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Summary
The Micropropulsion Group of the department of Space Systems Engineering of the Delft University of
Technology is developing resistojet thrusters for small satellites operating on the vapourisation of liquid
water via an electric heater and its subsequent expansion via a nozzle into vacuum for the generation
of thrust. As the water vapour expands in the nozzle, its pressure and temperature drop, leading it to
cross the saturation limit of water and raising questions on whether the vapour will transition back to
liquid in the nozzle’s divergent section. The spontaneous condensation of flowing steam in supersonic
nozzles is a well-known phenomenon that results in the release of heat, in turn downgrading the nozzle’s
performance and efficiency.

This has motivated the present numerical study to assess the likelihood of the phenomenon’s oc-
curence inside the resistojet micronozzles. To that end, a condensation model is implented in the open-
source platform OpenFOAM, by heavily modifying an existing compressible solver to account for the
mild degrees of rarefaction in the nozzle, the real-gas thermodynamics of water and the phase-change
phenomenon itself. The condensation is modelled as a two-step process, whereby liquid clusters first
nucleate out of the vapour and then proceed to grow by gathering further vapor molecules. A baseline
micronozzle case is defined as one with a 100μm-depth nozzle with an expansion angle of 30 deg and
stagnation pressure and temperature of 3 bar and 473 K. The simulations are run for three stagnation
pressures (1, 3 and 5 bar), three stagnation temperatures (473, 573 and 673 K), three expander angles
(15, 30, 45 degrees) and two nozzle depths (100 and 200 μm). The outputs are in each case compared to
the baseline case, to extract conclusions on the effect of nozzle geometric and flow topological features
on the occurence of condensation.

The results show that the onset of condensation is in most instances a likely scenario, but not neces-
sarily a consequential one. The extremely fast cooling rates (108-109 Ks−1) drive the vapour to unusual
degrees of supersaturation (103 or more) before condensation occurs. When the birth of droplets even-
tually takes place, it does so in impulsive fashion, with large numbers of miniscule liquid clusters (radii
in the order of 10−10m) appearing simultaneously in mass fractions in the vicinity of 2%. Even so, the
macroscopic result is typically small, with the thrust and specific impulse changing only by 1-2% at
most. This holds true for the variation of all above design parameters except for the nozzle depth: it
is shown that doubling the depth decreases the wall’s heat influence and leaves room for substantial
condensation to occur, that degrades the thrust output by more than 5%.

The general conclusion to be drawn is that assessing the impact of condensation on this type of
nozzles is not as straightforward as in their conventional-scale counterparts and it is difficult to note
consistent trends. If it does occur, the condensation process will enter a complex interaction mecha-
nism with the heat supplied from the walls, the viscous layers developing on these walls and the degree
to which the expansion can overcome either or both. While in conventional scale nozzles the occurence
of the phenomenon typically guarantees a reduction in thrust and efficiency, here there is no general
tendency and the nature of the influence depends on the extent to which the release of latent heat and
its by-products can match in severity the rest of the phenomena inside the micronozzles. Overall, the
analysis indicated that the geometric configuration of a 100μm-deep thruster with a 30-deg expander
angle strikes a good balance in generally avoiding the occurence of substantial phase change (that would
cause a ≥ 2% change in macroscopic performance metrics) and also containing other contributing ef-
fects, such as the growth of viscous layers and expansion losses. The choice of stagnation conditions
is mission-dependent and no recommendation can be given, but some suggestions are provided on
approximate methods to select them such that condensation is avoided.
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CHAPTER 1

Introduction
The advent of novel fabrication techniques in the world of electronics at the latter stages of the 20th
century enabled the production of electronic devices at unprecedentedly minute sizes, with repercus-
sions in virtually every scientific and technological field. In the space engineering sector, it allowed for
the production of spacecraft spanning just centimetres along their largest dimension. In doing so, it
facilitated progress in concepts long envisioned, that would have conventional spacecraft replaced by
fleets of miniaturised architectures, offering the capacity for standardisation, flexibility in performance
and reduction in cost. The new size standards have introduced intensive efforts for the reduction of the
spacecraft subsystems’ sizes to the micro-scale and it is in this context that this work has been carried
out.

The focus here is placed on the analysis of the micro-propulsion sub-system, in the framework of
ongoing research at the department of Space Systems Engineering at the Technical University of Delft.
Among the concepts currently explored is that of a water-fed microresistojet, which vapourises a small
quantity of water and subsequently expands it into the ambience to produce thrust. Various aspects
of the device’s operation have been explored in recent years, but one topic that has received limited
attention is the prospect of two-phase flow in the nozzle and its impact on the thruster’s performance.
In particular, this work centers on the mechanisms by which the expanding steam may condense into
liquid water and aims to numerically assess whether this is a likely scenario and, if so, what its influence
on the nozzle’s performance is. This little-explored issue must be settled before fully informed design
decisions on the design of these micronozzles can be made.

The document is structured as follows. Ch. 2 places the problem in context and makes clear why
this phenomenon is one worth attention. The mechanisms by which two-phase flow can occur in the
nozzle are briefly described and past work on the topic, as found in literature, is reviewed. The basic
physics of condensation are presented, along with argumentation on the phenomenon’s relevance to
the design of micronozzles. In this introductory chapter’s last section, the scope of this work is framed,
stating the research objective and associated research questions.

From there on, the subsequent three chapters are where the numerical model is developed. Ch.
3 outlines the single phase solver upon which the condensation model is built. Ch. 4 compiles a
thermodynamic model capable of estimating the thermophysical properties of water in gaseous and
liquid form, as well as in equilibrium and non-equilibrium states. Ch. 5 treats the implementation of
the condensation model itself and Ch. 6 explains how the numerical simulations have been set up.
Finally, in Ch. 7, the prospect and consequences of condensation is explored for selected represantive
points across the operational envelope of the micronozzle, before conclusions on the results are drawn
and recommendations are made for future work.
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CHAPTER 2

The problem in context

2.1 General
In the context of this work, terms such as ”micropropulsion”, ”microthruster”, ”micronozzle” are used
to describe systems aimed at producing thrust in the order-of-magnitude range of 10−6-10−3N. Such
devices typically feature minute geometric dimensions in the the order-of-magnitude range of 10−6-
10−3m and are built to serve spacecraft of the nano- and pico-satellite scale, commonly featuring
masses of 1-10kg and 0.1-1kg, respectively (Silva et al., 2018a). The propulsion systems of interest
here are of the electrothermal type, in that they use electrically generated heat to initiate the propulsion
process. Extensive overviews of these and other types of micropropulsion systems can be found in works
such as those of Leomanni et al. (2017), Lemmer (2017), Silva et al. (2018a) and Levchenko et al. (2018).

2.2 Micropropulsion research at TU Delft
Ongoing work on miniaturised propulsion systems at TU Delft’s Department of Space Systems Engi-
neering treats the development of MEMS- (Micro-ElectroMechanical Systems) based electro-thermal
propulsion modules functioning on environmentally-friendly, non-toxic propellants. Particular empha-
sis is placed on water in ice/liquid form, owing to such advantages as high mass density and low
molecular mass, availability, environmental friendliness and benign chemical nature (Guerrieri et al.,
2017a). In that regard, two concepts are of primary focus (Cervone et al., 2017):

• Vaporising Liquid Microresistojet (VLM): Water is evaporated by a heating element in a dedicated
chamber and then expanded through a conventionally shaped nozzle for the generation of thrust
(see Fig. 2.1a). For input heat powers of 1.87-9.01W, the process typically establishes tempera-
tures of 373-773K and pressures of 100-500kPa in the chamber, leading to thrusts and specific
impulses in the approximate ranges of 0.75-3.86mN and 105-115s, respectively. The exact op-
erating conditions depend on the efficiency of the vaporisation process, the nozzle configuration,
etc. (Silva et al., 2017, 2018a)

• Low Pressure Free Molecular Microresistojet (LPM): A quantity of ice is sublimated in the tank
by a heating element such that the pressure is maintained at the water vapour pressure. The
gaseous molecules are fed via a feed system into a plenum and are then expelled via one or more
heated slots for the generation of thrust (see Fig. 2.1b). Chamber temperatures and pressures
are typically in the order of 300-700K and 50-300Pa, respectively, yielding typical thrust val-
ues as 0.39-3.59mN (Guerrieri et al., 2017a). Evidently, the most relevant differences from the
VLM concept are the allowable operating pressures/temperatures and the lack of a nozzle as an
expansion element (Cervone et al., 2015).

The thruster modules are designed with a view to modularity and ease of integration, such that
multiple configurations of the sub-components may be installed and assessed, but also the thrusters
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themselves may be assembled into arrays. Besides the obvious gains in mass and volume, the devel-
opment process aims for high reliability at fast-response rates. To that end, the main development
challenges include the characterisation/enhancement of the vaporisation/sublimation process, stor-
age of propellants and containment of leaks, commercial valve integration and actuation, optimisation
of the expansion geometries, quantification of flow rarefaction effects, etc. (Guerrieri et al., 2017a,b;
Silva et al., 2018b).

(a) Vaporising Liquid Microresistojet.
Extracted from Silva et al. (2017).

(b) Low Pressure Microresistojet. Extracted from
Guerrieri et al. (2017a).

FIGURE 2.1: Samples of microthrusters fabricated at the Delft University of Technology.

The present work focuses on the VLM concept and, in particular, its nozzle component. The nozzle
is of the planar convergent-divergent type, in which a pair of straight flat walls seal the nozzle on the
sides. These nozzles typically feature throat widths and nozzle depths in the order of 10−2mm and
10−1mm, respectively. This causes their flow behaviour to depart markedly from that of conventional-
scale, axisymmetric nozzles, as is briefly explained in the following section.

2.3 Brief review of gas dynamics in low density micronozzles
The convergent-divergent nozzle concept is inherent to virtually every rocket/spacecraft chemical propul-
sion system in use, as an efficient means of extracting momentum from the acceleration of gaseous
combustion products. In conventional-scale nozzles, stagnation pressures originating from combus-
tion processes in the chamber are in the order of 100 bar, resulting in nozzle Reynolds numbers typ-
ically in the range of millions (Sutton and Biblarz, 2017). These flow conditions confine the diffusive
phenomena of viscosity and heat conduction to only very thin boundary layers at the wall. The bulk
mass flow is orders of magnitudes larger than the portion of the flow moving adjacent to the walls,
allowing - as a first approximation - for viscous effects to be neglected and for the flow to be assumed
a continuous uniform medium. This enables fairly accurate approximations of performance via sim-
ple analytical expressions and fairly accurate deduction of highly-performant nozzle shapes by simple
numerical techniques. The nozzle shape design is primarily driven by the need for rapid alignment of
the nozzle flow prior to its exit into a design ambient pressure, for minimum loss of momentum. The
miniaturisation of nozzle geometries introduces flow phenomena that nullify these assumptions.

When the nozzle dimensions are reduced to the milli-/micro-meter scale, the relative size of bound-
ary layers developing at the walls is enough to occupy a large - and, under certain conditions, complete
- portion of the nozzle cross section. A peculiar situation is established in which the supersonic core of
the flow is traversing the nozzle parallel to comparably sized subsonic regions. The subsonic layers re-
duce the effective nozzle area and often provide a path for the exit conditions to communicate upstream
into the convergent section. Flow alignment is no longer the sole primary concern and a trade-off with
the desire to minimise viscous losses is imposed. The minute dimensions further imply a stark increase
in the surface to volume ratio, amplifying the impact of any heat transfer phenomena to/from the flow
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and rendering their control a key performance driver. Lastly, at sufficiently low densities, the individual
gas molecules traverse paths between collisions comparable to the nozzle dimensions. The flow can
then no longer be treated as continuous or uniform and fundamentally different theoretical treatments
are needed for meaningful estimations of performance. An overview on some of these mechanisms
can be found in Louisos et al. (2008), although the reader is encouraged also to explore more recent
literature, as a lot of new insights have been produced over the past decade or so 1.

The combination of the above factors complicates micronozzle shape design beyond the capacity
of existing numerical/experimental techniques and the search for consistently well-performing design
methodologies is currently feeding a dedicated research field, which this work aims to contribute to.

2.4 Two-phase flow in VLM nozzles
Two-phase flow in the nozzle of the VLM will generally manifest in any or both of two manners:

• droplets originating from insufficient vapourisation in the chamber

• condensation of vapour due to expansion as it traverses the nozzle

In other thruster concepts a third scenario exists, in which the hot gas may impinge on the colder walls
of the nozzle and condense on the spot or expel heat that will eventually encourage this process. But,
it is explained later that neither of these factors is applicable in typical VLM nozzle conditions, hence
this mechanism is here ignored. A brief discussion on the other two follows below.

2.4.1 Two phase flow due to insufficient vapourisation

Concerning the first of the above points, Silva et al. (2018a) performed an approximate volumetric
experimental measurement on some of the TU Delft VLM geometries and found it is likely that a finite
amount of droplets may find their way from the heater into the nozzle. To the author’s knowledge, there
is no detailed experimental investigation of this phenomenon in literature and even numerical studies
are extremely limited. The most notable works are those of Bhattacharya et al. (2013), Greenfield et al.
(2018) and Kudryavtsev et al. (2018), who extracted basic conclusions on the response of micronozzle
flows to the seeding of minuscule solid particles, under a variety of flow configurations. There is still
room for work in this area to be done. For instance, none of these investigations treated a 3D geometry
(such that the effect of the planar wall is included), nor included effects such as the buildup/evaporation
of the droplets as they traverse the nozzle or the interactions between the droplets themselves. They
also did not investigate other related interesting phenomena, such as potential transient instabilities
that the droplets would induce in the nozzle flow either upon their formation or as they traverse the
nozzle.

A related numerical investigation of these effects was explored in the early stages of the present work,
but it was eventually decided that there is so much uncertainty involved, that it is not realistic to expect
physically representative results without resorting to extraordinarily complex simulations that would
have required unavailable computational resources. For instance, for a physically realistic analysis, one
cannot simply assume solid particles of extremely minute and uniform size. Incomplete vapourisation,
especially in a heater of geometry as complex as the one used in TU Delft thrusters (Cervone et al.,
2015), is a rather unpredictable phenomenon, that may as well result in droplets sizeable enough to

1Indicatively, the reader is referred to the works of Morinigo and Quesada (2010) and Louisos and Hitt (2012) for the influences
of temperature and heat transfer mechanisms; of Darbandi and Roohi (2011) and Torre et al. (2011) on the importance of
accounting for the influence of rarefaction effects; Louisos and Hitt (2011a) on transient phases of operation; and Louisos and
Hitt (2014), Pearl et al. (2014) and Stein and Alexeenko (2011) for the performance of alternative nozzle concepts.
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be deformable or droplets that come at a size distribution too diverse to be uniformly modelled. That
is before even considering other aspects of the process, such as the interaction mechanisms between
the droplets and the nozzle walls, which is not necessarily a purely specular impingement/reflection,
the evaporation of the droplets, etc. What is more, the present author believes that if the nozzle’s
performance is impacted by the heater’s under-performance, any optimisation efforts should focus on
the heater itself, rather than the nozzle. In view of these points, it was decided to instead focus this
work on the prospect of condensation due to expansion.

2.4.2 Two phase flow due to expansion-induced condensation

This matter too, has received very limited attention in existing micronozzle studies. It has briefly been
touched upon in the experimental studies of water-fed microthrusters by Cen and Xu (2010) and Nishii
et al. (2019), both of whom noted that no condensation was observed in the flow. However, their
instrument of observation was the naked eye, which is admittedly not particularly sensitive, especially
since (as is explained later) the droplet sizes involved in such cases are below what is resolvable by
the human eye. In a later work, Giorgi and Fontanarosa (2019a) also noted the issue in passing,
but stepped on the aforementioned analysis of Cen and Xu (2010) to reason that for their purposes the
phenomenon could be ignored. Haris and Ramesh (2014) examined the matter in more detail, outlining
stagnation temperature ranges such that condensation in the expander could be avoided. However,
their work implicitly assumed that the steam will condense immediately once it reaches saturation,
while (it is explained later that) it is a fundamental characteristic of supersonic nozzle condensation
that the vapour far exceeds its saturation point before any meaningful condensation ensues.

Perhaps the most detailed treatment so far has been given by Louisos and Hitt (2010). They briefly
discussed some of the basic physics behind condensation and went on to perform numerical simu-
lations to assess its likelihood in nozzle flows of their interest. The authors sought to avoid entering
complex investigations of the issue, so their work inadvertently contains multiple blunt simplifications.
Most notably, they do not actually model the condensation process itself, but instead provide some ”a
posteriori” rough estimates of the impact that the condensation could have had on the flow, based on
the purely gaseous flow solution. Indicatively, the noted that the flow in the expander of their nozzle
could experience a temperature increase as a result of condensation of up to almost 400K. Approxi-
mate as it may be, their work is notable as perhaps the only to have highlighted the issue in a detailed
manner and - most relevantly for our purposes - for giving some first indications that the prospect of
condensation is, in fact, a realistic scenario for micronozzles.

The following section explores the underlying physics in a bit more detail and discusses further
whether the matter of condensation is worth exploring, before finally specifying the scope of this work.

2.5 Water vapour condensation in supersonic nozzles
The entirety of the work presented in this document has originated from the simple consideration that
as the water vapour expands towards the outlet of the resistojet’s micronozzle, its temperature and
pressure drop and hence it may reach conditions to transition back to liquid form. The phenomenon
of water vapour condensation in nozzles was first observed by the early gas dynamics pioneers Ludwig
Prandtl and Adolf Busemann in the 1930s and plagued the design of supersonic/hypersonic wind-
tunnels for much of the 20th century (Wegener, 1954, 1975). In the more recent past few decades,
it has drawn extensive research from the energy sector, due to its relevance to industrial applications
such as the use of nozzles to actuate turbines in nuclear reactors. That research forms the backbone
of the analysis in this work. This section outlines the general physics of the phenomenon and explains
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why it is of relevance to water-fed micronozzle research and how it has motivated this work.

2.5.1 General overview

The transition of vapour into liquid water requires that it is first brought to saturation conditions, such
that it can overcome the energy barrier associated with the intermolecular bonds for the formation of the
first liquid surface. The initial process by which vapour molecules bond to form a liquid cluster is called
nucleation. Nucleation may take place either homogeneously, in which case vapour molecules will
spontaneously coalesce between themselves to form droplets or heterogeneously by instead coalescing
on already available foreign particles, such as dust. The energy that has to be expended in the former
case is generally multiple times higher than in the latter and hence the heterogeneous mechanism
prevails in most processes in nature.

Most condensation phenomena typically observed in everyday life take place under equilibrium con-
ditions. In the troposphere, for instance, when atmospheric conditions are suitable to drive a quantity
of vapour to saturation, it will condense on existing solid particles (dust, salts, etc) and form minus-
cule droplets, in an exothermic reaction that releases heat to the atmosphere. If conditions are right,
the vapour molecules will keep coalescing onto the surface of the newly formed droplets and continue
to release heat, in a sequence that may eventually lead to the formation of clouds. This is a slowly
developing process, during which the vapour continually shifts from one position of thermodynamic
equilibrium to another (Put, 2003). That is, the timescale of the phenomenon is slow enough to al-
low for thermodynamic phenomena to reach equilibrium practically instantly. In the conditions found
in many industrial processes involving the flow of steam, including those in supersonic nozzles, this
ceases to be the case.

The rapid expansion in conventional supersonic nozzles results in cooling rates typically in the order
of 105-106 K s−1 (Wegener and Wu, 1977; Abraham, 1981). Under such conditions, the timescale is too
short for sufficiently frequent intermolecular collisions to take place or for the molecules to form bonds
and clusters as they do under equilibrium. The gas reaches its saturation point and goes on to far
exceed it without condensation occurring, remaining in vapour state under thermodynamic conditions
that would have normally caused it to transition phase. The local pressure becomes multiple times
higher than vapor’s saturation pressure at the local temperature and this ”supersaturated” vapour is
said to be in a ”non-equilibrium” or ”metastable” state. These types of nozzle flows generally involve
either pure superheated steam or steam transferred by a carrier gas (air, argon, etc). The presence
of foreign nuclei such as dust is typically very limited or non-existent and the timescale needed for
heterogeneous condensation far exceeds that of the supersonic flow. As a result, it is never observed
in practice and homogeneous nucleation instead now becomes the driving mechanism (Bakhtar et al.,
2005).

In the metastable state, the vapour experiences statistical fluctuations that lead to a continuous
agglomeration and collapse of molecular clusters, a microscopic process during which no macroscopic
disturbance is noted in the flowfield (Ford, 2004). Eventually, however, the degree of supersaturation
becomes extreme enough for the energy barrier of homogeneous condensation to be exceeded and the
vapour spontaneously starts collapsing into minute liquid clusters. Nuclei with radii commonly in the
order of 10−10-10−9mwill grow several orders of magnitude within a fraction of a second and reach sizes
of 10−6-10−5m by the time they have exited the nozzle. This is a strongly exothermic phenomenon that
may drastically alter the flow topology inside the nozzle, raising the pressure and temperature in the
expander markedly above what it would have been in the nominal isentropic expansion. The entropic
changes resulting from the release of latent heat also impact the efficiency of the nozzle.

Instructive visualisations of the phenomenon are offered in Figs. 2.2 and 2.3 (note the figures are
not related). It can be seen that the droplets grow rapidly within a narrow condensation zone and the
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corresponding sharp increase in pressure establishes a shock-like disturbance that heavily upsets the
flow. The latent heat released during the process raises the temperature, quickly driving the vapour
back to its equilibrium state. Eventually, the growth is quenched and the region near the nozzle exit
exhibits a two-phase flowfield in equilibrium, with a quasi-steady number of droplets that no longer
grow.

FIGURE 2.2: Schlieren visualisation (i.e., density gredients; here, whiter means denser) of the shock-
like structure of the condensation front in a supersonic wind-tunnel nozzle. In this case, atmospheric
(i.e., moist) air was used. The steam in the carrier gas, supersaturated due to the supersonic expansion,
eventually collapses to a narrow condensation zone. The resulting sudden release of latent heat causes
a sharp increase in pressure that establishes a shock-like disturbance. The condensation fronts form
along expansion fans that emanate from each nozzle wall and they interfere at the centerline, resulting
in the X-shaped pattern. The image is courtesy of Prof. Gunther H. Schnerr of the Technical University
of Munich.

FIGURE 2.3: Schematic of a typical condensation process in a supersonic nozzle. The release of heat
that follows the onset of condensation increases the flow pressure markedly above what it would have
been in the isentropic case. Extracted from Hasini et al. (2012).

While Fig. 2.3 is drawn qualitatively, it is not exaggerated and realistically depicts the degree to
which condensation can impact the flow pressure and hence the nozzle performance. This is what has
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prompted the careful examination of whether this can happen inside the micronozzles designed at TU
Delft and what has motivated this work.

2.5.2 The prospect of condensation in micronozzles

To offer the reader some insight into what thermodynamic space the operation of the VLMs of interest
here occupy relative to the thermodynamics of water, a phase diagram of H2O has been plotted in Fig.
2.4 according to the relations given in Daucik (2011) and an indicative operational range for VLMs has
been imposed on it. The region is bounded by assuming a maximum stagnation temperature of 673K
(400 oC) and a maximum stagnation pressure of 5bar. It has been assumed that the expansion in the
nozzle divergent will not drive the vapour below 0.02bar (2000Pa). These values are typical of the VLMs
examined in this work (shown in Ch. 7), but otherwise generally arbitrary and only indicative, as one
may as well choose stagnation pressures of 7bar or higher or temperatures of 773K or higher, as long
as material properties and other design considerations allow or require this. What can be seen is that,
depending on the chosen stagnation conditions and nozzle geometry, the flow in the nozzle may cross
the saturation line and dive well into the liquid and even solid regions, so the thermodynamic space for
the prospect of condensation to be conceivable is certainly present. These aspects are revisited in the
followsing chapters.
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FIGURE 2.4: Basic phase diagram of water. The curves have been plotted according to the relations in
Daucik (2011). The dotted box annotates the rough region of operation of the micronozzles examined
in this work, for the vapour phase. The region is drawn as a rectangle for clarity, but it should be
understood that the vapour will expand in the nozzle. Therefore, it is unlikely that the lowest temper-
atures will be reached at the highest pressures and only the flow expanded to a few kPa will reach the
low-temperature end. The temperature axis has been truncated at 200 K, but the nozzle flow temper-
ature may drop below that value, depending on the operating conditions. The 0.02 bar threshold in
only indicative of a typical value in steady-state operating conditions and the pressure in the nozzle
may drop below it under lower stagnation pressures or during transient operation. It can be seen and
will be shown again in Ch. 7 that as the vapor expands in the nozzle divergent, it moves well into the
liquid and solid phase space, which it would have transitioned to under equilibrium conditions.

In determining whether condensation really is a matter of concern in micronozzles, one must take
into account the fact that the difference in scale with conventional nozzles plays a dominant role here
as well. It was stated in the previous section that cooling rates in large-scale nozzles are in the range
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105-106 K s−1. Micronozzles such as the one depicted in Fig. 2.1a are typically 2-3mm in length and
the expander occupies roughly 1/3rd-1/2nd of that. If, for the sake of the discussion, it is assumed
that the superheated vapour enters the nozzle at 473K (200 °C), it is quite probable its temperature
will have dropped by more than 200K by the time it exits the nozzle (this is shown in Ch. 7). If it is also
roughly assumed that the flow traverses the expander at an average velocity of 700ms−1 (about Mach 2
for typical nozzle conditions), then the resulting cooling rate is in the order of 108-109 K s−1. The cooling
rate is therefore roughly 3 orders of magnitude higher than in conventional nozzles, which is the result
of the fact that the flow experiences about the same degree of expansion in both types of nozzes, but
in the micronozzle the spatial distance over which this takes place is orders of magnitude smaller. The
resulting cooling rates are extreme and this is important to note, because it is known that the faster
the vapour cools, the more it is driven out of equilibrium and the deeper into the supersaturated state
it delves before condensation ensues (Moses and Stein, 1978a). Condensation is hence delayed and it
may then be that the time the flow spends in the nozzle is too short for the vapour to condense or that
even if condensation does occur, it is of limited extent and of little consequence.

On the other hand, it is explained in Ch. 5 that in these particular flowcases the water vapour
is expected to be supercooled to extraordinary levels, below the freezing point of liquid water itself
(273K). In that region, the saturation pressure drops quite rapidly with temperature and this implies
that the extreme level of supersaturation needed to trigger nucleation may be reached rather quickly.
In literature, the present author has been able to trace only two past works that experimentally touched
upon the matter of condensation in nozzles of somewhat comparable geometry; those of Abraham (1981)
and Bobbert et al. (2002)2. Indeed, they both noted the occurrence of condensation. In a later work,
exploratory DSMC simulations by Jansen et al. (2009) on the nozzle of Bobbert et al. (2002) found that
the condensation is likely to have sensibly affected the flow, causing a temperature rise of 20K and a
velocity increase of about 30m/s.

On these grounds, it has been decided that the prospect of condensation inside the micronozzles
produced in TU Delft is both plausible and potentially impactful enough to warrant a detailed inves-
tigation. This has produced the analysis presented in this document, the scope of which is framed in
the following section.

