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Abstract. 
The transition period towards large-scale or full automated driving will pose specific challenges. One of the 
challenges concerns the interaction of automated vehicles with vulnerable road users. So far, most studies into 
this type of interactions took the perspective of the car. The current study, however, takes the perspective of the 
vulnerable road user. More specifically, it explores how cyclists perceive and expect automated vehicles to 
‘behave’ and how cyclists would react. Expectations are important determinants of traffic behaviour. Incorrect 
expectations could lead to overly trustful or hesitant behaviour and subsequent unsafe interactions. Recently, 
Hagenzieker and colleagues (2017) conducted a photo experiment in which regular cyclists had to judge photos 
of traffic situations where they encountered manually-driven cars and automated cars (recognisable by either a 
sticker on the side of the car or a roof name plate on top of the car). Participants judged 30 photos twice, in 
random order. In that study a subset of nine participants were equipped with an eye tracker in order to study their 
eye movements while judging the photos. This study further examined these eye tracking data, comparing time-
to-first-fixation, dwell time from the start of the first fixation, and total number of revisits in interactions with 
automated and with manually-driven cars. Results indicate no differences in time-to-first-fixation nor in the 
number of revisits between situations with automated cars and traditional cars. Dwell times revealed an effect of 
familiarity, showing that cyclists spent more time looking at cars during the first round of photos compared to 
the second round. In particular, they spent more time looking at automated cars which were identifiable by a 
sticker on the side. The results are discussed and suggestions for future research are given. 
Keywords: cyclists, automated driving, eye tracking, interaction, external features, behaviour 

1. Introduction 
Partially and fully automated vehicles gradually enter our roadway system. The expectations about the impact of 
vehicle automation on the efficiency of the road transport system, including road safety, often run high. 
However, before we reach a full automated traffic system, a transition period is inevitable, posing specific 
challenges. One of the challenges during this transition period, and the topic of the current paper, is how cyclists 
interact with automated vehicles.  

Research on the interaction of (partially) automated vehicles and vulnerable road users has been limited. 
Vissers et al. [1] provide an overview of the literature in this area. They conclude that research generally takes 
the perspective of the vehicle, e.g. focusing on the technology for detecting and recognizing pedestrians and 
cyclists, and more recently also on the communication of the automated vehicle towards pedestrians and cyclists. 
One issue that is particularly underrepresented in research, as indicated by Vissers and colleagues, is research 
that takes the perspective of the cyclists and pedestrians. How do they expect automated or partially automated 
vehicles to behave? How do they expect these vehicles to respond to them, and how would this affect their 
behaviour and interaction with the vehicle? And, last but not least, how do they know whether it is a fully 
automated vehicle, a partially automated vehicle or a ‘traditional’ manually driven vehicle?  

This type of knowledge is essential for predicting pedestrians’ and cyclists’ behaviour so that an automated 
vehicle can accurately adjust its response when necessary and ensure a safe interaction. The few studies that 
assessed the behaviour of pedestrians while interacting with automated vehicles point at a rather cautious attitude 
(see Vissers et al., [1], for an overview).  

A recent study [2] specifically focused on the expectations of cyclists towards automated vehicles and their 
(self-reported) behaviour in interactions. Cyclists form a specific challenge in the transition toward an automated 
traffic system, especially in countries with a large share of cyclists such as the Netherlands. The reason is that 
both the potential number and variety of encounters are much larger than for pedestrians. This small and 
exploratory study investigated the expectations and behavioural intentions of cyclists when interacting with 
automated vehicles and with manually driven vehicles. Participants were regular cyclists who had to judge 
                                                        
1 Paper presented at Road Safety and Simulation Conference RSS2017, 17-19 October 2017, The Hague, the 
Netherlands.  
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photos of traffic situations where a cyclist had to interact with either an automated car or a manually driven car. 
Automated cars were identifiable by either a roof name plate on top of the car or a sticker on the side of the car, 
both saying “self-driving”. Figure 1 is an example of an interaction situation from the perspective of a cyclist 
with the three types of cars. Participants went through a total of 30 photos twice (in different, random order); the 
first time, participants had not been instructed how to differentiate between automated and manual vehicles; the 
second time they had.  

