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curved surfaces, however, remains chal-
lenging for engineers. These challenges 
can, for example, be observed in the case 
of thin-walled structural elements, which 
are very popular due to their combination 
of lightness, load transfer efficiency,[11–14] 
and low cost. Although an initially flat 
panel can be reasonably bent in a single 
direction to adapt the shape of an arch, 
transforming the panel into a shell 
dome or a saddle and, thus, changing 
its Gaussian curvature remains chal-
lenging.[15–18] Several studies have used 
computer-aided design using conformal 
geometry,[19,20] origami,[21–30] kirigami,[31,32] 
or crumpling[33,34] approaches to create 
curved objects from flat sheets. However, 
these approaches rely on very thin sheets 
and only lead to an approximation of 
the desired curvature. Other techniques 
based on non-uniform swelling[35,36] or 
inflation[37] or liquid crystal phase transi-
tion[38] have also been proposed, but these 
structures are made of soft materials and 
may not be suitable for large-scale and/or 

load-bearing structures. “Bending-active system”[39,40] is another 
approach to create form-finding structures. These form-finding 
structures rely on the elastic deformation of a combination of 
several structural elements (e.g., vector-active, surface-active, 
form-active, etc.) that are initially planar or straight.[40–44] There-
fore, individual curved beam, shell, or membrane elements 
of bending-active systems remain elastically constrained and 
can carry residual bending stresses.[40] Therefore, patterning 

The design of advanced functional devices often requires the use of intrinsi-
cally curved geometries that belong to the realm of non-Euclidean geometry 
and remain a challenge for traditional engineering approaches. Here, it is 
shown how the simple deflection of thick meta-plates based on hexagonal 
cellular mesostructures can be used to achieve a wide range of intrinsic (i.e., 
Gaussian) curvatures, including dome-like and saddle-like shapes. Depending 
on the unit cell structure, non-auxetic (i.e., positive Poisson ratio) or auxetic 
(i.e., negative Poisson ratio) plates can be obtained, leading to a negative 
or positive value of the Gaussian curvature upon bending, respectively. It 
is found that bending such meta-plates along their longitudinal direction 
induces a curvature along their transverse direction. Experimentally and 
numerically, it is shown how the amplitude of this induced curvature is 
related to the longitudinal bending and the geometry of the meta-plate. The 
approach proposed here constitutes a general route for the rational design of 
advanced functional devices with intrinsically curved geometries. To demon-
strate the merits of this approach, a scaling relationship is presented, and its 
validity is demonstrated by applying it to 3D-printed microscale meta-plates. 
Several applications for adaptive optical devices with adjustable focal length 
and soft wearable robotics are presented.

1. Introduction

Curved surfaces are ubiquitous in nature. Biology, in par-
ticular, thrives on curved objects, as a growing body of recent 
evidence suggests.[1–3] Fundamental processes, such as cell 
migration,[4,5] morphogenesis,[6,7] and tissue regeneration[8,9] 
are often dependent on the curvature of their surrounding 
environments.[10] The design of dynamic and programmable 
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individual elements and their pre-stress condition can control 
the shape of the bent elements. This is why bending-active 
design strategy is mostly considered as a suitable approach for 
building arbitrarily curved objects rather than continuous struc-
tures. This approach can also be used for the design of com-
pliant mechanisms.[40]

Following Carl Friedrich Gauss’s “Egregium” theorem, the 
only theoretically admissible way of obtaining intrinsically 
curved geometries from flat sheets is to allow for in-plane defor-
mations.[21,45] The physics of continuum plates has been exten-
sively studied using classical elasticity theories. As an example,  
Kirchhoff–Love’s classical theory of plates[46] explains the 
mechanics of thin plates, where through-the-plane shear effects 
are eliminated, but the Reissner–Mindlin’s theory describes 
the mechanics of thick plates by considering through-the-plane 
shear deformations.[47–49] Some other examples of the approaches 
that have been applied to improve our current understanding of 
the mechanical behavior of curved structures are higher-order 
shear-deformation theory[50,51] and bending gradient theory[52] 
that have been used to analyze the curvature of composites 
plates and differential geometry[53–55] that can be utilized to study 
curved objects in the 3D Euclidean space. It is often challenging 
to derive exact solutions for these analytical problems. Therefore, 
finite element (FE)-based (homogenization) approaches can be 
used to analyze the bending behavior of cellular structures.[56–59]

