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Convolution Neural Networks (CNN) are used in many applications rang-
ing from real-time object detection to robot-motion planning. CNNs are
implemented on high-performance systems like multi-core CPU and GPU,
these are of high power in nature and thus cannot be deployed in edge de-
vices due to their limited battery power. The edge device has to provide
real-time performance along with being low power, this prompts for an ex-
ploration of novel architectures catered towards the processing of CNNs.
The recent works towards this goal have been the development of CNN
accelerators using systolic array spatial architectures. The row-column
stationary data-flow approach maximizes the reuse of weights, input fea-
ture maps and output feature maps across the array. Different applications
require different performance, area and energy needs, and this makes it
imperative to quickly prototype the architectural ideas and perform de-
sign space exploration. The challenging part is the non-trivial interactions
between different architectural design parameters, as they play an impor-
tant part in the complex design decisions. Hence, a hardware simulator
to accelerate CNN is designed in this work. It is based on systolic array
and uses row-column stationary data-flow with a near memory comput-
ing approach. The simulator supports different numerical precision such
as 16-bit and 8-bit floating-point along with numerous design parameters
such as the size of the systolic array, latency of MAC operation, PE local
memory size, PE local memory latency and external memory latency. The
functionality of the proposed design is verified on AlexNet. The Destiny
memory modelling tool, along with energy and area estimation model, is
used to perform a system study to investigate the trade-offs between dif-
ferent architectural design parameters.
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Abstract

Convolution Neural Networks (CNN) are used in many applications ranging from real-time
object detection to robot-motion planning. CNNs are implemented on high-performance
systems like multi-core CPU and GPU, these are of high power in nature and thus cannot be
deployed in edge devices due to their limited battery power. The edge device has to provide
real-time performance along with being low power, this prompts for an exploration of novel
architectures catered towards the processing of CNNs. The recent works towards this goal
have been the development of CNN accelerators using systolic array spatial architectures.
The row-column stationary data-flow approach maximizes the reuse of weights, input fea-
ture maps and output feature maps across the array. Different applications require different
performance, area and energy needs, and this makes it imperative to quickly prototype the ar-
chitectural ideas and perform design space exploration. The challenging part is the non-trivial
interactions between different architectural design parameters, as they play an important part
in the complex design decisions. Hence, a hardware simulator to accelerate CNN is designed
in this work. It is based on systolic array and uses row-column stationary data-flow with
a near memory computing approach. The simulator supports different numerical precision
such as 16-bit and 8-bit floating-point along with numerous design parameters such as the
size of the systolic array, latency of MAC operation, PE local memory size, PE local memory
latency and external memory latency. The functionality of the proposed design is verified on
AlexNet. The Destiny memory modelling tool, along with energy and area estimation model,
is used to perform a system study to investigate the trade-offs between different architectural
design parameters.
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Introduction 1
“The most beautiful experience we can have is the mysterious. It is the fundamental
emotion that stands at the cradle of true art and true science.”

— Albert Einstein

This chapter is outlined as follows: we firstly explain the relation between deep learning
and compute systems. Then we further delve into the motivations and goals of this thesis,
subsequently cover the approach taken for this work and the contribution of this thesis, and
end with outline of this report.

D eep learning belongs to a class of machine learning algorithms which uses multiple
layers to progressively extract meaningful higher-level features from the given data.

Modern deep learning models use artificial neural networks, specifically Convolution Neu-
ral Networks (CNN) to perform machine learning tasks. Deep Neural Networks (DCNNs)
and CNNs are extensively used in the discipline of computer vision like object detection,
scene segmentation and action recognition in videos [1]. The accuracy of DNNs has in-
creased over the years at a fast pace; the winner of the ImageNet (ILSVRC) challenge in
2012 was AlexNet architecture which had an accuracy of 84.7% [2] and the winner of 2015
was ResNet-152 which had an accuracy of 96.5% [3]. This has opened up new avenues for
deployment of DNNs in drones [4], smartphone [5], autonomous vehicles [6] and many other
edge devices.
The higher accuracy models have higher computational complexity due to the presence of
a higher number of layers in the network. Let us consider AlexNet [2], which requires 0.8
GOPS to process a single image, while VGG-16 [7] takes 15 GOPS, which is in orders of
magnitude higher when compared to AlexNet. Assuming that an autonomous vehicle has 5
cameras each runs at 30 frames per second (fps) and has an image resolution of 1080 pixels;
running the AlexNet would require 4.1 TOP/sec and running the VGGNet-16 would require
73.4 TOP/sec compute system.
These DNNs are implemented on the cloud for some applications like autonomous vehicles,
as it has high performance compute systems with a high power budget. In some off-line appli-
cations like autonomous drone navigation, the trained model is loaded on to the drone com-
pute system and the inference is done using this edge compute system. The high-performance
system in the cloud has different performance, memory and energy requirements when com-
pared to edge devices which are of low power budget and small form factor. Even in the
edge devices, the performance requirements vary from one application to another. The edge
compute system should provide near real-time performance with a limited budget and this
prompts for a need for hardware accelerators for accelerating inference in DNNs.
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1.1 Motivation

There exists a difference in performance, energy and area requirements for high performance
compute systems and edge compute systems, and this calls for a total revamp in how hard-
ware accelerator architectures are perceived and designed, specifically for DNN applications
as they are memory and computation intensive. This provides the designers with various
challenges as explained below:

1. The high performance compute systems in the cloud are based on temporal architecture
and they cannot be used in the edge devices due to energy and area budget.

2. The CNNs have structural and functional similarity, and in-order to exploit this to re-
duce the number of memory accesses, new data-reuse and data-flow methodology has
to be used.

3. Different applications need different numerical precision as all applications do not re-
quire high precision. The numerical precision has an impact on the energy consumption
and area of the accelerator chip.

4. To cater to the different application needs and to cut the total design time, there is a need
to shorten the time spent on design space exploration of the accelerator architecture and
obtain a first-order performance metrics for further analysis.

1.2 Thesis Goals

This thesis studies the acceleration of CNN on hardware accelerators. The CNNs have paral-
lelism built-in and these can be exploited to build efficient hardware designs. The convolution
layer is broken down into many parallel and independent sets and these are executed in paral-
lel on a spatial compute architecture. The systolic array is an ideal candidate for accelerating
the CNN layers as it reduces the number of off-chip memory accesses. A near-memory com-
puting approach should be used to further reduce the number of off-chip memory accesses.
The performance of the design can be increased by exploring alternate numerical precision
for CNNs without compromising the accuracy. The primary objective of this thesis is to
build a systolic array simulator for accelerating CNN layers. The simulator should include
near-memory computing methodology and reuse different data types as much as possible to
eliminate off-chip memory access. The simulator should be able to take in numerous design
parameters and produce performance metrics like throughput, memory bandwidth, execution
time, power consumption and area estimation among others. The aim of the system study is
to investigate the impact of the systolic array size, memory size and numerical precision on
these performance metrics of the proposed architecture. These performance metrics will help
the designers to scope out the design space for optimal architecture to accelerate a particular
application.

2



1.3 Approach

This thesis begins with a brief introduction of neural networks and deep learning. Next it
goes on to explore the individual layers of CNN models to identify the possible parallelisms.
Subsequently, the impact of CNN layers on memory, energy and computation requirements is
explored by profiling a standard CNN model. An introduction of systolic array spatial archi-
tecture is presented, and subsequently, the state of the art hardware accelerators are presented,
its drawbacks are analyzed and possible optimizations are explored. Different data-flow ap-
proaches are compared, and alternate numerical precision and near-memory processing are
explored.

A SystemC based simulator is built which incorporates systolic array near-memory
processing architectures with row-column stationary data-flow approach. The design is func-
tionally verified against a golden reference data generated using Matlab. The AlexNet layers
are simulated with different design parameters and the results are analyzed for design space
exploration.

1.4 Thesis Contributions

The main contributions of this thesis are as follows:

• Explore and propose a systolic array spatial architecture for accelerating CNN layers.

• Use Row-Column Stationary data-flow methodology for maximum reuse of filter
weights, and to exploit the inherent parallelism present in 3-D convolution.

• Use Near-Memory computing approach to solve the memory requirement issues in
accelerators.

• Explore and utilize the different numerical precision for improving the performance of
the proposed design.

• A SystemC implementation of a simulator, which takes in numerous design parameters
and provides performance metrics for design space exploration of accelerators.

• A systematic study of the proposed architecture on convolution layers of the standard
AlexNet model.

1.5 Outline

The further chapters of the thesis is organized as follows:

• Chapter 2 provides introduction about DNNs, its operation and architecture, and pro-
files a standard CNN.

• Chapter 3 provides state of the art compute architectures used in hardware acceleration
of DNNs. Subsequently, alternate approaches to the existing method are proposed.

3



• Chapter 4 describes the implemented systolic array simulator. The hardware architec-
ture, characteristics, functionality and input parameters are explained.

• Chapter 5 details the results and analysis of the design using the AlexNet model.

• Chapter 6 concludes the work, and presents the future research directions.

This research was supported in part by the European Union and the Dutch government, as
part of the ECSEL JU program under PRYSTINE project.

Figure 1.1: Programmable Systems for Intelligence in Automobiles.
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Deep Neural Network 2
“Nothing in life is to be feared, it is only to be understood. Now is the time to
understand more, so that we may fear less.”

— Marie Curie

This chapter is outlined as follows: we first introduce deep learning, Convolution Neural
Network and its operation. Then we further delve into Neural Network (NN) architecture,
profile standard CNN architecture to get an overall understanding of its operational com-
plexity from an algorithm perspective.

D eep learning is a subset of machine learning which uses Deep Neural Network (DNN)
to solve machine learning tasks as shown in the Figure 2.1. Even though deep learn-

ing was proposed in 1960, it became a success from the year 2010 due to three main factors;
first, the availability of large data, thanks to the Internet, to train the networks. Second, the
compute capacity of the systems increased due to new multi-core architectures and lower
technology nodes. Third, the success of DNN algorithms, which were brain-inspired, span
a large number of different algorithms for training efficiently. The Figure 2.2 shows the
performance of DNN in ImageNet challenge over the years [8].

DNN History

• 1960s - First proposal of DNN.

• 1989 - Digit recognition using Neural Nets (LeNet [9]).

• 2011 - Microsoft proposed the first speech recognition using DNN.

• 2012 - AlexNet used for classification in vision data.

• 2014+ - Research aiming at accelerating the DNN (DianNao [10], Neuflow [11]).

Deep learning uses two ways to train the system: supervised learning and unsupervised
learning. A learning methodology is called supervised learning when all its training data is
labeled, and it is called unsupervised learning when the training data is not labeled. After the
training, the model is deployed for testing, which is also called inference. A Neural Network
can be made of one or more layers of neurons and in case of multiple layers, there exist
connections between them. A single neuron in each layer accepts inputs from preceding
neurons and generates a single output. The neuron output is a dot product of inputs and
weights, this output is fed to the neuron’s activation function, which can be linear or non-
linear. Multiple neurons form a layer and several layers form a network. A layer with no
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Networks

Deep
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Figure 2.1: Deep learning in the frame of reference of Machine learning.

Figure 2.2: ImageNet challenge results.

preceding layer is termed an input layer and a layer with no successor is termed an output
layer. The layers in-between the input layer and output layer are called hidden layers as
shown in the Figure 2.5. A network is termed as Deep if there are large number of hidden
layers, contemporary deep networks have more than hundreds of such hidden layers [3].

The neurons are connected through inter-connects [12]. The data is transferred through
these inter-connects from the ith neuron of one layer to the jth neuron of the succeeding layer.
Each inter-connect in each layer has a weight θij associated with it. This weight is multiplied
with the input value or activation which may decrease or increase the overall value. These
weights are updated during the training phase, in which, different optimization techniques
can be used, e.g., gradient descent. Gradient descent is a first-order optimization technique.
The gradient of the function is calculated over the variable of interest and then the variable
value is moved in the negative direction of the gradient. The size of the move (step) is
proportional to the magnitude of the gradient descent and the changes in the weight are made
corresponding to the learning rate. The back-propagation algorithm is used to calculate the
gradient. In the back-propagation phase the data is fed to the network and the output values
are collected. This forward movement of data is called feed-forward, also called inference.
The result of feed-forward pass can be right or wrong, which is measured quantitatively using
a loss function. The gradient of this loss function is calculated over the inputs of each layer
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and each weight. The calculation of gradient is done iteratively starting from the output layer
and ending at the input layer. Then the weights are updated according to the gradient descent
rule:

θt+1
i,j = θti,j − α

∂L

∂θi,j
(2.1)

Where L is the loss function, t is the time instance and α is the step size. One training
iteration is a combination of feed-forward/inference, back-propagation and weight update.
Usually, the number of iterations is in the magnitude of 100,000 to obtain sufficient accuracy
on the test set.

There is a steady increase in accuracy of DNNs used in ImageNet challenge as shown
in the Figure 2.2. The first large reduction in error occurred with AlextNet (84.7% accuracy)
and the recent ResNet has an accuracy of 97%. This has resulted in many applications of
DNNs ranging from medical to multimedia domain. Few of the applications are explained as
follows:

• Video processing
Video contributes the most to the big data as its share is more than 70% of today’s
traffic on the Internet. To extract intelligent and meaningful information from these
videos computer vision is necessary. As the accuracy of DNNs have increased, they are
extensively used in image classification [2], object detection and localization [13], and
scene segmentation [14].

• Speech processing
The DNNs usage in speech recognition has increased as it gives better results [15]. It
is also used in audio generation and natural language processing [16].

• Medical data processing
In the field of genetics, for detection of diseases such as autism and cancer, the DNNs
have been proved useful [17]. They are also used to detect brain cancer and skin cancer
using medical images [18, 19].

• Robotics
In robotics, the DNNs are used to grasp things using robotic arms [20]. They are
also used in visual navigation [21] and motion planning for robots [22], control of
quadcopters and in autonomous navigation [23, 24].

The two stages of the DNN (i.e., training and inference) needs different computational
capacity. The training of DNN needs large data-set and high performance computational
system. The training may take anywhere between several hours to multiple days, thus training
is done on the cloud since it has enough resources. Edge computing devices such as the
Internet of Things (IoT) and robots can perform inference. Applications like mobile camera,
autonomous quad-copter, autonomous vehicle, and many others require inference to be done
near the sensor or require the compute engine to be located near the sensor for fast inference.
It is desirable to extract the useful data from the video right at the sensor unit, as it reduces
communication cost, latency and provides real-time inference capability.
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2.1 Neural Network Architecture

A Neural Network(NN) has a number of layers. Each layer may perform a different operation
or same operation with different size of inputs. The Neural Network architecture and the
functionality of each layer is explained in this section.