 

 
Figure 1: Example of a traffic situation where a cyclist will encounter a right turning vehicle with a 

traditional car (top) and a self-driving car (bottom) identifiable by a sticker (left) or roof 
name plate (right) saying “self-driving”. 

The overall results indicate that cyclists were not surer to be noticed by an automated car as compared to a 
manually driven car, confirming the fairly cautious attitude of vulnerable road users towards automated vehicles. 
However, participants who had received instructions that stressed the positive safety features of the automated 
cars were surer they had been noticed by automated cars than participants who had received neutral information 
about the cars’ features. In this study overall no differences were found in the expectations of cyclists whether or 
not the car would stop for them. However, when they saw the photos for the second time (i.e. when they had 
been instructed how to differentiate between automated and manually driven cars), they were surer that the 
automated cars would stop. The cyclists themselves did not intend to behave differently in interactions with the 
different types of cars. 

During this study some of the participants were equipped with an eye tracker. A preliminary analysis of the 
eye tracking data revealed that participants fixated longer on the vehicles during the first round of photos than 
during the second round. During this first photo set participants fixated longer on automated vehicles, in 
particular those with the sticker, than on manual vehicles.  

The current paper presents the results of some further analyses of the eye tracking data that was collected 
by Hagenzieker et al. [2]. Eye tracking is a non-invasive method that allows us to visualize and quantify the 
search for visual information. Though not often used in a static environment such as photographs, the eye 
tracking data can give an indication of what the cyclists look at, at which moment and to what extent, and what 
they ignore. This in turn can shed some light on their visual search strategies when interacting with automated 
and/or manually driven vehicles in different traffic situations.  

In addition to the total fixation times that were analysed and reported by Hagenzieker et al. [2], we expanded 
the analysis of the eye tracking data by studying the effects of three additional measures: time-to-first-fixation, 
dwell time from the start of the first fixation, and total number of revisits.  
 Time-to-first-fixation shows how fast someone fixates a specific object and gives an indication of how much 
attention it attracts. As such it is a measure to describe bottom-up driven visual searches in which the attention is 
more or less automatically drawn to the object, e.g. because of its salience [3][4]. Time-to-first-fixation is also 
related to expectations [5]. If someone is looking for specific information and this information is located at the 
expected position, the time-to-first-fixation is faster than when located at an unexpected position. Time-to-first-
fixation is often used in marketing and brand awareness research to see what advertisements attract most 
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attention [6]. However, it has also been used in traffic research. For example, Siswandari & Xiong [7] used this 
measure as a means to investigate the comprehensibility of traffic signs. It turned out that the harder the traffic 
signs were to comprehend, the longer the time to the first fixation. To investigate whether this measure would 
also convey the ease or difficulty to recognize an automated vehicle in a traffic scene, we used time-to-first 
fixation in the present study.  
 Dwell time is the total time that someone has fixated a specific object or area of interest [8]. Dwell time is 
generally expressed as the percentage of the total time that a stimuli was available for inspection, and could be 
considered as a top-down search, i.e. searching actively for relevant information [3]. One of the determinants of 
dwell time is the level of interest of the observer for the object of interest: the longer the dwell time, the higher 
the level of interest [9]. Another determinant of dwell time is the similarity of objects when searching for a target 
object: the higher the similarity the longer the dwell time [8]. Finally, dwell times seem to be related to 
experience or familiarity: the less experience / familiarity, the longer the dwell time [10]. In our study we 
analysed the dwell times to get an indication of the active search of participants to identify the type of car: 
manual or automated. Given that photos were shown for a fixed amount of time before the questions were 
presented, the maximum possible dwell time for a particular object depends on when this object was fixated first 
[10]. Hence, for our study we calculated the relative dwell time from the start of the first fixation, i.e. the amount 
of time that an object was fixated as a percentage of the total time available from the start of the first fixation.    

