

Delft University of Technology

Induced Dimension Reduction Method for Solving Linear Matrix Equations

Astudillo Rengifo, Reinaldo; van Gijzen, Martin

DOI
10.1016/j.procs.2016.05.313
Publication date
2016
Document Version
Final published version
Published in
Procedia Computer Science

Citation (APA)
Astudillo Rengifo, R., & van Gijzen, M. (2016). Induced Dimension Reduction Method for Solving Linear
Matrix Equations. Procedia Computer Science, 80, 222-232. https://doi.org/10.1016/j.procs.2016.05.313

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.procs.2016.05.313
https://doi.org/10.1016/j.procs.2016.05.313

doi: 10.1016/j.procs.2016.05.313

Induced Dimension Reduction method for solving

linear matrix equations

Reinaldo Astudillo and Martin B. van Gijzen

Delft University of Technology, Delft Institute of Applied Mathematics, The Netherlands
R.A.Astudillo@tudelft.nl and M.B.vanGijzen@tudelft.nl

Abstract
This paper discusses the solution of large-scale linear matrix equations using the Induced Di-
mension reduction method (IDR(s)). IDR(s) was originally presented to solve system of linear
equations, and is based on the IDR(s) theorem. We generalize the IDR(s) theorem to solve
linear problems in any finite-dimensional space. This generalization allows us to develop IDR(s)
algorithms to approximate the solution of linear matrix equations. The IDR(s) method pre-
sented here has two main advantages; firstly, it does not require the computation of inverses of
any matrix, and secondly, it allows incorporation of preconditioners. Additionally, we present a
simple preconditioner to solve the Sylvester equation based on a fixed point iteration. Several
numerical examples illustrate the performance of IDR(s) for solving linear matrix equations.
We also present the software implementation.

Keywords: Matrix linear equations, Krylov subspace methods, Induced Dimension Reduction method,

Preconditioner, Numerical software.

1 Introduction

In this work we extended the Induced Reduction Dimension method (IDR(s) [13]) to approxi-
mate the solution of linear matrix equations,

k∑
j=1

AjXBT
j = C, (1)

where the A1, A2, . . . , Ak are in C
n×n, B1, B2, . . . , Bk are in C

m×m, C ∈ C
n×m, andX ∈ C

n×m

is unknown. Solving equation (1) is equivalent to solve a linear system of equations. Defining
vec(X) as the vector of order n×m created by stacking the columns of the matrix X, we can
write (1) as, ⎛

⎝ k∑
j=1

Bk ⊗Ak

⎞
⎠ vec(X) = vec(C). (2)

Procedia Computer Science

Volume 80, 2016, Pages 222–232

ICCS 2016. The International Conference on Computational
Science

222 Selection and peer-review under responsibility of the Scientific Programme Committee of ICCS 2016
c© The Authors. Published by Elsevier B.V.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2016.05.313&domain=pdf

Throughout this document, we only consider the case when the coefficient matrix of the system
of linear equations (2) is non-singular, i.e., Eq. (1) has guaranteed the existence and uniqueness
of their solution. For the general case of (1) the conditions to ensure existence and uniqueness
of its solution are not fully established. However, in the cases of the Sylvester and Lyapunov
equation, the conditions for existence and uniqueness of their solution are known. For the
Sylvester equation,

AX +XB = C, (3)

the condition for the existence and uniqueness of the solution is that the matrices A and −B
do not have any common eigenvalue. The Lyapunov equation,

AX +XAT = C, (4)

has a unique solution when the eigenvalues of A hold that λi + λj �= 0 for 1 ≤ i, j ≤ n.
Linear matrix equations appear in different areas such as complex networks, and system and

control theory (see [10] and its references). Another important source of linear matrix equations
is the numerical solution of differential equations. Discretization of differential equations lead
to linear systems or parameterized linear systems, and in some cases, they can be rewritten as
a Sylvester equations. In this work, we emphasize this kind of examples. We present numerical
tests of Sylvester equations originated from the discretization of time-dependent linear systems,
and convection-diffusion equations.