2It must be clarified that the nozzle of Abraham (1981) is formally too large to be considered a micronozzle and also operated
on a different propellant (sulphur-hexafluoride or SF6), but its characteristic dimensions are still only a fraction of 1mm and
similar principles of operation apply. The nozzle of Bobbert et al. (2002) is in fact a micronozzle operating on water, but an
axisymmetric one that is not influenced by the dominant presence of the heated planar wall.
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2.6 Scope of this work
Following the above discussions, the scope of this work is framed by the formulation of a research
objective, this is realised by answering a series of associated research questions. These are given
below.

RESEARCH OBJECTIVE:

to implement a numerical model for the investigation of non-equilibrium water vapour condensation in
vaporising liquid microthruster supersonic nozzles at near-vacuum ambient conditions, by coupling the
effects of wall heat transfer and vapour phase change inside three-dimensional geometries, with the aim
of identifying whether the phenomenon should be a design consideration in the future and formulating

associated design directives

PRIMARY RESEARCH QUESTIONS:

1. RQ1: Does condensation occur in common operating conditions (to be defined later) of these
micronozzles?

2. RQ2: How is the potential onset of condensation affected by the stagnation conditions (pressure
and temperature) in the nozzle?

3. RQ3: How is the potential onset of condensation affected by the nozzles’ geometry, in terms of
their expander opening angle and their depth?

4. RQ4: If condensation does ensue, does it have a substantial (to be quantified at the end of this
section) impact on the nozzles’ macroscopic performance (thrust and specific impulse)? And if so,
what is that impact?

SECONDARY RESEARCH QUESTIONS:

• RQS: Eventually, should the prospect of condensation be a design consideration in the future? If
so, what design choices are recommended?

A quantification is needed for what is considered a ”substantial” impact on the performance of the
nozzle, as formulated under RQ4. This is heavily mission dependent and there is no strict threshold
for it. For instance, a CubeSat with a main mission goal to perform technology demonstration of
onboard sub-systems such as a novel onboard computer, is unlikely to be affected by a 1% offset in
thrust. In contrast, the same threshold may be unacceptable for a spacecraft carrying a sensitive optical
payload with strict pointing requirements. Here, somewhat arbitrarily, this threshold is set at 2% on
the assumption that even for benign mission requirements, a propulsion system deviating more than
that from predicted performance would likely be a matter of some concern, especially when integrated
over a long impulse maneouvre.

2.6.1 The methodology in brief

To address these questions a numerical model capable of capturing the physics of condensation is
implemented in the open-source computational platform OpenFOAM. An existing numerical solver for
general compressible flows is adopted from that platform and is heavily modified, to make it suitable
for capturing the effects of mild rarefaction inside the micronozzle and the physics of condensation in
supersonic conditions. The choice of OpenFOAM has been motivated at the early stages of this work
by the following considerations:
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• As will become clear in the following chapters, a myriad of considerations are involved in the mod-
elling of condensation. Since micronozzles exhibit quite particular flow physics, at the beginning
there was no clear overview of the precise phenomena the model would have to account for. As
such, there was the preference to have a fully configurable numerical tool that could be modified
at will and without restrictions, such that the model could be tailored optimally to the case at
hand.

• OpenFOAM is open-source and therefore freely accessible without limits, which eliminated any
restrictions that come with using commercial software. Besides the obvious practical advantages,
it also implies the principle of the research being easily available to everyone.

• A more personal reason to the author was also involved: this thesis is an educational activity
in the end and the author wished to take this opportunity to familiarise himself with numerical
simulations, a field he initially had no affinity to. It was deemed that there was far more educa-
tional value involved in implementing the model from start, rather than simply using an already
existing commercial framework.

Following the choice of the tool, the work was then segmented into four main ”work packages”:

• The assembly of a single-phase (pure vapour) model that can satisfactorily reproduce relevant
micronozzle flow physics in the absence of any phase change, such as it could be used as the
basis for the development of the two-phase model.

• The compilation of a real-gas thermophysical model that allows for the accurate estimation of the
properties of water in vapour and liquid form, as well as along the saturation line.

• The implementation of the condensation model, to capture the processes of droplet birth and
growth.

• The application of the model on the numerical simulations of selected micronozzle cases, such
that the research questions can be addressed.

The rest of this document treats each of these steps sequentially in the following chapters.
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Part I

Single-phase model
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CHAPTER 3

Single-phase model
Before implementing the condensation model, it is necessary to ensure that a numerical tool is available
which can satisfactorily simulate supersonic nozzle flows under purely gaseous conditions. This single-
phase model is outlined in this chapter.

3.1 Modelling approach
The Loschmidt constant - a measure of the number of particles of an ideal gas per unit volume for given
ambient conditions (Vincenti and Kruger, 1967) - measures approximately 2.67 × 1025 of an ideal gas’s
particles per cubic metre under standard atmospheric conditions, implying there are roughly 3 × 1010

particles in just one millionth of a cubic millimetre. This justifies the assumption that the properties of
any flow whose characteristic scale is larger than, for instance, 1mm - such as those most commonly
encountered in practice - are macroscopically continuous and independent of the molecular topology
of the gas (Shen, 2005). The flow properties can be defined at the infinitesimal scale and their variation
may be assumed continuous in space and time. This allows for the description of the flow with a
relatively compact set of equations, that may be expressed both at the infinitesimal and integral scale,
typically given in the form of the Navier-Stokes equations or some variation (Sec. 3.2).

The continuum assumption breaks down when the characteristic scale of the gradients of the macro-
scopic properties becomes comparable to the average length of a molecule’s path between two collisions,
as predicted by kinetic theory, fittingly termed the ”mean molecular path length”. This average is sta-
tistically determined over the multitude of molecules in the gas and serves as input to a commonly
used qualitative measure of a flow’s degree of rarefaction, the Knudsen number, defined as:

𝐾𝑛 = 𝜆
𝐿 (3.1)

where 𝜆 is the mean molecular path and L is the chosen characteristic length of the flow. The mean
free path is typically approximated via the classical kinetic theory of gases as (Vincenti and Kruger,
1967):

𝜆 = 𝜇
𝑝

√𝜋𝑘𝐵𝑇
2𝑚 (3.2)

where 𝑝, 𝑇 and 𝜇 are the gas pressure, temperature and viscosity, respectively, 𝑚 = 2.988 × 10−26 kg
is the molecular mass of water vapour, 𝑘𝐵 =1.38 × 10−23m2kgs−2K−1 is the Boltzmann constant and
𝜋 ≈ 3.14 is the well known mathematical constant. The precise values of Kn that define the flow regimes
intermediate between continuum and vacuum is often a basis for debate, but a conventional adaptation
of Tsien’s (Tsien, 1946) original division is the following:

• 𝐾𝑛 < 0.001 → Continuum

• 0.001 < 𝐾𝑛 ≤ 0.1 → Slip-flow

• 0.1 < 𝐾𝑛 ≤ 10 → Transitional
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• 𝐾𝑛 ≥ 10 → Free molecular

and is the one used for the rest of this document. Note that a given flow may exhibit varying degrees
of rarefaction at different locations. Therefore, if one chooses a characteristic length representing the
entire flow in an attempt to define a single Knudsen number, the above definitions are obscured. It is
thus common to define a ”local Knudsen number” by choosing the characteristic length to be the scale
length of the flow gradients (Bird, 1994):

𝐿 = 𝜌
𝑑𝜌/𝑑𝑥 (3.3)

In this work, however, we stick with the definition of Eqn. 3.1 and the nozzle throat width is used as
the reference length for the rest of the discussions in this chapter.

In a typical micronozzle, the throat width is in the order of micrometers and the length spans
only a couple of millimetres. At the same time, the flow will expand from a relatively low stagnation
value (usually between 1-5 bar) into vacuum, therefore it undergoes a rapid expansion within a short
geometric distance. Under these conditions, the characteristic geometric scale of the flow tends to that
of the nozzle geometry and the corresponding Knudsen number veers into the slip and transitional
regimes. It is then common to use kinetic methods based on statistical techniques, that do not depend
on averaged macroscopic properties and instead track the motion and collisions of individual particles
for the description of the flow. Characteristic examples are the widely used Direct Simulation Monte
Carlo method (Bird, 1994) and the recently emerging Lattice Boltzmann Method (Mohamad, 2011).

However, the fact that these methods track individual particles make them very computationally
expensive for all but the most highly rarefied cases. They certainly bear a computational cost far too
prohibitive for the means the author has had in his disposal. As a result, the numerical analysis here
is based on the Navier-Stokes approach, accepting any potential inherent loss in the realisticity of the
solution if the Knudsen number exceeds the continuum range.

3.2 The governing equations

The continuum description, here as in the majority of literature, is mathematically implemented via
the Navier-Stokes (NS) equations, which have become the cornerstone of modern fluid mechanics and
computational fluid dynamics in the examination of most ordinary phenomena of fluid motion (Versteeg
and Malalasekera, 2007). The equations are derived on the principles of conservation of mass, momen-
tum and energy across a control volume in the flow (an example is given in Fig. 3.1). A multitude of
forms can be derived for various applications, but the form most relevant to this work is the following:

Conservation of mass: 𝜕𝜌
𝜕𝑡⏟

time rate of change
of mass accumulation

+ ∇ ⋅ (𝜌 #»V)⏟
mass transport
by convection

= 0 (3.4)

Conservation of momentum:

𝜕
𝜕𝑡(𝜌 #»V)⏟

time rate of change
of momentum accumulation

+ ∇ ⋅ (𝜌 #»V #»V)⏟⏟⏟⏟⏟
momentum transport

by convection

= − ∇𝑝⏟
pressure forces

+ ∇ ⋅ #»𝜏⏟
viscous forces

(3.5)
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(a) Infinitesimal control volume (b) Stress components in the x-direction

FIGURE 3.1: Infinitesimal control volume for the derivation of the Navier-Stokes equations. The stress
state is given on the left as an example of the factors accounted for when setting up the conservation
laws. Extracted from Versteeg and Malalasekera (2007).

Conservation of energy:

𝜕
𝜕𝑡(𝜌𝐸)⏟

time rate of change
of energy accumulation

+ ∇ ⋅ ( #»V(𝜌𝐸 + 𝑝))⏟⏟⏟⏟⏟⏟⏟⏟⏟
energy convection +

pressure work

= ∇ ⋅ (𝑘∇𝑇 + ( #»𝜏 ⋅ #»V))⏟⏟⏟⏟⏟⏟⏟⏟⏟
heat conduction +
viscous dissipation

(3.6)

where 𝑝, 𝜌 and 𝑇 are the flow pressure, density and temperature,
#»𝑉 and #»𝜏 denote velocity and surface

shear stress vectors, E is total energy contained in the flow and 𝑘 expresses the fluid’s thermal conduc-
tivity. The above treatment describes fluid motion via 5 partial differential equations (1 × continuity,
3 × momentum and 1 × energy), but contains 10 variables (𝜌, 𝑝, 𝑇 , 𝐸,

#»𝑉 , #»𝜏 ). Additional relations are
needed to close the system.

In the Newtonian fluid description, the shear (viscous) stress is assumed to be linearly proportional
to the rate of deformation of the control volume and related to it via two constants of proportionality as

𝜏 = 𝜇(∇ #»V + ∇ #»V𝑇 ) − 𝜆∇ ⋅ #»V𝐼 (3.7)

The dynamic viscosity 𝜇 and second viscosity 𝜆 are physical parameters relating the stresses to linear
and volumetric deformations, respectively. The dynamic viscosity typically follows from empirical ex-
pressions. Little is known about the precise nature of 𝜆, but Schlichting (1979) showed that a good
approximation may be obtained as 𝜆 = 2

3 𝜇 and this is by far the most common implementation in
modern NS schemes.

The total energy is expressed as the sum of the gas’s enthalpy and kinetic energy as:

𝐸 = ℎ − 𝑝
𝜌 + |𝑉 |2

2 (3.8)

In turn, the enthalpy ℎ is expressed ℎ = 𝑒+ 𝑝
𝜌 and describes the energy enclosed in a stationary system

as the sum of the internal (vibrational, translational, rotational, etc) energy of the molecules and the
work that had to be exerted on the system’s surroundings to make room for its presence. The system
of equations can be closed with the use of an equation of state, usually the simple ideal gas law:

𝑝 = 𝜌𝑅𝑇 & 𝑒 = 𝐶𝑣𝑇 (3.9)

However, the thermodynamic behaviour of water vapour generally deviates from that of an ideal gas
and a real-gas equation of state is needed. That is the subject of Ch. 4.
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3.3 The numerical solver
The standard distribution of OpenFOAM currently provides two solvers capable of resolving the features
of supersonic flow: a density-based ”rhoCentralFoam” solver and a pressure-based ”soniFoam” one. In
the former case, the density is determined via the solution of the continuity equation and the pressure
follows from the equation of state; in the latter, a pressure predictor-corrector equation is instead
solved first for the determination of the pressure field (Versteeg and Malalasekera, 2007). Both solvers
are transient, i.e., the temporal evolution of the flow is resolved.

A micronozzle exhibits flow that starts at low Mach numbers at the inlet, reaches supersonic speeds
at the outlet and retreats to subsonic or stagnant values downstream of the outlet. This is somewhat
inconvenient from a numerical perspective, because neither of these types of solvers is efficient across
the full range of Mach numbers. The solution propagation is bounded by a timestep that is deter-
mined at the local sonic velocity, therefore it becomes rather inefficient at those regions where the
flow is subsonic. In any case, these are the only options available and given that rhoCentralFoam is
typically found to outperform sonicFoam in terms of resolution accuracy and numerical performance
(Marcantonia et al., 2012; Bondarev and Kuvshinnikov, 2018), as well as that it implements a fairly
straightforward numerical scheme that makes the implementation of the condensation model simple,
it has been the choice for this work.

The mathematical details are described in detail in Greenshields et al. (2009) and will not be re-
peated here. Some aspects are visited in Ch. 5, to explain the numerical implementation of the two-
phase model. Briefly, the solver is based on the central-upwind discretisation schemes of Kurganov
and Petrova (2007), essentially employing the local sonic velocities at the computational domain’s cell
interfaces to deduce weight factors for the computation of the fluxes of flow properties between the
cells. It is an explicit solver, meaning the properties are computed based on the values of the previous
timesteps only and the governing equations are solved in a sequential and segregated manner. This
numerical setup introduces some limited numerical diffusion that may impact the resolution of high-
gradient features such as shockwaves (Modesti and Pirozzoli, 2017), but has been shown to be suitable
for most common compressible aerodynamic applications (Greenshields et al., 2009).

3.4 Short-comings of the governing equations in rarefied flows
The inability of the Navier-Stokes equations to accurately reproduce flow cases exhibiting even mild
degrees of rarefaction typically comes down to (any of) three causes:

• A linear variation of the shear stress tensor with the velocity gradient at the wall is assumed.

• The fact that, during the rapid expansion, the translational, rotational and vibrational modes of
the internal energy distribution may no longer be in equilibrium is not modelled.

• The fact that the flow slips rather than comes to a halt at the wall is not accounted for.

In view of these shortcomings, in the early stages of this work multiple options were explored as poten-
tial candidates for improving the model’s performance against rarefaction inside the micronozzle. In
literature, multiple attempts are recorded at devising a way to partly mitigate these deficiencies, with
varying and limited degrees of success.

One common approach is to explicitly split the temperature into its translational, rotational and vi-
brational components and then introduce extra conservation equations for the internal energy compo-
nent associated with each of these temperatures. Usually, this is done via a simple relaxation equation
in the Landau-Teller form (Nikitin and Troe, 2008):
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𝑑𝑒∗

𝑑𝑡 = 1
𝜏 ( ̄𝑒 − 𝑒∗) (3.10)

where 𝑒∗ is the internal energy mode in question, ̄𝑒 is the equilibrium value towards which it relaxes
during the expansion and 𝜏 is the relaxation time. Notable examples in this regard are the works
of Bertolotti (1998), who studied the effects of energy relaxation on boundary layer stability and of
Johnson et al. (2000, 2006), who intoduced a vibrational energy relaxation to simulate rarefied nozzle
flow.

Other authors (Xu et al., 2008; San et al., 2009; Zhao et al., 2014) have used extended versions of the
NS equations that are better suited for approximating the detailed kinetics of rarefied flows. In some
works it has been suggested to use a modified form of the viscosity, such that the effect of relaxation on
the gas can be approximated. For instance, Lockerby et al. (2005) suggested the use of a wall function
to describe the non-linear variation of the stress tensor close to the wall, while Dongari et al. (2011)
introduced an ”effective viscosity” adjusted according to the mean free path length. In other works,
authors have introduced different hydrodynamic descriptions altogether in an attempt to reproduce
the behaviour of the rarefied flow, such as Dadzie and Brenner (2012), who used the concept of a
”vollume diffusion velocity” in the NS equations and later obtained significantly improved performance
for simple, isothermal, rarefied channel flows (Christou and Dadzie, 2018).

In the context of this work, however, virtually none of these approaches are applicable, because
they are typically derived on the assumption (among other, sometimes blunt, approximations) that the
fluid involved is an ideal monoatomic, diatomic or at most simple polyatomic gas. Examples are argon
(Ar), nitrogen (𝑁2) or carbon dioxide (𝐶𝑂2). The particular thermochemical nature of the water vapour
molecule, however, does not satisfy this criteria: the arrangement of its atoms make it a strongly polar
molecule, which means that the interactomic collisions do not follow the simple laws that describe the
above gasses; in fact, it is mainly this polarity behind its real-gas behaviour (Lambert, 1977).

In view of the above, it was decided to stick with the original NS equations without modifications,
apart from the introduction of dedicated boundary conditions at the nozzle wall to account for the
slipping of the gas, as explained in the following section. From there on, it is assumed that as long as
the degree of rarefaction is not very high (𝐾𝑛 < 1), the model gives an acceptable representation of the
flow. This is tested in Sec. 3.5.1.

3.4.1 Wall slip conditions

In a series of experiments in the late 19th century, Kundt and Warburg (1875) examined the damping of
a vibrating disc by various gasses at low pressures and the flow of low-pressure gas through a capillary
tube. Their comparative calculations were in each case made on the assumption that the gas comes
to a halt at the wall, as is normally assumed for viscous flows, but did not agree with the experimental
results. At low pressures the disc damping decreased and, when the pressure in the tube was low
enough for its radius to be comparable to the molecular mean free path length, the flow rate was higher
than expected. They attributed both effects to a slip of the gas over the solid surfaces.

These initial observations and a large volume of subsequent work have led to the definition of a
dedicated ”slip-flow” regime and it is generally assumed (as mentioned in Sec. 3.1) that if the Knud-
sen number exceeds 0.001, rarefaction effects begin to manifest. The variation of the gas velocity and
temperature relative to the solid boundary in the direction normal to the boundary experiences a dis-
continuity at the wall and the gas is effectively slipping against it (refer to Fig. 3.2). Up to a certain
degree of rarefaction - which is usually problem-specific - the NS equations remain applicable as long
as they are supplemented with dedicated boundary conditions to describe the slipping at the wall (Had-
jiconstantinou, 2003; Barber and Emerson, 2006).
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FIGURE 3.2: Visual interpretation of the Navier slip length, here denoted as 𝜆. Extracted from Tropea
et al. (2007).

By far the most commonly used velocity slip model is the one proposed by Maxwell (1879), expressed
in vectorial form as:

𝑢 = 𝑢𝑤 − Α2 − 𝜎𝑀
𝜎𝑀

𝜆∇𝑛(S ⋅ V) − 3
4

𝜇
𝜌𝑇 S ⋅ ∇𝑇 − 2 − 𝜎𝑀

𝜎𝑀

𝜆
𝜇S ⋅ (n ⋅ 𝜏) (3.11)

where 𝑢 is the gas velocity and 𝑢𝑤 its velocity at the wall; 𝜎𝑀 is the tengential momentum accom-
modation coefficient, taking values from 0 to 1 and describing the extent to which the gas loses its
momentum upon impinging on the wall; 𝜆 is the molecular mean free path; 𝜇 and 𝜌 are the gas vis-
cosity and density, respectively; n is the unit vector normal to the wall; and ∇𝑛𝜙 = n ⋅ ∇ describes the
gradient of the variable normal to the wall. The parameter S is a mathematical operator which ensures
that only the component of a vector that is tangential to the wall is kept. This is to mathematically
express that the velocity only slips tangentially to the wall. It is defined via the identity vector 𝐼 as
S = I − nn. Lastly, 𝜏 is the stress tensor given by Eqn. 3.7.

The right-most term [− 2−𝜎𝑀
𝜎𝑀

𝜆
𝜇S ⋅ (n ⋅ 𝜏)] in Eqn. 3.11 was introduced in later works by Barber and

Emerson (2006) to account for the fact that when the gas slips over a curved surface, the contributions
of the shear stress and shear heat flux must be included. The middle term [− 3

4
𝜇

𝜌𝑇 S ⋅ ∇𝑇 ] expresses the
fact that the rarefid gas will experience a drifting motion due to thermal gradients if the wall exhibits
a temperature variation along its surface, a phenomenon known as thermal creep. The micronozzles
of this work, however, are conical, so the wall is planar everywhere. Furthermore, the wall is assumed
isothermal. As such, the two right-most terms in Eqn. 3.11 have been neglected for the rest of this
work.

Similarly, a boundary condition for the temperature discontinuity at the wall is needed, with the
most commonly-used relation being that of Smoluchowski (1898):

𝑇 = 𝑇𝑤 − (2 − 𝜎𝑇
𝜎𝑇

) 2𝛾
(𝛾 + 1)

𝜆
𝑃𝑟(n ⋅ ∇𝑇 ) (3.12)

where 𝑇 is the gas temperature, 𝑇𝑤 is its temperature at the wall, 𝜎𝑇 is the equivalent of 𝜎𝑀 for thermal
accommodation and 𝑃 𝑟 is the Prandtl number, a dimensionless flow similarity parameter describing
the ratio of momentum to thermal diffusivity and expressed via the gas viscosity 𝜇, conductivity 𝑘 and
isobaric specific heat capacity 𝐶𝑝 as:

𝑃𝑟 = 𝐶𝑝 ⋅ 𝜇
𝑘 (3.13)

In this work, however, a slighly modified version is instead used, derived by Gokcen (Gokcen et al.,
1987; Gokcen and Maccormack, 1989), as it has formally been derived in the limit of high Knudsen
numbers and later shown by Lofthouse et al. (2008) to generally provide superior performance:

𝑇 = 𝑇𝑤 − ( 2
𝜎𝑇

) 2𝛾
(𝛾 + 1)

𝜆
𝑃𝑟(n ⋅ ∇𝑇 ) (3.14)
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This condition is not originally included in OpenFOAM, therefore it had to be coded separately. The
manner in which such boundary conditions are implemented in OpenFOAM is described in the work
of Greenshields and Reese (2012) and will not be repeated here.

In summary, the single-phase model comprises of the NS governing equations 3.4-3.8, closed by the
thermodynamic model described later in Ch. 4 and supplemented by the velocity slip and temperature
jump boundary conditions at the wall, given by Eqns. 3.11 and 3.14.
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3.5 Validation of the single-phase model
The discussions of the previous sections make it clear it is necessary to assess the model’s capacity in
reproducing flows exhibiting mild degrees of rarefaction, as well as the particular thermodynamics of
water vapour. Ideally, it would be desirable to test the solver against experiment measurements fea-
turing both these aspects simultaneously. Inconveniently, the present author could not find any such
experiment in literature that is documented thoroughly enough to provide a suitable validation case.
Hence, the solver is tested in each aspect separately and it is assumed that if it performs satisfactorily
in each case, it will also do so when the flow physics are super-imposed. To that end, two experiments
from literature are employed:

• The experiments of Rothe (1971), who provided detailed data on the internal flow topology of a
small, low-density Laval nozzle operating on Nitrogen and expanding into near vacuum.

• The experiments of Cen and Xu (2010), who provided macroscopic performance measurements
for a micronozzle of geometry and operational envelope comparable to the ones of interest here,
operating on superheated water vapour.

Each case is presented separately in the following subsections.

3.5.1 Experiments of Rothe

The measurements of Rothe (1970, 1971) appear to be the only ones in literature that provide detailed
data on the internal flow topology of a low-density nozzle, which is why they occasionally appear as
a validation benchmark in works developing numerical tools for rarefied flows (see, for instance, the
works of Chung et al. (1995), Ivanov et al. (1998) and Arlemark et al. (2012)). Rothe employed the
electron-beam fluorescence technique and recorded measurements of density and translational/rota-
tional temperature along the centerline, as well as along the radial directions at two selected locations
on the centerline (Fig. 3.3).

Rothe used the Reynolds number as the primary experimental variable and ran multiple experi-
ments on two separate nozzles with different throat diameters. To substantiate a decision on which
experimental run to use here, an estimate of the micronozzle throat-radius-based Reynolds number
is needed1. It is desired that a conservative estimate is made, so the minimum expected 𝑅𝑒𝑡 is pur-
sued here. It must be noted that Rothe used a somewhat unusual definition of the Reynolds number,
formulating it in terms of the condtions in the stagnation chamber:

𝐵 = 𝜌0(2𝐻0)1/2𝑟𝑡
𝜇0

(3.15)

with 𝐵 being Rothe’s notation for the Reynolds number, 𝑟𝑡 the nozzle throat radius, the subscript 0
denoting stagnation conditions and 𝜌, 𝐻, and 𝜇 being the gas density, enthalpy and viscosity, respec-
tively. Under the simplifications of ideal rocket theory under which it is typically estimated, the value
of 𝐵 attains a minimum at the lowest stagnation pressure and highest stagnation temperature. It is
explained in Ch. 6 that, in this work, the minimum stagnation pressure is 𝑝0 = 1bar and the max-
imum stagnation temperature is 673K. The nozzles in this work are typically 100μm deep, with a
throat half-width of 45μm. With these inputs, one may look up for the properties of steam (or even
compute them, with the model of Ch. 4) values for the rest of the parameters as 𝜌0 = 0.322kg/m3,

1Here, we follow the notation of the original work of Rothe (1971), who defined the Reynolds number based on the throat
radius. It is more common in literature for it to be expressed in terms of the throat diameter, instead.
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𝐻0 = 3278.23kJkg−1 and 𝜇0 = 2.44Pa ⋅ s. These yield an estimated minimum ”Rothe’s” Reynolds
number for the micronozzles of this work as 𝐵 = 1520.

In Rothe’s work, the most comprehensively documented nozzle operated at 𝐵 =590, a value roughly
2.5 times lower. Being significantly more rarefied, that flowcase can provide a conservative impression
on the model’s ability to reproduce low density flows and is therefore used here.