Finally, we look at the number of revisits on the area of interest. By this is meant the number of times 
participants look at the (automated or traditional) cars after their first fixation on it (i.e. revisits). By using this 
measure we aim to investigate whether a differential amount of revisits to the car, provides information on the 
comprehensibility. Revisiting an AOI may be linked to intentional processes to attempt to resolve 
comprehension problems or in order to integrate the information that is available in the target areas [11] The 
dwell time describes the total time an object was looked at and can consist of one long fixation or of two or more 
shorter fixations, while some other object has been fixated on in between. A series of shorter fixations, as 
compared to one long fixation points at more routine situations where a first shorter fixation does not give 
unexpected information; when people continue to look at an object, this is an indication that what they see is new 
or not expected. For example, inexperienced drivers are less likely to look at potential hazards than more 
experienced drivers [12], but once they do, they will continue to look (‘stare’) for a longer time [10]. This could 
be explained by the fact that inexperienced drivers are less familiar with hazards in traffic than experienced 
drivers.  

In summary, the three main research questions of our small-scaled photo experiment are: 
1. Time-to-first-fixation: Is there a difference in the time cyclists take to start looking at automated cars 

and at manually driven cars, and is this affected by experience / familiarity?  
2. Total dwell time from the start of the first fixation: Is there a difference in the total time cyclists look at 

automated cars and at manually driven cars, and is this affected by experience / familiarity? 
3. Total number of revisits: Is there a difference in number of times cyclists look again at automated cars 

and manually driven cars after their first fixation and is this affected by experience / familiarity?  
In addition, and in a very exploratory manner, we looked at differences in these variables related to 

approach angle and priority regulation in the interaction. 

2. Method 

 Participants 
A total of 35 participants participated in the study: 17 women with an average age of 29.7 years (SD: 13.1; 

range: 19-58) and 18 men with an average age of 28.8 years (SD: 13.2; range: 18-61). They were recruited at the 
Delft University of Technology in the Netherlands through social media and flyers. Participants were required to 
be older than 18, master the Dutch language, and be regular cyclists: out of 35 participants, 32 cycled at least 1-3 
days a week but 21 participants cycled every day. The eye movements were recorded for nine of these 35 
participants: three women with an average age of 25.7 years (SD: 2.73; range: 25-32) and nine men with an 
average age of 25.7 years (SD: 2.73; range: 25-32). These participants did not wear glasses, as this interferes 
with the eye tracker.  

 Material 
Participants had to judge 30 photos of traffic situations from the perspective of the cyclist. The photos depicted 
ten different situations and each situation was shown three times: once with a manually driven car, once with an 
automated car recognisable by a roof name plate saying ‘self-driving’, and once with an automated car 
recognisable by a sticker on the front door, also saying ‘self-driving’ (see Figure 1). In each situation there was 
an imminent interaction with a passenger car. The cars approached from the right (four situations), left (one 
situation), from the front (two situations) or from behind (three situations). In five situations the cyclist had 
priority and in the other five the car had priority. 
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 Independent variables 
The participants were randomly assigned to one of two between-subjects conditions. Before the experiment, the 
participants received one of two instructions. In one condition the instruction emphasised the positive aspects of 
automated driving including the safety aspects of automated vehicles. In the other condition the information 
about the features of automated driving were formulated more neutrally. Of the nine eye tracker participants, five 
participants received the positive instruction and four the neutral instruction.  
Furthermore, there were four within-subjects conditions:  

1. Car type, consisting of three levels: automated with roof name plate, automated with sticker, and 
traditional.  

2. Familiarity, consisting of two levels: first round of presentation before explicit explanation how to 
identify an automated car and the second round of presentation after the explanation.    

3. Priority, consisting of two levels: cyclist priority or car priority 
4. Approach angle, aggregated into two levels: approaching from a side road (left or right) or approaching 

on the same road (from behind or from ahead) 

 Dependent variables 
For each photo, the participant had to answer three questions: (1) How sure are you that the car noticed you?, (2) 
How sure are you that the car will stop if you continue cycling?, and (3) What would you do as a cyclist in this 
situations? We refer to Hagenzieker et al. [2] for more details and results of this part of the study. For this paper 
we focus on the visual search strategy. Three measures were used to describe this visual search strategy: 1) time-
to-first-fixation, 2) dwell time from start of first fixation, 3) total number of revisits. 