In this work, we propose a variant of Induced Dimension Reduction method (IDR(s)) for
solving linear matrix equations. IDR(s) was originally proposed in [13] as an iterative method
to solve large, sparse and non-symmetric system of linear equations

Ax = b, (5)

where A ∈ C
n×n is the coefficient matrix, b is the right-hand side vector in C

n, and x ∈ C
n

is unknown. IDR(s) has been adapted to solve other related problems like solving block linear
systems [5], multi-shift linear systems [15, 2], and eigenvalue problems [6, 1]. IDR(s) is based on
the IDR(s) theorem. In this paper, we generalize the IDR(s) theorem to solve linear problems
in any finite-dimensional space. Using this generalization, we develop an IDR(s) algorithm to
approximate the solution of linear matrix equations.

1.1 Notation

We use the following notation: column vectors are represented by bold-face, lower case letters
and capital letters denote matrices. For a matrix A, AT represents its transpose and the i-
th column is denoted by Ai. Greek lower case letters represent scalars. ‖ � ‖ represents the
classical Euclidean norm, and ‖ � ‖F is the Frobenius norm induced by the Frobenius inner
product 〈A,B〉F = trace(ATB). Subspaces are denoted by uppercase calligraphic letters with
the exception of A, I, and M that represent linear operators. In is the identity matrix of order
n, and wherever the context is clear the subindex n is eliminated.

2 IDR(s) for linear operators

This section extends the IDR(s) method to solve linear matrix equations of the form (1). We
present an alternative form of the IDR(s) theorem. First, we would like to draw the attention
of the reader to the proof of Theorem 2.1 in [13]. In this proof, the authors only use that Cn

is a linear subspace, and that A is a linear operator on this linear subspace. Using these facts,

IDR(s) for solving linear matrix equations Astudillo and Van Gijzen

223

we can generalize the IDR(s) theorem to any finite-dimensional linear subspace D with A as
linear operator defined on the same linear subspace. Corollary 1.1 summarizes this result.

Corollary 1.1. Let A be any linear operator over a finite dimensional subspace D and I the
identity operator over the same subspace. Let S be any (proper) subspace of D. Define G0 ≡ D,
if S and G0 do not share a nontrivial invariant subspace of the operator A, then the sequence
of subspace Gj, defined as

Gj ≡ (I − ωjA)(Gj−1 ∩ S) j = 0, 1, 2 . . . ,

with ωj’s nonzero scalars, have the following properties,

1. Gj+1 ⊂ Gj, for j ≥ 0 and

2. dimension(Gj+1) < dimension(Gj) unless Gj = {0}.

Proof. The proof is analogous to the one presented in [13].

In [5], Du et al. present another generalization of the original IDR(s) theorem, this gen-
eralization is used to derive an IDR(s) method for solving block systems of linear equations.
Corollary 1.1 has a broader scope; we apply this corollary to solve different types of linear
matrix equations.

As in [7], we rewrite problems (1) as

A(X) = C, (6)

where A(X) =
∑k

j=1 AjXBj . Using Corollary 1.1, we are able to create residuals Rk =
C−A(Xk) of the problem (6) in the shrinking and nested subspaces Gj and obtain the approx-
imations Xk. Only changing the definition of the operator A and the subspace D, we are able
to approximate the solution of the linear matrix equation using IDR(s). Assuming that the
space S is the null space of the set P = {P1, P2, . . . , Ps}, and the approximations {Xi}ki=k−s,

with their respective residuals {Ri}ki=k−s belonging to Gj , IDR(s) creates Rk+1 in Gj+1 and the
approximation Xk+1 using the recursions

Xk+1 = Xk + ωj+1Vk +

s∑
i=1

γiUk−i,

Rk+1 = Vk − ωj+1A(Vk), and

Vk = Rk −
s∑

i=1

γiGk−i,

where {Gi}ki=k−s ∈ Gj and Uk−i = A(Gk−i). The coefficient {γj}sj=1 are obtained by imposing
the condition that

Vk ⊥ P,

which is equivalent to solving the s× s system of linear equations,

Mc = f ,

where Mi,j = 〈Pi, Gk−s+(j−1)〉F and fi = 〈Pi, Rk〉F .