Before the comparison is performed, it is preferable to convert the estimate of the Reynolds number
to the more familiar form based on the approximate conditions at the throat, such that the comparisons
can easily be done with other cases in this work and other works in literature, if needed 2. A rough
estimate can be obtained from quasi-1D isentropic nozzle theory. The Reynolds number is formally
defined as (Sutton and Biblarz, 2017):

𝑅𝑒𝑡 = 𝜌𝑈𝐿
𝜇 (3.16)

where 𝜌, 𝑈 and 𝜇 are the gas density, velocity and viscosity, respectively and 𝐿 is a reference length
taken here as the throat width (note: no longer the half-width). For micronozzles exhibiting a rectangu-
lar cross section, such as the ones of interest in this work, the Reynolds number may be reformulated
as:

𝑅𝑒𝑡 = �̇�
𝜇 ⋅ 𝑑 (3.17)

where 𝑑 is the nozzle depth and �̇� is the mass flow corresponding to a chocked-throat condition. The
mass flow can also be approximated with the same theoretical framework:

�̇� = 𝑝0𝐴∗

𝑇0
√ 𝛾

𝑅 ( 2
𝛾 + 1)

(𝛾+1)/(𝛾−1)
(3.18)

with 𝑝0 and 𝑇0 being the stagnation pressure and temperature, 𝐴∗ being the nozzle throat area, 𝑅 the
specific gas constant and 𝛾 the ratio of specific heat capacities of the gas. Moreover, to estimate the
viscosity at the throat, an estimate of the throat temperature is needed, which may also follow from
isentropic theory as:

𝑇0
𝑇𝑡

= 1 + 𝛾 − 1
2 𝑀2

𝑡 (3.19)

where 𝑇𝑡 and 𝑀𝑡 denote the temperature and the Mach number at the throat, the latter being unity for
a chocked supersonic flow.

Furthermore, for water, one may also take 𝑅 =461.52Jkg−1 K−1 and 𝛾 = 1.33, as well as a viscosity
𝜇 ≈ 2 × 10−5 Pa ⋅ s at 𝑇𝑡 ≈ 578K. These values give a minimum expected Reynolds number of 𝑅𝑒𝑡 =
573. Following the same procedure for the nitrogen flow in Rothe’s nozzle, using the data from Table
3.1, one finds 𝑅𝑒𝑡 ≈ 270 at sonic conditions, which shows the nozzle was substantially more rarefied
than what is being treated here. The attention is now turned to the numerical check itself.

The selected nozzle in Rothe (1971) was of the axisymmetric type and relatively small, spanning
roughly 6 cm in length and exhibiting a nozzle throat radius of 2.55mm. The precise geometry is
depicted in Fig. 3.3 and the flow case specifications are listed in Table 3.1.
The simulation was run on a 75k cell mesh, shown in Fig. 3.4. The stagnation conditions as given in
the original work are assigned at the inlet. An isothermal wall fixed at 300K is assumed, on which the
slip condition of Gokcen is imposed. The rest of the numerical setup is as described in Ch. 6, which
treats the numerics for the entirety of this work.

2Do note, however, that Rothe’s definition of the Reynolds number is an accurate representation of reality, because the
conditions at the stagnation chamber do not depend on the nozzle characteristics. Instead, a 3D planar micronozzle is not an
isentropic flowcase, so the value of Re estimated by ideal rocket theory based on the conditions at the throat is only a rough
approximation.
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FIGURE 3.3: Geometry of the nozzle of Rothe (1971). The dotted lines indicate the locations at which
Rothe took measurements in the radial direction.

Table 3.1: Main parameters for the selected experiment from the work of Rothe (1971)

Parameter Value
Propellant Nitrogen (𝑁2)

Stagnation pressure 473Pa

Stagnation temperature 300K

Ambient pressure 1.53Pa
Ambient temperature 300K

Wall temperature 300K

Reynolds number 270

FIGURE 3.4: Computational mesh of the nozzle of Rothe (1971). The flow case is modelled as 2D
axisymetric.

Some data is needed for the thermodynamics of Nitrogen. It is modelled as an ideal gas with a specific
gas constant of 𝑅 = 296.8Jkg−1 K−1. The isobaric specific heat is computed according to the JANNAF
polynomial formulation (McBride et al., 1993):

𝐶𝑝 = 𝑅((((𝛼4𝑇 + 𝛼3)𝑇 + 𝛼2)𝑇 + 𝛼1)𝑇 + 𝛼0) (3.20)

and expressed in J kg−1 K−1. The original JANNAF formulation is only valid down to 200K, but the
range was extended in a recent work by Ganani (2019) to less than 100K, by means of a numerical fit
to the data of Span et al. (2000). The new coeffcicients follow as:
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• 𝛼0 = 3.497
• 𝛼1 = 1.365 ⋅ 10−4

• 𝛼2 = −1.232 ⋅ 10−6

• 𝛼3 = 3.315 ⋅ 10−9

• 𝛼4 = −1.792 ⋅ 10−12

• 𝛼5 = −1.044 ⋅ 103

• 𝛼6 = 3.107

The last two coefficients, 𝛼5 and 𝛼6 serve as the integration constants that result when one integrates
the isobaric specific heat to determine the enthalpy and entropy, respectively. The viscosity is modelled
as a function of the gas temperature 𝑇 after the common and simple model of Sutherland (1893):

𝜇 = 𝐴𝑠
√

𝑇
1 + 𝑇𝑠/𝑇 (3.21)

To stay consistent with past work in the department, the reference viscosity and temperature are also
adopted from the work of Ganani (2019) as 𝐴𝑠 =1.4067 × 10−6 Pa ⋅ s and 𝑇𝑠 = 111K. The precise value
of these constants varies slightly between different works in literature.

The output flowfield of the simulation is sampled for the gas density and temperature along the
centerline (from the nozzle throat to slightly downstream of the exit), as well as the most downstream
of the two radial locations for which Rothe provided data, as shown in Fig. 3.3. The latter selection was
made because the degree of rarefaction in nozzles is typically highest closest to the wall and near the
exit. The results of the model are plotted against the experimental data in Fig. 3.5a for the centerline
measurements and in Fig. 3.5b for the radial ones. In all instances, the results are normalised by the
stagnation values.
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FIGURE 3.5: Comparison of the single-phase model against the experiments of Rothe (1971)

It can be seen that the solver predicts the density with good accuracy, both along the centerline
and in the radial direction near the exit. The latter is appreciable, given the degree of rarefaction
typically increases near the nozzle lip. The same cannot be said in the case of the temperature, which
is approximated fairly across the radial measurement, but is consistently underpredicted along the
centerline. This is partly a manifetation of the fact that the rotational and translational temperatures
deviate from each other when rarefaction is present, as shown in the work Chung et al. (1995), who
treated the same case. The tendency of the model to underpredict the temperature appears to be typical
of Navier-Stokes based solvers, in general (Ivanov et al., 1998; Arlemark et al., 2012).

In any case, the offset is not dramatic (roughly 15% at maximum) and since the modelled experiment
is substantially more rarefied than what is treated in the present work, it is fair to assume that the tool
will perform with suitable accuracy at higher Reynolds numbers. This is also indicated in the second
validation case, presented next.
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3.5.2 Experiments of Cen et al.

The experiments of Cen and Xu (2010) treated superheated water vapour flow through a micronozzle
geometry loosely comparable to the ones that are of interest in the present work, exiting into a low
pressure ambient inside a vacuum chamber. Their work therefore provides a suitable validation case
to check if the single-phase model performs well also when hot water, rather than cold nitrogen, is
involved. The only inconvenience is that their ambient pressure was at 500 Pa, substantially higher
than the 30 Pa that is used in this work and, of course, not quite vacuum. However, the ability of the
model to reproduce low-density flows was tested in the previous section and the main purpose here
is to ensure its performance is not affected by the particular thermodynamics of water vapour or the
presence of hot walls.

Cen and Xu (2010) ran a wide variety of experiments at an array of mass flows and heater temper-
atures. For the sake of brevity, only one case is treated here, selected for its similarity to the flowcase
that in Ch. 6 will be set as the baseline flowcase of the present work. In the original authors’ work, it
is sometimes unclear whether the pressure/temperature values they list are stagnation or static con-
ditions. It is inferred, based on the general description, that they are likely stagnation conditions and
as such they are used here. So, for this validation simulation:

• Stagnation pressure/temperature are set at the inlet, as 𝑃0 = 1bar and 𝑇0 = 453.15K (180 °C).
• The wall is assumed to be isothermal, fixed at the stagnation temperature (for a motivation on
this, see Sec. 6.4.1).

• At the exit, supersonic conditions are imposed, except for the subsonic portions where a total
pressure is set at 500Pa. The quiescent ambient is assumed to be at room temperature (293K).

• All thermodynamic properties are computed as described in Ch. 4.

• The rest of the numerical setup is as described in Ch. 6.

The nozzle geometry and the corresponding computational domain are depicted in Fig. 3.6. The 3D
mesh used had roughly 100000 cells, with 40 cells in the width and 20 cells in the depth direction, to
sufficiently resolve the boundary layers building along the respective walls. The outlet spans a distance
equal to 8 exit widths downstream and 4 exit widths in the width and depth directions.

(a) Nozzle geometry (Giorgi and Fontanarosa, 2019b) (b) Computational domain

FIGURE 3.6: Geometry and computational mesh of the nozzle of Cen and Xu (2010). The figure on the
left has been extracted from Giorgi and Fontanarosa (2019b).

The experiments of Cen and Xu (2010) were not concerned with the detailed flow topology and
only provided macroscopic performance parameters. These are compared to the simulation results in
Table 3.2. It is seen that the model is in remarkable agreement with measurements, reproducing the
experimental results very closely. The Reynolds number for this nozzle can be computed with the data
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Table 3.2: Comparison between model predictions and experimental measurements for the nozzle of
Cen and Xu (2010)

Parameter [Unit] Experiment Model Offset

Mass flow [mg/s] 140 139.14 0.6 %

Thrust [mN] 1.97 1.95 1 %

Specific Impulse [s] 85.9 85.7 0.3 %

above as 𝑅𝑒𝑡 ≈ 4280, which clearly shows what a difference in the rarefaction of the nozzle flow the
higher ambience pressure of 500 Pa makes.

Perhaps a comparison is due here with the work of Giorgi et al. (2018), who used the same solver
to simulate the same experiments, although at different inlet values. They employed different types
of boundary conditions, did not account for the heat input from the wall or the temperature jump at
the interface with the fluid and used a thermodynamic model based on the Peng-Robinson equation
of state (Lopez-Echeverry et al., 2017). Their results were roughly 10% off or more from experiments,
which illustrates the validity of the present approach.

In view of the above, the single-phase model is considered validated.
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Part II

Thermodynamics of water
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CHAPTER 4

Thermodynamic properties of (supercooled) steam
and water
As wasmentioned earlier that the evolution of thermodynamic properties of steam under non-equilibrium
expansion conditions departs markedly from those of an ideal gas (Reisel, 2015). At low pressures and
high temperatures the difference is usually not much more than 1-2 %, but this offset deteriorates as
the vapour moves closer to its saturated state. A real-gas model is therefore necessary and this section
serves to outline the methodology followed for its implementation in this work.

4.1 Preliminary remarks
The real-gas description of steam in stable and metastable states typically follows from a long sequence
of empirical relations and algebraic manipulations, that are usually compiled by fitting numerical ap-
proximations to large volumes of experimental data. Thermodynamic computations involving water in
liquid and gaseous form are widespread enough in science and industry to have warranted the estab-
lishment of the International Association for the Properties of Water and Steam (IAPWS), whose 1995
and 1997 formulations for general scientific and industrial use, respectively, currently serve as the
standard (Wagner et al., 2000; Wagner and Pruß, 2002). These formulations and various subsequent
minor revisions constitute the state-of-the-art in terms of accuracy, however they extract a very heavy
computational toll, because they are based on a multitude of high-order and high-complexity polyno-
mials that have to be evaluated separately for every cell of the computational domain and for every
timestep of the simulation.

To partially remedy this in this work, a large portion of the thermodynamic properties are instead
evaluated based on an equation of state of the Virial form, complemented by transport and liquid
properties computed with the help of suitable approximations to the IAPWS model and other sources.
The present implementation is still multiple times more computationally intensive than a model based
on the ideal gas assumption, but offers a reduction in computational time of at least one order of
magnitude relative to the full IAPWS formulation, at a virtually insignificant loss of accuracy1. Heavy
emphasis has been placed on further reducing this cost via methods that are presented in the following
sections.

The major limitation of the Virial and the IAPWS formulations is that they are only valid for tem-
peratures ≥ 273.16K. As explained in Sec. 2.5, the extreme cooling rates are expected to drive the
vapor to temperatures well below this threshold before any condensation occurs. This presents a sig-
nificant complication, because there appears to be no framework whatsoever to quantify the properties
of water and steam in these temperatures, nor is there any substantial range of data to help create
one. Extrapolation is in most cases not an option, because it is shown later that the Virial and the
IAPWS formulation are poorly behaved outside their range of validity. Other equations of state found
in literature were also tested and gave similar results. The author was left with little option but to

1The loss of accuracy is ”insignificant” for our purposes only. The IAPWS formulation has been originally compiled to serve
the most demanding of scientific requirements in terms of accuracy and its full level of precision is not needed in the present
engineering application.
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assume that the vapour can be described with sufficient accuracy by the ideal gas law. The rest of
the thermodynamic parameters are then approximated via this law and theoretical considerations of
statistical thermodynamics found in literature. The liquid properties are similarly described by a series
of empirical equations assembled from various sources in literature or produced for the purposes of
this work. While there is no way to validate these, it is explained later that there are good reasons to
believe they are not far from reality.

Accordingly, the structure of this chapter is divided into two halves. The first portion treats the
thermodynamics above the freezing point and the second below it. In each instance, the following
types of data are given:

• Equation of state, vapour enthalpies, specific heats and associated properties

• Tranport properties: viscosity, conductivity and thermal diffusivity

• Properties at saturation: pressure, temperature and density

• Liquid properties: Density, enthalpy, surface tension, etc

The numerical implementation of some of these is also briefly described.

As a last note, the relations presented in this chapter appear in literature in various forms, occa-
sionally containing typographical errors, erroneous derivations or dimensional inconsistencies. Where
applicable, the mistakes found are pointed out and the equations are given here in their corrected
version and in a form such that both inputs and outputs are in plain SI units, across the full thermo-
dynamic model.

4.2 Basic equation of state
The equation of state (EoS) used here is the one derived by Vukalovitch (1958), in the form given later
by Gerber and Kermani (2004). There are multiple EoSs given in literature and the main reason of
choice of this particular one is its demonstrated robustness in the supercooled regime. Equations of
state (as well as the IAPWS framework) are derived with equilibrium conditions in mind and most of
them are unsuitable in metastable states. Bakhtar and Piran (1979) showed that Vukalovich’s EoS
reproduces data with negligible error, even for supercoolings of −40 or −50 °C relative to the local
saturation temperature and authors such as Gerber and Kermani (2004) have successfully used it for
condensation studies. Its range of validity, as for all properties in this first part of the chapter, is
0.01bar≤ p ≤ 100bar and 273.16K ≤ T ≤ 1073.16K. In the flow cases of this work, the pressure in
the nozzle will not drop below 0.01bar inside the micronozzle. It does so at the outlet downstream of
the nozzle exit, where its properties are estimated by extrapolation.

The equation is given by:

𝑝 = 𝜌𝑔𝑅𝑇𝑔(𝐵1 + 𝐵2𝜌𝑔 + 𝐵3𝜌2
𝑔 + 𝐵4𝜌3

𝑔) (4.1)

The subscript 𝑔 denotes properties of the vapour and 𝑝, 𝜌, 𝑇 and 𝑅 are, respectively, the pressure,
density, temperature and specific gas constant. The 𝐵𝑖 terms are the Virial coefficients. They are a
solely dependent on temperature and each carries its own dimensions. They follow successively as:

𝐵1 = 1 [−] (4.2)

𝐵2 = − 𝑒
𝐺𝑇𝑔

− 𝜙1 + 𝑏 [𝑚3/𝑘𝑔] (4.3)
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𝐵3 = −𝑏𝜙1 + 4𝜙2
1𝜙2 [𝑚6/𝑘𝑔2] (4.4)

𝐵4 = 32𝑏𝜙2
1𝜙2 [𝑚9/𝑘𝑔3] (4.5)

with empirical parameters:

𝜙1 = 𝐶𝐺
𝑇 (3+2𝑚1)/2

𝑔
& 𝜙2 = 1 − 22.7

𝑇 (3𝑚2−4𝑚1)/2
𝑔

(4.6)

where the constants are given by:

𝑒 = 63.2, 𝑏 = 0.00085, 𝐶 = 0.39 ⋅ 106, 𝐺 = 47.053, 𝑚1 = 1.968, 𝑚2 = 2.957 (4.7)

For the subsequent computation of the enthalpy and specific heats, the first and second derivatives of
the Virial coefficients with respect to temperature are needed. These have been derived below for the
reader’s convenience:

𝑑𝐵2
𝑑𝑇 = 𝑒

𝐺𝑇 −2 + 𝐶𝐺𝑤1𝑇 −𝑤1−1 (4.8)

𝑑2𝐵2
𝑑𝑇 2 = −2𝑒

𝐺 𝑇 −3 − 𝐶𝐺𝑤1(𝑤1 + 1)𝑇 −𝑤1−2 (4.9)

𝑑𝐵3
𝑑𝑇 = 𝑏𝑤1𝐶𝐺𝑇 −𝑤1−1 − 8𝑤1𝐶2𝐺2𝑇 −2𝑤1−1(1 − 22.7𝑇 −𝑤2) + 4𝐶2𝐺2𝑇 −2𝑤1(22.7𝑤2𝑇 −𝑤2−1) (4.10)

𝑑2𝐵3
𝑑𝑇 2 = − 𝑏𝑤1(𝑤1 + 1)𝐶𝐺𝑇 −𝑤1−2

+ 8𝑤1(2𝑤1 + 1)𝐶2𝐺2𝑇 −2𝑤1−2(1 − 22.7𝑇 −𝑤2)
− 8𝑤1𝐶2𝐺2𝑇 −2𝑤1−1(22.7𝑤2𝑇 −𝑤2−1)
− 8𝑤1𝐶2𝐺2𝑇 −2𝑤1−1(22.7𝑤2𝑇 −𝑤2−1)
− 4𝐶2𝐺2𝑇 −2𝑤1 [22.7𝑤2(𝑤2 + 1)𝑇 −𝑤2−2]

(4.11)

𝑑𝐵4
𝑑𝑇 = − 32𝑏𝐶2𝐺22𝑤1𝑇 −2𝑤1−1(1 − 22.7𝑇 −𝑤2)

+ 32𝑏𝐶2𝐺2𝑇 −2𝑤1(22.7𝑤2𝑇 −𝑤2−1)
(4.12)

𝑑2𝐵4
𝑑𝑇 2 = + 32𝑏𝐶2𝐺22𝑤1(2𝑤1 + 1)𝑇 −2𝑤1−2(1 − 22.7𝑇 −𝑤2)

− 32𝑏𝐶2𝐺22𝑤1𝑇 −2𝑤1−1(22.7𝑤2𝑇 −𝑤2−1)
− 32𝑏𝐶2𝐺22𝑤1𝑇 −2𝑤1−1(22.7𝑤2𝑇 −𝑤2−1)
− 32𝑏𝐶2𝐺2𝑇 −2𝑤1(22.7𝑤2(𝑤2 + 1)𝑇 −𝑤2−2)

(4.13)

where 𝑤1 = (3 + 2𝑚1)/2 and 𝑤2 = (3𝑚2 − 4𝑚1)/2 and the rest of the parameters have been previously
presented.
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4.3 Vapour thermodynamic properties
The rest of the thermodynamic parameters to describe the state of the water vapour may be derived from
the Vukalovich equation, augmented with empirical factors. The first two of the following relations have
been extracted from Bakhtar and Piran (1979), but have been corrected here for some typographical
errors. The rest are derived according to basic thermodynamic relations.

Absolute specific enthalpy [J/kg]:

ℎ𝑔 = 𝑝𝑣𝑔 − 𝑅𝑇 2
𝑔 ( 1

𝑣𝑔

𝑑𝐵2
𝑑𝑇𝑔

+ 1
2𝑣2𝑔

𝑑𝐵3
𝑑𝑇𝑔

+ 1
3𝑣3𝑔

𝑑𝐵4
𝑑𝑇𝑔

)

+ 1.111177𝑇𝑔 + 3.55878 ⋅ 10−4𝑇 2
𝑔 − 6991.96

𝑇𝑔
+ 2070.54

(4.14)

Isochoric specfic heat [J/(Kg.K)]:

𝐶𝑣𝑔
= 𝜕

𝜕𝑇𝑔
(ℎ𝑔 − 𝑝𝑣𝑔)𝑣𝑔

=10−3 {−2𝑅𝑇𝑔 [ 1
𝑇 ( 1

𝑣𝑔

𝑑𝐵2
𝑑𝑇𝑔

+ 1
2𝑣2𝑔

𝑑𝐵3
𝑑𝑇𝑔

+ 1
3𝑣3𝑔

𝑑𝐵4
𝑑𝑇𝑔

)

+1
2 ( 1

𝑣𝑔

𝑑2𝐵2
𝑑𝑇 2𝑔

+ 1
2𝑣2𝑔

𝑑2𝐵3
𝑑𝑇 2𝑔

+ 1
3𝑣3𝑔

𝑑2𝐵4
𝑑𝑇 2𝑔

)]

+1.111177 + 0.00071𝑇𝑔 + 6991.96
𝑇 2𝑔

}

(4.15)

Isobaric specfic heat [J/(Kg.K)]:

𝐶𝑝𝑔
= 𝐶𝑣𝑔

−
𝑇𝑔(𝜕𝑝/𝜕𝑇𝑔)2

𝑣𝑔

(𝜕𝑝/𝜕𝑣𝑔)𝑇𝑔

= 𝐶𝑣𝑔
−

𝑇𝑔 [𝑅 ( 𝐵1
𝑣𝑔

+ 𝐵2
𝑣2𝑔

+ 𝐵3
𝑣3𝑔

+ 𝐵4
𝑣4𝑔

) + 𝑅𝑇 ( 1
𝑣𝑔

𝑑𝐵1
𝑑𝑇 + 1

𝑣2𝑔
𝑑𝐵2
𝑑𝑇 + 1

𝑣3𝑔
𝑑𝐵3
𝑑𝑇 + 1

𝑣4𝑔
𝑑𝐵4
𝑑𝑇 )]

2

−𝑅𝑇 ( 𝐵1
𝑣2𝑔

+ 2𝐵2
𝑣3𝑔

+ 3𝐵3
𝑣4𝑔

+ 4𝐵4
𝑣5𝑔

)

(4.16)

Compressibility factor:
𝑍 = 𝑝

𝜌𝑅𝑇 = 𝐵1 + 𝐵2𝜌 + 𝐵3𝜌2 + 𝐵4𝜌3 (4.17)

Compressibility ratio:
A numerically convenient correction factor to account for the departure of the real gas from ideal

behaviour is given by:

𝜓 = 1
𝑍𝑅𝑇𝑔

(4.18)

Speed of sound in water vapour:

𝐶𝑔 = 𝑣𝑔

√√√
⎷

−
𝐶𝑝𝑔

𝐶𝑣𝑔

( 𝜕𝑝
𝜕𝑣𝑔

)
𝑇𝑔

= 𝑣𝑔

√√
⎷

𝐶𝑝𝑔

𝐶𝑣𝑔

𝑅𝑇 (𝐵1
𝑣2𝑔

+ 2𝐵2
𝑣3𝑔

+ 3𝐵3
𝑣4𝑔

+ 4𝐵4
𝑣5𝑔

) (4.19)

Specific heat ratio/Isentropic exponent:

𝛾 = 𝜌
𝑝 (𝜕𝑝

𝜕𝜌)
𝑠

= 𝜌
𝑝

𝐶𝑝
𝐶𝑣

(𝜕𝑝
𝜕𝜌)

𝑇𝑔

= 𝜌
𝑝

𝐶𝑝
𝐶𝑣

𝑅𝑇 (𝐵1 + 2𝐵2𝜌 + 3𝐵3𝜌2 + 4𝐵4𝜌3) (4.20)
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By replacing Eqns. 4.18, 4.20 into 4.19, the speed of sound may be expressed more simply as:

𝐶𝑔 = √ 𝛾
𝜓 (4.21)

Specific gas constant:
The last parameter needed to close the above system of equations is the specific gas constant for

water vapour, which in this work takes the value:

𝑅 = ℛ
𝑀𝑚𝑜𝑙𝑎𝑟

= 461.51 𝐽
𝑘𝑔 ⋅ 𝑠 (4.22)

where 𝑀𝑚𝑜𝑙𝑎𝑟 = 0.01801528kg/mol is the molar mass of water and ℛ = 8.314J/(kg ⋅ mol) is the
universal gas constant.

4.3.1 Gibbs free energy

A major thermodynamic parameter that emerges in condensation studies (Sec. 5.3) is the specific
Gibbs free energy, often also referred to as free enthalpy. It qualitatively signifies the amount of energy
under constant pressure and temperature conditions that is available in the system for work in a
reversible thermodynamic process (Perrot, 1998) and emerges in the model of the nucleation process.
The parameter is formally related to the enthalpy and entropy of the system as:

𝐺 = 𝑈 − 𝑇 𝑆 + 𝑝𝑉 (4.23)

where 𝑈 and 𝑆 here denote the specific internal energy and entropy, respectively, T is the temperature
and the sum 𝑈 +𝑝𝑉 expresses the enthalpy in the system. In this context, the change in G is of interest
and it is associated with the surface energy (in turn related to the surface tension) that is to be invested
in the emergence of the liquid surface that leads to the formation of the droplet. This is elaborated
upon in Sec. 5.3. When a Virial equation of state is used, the expression for the change in Gibbs free
energy is extended to account for the real gas effects and given by (in J/Kg):

Δ𝐺 = 𝑅𝑇𝐺 {−𝑙𝑛 𝜌𝑔
𝜌𝑠(𝑇𝑔) + 2𝐵2[𝜌𝑠(𝑇𝑔) − 𝜌𝑔] + 3

2𝐵3[𝜌2
𝑠(𝑇𝑔) − 𝜌2

𝑔] + 4
3𝐵4[𝜌3

𝑠(𝑇𝑔) − 𝜌3
𝑔]} (4.24)

where 𝜌𝑠(𝑇𝑔) is the saturated vapour density at the local vapour temperature, obtained as described in
Sec. 4.5.3 and 𝑅 is the specific gas constant.

Due to the particular architectural construction of the thermodynamic framework in OpenFOAM,
computing this expression would require either evaluating the Virial coefficients twice in the same
iteration or a thorough reconstruction of this framework. The former option induces a significant
computational overhead during the code execution, while the latter option would require an extensive
coding effort, on top of the already quite extensive procedure it took to implement the model described
in this chapter. To avoid these issues, it was decided to use a simplified version of Eqn. 4.24, given by:

Δ𝐺 ≈ 𝑅𝑇𝐺𝑙𝑛 ( 𝑃
𝑃𝑠𝑎𝑡

) (4.25)

This is essentially the ideal-gas form, but for the low pressures treated here it provides an excellent
approximation with a negligible error (typically less than 1%).
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4.4 Vapour transport properties
The solution of the Navier-Stokes equations, as well as a number of other parameters in this work,
require expressions for the gas dynamic viscosity, the thermal conductivity and the thermal diffusivity,
descibing respectively the transport of momentum and energy. Such expressions have here been taken
directly from the IAPWS formulation as described in Huber et al. (2009) and have been simplified, to
reduce the computational expense.