2.1.1 Single Neuron

This neuron performs a dot product between two 1-D tensors and adds a bias to the result.
This result is fed to a non-linear activation function. One of the 1-D tensors are the weights
which is analogous to the synapses and the output and input tensors are equivalent to the
axons of the neuron in the brain. The Equation 2.2 and Figure 2.3 shows the functionality
and visualization of a single neuron, respectively. The w and x are the weight vector and
input vector respectively. The function f performs a dot product between the weights and
inputs, and adds a bias to the resultant to obtain the output y of the neuron.

yi = f(
n∑

k=1

wi.xi + b) (2.2)

Neuron
y = f(x)

W0X0

W1X1

W2X2

W(n-1)X(n-1)

WnXn

X0

Axon

Axon

Yi

Dendrite

Synapse

Figure 2.3: A single Neuron.

2.1.2 Single-Layer Perceptron (SLP)

It is the simplest form of NN and it does not contain any hidden layer. The neuron includes
a weight vector in its memory, the weights from the weight vector are multiplied with the
corresponding inputs from the input vector and a sum is obtained over the products. This
sum is fed to an activation function to calculate the final output. It is called a single layer
because it contains only the output layer as shown in Figure 2.4.
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Figure 2.4: Single layer Perceptron (SLP).

2.1.3 Multi-Layer Perceptron (MLP)

This network is an extension of single layer perceptron network. This consists of multiple
hidden layers, which are connected in a feed-forward manner. In MLP, each neuron of layeri

is connected to layeri+1 as shown in the Figure 2.5.

x1

x2

xn

𝑓

𝑓

Input Layer
Output Layer

𝑓

𝑓

𝑓

𝑓

Hidden Layers

𝑓

𝑓

O1

O2

𝑓

𝑓

θij

Layer i Layer (i+1)

Figure 2.5: Multi-layer Perceptron (MLP).
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2.1.4 Convolution Neural Network

The Convolution Neural Networks (CNNs) are a special type of DNN which are used in ob-
ject detection and scene segmentation using images. CNNs are variations of MLP and the
network has a specific mathematical operation called convolution. One of the key differences
between MLP and convolution layers is weight re-use. These neural networks use convolu-
tion in at least one of their layers. CNN consists of a number of hidden layers along with
the output and input layer. Each hidden layer may be a convolution layer, fully connected
layer, pooling layer or activation function layer as shown in the Figure 2.6. Inference or
feed-forward propagation of one input image (Tensor) is considered in this section for com-
putational analysis of different layers in the CNN [25]. The layer parameters can be modified
and used as tensor data as shown in the Table 2.1.

I Input feature maps 1 CH H W
O Output feature maps 1 N P Q
W Learned weights (Filters) N CH X Y
B Learned biases N - - -

CH/H/W Depth / Height / Width of Input Feature maps
N/P/Q Depth/ Height/Width of Output Feature maps
X/Y Height/ Width of the Filters(Weights)

Table 2.1: Data format with dimension for a given layer l of a CNN.

N

CH

X
Y

W

H

CH

Input feature Maps Weights

3 5

1 -6

-1 5 -4

6

1

1

6

1

1 8 -1 7

3 -3 -6 2

5

-2

6

-7 1 5 0

7

-8

-9

6 -1 -5 8

4

-1

1

1 4 -2 -4

-6

1

3

P

Q

Output feature maps

3 5

1 0

0 5 0

6

1

1

6

1

1 8 0 7

3 0 0 2

5

0

6

0 1 5 0

7

0

0

6 0 0 8

4

0

1

1 4 0 0

0

1

3

Activation function output

6

5

6

7

2 2

5

5 7

7

4 8

4

4 1

1

Max-Pooling output

Figure 2.6: Layers of CNN.

2.1.4.1 Convolution Layer

A convolution layer (conv) layer performs spatial 3-Dimensional (3-D) convolution operation
between input feature maps (ifmap) Iconv and 3-Dimensional convolution filters Wconv, and
adds the biases Bconv to them. Each layer takes in the output of the preceding layer (direct
input if it is the fist layer). The input volume, of depth CH and and a 3-D filter is fed to the
conv layer to obtain a 2-Dimensional (2-D) feature map (FM) and each layer produces a set
of N output feature maps corresponding to N number of 3-D filters. A bias B is added to the
3-D convolved result. The equation for the convolution layer is described in the Equation 2.3.

∀{n, p, q} ∈ [1, N ]× [1, P ]× [1, Q]
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Oconv[n, p, q] = Bconv[n] +
CH∑
ch=1

J∑
j=1

K∑
k=1

Iconv[ch, p+ j, q + k].Wconv[n, ch, j, k] (2.3)

2.1.4.2 Activation Layer

The convolution layer is followed by an activation layer that applies non-linear function to
the input data as shown in the Equation 2.4. The activation function can be Rectified linear
Unit (RELU), TanH or Sigmoid.

∀{n, p, q} ∈ [1, N ]× [1, P ]× [1, Q]

Oact[n, h, w] = act(Iact[n, h, w]) (2.4)

2.1.4.3 Pooling Layer

The pooling layers is inserted between successive convolution layers to reduce the dimension
of the feature space. Two prominent pooling functions are average pooling and Max-pooling
(maximum of a given neighborhood K) as shown in the Equation 2.5.

∀{n, p, q} ∈ [1, N ]× [1, P ]× [1, Q]

Opool[n, p, q] = max(Ipool[n, p+ r, q + s]; (r, s ∈ [1 : K])) (2.5)

2.1.4.4 Fully connected Layer

In Fully Connected (FC) layer, a neuron in layer Li+1 takes in the outputs of all the neurons
of layer Li. In principle, this layer is the same as MLP as shown in the Figure 2.5. The FC
layer operations can be broken down to matrix multiplication as shown in the Equation 2.6.

∀{n} ∈ [1, N ]

Ofc[n] = Bfc[n] +
CH∑
ch=1

H∑
h=1

W∑
w=1

Ifc[ch, h, w].Wfc[n, ch, h, w] (2.6)
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2.1.5 AlexNet Architecture

AlexNet was designed by Alex Krizhevsky [2]. It contains 8 layers, of which 5 are convolu-
tion layers and last 3 layers are fully connected as shown in the Figure 2.7. The convolution
layers contain the pooling and activation functions embedded in it. The network uses ReLU
as a non-linear activation function, max-pooling as a pooling function and soft-max function
for classification. The soft-max function is a probability distribution function, which takes
in the outputs of fully connected layer as inputs. The details of the filters and shown in the
Table 2.2.

Input = 227x227x3

Conv: 11x11x3

96 55

55

22
7

227

Conv: 5x5x256
Maxpooling:3x3

27

256

27

Conv: 3x3x384
Maxpooling:3x3

13

13
384

13

13
384

Conv: 3x3x384

256

6x6x256

Conv: 3x3x384
Maxpooling: 3x3

FC FC

4096 4096

Softmax

1000 classes

Figure 2.7: AlexNet architecture.

2.2 CNN Profiling

Two standard CNN models, AlexNet and VGGNet are profiled against ImageNet test-set. As
seen from the Table 2.2, the accuracy of the model increases as the number of convolution
layer increases [26]. For further analysis, only conv and fc layers are considered as they take
up large execution time and memory accesses.

Metrics AlexNet [2] VGG-16 [7]
Top-5 accuracy 80.3% 88.7%

Input 227x227 224x224
CONV Layers 5 16

Filter Sizes 3,5,11 3
Channels 3-256 3-512

Filters 96-384 64-512
Stride 1,4 1

Weights 2.3M 14.7M
MACs 666M 15.3G

FC layers 3 3
Weights 58.6M 124M
MACs 58.6M 124M

Total Weights 61M 138M
Total MACs 724M 15.5G

Table 2.2: Metrics and Network.
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The computational cost during inference phase is the result of intensive arithmetic op-
eration such as Multiply and Accumulate (MAC) operation. The computational complexity
increases as the number of layers and number of filters increases. As the conv layers perform
transformed matrix multiplication, they can be represented in terms of MAC operations. As
seen from the Table 2.2, the conv layer consumes a very high number of MAC operations.
Typically, 90% of the execution time is spent in conv operations during inference [27].

In this chapter, the operation of DNNs and its application was explained. Subsequently,
the individual layers of CNN were explored from a mathematical perspective and we profiled
the AlexNet and VGG-16 to get an understanding of the computational and memory com-
plexity from an algorithmic perspective. The Chapter 3 looks at the state of the hardware
architectures for CNN acceleration.
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Compute Systems 3
“If I have seen further it is by standing on the shoulders of Giants.”

— Isaac Newton

This chapter is outlined as follows: we first analyze the memory, energy and computational
implications of CNN algorithms form a hardware perspective. Subsequently, state of art
hardware accelerators and Near-Memory Computing is explored.

T he focus of this work is low power edge computing devices which can run the DNN
models. So, the scope of the design space exploration is limited to Application-

Specific Integrated Circuit (ASIC) for inference, rather than high power consumption plat-
forms like Central Processing Unit (CPU), Graphics Processing Unit (GPU) and Field Pro-
grammable Gate Array (FPGA).

In Chapter 2, we analyzed the standard CNNs like AlexNet and VGGNet. Considering
the AlexNet for further analysis, we see that the conv layers are computationally intensive as
it takes 666 x 106 Multiply and Accumulate (MAC) operations and fc layers take 58.6x106

MAC operations. The size of weights in the conv and fc layers is around 10 MB and 240
MB respectively. In the fc layer, the weights are more when compared to conv layer weights.
This results in an imbalanced total computation to total memory ratio, hence the CNN accel-
erators use different implementation strategies for conv and fc sections of the network during
inference.

The number of memory accesses and the total energy consumption is related. Small
sections of CNN models can be loaded fully onto the on-chip memory, but a complete DNN
can not be loaded. There is a requirement of Dynamic Random Access Memory (DRAM)
access, but accessing it is expensive in terms of energy and time. We can see from the
Table 2.2, as the number of layers increases, so does the memory requirement and total
operations count. An increase in cache size or DRAM is not beneficial in-terms of number
of cycles and power consumption. On analyzing the Figure 3.1 in the context of a system,
we see that accessing an element from DRAM is 200 times more expensive when compared
to accessing the same from a Register File (RF) [28].

The memory bandwidth is the bottleneck in the fc layers whereas its computation and
memory are the bottlenecks in conv layer [29]. This is due to the presence of high number
of weights in the fc layers and higher number of computations in the conv layers. A higher
number of weights leads to a high number of memory reads to the DRAM. In conv layer, each
MAC operation incurs at-least 2 memory reads and 1 memory write. All these are directed
towards external memory access (DRAM). The throughput, latency, and energy consumption
are highly impacted due to the access of external memory (DRAM). The Figure 3.2 shows
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the distribution of energy consumption between different layers of AlexNet [30] for infer-
ence of one image. The energy consumption is estimated using an online tool [30] based on
consumption and data movement of the three data types, weights, output feature maps, and
input feature maps for every layer. The unit of energy is measured in terms of energy re-
quired for one MAC operation. The percentage of energy consumption for movement of data
outweighs the energy required for computation. The initial layers have a significant number
of computations as seen in the Figure 3.2 [30]. This high energy consumption is due to exter-
nal memory access for data. The DRAM accesses can be reduced by implementing different
levels of memory hierarchy, as shown in the Figure 3.1, this reduces the latency and energy
consumption. Hardware accelerators like Eyeriss [28] and ShiDianNao [5] employ two levels
of memory. The first level of memory is the small on-chip local memory (usually Register
Files) and the second level is a global buffer (SRAM) which is of larger in size. This imple-
mentation provides lower latency and lower energy consumption per memory access which
is in the orders of magnitude lower than the external memory access [28].

D
R
AM Global

Buffer
PE

Memory
ALU

Control

ALU

ALU

ALU

ALU

ALU

PE

RF

Buffer

DRAM

Normalized Energy Cost

1x

1x

2x

6x

200x

Reference

PE PE

Figure 3.1: Memory and energy relation.
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Figure 3.2: Energy visualization.

3.1 Hardware Architecture

Traditionally the inference is implemented on Temporal compute systems which use Single
Instruction Multiple Thread (SIMT)/Single Instruction Multiple Data (SIMD) architectures.
These are typically used in the CPU and GPU designs, but they do not provide real-time in-
ference with low power. The Temporal architecture based compute systems typically contain
a large number of Arithmetic Logic Units (ALUs) which fetch data from the memory. There
is a memory unit and a control unit as shown in the Figure 3.3 [8], there is no communication
between the ALUs. Usage of Temporal architectures results in repeated accesses to main
memory for data even with enough parallelism in the algorithm. In the recent years Data-
flow/Spatial Architectures are used to accelerate compute and memory-intensive tasks, here
the Processing Engines (PEs) form a chain of processes and they communicate by passing
data between themselves as shown in the Figure 3.3. This eliminates the need for external
memory accesses. Processing Engines are similar to ALUs, they contain a MAC unit, lo-
cal control unit and significantly large internal memory. Spatial architectures are typically
employed in ASIC-based and FPGA-based designs.

On analyzing the DNNs, we see that there is a regularity in access pattern of the data
and this can be leveraged in data flow machines to increase the data reuse from the local
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Figure 3.3: Compute architectures.

memory of PE to reduce the energy consumption. The memory hierarchy as shown in the
Figure 3.1 can be employed, as we move closer to the compute logic, the energy per access
reduces. The DRAM access is the most expensive one as we need to access the data from
external memory, while data access from the RF is the lowest. Multiple levels of memory
help in improving energy efficiency by providing lost cost access to lower memories like RF
and shared memory (global buffer).

3.1.1 CNN Regularities

The CNNs have a functional and structural regularity which makes it an ideal candidate for
implementation on the data-flow machines with local memory which can adapt to various
shapes and sizes, thus providing energy efficiency. The data access from the DRAM is more
expensive than accessing the same from the local memory, but the local memory is of limited
capacity and expensive. For this reason, there is a need to reuse the data as much as possible
and this can be done by optimizing data-flow through the exploitation of parallelisms which
are inherently present in the CNNs. In the CNNs, the input feature maps, the activations, and
filters can be reused. The reuse mechanism categories are shown in the Figure 3.4 [8]:

1. Convolution Reuse
The filter weights and corresponding activations from the result of convolution with
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Figure 3.4: Data reuses in CNNs.

input feature map are reused. The data from one convolution output is reused across
different channels and the results are accumulated to obtain the final sum. Here the
activations and filter weights are ideal data to be stored in the local memory.

2. Feature-map Reuse
The input feature maps are reused to the maximum by applying multiple filters over the
same input feature map multiple times to obtain the desired result. The input feature
maps are stored in the local memory.

3. Filter Reuse
The filter weights are processed across multiple different input feature maps in parallel
(also known as batch). The local memory stores the filter weights as they are reused.