IDR(s) for solving linear matrix equations Astudillo and Van Gijzen

224

Using the fact that Gj+1 ⊂ Gj , IDR(s) repeats the calculation above to generate s + 1
residuals in Gj+1 with their corresponding approximations. Then, it is possible to create new
residuals in the subsequent space Gj+2. The parameter ωj might be chosen freely for the first
residual in Gj , but the same value should be used for the next residuals in the same space.
There exist different options to select the parameter ωj , see for example [12], [16], and [11].

Equivalent to [13], we can select directly Gi = −(Ri −Ri−1) and Ui = Xi −Xi−1. A more
general approach to select Gi was presented in [16]. Assuming that t matrices were already
created in Gj+1 with 1 ≤ t < s + 1, then any linear combination of these matrices is also in
Gj+1. In order to create the residual Rk+t+1 in Gj+1, they first select vectors Gi as,

Gk+t = −(Rk+t −Rk+t−1)−
t−1∑
i=1

βjGk+i.

Different choices of these parameter yields different variants of IDR(s) for solving system of
linear equations. Normally, the values β’s are chosen to improve the convergence or stability
of the IDR(s), for example, in [16] the authors propose the biorthogonal residual variant of
IDR(s) selecting β’s such that the Gk+t is orthogonal to P1, P2, . . . , Pt−1. A quasi-minimal
residual variant of IDR(s) was proposed in [15], choosing the parameters β to force Gk+t to be
orthogonal to G1, G2, . . . , Gt−1. In this work we implement the biorthogonal residual IDR(s),
see [16] for more details.

3 Preconditioning

The use of preconditioners in iterative methods is a key element to accelerate or ensure the
convergence. However, in the context of solving linear matrix equations A(X) = C, there is
not a straightforward definition of the application of a preconditioner. An option for applying
the preconditioning operation to V is to obtain an approximation to the problem

A(X) = V.

For example in the case of the Sylvester equation, the preconditioner applied to V computes
an approximate solution of

AX +XB = V.

In next section, we present a simple preconditioner for the Sylvester equation based on fixed-
point iteration.

3.1 Fixed-point (FP) and Inexact Fixed-point (FP-ILU) precondi-
tioners for the Sylvester equation

In this section we present a simple preconditioning scheme for the iterative method to solve the
Sylvester equation,

AX +XB = V. (7)

The solution of equation (7) is also the solution of the fixed-point iteration,

AXk+1 = −XkB + V (8)

IDR(s) for solving linear matrix equations Astudillo and Van Gijzen

225

We propose as preconditioner a few steps of the fixed-point iteration (8). If matrix A is difficult
to invert, we propose the application of few steps of the following iteration,

MX̂k+1 = −X̂kB + V, (9)

where M is an approximation to the matrix A. This can be considered as an inexact fixed-point
iteration. Particularly, we approximate A using the Incomplete LU factorization. Fixed-point
iterations (8) and (9) do not have the same solution. However, if it is assumed that M is a
good approximation of A and equation (7) is well-conditioned, one can expect that the solution
of the fixed point iteration (9) is close to the solution of the Sylvester equation (7).

We use as preconditioning operator M(V) the fixed-point iteration (9), or if it is possible to
solve block linear system with A efficiently, we use iteration (8). The fixed point iteration (8)
for solving Sylvester equation has been analyzed in [8]. A sufficient condition for the iteration
(8) to converge to its fixed point is that ‖A−1‖‖B‖ < 1 when A is non-singular. Using this
result, it is easy to see that the inexact iteration (9) also converge to its fixed point if M is non-
singular and ‖M−1‖‖B‖ < 1. For this reason, we can compute M = LU+E, the incomplete LU
factorization of A, using strategies based on monitoring the growth of the norm of the inverse
factors of L and U like [3, 4], or scaling matrices such that ‖M−1‖‖B‖ < 1 is satisfied.

4 Numerical examples

In this section we present four numerical experiments to illustrate the numerical behavior of
IDR(s) for solving matrix equations and compare it with others block Krylov subspace solvers.
The first three problems are illustrative small examples for different types of matrix equations.
The fourth example considers a more realistic application the ocean circulation simulation
problem [17].