4.4.1 Vapour dynamic viscosity:

The formulation derived by Huber et al. (2009) is valid for gaseous and liquid states alike and follows
as:

̄𝜇 = ̄𝜇0( ̄𝑇 ) ⋅ ̄𝜇1( ̄𝑇 , ̄𝜌) ⋅ ̄𝜇2( ̄𝑇 , ̄𝜌) (4.26)

In this expression, ̄𝜇0( ̄𝑇 ) denotes the viscosity at the dilute-gas limit, ̄𝜇1( ̄𝑝, 𝑇 ) introduces the depen-
dency to pressure and ̄𝜇2( ̄𝑇 ) is a correction to capture the particular behaviour of water vapour in
the vicinity of the critical point. The overhead bar notation is to signify that these are in fact non-
dimensional quantities, given by:

̄𝜇 = 𝜇
𝜇∗

̄𝑇 = 𝑇
𝑇 ∗ ̄𝜌 = 𝜌

𝜌∗ (4.27)

where 𝜇∗ = 1 × 10−6 Pa ⋅ s, 𝑇 ∗ = 647.096K and 𝜌∗ = 322kg/m3. The critical point (𝑝 = 22.064MPa,
𝑇 = 647.096K) is far outside the scope of interest here, so the right-most term can be neglected. The
other two terms follow as:

̄𝜇0( ̄𝑇 ) = 100
√ ̄𝑇

∑3
𝑖=0

𝐻𝑖̄𝑇 𝑖

(4.28)

with coefficients:

• 𝐻0 = 1.67752
• 𝐻1 = 2.20462

• 𝐻2 = 0.6366564
• 𝐻3 = −0.241605

and:

𝜇1(𝑇 , 𝜌) = 𝑒𝑥𝑝 [𝜌𝑔
5

∑
𝑖=0

( 1
𝑇𝑔

− 1)
𝑖 6
∑
𝑗=0

𝐻𝑖𝑗(𝜌𝑔 − 1)𝑗] (4.29)

This latter expression features more than 20 coefficients (not given here for the sake of brevity, but
listed in the original reference) and it is readily understood that it comes at a heavy computational
expense. The pressures treated in this work do not exceed 5 bar (0.5 MPa), while the greatest portion
of the flow as it expands in the convergent and divergent of the nozzle is expected to be well below 1
bar. Furthermore, only the viscosity of the vapour state is of interest here. On these grounds, the
assumption is made that the dilute-gas approximation is a valid one, such that the viscosity may be
given exclusively by Eqn. 4.28 at only a small loss of accuracy. To ensure this is the case, the results
are compared to the full model at a selection of pressures and temperatures in Table. 6.1. It can be
seen that the offset is already less than 2% in the highest pressure and rapidly drops to less than 1%
as the pressure decreases. This simplification is therefore accepted here.
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Table 4.1: Comparison of reference viscosity datapoints with the present model’s predictions

Temperature [K] Pressure [bar] Viscosity (IAPWS) [Pa⋅s] Viscosity (Model) [Pa⋅s] Offset [%]
450 5 1.5089 × 10−5 1.5313 × 10−5 1.4

420 3 1.39557 × 10−5 1.41294 × 10−5 1.2

373 1 1.22648 × 10−5 1.23314 × 10−5 0.5

320 0.1 1.0519 × 10−5 1.04316 × 10−5 0.8

4.4.2 Vapour thermal conductivity

The same discussion applies as in the case of viscosity. Without being repetitive, the heat conductivity
in this work is assumed to be the one at the dilute limit, given by Huber et al. (2009) as:

�̄�0( ̄𝑇 ) =
√ ̄𝑇

∑4
𝑘=0

𝐿𝑘̄𝑇 𝑘

(4.30)

with coefficients:

• 𝐿0 = 2.443221 ⋅ 10−3

• 𝐿1 = 1.323095 ⋅ 10−3

• 𝐿2 = 6.770357 ⋅ 10−3

• 𝐿3 = −3.454586 ⋅ 10−3

• 𝐿4 = 4.096266 ⋅ 10−4

and ̄𝑘0 = 𝑘/𝑘∗, where 𝑘∗ = 1 × 10−3W/(m ⋅ K). The loss in accuracy is comparable to the one in the
viscosity case.

4.4.3 Vapour thermal diffusivity

This parameter follows simply as (expressed in m2/s):

𝛼 = 𝑘
𝜌 ⋅ 𝐶𝑝

(4.31)

where 𝑘, 𝜌 and 𝐶𝑝 are the thermal conductivity, density and isobaric heat capacity of the water vapour,
respectively. The product 𝜌 ⋅ 𝐶𝑝 corresponds to the vapour’s volumetric heat capacity, expressed in
J/(m3 ⋅ K).
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4.5 Saturation properties
The pressure, temperature and density at saturation are driving parameters in this study and their
accurate estimation is of primary importance. For this reason, they have been adopted directly from
the IAPWS formulation, as described in Cooper (2007). In the early stages of this work, the commonly
used saturation curve by Keenan et al. (1969) was implemented but turned out to be numerically
inconvenient, because its formulation relies on complex derivatives of the pressure that are extremely
sensitive to small variations in temperature2.
The expressions below are valid in the range 273.16-647.096K. The value of 647.096K corresponds
to the temperature at the critical point, above which the phase state of water is purely gaseous and
saturation is not applicable. A separate formulation is given in Sec. 4.8 for the properties below
the freezing point. For all expressions that follow, the cited works provide sample data for computer
verification, which has been used to ensure the expressions are correctly implemented, down to the
last decimal.

4.5.1 Saturation pressure

The IAPWS equation for the saturation pressure as a function of the local temperature is given by the
following empirical equation:

𝑝𝑠(𝑇 ) = 𝑝∗ ⋅ [ 2𝐶
−𝐵 + (𝐵2 − 4𝐴𝐶)1/2 ]

4

(4.32)

where 𝑝∗ = 1MPa and:

𝐴 = 𝜃2 + 𝑛1𝜃 + 𝑛2

𝐵 = 𝑛3𝜃2 + 𝑛4𝜃 + 𝑛5

𝐶 = 𝑛6𝜃2 + 𝑛7𝜃 + 𝑛8

𝜃 = 𝑇
𝑇 ∗ + 𝑛9

(𝑇 /𝑇 ∗) − 𝑛10

with 𝑇 ∗ = 1K and the following coefficients:

• 𝑛1 = 0.11670521452767 ⋅ 104

• 𝑛2 = − 0.72421316703206 ⋅ 106

• 𝑛3 = − 0.17073846940092 ⋅ 102

• 𝑛4 = 0.12020824702470 ⋅ 105

• 𝑛5 = − 0.32325550322333 ⋅ 107

• 𝑛6 = 0.14915108613530 ⋅ 102

• 𝑛7 = − 0.48232657361591 ⋅ 104

• 𝑛8 = 0.40511340542057 ⋅ 106

• 𝑛9 = − 0.23855557567849
• 𝑛10 = 0.65017534844798 ⋅ 103

4.5.2 Saturation temperature

The saturation temperature at the local pressure is the inverse of Eqn. 4.32 and as such it is derived.
It follows as:

2In case this is of relevance to the interested reader, the original work of Keenan et al. (1969) is not - at the time of this writing
- available in electronic form and one is likely to gain access to its saturation curve equation indirectly via the work of Young
(1988). Note that the latter reference contains a typographical error and the term inside the sum in that paper’s Eqn. 27 should
instead read (3.3815 − 0.01𝑇 ).
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𝑇𝑠(𝑝) = 𝑇 ∗ ⋅ 𝑛10 + 𝐷 − [(𝑛10 + 𝐷)2 − 4 ⋅ (𝑛9 + 𝑛10𝐷)]1/2

2 (4.33)

where:

𝐷 = 2𝐺
−𝐹 − (𝐹 2 − 4𝐸𝐺)1/2

𝐸 = 𝛽2 + 𝑛3 ⋅ 𝛽 + 𝑛6

𝐹 = 𝑛1𝛽2 + 𝑛4𝛽 + 𝑛7

𝐺 = 𝑛2𝛽2 + 𝑛5𝛽 + 𝑛8

𝛽 = ( 𝑝
𝑝∗ )

1/4

and coefficients as given in Sec. 4.5.1.

4.5.3 Saturation density

The expression for the saturated density has to be extracted from a separate source, that of Wagner
and Pruß (2002), but it is thermodynamically consistent with the saturation pressure described by
Eqn. 4.32. It follows as a function of the local temperature:

𝜌𝑠(𝑇 ) = 𝜌𝑐 ⋅ 𝑒𝑥𝑝 [𝑐1𝜃2/6 + 𝑐2𝜃4/6 + 𝑐3𝜃8/6 + 𝑐4𝜃18/6 + 𝑐5𝜃37/6 + 𝑐6𝜃71/6] (4.34)

where:

• 𝜌𝑐 = 322kg/m3

• 𝑇𝑐 = 647.096K
• 𝜃 = 1 − 𝑇 /𝑇𝑐

• 𝑐1 = −2.03150240
• 𝑐2 = −2.68302940

• 𝑐3 = −5.38626492

• 𝑐4 = −17.2991605

• 𝑐5 = −44.7586581

• 𝑐6 = −63.9201063

This expression concludes the determination of the saturation properties.
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4.6 Liquid phase properties
The thermodynamic properties of liquid water to be evaluated for the needs and purposes of this work
are the density, enthalpy and surface tension. The IAPWS formulation provides relatively simple and
straightforward expressions, so it is also used here. It is assumed in this work that the liquid properties
are a function of temperature only. All outputs are in plain SI units. All formulas have been checked
against benchmark results from the original publications to ensure they are reproduced correctly, down
to the last decimal.

4.6.1 Liquid density

Based on the assumed independence from pressure, it is also assumed that the liquid density can be
sufficiently described by its value at saturation. The expression is of the same form as that of saturated
vapor:

𝜌𝑙(𝑇 ) = 𝜌𝑐 ⋅ 𝑒𝑥𝑝 [1 + 𝑏1𝜃1/3 + 𝑏2𝜃2/3 + 𝑏3𝜃5/3 + 𝑏4𝜃16/3 + 𝑏5𝜃43/3 + 𝑏6𝜃110/3] (4.35)

where:

• 𝜌𝑐 = 322kg/m3

• 𝑇𝑐 = 647.096K
• 𝜃 = 1 − 𝑇 /𝑇𝑐

• 𝑏1 = 1.99274064
• 𝑏2 = 1.09965342

• 𝑏3 = −0.510839303

• 𝑏4 = −1.75493479

• 𝑏5 = −45.5170352

• 𝑏6 = −6.74694450 ⋅ 105

4.6.2 Liquid enthalpy

In principle, an expression for the liquid enthalpy can be extracted from the EoS of Vukalovich, based on
the classic Clausius-Clapeyron relation. However, it would be based on the first and second derivatives
with respect to temperature of the vapour’s saturation pressure. A quick look at Eqn. 4.32 is enough
to conclude this would result in a very cumbersome expression that would contain dozens of terms
dependent on the temperature and would therefore be extremely sensitive to small variations in this
parameter, which is not convenient for numerical purposes.

The IAPWS formulation provides polynomial expressions for the liquid enthalpy at saturation, that
are straightforward to implement and highly accurate. High accuracy is of importance here, because
the liquid enthalpy drives the quantification of the latent heat released upon condensation and is an
important parameter in the two-phase model. So, it has been implemented here instead. The same
assumption as for the liquid density is made, i.e., that the enthalpy can be sufficiently described by
its value at saturation. Adopting the IAPWS expression for the liquid when the Vukalovich equation is
used for the gas induces a thermodynamic inconsistency at the region of phase change. However, it
was tested that this discrepancy would not cause any particular problems and this is later confirmed
in the validation of the two-phase model in Sec. 5.9.

According to the work of Wagner and Pruss (1993), the specific enthalpy of the saturated liquid can
be expressed as:

ℎ𝑠 = 𝛼 + 𝑇
𝜌𝑙

𝑑𝑝𝑠
𝑑𝑇𝑠

(4.36)
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where 𝑇𝑔 is the local gas temperature and 𝜌𝑙 is the liquid density given by Eqn. 4.35. An approximation
to the saturation pressure is given by:

𝑝 = 𝑝𝑐 ⋅ {𝑒𝑥𝑝 [𝑇𝑐
𝑇 (𝛼1𝜏 + 𝛼2𝜏1.5 + 𝛼3𝜏3 + 𝛼4𝜏3.5 + 𝛼5𝜏4 + 𝛼6𝜏7.5)]} (4.37)

such that its derivative 𝑑𝑝𝑠/𝑑𝑇𝑠 may be derived as (following some mathematical manipulation and
rearrangement of terms):

𝑑𝑝𝑠
𝑑𝑇𝑠

= − 𝑝𝑠
𝑇𝑔

⋅ {𝑙𝑛 (𝑝𝑠
𝑝𝑐

) + 𝛼1 + 3
2𝛼2𝜏1/2 + 3𝛼3𝜏2 + 7

2𝛼4𝜏5/2 + 4𝛼5𝜏3 + 15
2 𝛼6𝜏13/2} (4.38)

with coefficients:

• 𝜏 = 1 − 𝑇 /𝑇𝑐

• 𝑇𝑐 = 647.096 K

• 𝛼1 = −7.85951783
• 𝛼2 = 1.84408259

• 𝛼3 = −11.7866497
• 𝛼4 = 22.6807411
• 𝛼5 = −15.9618719
• 𝛼6 = 1.80122502

The auxiliary parameter 𝛼 in Eqn. 4.36 (not to be confused with the coefficients of Eqns. 4.37 and
4.38) also follows from a polynomial relation as:

𝛼 = 𝛼0 (𝑑𝛼 + 𝑑1𝜃−19 + 𝑑2𝜃 + 𝑑3𝜃4.5 + 𝑑4𝜃5 + 𝑑5𝜃54.5) (4.39)

with coefficients:

• 𝜃 = 𝑇 /𝑇𝑐

• 𝑇𝑐 = 647.096 K

• 𝛼0 = 1000 J/kg
• 𝑑𝑎 = −1135.905627715
• 𝑑1 = −5.65134998 ⋅ 10−8

• 𝑑2 = 2690.66631

• 𝑑3 = 127.287297

• 𝑑4 = −135.003439

• 𝑑5 = 0.981825814

4.6.3 Surface tension

The value of the surface tension of liquid water in this work is determined at the local vapour temper-
ature from the relation of Petrova (2014) as:

𝜎 = 𝐵𝜏𝜇(1 + 𝑏𝜏) (4.40)

Its derivative is also of relevance for the droplet growth model later, derived simply as:

𝑑𝜎
𝑑𝑇 = 𝐵𝜇𝜏𝜇−1 (− 1

𝑇𝑐
) (1 + 𝑏𝜏) + 𝐵𝜏𝜇 (− 𝑏

𝑇𝑐
) (4.41)

where 𝐵 = 0.2358𝑁/𝑚, 𝜏 = 1 − 𝑇 /𝑇𝑐, 𝑇𝑐 = 647.096 𝑜𝐾, 𝜇 = 1.256 and 𝑏 = −0.625.

4.7 Interim recap
By this point, expressions have been given for the determination of gaseous and liquid properties in
the range 0.01bar≤ p ≤ 100bar and 273.16K ≤ T ≤ 1073.16K. The remainder of the chapter treats
the determination of the same properties in the same pressure range, but for T ≤ 273.16K, for which
little to no data exists and approximations have to be made.
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4.8 Thermophysical properties below 273 Kelvin

4.8.1 Gaseous properties

Equation of state
As explained previously, the vapour is described by the simple ideal gas law for temperatures below

273K:

𝑝𝑔 = 𝜌𝑔𝑅𝑇𝑔

The rest of the gaseous thermodynamic properties have to be derived from empirical expressions either
of the specific heats or the enthalpy. In this context, it is easier to start from the isobaric specific heat,
because many thermodynamic frameworks use its ideal value as a baseline for the derivation of the
real gas form, so some limited numerical data exists. Once this specific heat is known, the enthalpy
may be derived by integration as:

ℎ0(𝑇𝑔) = ∫ 𝐶𝑝0(𝑇𝑔)𝑑𝑇𝑔 + ℎ𝑐 (4.42)

where ℎ𝑐 is the resulting constant of integration. The details follow below.

Specific heat
The IAPWS formulation provides an expression for 𝐶𝑝0 in the form:

𝐶0
𝑝 = −𝑛3/𝜏2 −

8
∑
𝑖=4

𝑛𝑖(𝛾𝑖)2𝑒−𝛾𝑖𝜏 (1 − 𝑒−𝛾𝑖𝜏)−2 (4.43)

with coefficients:

• n3 = 3.00632

• n4 = 0.012436

• n5 = 0.97315

• n6 = 1.27950

• n7 = 0.96956

• n8 = 0.24873

• g4 = 1.28728967

• g5 = 3.53734222

• g6 = 7.74073708

• g7 = 9.24437796

• g8 = 27.5075105

It is a cumbersome expression that is numerically expensive to compute and inconvenient to integrate
for the determination of the corresponding specific enthalpy. A suitable approximation in a simplified
version was therefore sought. A careful examination of the form of the equation indicates that a good
approximation may be found in a hyperbolic cosine fit of the original data (recall that 𝑐𝑜𝑠ℎ = 𝑒𝑥+𝑒−𝑥

2 , a
form loosely comparable to that of Eqn. 4.43). Here, we set 𝜏 = 𝑇 /647.286 and numerically optimise
parameters 𝐴, 𝐵 and 𝐶 such that the expression:

𝐶0
𝑝,𝑎𝑝𝑝𝑟𝑜𝑥 = 𝐴 + 𝐵 ∗ 𝑐𝑜𝑠ℎ(𝐶𝜏) (4.44)

constitutes a non-linear least-squares regression to the IAPWS formulation. The resulting constants
follow as 𝐴 = 1848.8562, 𝐵 = 0.076658 and 𝐶 = 13.333367 and provide an approximation that is within
a 1000th of a percent of the original local IAPWS value, across the full 𝑇𝑔 < 273.16 temperature range.
Indicatively, the two models are compared with two computations from literature, those of Friedman
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and Haar (1954) and Tanimura et al. (2010). It can be seen that the offest between them is negligible,
less than 0.1% in absolute value.
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FIGURE 4.1: Variation of the the ideal water vapour specific heat with temperature and comparison
with values from literature. There is a virtually exact overlap between the IAPWS and the present
models, hence discrete values are given to aid visibility.

Expression 4.43 may then straightforwardly be integrated according to Eqn. 4.42 to yield:

ℎ0
𝑔 = [𝐴 ⋅ 𝑇 + 647.286 ⋅ 𝐵

𝐶 𝑠𝑖𝑛ℎ(𝐶𝜏)]
𝑇𝑔

𝑇𝑟𝑒𝑓

+ ℎ𝑟𝑒𝑓 (4.45)

The constant of integration is essentially a reference vapour specific enthalpy at a reference temperature
and is up for the user’s choice. Here, we follow the NIST-JANNAF convention (Chase, 1998) and select
ℎ𝑟𝑒𝑓 = 2551013.479J/kg at 𝑇𝑟𝑒𝑓 = 300K (and pressure 𝑝𝑟𝑒𝑓 = 1bar).

From there on, the remaining parameters of interest follow simply from the ideal gas assumption
as listed below:

𝐶0
𝑣 = 𝐶0

𝑝 − 𝑅 (4.46)

𝑍0 = 1 (4.47)

𝛾 = 𝐶0
𝑝

𝐶0𝑣
≡ 𝑓(𝑇𝑔) (4.48)

For the remainder of this work we will dispense with the 0 superscript and it is understood that the
model for the gas in the dillute limit takes over whenever the gas temperature drops below 273K.
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4.8.2 Transport properties

Viscosity:
The obvious course of action is to extrapolate the IAPWS expression Eqn. 4.28 of Sec. 4.4.1 to the low
temperature range. This turns out not to be possible, because Eqn. 4.28 experiences a discontinuity
at roughly 135 K and diverges. A better behaved expression may be derived in the commonly used form
proposed by Sutherland (1893), but it would be more of a numerical artefact than a physical result.
In fact, Sutherland’s method is not suitable for a strongly polar molecule such as water, because it is
based on an idealized intermolecular-force potential. In a past work, Crifo (1989) derived a series of
approximate expressions for the viscosity at very low temperatures to study the physics of cometary
tails, but when they were tested by the present author, it was found that none of these agree well with
the IAPWS model, even at temperatures ≥ 273.16K.

Eventually, it was decided to use the IAPWS expression to produce datapoints for T ≥ 273K and then
use these datapoints to derive a polynomial expression that maintains smooth monotonic behaviour
for T ≤ 273K. Essentially, we are extrapolating the IAPWS expression to low temperatures, but in a
form that is numerically convenient and avoids discontinuities or other anomalous behaviours. The
expression is given by:

𝜇 = 𝑐0 + 𝑐1𝑇 + 𝑐2𝑇 2 + 𝑐3𝑇 3 + 𝑐4 ⋅ 𝑇 4 (4.49)

with coefficients:

• 𝑑0 = 3.51068999 ⋅ 10−06

• 𝑑1 = 3.27641137 ⋅ 10−09

• 𝑑2 = 7.63396116 ⋅ 10−11

• 𝑑3 = −6.52022078 ⋅ 10−14

• 𝑑4 = 1.96761568 ⋅ 10−17

The IAPWS and the present models are plotted in Figs. 4.2a and 4.2b, where it becomes clear that the
latter is simply an extension of the former at low temperatures.
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FIGURE 4.2: Vapour viscosity model for temperatures below the triple point. The IAPWS formulation
(Eqn. 4.28) is included for T ≥ 300K, for comparison.

Vapour thermal conductivity A similar discussion as above applies and only the final equation is
given here for the sake of brevity:

𝑘 = 𝑑0 + 𝑑1𝑇 + 𝑑2𝑇 2 + 𝑑3𝑇 3 + 𝑑4 ⋅ 𝑇 4 (4.50)
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with coefficients:

• 𝑐0 = 7.24966752 ⋅ 10−3

• 𝑐1 = −1.58112357 ⋅ 10−6

• 𝑐2 = 1.54438048 ⋅ 10−7

• 𝑐3 = −8.44198169 ⋅ 10−11

• 𝑐4 = 2.01111364 ⋅ 10−14

4.8.3 Saturation properties

Saturation pressure curve
It is important to equip the model with a saturation pressure curve as accurate as possible, because
it drives the determination of the supersaturation ratio and hence largely impacts the entirety of the
condensation model. The author has examined various expressions in literature and one of the most
comprehensively substantiated ones resulted from the work of Murphy and Koop (2005). They used
the limited available experimental data, as well as an array of thermodynamic considerations based on
the then state-of-the-art on the properties of supercooled water and produced the following relation:

𝑝𝑠,𝐹𝑃 (𝑇 ) = 𝑒𝑥𝑝 {54.842763 − 6763.22
𝑇 − 4.210 ⋅ 𝑙𝑛(𝑇 ) + 0.000367 ⋅ 𝑇

+ 𝑡𝑎𝑛ℎ [0.0415 ⋅ (𝑇 − 218.8)]

⋅ (53.878 − 1331.22
𝑇 − 9.44523 ⋅ 𝑙𝑛(𝑇 ) + 0.014025 ⋅ 𝑇 )}

(4.51)

The relation is assumed to be valid down to at least 125K, making it suitable for our purposes. The
authors also made sure it is consistent with the IAPWS saturation curve at the vicinity of the triple
point (Eqn. 4.37 in Sec. 4.5.1).

Saturation temperature
The function for the saturation temperature at the local pressure is essentially the inverse of the sat-
uration pressure function. Eqn 4.51 cannot readily be inverted and no other such relation is provided
in literature. The problem is bypassed here by fitting a 4th-order logarithm-based polynomial to a
tabulation of the results of Eqn 4.51, to yield:

𝑇𝑠,𝐹𝑃 (𝑝) = 1.11164211 ⋅ 10−3 + 9.56173207 ⋅ 10−3 ⋅ 𝑙𝑛(𝑝)
+ 0.315572925 ⋅ [𝑙𝑛(𝑝)]2 + 7.37978228 ⋅ [𝑙𝑛(𝑝)]3

+ 2.08416930 ⋅ 102 ⋅ [𝑙𝑛(𝑝)]4
(4.52)

It has been checked that Eqn. 4.52 is consistent with Eqn. 4.51 to within less 0.1% across the full
thermodynamic range, a negligible offset.

Saturation density
This follows simply via the ideal gas law that has been assumed to apply in this temperature range:
𝜌𝑠 = 𝑝𝑠/𝑅/𝑇𝑠
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4.8.4 Liquid properties

A recent overview of the state of the art on the estimation of various metastable liquid water properties
in sub-freezing temperatures was compiled by Holten et al. (2012). The properties of supercooled water
have usually been studied only at atmospheric pressure and most are generally only known with some
certainty down to roughly 236-240K. Water below those temperatures is extremely difficult to probe
experimentally, primarily due to its tendency to readily crystallise unless extremely short timescales
or small volumes are involved (Amann-Winkel et al., 2016); so much so, that authors often refer to
the region as ”no man’s land” (Handle et al., 2017). As a result, data in that temperature range is
practically non-existent and approximations are usually made. The analysis is further complicated by
the existence of evidence that suggests water exhibits rather peculiar behaviour in such conditions,
being in an intermediate state between liquid form and amorphous ice (Handle et al., 2017). The
following paragraphs present a selection of expressions for the properties of supercooled liquid water
that are approximate and cannot be verified or validated, but have at least been used by the cited
authors in calculations that were in fair agreement with experiment. It is on these grounds that they
have been adopted. Given that inside the micronozzle any liquid droplets will form at very low pressures,
it is assumed that all liquid properties are dependent only on the temperature, a simplifiacation that
is anyway common in condensation studies (Young, 1988).

4.8.4 Liquid density

Most available data on the liquid density do not extend below roughly 253K (Holten et al., 2012).
An exception is the work of Mishima (2010) who produced values until 200K, but their data were
derived at much higher pressures than are of interest here (≥ 40MPa). The expression employed here
is the approximate fit derived by Wölk and Strey (2001) as given by Manka et al. (2012)3 (expressed in
kg ⋅ m−3):

𝜌𝑙,𝑠𝑐 = {0.08 ⋅ 𝑡𝑎𝑛ℎ (𝑇 − 225
46.2 ) + 0.7415 ⋅ (𝑇𝑐 − 𝑇

𝑇𝑐
)

0.33
+ 0.32} ⋅ 1000 (4.53)

The expression was originially derived down to 220 K and configured to approximately much the density
of amorphous ice at that region. Since it exhibits monotonic behaviour, here it has been extrapolated to
silghtly lower temperatures (in the vicinity of 200K). In any case, the density of water does not appear
to exhibit dramatic variations in its value and is generally between 930-1000kg/m3 in this temperature
range.