3.1.2 Spatial Architectures

In data-flow architectures, the execution of instructions is ready as soon as the input operands
for its operation is made available. Here, the data or operands for the new instructions are
made available by directing the results of previously executed instructions. This type of pro-
cessing forms a data-flow, indicating instructions that are to be executed. This results in
a simultaneous execution of multiple instructions, leading to a higher throughput via con-
current computation. A typical data-flow computer consists of five units as shown in the
Figure 3.5:

1. The specialised processing unit.

2. The memory unit, which holds the instructions and operands.

3. The arbitration unit, which delivers the data to the processing units.
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4. The distribution unit, which transfers the results to the memory from the processing
units.

5. The control unit, which oversees all other units.
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Instruction cell 1
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Control
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Figure 3.5: Data-flow machine.

The instruction unit operation packet contains operation code (opcode), operands and a des-
tination PE address. The arbitration network is responsible for the proper distribution of
the operands and opcode to the corresponding processing element of interest. Once the
dispatched instruction is successfully executed, the results are sent back to the destination
memory, which is overseen by the distribution network. The return packet contains the result
and the destination memory address.

The data-flow based processors employ a 1-D array of Processing Engines and this is
extended to a 2-D array to get a 2-D systolic array architecture. The systolic system consists
of several interconnected Processing Engines, each capable of performing simple tasks like
multiplication and addition. The control logic depends on the type of function the array needs
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to perform. The information in this system flows in a rhythmic fashion between the PEs and
communication with external entity occurs at the boundary of the array. The data flow here
can be in multiple directions, the operands and partial products flow between the Processing
Engines, whereas only the final results flow in the temporal architectures. The systolic array
is easier to implement due to its regularity, easy reconfiguration and modularity.

The computational tasks can be categorized into two families- compute bound and I/O
bound problems. In problems which are bound by compute, the total number of computations
outnumbers the total number of input and output elements, otherwise it is I/O bound [31]. The
systolic array is most suitable for compute intensive tasks such as linear equations, inversion
and matrix multiplication. The convolution layer of DNNs which has repeated convolution
operations can become I/O bound even if the convolution operation is compute bound. The
PEs in the array can have a memory component which stores the data if needed and there
is data transfer between the PEs. These two advantages result in lesser communication to
the main memory, thus reducing the memory bandwidth and energy while increasing the
throughput.

Based on data stream types, the systolic array can be of different shapes and types. The
shape of the array is usually rectangle or square because it provides maximum utilization
of array [31]. The different array types, its advantages and disadvantages are explained,
assuming the following common terminologies:

• Each PE performs a simple MAC operation, where operands are stored in registers.

Rc = Rc + Ra ∗ Rb.

• The total number of required PEs in the array is P . And the total time units required to
obtain all the results of the operation is T .

• Let n be the size of the input matrices A and B. And C be the resultant of the matrix
multiplication operation C = A ∗B. The following designs perform this operation.

A =

 a11 a12 a13

a21 a22 a23

a31 a32 a33

B =

 b11 b12 b13

b21 b22 b23

b31 b32 b33

C =

 c11 c12 c13

c21 c22 c23

c31 c32 c33


1. Pipelined Arrays

This systolic array is rectangular in design. The constituent elements of the matrices B
and A are inserted from upper and lower sides in a pipeline fashion [32], one skewed
row and skewed column at a time as shown in the Figure 3.6. In general, for a two nxn
matrices, we have:

P = n(2n− 1) T = 4n− 2.

The array is simple in design, but on an average 50% of the PEs are idle during opera-
tion and the input elements are not pipelined every unit time into each PE.
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Figure 3.6: Pipelined array block diagram.

2. Semi-broadcast Arrays
The semi-broadcast indicates one dimensional broadcasting [32]. From the left of the
array, the matrix A is broadcasted while the matrix B is pipelined from the top as shown
in the Figure 3.7 . In general, for a two nxn matrices, we have:

P = n2 T = 3n.

This design uses less turn about time as well as a lesser number of PEs when compared
to Pipelined Array. Here the data movement time due to broadcast may be longer and
the complexity of the control is higher than Pipelined Array. There is a need to conduct
a trade off between the cost and time.
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Figure 3.7: Semi-broadcast array block diagram.
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3. Broadcast Arrays
This approach is a 2-D broadcasting scheme [32]. Here the data is broadcasted from
two sides, by row, and by column, across the array as shown in the Figure 3.8. In
general, for a two nxn matrices, we have:

P = n2 T = 2n.

This approach has the same turn-about time as the Semi-broadcast Arrays. The uti-
lization of the PEs is higher when compared to the other approaches. The degree of
complexity for the control is highest because both the matrices are broadcasted.

PE

b13b12
b23b22

b32b31 b33

b11
b21

a13 a12

a23 a22

a32 a31a33

a11

a21

Broadcasting

Broadcasting

Figure 3.8: Broadcast array block diagram.
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3.1.3 Data-Flow Representation

Based on the data movement, the DNN data-flow can be classified into four categories:

1. Output Stationary (OS) data-flow
Definition:
This processing is a method which aims at minimizing the energy consumption of writ-
ing and reading of the partial products. Here, each output feature map pixel is kept
stationary in a particular PE. This approach aims at minimizing the accumulation cost
of partial products and sums.
Operation:
The PE array processes the convolution in a 4-Dimensional (4-D) fashion, the partial
sum of one convolution window from one channel is stored in the RF and added to the
corresponding partial sum from the next channel. The partial products and sums are
temporally accumulated in the RF of the PEs. The input activations are streamed and
weights are broadcast across the PEs as shown in the Figure 3.9 [8].
Examples:
ShinDianNao [5] uses the output stationary approach, here each output activation is
handled by a particular Processing Engine. The inputs for the corresponding PE is
fetched from the neighboring PEs. A vertical and horizontal network is formed to com-
municate data between the PEs. The Processing Engine contains control logic to store
the data for the required time before passing it to the next PE. The partial products are
accumulated and stored in each PE of the array and then they are streamed out to the
global memory (buffer). Other examples of this approach can be seen in works [33, 34].

GLOBAL BUFFER

PE0
P0

PE1
P1

PE2
P2

PE3
P3

Psum

WeightsActs

Figure 3.9: Output Stationary (OS) data-flow.
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2. Weight Stationary (WS) data-flow
Definition:
This data-flow aims at minimizing the total energy incurred due to reading of filter
weights by utilizing the data stored at Register File in Processing Engine maximum
number of times. Once the weights are fetched from the global/external memory the
convolution is performed P 2 number of times to generate all the output pixels which
use the corresponding weights.
Operation:
Weights are read one by one from the DRAM into the Register File of each Processing
Engine and are held stationary till it is not needed anymore. The processing runs as
many MAC operation as possible on this data while it is stationary in the Register File,
this maximizes the convolution and filter reuse. The input and output feature maps
have to move through the PE array and global memory as shown in the Figure 3.10
[8]. The feature maps(activations/input feature maps) are broadcasted to all the Pro-
cessing Engines and subsequently, the partial products are accumulated spatially across
the Processing Engines. This method is most suitable for implementation of the convo-
lution layer since there are filter and convolution reuse.
Examples:
The co-processor [35] employs eight 2-D convolution engines for processing. There are
100 Processing Engines per engine with each having its own local memory for storage
of weights. Other examples of this approach can be seen in works [36, 37, 38].

GLOBAL BUFFER

PE0
W0

PE1
W1

PE2
W2

PE3
W3

Psum

Weights

Acts

Figure 3.10: Weight Stationary (WS) data-flow.

3. No Local Reuse (NLR)
Definition:
As the name suggests no filter weights, input feature maps or activations are stored in
the Processing Engine. The PE contains no local memory for data reuse. This approach
is uneconomical in terms of energy per bit and economical in terms of area per bit.
Operation:
The partial products, activations, and weights are directly fed from the global buffer
(memory), which is large. There is increased traffic to the global buffer as all the data
types are stored in the global buffer. The input activations are multi-cast, weights are
single-cast and partial products are spatially accumulated across Processing Engines
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[8].
Examples:
The work from UCLA [39] uses this approach, and here the activations and filters are
read from the global buffer and the PEs process the data with custom adder designed
using tree approach. It can complete a single MAC operation in one cycle. Few other
examples of this approach are seen in works [10, 11].

GLOBAL BUFFER

PE0 PE1 PE2 PE3

Psum

WeightsActs

Figure 3.11: No Local Reuse (NLR) data-flow.

3.1.4 Numerical Representation

The numerical representation of the operands and parameters play an important role in the
energy consumption and latency of the implementation. The works by [40, 41] have shown
that the precision of weights and activations can vary in the range of 4 - 9 bits for AlexNet
model across different layers and this would not change the accuracy of the implementation
by more than 1%. These fine-grained variations in the model can be exploited to design a low
precision Processing Engines which can support lower precision floating point (flp) or/and
fixed-point (fxp) operands. In recent works like Efficient Inference Engine [42, 33, 43, 44]
supports these different types of numerical precision.

The standard floating-point operation is of 32-bit in nature and is represented by
(−1)s × m × 2(e−127), where s is the sign bit and m is the 23-bit mantissa and e is the
8-bit exponent. The N -bit fixed-point number is represented by (−1)s×m× 2−f , where s is
the sign bit and f determines the location of the decimal point and performs scaling action,
the m is the (N-1)-bit mantissa. The Figure 3.12(a) shows the comparison between 32-bit
floating-point and 8-bit dynamic fixed-point number representation. The dynamic fixed point
format allows f to change value with respect to the expected dynamic range as described
in the Figure 3.12(b). This dynamic range is advantageous in DNNs because the range of
feature maps, activations and weights values may be different. Along with this, the dynamic
range of the data types can also vary across layer types and between layers (example: convo-
lution layer and fully connected layer). The dynamic fixed-point allows the bit-width to be
varied to 10-bits for activations and 8-bits for weights [44].

Table 3.1 shows the energy and area comparison of 8-bit adder and multiplier unit
with 32-bit floating and fixed-point designs[45]. Furthermore, the area and energy of fixed-
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point adder unit scale proportionally with the bit-width. The area and energy of fixed-point
multiplier unit scale quadratically with the bit-width [8, 43].

0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 11 0 1 0 0 1 0 1 0 0 0 0

s (1-bit) =1 e (8-bit) =70 Mantissa(23-bit) = 20480

(a) 32 -bit floating point example32-bit float :
 -1.42122425 x 10-13

0 1 1 0 0 1 1 0

Exponent = eSign = s

Mantissa (7-bits) = 102

.
s=0 f =3

Integer [7- f] -bits 
Fraction f-bits 8-bit Dynamic fixed:

12.75

(b) 8-bit Dynamic Fixed point example

Figure 3.12: Dynamic fixed-point representation.

Add Unit Multiply Unit
Factor 32-bit fix. pt. 32-bit fl. pt. 32-bit fix. pt. 32-bit fl. pt.
Area 3.8x 116x 3.8x 116x

Energy 3.3x 30x 3.3x 30x

Table 3.1: 8-bit fixed-point comparison.

By reducing the numerical precision, the energy and cost of storing the data in the
local/global memory also reduces. This is because data transfer and memory access dominate
the total energy consumption. The area of memory and total energy consumption scales
linearly with the bit-width. The bit-width of the operands have to be reduced when changing
from floating-point to fixed-point because there are no decrements in the area of the memory
or the energy consumption if the precision is not reduced.

3.1.5 Near-Memory Processing

The preceding section analyzed DNN layers from a hardware perspective. The energy re-
quired to move the data from different levels in memory hierarchy dominates the energy re-
quired for computation. The spatial architecture provides a way to reduce the data movement
by storing the loaded data in its local memory, which is closer to the computation unit (in the
PEs). Significant efforts have been made to drive the off-chip memory or different memory
types nearer to the computation. This section explores a few different memory technologies.

1. DRAM
This memory is of high density and can reduce the total access energy. To avert the
high energy cost of switching off-chip memory capacitance, a variant of DRAM called
embedded DRAM (eDRAM) can be used as on-chip memory [46]. When compared
with SRAM the density of eDRAM is 2.5x greater, and when compared with DRAM
it is 321x more energy-efficient [10]. The bandwidth of eDRAM is more than DRAM,
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and the former provides lower latency. This type of memory is more suitable for DNN
processing, as it can store tens of acivations and weights in the on-chip memory, thus
avoiding off-chip memory accesses [10]. The drawback of eDRAM is the lower density
when compared to that of off-chip DRAM and this can increase the overall price of a
chip.
Another variant of eDRAM would be the 3-D Memory, where the memory is stacked
above the chip via Trough Silicon Vias (TSV). This memory is commercialized via
High Bandwidth Memory (HBM) [47] and Hybrid Memory Cube (HMC) [48]. The
3D-eDRAM provides higher bandwidth and reduces energy per access by a factor of
5x when compared to the 2-D eDRAM. Few DNN works have been based on HMC,
Neurocube [49] integrates the processors into the HMC die to bring the computation
and memory near each other. The work Tetris [50] uses HMC with the work done in
Eyeriss [51]. It achieved an energy reduction by 1.5x and an increase in throughput by
4.1x over a baseline chip containing 2-D DRAM.

2. SRAM
The standard on-chip local memory is based on SRAM technology. It is a non-volatile
memory, it does not need to be refreshed periodically. SRAM is relatively more ex-
pensive than DRAM. Typically SRAM used 6T transistor model and is bulkier when
compared to DRAM, but SRAM has lower latency than DRAM. The works [51, 42]
are based on smaller local memory for storing the weights and activations, which is less
than 512 Bytes.

3.1.5.1 DNN ASIC Accelerators

The previous sections explained systolic array, data-flow representation, reduced numerical
precision and near-memory processing, which can be included in the design of edge devices
to make them more efficient. Few of these improvements have been included in the works by
[51, 42]. The state of the art designs are shown in the Table 3.2. The Eyeriss [51] uses small
on-chip memory when compared to Efficient Inference Engine (EIE) [42]. They use different
technology nodes and operating frequencies. EIE uses pruned network [42] to achieve high
throughput and low operand precision. Eyeriss, on the other hand, used 16-bit operands
and has small memory per PE. Here the architecture is fixed even though they have high
performance. Other such architectures have been proposed in [52, 53, 11, 38]. All these
works target a particular use case like Multimedia processing, speech processing, etc with
fixed architectures. As new use cases are identified in near-to-far future which may require a
wide range of performance and efficiency demands. There is a need to quickly prototype such
designs. However, there are many parameters involved in the design, such as the number of
Processing Engines required, memory size needed, operand precision and many more. Not
to mention the different topologies of DNNs, which have a significant impact on the optimal
hardware architecture. All the works that have been proposed target a particular application
and cannot be used in other applications efficiently.

As there is a need for quick design space exploration of DNN accelerators, this work
identifies a few key design parameters and analyzes the scalability of performance metrics
when the design parameters are varied. Having this goal, a Systolic Array Simulator for CNN
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(SASCNN) is proposed, which is further explained in the next chapter.

