

Simon Dahrs
Interests: Artificial intelligence, autonomous vehicles, backend development
Contributions: Map, Project setup, Deployment, Code Quality

Sander Gielisse
Interests: Backend development, statistics, automation, deep learning
Contributions: Initial design, properties box, charts, vehicle position calculations and checkpoint

support, backend chart calculations
Lucile Nikkels

Interests: Programming, allround web development, user interaction
Contributions: Support Almende output, randomize orders, settings, track parcels in animation

Jesse Ruiter
Interests: Frontend development, human-computer interaction
Contributions: Support OpenRouteService, markers, vehicles, simulation manager

All team members contributed to preparing the research report, final report and the final project pre-
sentation.
Everyone took on a different role every week, ranging from scrum master, lead developer, lead tester
and contact person to secretary.

Client: Ir. C.A. Hermans Almende B.V.
Coach: Dr. M.T.J. Spaan TU Delft (Algorithmics, Software Technology, EEMCS)
Contact: J. Ruiter jesse.ruiter@hotmail.com

The final report for this project can be found at: http://repository.tudelft.nl

http://repository.tudelft.nl

B
Project Description

In this appendix the original project description is given. The content was copied from Project Forum.
The project description or goal has not been altered since the start of the project.

Development of visualization software for parcel delivery algorithms
At Almende, our goal is to improve self-organization to better cope with an increasingly complicating
world. Right now, we are specifically involved in a project investigating the benefits and applications of
an autonomous vehicle fleet in parcel delivery.

One of our tasks in this projects is to illustrate the uses and implications of using autonomous ve-
hicles, and particularly how it affects profit and complexity of the deliveries.

Currently, with a masters student, an algorithm is being developed for a use case where some roads
may not be traversed by autonomous vehicles, and therefore we consider driver pickup and package
handovers, which make this algorithm novel.

In the proposed bachelors thesis, the students are to develop an application that visualizes the benefit
of this newly developed algorithm compared to currently used delivery scheduling algorithms. An ex-
ample of how this should be done, is by looking at the saved costs and increased complexity, but also
at stability of the solution whenever a driver is unavailable, and therefore the solution needs to change
last-minute.

How this visualization is precisely implemented, is left for the project, and should be discussed along
the way, as we are sure the students can come up with some creative and innovative visualization
methods. We only necessarily require that this method is sufficiently adaptable to the algorithm, as it
is not developed yet. I.e. the output of the algorithm should be fed into the visualization, and it should
be able to do this for outputs for multiple algorithms for comparison.

Hence, the students are free to decide the framework they want to use for this visualization app. In any
case, it has to be compatible with the (to be) developed algorithm and codebases on our end.

Almende B.V.
Our vision is that the ‘commons’ offered by modern technology will be better used when individuals par-
ticipate to the ‘global brain’ by applying the principles of self-organization. Our mission is then to create
innovative ICT solutions to empower human beings to better organize their lives in an increasingly
complex world.

43

https://projectforum.tudelft.nl

C
SIG feedback

Part of the TI3806 Bachelor End Project course by the TU Delft is the twofold submission of the code
base to Software Improvement Group B.V. (SIG). This is a company that performs static code review to
assess the code’s maintainability based on the following properties: volume, duplication, unit size, unit
complexity, unit interfacing, module coupling, component balance and component independence. The
results of the first submission should be treated as feedback and the properties with low scores should
be looked into for improvements. The second SIG evaluation than assesses whether improvements
were made.

C.1. Feedback
After the first submission in week 6, the scores of the code for the different properties was as depicted
in Figure C.1 below:

Figure C.1: Code maintainability scores provided by Software Improvement Group B.V. after the first submission.

Accompanying this code was a list of refactoring suggestions. The most important aspects of this
are duplication and unit size, which reflects in the scores as well. In figure C.1, the property component
balance has quite a low score, but this is not recommended to refactor, since it requires having to
restructure and rewrite a big part of the whole code base, which is not desirable in late stages of
development.

C.1.1. Duplication
Roughly 85% of all duplication errors originated from files that instantiated charts. This is due to the
fact that at that point, a new file was created for every chart. This was done to pass along the right
chart options and calculate the correct data values. However, this can definitely be rewritten so that all
chart instances can be made with the same method. Given the amount of charts and their occasional
complexity, this can be a lot of extra work and time, but the improvement is worth the effort.

45

46 C. SIG feedback

C.1.2. Unit size
The unit size errors are more diverse and complex. For this category too, many errors are due to
charts files (about 50%), however, the chart library that is used for this project (vue-chart-js) requires
large data structures with lots of variables to initialize charts, which makes it hard to avoid writing large
methods or structures.

The GeoJSON generation method in the back-end also scores poorly when it comes to unit size.
This is due to a similar issue. The GeoJSON object is a very large structure, and during generation one
needs to keep track of a number of variables. There will be an attempt at splitting the method up into
more smaller methods, but it may be difficult due to the necessary incremental computations to gather
aggregated values.

Finally, the MainFrame vue component has a too large data component. This will be hard to fix,
since the MainFrame is used to tie the entire front-end application together and keep track of all its
aspects. To resolve this issue, new components might have to be introduced and this may not be
feasible.

C.2. Results
Two weeks after the first submission, the second submission had to handed in. The updated scores
after this submission had been graded are depicted in Figure C.2 below:

Figure C.2: Code maintainability scores provided by Software Improvement Group B.V. after the second submission.

Unfortunately, it is clear that, according to this feedback, there has not been a great maintainabil-
ity improvement over the course of these two weeks. Subsection C.2.1 elaborates on the fact that
improvements have been made, they are not as visible in the results as hoped. Subsection C.2.2
evaluates the feedback of the most changed properties.

C.2.1. Complexities
Initially, there would only have been one week between the first and last submission. If this were the
case, the adaptations that were made after the first feedback would have been reflected more strongly
in the second feedback. However, this was eventually not the case, and the number of last-minute
adjustments and time pressure of the final sprint prevailed in week 8. The following is an explanation
for how the code developed as it did.

As thoroughly explained in section 6.2, a large part of the code had to be adapted to the Almende
algorithm’s output in the last weeks of development. To be more precise, up until week 6 (the first SIG
submissions) no work had been done on the Almende algorithm’s output. Then, this quickly had to
implemented, which turned out to be harder than expected. In agreement with the client, week 8 (the
second SIG submission) was set to be the last sprint in which major modifications were to happen.
As a result, there was a significant amount of time pressure on the final weeks, during which a lot of
(complex) code modifications took place.

To summarize, this means that even though the feedback of the first SIG submission was taken
up well and corrections and enhancements were made after this, they go slightly unnoticed after the
addition of newly added complex code and workarounds.

C.2. Results 47

C.2.2. Evaluation
In this section, the code quality properties that have undergone the biggest changes (or were expected
to) are listed and details are given on how the feedback has been processed.