4.8.5 Latent heat

During condensation calculations, it is important to compute the heat realeased as the vapour transi-
tions phase. The latent is defined as the difference between the bulk enthalpies of the initial vapour and
the resulting liquid. In Sec. 4.6.2, it was shown that for 𝑇 ≥ 273.16K there are explicit expressions
for each. In this case, however, it turns out that the available data make it easier to use the satura-
tion curve and the Clausius-Clapeyron relation to instead deduce an expression for the latent heat 𝐿
directly. Such an approximate expression was produced, based on various thermodynamic considera-
tions, by Murphy and Koop (2005), formulated such that it is consistent with the IAPWS framework at
the triple point (expressed in J mol−1):

3Note the expression in Manka et al. (2012) most likely contains a typographical error and the last divisor by 1000 should
actually be a multiplier, as given in this work.
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𝐿(𝑇 ) = {6763.22
𝑇 2 − 4.21

𝑇 + 0.000367

+0.0415 ⋅ [53.878 − 1331.22
𝑇 + 0.014025 ⋅ 𝑇 − 9.44523 ⋅ 𝑙𝑛(𝑇 )]

(𝑐𝑜𝑠ℎ(0.0415(𝑇 − 218.8)))2

+ (0.014025 + 1331.22
𝑇 2 − 9.44523

𝑇 ) ⋅ 𝑡𝑎𝑛ℎ [0.0415 ⋅ (𝑇 − 218.8)]} ⋅ 𝑅 ⋅ 𝑇 2

(4.54)

It is presumed to be valid down to approximately 167K. Then, the liquid enthalpy can be deduced via
Eqns. 4.54 and 4.45. The latent heat for 180K < 𝑇 < 300K is plotted in Fig. 4.3, where it can be
seen that the heat released follows an increasing trend with the degree of supercooling. A given mass
of condensing water will release an amount of heat more than 10 % higher than at room temperature.
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FIGURE 4.3: Variation of latent heat of supercooled water with temperature, according to the work of
Murphy and Koop (2005).

4.8.6 Surface tension:

It is shown later in Sec. 5.3 that the value of the surface tension has a dominant contribution in
condensation studies, therefore it is desirable that its determination is as reliable as possible. Very
little experimental data is available on the surface tension of supercooled water and even that is limited
to no further than roughly 243K. Overviews of such datasets are given in the works of Holten et al.
(2012) and Hrubý et al. (2014). It is suggested in Petrova (2014) that the IAPWS formulation given by
Eqn. 4.40 is ”reasonably accurate” down to 250K. Other empirical relations have been formulated in
various works in literature and a critical review of a few of the most common ones is given by Lamanna
(2000). In that work, Lamanna argues that most of these relations are physically unsubstantiated and
empirically derives her own, based on thermodynamic considerations and experimental data from her
own work (denoted here as 𝜎𝐿𝐷 from the original work):

𝜎𝐿𝐷 =

⎧{{{{
⎨{{{{⎩

0.0852 − 3.54236 ⋅ 10−4𝑇 + 3.50835 ⋅ 10−6𝑇 2

−8.71691 ⋅ 10−9𝑇 3 [N/m] for T<250 K

(76.1 + 0.155 ⋅ (273.15 − 𝑇 )) ⋅ 10−3 [N/m]

for T ≥ 250 K

(4.55)

The other relation frequently cited in literature is that of Viisanen et al. (1993):
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𝜎𝐹𝑃 (𝑇 ) = 93.6635 ⋅ 10−3 + 9.133 ⋅ 10−6 ⋅ 𝑇 − 2.75 ⋅ 10−7 ⋅ 𝑇 2 (4.56)

The rationale behind and accuracy of this latter equation is unclear. The only seemingly applicable
source the author has been able to trace in literature is the dissertation of Dillman (1989) (as reported
in Viisanen et al. (1993)), who appears to have used it in deeply supercooled states (apparently down
to <200K). In a later publication, Dillmann and Meier (1991) briefly state the empirical formula has
in turn been adopted from Landolt and Börnstein (1960). The present author has not had access to
either of these works, so the details of its derivation and validity cannot be verified. Lamanna did
acknowledge that this relation is also thermodynamically consistent as is her own, but went on to
dismiss it as inaccurate relative to experimental data. This is an interesting assessment, given that the
experimental data in literature tends to be somewhat inconsistent in itself.

To obtain an independent assessment on this, Eqn. 4.55, Eqn. 4.56 (Strey et al., 1994) and the
IAPWS formulation (Eqn. 4.40) have all been plotted in Fig. 4.4 against the experimental data of Hacker
(1951), Floriano and Angell (1990) and Hrubý et al. (2014). The former two datasets have been chosen
because they are some of the most frequently cited ones and exhibit the highest degree of supercooling.
The latter dataset is added because it is the most recent one and has been produced by consistent
measurements of two independent laboratory setups in different locations, therefore likely constitutes
the current state of the art.

(a) Extended temperature range (b) Temperature range in the vicinity of the triple point

FIGURE 4.4: Comparison of common models for the surface tension of supercooled liquid water with
selected experimental datasets

In that figure it is shown that the expression of Lamana is in fact itself only in moderate agreement
with the experiments of Hacker (1951) and Floriano and Angell (1990), experiences an inflection at
the switching temperature of 250K - this inflection was hypothesised in the past but is disputed by
more modern data ((Hrubý et al., 2014)) - and a maximum at roughly 200K that could be more of a
numerical artefact than a physical result. On the other hand, Eqn. 4.56 is in fair agreement with all
data, in excellent agreement with the most recent data of Hruby et al. and in near-perfect agreement
with the IAPWS formulation at the high temperature end. What is more, Viisanen et al. (1993) and
Manka et al. (2012) have later both used Eqn. 4.56 to deduce nucleation rates in fairly close agreement
with experiments at temperatures down to <200K4. In the context of the discussion made in Sec. 5.3,
explaining the high sensitivity of the CNT-predicted nucleation rate on the surface tension (which is also
used in the aforementioned works as an intermediate step for the characterisation of the nucleation
of ice), it may be assumed that such agreement with experiments would not have been possible if the

4The former authors did note discrepancies at the lowest temperatures, but showed these were likely not due to the accuracy
of the thermophysical properties, but rather due to inherent shortcomings in the nucleation theory they employed
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surface tension value had been largely inaccurate. Hence it is assumed here that it is suitable for our
purposes and Eqn. 4.56 has been used for the two-phase model in this work, when 𝑇 < 273.15K.

4.9 Numerical implementation
The current structure of the thermodynamic framework in OpenFOAM is based on the gas pressure and
temperature for the determination of thermodynamic properties. Indeed, the majority of expressions
presented in this chapter can be implemented in the software via the creation of dedicated classes
whose functions will simply receive the pressure 𝑝 and/or temperature 𝑇 of the gas/liquid and return
the desired variable value. However, this creates an issue in those instances in which the density needs
to be extracted from the value of pressure and temperature, because the equation of state (Eqn. 4.1)
is a quartic polynomial function of the density that cannot simply be inverted.

In the early stages of this work, this was addressed by implementing the semi-analytical rapid
quartic solver of Strobach (2010), which is shown by that author to provide gains in execution speed over
more conventional quartic solvers. This was effective, but impractically slow for numerical purposes,
as the solution of the polynomial over every cell of the computational domain still took too long to
be useful. An alternative was found in implementing a table look-up method: the EoS is used to
tabulate values of density for a range of pressure-temperature (p-T) combinations; then, an algorithm
is written that when fed with a combination of p-T, looks for that specific location in the table to
find the corresponding density value. Since the inputs will typically not correspond exactly to the
discrete values saved in the table, the desired density value is computed by a simple linear interpolation
from the nearest neighbouring table entries. This was also effective and offered a stark performance
improvement relative to the quartic solver method (at least an order of magnitude faster over a given
simulation case). However, since the computational means the author has had at his disposal have
been somewhat limited, it was desirable to accelerate the solver further.

Luckily, a simplification is afforded in this particular case due to the fact that the flow in the mi-
cronozzle expander will generally feature low pressures of ≤ 0.5bar. In the polynomial of Vukalovich,
the third and fourth Virial coefficients typically only have a significant contribution at high pressures
(recall the EoS is valid up to 100 bar). It was found that for the low pressures of interest here they can
be omitted, with virtually no loss in accuracy (less than 0.1 % between the original and the simplified
version). So, for the simulations presented in this work, the expressions listed under Secs. 4.2 and 4.3
have been truncated after the second coefficient (B1), which makes the solution much faster. Should
another user need this solver in the future, the full Virial EoS with the tabulation method remains im-
plemented, such that any given range of pressure/temperature combinations covered by the full EoS
can be simulated.

4.10 Freezing of droplets
The preceding discussions treated thermodynamic regions well below the triple point temperature, yet
no mention of the liquid water freezing to ice or even the water vapour directly depositing to it was
made. The reason is that, in this work, the prospect of the droplets freezing in the nozzle expander is
ignored.

There is a sizeable volume of literature concerning the process of vapour nucleation in sub-freezing
temperatures. One overview of at least the experimental work has been compiled by Wyslouzil and
Wölk (2016). Among these works, there are three key observations that help substantiate the above
assumption:
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• One observation relevant to the present study is that, even in temperatures as low as near 200K,
if condensation occurs, the vapour will likely first collapse to liquid and only then transition to
ice. The existence of such a step-wise mechanism was first stipulated by Ostwald (1897) and has
been confirmed in more recent experiments (Manka et al., 2012; Wyslouzil and Wölk, 2016). This
delays the occurence of freezing and implies the liquid droplet may have exited the nozzle by the
time freezing begins. Indeed, the following point solidifies this hypothesis.

• Fransen et al. (2014) conducted calculations to estimate the mean life of liquid droplets at deep
levels of supercooling; that is, how long it takes after the vapour has condensed to liquid for
freezing to occur. They showed that freezing is insignificant down to 240K and even at 220K
the mean life of the droplet would exceed 2ms, far longer than what the flow here spends in the
micronozzle. The discussion by the authors does imply that at low pressures, such as those of
interest here, the lifetime may be shorter than estimated. But even in that case, it is unlikely the
effect is of significance, as noted by the following point.

• The third relevant observation, is that the latent heat released as the supercooled water transi-
tions to ice is insignificant compared to that released when the vapour first collapses to liquid.
This becomes evident in Fig. 4 of the work of Manka et al. (2012), who recorded the pressure
and temperature along the nozzle centerline as first condensation and then freezing occured at
temperatures in the vicinity of 200K. The locations of the onset of freezing are well downstream
of that of the condensation. While the effects of the heat released upon condensation are clearly
evident, the effect of freezing is too small to be distinguishable. The authors note that in the
vicinity of 200K, the heat of fusion is only about 5% that of condensation and so the resulting
temperature rise does not exceed 1K or so.

Based on these points, it can be safely assumed that 1) freezing is not very likely to occur in the short
timeframes of micronozzle flow and 2) even if it does, its macroscopic effects are likely to be negligible.
On these grounds it is neglected.

4.11 Summary of the thermodynamic model
For the simulation of water vapour condensing to liquid in rapid micronozzle expansions, it is necessary
to be able to compute the properties of H2O in gaseous and liquid form, in equilibrium and inmetastable
states, as well as on the saturation line. To that end, a set of empirical relations has been amassed
following an extensive review of literature, based on what is currently considered the state of the art
in the scientific community. The model has been presented in two main portions, for 𝑇 ≥ 273.16 and
𝑇 ≤ 273.16. That is to denote that in the former case the properties are generally well known, while in
the latter largely hypothesized.

Validation of these expressions would be desirable. For the thermodynamic regions for 𝑇 ≥ 273.16
this is not really necessary. It has been checked that the implemented expressions reproduce bench-
mark data in literature to the last significant digit and from there on, it is well established these ex-
pressions are representative of reality. This is implicitly confirmed in the successful validation cases of
the entire condensation model in Sec. 5.9.

Less certainty is afforded for 𝑇 ≤ 273.16K. It is reasonable to accept that the gaseous properties
in that region, as derived here, are sufficiently accurate, given that the validation case of Sec. 3.5.2
implemented this model and was in good agreement with experiment. For the saturation and liquid
properties, however, the lack of data leaves little option but to simply assume they are suitable for this
work, especially for temperatures below roughly 𝑇 ≤ 235-240K. This is the threshold below which
there is practically no experimental data. In the rough range 235-273.16K most expressions have in-
deed been based on - at least some, albeit limited - available experimental data, such that it may be
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assumed they are representative of reality. It is shown in Ch. 7 that most of the micronozzle cases
examined in this work indeed operate roughly within this temperature range. However, the case fea-
turing the lowest stagnation pressure or highest rate of expansion (nozzle with the highest expander
angle) will feature temperatures in the divergent in the vicinity of 200K. In that region the majority
of expressions for the liquid properties are at least largely approximate. Their validity is assumed on
the grounds that the original scientific works from which they are adopted, successfully implemented
them in reproducing various condensation-related experiments in different contexts, with reasonable
agreement. Hopefully, in the near future, progresses in the experimental sciences of H2O thermody-
namics will help bridge this gap.

The analysis now proceeds to the presentation of the condensation model itself, in the following
chapter.
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Part III

Two-phase model
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CHAPTER 5

Two-phase model
This chapter outlines the model for the computation of condensation in the flowfield. Including the
emergence and evolution of the liquid phase requires modelling of three basic processes:

1. The spontaneous emergence of the first liquid nuclei out of the vapour

2. The subsequent growth of the droplets following their formation, by the coalescence of more
vapour molecules

3. The interaction of the above two processes with the gaseous phase in terms of mass, momentum
and energy

Dedicated approaches apply to each and the principles and limitations of these are outlined in
this chapter. The chapter starts with a presentation of the basic modelling principles and some of
the fundamental assumptions involved. The actual nucleation and droplet growth models then follow,
with more assumptions scrutinised as the description goes along. The numerical implementation of
the model in the OpenFOAM platform is also explained in detail and the chapter eventually concludes
with the validation of the model against benchmark experiments.

5.1 Basic principles
The subject of non-equilibrium steam condensation in supersonic flows has received widespread study
over the last 70 years at least and it is not the purpose of this document to review it in detail or
address its historical develoment. Only a brief presentation of the main principles is given in this
chapter. Comprehensive reviews can be found in works such as those of Wegener and Mack (1958),
Feder et al. (1966), Hill (1966), Gyarmathy (1976), Lai and Kandambi (1993), Lamanna (2000), Bakhtar
et al. (2005) and the references therein. The majority of the background information given in this
chapter is extracted from these sources. It suffices to say here that, despite the decades of effort, the
underlying physics still partly eludes scientific understanding and the related modelling efforts are
largely approximate.

When it comes to continuum flows, the modelling of condensation is typically done in either of two
ways:

• A Eulerian - Lagrangian approach. The gas is modelled from a stationary observer’s perspective in
the framework of a finite volume (and/or finite element) discretisation, typically via the numerical
solution of the Navier-Stokes equations, as is the set-up of most modern compressible CFD tools.
The liquid droplets, on the other hand, are modelled in the framework of an observer moving with
the flow. Their motion in the gas is described by the integration of their precise trajectories, based
on the Newtonian laws of motion.

• A Eulerian-Eulerian approach, in which both the gaseous and the liquid phase are described by
means of a set of balance laws describing the conservation of governing variables. The trajectories
of the droplets are not tracked in this case and their interaction with the gas is expressed in terms
of a set of volumetrically averaged parameters.
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While the former approach is more precise in its description of the flow dynamics and generally
more accurate, the necessity to track the motion of the droplets comes at a distinctly higher compu-
tational cost, increasingly so as the complexity of the flowcase increases (Young, 1992; Gerber, 2002;
Gerber and Kermani, 2004). The volumetric averaging inherent to the Euler-Euler approach sacrifices
some accuracy in exchange for computational simplicity, especially at the region of the first onset of
condensation, where gradients are very sharp and the vapour-droplet interaction particularly complex.
Even so, the latter approach has historically proven to be sufficiently performant for most applications
and since the computational means the present author has had in his disposal are limited, it is the
method implemented in this work.

The Eulerian-Eulerian approach itself, also has two variants that typically dominate in literature,
pertaining to how the population of droplets is quantified and how the thermodynamic interaction with
the flow is described. The thermodynamic interaction is generally implemented by:

• A mixture based approach, in which the gaseous (g) and liquid (l) phases are directly coupled as
a mixture in the definitions of the various thermodynamic properties of the flow, via substituting
an expression of the form

1
𝜌 = 1 − 𝑌

𝜌𝑔
+ 𝑌

𝜌𝑙

where 𝑌 is the fraction of the liquid to the vapour mass. Then, in the conservation equations,
source terms are introduced only for the liquid phase equations to describe the birth and growth
of droplets, while the vapour and its interaction with the liquid is described via the original Navier-
Stokes laws and the above mixture definition, without any source terms.

• A source term based approach, in which the thermodynamics of the vapour and liquid are de-
scribed separately and the coupling between the phases takes place directly at the conservation
equations, by the introduction of a set of source terms in each and every of the balance laws.

In turn, for the quantification of the droplet population:

• A monodisperse droplet approach, in which it is assumed that the droplet population consists of
sizes sufficiently uniform, such that it can be represented by a single group of spherical droplets
of mean radius ̄𝑟 and a liquid mass fraction 𝑌 = 𝑁𝜌𝑙

4
3 𝜋 ̄𝑟3. (Mccallum and Hunt, 1999; Gerber

and Kermani, 2004)

• A moment-based approach, in which the droplets are modeled as a set of populations of different
sizes, whose properties are described by a set of successively solved ”moment” equations (Hughes
et al., 2015).

The mixture- and moment-based method is supposed to be more accurate, since it largely avoids the
crude averaging of properties of the source-term based, monodisperse approach. In some instances,
this is in fact the case, but in other instances it is not (Starzmann et al., 2018), primarily due to the
fact that the large uncertainties generally involved in any condensation study may overshadow any
increments in performance resulting from the former method. Due to the particular architecture of
OpenFOAM, it was generally found by the author to be much simpler to implement the source-term
based, monodisperse method. This is especially due to the fact that the use of source terms avoids
heavy modifications in the thermodynamic description of the gas, which can be quite tedious in the
software. And as perhaps became apparent in Ch. 4, the simpler thermodynamic implementation
that treats the gas and liquid separately has already been rather tedious in itself. Moreover, a moment-
based approach typically introduces an additional 4 conservation laws, which comes at a computational
expense. Since it has further been shown that the monodisperse, source-term based description offers
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sufficiently high performance in most applications involving low pressures (Gerber, 2008), it is the
method of choice here.

Accordingly, the implementation is done by augmenting the Navier-Stokes equations presented in
Ch. 3 by an additional two balance laws, describing the conservation of the number of droplets in the
flow 𝑁 (expressed per unit vapour mass) and the conservation of the liquid-to-vapour mass fraction 𝑌
(dimensionless):

𝜕𝜌
𝜕𝑡 + ∇ ⋅ (𝜌V) = −𝑆𝑌 (5.1)

𝜕
𝜕𝑡(𝜌V) + ∇ ⋅ (𝜌VV) = −∇𝑝 + ∇ ⋅ 𝜏 + 𝑆𝑉 (5.2)

𝜕
𝜕𝑡(𝜌𝐸) + ∇ ⋅ (V(𝜌𝐸 + 𝑝)) = ∇(𝑘∇𝑇 + (𝜏 ⋅ V)) + 𝑆ℎ (5.3)

𝜕(𝜌𝑌 )
𝜕𝑡 + ∇ ⋅ (𝜌𝑌 V) = 𝑆𝑌 (5.4)

𝜕(𝜌𝑁)
𝜕𝑡 + ∇ ⋅ (𝜌𝑁V) = 𝑆𝑁 (5.5)

The source terms 𝑆𝑥 describe the exchange of mass, momentum and energy between the two phases
and are addressed in Sec. 5.6. From there on, the modelling of condensation concerns the suitable
description of the processes of nucleation and droplet growth, such that expressions for the source
terms given above can be derived. This is the subject of the remainder of this chapter, starting from an
overview of the most basic assumptions in the following section. In a general sense, the condensation
model as described in this chapter is largely an adaptation of the work of Gerber and Kermani (2004),
with modifications whenever applicable to our purposes.

5.2 Assumptions
Only the basic assumptions made are listed below. More assumptions will be introduced as the model
is outlined (some of which require a more elaborate discussion than others) and they are directly ad-
dressed in the respective sections.

1. In supersonic nozzle expansions, the timescale needed for foreign nuclei to serve as condensation
surfaces far exceeds that of the expansion process itself and their contribution may be ignored
(Hill, 1966; Bakhtar et al., 2005). The contribution of the nozzle walls is also neglected henceforth
on the same grounds, as well as on the grounds of the fact that the nozzles of interest in this work
are generally assumed to be elevated to temperatures >400K, where condensation is not likely.
Therefore, only homogeneous nucleation is considered in this work.

2. The volume of the medium surrounding a given droplet is assumed infinite. The volume of the
droplets is small relative to that of the gaseous phase (≤ 5%), such that no volume fraction
equations need to be solved to treat the phases separately.

3. Droplets are assumed perfectly spherical and infinitely stiff. At the earliest stages of nucleation,
when the newly formed clusters are only a few water molecules wide, the droplet is likely not quite
of spherical shape. But for most practical purposes, this is a good approximation, as was also
confirmed in the nucleation studies of Kim et al. (2004).

4. As is typically the case in nozzle flows, owing to the high speeds and short dimensions, the effect
of gravitational forces on the flow and the droplets are negligible.
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5. It is assumed the droplets are small enough for the velocity slip between them and the gas to be
negligible. Effectively, this means the droplets present no drag to the flow and travel at the gas
velocity. The validity of this assumption is scrutinised in Sec. 5.5.

6. It is assumed that no droplet agglomeration takes place (i.e. different droplets do not coalesce
on each other) and the interactions between the droplets themselves are ignored. This is a good
approximation, as long as the mass fraction of the liquid phase remains low (𝑌 < 0.1) (Gerber
and Kermani, 2004).

5.3 Droplet nucleation model
Most nucleation studies are based on a theoretical framework referred to as the Classical Nucleation
Theory (CNT), developed in its original form by researchers such as Volmer (1939) and Frenkel (1955)
and having seen various modifications since. As it is relevant to our later discussion, an overview of
the basic principles is briefly given here, but the reader is referred to the work of Bakhtar et al. (2005)
and the references therein for a comprehensive overview. Insightful discussions into the underlying
physics have been given by McDonald (1962, 1963).

The basic idea is to express the nucleation process in terms of a ”nucleation rate”, i.e., a param-
eter describing the rate of generation of liquid clusters per unit mass (or volume) of vapour, per unit
time. It can then be used as input to the droplet growth model (described in Sec. 5.4), for a complete
description of the condensation process. The CNT derives the nucleation rate based on considerations
from statistical thermodynamics and a number of simplifications on the local flow topology.

One starts by considering the specific Gibbs free energy of the system, introduced earlier in Sec.
4.3.1 and given by:

𝐺 = 𝑈 − 𝑇 𝑆 + 𝑝𝑉

Initially, for a droplet-free vapour of total mass 𝑀𝑡, the total Gibbs free energy is 𝐺1 = 𝐺𝐺𝑀𝑡. After
a spherical droplet of radius 𝑟, area 𝐴𝐿 = 4𝜋𝑟2 and mass 𝑀𝐿 = 𝜌𝑙

4
3 𝜋𝑟3 has condensed, the mass is

divided into a vapour and a liquid constituent: 𝑀𝑡 = 𝑀𝐺 + 𝑀𝐿. So, for the initial state, one may write:

𝐺1 = 𝐺𝐺(𝑀𝐺 + 𝑀𝐿)

When the droplet forms, the vapour experiences a change Δ𝐺 in its Gibbs free energy and the balance
can simply be written as (denoting the final state by the subscript ”2”):

𝐺2 = 𝐺1 + Δ𝐺 = 𝐺𝐺(𝑀𝐺 + 𝑀𝐿) + Δ𝐺

This change Δ𝐺 essentially expresses the Gibbs free energy of the droplet and is associated with two
contributions:

• a change in the system’s chemical potential due to the emergence of the new phase

• an amount of work expended in forming the surface area of the droplet.

The change in chemical potential can be expressed as the difference in free enthalpies 𝐺𝐺 − 𝐺𝐿 be-
tween the vapour and the droplet in the final state. By using fundamental thermodynamic relations
and assuming 1) an ideal gas such that its specific volume is 𝑅𝑇

𝑝 , 2) that the specific volume of the
droplet is negligible and 3) only small perturbations from equilibrium so that conditions are essentially
isothermal, it is easy to show that the difference in 𝐺 between the vapor and the droplet is:
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𝐺𝐺 − 𝐺𝐿 = 𝑅𝑇 𝑙𝑛 (𝑝𝐺
𝑝𝑠

)

where the term in the logarithm is the ratio of saturation. The second contribution has to do with the
energy extracted by the condensed droplet in the form of the surface energy required to keep its liquid
form bonded. In CNT theory it is defined by 𝜎𝐴𝐿, where 𝜎 is the liquid surface tension per unit area.
Eventually, a simple mathematical manipulation of the above relations shows that the change in the
total Gibbs free energy of the system (not per unit mass) following the condensation of a droplet is given
by:

Δ𝐺 = 𝐺2 − 𝐺1 = 𝐺𝐺𝑀𝐺 + 𝐺𝐿𝑀𝐿 + 𝜎𝐴𝐿 − 𝐺𝐺(𝑀𝐺 + 𝑀𝐿) = 𝜎𝐴𝐿 + (𝐺𝐿 − 𝐺𝐺)𝑀𝐿 ⇒

Δ𝐺 = 4𝜋𝑟2𝜎 − 4
3𝜋𝑟3𝜌𝑙𝑅𝑇𝑔𝑙𝑛 (𝑝𝑔

𝑝𝑠
) = Δ𝐺𝑠 + Δ𝐺𝑣 (5.6)

The terms Δ𝐺𝑠 and Δ𝐺𝑣 respectively denote the surface energy contribution to the free energy of the
droplet and a bulk contribution proportional to its volume. It is a core assumption of the classical
nucleation theory that the free energy of the droplet down to its smallest possible size can be expressed
as a sum of these two contributions, also implicitly assuming in the process that the droplet has a
spherical shape at that size (as explained in Sec. 5.2). The surface term is always positive while the
volume term always negative and, in the small radius limit, the surface term prevails. It is instructive
to use this expression to produce a generic plot of Δ𝐺 as a function of the droplet radius, shown in
Fig. 5.1.
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FIGURE 5.1: Variation of Δ𝐺 with droplet radius for supersaturated vapour (𝑆 > 1). The surface and
volume constituents are denoted by Δ𝐺𝑠 and Δ𝐺𝑣, respectively.