Metric Eyeriss [28] EIE [42]
Technology 65nm 45nm
Supply(V) 1 1

Area(mm2) 12.2 40.8
On-chip 192 10368

Memory(kB)
Precision(bits) 16 4
Number of PEs 64 168

Power(mW) 278 579
Frame rate(fps) 8 20

Throughput(GMACs/sec) 33.6 51.2
Frequency (MHz) 200 800

Table 3.2: State of the art DNN ASICs.

In this chapter we covered the advantages and disadvantages of different spatial sys-
tolic array architecture, the reuse mechanisms in CNNs, and analyzed the different data-flow
representations like WS, OS, and NLR. Subsequently, the impact of numerical precision on
energy and area of the adder and multiplier was explored. The different memory technolo-
gies suitable for Near-Memory processing was discussed. In Chapter 4, we will integrate the
above explored design options in SASCNN.
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System Design 4
It had long since come to my attention that people of accomplishment rarely sat back
and let things happen to them. They went out and happened to things.”

— Leonardo da Vinci

This chapter is outlined as follows: We start with the explanation of the simulator, then
provide a brief introduction to the system design language used. Then we explain the memory
modeling tool used, and subsequently, cover the design of the individual components of the
system and its working.

F or the training of the networks, the model is run on the cloud which may have GPUs or
multi-core systems catered for high performance. These systems consume immense

power and the same architectural parameters of high performance systems cannot be used
for inference on edge computing devices like robots, autonomous vehicles, and smartphones.
These edge devices need to be very low power and low latency with a reasonable high per-
formance. Depending on the application and data format, the performance needs from the
architecture varies. Since the design turn-around time is high and the the design parameters
are fixed before-hand, there is a need for a tool that takes in plethora of architectural design
parameters of interest and provides an estimate of performance metrics like latency, through-
put, area and energy consumption. This work delivers a simulator, Systolic Array Simulator
for CNN (SASCNN), which uses a systolic array to accelerate the layers in DNN. The Fig-
ure 4.1 shows the schematic of the simulator. The system takes in many design parameters
and CNN layer hyper-parameters and generates the performance metrics.
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Figure 4.1: Schematic of SASCNN.

4.1 SystemC

SystemC is a library of C++ classes and it provides an event-driven simulation interface. It
can be applied to architecture and performance modeling, system-level modeling and high-
level synthesis among others. It provides a higher level of abstraction, which is independent
of any detailed software and hardware implementation. It provides a complete language for
modeling tasks pertinent for system design which are missing in complete or in part from
the rest of the other languages as shown in the Figure 4.2. Transaction Level Modelling
(TLM) provides early development of design and better hardware verification test bench.
Partitioning and implementation of HW/SW portions become easier. It provides inbuilt data
type like fixed point which is useful for this work. The predefined primitive channels help in
the faster design of the system and software for testing, thus reducing the overall development
cycle time. The Figure 4.3 shows the constituent elements of SystemC libraries [54]. The
SASCNN work uses SystemC for modeling the systolic array architecture.
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Figure 4.2: Comparison between SystemC and other design languages.

Figure 4.3: Architecture of SystemC language.

4.2 Memory Modeling Tool

The simulator is compatible with possible future memory technologies. For the analysis
of the design, the simulator uses DESTINY memory modeling tool. It is a comprehensive
tool with 3D and Multi-Level cell memory modeling capability [55]. It is used to model
both 2D and 3D caches designed with five prominent memory technologies: Resistive RAM
(ReRAM), eDRAM, SRAM, Spin Transfer Torque RAM (STT-RAM) and Phase Change
RAM (PCM), thus covering both conventional and emerging memory technologies. The tool
supports the technology nodes ranging from 22nm to 180nm.

33



4.3 Concurrency in CNNs

In the most widely used DNNs like AlexNet and VGGNet, the conv layers take up 90% of
the total operations and contribute a large portion to the total data movement. This makes it
a significant contributor to the energy efficiency and throughput of the networks. The work
by Han and team [42], shows that the fc layers weights can be largely compressed to 1-5%
of their original size, thus reducing the impact of fully connected layers. Nonetheless, both
types of layers contribute the most to the computation time and data movement. Thus, an-
alyzing these layers to extract parallelism is important. The shapes and parameter of the
convolution and fully connected layers are explained in the Table 4.1.

Parameter shape Explanation
N No. of 3-D filter

CH No. of filter channels
H(=W) Input feature map height/width
X(=Y) Filter weight/width (= I in FC)
P(=Q) Output feature map height/width (= 1 in FC)

Table 4.1: The conv/fc layer parameters.

Lets us consider the Equation 4.2 for analyzing the parallelisms that convolution layers in-
herently exhibit. The Conv2D is the 2-D convolution operation function.

∀{n} ∈ [1, N ] (4.1)

Oconv[n] = Bconv[n] +
CH∑
c=1

Conv2D(Iconv[c],Wconv[n, c]) (4.2)

• Inter-Output Feature Map Parallelism
Since each channel of filters is convolved with the corresponding channel of the input
feature maps to get an output channel, the output channels are independent of each
other. Each output channel can be processed separately from the others. This implies
that PN (PN < N) elements of Oconv (Equation 4.2) can be computed in parallel.

• Intra-Output Feature Map Parallelism
The pixels in a single channel of output feature maps can be processed independently
and concurrently. The OP x OQ values of Oconv[n] can be processed concurrently (0 <
OP x OQ < P x Q).

• Parallelism in Inter-Convolution
The 3-D convolution in any convolution layer can be expressed as a sum of multiple
2-D convolution as shown in the Equation 4.2. The 2-D convolutions can be computed
in parallel by computing PC elements of Equation 4.2 concurrently (PC < CH).

• Parallelism in Intra-Convolution
The individual 2-D convolutions between the weights and input channel can be imple-
mented in a pipeline fashion. Here all the individual multiplication with the filter kernel
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is implemented in parallel [51], PX x PY multiplications can be executed concurrently
(0 < PX x PY < X x Y).

4.4 Simulator Architecture

The simulator is based on the systolic array and row-column stationary data-flow approach.
The Figure 4.4 shows the core elements of the systolic array architecture. Each PE is con-
nected to its 4 neighboring PEs, except the PEs in the border which is only connected to 3
PEs. The data flows from top to bottom and left to right when in operation. The weight
scheduler sends the weights of the filter to designated PEs and the input scheduler sends the
input feature maps to PEs in the left-most column in the array. The accumulator collects the
results of the convolution. Each PE contains a memory unit, a MAC unit, a control unit, and
a memory to store the weights. The detailed description is explained later in this section.
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Figure 4.4: Block overview of the proposed architecture.
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4.4.1 Modelling Setup

The SystemC model of the proposed architecture is shown in the Figure 4.5. The test bench
reads the filter weights, bias, and input feature maps and stores them in an internal array.
The test bench mimics the operation of the off-chip processor, it loads the required data
from the internal array to the local memory of the PEs. The PE is modeled as a MAC unit
and the local memory in all the PEs is combined and modeled as a multidimensional array
memory. Each input channel is stored in the ifmap memory which is scheduled by the input
scheduler, and weights and bias are stored in the weights memory which is scheduled by
the weight scheduler as shown in the Figure 4.5. The output scheduler collects the results
of convolution and stored it in the ofmap memory and the controller controls the loading,
scheduling operations.

MAC

MAC MAC MAC MAC MAC MAC MAC MAC MAC MAC MAC

MAC MAC MAC MAC MAC MAC MAC MAC MAC MAC

MAC

MAC

MAC MAC MAC MAC MAC MAC MAC MAC MAC MAC MAC

MAC MAC MAC MAC MAC MAC MAC MAC MAC MAC

MAC MAC MAC MAC MAC MAC MAC MAC MAC MAC

MAC

MAC MAC MAC MAC MAC MAC MAC MAC MAC MAC MAC

MAC MAC MAC MAC MAC MAC MAC MAC MAC MAC

MAC

MAC

MAC

MAC MAC

MAC

MAC MAC MAC MAC MAC MAC MAC MAC MAC MAC

MAC

MAC

MAC

MAC

MAC

MAC

MAC

MAC

MAC

MAC

MAC

MAC

MAC

MAC

MAC

MAC

MAC

MAC

MAC MAC MAC MAC MAC MAC MAC MAC MAC MAC

MAC MAC MAC MAC MAC MAC MAC MAC MAC MAC

Weight Scheduler

In
pu

t S
ch

ed
ul

er

Accumulator and Output scheduler

MAC
(a*b + C)

Computational
ckt

Ofmap Memory

Weight and bias Memory 

M x N weight elementsN bias elements

N  elements

Systolic Array Architecture

Weights

Biases

Input feature maps

Ouput feature maps

Test Bench

M rows

N columns

Controler

Control Signals

Data

Figure 4.5: SystemC model of the architecture.

4.4.2 Simulator Parameters

The simulator takes in design parameters and CNN parameters as input from the user and
generates a summary file consisting of performance metrics which is explained the next chap-
ter.
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4.4.2.1 Design parameters

The design space should be versatile enough to accommodate future technologies and cover
different application needs. The Figure 4.6 describes the PE architecture, and the individual
components are explained along with architecture parameters below:
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Figure 4.6: Processing Engine architecture.

1. Size of the array
The size of the array gives the total number of PE needed. The size is defined by the
Array Height (M - number of row) and Array Width (N - number of columns), therefore
there are totally (M x N) Processing Engines as shown in the Figure 4.5.

2. Latency in MAC operation
The PE contains a pipelined floating-point Multiply and Accumulate unit. The number
of stages in the pipeline is variable and it is modeled in the form of latency in the
simulator, as shown in the Figure 4.6.

3. PE local memory size
The PE contains a local memory that is closer to the compute. The PE local memory
should be able to store many filter weights and reuse them when necessary. The simu-
lator models all the individual local memory of the PEs as a combined local memory.
The size of this local memory in each PE is variable and this size is used for all the PEs
in the array.

4. PE local memory latency
This simulator supports different kinds of memory technologies like SRAM, eDRAM,
ReRAM or any other possible future memory technology. The read and write latency
of such memories is modeled in the form of variable.

5. External memory latency
The accelerator is connected to the processor through a bus and the data is loaded from
the external memory. The simulator also models the latency of the external memory
in the form of a variable. This allows the simulator to be compatible with different
external memory technologies.
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4.4.2.2 CNN parameters

The simulator supports conv layers with different parameters, which are described in the
Table 4.2. The simulator takes in one conv layer at a time and generates the results.

CNN Parameters Description
Input Feature Map Height (H) Vertical dimension of input channels.
Input Feature Map Width (W) Horizontal dimension of input channels.

Number of Filters (N) Number of filter kernels.
Filter Kernel Depth (CH) Number of input channels/filter channels.
Filter Kernel Height (X) Vertical dimension of input filter weights.
Filter Kernel Width (Y) Horizontal dimension of input filter weights.

Padding (P) Zero padding for the input feature maps
Stride (S) Stride count during convolution operation

Table 4.2: CNN topology parameters.

4.4.3 Row-Column Stationary Data-Flow Mapping Methodology

The Chapter 3 explained various data-flow methodologies like WS, OS, IS and NLR. These
approaches maximize the reuse of weights, input feature maps, output feature maps respec-
tively. The corresponding mapping schematic is shown in the Figure 4.7 and Figure 4.8.

This simulator uses Row-Column Stationary (RCS) [51] approach which reuses the
weights, inputs, and activations the most. The primary advantage of this data-flow is its abil-
ity to adapt to various conditions and optimize energy consumption for all three types of data
movement. This RCS is explained in the following sections:

4.4.3.1 1-D Convolution Basic Block

This approach uses the idea of the strip mining method, which is often used in spatial archi-
tecture [56]. It breaks the 2-D convolution into smaller 1-D convolution basic blocks that
can be executed in parallel. Each basic block operates on one row of the input filters and one
row of the input feature map pixels in consideration for convolution and generates one row
of partial sums. These partial sums are accumulated over time and space to get the output
feature map pixels. The corresponding input filter weights for the convolution is stored in the
local memory or the global buffer.
Each basic block is spatially and temporally mapped to one PE for execution. This approach
keeps the filters in the PE stationary, thus utilizing the inter-convolution parallelism of CNN,
which was explained in Section 4.3. The example of the 1-D Convolution basic block slid-
ing window is shown in the Figure 4.9, here the PE performs the MAC operation for each
sliding window of input pixels over time and stores the partial products in the registers. The
sliding window goes over all the input pixels in a row to complete one 1-D convolution and
also maximizes the weight data reuse. However, the convolution layers contain more than
hundreds of thousands of such basic blocks, and since the mapping across PEs is non-trivial,
the mapping impacts energy consumption and latency.
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4.4.3.2 2-D Convolution Mapping

The 1-D convolution can be extended across multiple rows to get a 2-D convolution while the
results are accumulated vertically down the column shown in the Figure 4.10. One column
of PEs store one set of filter weights and the input pixels are streamed to these PEs and
the results are accumulated by the bottom-most PE to generate one output pixel. This 2-D
mapping allows us to utilize inter-output parallelism, which was explained in Section 4.3.

This 2-D mapping allows us to map multiple filters across columns of PEs and obtain

Filter row 1 * Input pixel row 1

PE1

Filter row 2 * Input pixel row 2

PE2

Filter row 3 * Input pixel row 3

PE3

Output pixel

Figure 4.10: 2-D convolution mapping across one column.

multiple output feature map channels in parallel. Consider the Figure 4.11, here channel 1
(out of CH) of filter 1 (out of N) is mapped to the first column, channel 1 of filter 2 is mapped
to the second column, channel 1 of filter 3 to the third column and so on. This mapping
allows us to obtain partial results of multiple output channels in parallel. Since convolution
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is performed with only the channel 1 of the input feature map and channel 1 of all the filters,
the input pixels are maximally reused. The number of filters elements in each column is
calculated by the size of the local memory in each PE. Since there are hundreds of thousands
of 1-D convolution basic blocks, all of them can not be physically mapped to the PE systolic
array in hardware due to constraints such as limited area and memory. Hence, the mapping
is done in a two-step process:

Filter1- ch1 - row 1 * Input ch1 - pixel row 1

PE11

Filter1- ch1 - row 2 * Input ch1 - pixel row 2

PE21

Filter1- ch1 - row 3 * Input ch1 - pixel row 3

PE31

Output pixel - channel 1

Filter2- ch1 - row 1 * Input ch1 - pixel row 1

PE12

Filter2- ch1 - row 2 * Input ch1 - pixel row 2

PE22

Filter2- ch1 - row 3 * Input ch1 - pixel row 3

PE32

Output pixel - channel 2

FilterN- ch1 - row 1 * Input ch1 - pixel row 1

PE1N

FilterN- ch1 - row 2 * Input ch1 - pixel row 2

PE2N

FilterN- ch1 - row 3 * Input ch1 - pixel row 3

PE3N

Output pixel - channel N

Figure 4.11: 2-D convolution mapping across systolic array.