Even though the mechanics of continuum plates have been 
well studied, “thick” non-isotropic plates that exhibit auxeticity 
(i.e., a negative Poisson’s ratio) have been less explored,[60–62] 
particularly under bending deformations. We propose a com-
bination of computational modeling and experiments to study 
how curvature develops in thick plates exhibiting auxetic or non-
auxetic behaviors as a result of mechanical deformation. One 
way to manipulate the Poisson’s ratio of a plate is to use archi-
tected designs such as those found in cellular metamaterials. 
Rationally designing the small-scale geometry of metamaterials 
allows for creating unusual macroscale properties, such as 
negative values of the Poisson’s ratio[61,63–67] and stiffness,[68,69] 
as well as for shape adjustments, such as shape-matching,[70] 
shape morphing,[71–73] shape-shifting,[19] or shape integrity.[74] 
The prefix “meta” is sometimes also applied to structural ele-
ments with similar unusual behaviors (e.g., metabeams[75]). It 
is within this context that we refer to our thick plates with dif-
ferent distributions of the Poisson’s ratio as “meta-plates.”

Here, we focus on the Gaussian curvature that describes the 
intrinsic curvature of a surface that can be “felt” by the inhabit-
ants of that surface. This is in contrast with the extrinsic cur-
vature, which requires the embedding into a space of higher 
dimension to be observed. The Gaussian curvature of a surface, 
κ , is obtained as the product of its two principal curvatures, 
κ1 and κ2:κ κ κ= .1 2 (Figures  1a,b). Depending on the values of 
these principal curvatures, three types of surfaces, namely syn-
clastic (i.e., dome-like), monoclastic (i.e., zero-curvature), or 
anticlastic (i.e., saddle-like) can be defined.

2. Results and Discussion

Bending a rubber eraser along its length results in a curvature 
of opposite sign along the transverse direction (Figure 1a). The 

origin of such induced curvature is the Poisson’s ratio, ν , which 
relates the strain observed along a transverse direction to the 
strain applied along the longitudinal direction. Usual materials 
have a positive Poisson’s ratio and tend to get compressed in 
the transverse direction under uniaxial stretching. As the eraser 
is bent with a curvature κ1, its upper part is stretched while the 
lower part is compressed, leading to opposite strains in the 
transverse direction. As a result, a curvature κ νκ=2 1� , appears 
in the transverse direction giving rise to a familiar saddle shape 
(Figures 1a,b). However, this anticlastic effect is only observed 
in the case of small-width plates that approach the slender 
shape of a beam. Bending a wide plate generally results in a 
single curvature (i.e., zero Gaussian curvature), except for a 
fraction of the width of the plate, which is of the order h κ( / )1

1/2,  
where h is the thickness of the plate.[76] The absence of the 
Poisson-induced curvature along the whole width is due to the 
additional cost in the stretching energy corresponding to the 
change of the Gaussian curvature. This paradigm is, however, 
challenged when considering cellular panels in which trans-
verse curvatures are observed even for relatively large specimen 
widths.[77,78] This effect can be interpreted as a consequence of a 
relatively low in-plane stretching stiffness of such meta-plates, 
while the flexural rigidity remains high.[79] Such combinations 
of in-plane and flexural mechanical properties can be used to 
accommodate Gaussian curvatures in thick meta-plates.

We designed thick cellular plates using hexagonal lattices 
characterized by an angle θ . Depending on the value of this 
angle, such meta-plates display either a positive (θ > °90 ) or 
a negative (θ < °90 ) value of the Poisson’s ratio, respectively 
leading to negative (Figures  1c,d) or positive (Figures  1e,f) 
Gaussian curvatures upon bending. Numerical simulations 
based on the FE method display the same features and will 
be used to study the impact of the different geometrical para-
meters on the induced transverse curvature.

Consider the out-of-plane buckling in the Z-direction of a 
meta-plate under compression in the Y-direction, while hinges 
provide free rotation at the ends (Figures 1c–f). From the clas-
sical theory of buckling, we expect the vertical displacement of 
the plate to follow a sinusoidal function of the longitudinal coor-
dinate with a half period equal to the length of the plate.[80,81] 
From symmetry, the displacement of the transverse coordinate 
should follow an even function. As a simplifying approxima-
tion, a quadratic function multiplied by the sinusoidal function 
can be used to predict the out-of-plane deformation of a thick 
meta-plate:

w x y A Bx Cy( )( ) ( )= +, sin2

 
(1)

where C Lπ= /  and A  and B are constants determined by fitting 
Equation  (1) to our experimental data points. We deduce the 
main curvatures at the middle point of the surface ACκ =1

2�  
and Bκ = 22 . We expect κ2  to vanish for small values of the 
meta-plate thickness.

