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Abstract—Demand exceeding the capacity of a bottleneck
will create congestion upstream of that bottleneck. Once
this congestion occurs, the maximum flow through this
bottleneck decreases (capacity drop). By limiting the flow
towards the bottleneck, one can prevent or postpone the
capacity drop and the accompanying congestion. In case the
bottleneck is caused by an on-ramp, a common approach
is to meter the on-ramp flow. For metering to be effective
the algorithm has to be tuned carefully. Normally, the
parameters of a metering algorithm are fit for the situation.
However, traffic is dynamic and external factors might
change, which both lead to changes in parameters of the
traffic process. This paper studies how these parameters
can be updated dynamically in the control algorithm. It
considers various ramp metering algorithms and introduces
methods to adapt their parameters. They are tested with
simulations using the METANET model. This shows that
parameter adaptation improves traffic state. Gains in travel
time due to parameter adaptation are typically several
percent compared to non-adaptive ramp metering. Road
authorities can use these findings to improve ramp metering
algorithms and reduce delays.

Index Terms—traffic management, traffic control, ramp
metering, parameter adaptation

I. INTRODUCTION

Ramp metering is an important traffic management
measure to deal with congestion problems on motor-
ways, particularly the disruptions caused by high de-
mands of traffic entering the motorway from on-ramps.
The goal of ramp metering is to restrict demand for on-
ramps near a bottleneck or to decrease the number of

The research was supported by the Netherlands Organisation for
Scientific Research and was conducted at the ITS Edulab, a cooperation
between Rijkswaterstaat and Delft University of Technology.

disruptions in the traffic stream on the motorway due
to the merging process, for example caused by platoons
of vehicles coming from an upstream signalized inter-
section [1]. Ramp metering splits platoons of vehicles
into individual vehicles, which can find and fill gaps
in the main stream much easier. This is done using a
traffic light which allows vehicles to enter the motorway
one by one. Not only does this improve the merging
process, also the capacity of the motorway can increase if
the capacity drop is postponed or prevented. Introducing
extra delay on the on-ramp could also cause drivers to
choose another on-ramp or even another route, which
decreases demand and improves the local situation.

In the Netherlands, ramp metering was first applied on
an on-ramp to the ring road of Amsterdam in 1989. More
applications followed rapidly, leading to a total number
of 122 metering systems throughout the country in 2016
[2]. The control itself is done with special traffic lights.
They differ from normal traffic lights in their design
(yellow background shield) and in the way the signals
are located: as close as possible near the driver (lower
and closer to the stop line then normal traffic signals).
Another important difference is that in the case an on-
ramp has more than one lane the signals operate lane
dependent.

The metering system operates using real-time traffic
data, collected with induction loops both on the motor-
way and on the on-ramp. For the motorway data on
flows and speeds are collected on two cross-sections,
upstream and downstream the on-ramp. On the on-ramp
itself loops are used to count vehicles and to detect the



presence of vehicles, which is used to control the length
of the metering phase and to detect queues. The data
is used to feed the control algorithm for two purposes.
One purpose is to determine when to switch the system
on or off and the other purpose is to calculate the best
cycle time for the situation. The cycle time determines
the inflow of the ramp to the motorway. Ramp metering
proves to be very effective. From the 19 assessment
studies that were carried out in the Netherlands in 25
years time [1], [3], it can be derived that due to ramp
metering the delay (in terms of lost vehicle hours)
decreased on average with about 11%.