C.2.2.1. Duplication
Code duplication has improved greatly, from the first to the second submission. As mentioned in sub-
section C.1.1, the initial duplication errors originated mostly from instantiating chart, which was de-
termined to be changed by replacing the old methods for new, generic methods. This plan was put
into action and all chart files were removed and replaced by components that take computed data
as input and shape this into a chart. The data for every chart is computed in new JavaScript files
chart_preprocess.js and chart_process.js. The data structures for chart options are gen-
erated in a new file chart_options.js. The remaining duplication errors still mostly originate from
chart files, but this level of duplication is unavoidable when using a library that requires input in a certain
format.

C.2.2.2. Unit size
Unit size was the second lowest score according to the first feedback and the lowest score in the second
feedback. Subsection C.1.2 already hints at the possible complications with resolving unit size issues
for data structures in the frontend and the GeoJSON in the backend. During feedback processing,
the issues around creating a GeoJSON structure in map.py were resolved. Even the creation of a
GeoJSON for the Almende algorithm, which requires a very large amount of aggregate values due
to its different structure, was managed to stay relatively small, at a small cost in unit interfacing and
complexity.

In fact, all unit size issues that were not contained in a data object, but in functional code, that
were pointed out by the first SIG feedback are processed and not recurring in the problematic files
of the second feedback. However, the number of violations due to data objects being too large has
increased in the second feedback. These data structures are static JSON objects that are defined in
a Vue component instead of a separate JSON file, while if they were not, they would not have formed
a problem. Even though having these data structures is not desirable, minimizing their size is not a
priority compared to keeping functional code small and simple.

The biggest code violations in unit size comes from the file MovingMarker.vue. Unfortunately,
this is due to issues described in subsection C.2.1 and section 6.2, where it is explained that with
the implementation of the Almende algorithm, a lot of new features had to contained in the animation
(moving markers). In hindsight, the MovingMarker.vue file could have been split up in separate
JavaScript and Vue files to reduce its individual file’s size.

C.2.2.3. Unit complexity
While unit complexity received a high score in the first feedback, this score is slightly decreased in
the second feedback. The feedback of the first submission provided 0 violations to improve. The
second feedback indicates that the function iterate_actions in the file map.py violates the unit
complexity quality. This is one of the functions that was added to accommodate the creation of the
Almende algorithm GeoJSON object. This method contains a very large if-else statement inside a for-
loop. The use of this structure was unavoidable, due to the format of the provided output file to turn
in to a GeoJSON object. This is because all relevant event are contained in a list of actions, which
should be traversed chronologically to maintain a log of past waypoints and route stops, and there are
6 different types of actions. The if-else structure functions as a type of switch statement over the action
type, in the absence of a proper switch statement in Python. Implementing this function in another way
would likely result in one or more functions that would feel counter-intuitive and would perhaps be more
‘complex’ for the client to understand and continue building upon.

C.2.2.4. Unit interfacing
After the first submission, unit interfacing scored a 4.2, which gave not too much reason for modifica-
tions. Nevertheless, four out of the five methods that were marked as violations, did not recur in the
second submission’s results because they had been altered. Unfortunately, in return, there were two
new violations in the second submission’s feedback: the function iterate_actions and the function
add_delivery in the file map.py. These functions were both added to accommodate the conversion

48 C. SIG feedback

from the Almende output to GeoJSON. As mentioned in the previous sections, a lot of variables had to
be maintained in order to gather the same aggregate values as OpenRouteService. This fact makes
it hard to optimize unit size, unit complexity and unit interfacing all at once. When splitting up a large
method to decrease size and complexity, there is a trade-off in the form of unit interfacing, because it
requires passing many values to the submethods. Overall, the trade-off is weighed out quite fairly and
in neither of the three categories are the violations very serious, i.e. a high value according to SIG.

One method that was the top violation in the first and second SIG results is the method gener-
ateChartOptionsLine in the file chart_options.js (in the final version). Once again, one can
speak of a trade-off between unit interfacing and unit size, but also duplication. In order to standardize
the chart option generation methods and reduce duplication, a single method was made per chart type
that would generate the options data object based on the parameters supplied. As a consequence,
and due to the chart plugin requiring numerous variables, this method needed to suffer in number of
parameters. Just like in the first example, this trade-off is well justified and the violation is, again, not
very serious.

C.3. Conclusion
The process of incorporating the initial feedback provided by SIG came with some obstacles, but by
balancing a number of trade-offs, the final result is up to the standards that can be expected. The
product received a maintainability score of 3.7, which is a good score, especially considering the cir-
cumstances explained in subsection C.2.1, and the fact that static code quality evaluation, while very
worthy, sometimes does not show the complete picture. Sometimes it may be more valuable to sacri-
fice a tiny bit in one area to gain a lot in other, when also considering code readability and extensibility.
Overall, the project team has confidence in the final product and its code quality and it is satisfying to
have that reflected in the final maintainability grade.

D
Research Report

In this appendix the content of the Research Report is given. Originally the Research Report also
contained a cover page, a table of content and a bibliography. These components are omitted because
they are redundant or already included in another part of this final report.

D.1. Introduction
In this chapter, the project will be introduced. The goal of the project is to develop and deploy a visu-
alization application that will allow the client, Almende B.V., to gain more insight into the workings and
benefits of a new algorithm that they are designing. This is a parcel delivery algorithm that focuses on
improving the cost and efficiency through the use of handovers and autonomous vehicles, while also
maintaining robustness against a variety of perturbations. To understand the performance of this algo-
rithm, however, a tool is required to visualize all the data and output of the algorithm in question such
that the information can be presented in a less abstract way. This also enables Almende to compare
similar algorithms against each other on a variety of metrics. The same visualization tool might then
also be used for another project that they are working on.

Visualization of parcel delivery systems can be done in a variety of ways, most importantly through
the use of a map. Packages, drivers and roads can be visualized on this map in a realistic manner and
choices made by the simulated algorithm can clearly be seen. Another important tool in visualization
is the use of charts to enable the presentation of key statistics in a brief and clear way.

In this report, the best means to visualize the algorithm that Almende is developing will be re-
searched and the best options to develop the software required will be weighed up. We will do this
considering the requirements and wishes set out by the client.

D.2. Problem analysis
The company Almende is developing an algorithm for a use case where some roads may or may not be
traversed by autonomous vehicles. Therefore driver pickups and package handovers are considered,
which make this algorithm novel. The purpose of this project is to develop an application that visu-
alizes the benefits of this newly developed algorithm compared to currently used delivery scheduling
algorithms. As the output data of the parcel delivery algorithm may be hard to analyze or present to
customers, visualization plays a critical role in the development of this parcel delivery algorithm.

The features listed below are so-called ‘must-have’ and ‘should-have’ features requested by the
client.

• The visualization is accessible in a web browser.

• The visualization can be used to compare different parcel delivery algorithms.

• The visualization shows the routes of delivery vehicles, the vehicle type, packages, package
handovers, pick-up points and new orders.

49

50 D. Research Report

• Important metrics of the algorithm are visualized in some type of chart form.

• Algorithm properties are displayed for the algorithm’s comprehensibility.

• The code for the visualization algorithm is easily adaptable.

• A detailed overview of orders and routes is available in chart or list form.