To estimate the Poisson’s ratio of our structures, we used the 
existing theoretical relations based on rigid frames connected 
by hinges:[82]

cos

/ cosa b
ν θ

θ( )
= −

−  

(2)
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where a and b are the lengths of the struts of the hexagonal 
lattices (Figures 1c,e). The values of vary between 48° and 120°. 
Although the actual values of ν  should also depend on the 
applied strain, we assumed that ν  does not change significantly 
during bending. The reported values of the Poisson’s ratios, 
thus, pertain to the initial stage of the deformations. Beyond 
the Poisson’s ratio, several other parameters characterize the 
metastructure, including the cell size, 2 sinw b θ( )= , the thick-
ness of the cell wall, tw, the thickness of the plate, h, and the 
width of the plate, W  (Figure 1c). The applied load controls the 
longitudinal curvature, 1κ , through uniaxial compression. We 
used experiments and FE models to study how the transverse 
curvature, 2κ , varies as a function of these different parameters.

In the experiments and numerical simulations, our refer-
ence meta-plate is based on an array of 15 × 18 hexagonal cells 
with the following dimensions, 0w   = 5.1  mm, c  = 7.65  mm, 
tw  = 0.51  mm, and W  = 92  mm (Figure  1). Other specimens 
were designed based on multiples or fractions of these nominal 
parameters.

The specimens were uniaxially compressed in a stage. 
Beyond a buckling load, they adopt a longitudinal curvature 

1κ  and a transverse curvature 2κ . As the load is increased, the 
out-of-plane buckling is amplified. Initially, 2κ  increases propor-
tionally to 1κ , as in the case of a bent eraser, but then saturates 

(Figure  2). This behavior can be approximately captured by a 

saturating exponential of the form 12 max

1

sateκ κ= × −










κ
κ
−

. For 

1 satκ κ , we expect a linear evolution of the form 2
max

sat
1κ κ

κ
κ= . 

This motivates our interests in the prefactor max

sat

κ
κ

. We find that 

the maximum curvature ( maxκ ) reached by the meta-plates is 
linearly correlated to its Poisson’s ratio (Figure 2a, bottom-left), 
thickness (Figure  2b, bottom-left), as well as to the thickness 
(Figure  2c, bottom-left) and width (Figure  2d, bottom-left) of 

its unit cells. While the initial slope, max

sat

κ
κ

, varies linearly with 

the Poisson’s ratio (Figure 2a, bottom-right), it is approximately 
independent of the other geometrical parameters (Figures 2b–d, 
bottom-right).

We also observe a decrease of maxκ  as the thickness of the 
walls increases (Figure  2c, bottom-left). Increasing the thick-
ness of the meta-plates for the extreme values of the Poisson’s 
ratio increases the rate of the evolution of the second principal 
curvature (Figure 2b). Increasing the thickness of the unit cell 
struts, tw, affects the evolution of the second principal curva-
ture as well (Figure 2c). We also evaluated the evolution of the 
curvature when the unit cell size was scaled. Toward that end, 

Adv. Mater. 2021, 33, 2008082

Figure 1. a) An example of an intrinsically curved shape with two non-zero principal curvatures resulting from the bending of a rubber eraser. b) A 
sketch of the experimental setups and c–f) computational models of non-auxetic (c,d) and auxetic (e,f) meta-plates. The actual geometrical parameters 
used in the experiments and computations are presented in Table S1, Supporting Information. The numerical models depict (in contour lines) the 
vertical displacement, Uz, (mm).
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Figure 2. a–d) The evolution of the second principal curvature with respect to the first principal curvature for meta-plates with different values of the 
Poisson’s ratio (a), as well as different values of the thickness, h (b), unit cell thickness, tw (c), and unit cell width, w (d), in two extreme configurations 
(for each variation of a geometrical parameter, the other parameters were kept constant). The dependence is linear only for the lowest value of .1 2κ κ , 
as in the classical case of a rubber eraser but tends to saturate for the higher values of 1κ . The variation of 2κ  with 1κ  can be described using an expo-