The control algorithm for ramp metering has al-
ways been an important research topic in the Nether-
lands. Starting with the demand-capacity Rijkswaterstaat
(RWS) algorithm, also the ALINEA algorithm and an
algorithm based on fuzzy logic have been tested [4], [5].
Although both ALINEA and the fuzzy logic algorithm
produced comparable or even better results, for practical
reasons (tuning) the RWS algorithm was chosen as the
standard for application in the Netherlands. However,
since 2010 the attention for the control aspects of ramp
metering renewed, especially with respect to the relation
and eventually coordination with other traffic manage-
ment measures. This was due to the large scale traffic
management field trial in and around Amsterdam [6].
This trial applied a variant of the ALINEA algorithm
for ramp metering on a network level. The trail showed
that adaptation of the control parameters was needed. In
this paper we do not consider random effects of vehicle-
driver composition, changing within a minute. Instead,
we changes of the driving behavior on a longer time
scale, for instance due to gradual change of driving
education of vehicle technology, or on a medium time
scale changing weather conditions. The contribution of
this paper is development and testing of a method how
parameters can be made adaptive. Note that this paper
summarizes the main results extensively elaborated in
the thesis of Meulenberg [7].

First we will analyze some available control concepts
for ramp metering (section II). Then, section III explains
the proposed method to optimize the parameters of the
ramp metering algorithm. Section IV shows how the
method will be tested and the results of these tests are
described and discussed in section V. Finally, section VI
presents the conclusions.

II. CONTROL ALGORITHMS FOR RAMP METERING

As stated before, the purpose of ramp metering is to
regulate the inflow from the on-ramp to the mainline of
the motorway. Since the introduction of ramp metering,

many algorithms were developed and put into practice.
This research is restricted to the local ramp metering
strategies used in the Netherlands, being the Rijkswater-
staat (RWS) strategy and the ALINEA strategy.

A. RWS strategy

The RWS strategy is a variant of the demand-capacity
(DC) strategy. A standard DC strategy makes use of
the motorway traffic conditions upstream of the on-
ramp. This is called feed forward control. The strategy
calculates the number of vehicles allowed to enter the
motorway r(k) in time interval k. If the last measured
upstream motorway occupancy oin (in %) is smaller or
equal than the critical occupancy ocrit, the allowed flow
is computed by subtracting the last measured upstream
motorway flow qin from the downstream capacity qcap. If
the occupancy is higher, the allowed flow is determined
by the minimum pre-specified ramp flow rmin. The DC
strategy is formulated as follows [8]:

r(k) =

{
qcap − qin(k − 1) if oin(k − 1) ≤ ocrit

rmin otherwise
(1)

The strategy is generally known to be quite sensitive
to various non-measurable disturbances [9]. To reduce
the sensitivity for these disturbances and leaps in the
metering rate, the RWS strategy does not use the occu-
pancy upstream as a threshold, but it uses the upstream
smoothed flow q̃in(k) and the measured flow from the
previous time interval qin(k − 1):

r(k) = qcap − q̃in(k) (2)

q̃in(k) = α ∗ qin(k − 1) + (1− α) ∗ q̃in(k − 1) (3)

where α is the smoothing parameter [1]. The minimum
flow is enforced on r(k) itself, so when r(k) < rmin then
r(k) = rmin.

B. ALINEA

According to [8] it is actually the best to control
the traffic based on the conditions downstream of the
ramp. This is called a feedback control strategy. The
ALINEA algorithm is such a feedback strategy. The
first ALINEA algorithm, developed by [10], uses the
downstream occupancy (%) oout(k − 1) as input for the
control strategy. ALINEA tries to control the inflow in
such a way that the occupancy is held close to a certain
desired value ô:

r(k) = r(k − 1) +KR[ô− oout(k − 1)] (4)

where KR is the regulator parameter.
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Several variations on the ALINEA algorithm have
been developed where the (targeted/measured) variable
occupancy is replaced by density, speed or even flow. In
this paper we discuss and test two variations which are
relevant for the current practice in the Netherlands: D-
ALINEA and PI-ALINEA. D-ALINEA [6] uses density
and therefore an important parameter is the critical
density. PI-ALINEA [11] consists of a Proportional (P)
and an Integral (I) part with several parameters. Both
algorithms are described in the following subsections.