• The visualization is scalable to different numbers of orders and geographical areas.

• The visualization provides the option to perform random simulation for the same algorithm.

• The visualization allows playback and speed control.

• The visualization algorithm accumulates statistical data on the parcel delivery algorithm.

From the list above, a number of research questions regarding the visualization problem can be
deduced. First of all, when thinking about the visualization end-product, one could ask themselves
how different entities and events should be portrayed such that the visualization is effective and user-
friendly to all user types? Also, and more concretely, what are suitable charts or graphics to visualize
algorithm metrics, properties and statistics? When looking at the problem from a practical developer’s
perspective, it would be beneficial to look into suitable platforms on which to build the visualization,
and compare their characteristics with respect to for example scalability. Perhaps there are existing
visualization algorithms that are created for similar projects. It is interesting to look into how they
measure their effectiveness, cost and robustness, and also with what platforms and tools they did their
development. Finally, to live up to the requirements, some in-depth analysis of the parcel delivery
system of Almende will need to be done. In this analysis it should be investigated how their algorithm
differs from other parcel delivery systems, how this can be emphasized in a visualization, and by what
metrics the robustness of this new algorithm can be measured.

To get insight into these problems and subjects and to find possible ways of dealing with them, it
is beneficial to conduct the necessary research in these areas. With the help of this research, well-
informed preliminary design decisions can be made, as well as educated decision on the spot during
the development process. The research on these subjects can be found in the next chapters.

D.3. Data visualization
This chapter will elaborate on different aspects of data visualization. These include its definition, which
can be found in the first section, the principles of designing data visualizations in the second section,
and the project-specific case of data visualization on maps can be found in the third section.

D.3.1. Definitions
The definitions of data visualization according to different sources is as follows:

• “Data visualization is the graphic representation of data. It involves producing images that com-
municate relationships among the represented data to viewers of the images. This communica-
tion is achieved through the use of a systematic mapping between graphic marks and data values
in the creation of the visualization. This mapping establishes how data values will be represented
visually, determining how and to what extent a property of a graphic mark, such as size or color,
will change to reflect changes in the value of a datum.” (Wikipedia, 2020)

• “We can look at data but we cannot really see it without the context of relationships that help us
compare and contrast them effectively with other values. To derive understanding from data, we
need to see it represented in a different, visual form. This is the act of data representation. [...]
Representation choices concern the form in which your data will be visually portrayed.” (Kirk,
2016)

• “The role of visualization systems is to provide visual representations of datasets that help people
carry out tasks more effectively. A visualisation should save time, have a clear purpose, include
only the relevant content and encode data/information appropriately.” (Munzner, 2014)

D.3. Data visualization 51

By comparing these definitions and their most important aspects, data visualization has been defined,
and will be applied in this report, as follows: Data visualization concerns the mapping of data attributes
that are relevant to the user into a visual shape or form that reflects the datum’s true value and is
comprehensible and pleasant to work with as a user.

D.3.2. Principles of data visualization
In order to create and define a ‘good’ data visualization, we can use the following three questions. Each
question forces a designer to think about relevant aspects of the visualization (Munzner, 2014).

What is being visualized?
According to Senay and Ignatius (1990), one of the most important issues in data visualization is choos-
ing the right mapping of data attributes into a visual. This can be more difficult than it sounds, because
there are usually hundreds of possible mappings which may lead to different visualization technique de-
signs. Selecting and creating the most effective design among all the alternatives for a given situation
usually requires considerable knowledge and creativity on the part of the visualization technique de-
signer. So, a designer needs to identify and justify its mappings, possibly by showing alternative (bad)
solutions or writing textual motivation to show that there has been thought of a number of different
angles and why the chosen option is the best. The concrete answer to the question of this paragraph
should then be what the major data types, attributes and their classifications are. (Munzner, 2014)

Why is it being visualized?
Every aspect of a data visualization should have a purpose. One should be able to answer the questions
“why do the users need this?” and “what do the users need to be able to do with it?” (Munzner, 2014).
As stated by Kirk (2016), as well, this means that data visualizations should not contain unnecessary
details, because the user does not need it. Also, data that is necessary for context, but not a key
aspect should be represented accordingly; conversely put, if something looks significant, it should be,
otherwise the visual is misleading. Kirk (2016), has identified numerous more audience qualifiers and
aspects to consider when making a data visualization: the user’s level of knowledge on the subject;
their interest in the subject; their level of engagement with the subject matter; their knowledge of the
visualization type (e.g. graph, pie chart, map); and the time and pressure they are under to obtain the
knowledge in the visualization.

In the use case where there is a single audience type, this type can be put on the scale of each
qualifier, and the visualization should be created by the rules of this scaling. In the use case where the
visualization needs to be used by different types of audiences, a designer would have to think about the
differences between these user types and how to make the visualization user-friendly for each. In the
example of the parcel delivery algorithm, the algorithm creator probably wants to see their algorithm
act in detail, visualizing every step it takes to verify its behavior. On the other hand, a customer looking
to invest in the algorithm wants to see it work on a large scale, with indicators of the overall, maybe
average, benefits of the algorithm. To make both audience types happy, a designer has to introduce a
level of scalability on, probably, each of the audience qualifiers identified by Kirk (2016). How this will
be achieved, is described in subsection D.6.1.

How can it be visualized?
At this point it is already established what data aspects we want to portray and why the user wants to
see this data. Next up is to think about how these ideas will take form. To start, the data has to be
encoded in a certain way. According to Munzner (2014), this can be done by either arranging the data in
a meaningful way, or by mapping the data to another form of representation. Encoding data in the right
way is important because it determines how a user decodes the data and thus how a user ‘sees’ the
data. From this perspective, the user will draw their conclusions, so a designer should aim to create an
encoding that minimizes the decoding error. A designer has to understand that some visual channels
are more effective for some data types than others, and some data has a natural mapping that our
brains expect given certain types of data. The effectiveness of different data representations, quantified
by decoding error, has been researched in a crowdsourced study by Heer and Bostock (2010). Their
findings included that charts that use position (i.e. different forms of bar charts) perform the best, charts
that use angles (i.e. pie charts) perform second best and charts that use areas (i.e. bubble diagrams)
perform the worst. In addition, they found that to minimize decoding error, chart heights should be more

52 D. Research Report

than 40 pixels high and should include grid lines. Increasing chart height above 80 pixels, however,
has limited beneficial effect.

Encoding data Data encoding can be achieved through arranging, mapping and a combination of
the two. When arranging, you could choose to arrange the data in, for example, graph plots or put
them as points on a map. When mapping qualitative data (e.g. different types of vehicles) to a visual
aspect, this can be achieved by applying different hues of color or different textures or shapes. When
mapping quantitative data (e.g. the number of parcel orders) to a visual aspect, one could use satura-
tion, luminance or transparency of a color, or the position, size or angle of a pointer, or through some
motion, for example in a certain direction, with a certain speed, or with some frequency.