nential function (i.e., emax sat12

1

κ κ= × −












κ
κ
−

). Insets show the evolution of the fitting parameters with the geometrical characteristics of the meta-plates.
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we changed the number of the unit cells while keeping their 

relative size constant (i.e., 
3

2

c

w
= ). Meta-plates with a higher 

number of overall unit cells (i.e., 3
0

w

w
= ) reach higher values 

of the second principal curvature (Figure  2d), and the rate of 
the evolution of the curvature for those upscaled structures is 
lower.

To study the effects of the boundary conditions on the 
second principal curvature, we created computational models 
of meta-plates with smaller and larger widths (i.e., /4W , /2W ,  
2W , and 4W ) than that of our reference models (i.e., W ) for 
both the maximum and minimum values of the Poisson’s ratio. 
For those cases, we kept the out-of-plane thickness of the meta-
plates (i.e., h = 5 mm) constant. We find the second principal 
curvature to be highly dependent on the width of the specimens 
for both auxetic and non-auxetic meta-plates (Figures 3k,l). As  
the width of the meta-plates increases, the absolute value of 

2κ  at the center of the meta-plates decreases (Figures  3a–j). 
For sufficiently large widths (i.e., plate’s width 2W> ), the 
middle part of the meta-plates exhibits a near-zero value of 2κ  
(Figures  3g–j). Closer to the boundaries, however, curvatures 
similar to what was observed for the reference models are 
observed (Figures 3g–j). An important observation is that when 
the width of the plate is much larger than the length, curva-
tures are always localized in the free boundaries with a specific 
penetration depth.

Global bending in the transverse direction is only observed 
for meta-plates with relatively small widths (i.e., plate’s  
width < W ) (Figure 3). As in the classical case of isotropic plates,[76] 
the bending of wide meta-plates is limited to their edges. Never-
theless, in contrast with classical plates, this maximum width is 
much larger than the typical limit ( / )1

1/2h κ . For instance, in the 
specimens shown in Figure  3, we observe uniform transverse 
bending up to a width of 92 mm (Figure 3e,f), for an applied cur-
vature equal to 1κ  = 36 m−1. In the case of a plain material, the 
limit in width for a uniform transverse bending under the same 
applied curvature is on the order of ( / ) 121

1/2h mmκ ≈ .
A comparison of the deformation of plain (i.e., non-archi-

tected) plates with equivalent isotropic elastic properties with 
those of meta-plates showed similar non-linear behaviors for the 
negative and positive values of the Poisson’s ratio. Both types of 
plates (i.e., plain and meta-plates) were linearly deformed and 
the transverse induced curvature saturated by imposing the lon-
gitudinal curvature. The plain plates, however, cannot predict 
the maximum curvature achieved by the meta-plates. For an 
equivalent set of geometrical parameters, the results obtained 
with plain plates cannot be directly extrapolated to meta-plates 
and the induced curvature is significantly larger in the case of 
meta-plates (Figure S1, Supporting Information).

The linear dependence of the transverse curvature on the 
thickness of the meta-plate and the Poisson’s ratio is confirmed 
experimentally. In Figure  4a–c, experimental measurements 
are compared with FE simulations for an imposed curvature 
(i.e., 1κ ≈ 20 m−1). There is a linear relationship between the 
thickness of the meta-plate, h, and its second principal cur-
vature, 2κ , (i.e., 2 hκ ∝ ) obtained using our computational 
models for extremely negative (Figure  4a) and extremely posi-
tive (Figure 4b) values of the Poisson’s ratio. This is similar to 

the linear dependency observed in beams.[76] Our experimental 
observations show a clear linear relationship between the 
second principal curvature and the Poisson’s ratio (i.e., 2κ ν∝ )  
as expected (Figure  4c). As the thickness of the meta-plate 
increases, the proportionality constant between the second prin-
cipal curvature and the Poisson’s ratio increases (Figure S2 and 
Table S2, Supporting Information). Furthermore, regardless of 
the value of the Poisson’s ratio, the second principal curvature 
linearly decreases as the in-plane thickness of the struts of the 
meta-plates increases (Figure S2, Supporting Information).