1) D-ALINEA: D-ALINEA is the variation which
makes use of density instead of occupancy as the mea-
sured variable and the target value. So, equation 4 now
becomes:

r(k) = r(k − 1) +KR[ρ̂− ρout(k − 1)] (5)

The adaptive part, which was developed during the Traf-
fic Management Trial Amsterdam, estimates the target
density ρ̂ with a parameter estimator. The parameter
estimator first determines the critical density ρcrit based
on the current traffic conditions. Then the desired value
of the density ρ̂ is derived from the critical density with
ρ̂ = ξ ∗ ρcrit with ξ ≤ 1. In this way the algorithm tries
to prevent that the density exceeds the critical value ρcrit.

2) PI-ALINEA: The PI-ALINEA variation was devel-
oped for distant downstream bottlenecks, because the
normal ALINEA variation is less efficient for these
cases. This has to do with the time delay involved
if a bottleneck is located further downstream the on-
ramp than the merging area [11]. In PI-ALINEA, the
proportional part gives the gain over the error between
a measured downstream value one time step earlier and
a current measured downstream value. The integral part
represents gain over the error of a certain target value and
the downstream measured value. It was originally devel-
oped with the occupancy as target value. In equation 6
this variation is denoted with density as the variable:

r(k) = r(k − 1)−KP[ρout(k − 1)− ρout(k − 2)]+

KI[ρ̂− ρout(k − 1)] (6)

The only results for this variation we know of, are
described in [11]. Here PI-ALINEA is tested on distant
downstream bottlenecks. The standard ALINEA varia-
tion with occupancy was not able to maintain the maxi-
mum throughput and PI-ALINEA showed better results.
It was also concluded that PI-ALINEA is only applicable
if the bottleneck location is known beforehand, which
means that detectors have to be deployed there.

C. Discussion

The algorithms described in the previous section all
have fixed parameters (target values and regulator pa-
rameters), which have to be set if the algorithm is going
to be implemented in practice. Experience has shown
that this is a difficult and time-consuming task for the
traffic engineer. Results from the Traffic Management
Trial Amsterdam show that using an adaptive approach
to the target density could improve the situation. In the
research described in this article we take this a step
further and investigate what happens if we make more
parameters adaptive. The method how we did that and
the results are described in the following sections.

III. A RAMP METERING ALGORITHM WITH
PARAMETER ADAPTATION

In our research we focused on the PI-ALINEA al-
gorithm to include parameter adaptation and we named
this the Adaptive Ramp Metering Controller (AD-RMC).
For AD-RMC the following control law is formulated,
where KI, KP are parameter gains, which are now time
dependent, just like the target density ρ̂:

r(k) = r(k − 1) +KP(k) ∗ [ρ̂(k)− ρout(k − 1)]+

KI(k) ∗
∫ k

1

(ρ̂(k)− ρout(k − 1)) dk (7)

For updating the parameter gains every time step, we use
a gradient method. For the determination of the target
density we will estimate the critical density ρcrit using
a parameter estimator. The target density is defined as
ρ̂(k) = ξ ∗ ρcrit(k), where ξ should be interpreted as the
fraction of the capacity of the road that can be filled. In
our case we use ξ = 0.9.

First this section describes how the parameter gains
KP and KI are updated (section III-A) and then how the
critical density ρcrit is estimated (section III-B).

A. Parameter gains adaptation law

The reference situation on the motorway is obtained
when the throughput is optimized. This happens when
the density is close to the critical density [12]. To be able
to deal with variations, not the critical but a somewhat
lower density is set as target, as we explained earlier.
The error (e) in the algorithm is the target density ρ̂
subtracted by the actual downstream density ρout. With
this, we can rewrite equation (6) as follows:

r(k) = r(k − 1) +KP(k)∗
[e(k)− e(k − 1)] +KI(k) ∗ [e(k)] (8)
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The gradient method tries to make the error converge
to zero by adaptation of the parameter gains. The method
is based on the work described in [13]. For adaptation
of the parameter gains KI and KP, an objective function
J can be defined as follows:

J(K) = 1

2
e(K)2 (9)

where K is the parameter gain (KI or KP) and e the
error. To minimize this objective function, the derivative
is used. Equation 10 gives the derivation towards the
general parameter update rule, in with γ is the adaptation
gain.

dK
dt

= −γ ∂J
∂K

= −γe ∂e
∂K

(10)

If we discretize this equation we get the the actual
update rules for the parameter gains, again with γ as the
adaptation gain and Ts the sample time in hours.