The numerical experiments presented in this section were implemented in Python 2.7 run-
ning on GNU/ Debian on an Intel computer with four cores I5 and 32GB of RAM. We use as
stopping criterion,

‖C −A(X)‖F
‖C‖F ≤ 10−8.

4.1 Small examples

Example 1: (Solving a Lyapunov equation) In this example, we solve the Lyapunov equation
using IDR(s) for A(X) = C with A(X) = AX + XAT . We compare IDR(s = 4) for matrix
equations with Bi-CGSTAB [14] and GMRES [9]. As matrix A, we choose the negative of
the anti-stable matrix CDDE6 from the Harwell-Boeing collection, and matrix C = ccT , with
c = rand(961, 1). Although for IDR(s) the solution of the Lyapunov equation takes more
iteration (165), this is the faster method regarding CPU-time. IDR(s) consumes 7.52 secs. of
CPU time, while GMRES runs in 17.53 secs. (131 iterations) and Bi-CGSTAB takes 13.32 secs.
(566 iterations).
Example 2: (Solving a time-dependent linear system) We consider the time-dependent linear
system,

dy

dt
= Ay + g(t), t0 ≤ t ≤ tm with y(t = t0) = y0. (10)

IDR(s) for solving linear matrix equations Astudillo and Van Gijzen

226

0 20 40 60 80 100 120

106

104

102

100

10−2

10−4

10−6

10−8

Number of application of the Sylvester operator

R
el
a
ti
ve

re
si
d
u
a
l
n
o
rm

(a)

IDR(s = 2)

GMRES

Bi-CGSTAB

0 10 20 30 40

100

10−2

10−4

10−6

10−8

Number of application of the Sylvester operator

R
el
a
ti
ve

re
si
d
u
a
l
n
o
rm

(b)

IDR(s = 2)

GMRES

Bi-CGSTAB

Figure 1: (Example 2) (a) Residual norm for IDR(s=2), Bi-CGSTAB, and GMRES solving
a Sylvester equation. (b) Residual norm for the preconditioned IDR(s=2), Bi-CGSTAB, and
GMRES using two steps of (8).

Solving (10) with backward Euler with constant time-step δt, we obtain a Sylvester equation,

−AY + Y
D

δt
= G+

y0

δt
eT1 , (11)

where G = [g(t1), g(t2), . . . , g(tm)]n×m, D is the upper and bidiagonal matrix,

D =

⎡
⎢⎢⎢⎢⎢⎣

1 −1 0 . . . 0
0 1 −1 . . . 0
...

...
...

. . .
...

0 0 0 −1
0 0 0 . . . 1

⎤
⎥⎥⎥⎥⎥⎦
m×m

,

and e1 represents the first canonical vector of order m. Specifically, We consider the 1D time-
dependent convection-diffusion equation,

du

dt
− ε

d2u

dx2
+ ω

du

dx
= 0, 0 ≤ t ≤ 1, ut0 = 1, (12)

with convection parameter ω = 1.0 and diffusion term ε = 10−3, x ∈ [0, 100], with Dirichlet
boundary conditions. We discretized this equation using the central finite differences and Euler
backward for time integration, with δt = 0.05 (m = 20), δx = 0.1 (A ∈ C

1000×1000). Figure 1
show the evolution of the residual norm for IDR(s) and different Krylov method without and
with preconditioner (8) respectively.