From the above-mentioned analyses, we propose the fol-
lowing dimensionless scaling relationship between the second 
principal curvature and the other geometrical parameters of the 
meta-plate (Figures 4d,e).

1 ,
w

,2 max max
w

2

max

sat

1

sate
h

t W
κ κ κ ν κ

κ
αν= −









 = =

κ
κ
−

 

(3)

Here, we found α  = 0.02. This low value may be interpreted 
as a consequence of the anisotropy of the meta-plate. Using this 
expression, we can readily tailor the intrinsic curvature of the 
meta-plates simply by adjusting the corresponding geometrical 
parameters of the plates. We can then use this prediction to 
design the micro-architecture of the meta-plates.

To show the length scale independence of the proposed 
empirical equation between two principal curvatures, we scaled 
down our reference meta-plates and fabricated auxetic and 
non-auxetic meta-plates at the microscale using a submicron 
3D printing technique (i.e., two-photon polymerization). The 
microscale meta-plates were made of a resin (i.e., IP-Q, see 
Experimental Section). The addition and subsequent evapora-
tion of ethanol induced deformations in the micro-plates as a 
result of a capillary force exerted during the solvent evaporation 
(Figures 2,4f,g). This leads to dynamic changes in the curvature 
of the top surface of the micro-plates (Figures 4h,i, bottom row 
subfigures, and Movies S5–S6, Supporting Information). We 
quantified the level of the induced curvatures through optical 
microscopy. After the application of the scaling law (Figure 4e), 
the 2κ  values of the micro-plates were in the range of those 
determined for the macro-plates, confirming that the proposed 
relationship (Equation (3)) captures the essential physics of the 
problem across multiple length scales.

We have shown that, in contrast to plain plates (i.e., a plate 
with negligible thickness) whose Gaussian curvature under 
compression is invariably zero, meta-plates could be used 
to fabricate surfaces with a wide range of positive or nega-
tive Gaussian curvature. This approach provides a route for 
the rational design of thin-walled engineering structures with 
a wide range of applications and complex curvature require-
ments. As an illustration, a meta-plate divided into regions with 
positive and negative values of the Poisson’s ratio could be used 
to create spatial variations in the Gaussian curvature from posi-
tive to negative values (Figure 5a). A meta-plate with a gradient 
of the Poisson’s ratio (gradual variations from positive to nega-
tive values) allows for adjusting the location of the maximum 
curvature as well as for modulating the shape of the curved sur-
face (Figure 5b). Many other design approaches where regions 
with different thicknesses and/or Poisson’s ratios are combined 
to meet complex curvature requirements can be envisioned as 

Adv. Mater. 2021, 33, 2008082
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Figure 3. The effects of the width (W0  = 92  mm) of the meta-plates on their shape under compression for two extreme cases with the a,c,e,g,i) 
negative and b,d,f,h,j) positive values of the Poisson’s ratios. The values of 1κ  in m−1 are shown on different profiles in the left insets of (a–f) (see  
Movies S1–S4, Supporting Information). The other parameters were maintained constant (h = 5 mm). The insets in these sub-figures show the dis-
placement distribution in the Z direction under equal induced curvature (i.e., 1κ  ≈ 20 m−1). k–m). The insets show the parameters of the exponential 

fit for emax sat12

1

κ κ= × −












κ
κ
−

.
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Figure 4. a,b) Change in the absolute value of the second principal curvature with respect to the thickness of the plate for the most positive (a) and 
most negative (b) values of the Poisson’s ratios, respectively corresponding to θ  = 120° (ν  = 0.87) and 48° (ν = −1.35). The other parameters were 
maintained constant ( 1κ ≈ 20 m−1, W0  = 92 mm). The filled and unfilled markers respeticely denote the numerical and experimental data points. The 
lines in (a) and (b) are fits to the numerical results. c) The evolution of 2κ  as a function of the Poisson’s ratio for the plates with h = 5 mm ( 1κ  and 
W  were kept constant). 2κ  exhibits a linear relationship with ν , where the values of the coefficient, m, are listed in Table S2, Supporting Information. 
d) The relationship between the maximum curvature and the geometrical parameters of the meta-plate in Equation (3). e) The dimensionless rela-