K(k) = K(k − 1)−

γ ∗ Ts ∗ e(k) ∗
e(k − 1)− e(k − 2)

K(k − 1)−K(k − 2)
(11)

A non-changing parameter gain leads to an error in
this equation. If all of the following conditions hold,
there are no updates in the parameter gain:

• Queue control active OR e(k) > 10 veh/km
• |ρout(k)− ρout(k − 2)| < αgains
• e(k)−e(k−1) > βgains∧e(k−1)−e(k−2) > βgains

where αgains and βgains are threshold values. If the sit-
uation occurs that two consecutive realizations of KP
or KI still have the same value, the value is increased
by 10% (if K > 0.5) or decreased by 2% (otherwise).
These values, as well as values for γ, αgains and βgains
are determined by trial-and-error.

B. Parameter estimator

To determine the derivative of the fundamental di-
agram at time k, D(k), flow and density of the past
T time steps preceding time step k is computed based
on a linear regression. An initial value for the critical
density is set beforehand. When the derivative meets
a certain threshold value (β+, β−) the values for the
critical density is updated. The update rules for the
critical density consist of weighing the previous value
with the newly measured density. For the weighing
smoothing factors α and δ are used to prevent oscillatory
behavior. We separate two cases: undercritical conditions

Non-adaptive

Adaptive

D-ALINEA

PI-ALINEA

AD-RMC
Parameter estimator only

AD-RMC
Gradient method only

AD-RMC
Parameter estimator and 
gradient method
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Figure 1. Overview of the tested algorithms

and overcritical conditions. In undercritical conditions,
defined as D(k) > β+ > 0, the update rule is:

ρcrit(k) =


αρcrit(k − 1) + (1− α)ρout(k)

if ρcrit(k − 1) < ρout(k)

ρcrit(k − 1)

if ρcrit(k − 1) ≥ ρout(k)

(12)

In overcritical conditions, specified by D(k) < β− < 0,
the update rule is:

ρcrit(k) =


αρcrit(k − 1) + (1− α)ρout(k)

if ρcrit(k − 1) > ρout(k)

ρcrit(k − 1)

if ρcrit(k − 1) ≤ ρout(k)

(13)

The estimated, new critical density will be used to
update the target density in the ramp metering algorithm.
If the conditions are not undercritical or overcritical then
the critical density will not be updated. The values for α,
δ, β+, β−, and initial values were determined by means
of trial-and-error.

IV. EXPERIMENTAL DESIGN

To test the developed adaptive control algorithms for
ramp metering, several scenarios were simulated. This
was done for a theoretical case using simulation with
a macroscopic traffic model. This case is described,
together with the tested algorithms and the performance
criteria to assess the different algorithms, in the next
sections.

A. Tested algorithms

Figure 1 shows the algorithms which were tested.
A first distinction was made between the algorithms
for which parameters are fixed and the algorithms with
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adaptive parameters. Typically, the first type represents
the current practice in which control parameters are
adjusted manually to improve performance. The first
non-adaptive algorithm is considered to be the reference
case. For both D-ALINEA and PI-ALINEA we chose
two different settings for the critical density, one just
below the critical density used in the simulation model
and another one much higher. This might be not the
best choices, but the rationale behind this is that the
critical density might be estimated wrongly, and a control
algorithm should be robust for this. Also the factual
density at which capacity is attained in the METANET
model is not necessarily the critical density. Sometimes
the factual density is larger, therefore the second one is
chosen in the upper part of the critical density spectrum.