1. Logical Mapping
All the 1-D convolution basic blocks are deployed on a logical 2-D systolic array of
PEs of the same size. Here each basic block is mapped to one logical PE in the array. A
collection of several PEs in one column corresponds to one conv-set, this is replicated
across columns to match the total number of 1-D convolution basic blocks. The height
and width of each conv-set are determined by the filter size (X). Since there are N filter
and CH filter channels, the total number of conv-sets required for complete processing
on one conv layer is N x CH. The Figure 4.12 shows the logical convolution mapping,
the weights which are stored in the local memory of each PE is fed to the MAC op-
eration, the PEs shift the input pixels to the next PE, the partial products are collected
down the column as explained in the Algorithm 1.

2. Physical Mapping
This is a process of mapping different and multiple logical conv-sets onto the
same physical PE and running it. By mapping multiple conv-sets, there is max-
imum reuse of input feature maps, and the output feature maps are accumulated
across every column. The number of logical conv-sets to be physically mapped
depends on the local memory size, the number of the filters (N) and the size of
the PE array, which are user input values, as explained in Section 4.4.2.1. When
all the filter channels and input feature map channels corresponding to the mapped
conv-sets are executed, a new set of con-sets are mapped. This process is called
process-pass and it iterated till all the filter and input feature map channels are con-
volved. The Figure 4.11 shows the physical mapping of conv-sets onto the PE array.
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Figure 4.12: Data-flow in multiple conv-set to process multiple 2-D convolutions. (a) inputs are reused
across columns, (b) partial sums are accumulated across columns for different output channels.

Algorithm 1: Logical Mapping

Initialization;
CH = depth of the filter weights;
ncs = N x CH;
cols = number of columns in the array;
i = 0;
while i < (ncs/cols)) do

j = 0;
while j < cols do

map ithconv set to column j ;
j++ ;

end
i++;

end

4.4.4 Algorithms

After the logical mapping of conv-sets on to the physical PEs, the weights are loaded on to
the local memory of each PEs in the array. Then the input feature maps and weights from the
local memory are scheduled concurrently into the MAC engine. When a conv-set is executed,
the output feature map pixels are collected and saved.

1. Weights loading algorithm
The filter weights are read from a user input csv file into an array in the test bench
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of the design. During the operation of the design, several conv-set called conv-set-
block is loaded into the weight memory of the PEs in the array. The con-set-block
size is determined by the size of the array and the PE local memory. After loading the
conv-set-block, the input data is streamed and weights are scheduled till all the loaded
weights are reused to generate the output data. Then a new conv-set-block is loaded and
the cycle is repeated till the given conv layer is executed as as shown in the Algorithm 2.

Algorithm 2: Weight loading algorithm

Initialization;
generate the physical mapping of all conv set blocks based on the given size of
memory and array size;

n = number of conv set blocks;
i = 0;
while i < n do

load conv set block[i];
wait till conv block done signal==1;
i++;

end

2. Weights scheduling algorithm
Once the weights in the conv-set-block are loaded into the memory, the conv-sets
from this memory, corresponding to the size of the array is selected and time un-
rolled. This unrolled weights of the conv-sets are loaded one weight at a time in par-
allel to the MAC unit in the PEs. When all the weights are scheduled and reused
to the maximum extent, a new conv-set-block is loaded and scheduled, and the cy-
cle is repeated till the given conv layer is executed as shown in the Algorithm 3.

Algorithm 3: Weight scheduling algorithm

Initialization;
ncs = number of conv sets in the loaded conv set block;
M = number of rows in the array;
N = number of columns in the array;
i=0;
while i < (ncs/N) do

j = 0;
while j < N do

time unroll and schedule conv set[i*N + j];
j++ ;

end
wait till conv block done signal == 1;
i++ ;

end

3. Input scheduling algorithm
The input feature maps are read from a user input csv file into an array in the test
bench of the design. The input feature maps can be divided into many windows
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which are used in conv-sets. These input windows are calculated with padding and
stride parameters, and these windows are time unrolled and fed to the PEs of the
leftmost row of the array. This is continued till all the windows of the input fea-
ture map channel and the corresponding channel of all the weights are scheduled.
If the input channel is fully used, a new channel is scheduled similarly, and the cy-
cle is repeated till all the input channels are scheduled as shown in the Algorithm 4.

Algorithm 4: Input scheduling algorithm

Initialization;
C = number of input feature map channels;
N = number of windows in the input feature map channel adjusted to stride and
padding;

i = 0;
while i < C) do

j = 0;
while j < N do

time unroll and schedule ifmap window[i*C + j];
j++ ;

end
wait till conv channel done signal == 1;
i++;

end

Algorithm 5: Output scheduling algorithm

Initialization;
ncs = number of conv-sets in the loaded conv-set-block;
C = depth of the filter weights;
N = number of windows in the input feature map channel adjusted to stride and
padding;

i = 0;
while i < (ncs/N)) do

j = 0;
while j < N do

Collect and store ofmap window[i*N + j];
j++ ;

end
wait till conv channel done signal == 1;
i++;

end

4. Output scheduling algorithm
After all the conv-sets corresponding to a channel and the size of the array is executed,
the output pixels are stored in a memory outside the PE array. Then a new set of
output pixels are loaded from the memory into the accumulator, the next conv-sets are
executed, and the results are added to these output pixels. These new output pixels
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are then stored in the output feature map (ofmap) memory and subsequently a new
set of output pixels are loaded into the accumulator. This cycle is repeated till all the
input channels are convolved with the corresponding weight channels as shown in the
Algorithm 5.

4.4.5 Operational Flow

The simulation state diagram is shown in the Figure 4.13. In the initial stage of the simulation,

Initialize

Start

Reset

Load Weights and
Bias

l_w = 1

l_w = 0

Load Ifmap
channel

l_ifmap = 1

l_ifmap = 0

Start
Operation

s_op = 1

s_op = 0

Stop
Operation

op_done = 0

DoneTrueLayer
DoneReload False

rl_w = 1
rl_ifmap = 1

Figure 4.13: State diagram of the simulator.

the design parameters, CNN topology parameters, and input data are read from the files. Then
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logical and physicals mapping of the conv-sets is done. Subsequently, the weights are loaded
into the memory, input feature maps are streamed and convolution operations are performed
till the relevant conditions are met. The weights and input feature maps are reloaded if
needed. This cycle is repeated till the given convolution layer is completed. The results of
the simulation are stored in the output file.
The input data and golden results are generated using Matlab for verification. The design is
tested against the AlexNet parameters and as well as random weights and biases.

In this chapter we covered the explanation of the Systolic Array Simulator for CNN
(SASCNN) and its SystemC modeling setup. Subsequently, we explained the memory model-
ing tool used. Then, concurrency in CNNs was explored which are utilized in the design of
the architecture. The input parameters for the simulators were explained. The proposed row-
column stationary data-flow mapping methodology was explained in depth which included
logical and physical mapping, and loading and scheduling algorithms. Then we covered
the operation flow and verification methods used. In Chapter 5, the detailed analysis of the
results is covered.
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Results and Analysis 5
“If you fail, never give up because F.A.I.L. means “First Attempt In Learning”. End is
not the end, in fact E.N.D. means “Effort Never Dies.” If you get No as an answer,
remember N.O. means “Next Opportunity”, So let’s be positive.”

— Abdul Kalam

This chapter discusses the experiments done on standard CNN model and analyze the results
obtained from the simulator. The performance metrics for 32-bit floating point design is
discussed, and subsequently, 16-bit and 8-bit floating-point is covered. The interaction
between different design parameters and the performance of the system is discussed for
convolution layers of the CNN model.

T he AlextNet model is used for analysis in this chapter. The individual layer details
of AlexNet are shown in the Table 5.1 [2]. The simulator takes in only convolution

layers, hence this chapter covers results and analysis of these. The performance of a design
based on the given design parameters are analyzed for different numerical precisions of the
system. Table 5.2 shows the energy and area comparison between different floating-point
representation, adjusted to clock frequency [57, 58]. Table 5.3 lists the energy per 32-bit data
access for different memory types used in the design [55, 51]. The control logic energy is
calculated based on the number of load and store instructions issued in the simulation and
each load or store energy is calculated using Flip-Flop switching energy [59].

Layer Ifmap Padd Stride Number of Filter Number of Ofmap
size filters size parameters size

CONV1 227*227*3 0 4 96 11*11*3 34944 55*55*96
CONV2 27*27*96 2 1 256 5*5*96 614656 27*27*256
CONV3 13*13*256 1 1 384 3*3*256 885120 13*13*384
CONV4 13*13*384 1 1 384 3*3*384 1327488 13*13*384
CONV5 13*13*384 1 1 256 3*3*384 884992 13*13*256

FC6 9216 - - - - 37748736 4096
FC7 4096 - - - - 16777216 4096
FC8 4096 - - - - 4096000 1000

Table 5.1: AlexNet layers.
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Precision Area Energy per operation
(bit width) (um2) 10−12 Joules

32-bit 4793.10 4.6
16-bit 1841.9 1.5
8-bit 336.672 0.23

Table 5.2: Floating-point MAC unit comparison.

Memory Read energy per 32 -bit access Write energy per 32-bit access
types (10−9 Joules) (10−9 Joules)

Internal Memory 0.004 0.002
External Memory 0.4 0.2

Table 5.3: Memory energy.

5.1 Figures of Merit

The simulator takes in several parameters for simulating the given architecture. Covering
the whole design space is nearly impossible. So the simulation is run for a few important
parameters while keeping others constant. The Figures of Merit (FoM) for the various designs
are evaluated using the following:

1. Runtime Cycles:
The simulator outputs the total cycles required to execute the layer in consideration.

2. Total Area:
The total area of the accelerator is the sum of the memory unit, control logic unit and
the compute array.

3. Total Energy:
The energy required to execute the given layer is the sum of the energy required to
access memory, energy required for the computation and the control logic energy.

4. Throughput:
This gives the compute performance of the given design, it indicates the effective oper-
ations per cycle.

Throughput =
Total number of operations

Total execution cycles
(5.1)

5. Memory Utilization:
This is the external and internal memory bandwidth utilization for the design.

Memory Throughput =
Total data read/written

Total cycles required for reading/writing
(5.2)
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6. MAC Utilization:
This indicates the amount of time the MAC units of PE are active.

MAC Utilization =
Total FLOP cycles

Total execution cycles
(5.3)

7. Bisection Bandwidth:
The nodes in the network are divided into two sections, and the bandwidth available
between these two partitions is called the Bisection Bandwidth. This metric gives an
indication of the traffic between the partitions. Bisection is done in a way that the
bandwidth is minimum between these two partitions.

8. Energy-Delay Product (EDP):
It is the product of total energy consumption and the runtime for given workload and
design parameters. EDP takes into account the trade-off of increased delay for lower
energy per operation.

5.2 Performance Analysis

Few parameters of the design as shown in the Table 5.4 are kept constant through all the
simulations.

Parameters Value
Operating frequency 1 GHz

External memory read latency 6 cycles
Internal memory read latency 1 cycles

External memory access width 32 bits
Internal Ofmap memory access width 32 bits

Floating point MAC unit latency 4 cycles

Flip-Flop switching energy 0.08 x 10−15 Joules/cycle

Table 5.4: Fixed simulation parameters.

5.2.1 Runtime Cycles

This section covers the variation of execution cycles with respect to different design param-
eters.

5.2.1.1 Runtime cycles vs Number of PEs

The size of the array is varied and corresponding runtime cycles are obtained. The Figure 5.1
shows the variation of total execution cycles for different number of PEs in the array while the
memory size of each PE is fixed to 1KB and the system is set to 32-bits numerical precision.
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Figure 5.1: Variation of runtime with the number of PEs for different layers.

Significant reduction in runtime can be seen in conv2 to conv5 as there are more
weights in these layers when compared to conv1, and there is more filter and ifmap reuse
when there is an increase in the size of the array. There is a slight increment in runtime for
certain number of PEs. This is due to the nature of systolic array, the whole array is modeled
as a single unit without control over each column of the array. When the number of filters is
not a multiple of the number of columns in the array, there is wastage of cycles performing
shift operations in the array. This contributes to an increase in the runtime as seen in the
Figure 5.1 and Figure 5.2.
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Figure 5.3: Runtime in million cycles for all 5 layers of AlexNet for different SA sizes, (a)11x8 = 88
PEs, (b)11x10 = 110 PEs, (c)11x12 = 132 PEs, (d)11x14 = 154 PEs. The Y-axis units are in million
cycles and X-axis represents various workloads.
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The Figure 5.2 shows the influence of number of PEs on the normalized runtime cy-
cles. There is a more significant reduction in the runtime when moving from 32-bit to 16-bit
numerical precision compared to moving from 16-bit to 8-bit. This reduction is attributed
to the decrease in loading and scheduling cycles when moving from 32-bit to 16-bit or 8-bit
designs. There is not much savings in scheduling cycles when moving from 16-bit to 8-bit
design when compared to the savings when moving from 32-bit to 16-bit designs.
The Figure 5.3 shows the comparison of runtime for all layers for different Systolic Array
(SA) sizes, and for different numerical precision. The 8-bit implementation has the least run-
time among all the precision formats. The Figures 5.3(b) and 5.3(c) gives the highest drop in
runtime time cycles and then there is small incremental reduction in runtime for 154 PEs and
higher as shown in the Figures 5.3(d) and 5.2.

5.2.1.2 Runtime cycles vs PE memory size

The size of the internal memory in each PE is varied and corresponding execution cycles are
obtained. The Figure 5.4 shows the variation of total execution cycles with respect to the
memory size of PE in the array while the size of the array is fixed to 11x12 = 132 PEs.

The graph plateaus at around 1KB to 2KB of PE memory as it reaches the maximum
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Figure 5.4: Normalized runtime cycles for different PE memory sizes.

reuse of stored filters and ifmaps for the given 132 PEs in the array. The reduction in runtime
is more for conv3, conv4 and conv5 when compared to others as these layers have more
weights. The Figure 5.5 shows the runtime of different layers of AlexNet when implemented
using different numerical precision.

The highest drop in runtime cycles can be seen in the conv4 layer when compared to
other layers. The data is loaded from external memory and stored in the internal memory
of PEs and then this data is reused to the maximum extent. For 32-bit implementation, a
significant portion of the runtime is spent on loading the data to internal memory and it takes
more cycles to load from external memory. When the numerical precision is reduced, so
does the loading latency and this reduces the total runtime cycles. Hence we see a significant
reduction in runtime when moving from 32-bit to 16-bit or 8-bit numerical precision.
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5.2.2 Total Energy

The energy consumption of a workload is an important performance metric. It gives the
efficiency of implementation for the given workload on the given design. The Figure 5.6
shows the runtime energy for all the workloads run on 132 PE and 1KB internal memory
configuration. The CONV2 layer has the highest runtime energy due to the high number
of ifmap accesses form external memory and the effective number of ifmap windows are
higher for CONV2 when compared to other layers. The CONV1 layer has a stride of 4,
hence this causes the effective number of ifmap accesses to be lesser than CONV2. There
is a significant decrease in energy consumption across workloads when moved from 32-bit
numerical precision to 16-bit or 8-bit numerical precision.