tionship between both principal curvatures in the form emax sat12

1

κ κ= × −












κ
κ
−

). f,g) The SEM images of the 3D printed microscale meta-plates. These 

micro-meta-plates are deformed by capillary forces during solvent evaporation. h,i) The 3D design of the microscale meta-plates. The insets show the 
dynamic deformation of the microscale meta-plates when interacting with ethanol (see Movies S5–S6, Supporting Information). The white scale bars 
in the subfigures represent 200 µm.
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Figure 5. a) Complex curvatures can result from a combination of auxetic and non-auxetic unit cells. Two examples are presented here where the 
meta-plate was divided into two equal regions of which one was auxetic and the other non-auxetic. b) Meta-plates with a functional gradient in their 
Poisson’s ratio from negative to positive values. The position of the maximum curvature in the meta-plate changed as a result (the color code in the 
right subfigures (a,b) show the displacements in the Z-direction). c,d) A demonstration of potential soft wearable devices, especially at the joints, 
where double curvatures (c,d) are required to create a shape-fitting curvature. e–h) Adaptive mirrors (e) were made by covering auxetic meta-plates 
(f) with a highly reflective aluminum foil (g). e,h) The adaptive mirrors were then exposed to laser beams. e) The focused laser beams reflected off the 
surface show flat, concave, or convex mirrors.
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well. This could, for example, be used in soft wearable robotics 
(e.g., exoskeleton[83,84]) that need to morph the curved contours 
that define the shape of the human body (Figures 5c,d). With 
a simple tuning of the geometrical parameters of the elemen-
tary cells, a wide range of curvatures could also be exploited to 
create adaptive optical devices (e.g., mirrors) whose focal length 
is dependent on the level of the applied compressive load 
(Figures 5e–h).

3. Conclusion

The meta-plates proposed here combine the advantages of 
thin-walled structures, such as efficiency in load transfer and 
low weight with those of intrinsically curved designs, such as 
adaptive shape morphing features and ease of interaction with 
the human body. Ultimately, the possibility to start from an ini-
tially flat shape translates into additional benefits, including the 
opportunity to incorporate complex surface-related function-
alities, including nanopatterns and flexible electronics into the 
final 3D device.[85] The relation we found between the different 
physical length scales remains so far empirical. We hope our 
study will motivate additional research that provides a deeper 
physical ground to the scaling law we obtained and enables its 
extension to nonlinear regimes. Nevertheless, this simple law 
offers a simple basis for programming cellular meta-plates and 
achieving complex 3D structures that hold great promise for 
practical applications.

4. Experimental Section
The macroscale specimens and their grippers from poly(lactic acid) 
(PLA) filaments (MakerPoint PLA 750 gr Natural) were additively 
manufactured using a fused deposition modeling 3D printer (Ultimaker 
2+). The experimental setup was designed such that a fixed level of 
longitudinal deformation (i.e., Lδ  = 30 mm) was applied to the upper 
side of the specimens while fixing the lower sides. The hinge joint at the 
boundaries of the fixture allowed both ends of the meta-plates to rotate 
freely and to create an out-of-plane deformation under compression 
(Figures 1c,e). The size of the unit cells (i.e., c w2 / 3= ) and the overall 
size of the meta-plates (i.e., W0  = 92  mm, L0   = 130  mm) were kept 
constant for all the reference designs. The wall thickness, tw , of the 
struts making up the unit cells was 0.51 mm. The only variable, therefore, 
was the angle of the unit cells, θ , which determined the Poisson’s ratio 
of the meta-plate. All dimensions of the meta-plates are presented in 
Figure  1 and Table S1, Supporting Information. 10 specimens with θ  
angles varying between 48° and 120° were fabricated to cover a wide 
range of Poisson’s ratios (Table S1, Supporting Information). Although 
the thickness, h, of the meta-plates was set to 5  mm, two additional 
specimens with lower out-of-plane thicknesses (i.e., h = 2.5 and 1 mm) 
were also fabricated using the maximum and minimum values of the θ 
angle (i.e., the most negative and most positive values of the Poisson’s 
ratio).

The outer contour of the deformed structures was captured by a 
3D scanner (Scan-In-A-Box, FX, ASUS mini beamer, resolution of both 
cameras: 1280 × 800 pixels). The specimens were photographed from 
at least eight different angles. The images were then rigidly registered 
using the software accompanying the 3D scanner (IDEA). After noise 
removal, the point clouds were imported into CloudCompare software 
(V.2.9.1) for further analysis.