It can be seen that there is a value of the radius 𝑟 for which Δ𝐺 obtains a maximum. For a radius
beyond this value, the droplet will decrease the Gibbs free energy of the system by capturing more vapor
molecules, whereas for a smaller value, it will increase it by loosing molecules back into the vapour.
What this means physically, is that there is a critical radius value 𝑟𝑐 at which the droplet is in unstable
equilibrium with its surroundings and that if a freshly nucleated liquid cluster exceeds this value it will
be stable enough to grow, otherwise it will disintegrate back to vapour. On these grounds, the critical
radius is a major driver in the determination of the nucleation rate and it is straightforward to derive
that Δ𝐺 attains a maximum of:

Δ𝐺∗ = 16𝜋𝜎3

3 [𝜌𝑙𝑅𝑇𝑔𝑙𝑛 ( 𝑃𝑔
𝑃𝑠

)]
2 (5.7)
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at a critical radius (𝑆 = 𝑃𝑔
𝑃𝑠
):

𝑟𝑐 = 2𝜎
3𝜌𝐿(Δ𝐺∗) = 2𝜎

𝜌𝐿𝑅𝑇𝑔𝑙𝑛(𝑆) (5.8)

The derivation of the expression of the nucleation rate itself is somewhat extensive and will not be
given here, but can be found in Bakhtar et al. (2005). The essential principle is to consider that during
the nucleation process, clusters continually form and disintegrate at approximately an equal rate, such
that the concentration of clusters of a given size (say, a cluster of g water molecules, termed a g-mer) is
approximately constant. When a favourable free energy gradient Δ𝐺𝑔 is present, however, new nuclei
will form at radii exceeding the critical radius and, instead of disintegrating, will start to grow. The
concentration of g-mers, here denoted by 𝑓𝑔, is no longer constant and varies in time proportionally to
the rate at which a population of g-mers per unit volume per unit time grows to (g+1)-mers. One can
then use some basic principles of statistical thermodynamics to express this process with a balance
equation of the form:

𝜕𝑓𝑔
𝜕𝑡 = −𝜕𝐽

𝜕𝑔 (5.9)

From there on, the basic idea is to assume that once the nucleation rate 𝐽 has reached steady-state,
the concentration 𝑛 of clusters of critical size 𝑟 = 𝑟𝑐 follows a Boltzmann (equilibrium) distribution:

𝑛 = 𝑛1𝑒−∆𝐺𝑔/𝑘𝐵𝑇𝑔 (5.10)

where 𝑛1 is the number of molecules per unit volume. Following some further manipulation and using
the expression for Δ𝐺 given by Eqn. 5.6, a steady-state solution to Eqn. 5.9 for the CNT-predicted
nucleation rate is derived in its final form as:

𝐽 = 𝑞𝑐
𝜌2

𝑔
𝜌𝑙

√ 2𝜎
𝜋𝑚3 𝑒𝑥𝑝 (− 4𝜋𝜎

3𝑘𝐵𝑇𝑔
𝑟2

𝑐) (5.11)

where 𝑞𝑐 is a condensation coefficient touched upon in Sec. 5.4.1 and 𝑚 = 2.988 × 10−26 kg is the
molecular mass of water. The rest of the parameters have been previously introduced. This expression
is the cornerstone of the nucleation model adopted here and serves to quantify the first emergence of
liquid droplets out of the vapour, before they go on to grow. However, the assumptions under which it
is derived need some scrutiny for the purposes of this work, as discussed in the following subsections.

One last comment is due, here. In Sec. 4.8.6, it was stated that the surface tension is a driving
parameter in the condensation model and it now becomes clear why. Inspecting Eqn. 5.11 shows that
𝜎 enters the exponent to the power of 3, via the critical radius. The nucleation rate then becomes very
sensitive to this parameter. It is instructive to make a back-of-the-envelope calculation using Eqn. 5.11.
Assume typical values for the parameters: 𝑞𝑐 = 1, vapour and liquid densities of 𝜌𝑔 = 0.05kg/m3 and
𝜌𝑙 = 1000kg/m3, temperature 𝑇𝑔 = 280K, surface tension 𝜎 = 0.07N/m2 and a saturation ratio 𝑝/𝑝𝑠 =
10. The critical radius follows from Eqn. 5.8 as 𝑟𝑐 = 4.7 × 10−10m. These values give a nucleation
rate 𝐽 = 1.03 × 1026 droplets/m3. Now, increase the surface tension value by 1% to 0.0707Nm and
repeat the computation, all other parameters fixed: 𝐽 = 6.25 × 1025 droplets/m3/s. A 1% increase in
the surface tension induced an almost 40% decrease in the nucleation rate. In different conditions,
the effect may be as much as 100% (Young, 1992). This is why it is important that this parameter is
accurately modelled and the reason that motivated the detailed discussion of Sec. 4.8.6.

The surface tension value as evaluated in Ch. 4 is a bulk property and generally determined by
means of a liquid film measurement. This degree of sensitivity of 𝐽 on it continues to this date to fuel
a debate on whether it is applicable to use the bulk surface tension value on droplets that span only a
few nanometres and have little reminiscence of a liquid film. In fact, when their condensation model is
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implemented and turns out to be in disagreement with validation data, many authors in literature use
the value of 𝜎 as a tuning parameter to correct the model (see, for instance, the works of Young (1992)
and Gerber (2002); Gerber and Kermani (2004)). But such corrections can only be made in hindsight
and hence are of little use to exploratory numerical studies. In this work, the bulk value of 𝜎 as given
by Eqns. 4.40 and 4.56 is used without any modifications and it is shown in the validation of Sec. 5.9
that this creates no substantial disparity with experiments for the present model.

5.3.1 On the validity of the steady-state nucleation assumption

Eqn. 5.11, in the form given here or in a number of variations, serves as the backbone of many, if not
most, modern nucleation analyses. However, its validity for the particular flow cases of interest here
warrants some discussion, because it entails the steady-state assumption. This means it is assumed
that the time interval between the moment conditions in the flow become suitable for nucleation to
begin and the moment the generation rate of critical clusters has reached equilibrium is negligible. In
conventional nozzles, this assumption is supported by the fact that the transient stage of the nucleation
process typically lasts about a microsecond, while the process itself as a whole stays active for 10-50μs
(Bakhtar et al., 2005). In contrast, the characteristic flow timescales in micronozzles are in the order of
a couple of microseconds at most. For geometries comparable to those of interest here, experiments by
Bayt (1999) and Bayt and Breuer (2000) showed that characteristic residence times of fluid particles
in typical micronozzle configurations, measured from the throat to the exit, are in the range 1-2μs.
Therefore, we must examine whether Eqn. 5.11 is applicable to our case.

Our focus is then shifted to the transient portion of the nucleation process. The work of Abraham
(1981) faced a similar issue when examining small (throat diameters of 0.025-0.25mm) laval nozzles
operating on sulfur hexafluoride (SF6) propellant. The authors stated a correction factor was imple-
mented to account for nucleation transients, but provided little detail on the specifics. The matter is
examined in a bit more detail here, the purpose being to make a rough estimation of how long it takes
the nucleation to reach equilibrium in conditions relevant to micronozzles.

In a conventional nozzle, the nucleation region only occupies a narrow region in the expander, be-
cause it is quickly quenched by the latent heat released as the nucleated droplets grow. Here, however,
it is expected that due to the small dimensions, if nucleation occurs it will stay active throughout the
micronozzle expander, even as the nucleated droplets may grow. For this reason, the characteristic
timescale is taken as the full time of traversion of the expander by a microdroplet.

The subject of transient nucleation, for steam or liquid water, received some attention in the 20th
century, with the works of Probstein (1951), Kantrowitz (1951), Wakeshima (1954), Collins (1955) and
Courtney (1962a,b) being some of the most detailed treatises. Kashchiev (1969) produced a semi-
analytical transient solution to Eqn. 5.9 in the form:

𝐽𝑡𝑟(𝑡) = 𝐽𝑠𝑠 [1 + 2
∞

∑
𝑖=1

(−1)𝑛𝑒𝑥𝑝(−𝑛2𝑡/𝜏)] (5.12)

where the subscripts 𝑡𝑟 and 𝑠𝑠 denote the transient and steady-state (given by Eqn. 5.11) nucleation
rates, respectively, t is the time elapsed from the onset of condensation and 𝜏 is the relaxation time
until equilibrium is reached. Estimates for 𝜏 may be derived via suitable approximations to analyses
of statistical thermodynamics on the vapour flow and numerous versions have been given by various
authors, including Kashiev himself. In a later work, Kelton et al. (1983) found the simple expression
by Collins (1955) to work well when short timescales are involved:

𝜏 = 9𝜋𝑘𝐵𝑇 𝑔
2
3𝑐

𝜇′2𝜎𝛽 (5.13)
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In this expression 𝑘 = 1.38 × 10−23m2kgs−2K−1 is the Boltzmann constant and 𝜎 the surface tension
of the liquid cluster. The parameter 𝑔𝑐 expresses the number of water molecules contained in a liquid
cluster of critical radius 𝑟𝑐. Assuming a perfectly spherical cluster of molecules of mass 𝑚 and using
Eqn. 5.8 it follows:

𝑔𝑐 = (4𝜋𝜌𝐿
3𝑚 )

1/3 2𝜎𝑚
𝜌𝐿𝑘𝑇𝐺𝑙𝑛 ( 𝑃

𝑃𝑠𝑎𝑡
)

(5.14)

To close the system of equations, expressions for the parameters 𝛽 and 𝜇′ in Eqn. 5.13 are needed.
The term 𝛽 expresses the frequency of collision of single molecules per unit area and, for the particular
case of a vapour nucleating onto itself, was given by Collins (1955) as:

𝛽 = 𝑛1 ( 𝑘𝑇
2𝜋𝑚)

1/2
(5.15)

where n1 is the concentration of vapour molecules. The concentration may be calculated from the value
of the vapour density, the molar mass 𝑀𝑚𝑜𝑙𝑎𝑟 and the Avogadro number 𝒩𝑎 as:

𝑛1 = 𝜌𝑔
𝑀𝑚𝑜𝑙𝑎𝑟

𝒩𝑎 (5.16)

Lastly, 𝜇′ is an auxiliary parameter following as:

𝜇′ = 4𝜋 ( 3𝑚
4𝜋𝜌𝐿

)
2/3

(5.17)

It is now possible to use Eqn. 5.12 supplemented by Eqns. 5.13-5.17 to obtain estimates of the time
it takes for the nucleation rate of critical clusters to reach equilibrium given a set of vapour conditions.
At first sight it might seem that there are too many variable parameters involved. But a close inspection
of the equations shows that selecting a temperature value fixes all parameters except for the pressure
(recall from Ch. 4 that 𝜌𝐿, 𝜎 and 𝑃𝑠𝑎𝑡 are a function of temperature only and all other parameters are
either a function of these or constant). It is therefore possible to examine how quickly the nucleation
rate reaches steady-state for a given supersaturation ratio at a selected temperature.
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FIGURE 5.2: Example of the temporal evolution of the transient nucleation phase

An indicative plot is given in Fig. 5.2. The temperature and saturation ratio have been set at 240 K and
5000, respectively. These may seem like extreme values, but it was originally expected (and later, in Ch.
7 confirmed) that the extreme expansion rates would make such conditions typical in the micronozzle.
The figure shows that the nucleation rate has reached 99% of its steady-state value after roughly 6.5𝜏
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or about 9 × 10−8 s. This is less than 1/10th of the time the flow is estimated to stay in the expander.
It is a small fraction, but not necessarily a negligible one.

Even so, here it is chosen to neglect the transient phase. On one hand, the author could not readily
see a way to implement a transient nucleation rate in a finite-volume framework, in which the radii of
the computed droplets are averaged. It is simply not possible to track the history of a droplet whose
properties are continually averaged over the entire droplet population in a cell, therefore implementing
a transient model is not feasible. The prospect of some simple correction factor was also examined and
some examples in literature exist, but they are too approximate and inconsistent to be of practical use
here. On the other hand, this fraction is not very significant and, in any case, assuming a steady-state
nucleation provides the worst case scenario on the magnitude of the nucleation, such that any design
decisions resulting from the results of this analysis will be conservative. On these grounds, it has been
decided to tolerate any loss of accuracy that may result from this assumption.

5.3.2 Corrections to the classical nucleation rate

Complete from a thermodynamic perspective as the nucleation rate derivation may appear, Eqn. 5.11
actually rarely agrees well with experiments by itself (Bakhtar et al., 2005). It seems that the precise
mechanisms of nucleation are still not fully understood, but CNT also inherently suffers from a number
of limitations. In the brief discussion of its derivation, it became clear it involves assumptions such as
that of isothermal/isobaric conditions, that the droplet is in equilibrium with its surrounding vapour
or the vague assumption on the nature of the surface tension forces. It should be understood that CNT
was originally developed as a general theory and not as one applicable only to non-equilibrium flows.
It turns out that some of these assumptions break down in rapid expansions.

To bypass these limitations, it is customary that empirical correction factors are introduced to Eqn.
5.11. Various corrections have been proposed for different circumstances. Overviews of some of the
main ones can be found in Bakhtar et al. (2005) and Lai and Kandambi (1993). Here, two corrections
are implemented, briefly discussed below.

Non-isothermal nucleation correction The assumption of isothermal conditions described above is
fairly valid in those cases in which steam is transported as part of a non-condensible carrier gas (say,
argon), because the collisions between the molecules of the carrier and the droplets are sufficient to
transfer the energy released on condensation away from the the droplet kinetically, such that large
temperature gradients are avoided at the interface. However, in pure vapour expansions, the freshly
nucleated clusters are smaller than the vapour molecules’ mean free path, such that the collision
mechanism is not particularly effective and a significant temperature gradient is established. To amend
this disparity, Kantrowitz (1951) derived a correction of the form:

𝐽 = 𝐽𝐶𝑁𝑇
1 − 𝜂 (5.18)

where 𝐽𝐶𝑁𝑇 is given by Eqn. 5.11 and 𝜂 follows as (in a simplified form for low-pressure cases):

𝜂 = 𝑞𝑐
2(𝛾 − 1)

𝛾 + 1
ℎ𝑓𝑔
𝑅𝑇𝑔

( ℎ𝑓𝑔
𝑅𝑇𝑔

− 1
2) (5.19)

The parameter 𝑞𝑐 is the same condensation coefficient as in Eqn. 5.11 and is revisited in Sec. 5.4.1.
The term ℎ𝑓𝑔 denotes the latent heat per unit mass of vapour released upon the droplet’s condensation:
ℎ𝑓𝑔 = ℎ𝑔 − ℎ𝑓 . Young (1992) and Bakhtar et al. (2005) note this correction will reduce the rate of
nucleation in conventional nozzles by a factor of 50-100. In this work, it has been closer to the upper
end of this range and often exceeded it, giving corrections of 200-300.
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Correction by Wölk and Strey (2001) In a series of experiments with H2O vapour in an argon carrier
gas, Wölk and Strey (2001) found that the classical nucleation theory underpredicted the experimental
nucleation rates when the process took place in very low temperatures (in the vicinity of 240 K). They
produced an empirical correction of the form:

𝐽 = 𝐽𝐶𝑁𝑇 𝑒𝑥𝑝 (𝐴 + 𝐵
𝑇 ) (5.20)

with 𝐴 = −27.56 and 𝐵 = 6500. Even though this correction factor was originally developed solely for
their own experiments, it was later found to achieve remarkably accurate predictions for a wide array
of experimental measurements (Manka et al., 2010; Wyslouzil and Wölk, 2016). Since the micronozzles
of interest here are likely to experience nucleation at very low temperatures (even below 240 K), this
correction factor has also been implemented in the micronozzle simulations. Its value varies roughly
between 0.02 at 273K and 140 at 200K.

The discussion on the model for the first stage of nucleation concludes here. Attention is now shifted
to the second stage, the growth of the nucleated droplets.
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5.4 Droplet growth model
Similarly to how it was done for the case of nucleation, a rate expression is used to quantify the droplet
growth process as well: the rate at which the droplet radius increases/decreases as the droplet grows/e-
vaporates.

The instant a droplet of critical size forms, its temperature is essentially equal to that of the im-
mediately surrounding vapour. But as the vapour continues to expand in the nozzle divergent, its
temperature drops at a much faster pace than that of the droplet and a temperature gradient between
the two ensues. A mass-energy exchange mechanism is then established, by which cold molecules
of the supersaturated vapour impinge on the droplet and coalesce on its surface, releasing energy in
the form of heat. This is both due to the mere temperature difference between the two and due to the
latent heat release of the vapour molecules as they transition phase. This is a complex gas-kinetic
phenomenon that is not well described and cannot at present be precisely quantified. It is however
known that it is strongly dependent on the local degree of flow rarefaction in the vicinity of the droplet
and therefore a droplet-based Knudsen number emerges as a driving parameter (Lamanna, 2000):

𝐾𝑛 =
̄𝑙

2𝑟 (5.21)

The Knudsen number in Eqn. 5.21 is not to be confused with that of Ch. 3. In this particular case, the
characteristic length is the droplet diameter, not the nozzle throat width. The parameter ̄𝑙 still denotes
the molecular mean free path of steam, computed according to the kinetic theory of gases (Vincenti and
Kruger, 1967):

̄𝑙 = 𝜇𝑔
𝑝𝑔

√𝜋𝑘𝐵𝑇𝑔
2𝑚 (5.22)

where 𝑚 is the molecular mass of water vapour, 𝑘𝐵 is the Boltzmann constant and the rest of the
parameters are as previously defined.

The heat balance across the droplet may be written as (Lai and Kandambi, 1993):

(ℎ𝑔 − ℎ𝑝)𝑑𝑚𝑃
𝑑𝑡 = 𝛼𝑃 𝜆𝑔(𝑇𝑝 − 𝑇𝑔) + 𝑚𝑝𝐶𝑝,𝐿

𝑑𝑇𝑝
𝑑𝑡 (5.23)

where ℎ𝑝 is the enthalpy of the droplet, (ℎ𝑔 − ℎ𝑝) denotes the latent heat released per unit mass of
vapour upon condensation, 𝑑𝑚𝑃

𝑑𝑡 is the mass change of the droplet as it condenses/evaporates, 𝜆𝑔 is
the coefficient of convective heat transfer from the gas to the droplet, 𝑇𝑝 is the droplet’s temperature
and 𝑟 its radius. The right-most term, which resembles the internal energy flux of the liquid droplets,
is typically much smaller than the other two and may be neglected. This is partly because the droplets
are minuscule and so their heat capacity is essentially negligible and partly because in a supersonic
nozzle flow the thermal relaxation time of the droplet is orders of magnitude shorter than that of the
flow and hence the term 𝑑𝑇𝑓

𝑑𝑡 tends to zero (Lamanna, 2000). The equation may be re-written as:

4𝜌𝐿𝜋𝑟2(ℎ𝑔 − ℎ𝑃 )𝑑𝑟
𝑑𝑡 = 4𝜋𝑟2𝜆𝑔(𝑇𝑝 − 𝑇𝑔) (5.24)

which allows for solving for the desired parameter, the rate of droplet growth (taken as positive in case
of condensation and negative for evaporation):

𝑑𝑟
𝑑𝑡 = 𝜆𝑔(𝑇𝑃 − 𝑇𝑔)

(ℎ𝑔 − ℎ𝑃 )𝜌𝐿
(5.25)

In solving for this parameter, expressions are needed for 𝜆𝑔, 𝑇𝑝 and ℎ𝑝. These are deduced as described
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in the following paragraphs.

5.4.1 Coefficient of gas-droplet convective heat transfer

There are numerous expressions in literature for 𝜆𝑔, but the most widely used one, with the additional
benefit that it is suitable for use at low pressures, is the one originally derived by Gyarmathy (1976)
and later corrected by Young (1982):

𝜆𝑔 = 𝑘𝑔
𝑟

1
1 + (1 − 𝑣) 2

√
8

𝜋
𝛾

𝛾+1
𝐾𝑛𝑝
𝑃𝑟𝑔

(5.26)

where 𝑘𝑔 is the thermal conductivity of the gas, 𝛾 is the specific heat ratio of the gas, 𝐾𝑛𝑝 is the
droplet based Knudsen number given by Eqn. 5.21 and 𝑃𝑟 is the local Prandtl number of the gas.
The Prandtl number is a non-dimensional flow similarity parameter which qualitatively expresses the
relative significance of momentum diffusion to thermal diffusion, is defined in terms of the momentum
and thermal diffusivities, respectively and follows as:

𝑃𝑟 = (𝜇/𝜌𝑔)
[𝑘𝑔/(𝐶𝑝,𝑔𝜌𝑔)] = 𝑐𝑝,𝑔𝜇𝑔

𝑘𝑔
(5.27)

where all parameters have been introduced previously. Eqn. 5.26 also features a parameter 𝑣 and a
correction factor (1 − 𝑣), which warrant a brief discussion.

Droplet growth studies commonly employ two coefficients to approximately quantify the effectiveness of
the condensation and evaporation processes, in terms of how many of the vapor molecules that impinge
on a droplet actually turn into liquid or resort back to vapour and vice versa. These are correspondingly
termed the condensation coefficient 𝑞𝑐 and evaporation coefficient 𝑞𝑒, respectively and typically defined
as (Marek and Straub, 2001):

𝑞𝑒 = number of molecules condensed on the liquid phase
number of molecules impinging on the liquid phase

(5.28)

𝑞𝑒 = number of molecules evaporated to the vapour phase
number of molecules emitted from the liquid phase

(5.29)

The coefficient 𝑞𝑐 also emerged in the previous section during the nucleation analysis. There is currently
no universally reliable way to quantify their value and it is common in high-pressure condensation stud-
ies to assume with negligible loss in accuracy that the two are equal to 1, such that both processes are
perfect. However, Young (1982) noted a discrepancy between theory and experimental measurements
for non-equilibrium conditions in the very low pressure range (condensation starting at ≤ 0.5bar, as
in the case of micronozzles of interest here) that could only be effectively remedied if the assumption
𝑞𝑐 = 𝑞𝑒 = 1 was void. He then correlated the two to the degree of non-equilibrium in the flow via an
empirical coefficient 𝛼 as:

𝑞𝑐
𝑞𝑒

= 1 + 𝛼𝑇𝑓 − 𝑇𝑔
𝑇𝑠(𝑝𝑔) (5.30)

where the fraction on the right-hand side expresses the extent to which the flow has deviated from
equilibrium saturation conditions. In this manner, he found that the droplet growth of Eqn. 5.25
agrees with experiments if a correction factor (1−𝑣) is introduced to Gyarmathy’s convection coefficient
expression as shown in Eqn. 5.26, with 𝑣 given by:

𝑣 = 𝑅𝑇𝑠(𝑝𝑔)
ℎ𝑓𝑔

{𝑎 − 0.5 − 2 − 𝑞𝑐
2𝑞𝑐

[ 𝛾 + 1
2(𝛾 − 1)] (𝑅𝑇𝑠(𝑝𝑔)

ℎ𝑔
)} (5.31)
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It is nowadays common to set 𝑞𝑐 = 1 and adjust 𝛼 to fit experiments, for which Young (1982) orig-
inally suggested a value 𝛼 = 9. However, White and Young (1993) later showed that the value of 𝛼
varies for different nozzle geometries and flow conditions and can essentially only be determined after
experimental data is available.

Such data is not available for micronozzles. Since the flowcases treated here are drastically different
from those examined by Young (1982) (dimensions and expansion rates orders of magnitude different,
temperatures much lower) and his original suggestion for 𝛼 has anyway been found to differ already
between conventionally scaled-nozzles, there is little reason to assume that his suggested value is
suitable for our purposes. So, although the validation cases for this model presented in Sec. 5.9
do incorporate suitable values for 𝛼 as given in literature, the lack of data drives us to set 𝛼 = 0
in Eqn. 5.31 for the subsequent simulations for the VLM nozzles, such that 𝑞𝑐 = 𝑞𝑒 = 1 and the
condensation process is assumed perfect. While a non-quantifiable discrepancy with reality is then
expected, White and Young (1993) noted that this discrepancy is generally not detrimental to the validity
of the results. Furthermore, at least in the case of the nucleation rate, Bakhtar et al. (2005) noted that
if the Kantrowitz correction is employed as described in Sec. 5.3, then the rate becomes essentially
insensitive to variations in 𝑞𝑐.

5.4.2 Droplet specific enthalpy

The total specific enthalpy of a liquid droplet, ℎ𝑝, follows as the sum of three constituents: the inherent
enthalpy of liquid water corresponding to the local flow conditions, the kinetic energy of the droplet as
it traverses the flowfield and the surface energy that maintains its shape (Gerber, 2002). Recalling that
it is assumed here the droplet travels at the gas velocity:

ℎ𝑝 = ℎ𝑓 + |V|2
2 + 3 (𝜎 + 𝑇𝑝

𝑑𝜎
𝑑𝑇 )

𝜌𝑓𝑟 (5.32)

where the liquid enthalpy ℎ𝑓 , density 𝜌𝑓 and surface tension 𝜎 are computed as described in Ch. 4 and
𝑇𝑝 is the temperature of the droplet, treated in the next paragraph. It was found in the present work
that the right-most term, associated with the surface tension, is orders of magnitude smaller than the
other two and has been neglected.

5.4.3 Droplet temperature

It was stated earlier that the rapid expansion of the vapour differentiates its temperature from that of the
liquid droplet it surrounds. Gyarmathy and Meyer (1965) showed that an expression for determining
the temperature of the liquid droplet may be deduced by considering the kinetic expression for the
droplet growth (Lai and Kandambi, 1993):

𝑑𝑟
𝑑𝑡 = 1

𝜌𝑓

2𝑞𝑐
2 − 𝑞𝑐

[ 𝑝𝑔
√2𝜋𝑅𝑇𝑔

− 𝑞𝑒
𝑞𝑐

𝑝𝑠(𝑇𝑝)
√2𝜋𝑅𝑇𝑝

𝑒𝑥𝑝 (− 2𝜎
𝑟𝜌𝑓𝑅𝑇𝑝

)] (5.33)

If Eqn. 5.33 is equated to Eqn. 5.25 and the droplet growth term 𝑑𝑟/𝑑𝑡 is eliminated, a relation
results for 𝑇𝑝. However, it is a rather extensive relation and one that needs to be solved iteratively,
making it numerically expensive. In a later work, Gyarmathy (1976) demonstrated that an excellent
approximation at no significant loss of accuracy may be obtained with a linearisation in the form:

𝑇𝑝 = 𝑇𝑠(𝑝) + [𝑇𝑠(𝑝) − 𝑇𝑔] 𝑟
𝑟𝑐

(5.34)
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Lai and Kandambi (1993) discussed that Eqn. 5.34 has the additional benefit of offering straightfor-
ward physical insight, indicating that a sub-critical droplet will evaporate, while a stable one (𝑟 > 𝑟𝑐)
will continue to grow.

All parameters needed to determine the droplet growth rate in Eqn. 5.25 are now determined and
the model of the droplet growth is complete. The remainder of this chapter explains how the entire
condensation model is brought together through the source terms of Sec. 5.1 and how it has been
implemented numerically in OpenFOAM. But first, one last major assumption is explored, concerning
whether the drag of the droplets on the flow can be ignored, as supposed in Secs. 5.2 and 5.1.

5.5 Inertial influence of the droplets on the flow
The introduction of droplets into the flow raises the question of whether their size is large enough to
require a dedicated treatment of their influence on the momentum of the gas or whether they may be
assumed to travel at the gas velocity. In conventional-scale nozzles, the characteristic dimensions are
typically in the order of 1 cm or more whereas the droplets themselves may not have exceeded 1μm
in diameter by the time their growth has been quenched. It is then common practice to assume the
droplets are too small to be of any substantial inertial influence and this indeed provides good agreement
with experiments, as can be seen by inspecting many of the various works cited in this chapter. In this
case however, the characteristic dimensions of the micronozzle itself are in the sub-millimetre range
and the validity of this assumption comes into question. We proceed here to check it.