To continue, when applying one or more of these techniques, there are a number of issues that
a designer should be aware of. Firstly, the so-called pop-out effect. This has to do with the fact that
humans subconsciously scan an image in a matter of milliseconds. In this time, they can immediately
identify objects that stand out if they are different from the rest. For instance, in a scatter plot with ten
blue dots and one red dot, the attention is immediately drawn to the red dot. A designer that wants to
make use of this should be aware that the pop-out effect does not work for all visual differences between
objects; color works the best for this. This effect can also happen unintentionally, hereby perhaps
drawing unnecessary attention to some data value that in fact has an equally important meaning as
that of other colors. To resolve such an issue, a designer should think about using a tested color map,
like the HSL linear L rainbow palette. It was designed by Kindlmann et al. (2002), and is widely used,
for example in matplotlib.

Another thing to keep in mind when working with colors is that in many use cases it is hard to
determine semantically sound colors to represent a data value. Therefore it can easily become unclear
which color belongs to which value, especially when there are many different values. A designer should
think about how to make the translation from color to value easy (or represent the value with a shape
instead), so the user does not have to repeatedly look it up in the legend. This reduces the decoding
time and the cognitive load on the user. One final consideration is that as a rule, 2D visuals are better
than 3D visuals. The visual system of humans is not very good at perceiving information in ‘depth’ and
so, while it may look appealing, 3D data visualization almost always lead to a higher decoding error.
(Munzner, 2014)

D.3.3. Data visualization on maps
While the principles of the previous section are applicable to all fields and methods of data represen-
tation, it is interesting to look further into some considerations about visualizing data on maps, since
this is a large part of the project on visualizing a parcel delivery algorithm. Some basic, yet impor-
tant guidelines for map visualizations are as follows. First of all, one should create or use an easily
understandable basic map vocabulary: title, legend, baselayer, marker, popup, zoom level, polygon,
polyline and source should all be present, and as self-explanatory as possible. Secondly, one should
add source credits and bylines to build credibility and accountability (Wong, 2010). Thirdly, one should
use colors to logically organize the data. Avoid random colors and color combinations from the op-
posite side of the color wheel (by Isaac Newton). Use contrasting colors to call attention to important
data (Knaflic, 2015). This remark is in line with the findings in subsection D.3.2. Perhaps the notes
on the use of colors are even more significant when using maps, because the map is essentially the
data’s ‘background’ and so the data’s message should be clear even through the distractions of the
basemap’s colors. This leads to the following point of advice: one should choose the basemap wisely.
Think about whether it is desirable that the basemap contains a lot of information or not. Basemaps
may use designs or colors that can be distracting to the user. A designer should think about the mini-
mum number of elements required in the basemap to bring across the message of the data (Dougherty
and Ilyankou, 2020).

The next chapter will dive deeper into map visualization and the pros and cons of different map
APIs.

D.4. Visualization platforms
In this chapter different visualization platforms are discussed. The first section is about the requirements
of the platforms in our project. Secondly, an overview of potential platform providers is given. The last

D.4. Visualization platforms 53

section gives insight in the reasons to choose certain platforms over others.

D.4.1. Considerations
From the previous chapters it should be clear now that the goal of this project is to visualize parcel
delivery algorithms. In order to do that in the best possible way, there are several conditions to the
platforms that will be used.

In the first place, the visualization should be scalable in a way that both usual and autonomous
deliveries can be visualized. One of the reasons why the parcel delivery algorithm of Almende is better
than existing ones, is because it takes into account the restrictions and possibilities of autonomous
vehicles. Therefore this distinction between vehicles should also be visible on a map.

Another way of interpreting scalability in our project is the desired possibility to visualize multiple
pickup & delivery algorithms. In this way the tradeoffs of different algorithms can be shown. This is an
important criterion, as one of the goals of this project is to be able to visually show to a customer why
the new developed algorithm of Almende is better than existing ones.

A third requirement would be the ability to visualize everything in an uncluttered way. One can
imagine that it is doable to show several parcels that have to be delivered by one driver. However, an
algorithm could also output loads of parcels, that all have to be visible on a map. In order to keep an
overview, an application like Google Maps will probably cluster a large number of elements. Though
this will make it harder to see the working of an algorithm.

The last requirement on the platforms that are going to form the base of our visualization tool, is
that they are time and cost efficient. As the application might need to visualize outputted algorithm data
real-time, the platforms should not be the bottleneck in this visualization. For that reason, the tools that
are picked in the next section are filtered by their ability to handle large amounts of data with the least
amount of overhead.

D.4.2. Platform providers
In order to successfully develop an application that visualizes parcel delivery algorithms, several exist-
ing platforms will be used. In this section the most suitable platforms for both map data visualization
and web application platforms will be considered.

D.4.2.1. Map data visualization
A large part of the comparison between parcel delivery algorithms will have to be shown on a map. Our
search for map providers has shown that there are big differences in e.g. costs or adaptability. This
results of that search are written below.

Google Maps (https://cloud.google.com/maps-platform)
When thinking about visualizing parcel delivery algorithms, one of the first things that comes to mind
is Google Maps. An existing tool that makes routes, using Google Maps, is OptaPlanner1. We will
not go into the details on how the underlying algorithm works, as the algorithm should be completely
interchangeable for our use case. In Figure D.1a, a map of Belgium is used as an example. In this
map, all depot locations are shown by red markers while all the routes taken by each individual truck
are shown in different colors.

Even though this example only uses inbuilt markers, Google Maps has the feature to allow custom
markers to be placed, as shown in Figure D.1b. This makes Google Maps a great candidate for our
map visualization in case we were to work on real world scenarios, as we would be free to mark routes,
delivery/pickup locations and swapping locations exactly in the way that is desired by the product owner.
However, building things like multiple different panels and statistics that differ based on the selection is
something that would be very hard when using a ready for use package like GoogleMaps. However, it is
important to note that Google Maps is not free of charge. In case a completely proprietary visualization
tool is desired, using third party non-free data suppliers will not be possible.

OpenStreetMap (https://openstreetmap.org)
Another well-known platform for maps is OpenStreetMap (OSM). A huge advantage of this platform
over e.g. Google Maps is that it is open source. Not only in terms of costs this is beneficial, but also
1https://www.optaplanner.org

https://cloud.google.com/maps-platform
https://openstreetmap.org
https://www.optaplanner.org

54 D. Research Report

(a) Route visualization as done by OptaPlanner from:
https://optaplanner.org/blog/2015/03/10/

VisualizingVehicleRoutingWithLeafletAndGoogleMaps.html

(b) Custom markers as done by Google from:
https://developers.google.com/maps/

documentation/javascript/custom-markers

Figure D.1: Visualization in Google Maps

in terms of keeping management over the visualized data on the map. Besides, we can guaranty
the performance of our application, instead of being dependent of the service of a platform provider.
OpenStreetMap has multiple plugins to visualize markers and lines on a map. OpenLayers and Leaflet
are two examples of JavaScript libraries that would be very useful to display delivery vehicles and
destinations. A routing plugin like OpenRouteservice could be used on top of OSM to compute the
best route from the parcel distribution center to the destination.