FE calculations were conducted with Abaqus (Dassault Simulia, 
V6.14). After importing the geometry of the specimens, a linear brick 
element (C3D8R, Abaqus) was used for the simulations. A linear elastic 

material model was used for PLA (E = 3.5 GPa, ν = 0.3). Two reference 
points were placed on the top and bottom of the meta-plates. These 
points were kinematically coupled with the corresponding upper and 
lower nodes lying on the surface of the specimens. To perform the 
buckling analysis, a unit concentrated force was applied to the upper 
reference node. The upper and lower sides of the structures were set 
free to rotate perpendicularly to the applied loading direction while their 
other degrees of freedom were constrained. Linear buckling analysis was 
then performed using the eigenvalue solver available in Abaqus. The 
displacements of the nodes corresponding to the first buckling mode 
were then introduced as geometrical imperfections to perform the 
nonlinear post-buckling analyses.

A compressive displacement equal to 16  mm was set in the 
computational models so as to achieve a similar out-of-plane 
deformation as observed in the experiments, after registering the 
deformations obtained from the post-buckling analyses to those of the 
experimental data (Figures 1c–f). The displacements in the out-of-plane 
direction (i.e., Z-direction, Uz) of the top surfaces of the computational 
models were extracted as point clouds. The numerical and experimental 
point clouds were then registered in CloudCompare (V.2.9.1). The 
first, 1κ , and second, 2κ , principal curvatures were defined based on 
Equation  (1) to the data points at the center point of the meta-plates 
(Figures  1d,f). A sphere-fitting algorithm available in Mathematica 
(version 11.3, Wolfram Research, US) was used for that purpose. Four 
additional plate thicknesses (i.e., h =  1, 2.5, 5, 7.5  mm) were also 
considered in the computational simulations to evaluate the effects of 
the thickness of the meta-plates on their curvatures. For the meta-plates 
with a thickness of 5 mm, 22 additional simulations with varying in-plane 

thicknesses (i.e., t t t t
4

,
2
4

,
3
4

,
5
4

w w w w ), widths (i.e., W W W W
4

,
2

,2 ,4 ) and unit 

cell sizes (i.e., 75%, 150%, 300% of w while maintaining c w2 / 3= ) were 
performed for the cases with the most negative and positive values of 
the Poisson’s ratio.

Microscale meta-plates were fabricated with a two-photon 
polymerization 3D printer (Photonic Professional GT machine, 
Nanoscribe, Germany). A laser power of 100% and a scanning 
speed of 100  000  µm s−1 were applied to print the structures in the 
DiLL configuration using a 10× objective. A droplet of the IP-Q resin 
(Nanoscribe) was placed on a silicon substrate and was exposed to a 
femtosecond infrared laser beam (wavelength = 780  nm) to fabricate 
the designed structures. The samples were then developed in propylene 
glycol monomethyl ether acetate (from Sigma Aldrich) for 25  min and 
were dried at room temperature. Furthermore, a scanning electron 
microscope (SEM, JSM IT100, JEOL) was used to acquire high-resolution 
images after gold-sputtering (JFC-1300, JEOL, Japan) of the dried 
specimens (Figures 4f,g). The dynamic curvature of the micro-structures 
was evaluated in air and liquid (ethanol) (Sigma Aldrich) through an 
analysis of optical microscopy images (Keyence Digital Microscope 
VHX-6000) (Figures 4h,i).

Soft meta-plates (Figures  5c,d) were additively manufactured 
using a polyjet 3D printer technique (Objet350 Connex3 3D printer, 
Stratasys, USA) that works on the basis of inkjet-deposited droplets of a 
photopolymer followed by curing under ultraviolet light. A commercially 
available hyperelastic polymer (i.e., Agilus30 Black, FLX985, Stratasys, 
USA) was used for the fabrication of these specimens.

To create the adaptive mirrors (Figures  5e–h), the top surface 
of a meta-plate with the most negative value of the Poisson’s ratio 
was covered by aluminum foils with a high degree of reflectivity 
(Figures  5f,g). The specimen was then placed in a holder and was 
subjected to the laser beams passed from expanders (Figure  5h). The 
laser beams were used to demonstrate the change in the focal point and 
curvature of the mirror as a function of the deformation.

Supporting Information
Supporting Information is available from the Wiley Online Library or 
from the author.
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