Example 3: (Solving a multi-shift linear system) Solving a multi-shift linear system of equa-
tion,

(A− σiI)x = b, for i = 1, 2, . . . , m, (13)

can also be rewritten as a Sylvester equation,

AX −XD = buT , (14)

where D = diag([σ1, σ2, . . . , σm]), X ∈ C
n×m, and u = [1, 1, . . . , 1]T ∈ C

m. We consider an
example presented in [15]. We discretize the convection-diffusion-reaction equation,

−ε�u+ vT∇u− ru = f

IDR(s) for solving linear matrix equations Astudillo and Van Gijzen

227

0 100 200 300 400 500 600 700 800

104

102

100

10−2

10−4

10−6

10−8

Number of application of the Sylvester operator

R
el
a
ti
ve

re
si
d
u
a
l
n
o
rm

(a)

IDR(s = 2)

GMRES

Bi-CGSTAB

0 5 10 15 20 25 30 35

102

100

10−2

10−4

10−6

10−8

Number of application of the Sylvester operator

R
el
a
ti
ve

re
si
d
u
a
l
n
o
rm

(b)

IDR(s = 2)

GMRES

Bi-CGSTAB

Figure 2: (Example 3) (a) Residual norm for IDR(s=2), Bi-CGSTAB, and GMRES solving
a Sylvester equation. (b) Residual norm for the preconditioned IDR(s=2), Bi-CGSTAB, and
GMRES using two steps of (9).

with ε = 1, v = [0, 250/
√
5, 500/

√
5]T , r = {0.0, 200.0, 400.0, 600.0, 800.0, 1000.0}, and ho-

mogeneous Dirichlet boundary conditions in the unit cube using central finite differences ob-
taining a matrix A of size 59319× 59319. The right-hand-side vector is defined by the solution
u(x, y, z) = x(1 − x)y(1 − y)z(1 − z). Figures 2 shows the behavior of the relative residual
norm for GMRES, IDR(s), and Bi-CGSTAB with and without preconditioner.

4.2 A more realistic example

Example 4: The previous numerical examples are rather academic, in this example we
consider a more realistic example. We consider a convection-diffusion problem from ocean
circulation simulation. The following model,

−r�ψ − β
∂ψ

∂x
= (∇× F)z in Ω (15)

describes the steady barotropic flow in a homogeneous ocean with constant depth. The function
ψ represents the stream function, r is the bottom friction coefficient, β is the Coriolis parameter,
and F is given by

F =
τ

ρH
, (16)

where τ represents the external force field caused by the wind stress, H the average depth of
the ocean, and ρ the water density. The stream function is constant on continent boundaries,
i.e.,

ψ = Ck on ∂Ωk for k = 1, 2, . . . ,K, (17)

with K is the number of continents. The values of Ck are determined by the integral condition,

∮
∂Ωk

r
∂ψ

∂n
ds = −

∮
∂Ωk

F × s ds. (18)

We discretize Eqs. (15)-(18) using the finite elements technique described in [17]. The physical
parameters used can also be found in the same reference. We obtain a coefficient matrix A of
order 42248, and we have to solve a sequence of twelve systems of linear equations,

Axi = bi with i = 1, 2, . . . , 12. (19)

IDR(s) for solving linear matrix equations Astudillo and Van Gijzen

228

Method Solving (19) separately Solving (19) as a block linear system
Time [s] # Mat-Vec Time [s] # Mat-Block

IDR(s = 4) 17.03 2498 12.29 190
Bi-CGSTAB 22.66 3124 15.35 282

Bi-CG 25.58 4070 20.62 338
GMRES(100) 42.82 4200 38.30 400

Table 1: (Example 4) Comparison of solving (19) as a sequence of linear system or as a matrix
equation (a block linear system). This exemplifies one of the advantages of using a block-
solvers over their sequential counterparts, the time reduction due to the extensive use of block
subroutines (BLAS Level 3) over several calls to single vectors routines. Mat-Vec indicates
the number of matrix-vector products and Mat-Block indicates the number of matrix-block
multiplications.

Each of these system of linear equations represent the data for each month of the year. We
compare the time for solving (19) using two approaches, solving all the linear systems separately,
and solving (19) as a linear matrix equation (a block linear system). In all the cases, we applied
incomplete LU with drop tolerance 10−4 as preconditioner. Table 4 shows the time comparison
between the different methods using both approaches. Figure 3 shows the solution computed
using IDR(s = 4) for matrix equations.

Degree Matrix size Time [s] # Mat-Block
4 2594× 2594 0.02 5
3 4630× 4630 0.11 18
2 10491× 10491 0.42 29
1 42249× 42249 12.29 190

Table 2: (Example 4) Solving the ocean model problem as a matrix equation (a block linear
system) using IDR(s = 4) with ILU preconditioner. Degree is the grid size in the ocean model.