Two versions of adaptivity can be included: (1) an
adaptive critical density, estimated with the parameter
estimator, and (2) adapting the gains for the PI controller
with the gradient method. It is tested to which extent
each of the adaptations improves the traffic performance,
and whether or not the combination (variable critical
density and gains) improves the traffic performance even
more.

All tested algorithms use general (de)activation crite-
ria. One criterion is when the maximum storage space of
the ramp almost has been reached. To avoid spill back
from the ramp to the underlying network a queue control
rule is used. Queue control avoids releasing all vehicles
at once onto the motorway, but uses the metering rate
calculated with r = w + d − 0.8wmax, where w is the
queue length, wmax is the maximum queue length and d
is the demand on the ramp. This ensures that the ramp
is not completely occupied with a queue.

B. Traffic model

To assess the performance of the algorithms we use
simulations with the METANET model [14] [15]. This
is a second order macroscopic model, requiring a fun-
damental diagram and a relaxation towards the speed
matching the fundamental diagram. The METANET
model provides a capacity drop, due to the relaxation
of speeds. This is an essential property for testing the
effectiveness of a ramp metering installation. For the
merging process, we also follow the original METANET
formulation. The ramp metering is modeled by limiting
the flow of the last cell of the on-ramp. The critical
density is input to the METANET model. Therefore
estimating it could be an easy task. To introduce more
realism in the simulation for every run the critical density
is stochastically varied, representing the stochasticity
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Figure 2. Demand profiles for the simulations

of traffic as well as the uncertainty in the estimation
process.

C. Simulation setup

For the case study, we consider a two-lane road stretch
of 30 km, with an on-ramp at 20 km. The network is
divided into cells of 1 km, and the progression of traffic
is computed with a time step of 10 seconds. The on-
ramp and the mainline have separate demand profiles,
which all end up at the same destination. The demand
profiles are shown in figure 2. Note that both demands
reduce to zero, such that the network can empty at the
end of the simulation. Consequently, in all scenarios,
the same number of vehicles arrive, which makes the
average travel times comparable. This is a theoretical
case designed to show the effects of adaptive control
parameters. Therefore, the demand profiles and model
parameters are chosen in such a way that congestion
occurs at the on-ramp, which extends upstream for 15
kilometers and resolves after the drop in demand at 120
minutes or at the end of the simulation.

Apart from the runs with a normal demand profile,
additional runs are done with a different demand profile,
see also figure 2. This will show to which extent the ramp
metering algorithm can handle variations in demand, and
is not fitted for one case only. In case of no metering,
the peaks in the demand will induce congestion and
trigger the capacity drop. This matches normal traffic
conditions, where demand is stochastic by nature due to
departure patterns, but also due to traffic influences like
traffic signals or congestion upstream on local roads.

The simulation is stochastic. During each run the crit-
ical density of the merging section varies stochastically
each minute. Its value is drawn from a normal distribu-
tion with a mean value of 33.5 veh/km/lane (obtained
from measurements on motorways in the Netherlands),
with a mean of 0.5 veh/km/lane. The number of runs
required depends on the standard deviation, a specified
confidence level of (95%) and an allowed error of
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Table I
SIMULATION RESULTS

ρcrit TD TOD AAMT Runs
veh/km/lane veh-h veh-h min #

No control 3079 0 26.3 30
D-ALINEA 30 2935 69 25.4 30
D-ALINEA 40 2915 27 25.8 90
PI-ALINEA 30 2857 68 25.3 30
PI-ALINEA 40 3079 0 26.3 30
AD-RMC Par. est. 2833 42 25.5 88
AD-RMC Grad. meth. 2800 53 25.3 90
AD-RMC Both est. 2830 45 25.4 140

(10 sec/veh) [16]. The resulting required number of
runs change, and are indicated in table I. Neither of
the setpoints for the controller (30 or 40 veh/km/lane)
coincides with the mean capacity. This reflects the fact
that the critical density will evolve from the setpoint with
time anyway.