MapBox (https://mapbox.com)
Just like Google Maps, MapBox offers a platform for developers to create applications that solve prob-
lems with maps, data and spatial analysis. The maps are based on data of OpenStreetMap. An
advantage Mapbox is that it is a cheaper alternative than Google Maps. But because it is used less
often, there are less examples available to see its capabilities.

Carto (https://carto.com)
The last map data visualization platform is Carto. Like the ones above, this platform offers an API to
turn location data into a clear overview on a map. It offers a free year to try (limited) options of the
platform. For the time of our project this could work, but in the long run it could be one of the most
expensive options. Another drawback of Carto is the limited amount of available examples, as, like
MapBox, it isn’t used that often for public projects.

D.4.2.2. Web front-end
For any integrated, complicated and modern web application, it is advisable and common practice to
make use of a JavaScript framework to support the development process. One of the requirements
of the visualization for the parcel delivery algorithm is to have it run in a web browser, therefore the
visualization application will be developed in JavaScript, using a JavaScript framework. Different frame-
works come with different features and compatibility, which is why their pros and cons, with regard to
the visualization problem at hand, are researched below.

Angular (https://angular.io)
Angular is an open source JavaScript framework operated by Google. One of Angular’s key selling
points is its support for Single Page Applications (SPA’s). The visualization for the parcel delivery
system, as most visualizations, will appear on a single page and update on the same page, which

https://optaplanner.org/blog/2015/03/10/VisualizingVehicleRoutingWithLeafletAndGoogleMaps.html
https://optaplanner.org/blog/2015/03/10/VisualizingVehicleRoutingWithLeafletAndGoogleMaps.html
https://developers.google.com/maps/documentation/javascript/custom-markers
https://developers.google.com/maps/documentation/javascript/custom-markers
https://mapbox.com
https://carto.com
https://angular.io

D.4. Visualization platforms 55

means it can be categorized as an SPA. Another beneficial feature is that it has two-way data binding
implemented, which, in practice, means that when a value in the data store updates, the UI updates
as well. On the downside, Angular is said to lack somewhat in modularity and flexibility. Additionally,
Angular requires its users to always specify the controllers of view-models. Finally, Angular was one of
the earliest developed JavaScript frameworks, hereby establishing a great benchmark and proving to
be reliable, but this also leads to Angular being relatively harder to learn and more heavyweight than
some of its alternatives. (Wohlgethan, 2018)

Vue.js (https://vuejs.org)
Just like Angular, Vue.js has great support for the creation of Single Page Applications. This is due to
the fact that Components and Views are smaller interactive parts of an app that can be easily integrated
into the existing infrastructure, with no negative effect on the entire application. This also allows for easy
code reusability. While offering powerful data-binding as well, Vue.js is considerably more lightweight
than Angular and provides users with more flexibility (Boczkowski and Pańczyk, 2020). Vue.js is also
known to be intuitive and quite easy to learn. One of its disadvantages is the fact that it is a relatively
new framework that is evolving quite fast, which could possibly make it hard to find documentation
or solutions to coding problems. Additionally, there are developers that have suggested that Vue.js
provides too much flexibility for working with complex projects, although this will likely not be a problem
with the parcel delivery algorithm visualization project. (Wohlgethan, 2018)

React (https://reactjs.org)
React is characterized by its support for dynamic user interfaces with high incoming traffic. It works well
for such cases because while other frameworks update the entire DOM on any update, React updates
the virtual DOM, with which it is possible to update only the changed value. This makes updates really
quick and enables developers to work with UI objects faster and apply changes in real-time. Addition-
ally, just like Vue.js, React allows the reuse of code components (Boczkowski and Pańczyk, 2020). On
the downside, React is continuously developing and changing features. This requires programmers
to keep up or dive deep into the matter to look up functionalities that may have changed over time. A
problem that comes with this is poor documentation; React does not have the reputation that its cre-
ators take the time to write proper instructions, which can be cumbersome especially when learning for
the first time (Duvander and Romhagen, 2019).

D.4.2.3. Web back-end
Of course, the application will need a server to perform the calculations required for the visualization.
This also shields the user from knowing the inner workings of the tool. For the language that will be
used in the back-end, Python has been chosen. There are a few reasons for this choice. Namely,
Python has very strong libraries that will be very useful for data manipulation and calculations. Python
is also very easy to use and pretty fast. Almende also has experience with Python in-house, therefore it
will be easier for them to adapt and amend the application later on. Having chosen python, this leaves
us with the choice of framework. There are three frameworks in particular that will be looked at. Django,
Flask & FastAPI.

Django (https://djangoproject.com)
Django is a high-level PythonWeb framework that encourages rapid development and clean, pragmatic
design. Django also makes most choices required for the developer to start working. This enforces a
very strict standard but is very useful for very large projects where a good structure in the code can
save the developer a lot of work. Django has many plug-ins developed by its community providing
extra features, such as web-shop functionality. This will most likely not be necessary but is worthy of a
mention.

Flask (https://flask.palletsprojects.com/)
Flask takes on a different approach to the python web framework. Flask is a micro web framework,
meaning that it is very lightweight compared to Django and it lets the developer make all the choices
required to start development. It takes a more hands-off approach but is also a lot more appropriate
for smaller projects where the developer doesn’t need all the functionality that Django comes with out

https://vuejs.org
https://reactjs.org
https://djangoproject.com
https://flask.palletsprojects.com/

56 D. Research Report

of the box. Flask is therefore also a lot easier to start with and learn, than Django which has a high
learning curve but also a lot of power.

FastAPI (https://fastapi.tiangolo.com/)
The strength of FastAPI is that it strictly defines the input and output data. It uses Pydantic2 to do
so. The main advantage of that is that you can auto-generate API documentation that conforms to the
OpenAPI standard. The second advantage of it is that input and output validation is done automatically
by the framework. The final advantage is that you can use auto-generated client code. This makes it
easy to build multiple clients for the same API. On top of this, FastAPI takes a lot of cues from the likes
of Flask and is therefore also, as it name also states, very fast but also very light weight.

D.4.3. Motivation
Now that the considerations and potential platform providers are described, this section will present the
motivation why we chose for certain platforms.

Map data visualization
After having seen four platforms to visualize map data (in subsubsection D.4.2.1), it is time to conclude
which of these platforms will be used in our project. It was not very hard to make the decision to use
OpenStreetMap for our project. To display the OpenStreetMap data in the front-end, we will be using
a JavaScript library called Leaflet, which is lightweight and has all the mapping capabilities that will
be needed, such as markers and road highlighting. Leaflet works well with Vue.js, because it is also
written in JavaScript. It will also work well with our back-end, because a Python library called Folium
has good interaction with Leaflet, enabling us to do data manipulation and route planning in Python
and then mapping this to the Leaflet map. OpenStreetMap has several more advantages as well. In
the first place this has to do with the large amount of examples of similar projects. As none of the
group members are familiar with data visualization on maps, it is very useful to be able to have a look
at examples and learn how other developers used the platform. Secondly, in contrast with the other
platforms, OpenStreetMap is open source. That provides the advantages that it is free and the data is
kept in-house. Also due to the platform being open source, there have been developed a lot of open
source ‘plugins’, which for example makes it possible for us to use Leaflet to make the development
easier. So we are not limited to the functions that are given by a platform provider like Google Maps.
Also OpenStreetMap is not an API, and therefore its service does not determine the performance of
our application, as we run the version ourselves with the amount of resources we deem necessary with
less delay. Lastly, we want our findings to be easily reproducible and using an open source platform
makes this much easier.