The energy per convolution layer can be divided into individual constituents of the
design and these give insight into the energy distribution among various segments of the
design. The total energy of the simulation run can be divided into:

1. External memory access energy:
The conv layer loads the weights from external memory to internal memory and streams
the ifmaps into the array. Total external memory access energy is obtained by multi-
plying the total external accesses with the energy per access. The external memory
is modeled as test bench in this simulation and the energy per access is detailed in
Table 5.3.

2. Internal memory access energy:
The data stored in the internal memory is reused until it is not needed for further cal-
culation. This data is accessed numerous times. Total internal memory access energy
is obtained by multiplying the total internal memory accesses with the internal energy
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Figure 5.6: Energy consumption for different workloads and numerical precision.

per access. The size of the internal memory is a user input as explained in the Sec-
tion 4.4.2.1 and the energy values are detailed in Table 5.3.

3. MAC operational energy:
The energy for one MAC operation is multiplied with total floating-point operations to
get the total MAC operational energy. The details of energy per operation are detailed
in the Table 5.2.

4. Control energy:
Each load and store operation incurs control energy as the control logic issues these
operations. The Flip-Flop switching energy per cycle is listed in the Table 5.4. The
total control energy is a function of total for-loops executed and total instruction issued.

5.2.2.1 Total Energy vs Number of PEs

The simulation is run for various SA size configurations by varying the number of PEs while
keeping the internal memory size constant to 1KB. The normalized total energy variation
with respect to the number of PEs for different workloads is shown in the Figure 5.7.

For a smaller number of PEs, the energy consumption is higher as the total energy is
dominated by the External Memory Energy due to less weight and ifmap reuse across PEs.
There is a need for frequent data loading from the external memory. As we increase the
number of PEs there is a drop in energy consumption because the ifmaps and weights are
reused more. The increase in MAC Operational Energy is less than the decrease in the Ex-
ternal Memory Energy, hence we see a minimum in the total energy consumption as seen
in the Figure 5.7. For number of PEs greater than 150, the total energy increases, because
there is an increase in the total number of floating-point operations, this causes an increase
in MAC Operational Energy, thus increasing the total energy. The decrease in the External
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Figure 5.7: Variation of the normalized total energy with the number of PEs.

Memory Energy is less than the increase in the MAC Operational Energy and Internal Mem-
ory Energy. The local minimum is greatly visible for all layers except conv1 as the values
are normalized by the maximum energy value, which is from conv2 layer.

The Figure 5.8 shows the distribution of total energy among its components for dif-
ferent number of PEs. On comparison of 5.8(c) and 5.8(d), we can observe an increase in
the MAC Operational Energy and decrease in the External Memory Energy. The 110 PEs
configuration has the lowest energy consumption when compared to others. This can be ob-
served across different workloads. The Control Energy is very low when compared to other
component energies.
The increase in the MAC Operational Energy is because of the inherent operational function-
ality of the SA. All the PEs in the SA operate in synchronization, thus it also performs zero
operation while the data is shifted down the column. The simulator does not control every
PE in the SA, it models the whole SA as a single module without finer grain controls over
individual PE. Hence, until the data from the last PE of the last column is shifted out, all the
other PEs perform zero operation. There is an increase in the total MAC flops if there is a
very high number of PEs in the SA. The Figure 5.9 shows the variation of different compo-
nent energy with respect to the number of PEs for conv5 layer, and the decrease of External
Memory Energy and increase of MAC Operational Energy and Internal Memory Energy can
be observed.
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5.2.2.2 Energy vs Runtime

Understanding energy consumption helps to figure out the optimal design for the given work-
loads. On comparing the runtime with the corresponding energy consumption, one can see
the point of inflection, where, on further decrements in the latency will not result in a great
improvement in energy efficiency. The Figure 5.10 plots the points which correspond to to-
tal energy and latency combination for different convolution layer workloads and different
numerical precision. The simulation is run for 1KB internal memory and 132 PEs configura-
tion. We can observe a gradual decrease in the energy as the runtime decreases, but there is
an inflection point from where the energy increases again, this point corresponds to the situa-
tion where the increment in MAC Operational Energy and Internal Memory Energy is greater
than the decrement in External Memory Energy. All the workloads show similar pattern for
different numerical precision as seen in the Figure 5.10(a) to Figure 5.10(e).
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5.2.2.3 Energy vs PE Memory Size

As the PE memory size increases, so does the total internal memory access energy. As the
memory size increases the leakage power also increases. The leakage power of each memory
configuration is obtained from DESTINY Tool[55]. This value is multiplied with the runtime
to obtain the effective leakage energy during the runtime and then added to the dynamic
energy during runtime to obtain total energy. The Figure 5.11 shows the variation of total
energy with the PE memory size. There is a gradual increase in the total energy till 32KB
and then there is a drop in the energy. This can be attributed to the low leakage power for
64KB, 128KB, and 256KB. The DESTINY tool optimizes the solutions for Energy Delay
Product (EDP) and this results in less leakage power for 64KB, 128KB and 256KB memory
solution. The tool searches for optimal EPD solution, hence there is an irregularity in the
graph.
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Figure 5.11: Variation of the total area of the SA with PE internal memory size.

5.2.3 Total Area

The total area is the sum of the number of PEs used in the design. The Figure 5.12 shows the
variation of the area, the total area scales linearly with the number of PEs. For a higher num-
ber of PEs, there is a significant area savings when moved form 32-bit numerical precision
to 16-bit or 8-bit precision. For a lower number of PEs, there are fewer area savings when
moving from 32-bit to 16-bit or 8-bit implementation.
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Figure 5.12: Variation of the total area of the SA with the number of PEs.

5.2.4 MAC Utilization

A high MAC utilization indicates that a large amount of time is spent on MAC operations and
the rest is spent on data movement, and low MAC utilization indicates otherwise. The MAC
utilization is given in the Table 5.5. The high MAC utilization is due to the nature of SA,
all the PEs are active until the required data is shifted out from the last column of the array.
There is a large number of zero operations since the whole SA is modeled as a single module
and no finer low-level column control is modeled. The minimum and maximum utilization
correspond to the conv1 layer as it has the least number of parameters and ifmaps, and hence
less time is spent on moving data from external memory, hence high utilization. For a higher
number of PEs more time is spent on zero loadings into the PE memory, and hence less MAC
utilization. This behavior is similar in other layers. The average utilization is 75% across
layers.

MAC Utilization Value (%)
Minimum 67.33
Average 75.54

Maximum 88.17

Table 5.5: MAC Utilization.
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5.2.5 Bisection Bandwidth

The Bisection Bandwidth is dependent on the latency of PE and as well as the number of PEs
in the SA. The Table 5.6 lists the bisection bandwidth for different layers. These calculations
are based on the 132 PE and 1KB PE memory configuration. The conv1 layer has a filter size
of 11x11, hence the bandwidth of a single link after bisection is 1GB/s. This is multiplied
with all the bisected links to obtain 11GB/s. The conv5 layer has a filter size of 5x5, as only
the first 5 rows of the SA is enabled during operation and the rest 6 is disabled, thus the
effective bisection bandwidth is 5GB/s. The procedure is repeated for the rest of the layers
which have a filter size of 3x3 to obtain 3GB/s bisection bandwidth.

Layer Bisection Bandwidth
(GB/sec)

CONV1 11
CONV2 5
CONV3 3
CONV4 3
CONV5 3

Table 5.6: Bisection bandwidth for different layers.

5.2.6 Throughput

The total MAC operations can be divided into actual convolution operation (non-zero opera-
tions) and zero operations. The zero operations are inherent in the SA as the SA is modeled
as a single module. While the data from the last column of the SA is shifted out, the rest of
the columns perform MAC operation with zero values. Both of these types along with the ef-
fective throughput is listed in the Table 5.7. The throughput is listed for 3 PE configurations:
11x10, 11x12 and 11x14, as these show the lowest energy consumption and these correspond
to the inflection points as discussed in the Section 5.2.2.2.

Number of PEs Throughput (GFLOPS/sec)
Size of SA Non zero ops Zero ops

110 4.97 31.02
132 5.77 37.71
154 6.16 44.48

Table 5.7: Throughput for different PE configurations.

5.2.7 Memory Throughput

The memory throughput gives information about the utilization of the memory interconnect.
The external and internal memory bus width is fixed to 32-bit.
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Figure 5.13: Variation of the memory throughput with the number of PEs.

As the number of PEs increases, the total number of external memory accesses decreases due
to the reuse of the loaded data. There is a near exponential decrease in the external memory
throughput as the number of PEs approaches 125, then there is a plateau due to the law of
diminishing returns, as seen in Figure 5.13(a). Whereas, when the number of PEs increases,
so does the total internal memory accesses. The total internal memory accesses increment
is due to an increase in data reuse which is stored in the local memory. This increment in
throughput as the number of PEs increases can be seen in the Figure 5.13(b).
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5.2.8 Energy Delay Product

To obtain the EDP for different design configurations, the PE memory size was fixed to 1KB
and the number of PEs was varied to obtain the graph as shown in the Figure 5.14. We
see a high EDP for a smaller number of PEs as there is significant energy spent on loading
data from external memory. As the number of PEs increases the EDP drops to the lowest,
this point corresponds to the point of inflection as explained in the Section 5.2.2.2. As we
further increase the number of PEs the EDP gradually increases due to the increase in the
MAC Operational Energy section of total energy. The increase in total energy offsets the
advantages provided by the decrease in the runtime. This behavior is observed for other
workloads as seen in the Figure 5.14.
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Figure 5.14: Variation of EDP with the number of PEs.

In this chapter the AlexNet workloads, FoM for performance evaluation of the design
points were covered. Subsequently, total runtime, area, and energy evaluation for different
numerical precision and various design points were explained. The implemented SA advan-
tages and drawbacks were detailed, and then an optimal architecture was proposed based on
the design space exploration. In Chapter 6, the conclusion and future work is covered.
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Conclusion 6
“Somewhere, something incredible is waiting to be known.”

— Carl Sagan

This chapter discusses the conclusion of the work done in this thesis, and presents the ideas
and improvements that could be further explored to build on the current work. It ends with
the publication relating to this thesis.

6.1 Summary

Deep Neural Networks (DNN) have been used in many applications, ranging from real-
time image classification, object detection and speech processing to robot motion planning.
Among the various DNN approaches, Convolution Neural Networks (CNN) is the most com-
monly used NN. Usually, the DNN implementations are done on a high-performance tem-
poral architectural system like multi-core CPU and GPU, these are of high power in nature
and cannot be deployed in edge devices. The inference is performed on the edge to provide
low power and real-time performance. Hence, the edge devices require a novel architectures
towards processing CNNs. The recent works towards this goal have been the development of
DNN accelerators using data-flow spatial architectures. The systolic array is the most com-
mon spatial architecture used, and it is composed of 1-D or 2-D array of Processing Engines
(PE). A typical PE has a MAC unit and a small local memory. The data in the systolic array
flows rhythmically between PEs and the communication with the external memory happens
at the boundary of the array. Few data-flow approaches like weight stationary and output
stationary have been proposed for reusing weights and partial products respectively. The
row-column stationary data-flow approach maximizes the reuse of weights, input and output
feature maps across the array. Depending on the application, the numerical precision of the
DNN can be varied to decrease the energy consumption and area of the design. Different
applications require different performance, area and energy needs, and this makes it impera-
tive to quickly prototype the architectural ideas, and perform design space exploration. The
challenging part is the non-trivial interactions between different architectural design parame-
ters, as they play an important part in the complex design decisions. Hence, a Systolic Array
Simulator for CNN (SASCNN) has been proposed in this thesis. The systolic array uses
row-column stationary data-flow with a near memory computing approach to accelerate in-
dividual layers of CNN. The simulator supports different numerical precision such as 16-bit
and 8-bit floating-point. The simulator can take in numerous design parameters such as the
size of the systolic array, latency of MAC operation, PE local memory size, PE local memory
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latency and external memory latency. The simulator can support future memory technolo-
gies by varying the latency of PE internal memory, and supports a multi-stage MAC engine
by varying the latency of floating-point operation. Since the external memory latency is not
fixed, the simulator supports different external memory latency by taking it as an input pa-
rameter. The simulator supports conv layer for different filter sizes and, strides and padding
for input feature maps. In this thesis, we consider eDRAM memory for PE internal mem-
ory, and it is modeled by using the DESTINY tool. The functionality of the systolic array
convolution is verified on the AlexNet model. The Figures of Merit is evaluated for array
size and internal memory size design parameters. For design space exploration, at first, the
PE internal memory size is fixed and the size of the array is varied to obtain the performance
metrics. Next, the size of the array is fixed and the PE internal memory size is varied to obtain
the performance metrics. An energy and area estimation model is proposed and few other
performance metrics like throughput, bisection bandwidth, energy-delay product, memory
utilization, and MAC utilization are calculated for each design point. This procedure is re-
peated for 16-bit and 8-bit operand precision, and the results are analyzed. The variance of
the PE internal memory has less impact on the runtime cycles of all workloads. The size
of the array has a significant impact on performance and energy metrics. While the size of
the PE internal memory is fixed to 1KB, the number of PEs is varied from 88 to 352. When
the size of the array is small, the runtime is high and it exponentially drops when the size
is gradually increased. The performance plateaus at 154 PEs, as there is no significant gain
in runtime reduction on a further increase of array size. On analysis of energy consumption,
the energy gradually decreases as the size of the array is increased and reaches a minimum
point at 132 PEs. This is the inflection point, and on further increase in the size of the array,
we see an increase in energy consumption. After this inflection point, the increase in MAC
operational energy is greater than the decrement in the external memory energy. The energy-
delay product is also a minimum for this point. The average MAC utilization is 75.54% and
the bisection bandwidth scales proportionally with the size of the filters. The throughput of
the optimal design point is 37.71 GFLOP/s. From the result, we can see that the performance
and energy of the system depend critically on the size of the array and not much on the size of
the PE internal memory for the conv workloads. This work provides a fast design exploration
tool for designers to test different workloads on the proposed architecture.

6.2 Future Work

Numerous ideas can be integrated with this implementation to enhance the work done in this
thesis. Due to time constraints some of the ideas could not be implemented and some other
ideas had complexity and scope which was beyond the author’s current knowledge. Few
ideas which could be explored to augment this work are:

• The systolic array can be made run-time re-configurable to perform parallel convolu-
tions in any column. This will utilize the PEs which are disabled when the filter size is
smaller than the number of rows of PE.