D. Performance criteria

To assess the different algorithms the following per-
formance indicators are used:

• Total delay in the network (TD, in vehicle-hours).
We compute so by adding the delays encountered
in each cell (compared to free flow travel time).

• Total on-ramp delay (TOD, in vehicle-hours). This
is the total delay encountered on the on-ramp,
before merging to the main line.

• Average mainline travel time (AMTT, in minutes):
for every time step the travel time on the mainline is
calculated and these are averaged to obtain a value
for the whole simulation period.

The indicators show the balance between the delay for
drivers on the main road and on the motorway. From
a policy perspective, this could be an essential part for
consideration of fairness.

V. RESULTS

This section discusses the results: first for the regular
demand profile, and then for the more variable demand.

A. Regular demand profile

The results of the regular demand profile are given in
table I. It shows the absolute values of the performance
indicators for all scenarios and also the number of
simulations needed to obtain a 95% confidence level.
The no-delay travel time equals 3609 veh-hrs, so the
delays equal approximately half the total time spent.

Table I shows that non-adaptive algorithms perform
fairly well in comparison with the no-control (NC) case:

up to 7% less delay. The D-ALINEA algorithm with
a critical density of 40 veh/km/lane performs slightly
better than the variant with a critical density of 30
veh/km/lane. The total delay is somewhat lower (-1%)
and there is also less delay on the on-ramp, but the
mainline travel time is a little longer. It seems that this
variation makes a better use of the available capacity,
but this comes with a cost: there is more spread in the
results from run to run. Therefore, this scenario needed
more simulation runs for statistically reliable results. The
non-adaptive PI-ALINEA with a critical density of 40
veh/km/lane did not give any improvement compared the
NC case. There is no metering, hence no delay on the
on-ramp, and exactly the same performance as in the no-
control case. However, the PI-ALINEA with a critical
density of 30 veh/km/lane has the best performance
among the non-adaptive algorithms, yielding the lowest
total delay.

The AD-RMC was tested in three different scenarios.
Results of the algorithm with adaptation of the parameter
gains or the critical density show improvement compared
to the NC case, but also compared with the non-adaptive
scenarios. The AD-RMC with the parameter estimator
had an average total delay (TD) of 2833 vehicle hours
(-8%), where the AD-RMC with the gradient method had
an average TD of 2800 vehicle hours (-9%) compared
with the NC-case. Comparing adaptive with non-adaptive
methods: the best adaptive strategy (AD-RMC with
gradient method) improved delay with 4.0% compared
with D-ALINEA and 2.0% compared with PI-ALINEA.
This improvement comes on top on the results already
obtained when introducing ramp metering. Compared to
no control, total the delay decreases with 9.1%.

Results of the algorithm with a combination of both
adaptation methods show considerable variation. There-
fore, many more simulations were needed for statistically
reliable results. This scenario had an average delay of
2830 vehicle hours, comparable to the scenario with only
the parameter estimator active. This could be the result of
situations where estimators oppose instead of strengthen
each other. This also means that this algorithm is less
stable.

The improvement is for a large part due to the post-
ponement of the capacity drop. To illustrate that figure 3
shows the traffic flow during the NC case and the flow
with the two different AD-RMC algorithms. As can be
seen the capacity drop still occurs due to the onset of
congestion, which cannot completely be prevented by
ramp metering, but occurs much later. The time the
capacity drop is postponed is clearly visible in these
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Figure 3. Traffic flow with Parameter adaptation compared to no
control

figures. For both AD-RMC scenarios the capacity drop
occurs at approximately 80 minutes. For the NC case
the capacity drop occurs at approximately 50 minutes,
which explains the savings in total delay.