  Apparatus 
The photos were shown on a laptop with a screen size of 23 inch. Eye movements were recorded with a Pupil 
Lab’s head mounted binocular eye tracker [13]. This eye tracker uses dark pupil position and corneal reflection 
to determine the gaze direction. It is equipped with a world camera that films the world from the participant’s 
perspective and two infrared eye cameras. The output shows the video of the world camera on which the gaze 
positions are superimposed. After calibration, the eye tracker is able to accurately track the eye movement and 
gaze direction at a refresh rate of up to 60 Hz. In this study, a refresh rate of 30 Hz (30 frames per second) was 
used.  

 Procedure 
Participants were individually tested at Delft University of Technology. Each participant first read the instruction 
and then signed the informed consent. Then, the eye tracker was mounted and calibrated. Subsequently, 
participants completed a few background questions about age, gender, bicycle use and bicycle speed. The actual 
experiment started with a practice photo after which the experimental photos were presented in random order. 
Each photo was shown for 8 seconds. After the first round of 30 photos, the participants were asked whether they 
had noticed that some photos contained self-driving vehicles. They were also asked which manipulation (roof 
name plate or sticker) they preferred as indicator of an automated vehicle. Then the 30 photos were presented 
again, in a different randomized order. Finally, the participants had to complete two short questionnaires, one 
about trust in self-driving technologies and one about sensation seeking, but the current paper does not consider 
these (see Hagenzieker et al., [2] for more information). After the experiment, the experimenter gave an 
explanation about the study and the participant could ask questions. Participants received a 10 euro gift coupon 
as reward. The entire experiment lasted approximately 30 minutes.  

 Analyses  
For the analyses the number and length of fixations within the Area of Interest (AOI) were determined. The AOI 
was defined as the car. Only fixations equal or longer than 200ms were included [14]. Time-to-first-fixation was 
calculated by counting the number of frames between presentation of the photo and the start of the first fixation 
and dividing it by 30 (30 frames per second). The relative dwell time was calculated by summing the length of all 
fixations (≥ 200ms, including the first fixation) in the AOI, and expressing it as a percentage of the total 
remaining time after the start of the first fixation. 

On one photo, one 
participant did not fixate on the AoI at all. This was coded as missing. 

Repeated measures analyses of variance (ANOVAs) were conducted and a significant level of p<0.05 was 
applied. Note that the ANOVA results are in fact based on two experimental designs. In both designs, the within-
subjects factors Car type and Familiarity and the between-subjects factor Instruction was used. Additionally, in 
one design the within-subjects factor Priority was used and in the other design the within-subjects factors 
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Approach angle was added. We do not report on the first order interactions between Instruction and Priority, 
Instruction and Approach angle or the second order interactions of Instruction by Car type by Priority and 
Instruction by Car type by Approach angle. These interactions were not of any interest to us nor were they 
significant.  

3. Results 
In this section we will report the results on the three main questions: (1) Time-to-first-fixation: Is there a 
difference in the time cyclists take to start looking at automated cars and at traditional cars, and is this affected 
by experience / familiarity?, (2) Total dwell time from the start of the first fixation: Is there a difference in the 
total time cyclists look at automated cars and at traditionalcars, and is this affected by experience / familiarity? 
And (3) Number of revisits: Is there a difference in number of times cyclists look at automated cars and at 
traditional cars and this affected by experience / familiarity? Additionally, we will report on the differences in 
these variables related to Approach angle and Priority. We first looked at the between-subject factor Instruction. 
The Analysis of variance showed no main effect of Instruction (A or B) in both designs, nor were there any 
significant interactions with other factors. This was the case for both time-to-first-fixation and dwell time. 
Therefore, all results reported are based on the data acquired from both groups together. 