There is no experimental data available on the influence of nanodroplets on micronozzle flows.
The only usable information at hand are a limited number of exploratory numerical studies, among
which that of Greenfield et al. (2018) stands out as probably the most comprehensive investigation on
the matter to date. Their work examined various flow configurations by varying three main control
parameters: the throat-based Reynolds number 𝑅𝑒𝑡; the mass loading of the discrete phase relative to
the gas, defined as 𝜙 = �̇�𝑑𝑟𝑜𝑝𝑙𝑒𝑡/�̇�𝑔𝑎𝑠; and the Stokes number, which follows as:

𝑆𝑡 = 𝜌𝐿𝑈𝑑2
𝑝

18𝜇𝑔𝐿 (5.35)

where 𝜌𝑝 is the mass density of the particle, 𝑈 is a reference velocity, 𝑑𝑝 is the diameter of the particle
and 𝐿 is a reference length. The Stokes number qualitatively expresses the relaxation time of the droplet
motion relative to that of the gas. A small Stokes number (𝑆𝑡 << 1) implies the motion of the particle
closely follows that of its host gas. In the work of Greenfield et al. (2018), 𝑈 was taken as the average
velocity at the nozzle exit in the case of a purely gaseous flow and 𝐿 as the nozzle throat diameter.

They found that for a mass loading as high as 50% at a Reynolds number 𝑅𝑒𝑡 = 780, the droplets
have a negligible inertial effect and act as tracer particles, as long as 𝑆𝑡 <= 0.01. They did, however,
also find that although the particles may present negligible drag, they do have a substantial impact on
the momentum flux through the nozzle exit due to the fact that their presence displaces the neighbour-
ing gas particles. This may prompt the conclusion that inertial effects have to be included here, but it
must be understood that the flowcases they examined are different from the ones of interest here, in
that the particles were inserted to the flow in addition to the already existing gas (hence the impactful
displacement). Instead, here the droplets appear as a subtraction of mass from the already existing
gas, instead. It was also explained in Sec. 5.2 that the mass fraction does not exceed 0.1. These facts
are used here to make the assumption that the particles will not cause any appreciable displacement
to the gas when they form and that upon formation, they will act as tracer particles for 𝑆𝑡 ≤ 0.01. The
findings of Greenfield et al. (2018) may then be used for a back-of-the-envelope calculation to deduce
a rough threshold for the maximum droplet size that may be accommodated without requiring the
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inclusion of drag effects.
For this calculation, 𝐿 = 40μm, the gas viscosity is taken at a temperature of 300K as 𝜇𝑔 =

1 × 10−6 Pa ⋅ s, the liquid density is assumed as 𝜌𝐿 = 1000kg/s. The average exit velocity is approxi-
mated from preliminary droplet-free simulations as 𝑈 = 750m/s. With parameters along these values
it follows that the allowable droplet diameter is in the order of 10−8m. The short timeframes involved
in the micronozzle flow make it unlikely that a liquid critical cluster forming at a diameter in the order
of 10−10-10−9m will have sufficient time to substantially exceed this threshold (this is confirmed in Ch.
7). On the basis of this, the inertial effects of the droplets are then ignored for the remainder of this
work. The droplets are assumed to travel at the gas velocity.

5.6 Inclusion of the second phase in the conservation equations
Finally, it is possible to formulate the source terms presented in Sec. 5.1 and close the system of
equations in the condensation model.

The source term in the equation for the conservation of the number of droplets (Eqn. 5.5) expresses
the generation of new droplets by means of nucleation from the vapour. This process is described by
the nucleation rate 𝐽 , computed as described in Sec. 5.3. Then, it follows simply that:

𝑆𝑁 = 𝐽 (5.36)

Recall that while the droplet number 𝑁 itself is expressed in units of ”droplets per unit mass of vapor”, 𝐽
instead bears units of ”droplets per unit volume of vapor per second”1, so that Eqn. 5.5 is dimensionally
consistent.

The remaining source terms are associated with the subtraction/addition of mass from/to the
vapour as droplets are first nucleated and then grow or evaporate. For a droplet of mass 𝑚𝑝, this can
be denoted as 𝑑𝑚𝑝

𝑑𝑡 and under the assumption of a perfectly spherical droplet of surface area 𝛼𝑝 = 4𝜋𝑟2,
one may write:

𝑑𝑚𝑝
𝑑𝑡 = 𝛼𝑝𝜌𝑓

𝑑𝑟
𝑑𝑡 (5.37)

where 𝑑𝑟/𝑑𝑡 is given by Eqn. 5.25. The system of equations can be closed by noting that the droplet
mass and the corresponding droplet radius are related to the governing variables 𝑌 and 𝑁 via:

𝑚𝑝 = 𝑌
𝑁 → 𝑟 = ( 3𝑌

4𝜌𝑓𝜋𝑁 ) (5.38)

It is stressed again that all droplet dimensions are average and refer to an assumed average droplet
size, sufficiently representative of whatever distribution of sizes may exist in the flow in reality. With
that information at hand, the rest of the source terms follow as:

𝑆𝑌 = 𝑆𝑛𝑢𝑐𝑙 + 𝑆𝑔𝑟𝑜𝑤𝑡ℎ = 4
3𝜋𝑟3

𝑐𝜌𝑓𝐽 + 𝑁 ̄𝛼𝑟𝜌𝑓
𝑑𝑟
𝑑𝑡 𝜌𝑔 (5.39)

𝑆𝑈 = −V ⋅ 𝑆𝑎 (5.40)

𝑆ℎ = −ℎ𝑝 ⋅ 𝑆𝑎 (5.41)

where ℎ𝑝 is the total enthalpy of the droplet, given by Eqn. 5.32, which can also be expressed in terms

1In literature, 𝐽 is instead often found in units of droplets per unit mass of vapor per second, but then Eqn. 5.11 has to be
adjusted accordingly

63



of the total enthalpy of the gas and the latent heat released upon condensation as 𝐻𝑔 − ℎ𝑓𝑔. The
appearance of the momentum source term 𝑆𝑈 may at first appear in conflict with the discussion of
Sec. 5.5, but one should notice it does not denote any drag effect of the droplets on the flow; it instead
merely represents the internal loss of momentum from the gaseous phase by the fact that a portion of
it has been turned into liquid.

Lastly, it is noted that, as described in the original reference of Gerber (2002), equation 5.39 only
contains the latter term, related to the droplet growth. It is unclear why the authors chose to neglect
the contribution of the nucleation itself or how the value of 𝑌 is then initialised when the first droplets
nucleate. In any case, it is physically meaningful to include it and so has been done here.

5.7 Numerical implementation
The previous sections have described the approach for the modelling of the metastable condensation in
the nozzles, which as has already been explained is largely faithful to the work of Gerber and Kermani
(2004). This section provides details on the numerical implementation of the model, which is inherently
different from that work, due to the different solvers involved.

5.7.1 Numerical implementation of the governing equations

To maintain consistency, the conservation equations for the droplet number 𝑁 and the liquid mass
fraction 𝑌 stay adherent to the existing methodology of the rhoCentralFoam solver, as described in
Greenshields et al. (2009).

Refer to Fig. 5.3, which illustrates any two neighbouring control volumes in the computational
domain. The cells interface is denoted by 𝑓 and the vector normal to the face (that helps define the
fluxes of properties from face to face) by 𝑆𝑓 .

FIGURE 5.3: Schematic of neighbouring control volumes in the computational domain. Extracted from
Greenshields et al. (2009).

Adopting the original authors’ notation, if any of these two variables of interest (Y/N) are denoted
by 𝚿 then the corresponding conservation equation may be written as:

𝜕𝜌𝚿
𝜕𝑡 + 𝛁 ⋅ [u(𝜌𝚿)] = 𝑆𝚿 (5.42)

where 𝑆𝚿 denotes the source term of the respective equation.
As is standard finite-volume CFD methodology, the convective term is integrated over each control
volume, converted to a surface integral by Green’s theorem and then linearised as:
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∫
𝑉

𝛁 ⋅ [u(𝜌𝚿)] = ∫
𝑆

𝑑S ⋅ [𝑢𝚿] ≈ Σ𝑓S𝑓 ⋅ u𝑓𝚿 = Σ𝑓𝜙𝑓𝚿𝑓 (5.43)

the last term representing the sum of the volumetric fluxes of the variable 𝚿 through each of the faces
𝑓 of the given control volume. To account for the fact that transport of information in a compressible
flow also takes place by the propagation of waves on top of convection, the flux at any given face is split
in an outward (+) and inward (-) direction, with each component being assigned a weight 𝛼:

Σ𝑓𝜙𝑓𝚿𝑓 = Σ𝑓 [𝛼𝜙𝑓+Ψ𝑓+ + (1 − 𝛼)𝜙𝑓−Ψ𝑓− ] (5.44)

The weight 𝛼 is based on the local volumetric flux 𝜓𝑓 at the local speed of propagation at the cell face,

which is in turn associated to the local speed of sound 𝑐 in each direction (𝑐𝑓±
= √𝛾𝑅𝑇𝑓±

).

𝜓𝑓+ = 𝑚𝑎𝑥(𝑐𝑓+|𝑆𝑓 |) + 𝜙+, 𝑐𝑓−|𝑆𝑓 |) + 𝜙−, 0) (5.45)

𝜓𝑓− = 𝑚𝑎𝑥(𝑐𝑓+|𝑆𝑓 |) − 𝜙+, 𝑐𝑓−|𝑆𝑓 |) − 𝜙−, 0) (5.46)

In the method of Kurganov and Petrova (2007) which is used by rhoCentralFoam, the weight 𝛼 is then
expressed as a function of the volumetric fluxes and then biased in the upwind direction as:

𝛼 = 𝜓𝑓+
𝜓𝑓+ + 𝜓𝑓−

(5.47)

In this work, the variables Y and N are always reconstructed from the cell faces based on a second-order
upwind scheme, to help tackle the steep gradients that result at the location of onset of nucleation.

Linearisation of the source terms
Without going much into the details, which the reader can find in any standard textbook on compu-

tational fluid dynamics (e.g. Versteeg and Malalasekera (2007)), it suffices to say that in finite-volume
methods, convergence of the solution to any of the governing equations is promoted when the matrix
containing the coefficients of the discrete equation set is diagonally dominant. That is, the entries along
the diagonal are larger in magnitude than the rest of the entries along their respective rows combined.

The source terms in Eqns. 5.2 and 5.5 depend on the variable that is being solved for, 𝑌 and 𝑈
respectively. As metastable condensation is quite an impulsive phenomenon, it can happen that in the
condensation region the rate of the variation of these source terms is larger than that of the rest of the
terms in their equation. If they are directly included in the solution matrix, they can negative affect its
dominance and hence degrade the solver’s convergence behaviour. A relatively simple and effective way
to amend this mathematically, is to linearise the source term into an active and a passive component.

For example, in the case of the liquid mass generation source term 𝑆𝑌 in Eqn. 5.4, one may write
(using approximately the notation of Gerber and Kermani (2004)):

𝑆𝑌 = 𝑆𝑌 ,𝑜 + 𝑆′
𝑌 (𝑌 − 𝑌𝑜) (5.48)

where the ”o” subscript denotes the old timestep values and the prime denotes the active coefficient,
i.e. the derivative of the source term with respect the variable being conserved, here 𝑌 . Based on Eqn.
5.39, these follow as:

𝑆𝑜
𝑌 = 4

3𝜋𝑟3
𝑐𝜌𝑓𝐽 + 𝑁 ̄𝛼𝑟𝜌𝑓

𝑑𝑟
𝑑𝑡 𝜌𝑔

𝑆′
𝑌 = 3𝜌𝑔

𝑟
𝑑𝑟
𝑑𝑡
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A similar modification follows for the momentum source term. Then, the code is configured such
that the active term is only included in the solution matrix if it is negative, to guard the solution’s
convergence.

5.7.2 Bounds on parameters of the liquid phase

At the nucleation front, the region in the flowfield where condensation first appears, the magnitudes
of the values of the nucleation rate 𝐽 , liquid mass fraction 𝑌 , droplet number 𝑁 and radius 𝑟 are
susceptible to numerical artefacts (divisions by zero, nonphysically high/low values, etc). A few steps
are implemented to keep the solution manageable.

An examination of Eqns. 5.11 and 5.8 shows that 𝐽 is implicitly dependent on the logarithm of the
supersaturation ratio. The discussion in section 2.5 implied that this ratio smoothly transitions from
less to greater than unity during the expansion process. However, at unity, the ratio in the term 𝑙𝑛(𝑆)
becomes zero and leads to an undefined form for the critical radius. This is simply the mathematical
manifestation of the fact that droplets do not start developing before the vapour becomes saturated.
Hence, condensation calculations are performed only after 𝑆 > 1+𝐸, where E is the machine precision
and the nucleation rate - which, recall, has units of #/unit volume of vapour/second - is assumed to
become effective only when 𝜌𝑔𝐽𝛿𝑡 > 1 + 𝐸, with 𝛿𝑡 being the running timestep. That is, only after at
least one cluster has nucleated in the running control volume of the mesh.

Similarly, the expression for the droplet growth rate is dependent on the droplet radius, which is
only defined at the presence of droplets of radius 𝑟 ≥ 𝑟𝑐. An additional threshold is needed, such that
the growth rate is computed only when the number of droplets per unit mass of vapour 𝑁 is greater
than unity. Numerically this must be expressed as the number of droplets per control volume. For a
computational cell of volume 𝑉𝑐𝑒𝑙𝑙, the threshold becomes 𝜌𝑔𝑁𝑉𝑐𝑒𝑙𝑙 > 1 + 𝐸

The smallest radius that a liquid cluster can attain is that corresponding to two molecules that
have bonded. This is assumed here to be equal to the diameter of the single molecule, approximately
2.75 × 10−10m and a minimum threshold has been placed for the radius at that value. A minimum
threshold is also convenient for 𝑌 . This value can be arbitrary and here we adopt 𝑌 =10−12 after the
work of Hric and Halama (2015).

Lastly, on the basis of the discussion in Sec. 4.10 on ignoring the freezing of droplets, the condensa-
tion model is deactivated when 𝑇 < 173.16K, to save some computational time. For the micronozzles
treated here, this only happens substantially downstream of the nozzle exit, such that the flow topology
inside the micronozzle is not affected.

5.8 Algorithmic summary of the model
For the reader’s convenience, a summary of the condensation model (which, recall, is only one com-
ponent of the total model) and an overview of its implementation in the form of pseudo-code is listed
in Algorithm 1. This contains only the top-level steps. The reader should understand that the imple-
mentation in OpenFOAM of the condensation model as described in the preceding sections and of the
thermophysical model outlined in Ch. 4 entail a myriad of architectural particularities that have been
skipped here for the sake of brevity. The source code is too extensive to list in this work, but it can be
provided to the interested reader upon request.
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Algorithm 1: Pseudo-code of the condensation model

for each cell in the domain do
Compute saturation properties;
if 𝜌𝑁𝑉𝑐𝑒𝑙𝑙 < 1.0 and/or 𝑌 < 10−12 then

Set Y and N to zero;
end
if 𝑇 < 𝑇𝑐𝑟𝑖𝑡 and 𝑇 < 𝑇𝑠(𝑝) and 𝑇 ≥ 173.16 then

Compute liquid thermophysical properties at local conditions ;
if 𝜌𝑁𝑉𝑐𝑒𝑙𝑙 > 1.0 and/or 𝑌 > 10−12 then

Compute droplet radius from 𝑌 and 𝑁 ;
else

Set droplet radius to zero;
end
if Saturation ratio ≥ 1 then

Compute change in Gibbs free energy;
Compute critical radius;

else
Set critical radius to zero;

end
if 𝑟𝑝 ≥ 𝑟𝑐 and 𝑟𝑝 ≥ 𝑟𝑚𝑖𝑛 then

Compute droplet growth rate;
Compute droplet growth portion of mass generation source term;

else
Set both terms to zero;

end
if 𝑟𝑐 > 𝑟𝑚𝑖𝑛 then

Compute nucleation rate;
if 𝐽 ⋅ 𝑉𝑐𝑒𝑙𝑙 ⋅ 𝛿𝑡 < 1.0 then

Set nucleation rate to zero;
end

else
Set critical radius and nucleation rate to zero;

end
Compute the rest of the source terms;

else
No supercooling → Set all condensation terms to zero;

end
end

5.9 Validation of the two-phase model
There are various experimental datasets available in literature for the validation of condensation mod-
els, with some of the most commonly cited being those of Barschdorff et al. (1972), Moses and Stein
(1978b) and Moore et al. (1973). Typically, the authors will have recorded the pressure and possi-
bly also the droplet size along the nozzle centerline, as these are representative manifestations of the
occurrence of condensation and also easier than other parameters to probe.

In this work, the (rather popular in literature) nozzles A and B are chosen from the work of Moore
et al. (1973), who also provide data of pressure and a single droplet size measurement along the cen-
terline. There are primarily three reasons motivating this choice:

• The nozzles operate in very low pressure conditions, comparable to those found in the expanders
of the micronozzles examined in this work: the stagnation pressure is at 25kPa, giving a pressure
of roughly 4-6kPa in the expander. The rapid expansion in the micronozzle against near-vacuum
conditions will drive the pressure from 1-5bar at the inlet to similar values in the expander.
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• The original nozzle shape used by Moore et al. (1973) consisted of a parabolic-like convergent
section attached to a straight, conical divergent section. The interface at the nozzle throat was
not smooth and created a sharp discontinuity (turning corner). This discontinuity causes the
generation of expansion fans that propagate into the expander section, creating a complex in-
terference pattern with the condensation-affected flow, that results in benign oscillations in the
pressure field. As such, it provides a good test to the solver’s ability to reproduce a less-than-basic
condensation flowfield.

• Unlike other experiments (e.g., those of Barschdorff et al. (1972)) where the nozzle shape is very
smooth and the influence of the boundary layer can perhaps be neglected, here the boundary
layers, even though very thin, play an important role. The aforementioned discontinuity at the
throat is partly submerged in the boundary layers, meaning that the expansion fans are partly
attenuated. A good agreement with experiments will ensue only if the viscous influence of these
layers can be captured (as is evident by, e.g., comparing the inviscid simulations of Blondel (2014)
to the viscous simulations of Gerber and Kermani (2004)). This also provides a good test for the
solver, especially since the boundary layers have a driving influence on the micronozzles tested
later.

The original nozzle geometry is depicted in Fig. 5.4. Inconveniently, the geometry of the parabolically-
shaped convergent section was not documented by the original authors. As such, it is customary in
literature to replace the parabolic section with a straight conical shape that features the same diameter
at the inlet and throat sections. It turns out that the precise convergent shape does not influence the
results (which can also be seen in the close agreement with experimental data in the convergent section
in Fig. 5.5), so this approach is adopted here. The corresponding adjusted geometries are plotted in
Figs. 5.5a and 5.5b.

FIGURE 5.4: Geometries of the nozzles of Moore et al. (1973), as shown in the original publication.
Depicted is the best image quality available to the present author.

Briefly, the simulation setup is as follows. The experimental nozzles were planar, with a substantial
distance from the side walls, hence the simulations are two-dimensional. The internal topology is
modelled by a fine mesh of roughly 20k cells, in which heavy emphasis is placed near the wall such that
the boundary layers can be sufficiently resolved. At the inlet, stagnation pressures and temperatures
according to the original work are set as boundary conditions, whereas at the outlet all parameters are
allowed to vary freely according to Neumann zero gradient conditions, as is suitable for a pressure-
driven supersonic nozzle flow. The walls are modelled as adiabatic (i.e., temperature gradients are zero
at the walls, such that no heat exchange takes place) and friction is accounted for, with the viscosity
(and all other thermodynamic parameters) modelled as in Ch. 4. Taking advantage of symmetry,
only the upper half of the nozzle is modelled and symmetry boundary conditions are imposed along
the centerline. The condensation coefficients of Eqn. 5.26 are set as 𝑞𝑐 = 1 and 𝛼 = 5, following
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the suggestions of Young (1992). In this and the following simulations, the linearisation method is
chosen for the implementation of the source terms. The simulations are initialised with the internal
pressure field set at 6kPa and the temperature a couple of degrees below the stagnation value, such
that the flow quickly chokes at the nozzle and convergence is promoted. The cases would typically
reach convergence within 1 s of virtual simulation time. Furthermore, to save computation time, the
first 0.5s would be run with the thermodynamics modelled under the ideal-gas assumption, which is a
good first approximation and much faster to compute. The nominal thermodynamic model would then
be activated until the final convergence was reached.

In addition, Gerber and Kermani (2004) suggested that nozzle A is better modelled if the effects of
benign turbulence are accounted for. The modelling of turbulence is a science in itself, but not very
relevant for the rest of this work, so we will not go into detail here. It suffices to say that the numerical
implementation of the governing equations in OpenFOAM has been extended such that the transport
of gaseous and liquid properties by turbulent diffusion is captured in the model, exactly as described
by the above work of Gerber and Kermani (2004).

The results of the simulations are plotted in Figs. 5.5c and 5.5d. The left-hand vertical axis lists
the pressure ratio and the right-hand axes - which, note, is logarithmic - features the droplet radii
values. Only a single droplet size has been reported by the original author, although as Young (1992)
has explained, when this is accompanied by pressure measurements, it is sufficient in its own right
for validation purposes. It can be seen that the agreement with experiment is very good. What is
particularly notable is how closely the droplet radii are predicted, the agreement in both instances being
almost exact. This is somewhat positively surprising, given that the monodisperse droplet averaging
approach adopted here neglects the variability in droplet sizes.
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(a) Geometry of nozzle type A (b) Geometry of nozzle type B

(c) Simulations vs experiment for pressure ratio
and droplet radius data of nozzle A

(d) Simulations vs experiment for pressure ratio
and droplet radius data of nozzle B

FIGURE 5.5: Validation of the two-phase model against the experiments of Moore et al. (1973). All
measurements are along the nozzle centerline. The simulations have been run on hexahedral 188x100
grids, heavily weighted near the wall and downstream of the nozzle throat, such that the boundary
layers and the nucleation fronts are sufficiently resolved.

In view of the above results, the condensation model is assumed validated. Before we move on,
however, it is instructive to take a look at how the primary parameters of these flows evolve, to gain
a basic overview of what actually happens inside the nozzle when condensation occurs. To that end,
a selection of representative vapour and liquid parameters have been sampled from the simulations
along the centerline of nozzle B and are plotted in Figs. 5.6 and 5.7.

It can be seen that as steam starts expanding in the nozzle, the saturation ratio (Fig. 5.6c) quickly
climbs above 1 and keeps rapidly increasing to a maximum just above 8. Correspondingly, the temper-
ature (Fig. 5.7a) dives almost 40 degrees below its saturation value. The increase in supersaturation
decreases the local value of the critical radius, which makes it easier for stable droplets to form. Liquid
clusters nucleate at rates in the order of 1020 and immediately start to grow. As droplets condense
and grow (liquid mass generation rate rises in Fig. 5.6e) and wetness rises (Fig. 5.6f), latent heat is
released and subcooling decreases. The resulting pressure rise decreases the supersaturation ratio,
until the flow has reached equilibrium. Once the degree of supersaturation has decreased enough
for nucleation to stop, no more droplets are generated and the number of droplets (Fig. 5.7b) stays
approximately constant (the small variation being due to convection). It can be seen that the mass
generation rate reaches its maximum just as the supersaturation rate returns to the vicinity of 1. It
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drops afterwards but does not immediately vanish; droplets continue to grow as long as the vapour
remains supercooled. The pressure increase slows the expansion and causes a deceleration of the
flow, evident in the dip in the velocity curve (Fig. 5.7d). The increase in temperature raises the sonic
velocity, so also the Mach number drops (Fig. 5.7c). Eventually, the decrease in velocity decreases the
propulsive effectiveness of the nozzle, whereas the entropic losses that have resulted from the release
of heat damage its effciency.

5.9.1 Validation for micronozzle flows

The above cases have confirmed that the condensation model functions well. However, the nozzles
tested are not classifiable as micronozzles, nor does the temperature inside them drop below 273K,
which is a turning point in the thermophysical model. Ideally, it would be desirable to also test the
model in representative micronozzle conditions, such as to assess its response against extremely rapid
expansions and very cold temperatures. Inconveniently, this has not been possible in this work.

Following an extensive literature research, the author could trace only three candidates as suitable
validation cases. Moses and Stein (1977) tested condensation and droplet freezing for a wide array
of nozzles and operating conditions, some of which operated in the cryogenic regime. Unfortunately,
the cases that would be of interest here are not thoroughly documented and hence not usable for our
purposes. In a more recent work, Bobbert et al. (2002) did in fact use a micronozzle with the specific
purpose of controllably producing small water clusters in the expander. However, that work took place
in a different scientific context and the type of data given is not usable here either. The earlier cited
work of Manka et al. (2012) does actually provide usable data, as it recorded pressure/temperature and
droplet measurements along the centerline of small cryogenic nozzles exhibiting very fast expansion2.
Unfortunately, however, their work did not treat pure steam, but rather a small mass fraction of steam
in a carrier argon gas. To reproduce this here, the model would have to be able to capture not only
the phase exchanges of steam itself, but also the thermodynamic interactions between steam and the
carrier gas. This is not presently possible in the model and would have taken substantially more effort
than has already been expended to achieve it.

For these reasons, a validation on micronozzle-representative case is not run and it will have to
be assumed that if the model accurately captures condensation in cases such as above, it will also
satisfactorily do so in the case of micronozzles. In that regard, uncertainty is likely to stem from mainly
two sources:

• That there is increasing ambiguity involved in the determination of the liquid properties when the
flow temperatures drop to the vicinity of 235K or below that, as was explained in Ch. 4.

• That it is conceivable the rarefaction of the flow inside the micronozzles may impact the validity
of the nucleation rate, as given by Eqn. 5.11. As was briefly mentioned, the derivation of this
expression assumes a gas in equilibrium, an assumption that also implicitly finds its way into
the Gibbs free energy expression that serves as the basis for the nucleation analysis. However, as
was explained in Ch. 3, the rapid expansion may push the translational and rotational degrees of
freedom of both the gas and the freshly nucleated clusters out of equilibrium, raising questions
on what the macroscopic impact of that may be. Brief discussions on these matters can be found
in the works of Sharaf and Dobbins (1982), Zhong et al. (2005) and Jansen et al. (2009).

The examination of these issues will have to be left to future work and based on all preceding
discussions, it is assumed here that the two-phase model is suitable for the present purposes. That
being said, it is now time to finally proceed with the actual simulations, which is treated in the remainder
of this work.