The adaptation of one type (parameter gains or critical
density) leads to the best results in terms of total time
spent or total delay. The improvements are obtained at
the cost of a higher on-ramp delay, but in total the
network performs better. The non-adaptive PI-ALINEA
with a critical density of 30 veh/km/lane has an im-
provement of 2.7% over the D-ALINEA with the same
critical density in terms of total delay. The AD-RMC
with the parameter estimator for the critical density has
an improvement of 3.5% over the D-ALINEA in terms
of total delay. The AD-RMC with the gradient method
for the parameter gains performs best in terms of total
delay. This variation reduces TD with of 4.6% compared
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to D-ALINEA.

B. Variable demand profile

The results for the total delay with the variable de-
mand are shown in figure 4. The control algorithms
with variable demand show the same pattern, but the
improvements are a bit higher compared to the NC case.
For example the AD-RMC with gradient method has
an improvement in total delay of 10% compared with
the NC-case. For the regular demand this was 9.1%.
Overall, the results show that the AD-RMC algorithm
with gradient method performs best for both demand
profiles.

VI. CONCLUSIONS AND FURTHER RESEARCH

In this paper we developed and tested a new ap-
proach to ramp metering strategies. Instead of finding
the fixed (set point) parameters for a ramp metering
algorithm, the contribution of this paper a method to
make these parameters adaptive. This saves effort for
finding the optimal fixed value, and avoids the problem
that the same fixed value is not optimal for all situations.
The method is incorporated in a new adaptive ramp
metering controller (AD-RMC) in which up to three
parameters are continuously updated to fit the ever
changing circumstances in traffic. The AD-RMC was
tested by simulation, using METANET, a second-order
macroscopic traffic flow model, and was compared with
existing variations of the ALINEA metering algorithm:
the D(ensity)-ALINEA and the standard PI-ALINEA (PI
for proportional integral).

From the research it can be concluded that the AD-
RMC with only one of the estimators active gives
promising results. These two variations performed best in
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terms of less delay (up to 4.6%), for the situation chosen.
Another conclusion is that from the standard algorithms
the non-adaptive PI-ALINEA performed best. The PI-
ALINEA, as specified in this paper was never tested
before and it showed very stable and better results than
any of the D-ALINEA algorithms. This was a surprise
as the only known research of a PI-ALINEA algorithm
was done only with the proportional term. In this paper
the algorithm has been extended by adding an integral,
which lead to this good result. Probably this is due
to the fact that this term tries to keep the measured
output closer to the desired value than a proportional
only algorithm.

For the tested situation, the AD-RMC with both esti-
mators active did not perform as expected. In terms of
total delay, the performance is as good as one with only
one estimator active, but in terms of stability it performed
much less: fluctuations between runs were very high.
This could be the result of the combination of different
estimations which could have opposite effects.

The conclusions derived from the simulations with
a regular demand profile were confirmed by the sim-
ulations with a more variable demand profile. Both the
non-adaptive D-ALINEA as well as the two AD-RMC
variants with only one of the estimators active even
showed somewhat higher improvements.

For future research it is recommended to investigate
the conditions used for updating the parameter gains by
means of the gradient method. This could improve the
stability of the AD-RMC, especially the one with the
gradient method. Is is also recommended to test other
gain update rules instead of the gradient method. This
could lead to a more stable controller.

Another recommendation is to test the AD-RMC with
a microscopic simulation model to get a more accurate
traffic situation and a more realistic environment to test
ramp metering strategies. With a microscopic model is
is also possible to track driving behavior and external
effects like route choice. This is also an important aspect
of ramp metering and can be tested with an urban
network and more on- and off-ramps on the motorway. It
is known that ramp metering affects the route choice of
drivers and it would be interesting to know this works out
for the AD-RMC. Furthermore, microscopic simulation
would also make it possible to combine ramp meter-
ing algorithms with new developments in cooperative,
connected and automated driving. Finally, microscopic
simulation could reveal the stochastic effects of vehicle
composition in critical density. The adaptation of control
parameters to this stochasticity should also be further

investigated.
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