 Time-to-first-fixation 

Car type Traditional Roof name plate Sticker Sig. 
  Mean(SD) Mean(SD) Mean(SD)   
Overall 1.13(0.37) 0.92(0.32) 1.09(0.44) NS 
Round 1 1.29(0.69) 1.03(0.46) 1.17(0.58) NS Round 2 0.98(0.33) 0.83(0.27) 1.00(0.35) 

Analysis Sum of sq. df Mean sq F Sig. 
Car type 0.808 2 0.404 1.429 0.272 
Familiarity 1.464 1 1.464 2.430 0.163 
Car type*Familiarity 0.07 2 0.035 0.175 0.841 

 Dwell time after the first fixation 
Table 3 reports on the means and standard deviations and Table 4 reports the ANOVA results. With dwell time 
from the start of the first fixation, a repeated measures ANOVA revealed a statistically significant main effect 
for Familiarity (F(1,7)=9.631, p=.017; See Table 4). The participants had longer dwell times on the cars, 
regardless of which type of car, during the first photo round (M=26.40, SD=7.96) compared to the second photo 
round (M=17.94, SD=10.38). We also found a statistically significant interaction effect for dwell time between 
Car Type and Familiarity (F(2,14)=4.134, p=.039; See figure 2). Post hoc tests using the Bonferroni correction 
revealed a significant difference in Dwell time for the sticker condition (<.01) between the first photo round and 
second photo round (See Table 4), while this was not the case for the traditional nor for the roof name plate 
conditions. 
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Figure 2: Dwell times (%) for each car type manipulation (Traditional, Sticker and Roof name plate) for 
Familiarity (first and second round) 

We found no significant main effects for Car type, however, the means show the same tendency as the above 
reported interaction effect. The mean for the sticker condition is somewhat higher compared to the traditional 
and roof name plate condition (See Overall means in Table 3), indicating that participants looked longer at the 
car with a sticker on the side than at the other two cars.  
 

Table 3: Means (%) and Standard deviations of dwell time after the start of the first fixation; *=p<0.05 
  Traditional Roof name plate Sticker Sig. 

 Mean(SD) Mean(SD) Mean(SD)   
Overall 20.98(8.16) 21.70(8.99) 23.83(9.28) NS 
Round 1 23.64(9.13) 24.95(9.01) 30.59(9.69)* * Round 2 18.31(9.18) 18.45(11.29) 17.06(11.43)* 

 
Table 4: ANOVA results of dwell time 

Analysis Sum of sq. df Mean sq      F Sig. 
Car type  177.661 2 88.830 1.930 0.182 
Familiarity 1759.748 1 1759.748 9.631 0.017 
Car type*Familiarity 363.153 2 181.577 4.134 0.039 

 Number of revisits 

Table 5: Means (%) and Standard deviations of total number of revisits; *=p<0.05 
  Traditional Roof name plate Sticker Sig. 

 Mean(SD) Mean(SD) Mean(SD)   
Overall 2.08(0.54) 2.11(0.56) 2.11(0.54) NS 
Round 1 2.19(0.59) 2.44(0.67) 2.36(0.50) NS Round 2 1.98(0.66) 1.78(0.65) 1.86(0.67) 

 
Table 6: ANOVA results of total number of revisits 

Analysis Sum of sq. df Mean sq      F Sig. 
Car type  0.035 2 0.017 0.160 0.854 
Familiarity 1.601 1 1.601 4.387 0.081 
Car type*Familiarity 0.428 2 0.214 2.888 0.095 

 Additional findings: Priority and Approach angle  
This section reports on the results of the variables Priority or Approach Angle (See section 2.3). 

3.4.1 Time-to-first-fixation 
Regarding time-to-first-fixation, we found a significant main effect for Approach Angle: (F(1,7)=18.580, 
p=.004). Participants fixated faster on the cars, regardless of Car type, when the car approached them from 
behind or from the front (M=0.91, SD=.33) than when the car approached from the left or right (SD=1.18, 
SD=.34). There was no significant main effect for Priority, nor any significant interaction between Car type and 
Priority or Approach angle. We found also no interaction between Familiarity and Priority or Approach Angle 
(See Tables 7 and 8 below). 
 