In Table 2, the increment in number of matrix-block products is higher than a fact of two if
the grid size is halved. This rather disappointing behaviour seems to be caused by the dropping
strategy in the ILU preconditioner, which gives a worse performance for increasingly finer grids.
To exclude this effect, we next consider diagonal scaling as preconditioner for IDR(s) in Table
3.

Degree Matrix size Time [s] # Mat-Block
4 2594× 2594 0.44 557
3 4630× 4630 1.36 773
2 10491× 10491 5.09 1204
1 42249× 42249 58.03 2883

Table 3: (Example 4) Solving the ocean model problem as a matrix equation (a block linear
system) using IDR(s = 4) with diagonal preconditioner. One can see a linear increment with a
factor of two in the number of matrix-block products required if the grid size is halved.

IDR(s) for solving linear matrix equations Astudillo and Van Gijzen

229

December

0 50 100 150 200 250 300 350

−80

−60

−40

−20

0

20

40

60

80

Figure 3: (Example 4) Solution of the ocean problem.

5 Software implementation

The IDR(s) method for matrix equation is implemented in Python 2.7. The main advantages
of using Python are the code portability and ease of use. The software solves general linear
matrix equations (1), it only uses the standard Python libraries Numpy v1.8.2 and Scipy v0.14.
For compatibility reasons with the Krylov subspace methods implemented in the library Scipy,
the software interface is the following:

X, info = idrs(A, C, X0=None, tol=1e-8, s=4, maxit=2000,

M=None, callback=None).

Table 4 describes the input and output parameters.
Following, we illustrate the use of the Python’s idrs function. The user has to provide an

object which define the application of a linear operator A over a matrix X, in this case we use
example 1 of the numerical tests,

import s c ipy . i o as i o
import numpy as np
from s o l v e r import ∗ # IDRs s o l v e r package
A = −i o .mmread(’ cdde6 .mtx ’) . t o c s r ()
n = A. shape [0]
c = np . random . rand (n , 1)
C = c . dot (c .T)
class LyapOp : # Def in ing Linear Operator

de f i n e i n i t (s e l f , A) :
s e l f .A = A

de f i n e dot (s e l f , X) :
return s e l f .A. dot (X) + (s e l f .A. dot (X.T)) .T

Aop = LyapOp(A)
X, i n f o = i d r s (Aop ,C)

IDR(s) for solving linear matrix equations Astudillo and Van Gijzen

230

Parameter Description
A (Input object) Object with a dot method

which defines the linear operator of the problem.
C (Input matrix) The right hand side matrix.
X0 (Input matrix) Initial guess.
tol (Input float) Tolerance of the method.
s (Input integer) Size of IDR recursion. Bigger s

gives faster convergence, but also makes the method more expensive
maxit (Input integer) Maximum number of iterations to be performed.
M (Input object) Object with a solve method

which defines the preconditioning operator of the problem.
callback (Input function) User-supplied function.

It is called as callback(X) in each iteration.
X (Output matrix) Approximate solution.
info (Output integer) 0 if convergence archived. > 0 if convergence not archive.

Table 4: Parameter of the Python’s idrs function

6 Conclusions

In this work we have presented a generalization of the IDR(s) theorem [13] valid for any finite-
dimensional space. Using this generalization, we have presented a framework of IDR(s) for
solving linear matrix equations. This document also presents several numerical examples of
IDR(s) solving linear matrix equations, among them, the most common linear matrix equa-
tions like Lyapunov and Sylvester equation. In the examples solving Lyapunov and Sylvester
equations, full GMRES required less iteration to converge than IDR and Bi-CGSTAB. However,
IDR(s) presented a better performance in CPU time.

Additionally, we present two preconditioners based on fixed point iteration to solve the
Sylvester equation. The first preconditioner is fixed-point iteration,

AXk+1 = −XkB + C,

that required the explicit inverse or the solving block linear systems with matrix A. Whenever
is not possible the inversion or solving block linear system with matrix A in an efficient way,
we use the inexact iteration

MXk+1 = −XkB + C,

where M = LU the incomplete LU factorization of A. Numerical experiments conducted show
a competitive behavior of IDR(s) for solving linear matrix equations.