• The fully connected layer and max-pooling layer of the CNN could be added to this
simulator to get an overview of the complete CNN model. The results can be compared
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with state of the art ASIC implementations.

• Include a zero skipping method to avoid zero loadings into the internal memory. And
implement column control mechanism to skip zero MAC operations in-order to increase
power efficiency.

• Implement an FPGA implementation of this design as a proof of concept and finally
develop an ASIC.

6.3 Publication

The contributions of this thesis work are described in:

• Shashanka Marigi Rajanarayana, Sumeet Kumar, Amir Zjajo, René van Leuken,
“Towards Computationally-Efficient Cognitive Sensor Systems for Autonomous
Vehicles”, IEEE International Conference on Cognitive Informatics and Cognitive
Computing, 2019, in press.
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Abstract—Advanced driving assistance systems (ADAS)
prepave regulators, consumers and corporations for the medium-
term reality of autonomous driving with adaptive cruise control,
collision avoidance and lane departure warning system. Various
sensors like camera, RADAR and LIDAR, integrated into the
vehicle assist driving. In addition, deep learning approaches are
utilized in a wide range of applications ranging from object
detection and scene segmentation to engine fault diagnosis and
emission management to detect vehicle network intrusion. In
this paper, we scope out the state of the art sensors subsystems
in terms of its functionality, characteristics, specifications and
communication protocol, and we describe cognitive deep learning
based algorithms required for environment perception through
these sensors. Subsequently, we analyze the cognitive algorithm
by profiling the standard deep learning models, explore different
compute platforms and possible algorithm and hardware opti-
mization scenarios.

Index Terms—Vision, radar, lidar, deep learning, convolution
neural networks, spatial architectures, ASIC, GPU.

I. INTRODUCTION

The autonomous vehicles decide the next step to take by per-
forming inference of the input data on a trained machine/deep
learning models. These algorithms require local processing
since the latency and security risks of relying on the cloud
are too high. Many of the embedded platforms that perform
inference have stringent energy consumption, compute and
memory cost limitations; efficient deep learning algorithms
have thus become of prime importance under these constraints.
In autonomous vehicles, the cognitive system involves a
pipeline of processes consisting of semantic segmentation and
object detection. In traditional machine learning approach,
firstly feature extraction and selection is performed. This
feature extraction includes manual labor, it is computationally
expensive and prone to error, and it is done for every envi-
ronmental condition and driving scenario. This process does
not provide human level precision in object classification [1],
localization, and segmentation tasks. Although, this process
does not require large amount of training data as the features
are hand engineered, it does not generalize to unseen scenarios.

In deep learning concept, the network extracts the features
automatically, and classifies the data accordingly. Even though
the network takes a significant amount of data to train, it can
adapt to the various environmental condition like snow, rain,

This research was supported in part by the European Union and the Dutch
government, as part of the ECSEL JU program under PRYSTINE project.

fog, etc with large data set of each environmental conditions.
The data set size also depends on the network size and
optimization methods used. The design is simple, as manual
feature extraction is not required; and it is faster since, to
classify an object only forward pass is required. The sensors,
which perceive the environment feeds data to deep learning
algorithms. Typically, they include vision, radar, and lidar,
totaling up to a minimum of 12 sensors [2]. This results in ef-
fectively large data input to the compute systems and high load
on the communication bus in the vehicle. The work by [3]–[5]
provides an overview of the sensor technologies, localization,
planning, control and coordination for autonomous vehicles.

The compute system is crucial for vehicle control, reac-
tion time for real-time performance and safety. The systems
requires high performance (with an order of trillions of opera-
tions per second), as it is a centralized system in the vehicle. In
addition, the system should be low power, to extend the battery
life and to increase the driving range of the electric vehicle.
The deep learning algorithms like object detection and scene
segmentation should be real-time, i.e. at 30 fps, which in-turn
requires large communication bandwidth and low latency in
the compute system. In addition, the system should be fault
tolerant, robust to sensor failure, output failures, communi-
cation failure, etc, as the autonomous navigation is safety
critical application. Moreover, the system should provide the
same performance and safety in the event of failure of critical
subsystems. The compute system should be able to support
a large number of sensors, as numerous sensors are required
to perceive the environment, which in turn provides a high
data volume to the system. Similarly, the compute system
should operate in various environmental conditions like snow,
rain, high temperature, etc to provide safety and real-time
performance in every environmental condition.

In this paper,

• We present a comprehensive study of cognitive sensor
requirements and characteristics, and offer a comparison
of deep learning algorithm for different sensor data.

• We profile a standard convolution neural network (CNN)
to obtain the compute, memory and energy requirements.

• We analyze the system architecture for processing deep
learning algorithms and propose computationally efficient
optimizations in algorithm and hardware space.

The paper is organized as follows: Section II describes



the latest sensors used in autonomous vehicle, its relevant
properties, constraints, and industry vendors. Subsequently it
describes the state of the art deep learning application for each
sensor data and its analysis. Section III covers the bench-
marks metrics of standard CNN models and describes the
performance, power and memory requirements for inference
systems. Section IV covers state of the art implementations,
possible optimization methods of algorithms and compute
hardware for inference. Finally, Section V provides a summary
and main conclusions.

II. SENSOR AND DEEP LEARNING

Numerous types of sensors i.e infrared, ultrasonic, stereo
vision, thermal vision, can be used in autonomous systems.
The scope of this section is limited to radar, vision and
lidar as they include some overlapping features of the above
mentioned sensors. Environment perception by applying cog-
nitive algorithms on sensor data augment object detection
and scene understanding. More specifically, CNN [6] has
achieved a high level of accuracy in object detection and
semantic segmentation, which are fundamentally important in
autonomous navigation.

A. Visual perception systems

In comparison to analog cameras, digital cameras offer
higher signal to noise ratio, increased resolution, and small
form factor. The 2D and 3D cameras require high dynamic
range (>135dB) to provide a clear image even under extreme
conditions like extreme sunlight, rain, smog, low sunlight, etc.

The Table I lists the specifications and range of the vision
system; the resolution needs to be greater than 2 Mpixels so
that the objects in the image can be recognized at a minimum
distance of 100 m in an urban driving scenario. The frame rate
should be greater than 30 fps for real-time performance. A 24-
bit RGB channel system with 30 fps and 8 Mpixels resolution,
has data rate of 685.8 MB/s. This data should be processed
at line rate at all temperatures and environmental conditions.
The communication between the digital CMOS image sensor
and the controller is serial in nature in raw capture mode.

Object detection: In the region based CNN (R-CNN) [7]
approach thousands of region proposals (region of interest) per
image are generated, which are applied to CNN in addition
to bounding box regression to obtain the location of the
object. The fast R-CNN [8] provides the region proposal by an
external system, which uses selective search, while the classi-
fier and bounding box regression is trained simultaneously.
In [9] (faster R-CNN), bounding box proposal method for
localization is augmented with a region proposal network. In
[10], a new method is proposed to detect lanes and objects
on road. It builds upon the Overfeat architecture [11] and
uses the mask detector in [12] to improve the design. This
method uses a sliding window detector to obtain the object
mask and performs bounding box regression. In [13], a new
approach for object detection using a single neural network
in a single evaluation based on GoogLeNet [15] is proposed.
The YOLO architecture, unlike the previous methods, which

TABLE I
VISION SENSOR SPECIFICATIONS

Specifications Range
Resolution 2Mp-8Mp

High Dynamic Range >135dB
Frame Rate >30fps

Field of View 100°
No. of channels 3(RGB)

Pedestrian recognition >100m

TABLE II
PERFORMANCE ON VISUAL OBJECT CLASSES

Model Train mean Frames Per
data AP Second (fps)

100Hz DPM [14] 2007 16 100
30Hz DPM [14] 2007 26.1 30

Fast YOLO 2007+2012 52.7 155
YOLO 2007+2012 63.4 45

Fast R-CNN [8] 2007+2012 70 0.5
Faster R-CNN VGG-16 [9] 2007+2012 73.3 7

YOLO VGG-16 2007+2012 62.1 18
Faster R-CNN ZF [9] 2007+2012 66.4 21

use sliding window or region of interest (ROI) pooling for
localization, utilizes the fully connected layer to locate the
object. Deformable Parts model (DPM) has distinct pipelines
to extract features, classify regions and predict bounding boxes
[14]. The Table II [13], shows the mean average precision
(mAP) and frame rate of the video. In [16], a method is pre-
sented, which detects small objects by combining multilayer
feature maps and uses a sub-pixel sliding window. The method
is a derivative of anchor generation from faster R-CNN.

Semantic segmentation: Few methods have been proposed
like incorporating the spatial information of the patch into
CNN in order to enable learning of spatial priors [17]. In
[18], a fully convolution network (FCN) is proposed, which
can take arbitrary size input images to produce segmentation
result. The method in [19] - [20] is a method, which integrates
CNN with deep de-convolution neural network. In [19] a
multipath approach is taken to parse a scene. The method in
[20] introduces a new mapping between classes and filters at
the deconvolution side of the design, in addition to filters at
the expansion side of the network.

B. Radar perception systems

Radar system gives information about the distance, velocity,
and angle of the moving object, not the shape and size.
The speed of the object is calculated based on the Doppler
effect. Radar is highly insensitive to environmental conditions
like rain, wind, darkness, and fog. Multi-sensor networks
composed of 4 or more short, mid, and long-range sensors are
currently used in ADAS [21]. The short-range radars (SRR)
are employed in blind spot detection and lane change and park
assistance, while medium range radars (MRR) and long-range
radars (LRR) are used in emergency braking and adaptive
cruise control. The field of view (FOV) is the highest for
SRR to detect close by objects and lowest for LRR. Radar



data has less data density when compared to optical sensors
since the data is collected only if there is a moving object in
the surroundings. The radar receiver lanes collect the reflected
signals and send them to the processing unit serially. This raw
data is processed to obtain the Doppler velocity, radial distance
of the object, radar cross section (RCS), the azimuth angle and
coordinates of the object with respect to the vehicle. This data
is used to create an occupancy grid of the surrounding objects
if needed for further processing. The Table III lists several of
the technical specifications of the existing radar systems.
The AWR1243 Single-Chip 77-GHz and 79-GHz FMCW
Transceiver from Texas Instruments has 4 receiver lanes,
where each lane has a scalable data rate from 150 Mbps to 900
Mbps. It has a maximum sampling rate of 37.5 MS/s with SPI
(serial peripheral interface), CSI2 and MIPI (Mobile Industry
Processor Interface). The BGT24MTR11 with XMC4500 by
Infinion allows a maximum sampling frequency of 2.85 MS/s
with 8-bit resolution.

Static object recognition: The method in [22] uses a neural
network for classification of static (stationary) objects like
parked vehicles in radar grids. The radar data was accumulated
by using the occupancy grid method [23]. If there is a 75%
match between the area of the extracted object and area of the
label, the label is assigned. If multiple objects are present,
the largest possible object label is kept [22]. The method
in [24] uses two independent classifiers: a random forest
classifier, which takes extracted domain specific features as
input, and a CNN based classifier. The random forest consists
of decision trees, which are formed during training and has
a limited number of parameters when compared to other
classification methods. Subsequently, these two classifiers are
combined to obtain increased classification accuracy. Feature-
based classifiers need less training data when compared to
CNN. The radar data is collected and accumulated into two
grids i.e occupancy grid [22] and amplitude max grid. The
features are extracted from occupancy grid and amplitude grid
for random forest classifier. The CNN is based on GoogLeNet
[15]. The ensemble classifier performs better in detecting cars
and provides better results when compared to that of each of
the individual classifier. The random forest classifier in the
ensemble classifier offers a higher accuracy due to its hand
engineered features.

Semantic segmentation: The method in [25] assigns a class
label to every point cloud. The order of points in the point
cloud is irrelevant and for each reflection two spatial coordi-
nates, one consisting of radial distance r and azimuth angle
φ and the other consisting of the ego-motion compensated
Doppler velocity vr and Radar Cross Section (RCS) σ. The
PointNet++ [26] is used as a basis for the segmentation
algorithm, and it is modified to handle two spatial and two
feature dimensions. The model has a Multi-Scale Grouping
(MSG) module and Feature Propagation (FP). The MSG
module consists of 3 stages: sampling, grouping and feature
generation stages. The data-set is sampled and grouped around
the selected point, and a feature vector is generated for each
sampled point. The output of an MSG module has a lower

TABLE III
RADAR SENSOR SPECIFICATIONS

Specifications LRR MRR SRR
Transmit Power 55 dBm -9 dBm/MHz -9 dBm/MHz
Frequency Band 76-77 GHz 77-81 GHz 77-81 GHz

Bandwidth 600 MHz 600 MHz 4 GHz
Distance range 10-250m 1-100m 0.15-30m

FOV ±10° ±42° ±80°
RCS 0.1 sqm 0.1-10 sqm 10-50 sqm

number of points, hence, providing abstract features. The FP
modules propagate the features of sparsely populated point
cloud to the next layer. The computation complexity is rela-
tively high when compared to the static object classification.
The dimension of the input data is high and the network is
deep, resulting in large training and testing time. The higher
feature dimensions help augment the segmentation, dynamic
object classification and offer high accuracy.

C. Lidar perception systems

Lidar system uses light pulses to determine the distance
and shape of the object. The system is similar to a radar
system, although lidar technology utilizes time of flight of the
light signal reflected from the object to calculate the distance
of the object. Continuous pulses are transmitted and upon
reception of the reflected pulse, with the reflection time, drift
in frequency and signal strength, a 3D visualization of the
surroundings is generated. With this data, the location and
velocity of the object are calculated, which are used in the field
of collision mitigation, object detection, and driving assistance.
The performance in terms of resolution, range, speed, and the
azimuth angle is strongly influenced by rain, fog dirt, the
lighting, and other environmental conditions. The Table IV
lists the typical specifications of the lidar types.

The Velodyne HDL-64E has a user selectable frame rate
between 5-15 Hz, and has an output point rate of 1.3 million
points per second. Each point is 3 dimensional at minimum
for calculation purposes; we consider only the 3-dimensional
position data from the Lidar sensor system, and each point
is represented by 128 bits in total (32 bit per dimension),
subsequently, the data rate becomes 20.8 MB/s.