Table 7: Means and Standard deviations for Time-to-first-fixation of factors Priority and Approach angle 

Car type Traditional Roof name plate Sticker Sig. 
 Mean(SD) Mean(SD) Mean(SD)  
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Priority cyclist 0.89(0.61) 0.90(0.59) 0.91(0.64) NS 
No priority cyclist 1.38(0.40) 0.94(0.35) 1.25(0.36) 
Approach from left-right  1.30(0.44) 1.08(0.39) 1.15(0.43) NS 
Approach from behind-from the front  0.97(0.43) 0.77(0.27) 1.00(0.52) 

 
Table 8: ANOVA results of Time-to-first-fixation for the factors Priority and Approach Angle 

Analysis Sum of sq. df Mean sq        F Sig. 
Priority 2.416 1 2.416 2.575 0.153 
Car type*Priority 1.057 2 0.529 1.834 0.196 
Familiarity*Priority 0.021 1 0.021 0.03 0.868 
Approach angle 2.079 1 2.079 18.580 0.004 
Car type*Approach angle 0.194 2 0.097 0.842 0.452 
Familiarity*Approach angle 0.251 1 0.251 0.583 0.470 

3.4.2 Dwell time  
With Dwell time from the start of the first fixation, we found no significant main effects for Priority or Approach 
angle. Participants did not look longer or shorter at the cars when these had priority or when they themselves had 
priority. Also, they did not look longer or shorter when the car approached from the left or right, or from behind 
or from the front. There were also no significant interaction effects for Dwell time after first fixation between 
Car type and either Priority or Approach Angle. Furthermore, we found no interaction between Familiarity and 
Priority or Approach Angle (See Tables 9 and 10 below).  
 

Table 9: Means and Standard deviation for Dwell time of the factors Priority and Approach angle 
Car type Traditional Roof name plate Sticker Sig. 
 Mean(SD) Mean(SD) Mean(SD)   
Priority cyclist 21.28(7.49) 24.84(10.84) 27.05(11.37) NS 
No priority cyclist 20.66(9.74) 18.57(10.38) 20.60(10.88) 
Approach from left - right 22.30(9.91) 21.90(11.28) 25.63(10.43) NS 
Approach from behind – from the front 19.65(7.27) 21.51(8.30) 22.02(8.90) 

  
Table 10: ANOVA results of Dwell time for the factors Priority and Approach 

Analysis Sum of sq. df Mean sq F Sig. 
Priority 613.631 1 613.631 3.002 0.127 
Car type*Priority 221.198 2 110.599 2.091 0.160 
Familiarity*Priority 38.731 1 38.731 1.020 0.346 
Approach angle 90.530 1 90.530 1.848 0.216 
Car type*Approach angle 53.539 2 26.770 0.899 0.429 
Familiarity*Approach angle 8.430 1 8.430 0.241 0.639 

3.4.3 Number of revisits 
 
Finally, when looking at the number of revisits, we found a significant main effect for Priority. Participants 
revisited the car more often when the cyclists themselves had priority (M=2.23, SD=0.50) compared to when 
they did not have priority (M=1.97, SD=0.58), regardless of Car type: F(1,7)=6.018, p=.044). We found no 
significant interaction effects for the total number of revisits for Priority and Car type.  
  We found no significant main effects for Approach Angle. There were also no significant interaction 
effects for the number of revisits between Car type and either Priority or Approach Angle. Furthermore, we 
found no interaction between Familiarity and Priority or Approach Angle (See Tables 11 and 12 below). 

 
Table 11: Means and Standard deviation for number of revisits of the factors Priority and Approach 

angle 
Car type Traditional Roof name plate Sticker Sig. 
 Mean(SD) Mean(SD) Mean(SD)   
Priority cyclist 2.11(0.50) 2.34(0.59) 2.24(0.54) NS 
No priority cyclist 2.06(0.67) 1.88(0.61) 1.97(0.64) 



 8 

Approach from left - right 2.01(0.58) 1.96(0.61) 2.02(0.59) NS 
Approach from behind – from the front 2.16(0.75) 2.27(0.69) 2.19(0.51) 

  
Table 12: ANOVA results of the number of revisits for the factors Priority and Approach 