Web front-end
When comparing Angular, Vue.js and React as possible JavaScript Frameworks for the project at hand,
two important aspects must be thought of: that of the user and that of the designer. Firstly, the user
aspect: is the resulting UI from using a framework fast, user-friendly and does it provide good interfaces
for data visualization (i.e. charts, graphs and animations)? React, due to its virtual DOM, definitely
has the fastest user interface. However, the parcel delivery algorithm does not necessarily need this
super fast interactivity because it does not have to deal with huge amounts of user input. When it
comes to user-friendliness and data visualization, all frameworks have the ability to present equally
presentable results. All three frameworks have built-in data visualization tools and, in addition, there
are many data visualization libraries that are compatible with all these frameworks. Concluding, the
user aspect comparative factors are not decisive on which JavaScript framework to choose, which
means the designer aspect will be the deciding factor.

When it comes to the designer aspect of working with each of the aforementioned frameworks,
one specifically has to look at its flexibility, its size, the amount of documentation available and the
amount of experience of the designer or how difficult it is to learn (Duvander and Romhagen, 2019).
Concluding from the findings in subsubsection D.4.2.2, Vue.js is the most flexible framework of the
three, due to it allowing code reusability and allowing the designer to define the application structure.
When considering size, Vue.js is the most lightweight framework. When it comes to documentation,
2https://pydantic-docs.helpmanual.io/

https://fastapi.tiangolo.com/
https://pydantic-docs.helpmanual.io/

D.5. Related work 57

Angular has the best amenities, due to its long existence and it being owned by Google. Finally, when
looking at the required knowledge level for the three frameworks, it looks like Vue.js is the easiest to
learn, due to it being intuitive and relatively small. Additionally, one of the project members of this
visualization project has experience working with Vue.js, which is considered a big advantage, given
that the project is off a short duration and so it is not desirable to spend a large amount of time on setting
up the framework and learning about it. When weighing up all these factors, it can be concluded that
Vue.js is the most suitable for this project and thus it is decided to work with Vue.js as JavaScript
framework.

Web back-end
After having taken a look at the different popular frameworks for the back-end of the web application.
The advantages and disadvantages of each become clear. Ultimately, the choice has been made to
go with FastAPI for the back-end. In this section, the reasons for this choice will be presented. But
let’s start with why Django was not picked. The main reason for this is that it is too bulky and not
really suitable for this project. Django is better for bigger projects with huge amounts of requirements
and functionality. It comes with too many presets that are not necessary. After eliminating Django,
the choice was then between Flask and FastAPI. We chose for FastAPI, because it has many of the
advantages of Flask andmore. It allows fir client code generation and documentation generation via the
OpenAPI standard, which will enable us to develop quicker and focus on the front-end and calculations
part more.

D.5. Related work
In this chapter, it will be researched what related work has been done and in which way this visualization
project could improve on existing products to come up with a result that suffices the requirements as
provided in the requirements section. It is surprising how many pickup and delivery algorithm papers
are published, without having any visuals to back their findings. Mostly, numbers and statistical data
are used to support the claims.

An exception to this is the research done by Hoen et al. (2004). Even though this research paper
does not have any visuals in it, it contains a clear description of how visuals were used. They used a
panel based overview, where each panel represents different statistics or visuals. The main panel in
the middle contained the underlying grid (road map) with the depots and trucks. Since this research
by Hoen et al. (2004) was done for logistic management in transportation, no such thing as customer
delivery locations are shown on the map. If this overview were to be adopted in this project, the map
would also include delivery locations, as well as the locations where two trucks swap packages, as this
was also one of the features of the underlying algorithm.

In this same research, the side panels of the overview are used to display information about the
currently selected truck or depot. This would apply perfectly to our use case; being able to select a
single pickup location, parcel truck, swap location or delivery location and show any related statistics,
measurements and other data for a single given selection could be useful when trying to analyze the
given situation.

Using different colors for the route driven by each truck would also help to improve the visualization
of the complexity of the underlying algorithm. Being able to show visually that a given truck drove a lot
less using a given new algorithm compared to a given existing algorithm, could be a valuable property
of our visualization tool when presenting the newly developed algorithm to a client.

This research by Hoen et al. (2004) goes out from three main principles for visualisation, which
would very well apply to our visualizations as well. This is why the following will be the foundation of
the development of our visualization: “Present all information on a single graphical interface, provide
the user with the ability to easily navigate through the simulation, with complete information and inter-
mediate results. The information given in the visualization should be palatable: it can be understood
without delving in the underlying complex semantics of the model.”

D.6. Visualizing the parcel delivery algorithm
In this chapter, some extra choices for visualization are made that are specific to the use case of the
algorithm that is being developed at Almende. Also, the research findings of the previous chapters will

58 D. Research Report

be weighted up against each other and used to find a fitting solution for this parcel delivery algorithm
visualization.

D.6.1. Scalability
To elaborate on the different user types mentioned in subsection D.3.2 (the algorithm developer and the
potential investor), it would be helpful to dive into these two user types for the parcel delivery algorithm
by Almende. The initial client is the person who is developing this algorithm. They want to be able to
see the steps that it takes and the decisions that it makes, especially with regards to its novel aspects,
like autonomous vehicles and package handovers. To classify this user under the scale made by Kirk
(2016), the user has extensive knowledge on the subject, is extremely engaged with it, has probably
moderate experience with maps and charts and they have plenty of time to investigate the visualization.
Based on this, the visualization may, and probably should, contain a lot of technical details on what is
displayed. It also should be on quite a low level: this user is probably most interested in watching two
up to five vehicles operate in detail.

Looking at the other user type, a possible investor or buyer of the algorithm, this view changes a bit.
Their knowledge of the underlying algorithm is superficial and how it operates is not a primary interest
of them. Their knowledge of maps and charts is probably moderate as well and, finally, they want to
see quickly, without a lot of trouble, whether this algorithm is beneficial in terms of cost. Clearly, this
user is more interested in the overall metrics. Showing this user that the algorithm is very cost-efficient
and robust under all circumstances has more positive influence than showing that parcels may or may
not be handed over between vehicles.

To tie this all together, the visualization should be scalable on two fronts. Firstly, the map visualiza-
tion. To make both users satisfied, one could implement the visualization of the details, like different
vehicle-types and handovers, to be shown when the user is zoomed in and has some maximum num-
ber of vehicles on its screen. When the user zooms out, the vehicles that are close together should
be clustered and represented as a number, hereby presenting a clear map overview and moving the
focus more to the dashboard. The dashboard is the second front on which a level of scalability should
be introduced. A broad range of data visualization should be visible in the dashboard (for the algorithm
developer) but there should also be the option to fold each visualization, hereby making the dashboard
uncluttered and focussing on the metrics that are important to the customer.