The Lidar sensor outputs a sparse 3D points reflected from
the objects, where each point represents a point on the object’s
surface with respect to the position of the sensor. Three
main representations for the points are commonly used: point
clouds, features, and grids [3]. Points clouds approach use
raw sensor data as it provides finer and direct representation
of the environment. Feature and grid representation requires
pre-processing of the collected data. To extract information
from the 3D point cloud, the point cloud is segmented and
then the objects are classified. Here, segmentation is clustering
of similar points in the point cloud among homogeneous
groups, and the classification is performed on these clustered
points. The traditional approach transformed the point cloud
to 3D voxel grids, however this creates a large data size
and requires huge computational resources. The deep learning



Fig. 1. AlexNet CNN architecture

TABLE IV
LIDAR SENSOR SPECIFICATIONS

Specifications Solid State Mechanical
FOV-Horizontal 120° 360°

FOV-Vertical 30° 40°
Scan rate 5-30Hz 5-20Hz

Range (maximum) 100-150 m 100-200 m
Output points 1.2M 1.3M

Power <15W >40W
Accuracy >0.5 >0.4

based PointNet [27] approach takes in the point cloud as it is,
in addition of being invariant to permutations of the points. It
is a unified method, which does object classification and part
segmentation, it has relatively low computation complexity
(440 MOPS).

III. COMPUTE SYSTEMS

Two demanding constraints in deep learning system are
memory and computation speed to provide real-time accurate
performance with a frame rate of 20-30 fps. This section
profiles the AlexNet and VGGNet benchmarks metrics (convo-
lution layer and fully connected Layer) for the compute and
memory requirements during inference, which are based on
the model size, weight and bias. The layers/benchmarks in a
standard CNN are shown in Table V and Fig. 1.
Compute complexity: The computation complexity is directly
proportional to the number of convolution layers and filter size
in the CNN model. The convolution layers perform matrix
multiplications, the total operations can be measured in terms
of the number of multiply and accumulate (MAC) operations.
In the Table VI, it can be seen that the total MACs drastically
increases as networks get deeper. The ALU utilization is
highest for local response normalization (LRN) Analysis of
data in [28] illustrates the ALU and DRAM utilization (Fig. 2).
of CNN. LRN involves normalization of one input with data
from multiple adjacent kernels [28]. The ALU is significantly
higher for fully connected (FC) and convolution (Conv) layers
as it involves intense matrix multiplications and additions. We
analyzed the computation distribution among different layers
of AlexNet model (Fig. 3); the deeper layers have small input
feature map, thus resulting in less computation when compared
to the initial layers. In the Fig. 3, the layers 1-6 are Conv

Fig. 2. GPU utilization

TABLE V
CNN BENCHMARKS

Layer Operation
Convolution(Conv) Convolution between

the feature maps and weights
Max Pooling A sample-based discretization process

Local response normalization Normalization of one input
(lrn) with adjacent kernels

Rectified Linear Unit(ReLU) Non-linear activation function
Fully connected (FC) Multilayer perceptron

Softmax Function with an output range 0-1

layers and layers 7-8 are FC layers. The multiplication when
compared to addition, requires a larger number of cycles and
higher energy consumption.

Memory: Small models can be fully loaded onto the on-chip
memory, but if the model is large e.g. deep neural networks
(DNN), it cannot be stored and requires DRAM access. The
total feature map memory requirement for VGGNet [30] with
input image of 224x224 pixels is approximately 93 MB and
total parameters (weights) memory is 552 MB. From the
analysis of Table VI, we see an abrupt increase in the model
size and required memory as the network grows deeper. An
increase in cache size or DRAM is not beneficial in terms of
cycles usage and power consumption. Single DRAM access is
200 times more expensive in terms of energy as shown in Fig.



Fig. 3. AlexNet energy profile

TABLE VI
METRICS AND NETWORKS

Metrics AlexNet VGG-16
Input size 227x227 224x224

No. of CONV Layers 5 16
No. of weights 2.3M 14.7M
No. of MACs 666M 15.3G

No. of FC layers 3 3
No. of weights 58.6M 124M
No. of MACs 58.6M 124M
Total Weights 61M 138M
Total MACs 724M 15.5G

4. From GPU utilization analysis, the load/store and memory
utilization increases as the model size increases. This results in
less than real-time performance, and is expensive in terms of
cycles and energy consumption. The utilization of DRAM is
higher for ”normalization” and ”activation” as these use data
from multiple concurrently executing convolutions processes
as shown in the Fig. 2.

Energy: Energy consumption is estimated based on compu-
tation and the data movement of the three data types (weights,
input feature maps, and output feature maps) for every layer
[31]. The unit of energy is measured in terms of energy
required for one MAC operation. The total energy is the
sum of each individual layer for one image. We analyzed
the breakup of energy consumption in terms of layers, three
data types and computation for unpruned AlexNet model [31].
As illustrated in Fig. 3, the initial layers of the network
have higher energy consumption due to data movement when
compared to computation, and the deeper layers use significant
energy in movement of weights.

Case study: For a pedestrian to be detected at a minimum
distance of 50 meters from the moving vehicle, the camera

Fig. 4. Energy and memory hierarchy [29]

should have a minimum resolution of 1.6 Mp. We explored
standard deep learning models, AlexNet and VGGNet-16 for
an input image resolution of 1280x1280, pixels while retaining
the other variables of the models. The parameters are weights
of the filters in 32-bit floating point format, and the MAC oper-
ations are in 32-bit floating point representation. The memory
utilization, assumed to be 50%, is divided among SRAM and
DRAM. The Table VII lists the important requirements for
two standard models. The values obtained for inference of
one image with an inference time of 200 ms. The energy
required for memory access is calculated based on 28 nm
technology1,2. The number of operations for inference of a
single frame, the number of weights, and subsequently total
energy consumption increases linearly with numbers of layers.
Similarly, as the input resolution increases, the power and total
operation increases.

IV. OPTIMIZATION

Without loss of generality, we define optimization space
as illustrated in Fig 5. The compute system optimization for
inference is dependent on the algorithms used for convolution,
and hardware architecture used to reduce the latency and
increase throughput.

TABLE VII
COMPUTE REQUIREMENT

Metrics AlexNet VGGNet-16
Total Operations 25.5 G 505 G

Parameters(weights) 1.62 G 3.39 G
Memory access 77 G 1515 G

SRAM access energy 11.55 mJ 227.25 mJ
DRAM access energy 862.4 mJ 16968 mJ

Total Energy 873.95 mJ 17195 mJ
Power 4.36 W 85.9 W

1http://www.pee.ufrj.br/index.php/pt/producao-academica/teses-de-
doutorado/2017-1/2016033211-study-and-development-of-low-power-
consumption-srams-on-28-nm-fd-soi-cmos-process/file

2https://pubweb.eng.utah.edu/ cs7810/pres/14-7810-02.pdf



Fig. 5. Optimization space

A. Throughput and Memory Optimization:

The throughput can be increased by adopting alternate con-
volution methods, by using data-flow architectures, changing
number representation and exploiting the sparsity of data. By
changing the number representation, the model can be fit in
the on-chip memory.

Convolution algorithms: The convolution in CNN is matrix
multiplication of the filter over the input image. The Conv and
FC layers of a CNN are the computation kernels, which could
be sped up by applying computational transformations [32].
The inputs need to be pre-processed before being applied to
the network.

a) Fast Fourier Transform(FFT): FFT has convolution
property; the FFT of the filter and FFT of input feature map
is multiplied in the frequency domain, and subsequently an
inverse FFT is applied to the resulting product to obtain the
output feature map in the spatial domain. The FFT increases
the storage capacity and required bandwidth, while decreasing
the computations. However, FFT makes it difficult to apply
optimization such as those that exploit weight sparsity.

b) Winograd Algorithm: Although the algorithm reduces
the number of multiplications by rearranging the computa-
tions, this approach suffers from reduced numerical stability,
increased storage, and requires a specialized processing unit,
which is dependent on the size of the filter.
Several advantages and disadvantages exists for each of the
above-mentioned methods. The mapping and scheduling of
inputs and weights becomes complicated, the weights and
feature maps data is replicated in the memory and it has
complicated data access pattern. The speedup depends on the
filter size and feature maps in the layers, the FFT is preferred
for filters greater than 5x5 and Winograd for filters 3x3 and
below. The complexity of memory control logic is high for
data access.

Spatial architecture: The compute architectures is subdi-
vided into temporal and spatial architectures. Temporal ar-
chitectures include CPUs and GPUs, as a centralized control
is used for a large number of ALUs. Spatial architectures

Fig. 6. Data-flow/Spatial architectures [29]

are used in accelerators like ASIC and FPGA based designs.
The data-flow processing in spatial architectures increases the
data reuse from local memory to reduce energy consumption,
and the ALUs form a processing chain, which allows them
to communicate data among each other directly as shown
in Fig. 6. The ALU have their own control logic and local
memory and is referred to as Processing Engine (PE). The
memory access provides a bottleneck for DNN processing.
The cost per memory access increases as we move away
from the ALU as shown in Figure 4. The DRAM access
being the most expensive as the data needs to be accessed
from off-chip, and data access from Register File (RF) is the
lowest. Multiple levels of memory help to improve energy
efficiency by providing low-cost access to lower memories
like RF, shared memory or buffer memory. The drawback of
low-cost access memories is low storage capacity. In CNN the
data from filters, input feature maps (activations) and partial
products are reused. This property can be exploited to reduce
larger memory access, like DRAM access, by storing them in
local memory hierarchy and accessing them multiple times.
The Fig. 6 shows different data-flow architectures. The Data-
flow architecture encapsulates a global buffer and numerous
PEs. The DRAM, global buffer and PE communicate with
each other through input and output FIFO. The global buffer
is used to exploit the input data reuse and hide DRAM access
latency, or for storing intermediate results. The PE consists
of an ALU data-path, which can perform MAC and addition
operation and a register file. The Act is the input feature-maps
activations, Weight is the weight of the filter and Psum is the
partial sums obtained after the MAC operation. The Table VIII
compares the state of the design in spatial architecture.

1. Weight stationary (WS): The filter weights are stored in
lower memory hierarchy after loading them from the DRAM.
These are stationary for a longer time in the RF of PE
(Figure6(a)). The processing uses these weights as many times
as required for MAC operation while the weights are present
in, RF, thus facilitating convolution and filter reuse of weights.
The input feature maps (inputfmaps/activations) are broadcast



to all the PEs and partial products are accumulated across the
PEs. Few other examples are found in [29], [33], [34].

2. Output Stationary (OS): For the same output activation,
the accumulated partial sums are stored in the local RF. The
input activations are streamed and weights are broadcast across
the PEs as shown in the Figure 6(b). Energy consumption is
reduced due to the storage of partial sums. Few examples of
OS can be found in [35]–[37].

3. No local reuse (NLR): The PEs in this method does not
contain local memory; as result products and weights are not
stored in local memory (RF), there is no local data reuse. The
data is stored in the global buffer as shown in the Figure 6(c),
and as a result, the total access to the global buffer increases.
This provides efficiency in terms of area (µm2/bit) but not
in terms of energy (pJ/bit). The input activations should be
multi-cast and the weights are single-cast, while partial sums
are accumulated across PEs; few examples of NLR can be
found in [38]–[40].

4. Row Stationary (RS): The row stationary aims at maxi-
mum reuse of every data type (input activations, weights and
partial sums) at the local memory (RF) of the PEs unlike
the WS, which stores only the weights and OS, and OS,
which stores the partial sums. This reduces overall energy
consumption. The paper [29] proposes the RS method and
it provides a 1.4x to 2.5x energy efficiency when compared to
other data flow methods [29].

B. Number Representation

The CNN that is run on CPU and GPU typically use
32bit floating point representation. The weight and activation
values do not require this precision for inference and thus,
8-bit fixed point and 16-bit fixed point representations are
chosen. The dynamic range of activations and weights vary
from layer to layer and type of layer. In [41] an 8-bit filter
weights and 10-bits activations are used achieving less than
1% degradation in accuracy. By reducing the precision, the
energy and cost of storing the data also reduce. The Fig. 7
shows the 32-bit floating point number and 8-bit dynamic
fixed point examples. The 32-bit floating point is represented
by (−1)s × m × 2(e−127), where s is the sign bit and m is
the 23-bit mantissa and e is the 8-bit exponent. The N -bit
fixed point number is represented by (−1)s ×m× 2−f , and

TABLE VIII
STATE OF THE ART DIGITAL DESIGN

Metric EEPSCP Eyeriss EIE
[42] [29] [43]

Technology 40nm LP 65nm 45nm
Supply(V) 1.1 1 1

Area(mm2) 2.4 12.2 40.8
On-chip 148 192 10368

Memory(kB)
Power(mW) 76 278 579

Frame rate(fps) 47 8 20
Throughput(GMACs/sec) 102 33.6 51.2

Frequency (MHz) 204 200 800

performs scaling action, the m is the (N-1)-bit mantissa. The

TABLE IX
8-BIT REPRESENTATION

ADD MULTIPLY
Factor 32-bit fix. pt. 32-bit fl. pt. 32-bit fix. pt. 32-bit fl. pt.
Area 3.8x 116x 3.8x 116x

Energy 3.3x 30x 3.3x 30x

Fig. 7. Number representation [32]

advantages of 8-bit fixed point representation [44], is shown
in Table IX. The 8-bit representation is efficient in terms of
area and energy.

V. CONCLUSION

In this paper, a number of the sensor subsystems with
its principle of operation, functionality, characteristics, spec-
ification, and communication protocol are documented. The
cognitive algorithms corresponding to each sensor data type
are analyzed and the possible advantages and disadvantages of
each approach are described. The profiling section describes
the energy, memory and computation distribution in a standard
CNN. The type of compute architectures are compared and
optimization methods in terms of convolution algorithms,
datapath, algorithm and number representation are explored.
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List Of Acronyms

CNN . . . . . . . . . . Convolution Neural Network

CSV . . . . . . . . . . . Comma-Separated Values

DNN . . . . . . . . . . Deep Neural Network

DRAM . . . . . . . . Dynamic Random-Access Memory

EDP . . . . . . . . . . . Energy Delay Product

FoM . . . . . . . . . . Figures of Merit

HBM . . . . . . . . . . High Bandwidth Memory

HMC . . . . . . . . . . Hybrid Memory Cube

ILSVRC . . . . . . . ImageNet Large Scale Visual Recognition Competition

IFmap . . . . . . . . . Input Feature Map

MAC . . . . . . . . . . Multiply and Accumulate

MLP . . . . . . . . . . Muli-layer Perceptron

NN . . . . . . . . . . . . Neural Network

OFmap . . . . . . . . Output Feature Map

PE . . . . . . . . . . . . Processing Engine

PCM-RAM . . . . Phase Change Random Access Memory

ReRAM . . . . . . . Resistive Random Access Memory

RF . . . . . . . . . . . . Register File

SRAM . . . . . . . . Static Random-Access Memory

SIMD . . . . . . . . . Single Instruction Multiple Data

SIMT . . . . . . . . . Single Instruction Multiple Thread

SLP . . . . . . . . . . . Single-layer Perceptron

STT-RAM . . . . . Spin Transfer Torque Random Access Memory

SA . . . . . . . . . . . . Systolic Array

TLM . . . . . . . . . . Transaction Level Modelling

VGGNet . . . . . . . Visual Geometry Group Network
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