Analysis Sum of sq. df Mean sq F Sig. 
Priority 2.116 1 2.116 6.018 0.044 
Car type*Priority 0.784 2 0.392 2.533 0.115 
Familiarity*Priority 0.200 1 0.200 2.054 0.195 
Approach angle 1.431 1 1.431 2.717 0.143 
Car type*Approach angle 0.179 2 0.089 0.373 0.695 
Familiarity*Approach angle 0.451 1 0.451 0.833 0.392 

 

4. Discussion and conclusion 
This paper is a follow up-study on previous research by Hagenzieker and colleagues [2]. Results of that study 
indicated that cyclists were not surer that they were noticed by an automated car compared to a manually-driven 
car. This confirmed the fairly cautious attitude of vulnerable road users towards automated vehicles. However, 
when participants received an instruction that stressed the positive safety features of automated cars they became 
surer that they were noticed by automated cars compared to participants who received a neutral instruction. 
Additionally, participants who viewed the photos for the second time reported feeling surer that the automated 
car would stop for them than in the first round of photos. Preliminary eye tracking results showed that 
participants spent more time looking at the cars during the first photo round compared to the second photo round. 
The current paper aimed to further look into the eye tracking data that was collected to shed more light on the 
results found in Hagenzieker et al [2]. Three additional questions were explored by using three different eye 
tracking measures: (1) time-to-first-fixation, (2) dwell time from the start of the first fixation and (3) the number 
of revisits. Note however, that due to the small number of participants, the results are only an indication. 

We found no differences in the time that participants took to have a first look at the automated and 
traditional, manually driven cars, nor did this differ between the first and second round. The automated cars were 
thus not looked at earlier than the manual cars. This could mean that the roof name plate and sticker condition 
did not evoke a bottom-up driven visual search and thus attract attention [3][4]. This may be due to a lack of 
saliency: more visually salient items capture more attention than less salient items [15]. Especially in consumer 
choice situations, visually more salient advertisements have been shown to be looked at faster than less salient 
ones [16]. In the case of the roof name plate, a possible explanation could also be that it resembles the looks of a 
driving instructor car; the experience that cyclists may have with such cars could have diminished the attention 
grabbing properties because these are simply not new to them. Cyclists could therefore have used experience 
based schemata to recognize the situation [15].  

Another finding is that the cyclists spent more time looking at the cars, regardless of car type, during the first 
photo round as compared to the second round. Huestegge et al, [17] found similar results. In a picture study they 
examined whether experienced and inexperienced drivers judged hazardous situations differently. Participants 
had to judge traffic scenes which demanded a braking response or a speed reduction (low, medium of high 
braking affordance) by pressing a button. A similar eye tracking measure was used: The time between the start of 
the first fixation and the response of pressing the button. Interestingly, they found that inexperienced drivers 
spent more time looking at the hazardous situations compared to the inexperienced drivers. Yet another study 
also found that experience helped drivers to process hazards more quickly [10]. Although these studies used 
different paradigms than ours, it is interesting to see that also here experience appears to decrease the time that 
cyclists needed to extract and process the information, in this case from the appearances of automated cars.    

We also found that cyclists looked longer at the car with a sticker during the first photo round compared to 
the second photo round. This is in line with earlier results [2], where cyclists also spent more time looking at the 
sticker condition during the first photo round compared to the second photo round. This is not surprising, 
because we also found no differences in the time it took cyclists to start looking at the cars (so there is no 
difference between this measure and the total time cyclists spent looking at the cars). Interesting, however, 
remains the fact that the sticker condition was looked at longer during the first photo round in both cases. This 
could indicate that cyclists needed more time to extract and process the information needed compared to the roof 
name plate and traditional car manipulation [2][10]. Another possible explanation could be that the sticker 
condition was more difficult to see or read in some photos, which could also have extended the time cyclists had 
to look. 