D.6.2. Visualization of autonomous vehicles
There are a few complications to the standard visualization that arise when autonomous vehicles are
to be considered. The first of which is differentiating the vehicles shown on the map to inform the user
of which car is of what type. This, however, is not that hard to do and the way that it will be done is by
giving the cars a different look based on what type it is. The second complication ties in to the fact that
these autonomous vehicles will not be able to drive on certain roads.

The first question that then needs to be asked is how are these roads chosen. Because there aren’t
roads that are especially designated, by the government for example, to be forbidden for autonomous
cars. But, it is well known that self-driving cars function more easily on more predictable roads, such
as highways, and much less reliably on small, curvy roads without much guidance in terms of stripes
and guidance. Which road will and will not be driven by autonomous vehicles depends mostly on the
algorithm of Almende, but for other algorithms and for testing purposes, highways and larger streets
are the only streets that autonomous vehicles can drive on.

The second question that then needs to be answered is how are these different roads visualized and
distinguishable from each other. To differentiate various kinds of roads, roads that allow self-driving cars
will be thicker and of a different color than the roads where autonomous cars cannot drive. However,
thickness should be used with caution since a large number of thick colored roads could result in a blur
rather than a nice overview.

D.6.3. Robustness visualization
The robustness visualization involves a difficult part of our research and decisions. Even though ro-
bustness feels like something that should be perfectly visualized graphically, finding the correct visual
representations is yet another challenge. Robustness is defined as a metric that describes how prone
an algorithm is to sudden changes. A solution could be very optimal, but become a terribly performing
one in case of a single change. In such a case the robustness of a given solution would be bad or

D.7. Conclusion 59

low. This is not at all desired for parcel delivery, as it is guaranteed to have changes while the parcel
delivery trucks are already on its way. These changes can include road blocks, broken vehicles, sick
drivers or traffic jams. A way to view robustness is to run the algorithm both with and without prob-
lems simultaneously. This would give a visualization on how well the given algorithm is able to correct
itself and still be as close to optimal as possible in case of a problem. Something else that would be
interesting to test is to compare a simulation in which there are problems, with a simulation that has
the same problems, but runs a different underlying algorithm for finding the solution. Doing it this way,
our tool could be used to visualize how the newly found algorithm copes with unexpected problems
compared to an existing algorithm, hoping to create a feel of stronger robustness of the new algorithm
when presenting it to a customer.

Because both options described above are desired, a possible solution for us would be to simply
allow the simultaneous visualization of two algorithms. Rather than launching the tool with a single file,
launching the tool with two (or more) files would be the simplest solution. The same map will be used,
but trucks could be colored differently depending on which algorithm they belong to. The same goes for
graphs; rather than showing a single line, two lines could be shown each in a different color depending
on the algorithm they belong to.

Having an exact metric for robustness seems like a difficult task, but an example of how this could
maybe be done is calculating the ratio between the optimality of the solution with problems and the
optimality of the solution without problems. However, now it becomes difficult to describe optimality;
is there an exact metric that determines how optimal a solution is? Having this would require knowing
the optimal solution, which is unlikely to be easily determinable due to the computational complexity of
the problem. Alternatively, metrics like total kilometers driven or average package delivery time could
be used instead of the optimality of the problem, which both somewhat describe how optimal a given
solution is. The exact metrics that will be involved here, is yet open for discussion and depends solely
on what is desired by our client.

D.6.4. Algorithms
Even though the visualization described in this project is primarily aimed at visualizing the ‘parcel de-
livery algorithm’ being developed by Almende, it is also a requirement that the visualization can run
different types of routing algorithms. Additionally, the algorithm made by Almende is still under con-
struction and is therefore not ready to be used in testing and development of the visualization tool.
Therefore, the visualization algorithm will be tested with alternative routing algorithms throughout the
project.

There are several approaches to tackle the parcel delivery problem. Such as greedy algorithms or
even easier randomness. Solving this problem requires a graph with nodes and edges of the street
networks, however. Luckily, this data can be retrieved from OpenStreetMap with the help of several
Python libraries that can be used in the back-end. One such library is OSMnx which allows the retrieval
of geospacial data from OpenStreetMap (Boeing (2017)). The algorithm of choice can then be run and
the result can be mapped via the Leaflet library on the OpenStreetMap.

At first, however, an open source API will be used. This API enables the visualization to be tested
earlier because it does all the work of choosing and implementing an algorithm with the map data of
OSM. This API is called OpenRouteService.

Another choice for an API to be used in the beginning was the ‘Graphhopper API’, more specifically,
the Route Optimization API by Graphhopper. The motivation for using this API would primarily be that it
has extensive documentation and has good customer support. The drawback and eventual reason for
not being picked is the fact that it is not a free service such as OpenRouteService. On the other hand,
Graphhopper also has a few open-source libraries which at first glance seem appropriate as well and
which are free. But on closer inspection, these libraries do not offer the full functionality that is required,
such as working with the OpenStreetMap data out of the box when solving the optimization problem.

D.7. Conclusion
During problem analysis, it was shown that, in order to arrive at an optimal parcel delivery visualization
tool that fits the product requirements, numerous design aspects and decisions should be thought of.
When it comes to data visualization design in general, it has been found that it is essential to keep in
mind what a user should take away from a visualization. The design process that follows should be

60 D. Research Report

aimed at optimizing the clarity of this message with the help of a combination of visual effects that are
known to support it.

In order to arrive at such a sound visualization, developers can make use of multiple existing tools
and platforms, which should make the development process more efficient. The parcel delivery algo-
rithm visualization requires the visualization of some type of map on which routes can be displayed,
as well as a dashbourd-like interface with metrics and charts. It is therefore considered wise to make
use of a map data visualization platform and a web application (JavaScript) framework. These plat-
forms should allow scalability and clarity and should be cost efficient. After comparing different platform
providers, as well as looking into examples of similar routing visualization projects, always with the par-
cel delivery visualization in mind, the chosen map visualization is OpenStreetMap and the JavaScript
framework is Vue.js.

To deal with the requirements for the project that make it novel and unique, a few more design
aspects have been analyzed. These have to do with the inclusion of autonomous vehicles in Almende’s
algorithm and the request for visualizing robustness measures. Autonomous vehicles will appear on
the map with icons that differ from ‘normal’ cars, and roads traversable by autonomous vehicles will
appear on the map with different colours than ‘normal’ roads. To show the robustness of the underlying
algorithm, it has been found useful to allow simultaneous visualizations of algorithms. Such a feature
could be useful for both comparing an algorithm with itself (with the inclusion of some limiting factor)
and with other algorithms. In addition, robustness and optimality metrics shall be displayed in the
dashboard.

All these findings should form a coherent image of what the parcel delivery algorithm visualization
should look like and should describe roughly how this visualization tool will be implemented. Addition-
ally, when in the development phase of the project, the conducted research should form a basis on
which to rely when in doubt about certain design decision.