7 Code availability

Implementations of the Induced Dimension Reduction (IDR(s)) in different programming lan-
guages like Matlab, FORTRAN, Python and Julia are available to download in the web page
http://ta.twi.tudelft.nl/nw/users/gijzen/IDR.html

IDR(s) for solving linear matrix equations Astudillo and Van Gijzen

231

References

[1] R. Astudillo and M. B van Gijzen. A Restarted Induced Dimension Reduction method to approx-
imate eigenpairs of large unsymmetric matrices. J. Comput. Appl. Math., 296:24–35, 2016.

[2] M. Baumann and M. B van Gijzen. Nested Krylov methods for shifted linear systems. SIAM J.
Sci. Comput., 37(5):S90–S112, 2015.

[3] M. Bollhöfer. A robust ILU with pivoting based on monitoring the growth of the inverse factors.
Linear Algebra Appl., 338(1–3):201–218, 2001.

[4] M. Bollhöfer. A Robust and Efficient ILU that Incorporates the Growth of the Inverse Triangular
Factors. SIAM J. Sci. Comput., 25(1):86–103, 2003.

[5] L. Du, T. Sogabe, B. Yu, Y. Yamamoto, and S.-L. Zhang. A block IDR(s) method for nonsym-
metric linear systems with multiple right-hand sides. J. Comput. Appl. Math., 235(14):4095–4106,
2011.

[6] M. H. Gutknecht and J.-P. M. Zemke. Eigenvalue Computations Based on IDR. SIAM J. Matrix
Anal. Appl., 34(2):283–311, 2013.

[7] M. Hochbruck and G. Starke. Preconditioned Krylov Subspace Methods for Lyapunov Matrix
Equations. SIAM J. Math. Anal. Appl., 16(1):156–171, 1995.

[8] M. Monsalve. Block linear method for large scale Sylvester equations. Comput. Appl. Math.,
27(1):47–59, 2008.

[9] Y. Saad and M.H. Schultz. GMRES: a generalized minimal residual algorithm for solving nonsy-
metric linear systems. SIAM J. Sci. Stat. Comput., 7:856–869, 1986.

[10] V. Simoncini. Computational methods for linear matrix equations. To appear in SIAM Rev., (To
appear).

[11] V. Simoncini and D. B. Szyld. Interpreting IDR as a Petrov-Galerkin method. SIAM J. Sci.
Comput., 32(4):1898–1912, 2010.

[12] G. L. G. Sleijpen and H. A. van der Vorst. Maintaining convergence properties of bicgstab methods
in finite precision arithmetic. Numer. Algorithms, 10(2):203–223, 1995.

[13] P. Sonneveld and M. B. van Gijzen. IDR(s): a family of simple and fast algorithms for solving
large nonsymmetric linear systems. SIAM J. Sci. Comput., 31(2):1035–1062, 2008.

[14] H. A. van der Vorst. Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the
Solution of Nonsymmetric Linear Systems. SIAM J. Sci. Stat. Comput., 13(2):631–644, 1992.

[15] M. B. van Gijzen, G. L. G. Sleijpen, and J.-P. M. Zemke. Flexible and multi-shift induced
dimension reduction algorithms for solving large sparse linear systems. Numer. Linear Algebra
Appl., 22(1):1–25, 2015.

[16] M. B. van Gijzen and P. Sonneveld. Algorithm 913: An Elegant IDR(s) Variant that Efficiently
Exploits Bi-orthogonality Properties. ACM Trans. Math. Software, 38(1):5:1–5:19, 2011.

[17] M. B. van Gijzen, C. B. Vreugdenhil, and H. Oksuzoglu. The Finite Element Discretization for
Stream-Function Problems on Multiply Connected Domains. J. Comput. Phys., 140(1):30–46,
1998.

IDR(s) for solving linear matrix equations Astudillo and Van Gijzen

232