Additionally, we found that cyclists started to look earlier at the cars that approached from the front or from 
behind as compared to cars that approached from the left or right. We suspect that this is an artefact caused by 
the location of the vehicles in the photos. The cars approaching from the front or behind were usually located 
more centrally in the photos than those that approached from the left or right. Participants may have started 
looking at the centre of the photos, and it then obviously took more time to move to a more peripheral part.  Also 
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in real driving similar tendencies are typically observed in drivers, where the fixation location most favoured by 
experienced drivers is straight ahead [18]. An explanation as to why participants did not look at autonomous 
vehicles any quicker than manually driven vehicles could be that one of the objectives was to identify what kind 
of vehicle was being depicted. Therefore, all vehicles could have received more or less the same time-to-fixation 
because the participant did not know what kind of vehicle it was yet. 

Finally, the results on the number of revisits revealed that participants revisited the cars more often when the 
cyclists themselves had priority compared to the situations where they did not. This could be because the cyclists 
tend to keep more of an eye on the cars to determine if they are indeed being given priority as compared to when 
the cyclists have to give priority. As mentioned earlier, revisiting a specific AOI could be meant to resolve 
comprehension problems or to integrate information that is available in the target areas [11]. Then, simply 
detecting the vehicle might be sufficient to plan their actions, while waiting for a car to stop and give priority 
could require more attention and revisiting.  

   Some discrepancies have also come to light when comparing results with earlier findings, where 
participants who received a positive instruction reported to be surer that they were noticed by automated cars as 
compared to when receiving a neutral instruction [2]. A positive or more neutral description of the capabilities of 
automated driving did not, however, elicit differences in eye movement behaviour. Furthermore, it is clear in 
both studies that there is an effect of familiarity, however, in different ways. In the current study in the sense that 
cyclists did not look longer at the automated cars anymore during the second round, whereas in [2] cyclists were 
more sure that the automated car would stop for them as compared to the manually-driven car. The eye tracking 
data showed that cyclists only looked longer at the cars with a sticker and not at the car with a roof name plate. 
These findings illustrate that the relationship between eye movement data and other measures is not 
straightforward. 

The results of the present study should be treated with caution. First, due to the limited sample size of nine 
participants that was included in this study. Secondly, glance behaviour of cyclists could be different in the real 
world compared to a lab setting and using static images. Static images do not convey information about the 
speed of the car that the participants are interacting with. Cycling requires steering, pedalling and maintaining 
balance, all whilst monitoring the road and environment [19]. These additional demands could not be accounted 
for in this study. However, static images can be useful and have been used in traffic research. For example, 
Siswandari and Xiong [7] used static images of road signs to determine their comprehensibility. It turned out that 
the images that depicted harder-to understand road signs had longer time to first fixation compared to the signs 
that were easier to understand. Huestegge et al [17] also used static images to examine whether inexperienced 
drivers judged traffic situations differently compared to experienced drivers. Nonetheless, it might be useful to 
do a comparable study with the use of video depicting comparable traffic situations as in the static images to 
explore eye-movement patterns in a dynamic setting. Thirdly, regarding the minimal fixation during, this study 
used a cut-off point of 200ms. Fixations around the 100ms mark might not be uncommon in traffic behaviour 
and a smaller cut-off point should be considered in future studies. Finally, perhaps the visibility and readability 
of the various ‘automated’ car indicators were insufficient in some of the photos. Although none of the 
participants mentioned this, the size and angle of the car varied within the set of photos, and could have 
influenced the results. A planned follow up study will take this aspect into account. 

However, it remains speculative in what way the present findings could be transferred to real traffic 
situations. In a follow up study we examine in real life how various outer characteristics that indicate automated 
cars (similar to those used in the photos of the present study) affect road user behaviour [20]. One of the 
potential problems regarding self-driving vehicles is also that humans become too complacent towards them too 
soon. Even though our studies could suggest that humans adopt a cautious attitude towards self-driving cars, it is 
unknown for how long this cautious attitude stays. It is feasible that after a certain amount of exposure, people 
begin to drop the cautious attitude prematurely, particularly if the experience with the autonomous vehicles is 
positive. This could have dangerous consequences if the capabilities of self-driving cars turn out to be less than 
expected. Therefore, we recommend that future studies aim to investigate this topic further, using dynamic 
stimuli rather than static images; a higher sample size; and with a certain amount of exposure to self-driving 
vehicles in action, so as to gain trust of the participant. 
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