Glossary
COVID-19 An infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-

CoV-2). As of 22 June 2020, more than 8.91 million cases have been reported across 188
countries and territories. As a result, many countries, including The Netherlands, have taken
lock-down measures, that include the prevention of working outside the house and hosting face-
to-face meetings. 1, 29

GeoJSON An open standard format, designed for representing simple geographical features, along
with their non-spatial attributes. It is based on the JavaScript Object Notation. The features
include points, line strings, polygons, and multi-part collections of these features. GeoJSON is
compatible with a multitude of map libraries, including Leaflet. 7, 25, 26, 28, 32, 36, 46–48

Git A distributed version-control system for tracking changes in source code during software develop-
ment. It is designed for coordinating work among programmers and its goals include speed, data
integrity, and support for distributed, non-linear workflows. 31

GitLab A web-based DevOps lifecycle tool that provides a Git-repository manager providing wiki,
issue-tracking and continuous integration/continuous deployment pipeline features, using an open-
source license. 31

MoSCoW A prioritzation method that groups requirements into the following groups: Must haves,
Should haves, Could haves and Won’t haves. 4

OpenRouteService (ORS) An open source service that is capable of computing optimal routes. For
our project it is hosted at Almende’s own server to compute directions between the markers. In
addition, the API of ORS is called to compute a solution to the vehicle routing problem, as an
alternative to Almende’s own algorithm. 1, 2, 20, 21, 27, 28, 33, 35, 36, 38, 48

pandemic A disease that is occurring over a wide geographic area of the world and affecting an ex-
ceptionally high proportion of the population. 1, 29

Pydantic A data validation and settings manager for Python, that uses type annotations. You can
create a subclass of Pydantic’s BaseModel class, to build a model by which you can validate
data. 27, 28, 32

scrum An agile framework for developing, delivering, and sustaining complex products, with an em-
phasis on software development. 30, 31

single-page application (SPA) A web application or website that interacts with the web browser by
dynamically rewriting the current web page with new data from the web server, instead of the
default method of the browser loading entire new pages. A SPA loads what it needs per click,
updates the target, and leaves the rest of the page untouched. v, 8

Slack A business communication platform that offers many IRC-style features, including persistent
chat rooms organized by topic, private groups, and direct messaging. 30

Uvicorn An ASGI (Asynchronous Server Gateway Interface) server for Python/FastAPI applications.
31

Yarn A relatively new package manager that replaces the existing workflow for the npm client while
remaining compatible with the npm registry. It operates fast, secure and reliable, and offers the
option of static file serving. 31

61

Bibliography
Krzysztof Boczkowski and Beata Pańczyk. Comparison of the performance of tools for creating a spa
application interface-react and vue. js. Journal of Computer Sciences Institute, 14:73–77, 2020.

Geoff Boeing. Osmnx: New methods for acquiring, constructing, analyzing, and visualizing complex
street networks. Computers, Environment and Urban Systems, 65:126–139, 07 2017. doi: 10.
1016/j.compenvurbsys.2017.05.004.

Jack Dougherty and Ilya Ilyankou. Data Visualization for All: Tell your data story with free and easy-to-
learn tools. GitBooks, 2020.

Jacob Duvander and Oliver Romhagen. What affects the choice of a JavaScript framework: Interviews
with developers. Jönköping University, 2019.

Jeffrey Heer and Michael Bostock. Crowdsourcing graphical perception: Using mechanical turk to as-
sess visualization design. InProceedings of the SIGCHI Conference on Human Factors in Computing
Systems, pages 203–212. Association for Computing Machinery, 2010. doi: 10.1145/1753326.
1753357.

Pieter Jan’t Hoen, Girish Redekar, Valentin Robu, and Johannes A. La Poutré. Simulation and vi-
sualization of a market-based model for logistics management in transportation. In Autonomous
Agents and Multiagent Systems, International Joint Conference on, volume 4, pages 1218–1219.
IEEE Computer Society, 2004. doi: 10.1109/AAMAS.2004.10261.

Gordon Kindlmann, Erik Reinhard, and Sarah Creem. Face-based luminance matching for perceptual
colormap generation. In Proceedings of the Conference on Visualization ’02, pages 299–306. IEEE
Computer Society, 2002.

Andy Kirk. Data Visualisation: A Handbook for Data Driven Design. Sage Publications Ltd., 2016.

Cole Nussbaumer Knaflic. Storytelling with Data: A Data Visualization Guide for Business Profession-
als. John Wiley & Sons, 2015.

Tamara Munzner. Visualization Analysis and Design. CRC press, 2014.

Hikmet Senay and Eve Ignatius. Rules and principles of scientific data visualization, 1990. URL https:
//www.cs.rit.edu/usr/local/pub/ncs/hypervis/percept/visrules.htm. [Online;
accessed 21-April-2020].

Wikipedia. Data visualization, 2020. URL https://en.wikipedia.org/w/index.php?title=
Data_visualization&oldid=951917255. [Online; accessed 22-April-2020].

Eric Wohlgethan. Supporting Web Development Decisions by Comparing Three Major JavaScript
Frameworks: Angular, React and Vue.js. Hamburg University of Applied Sciences, 2018.

Dona M Wong. The Wall Street Journal Guide to Information Graphics. W.W. Norton & Company,
2010.

63

https://www.cs.rit.edu/usr/local/pub/ncs/hypervis/percept/visrules.htm
https://www.cs.rit.edu/usr/local/pub/ncs/hypervis/percept/visrules.htm
https://en.wikipedia.org/w/index.php?title=Data_visualization&oldid=951917255
https://en.wikipedia.org/w/index.php?title=Data_visualization&oldid=951917255

	Introduction
	Problem Definition and Problem Analysis
	Visualization
	Purposes
	Autonomously Traversable Roads
	Package Handovers
	Comparison Mode
	Requirements

	Design
	Code Design
	Assets
	Backend design
	Frontend design

	Application layout
	Map
	Statistics
	Control panel

	Implementation
	Frontend
	Map
	Statistics

	Backend
	Structure

	API
	Map routing

	Process Evaluation and Recommendations
	COVID-19 response
	Collaboration within the team
	Collaboration with the client

	Methods
	Scrum
	Gitlab

	Quality assurance
	Tests
	Static code quality

	Product Evaluation and Recommendations
	Evaluation of requirements
	Evaluation of design decisions
	Real time statistics updates
	Unexpected Almende output
	Animation playback
	Aggregated statistics
	Additional features

	Recommendations
	Visited markers
	Number of parcels
	Autonomous roads
	Delivery point generation
	Could haves

	Conclusion
	Infosheet
	Project Description
	SIG feedback
	Feedback
	Duplication
	Unit size

	Results
	Complexities
	Evaluation

	Conclusion

	Research Report
	Introduction
	Problem analysis
	Data visualization
	Definitions
	Principles of data visualization
	Data visualization on maps

	Visualization platforms
	Considerations
	Platform providers
	Motivation

	Related work
	Visualizing the parcel delivery algorithm
	Scalability
	Visualization of autonomous vehicles
	Robustness visualization
	Algorithms

	Conclusion

	Glossary
	Bibliography