2The nozzle geometry, not documented in the original work, was obtained via personnal communication with the authors.
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FIGURE 5.6: Evolution of condensation parameters along the centerline for Nozzle B of Moore et al.
(1973). The nozzle inlet, throat and outlet are, respectively, at X=0, X=0.25 and X=0.75.
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FIGURE 5.7: Evolution of flow parameters along the centerline for Nozzle B of Moore et al. (1973). The
nozzle inlet, throat and outlet are, respectively, at X=0, X=0.25 and X=0.75.
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CHAPTER 6

Preparation of the simulations

6.1 Geometry
The micronozzles treated in this work are of planar convergent-divergent shape. The geometry is
adopted from the past TU Delft work of Ganani (2019), to maintain some consistency and continu-
ity. The convergent and expander regions are connected via a curved throat duct. Three different
geometries are examined. In all instances, the convergent section angle is kept fixed and the divergent
angle is varied, in a manner such that the area ratio between the throat and exit stays the same in all
instances. A schematic of the generic geometry is given in Fig. 6.1, with the corresponding dimensions
listed in Table 6.1. The computational mesh comprises of roughly 105000 cells. The nozzle section
exhibits 100x20x10 cells in the ”length x width x depth” directions. As it is known that there is a toll in
the validity of the results unless the outlet downstream of the nozzle exit is also included (Ivanov et al.,
1999), the domain is extended a distance equal to 8, 6 and 6 nozzle exit widths in the downstream,
lateral and normal directions, respectively. Taking advantage of the symmetry of the geometry along
the xy and xz midplanes, only 1/4th of the domain is simulated, such that the computational cost is
reduced. An overview of the mesh is given in Figs. 6.2 and 6.3.

FIGURE 6.1: Geometric features of the micronozzles treated in this work. Extracted from Ganani
(2019).
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Table 6.1: Geometric parameters of the micronozzles treated in this work. Extracted from Ganani
(2019).

Parameter Value

Convergent half-angle (𝜃𝑖𝑛) 45°
Expander half-angle (𝜃𝑜𝑢𝑡) 15°, 30°, 45°
Inlet width (𝑊𝑖𝑛) 3mm

Throat width (𝑊𝑡) 45μm

Nozzle length (𝐿𝑛𝑜𝑧𝑧𝑙𝑒) 2893.04, 2177.4, 1917.63μm
Area ratio (𝜖) 16.971 [−]
Convergent curvature ratio ( 𝑅𝑎

𝑊𝑖𝑛
) 0.005 [−]

Throat curvature ratio (2 𝑅𝑡
𝑊𝑡

) 1 [−]

FIGURE 6.2: Overview of the computational domain

FIGURE 6.3: Overview of the computational domain boundaries

76



6.2 Control variables and baseline configuration
In the preceding chapters, it was shown that the condensation mechanism in the nozzle depends pri-
marily on the degree of supersaturation and the local flow conditions, particularly the pressure and
temperature. In turn, these are mainly influenced by the inlet flow conditions and the geometry of the
nozzle. Since these two factors are also the primary design drivers for the nozzle performance in general,
it has been decided to use 4 related control variables in this study and examine how the condensation
process, if any, varies with these parameters relative to a selected baseline case. These parameters and
their settings are:

• Stagnation pressure at 1, 3 and 5 bar

• Stagnation temperature at 473, 573 and 673 K

• Expander angle at 15, 30 and 45 deg

• Nozzle depth at 100 and 200 μm

The choice of these particular parameters is motivated by that the stagnation conditions determine,
together with the expansion rate, the flowfield in the expander; the expander angle in turn largely
determines this expansion rate for a selected area ratio; and the nozzle depth is included because it
was expected it will have a dominant impact on the flow via the heat input from the wall (more on that
in Sec. 6.4.1).

The choice of the stagnation values themselves is somewhat arbitrary, but has been made on the
consideration that they are roughly representative of the planned operational envelope for these resis-
tojets (van Wees et al., 2016). Angles in the range 15-45 deg cover the range typically employed in
micronozzles, as it has been found that values lower than 15deg will generally result in fully subsonic
flow due to boundary layer growth in the expander over a wide range of operating conditions, whereas
values higher than 45deg induce excessive expansion losses (Louisos and Hitt, 2008). Concerning the
nozzle depth, values from experiments reported in literature generally vary between 10-300μm (Louisos
and Hitt, 2008), even though higher values of 600μm or more have been reported (Louisos et al., 2008).
Generally, it is recommended that the depth is not lower than 50μm, because otherwise the interfer-
ence from the boundary layers along the walls becomes excessive and the flow remains subsonic over
most common operating conditions (Louisos and Hitt, 2012); depths above roughly 300-400μm become
increasingly challenging for the deep reactive ion etching (DRIE) micro-production technique typically
applied in TU Delft for manufacturing VLM nozzles (Silva et al., 2017; Tang et al., 2018). In a past TU
Delft work, Silva et al. (2018a) used nozzles with a 100μm depth and this was later adopted in the work
of Ganani (2019), so this has also been used as a baseline here. It was then decided to simply double
the value to 200μm of depth for a second simulation, to offer a clear comparison and insight into the
effect of this parameter.

Concerning the choice of the baseline simulation parameters, it is useful to choose a configuration
of practical interest. As was explained earlier, the VLMs at TU Delft are developed with a range of target
operational conditions in mind and, at this preliminary stage, there is little reason to prefer one set of
conditions over another. For this work, the baseline configuration has taken the values listed in Table
6.2, which have been chosen on the basis that they are representative of this operational envelope
and lie somewhere near the middle of the ranges of the conditions/geometric configurations currently
considered, such that they are roughly representative of typical performance that may be expected from
the nozzle.

Since a portion of the region downstream of the nozzle exit is also included in the domain, a selec-
tion must be made for the ambient conditions. The VLMs at TU Delft are experimentally characterised
in-house in a dedicated vacuum chamber facility that can reach a minimum pressure of roughly 30Pa
and will typically be at ambient temperature. It was decided it would be useful for future comparisons
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between simulations and experiments to have these parameters equal, so these are the ambient con-
ditions selected in this work. The wall temperature is set at the stagnation value, a decision motivated
in Sec. 6.4.1.

Table 6.2: Parameters of the baseline micronozzle simulation

Parameter Value

Propellant Pure H2O

Stagnation pressure 3 bar

Stagnation temperature 473 K

Expander angle 30 deg

Nozzle depth 100 μm

Ambient pressure 30 Pa

Ambient temperature 293 K

Wall teoremperature 473 K

It must be understood that, in reality, this 30 Pa in the chamber is established either by air that
could not been pumped out or by some inert gas (nitrogen, argon, etc) if the chamber has first been
purged. Here, however, the simulation treats the flow of water vapour exclusively, so the assumption
is implicitly made that the vacuum chamber ambience also contains water vapour. For such low
pressures, it is unlikely that the precise nature of the ambient gas will have any substantial impact on
the results.

Before continuing, now that the operational conditions of the VLMs have been framed, it is useful
to briefly revisit the singe-phase validation case of the experiments of Rothe (1971) in Sec. 3.5.1, to
get a more detailed impression of how the degree of rarefaction in the micronozzles compares to that
experiment. The most rarefied micronozze flowcase here is the one featuring the lowest stagnation
temperature, i.e., the 1 bar case. Fig. 6.4 compares the Knudsen contours across the midplanes of
each nozzle. For the micronozzle, it has been extracted from the solution of the respective flowcase
that is presented in detail later. It can be seen that the Rothe nozzle exhibits Kn about an order of
magnitude higher than the micronozzle, consistently throughout the expander. This is why it was
assumed in that part of the work that since the solver was in fair agreement with the experiment at
those degrees of rarefaction, it is reasonable to assume it will perform satisfactorily for the micronozzle
cases. It should be kept in mind that since the values of Kn are computed based on the local flow
properties, the Kn values depicted deviate from reality when the flowfield itself does. Still, as it was
shown that the temperature is underpredicted, the values given are likely conservative estimates.

6.3 Estimates of macroscopic performance
Indicative performance estimates in terms of the thrust, specific impulse and specific impulse efficiency
are given for the cases simulated, especially to highlight the performance impact in those cases where
condensation may be significant. The three parameters are chosen because they are a macroscopic
manifestation of the flow properties that are typically affected by the phenomenon and they also indi-
rectly encompass the influence of such features as the size of the viscous layers, the mass flux at the
nozzle exit, etc. It should be understood, however, that these estimates are limited in extent, because
the main purpose here is not to make detailed investigations of the micronozzles’ macroscopic perfor-
mance under all possible scenarios, but rather to assess whether condensation should be a matter of
concern in a general sense.
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The nozzle thrust formally follows as:

𝐹𝑇 = ∫ ∫
𝐴𝑒

#»𝑉 (𝜌 #»𝑉 ⋅ #»𝑛)𝑑𝐴𝑒 + ∫ ∫
𝐴𝑒

(𝑝 − 𝑝𝑎) #»𝑛𝑑𝐴𝑒 (6.1)

where 𝐴𝑒 is the nozzle exit surface area, 𝑛 is the outward-pointing surface normal vector and 𝑝𝑎 is the
ambient pressure. Pearl et al. (2017) argued that the viscous stress can have a substantial impact at
these scales and that the thrust expression should be augmented to read:

𝐹𝑇 = ∫ ∫
𝐴𝑒

#»𝑉 (𝜌 #»𝑉 ⋅ #»𝑛)𝑑𝐴𝑒 + ∫ ∫
𝐴𝑒

(𝑝 − 𝑝𝑎) #»𝑛𝑑𝐴𝑒 − ∫ ∫
𝐴𝑒

( #»𝜏 ⋅ #»𝑛)𝑑𝐴𝑒

However, the extra term was found to have a negligible contribution in this work and has been ignored,
such that the thrust force is described by the original Eqn. 6.1. The determination of the specific
impulse requires the mass flow in the normal direction at the nozzle exit:

�̇� = ∫
𝐴

𝜌( #»𝑉 ⋅ #»𝑛)𝑑𝐴 (6.2)

The specific impulse itself then follows simply as:

𝐼𝑠𝑝 = ∫ 𝐹𝑇 𝑑𝑡
𝑔0 ∫ �̇�𝑑𝑡 (6.3)

where 𝑔0 = 9.807m/s2 is the gravitational acceleration on the Earth’s surface and the integral over
time 𝑡 denotes the duration of operation. In this work, we are only interested in the value of 𝐼𝑠𝑝 at
any signle moment in time after the nozzle has reached steady-state operation, such that the above
expression reduces to simply 𝐼𝑠𝑝 = 𝐹𝑇 /(𝑔0 ⋅ �̇�). It is occasionally also insightful to get an impression of
how the simulated nozzle performs relative to its ideal case, as estimated by quasi-1D isentropic nozzle
flow theory. In this work, this is quantified via the specific impulse efficiency, defined as:

𝑛𝐼𝑠𝑝
= 𝐼𝑠𝑝, 𝑎𝑐𝑡𝑢𝑎𝑙

𝐼𝑠𝑝, 𝑖𝑑𝑒𝑎𝑙
(6.4)

where the ideal specific impulse, 𝐼𝑠𝑝,𝑖𝑑𝑒𝑎𝑙 may be derived as a function of the stagnation and nozzle exit
properties as (Sutton and Biblarz, 2017; Louisos and Hitt, 2012):

𝐼𝑠𝑝,𝑖𝑑𝑒𝑎𝑙 =
√√√
⎷

2𝛾𝑅𝑇0
𝑔2

0(𝛾 − 1)
⎡⎢
⎣

1 − (𝑝𝑒𝑥𝑖𝑡
𝑝0

)
𝛾−1

𝛾 ⎤⎥
⎦

(6.5)
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For the purposes of the ideal case, the ratio of specific heats of water vapour has been assumed fixed
at 𝛾 = 1.33. The pressure ratio in this relation follows from the supersonic solution of the area ratio
expression from ideal rocket theory:

𝐴𝑒
𝐴∗ =

√𝛾 ( 𝛾+1
2 )

1+𝛾
1−𝛾

√ 2𝛾
𝛾−1 ⋅ ( 𝑝𝑒

𝑝0
)

2
𝛾 ⋅ [1 − ( 𝑝𝑒

𝑝0
)

𝛾−1
𝛾 ]

(6.6)

where the expansion ratio is given in Table 6.1. For a given specific heat ratio, the pressure ratio is
determined exclusively by the expansion ratio in the context of isentropic quasi-1D rocket theory. Since
the area ratio is the same in all nozzles examined here and the ideal rocket theory does not otherwise
concern itself with the nozzle geometry, the theoretical specific impulse is the same for all simulations
presented in this work, except in those cases in which the stagnation temperature is varied.

6.4 Numerical setup
This section outlines the boundary conditions used for the numerical solution of the conservation
equations, the mathematical schemes implemented to reach this solution and the manner in which the
simulations are initialised. This latter aspect is important for eliminating fatal numerical instabilities
inherent to the solver and for accelerating the otherwise rather time-consuming simulations.

6.4.1 Boundary conditions

Inlet:
The stagnation conditions 𝑝0 and 𝑇0 that are used as control variables are assigned at the inlet, in

a manner such that the incoming flow is subsonic compressible. For the velocity, its gradient is set to
zero such that it can freely follow the pressure variation, as this is a pressure-driven supersonic flow.

Outlet:
In this case, the problem is slightly complicated by the fact that the domain downstream of the

nozzle exit is also included in the simulation. This domain will not experience fully supersonic flow
throughout its topology, but is instead expected to feature subsonic flow or even stagnant gas in those
regions that remain only mildly or not at all affected by the supersonic jet emanating from the nozzle
exit. A physically correct and numerically convenient boundary condition would then have to be able to
treat the supersonic and subsonic regions of the outlet boundary separately, ideally prescribing a fixed
pressure/temperature value for the subsonic portions and a supersonic condition at the supersonic
regions. Unfortunately, such a condition does not currently exist in the default version of OpenFOAM.

A similar issue would have been faced in past works using the same solver, such as those of Pearl
et al. (2014), Giorgi et al. (2018) and Ganani (2019). Giorgi et al. (2018) based their boundary conditions
on the nozzle mass flow, which is not particularly interesting as an input parameter in the present
simulations, so their approach is not applicable in the present work. Pearl et al. (2014) fixed the
pressure at the outlet at 1 kPa so they would not need to account for any rarefaction effects. Manually
setting the farfield outlet pressure in a supersonic nozzle jet flow will also likely affect the flow inside the
nozzle itself, as the effect of the forced boundary condition propagates backwards into the computational
domain. Therefore, this is also not a desired approach in the present case. Ganani (2019) implemented
a wave transmissive boundary condition, which modifies the value of the property at the boundary
such that a target value (for instance, the selected ambient pressure) can be approximated at some
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hypothetical distance downstream of the boundary. However, his choice of this distance (just 10μm)
is so short that it is probably more damaging to the simulation than it is beneficial, while it can also
not replicate the correct ambient conditions at those regions in the domain that are subsonic. What is
more, he imposed velocity boundary conditions that artificially block possible backflow into the domain,
which potentially makes the solutions at the outlet unphysical. Hence, this approach is not considered
suitable for the present purposes either.

The present author found that the only comprehensive way to tackle the issue was to implement a
new boundary condition in OpenFOAM. This condition checks if the local velocity is higher than the
speed of sound and, if it is, it imposes a zero gradient condition, otherwise resorts to a stagnation
condition. In the latter case, the stagnant value was set at 30 Pa according to the discussion of the
previous section, such that the ambient pressure is correctly applied. The implementation of this
condition was developed in an earlier work by Kraposhin et al. (2015) and has been adopted from
there. There is a price to pay for this improvement in the realisticity of the solution, it being the speed
of convergence. At those regions of the farfield boundaries where the interface between the subsonic
and supersonic regions is located, the solver can take some time to settle on the correct configuration
and, at times, may even become unstable. So, some caution is needed in the initialisation of the
solution. The rest of the parameters are all assigned zero gradient conditions.

Walls:
The boundary condition at the wall is of particular importance from the perspective of the tem-

perature, because the high surface-to-volume ratio of the nozzle implies that whatever temperature
condition is set at the wall is going to dominate the flow topology. Recall from Ch. 3 that a temperature
jump condition is employed, but the thermal condition of the wall still needs to be specified. The au-
thor did not want to make the typical assumption of an adiabatic wall, because it is unlikely that a wall
comprising of a material as heat-conductive as silicon is going to stay unaffected when the heater is
activated upstream of the nozzle and, in turn, is not going to supply heat to the flow. On the other hand,
it is also not realistic to make a detailed model of the conjugate heat transfer between the flow and the
wall structure, because at this stage of the design, there is little information on the final configuration
of the nozzle’s structure. Instead, in this work, the assumption is made that the wall is elevated and
fixed at the stagnation temperature of the flow. This may seem extreme, but there is justification for it.

It is possible to obtain a rough estimate of the time it takes for the thruster’s silicon substrate to
heat up following the activation of the heating element, under the assumption it is a semi-infite solid
(Louisos and Hitt, 2012). For the sake of simplicity, it is assumed that the heater’s temperature also
serves as the stagnation temperature of the flow. The characteristic thermal diffusion length for a given
material can be approximated as:

𝐿 ≈
√

𝛼𝑡 (6.7)

where 𝛼 is the thermal diffusivity and 𝑡 is the time it takes heat to traverse this length. From the data
in Appendix B.2 of Rebeiz (2003) one finds, for MEMS-rated silicon, values for the thermal conductivity
𝑘 = 156Wm−1 K−1, the specific heat 𝐶𝑝 = 713Jkg−1 K−1 and the density 𝜌 =2320kg/m3, yielding a
thermal diffusivity 𝛼 = 9.43 × 10−5m2/s. Eqn. 6.7 is in principle valid for a point heat source, so we
will assume this is located at the center of the heater, roughly 5mm away from the nozzle exit (refer
to Fig. 5.1 in Ganani (2019), for the detailed geometry). This is an extremely conservative estimate,
as in reality the heater occupies a very substantial surface area and mass relative to the substrate.
Even in that case, one finds a timescale 𝑡 ≈0.2s, which is very short. It is therefore reasonable to
assume that the heater will raise the wall to its temperature within a negligible amount of time from its
actuation. This is further supported by the fact that under nominal operational conditions, it is likely
the heater will be activated until it rises to the desired temperature, before the flow is allowed into the
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vapourisation plenum. From there on, in a past work, Louisos and Hitt (2012) examined the influence of
heat transfer on the micronozzle performance and, based on a detailed first-order calculation, showed
that the time the flow spends in the nozzle is sufficient for it to receive heat from the hot wall. On
these grounds, it is accepted that setting a fixed-value wall condition in the boundary condition for the
temperature, with that value set at the stagnation temperature, is a valid approach. It is notable that
the validation case against the experiments of Cen and Xu (2010) in Ch. 3 utilised this condition and
obtained very close agreement, which speaks to its validity.

A slip condition is employed for the velocity, as discussed in Ch. 3. For all other parameters, zero
gradient conditions are set at the wall. It is also assumed that the nozzle walls are perfectly smooth.
Depending on the production technique used to manufacture the nozzle, it could be that the influence
of surface roughness should be examined (Torre et al., 2010), but this is left to future works. Here, the
influence of the walls is indirectly expressed in the accommodation coefficients appearing in the velocity
slip and temperature jump boundary condtions (Eqns. 3.11 and 3.14). The author was not able to find
any data on these coefficients for the flow of rarefied water vapour in silicon microchannels and other
authors (Silva et al., 2016) concur that such data is rather scarce for polyatomic mocelules in general.
Arkilic et al. (2001) experimentally determined values for the tangential momentum accommodation
coefficient for another, simpler, polyatomic molecule, carbon dioxide (CO2). In a recent review, Sharipov
(2011) noted that this coefficient is likely not substantially affected by the internal molecular structure
for polyatomic molecules. Based on the findings in these works, here values 𝜎𝑀 = 0.8 and 𝜎𝑇 = 0.85
have been adopted, which also gave good results in the validation against the experiments of Cen and
Xu (2010) in Sec. 3.5.2.

Other:
The additional two droplet-related parameters 𝑁 and 𝑌 are assigned zero gradient conditions every-

where in the domain, such that their evolution is exclusively dominated by the evolution of the flow
itself. Potential backflow from the boundaries is artificially blocked, given this would be an unphysi-
cal situation. Since only 1/4th of the full domain is simulated, all properties are assigned symmetry
boundary conditions at the two symmetry planes of the domain.

6.4.2 Numerical solution methodology

The choice of numerical schemes was targeted at achieving second-order accuracy in the discretisa-
tion of the conservation laws, as this is generally considered necessary to achieve reliable results in
simulations of non-equilibrium condensation (Blondel, 2014).

To that end, the temporal terms are discretised with a Crank-Nicholson scheme (Crank and Nicol-
son, 1996), with a weight factor of 0.9 suggested by OpenFOAM guidelines. The divergence terms are
generally taken care of directly by the method of Kurganov and Petrova (2007) that is inherent to the
solver, therefore they need not be assigned a dedicated scheme. An exception is the divergence of the
stress tensor, which is computed purely explicitly and has thus been treated with a simple second-order
Gauss linear scheme.

A choice must also be made for the Total Variation Deminishing (TVD) limiter implemented by
the algorithm of Kurganov and Petrova (2007). A comparison of various such schemes in the case of
metastable condensation modelling was performed in the dissertation of Blondel (2014), who found the
limiters of van Leer (1979) and van Albada et al. (1997) to give the most convenient trade-off between
precision and numerical performance. Here, the latter scheme is chosen. Lastly, the reconstruction of
the variables 𝑌 and 𝑁 from the cell faces is not done using a TVD scheme, but rather a second-order
unbounded linear-upwind scheme (Warming and Beam, 1976), to help tackle the very steep gradients
that occur in the region of the flow where nucleation first starts. The Laplacian term in the energy
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equation is treated with a simple gauss linear discretisation. The surface-normal gradient of the velocity
in the energy equation is assigned a standard central-difference, corrected surface-normal gradient
scheme. The rest of the gradient terms in the conservation laws are discretised with a least-squares
scheme, whose extrapolated values are bounded by the maxima and minima of the neighbouring cells.

To maintain some brevity, the mathematical details of these schemes are skipped here and the
reader is referred to the cited works. The OpenFOAM implementation may slightly differ from the
original sources, so the interested reader is also advised to consult the software’s user guide and source
code. The described numerical setup has been used not only for the main simulations, but also for all
validation cases presented in the preceding chapters.

The fact that the micronozzles exhibit throat-based Reynolds numbers in the order of 1000 or less
make it unlikely that any turbulence will occur, so no turbulence model has been implemented.

6.5 Initialisation of the solution
Rather than starting the simulations with the solver at the nominal setup as described above, a dedi-
cated initialisation procedure was implemented, aimed at addressing two problems:

Numerical instabiities
The cases simulated exhibit a pressure ratio between stagnation and outlet conditions in the vicinity

of 10000, a rather high value that imposed very sharp pressure and density gradients at the start of
the simulations. These gradients consistently turned out to be fatal to the solver’s numerical stability,
a problem that plagued this work for a long time. One method to address it would be to start at a low
stagnation pressure (e.g., at a pressure ratio of 10) and then progressively step up this value over time.
While effective, this is also quite time-consuming, as one has to wait for the nominal value to be reached,
before the actual simulation can be ran. A faster method was found in using a basic built-in solver
of OpenFOAM that solves the simple laplacian diffusion equation. This solver was slightly modified to
treat the diffusion of pressure and was then used to obtain a smooth pressure field between the high
stagnation value and the low ambient value, which was fed as an initial solution to the solver. It turned
out to be effective in eliminating the instabilities and encouraging relatively fast convergence.

In some instances, the numerical oscillations are violent enough to drive the value of the temperature
or the density negative and cause the solver to crash. To tackle this, a minimum value for the specific
internal energy is manually implemented, to set a lower limit to the values that the solution of the
temperature takes. This value is purely arbitrary and has been here set at approximately 2 × 106 Jkg−1,
roughly corresponding to a temperature of 40K, far below what can be expected to be found inside
the nozzle. This hard-coded limit is, of course, unphysical, so it is only used as a tool to bound the
simulation at its early stages. It quickly ceases to be effective as the solution stabilises.

Slow-paced execution
The algorithm implemented in the underlying solver is explicit in nature, hence limited by a maximum

value for the timestep, which makes its execution rather slow. The situation is exacerbarated by the
fact that the real-gas thermophysical model of water is inherently very computationally intensive, even
in its somewhat reduced form described in Ch. 4. A simulation that would have been left to run in its
entirety with this model, would take several days to complete. To accelerate this, the following steps
were taken:

• A manual multi-grid approach is implemented, in which a solution is first obtained on a coarse
mesh of 30000 cells, then mapped to the fine mesh and run until convergence. The solution in
the coarse mesh is itself initialised with the laplacian solver described above.
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• The simulation in this coarse mesh is not run with the actual thermophysical model, but with a
much-faster rough approximation. The gas is treated fully as ideal. The enthalpy is computed
linearly relative to a threshold value, with the same NIST-JANNAF convention as described in Sec.
4.8.1. The isobaric specific heat is assumed constant, set at a representative value of roughly
1800Jkg−1 K−1. And the transport properties are determined via Sutherland’s method, with
coefficients obtained from Nishii et al. (2019). This initialisation provides a good approximation
to the final solution that is obtained with the nominal model of Ch. 4 on the fine mesh.

This initialisation decreases the simulation time from several days to about 24-48 hours, when
run on a quad-core, 8GB RAM, Dell Precision T3600 machine. The simulation is assumed to have
converged when the normalised velocity residuals have dropped below 10−6 and the variation of an
array of parameters of interest (such as pressure at the inlet, maximum droplet radius, liquid mass
generation rate, etc) has stabilised to within less than a percent.
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CHAPTER 7

Results and discussion
The most notable results of the simulations are gathered in this chapter. The outputs are primarily
given in the form of isoline contour plots1 of the expander section flow, for a selection of the primary
parameters: Mach number and temperature as indicators of the flow conditions, saturation and nucle-
ation rates as drivers of the condensation, mass factions and corresponding droplet radii as the results
of the condensation. This allows for a detailed but clear quantified overview of the main flow topological
features. The properties have primarily been sampled along the nozzle’s midplane, as it is there that the
expansion mainly manifests. The outputs have been grouped according to the four control variables,
i.e. stagnation temperature and pressure, expander angle and nozzle depth. For a selection of cases
it is shown what effect, if any, the condensation has had on the flow. Some macroscopic performance
estimates are also provided. In all instances, to aid visibility, only the expander section of the nozzle
is shown (from the throat section to the exit), where also all the phenomena of interest take place. An
overview of the macroscopic performance of the cases examined is offered at the end of the chapter, in
Sec. 7.5.

For interpreting the results presented here, it is helpful to briefly recap some of the main aspects of
the physics involved in this particular problem and of the model implemented:

• The nozzle treated is planar and has dimensions spanning no more than a couple of mm. Both
the throat and the depth are only a fraction of a mm.

• The superheated steam enters the nozzle at temperatures of 200 °C or more and stays in the
nozzle for no more than about 2μs. The flow temperature drops hundreds of degrees within 1μs
and within a fraction of a millimetre.

• The walls are assumed to be fixed at the stagnation temperature. The planar wall, which has
by far the most dominant contribution to the nozzle’s high surface-to-volume ratio, serves as a
major heat source for the expanding flow and also imposes thick boundary layers.

• The flow model and the thermophysical and condensation models come with considerable uncer-
tainty, as has become clear in preceding sections. The results should therefore not be taken for
their exact value and the focus should be placed on the general trends rather than the precise
figures.

One final major point to be kept in mind is that the smallest possible physical manifestation of
condensation is a dimer, i.e. a cluster of two water molecules. This has been assumed here to have a
radius of about 2.75 × 10−10m, equal to the diameter of a single water molecule (the radius in reality
is likely to be closer to 3 × 10−10m (Mukhopadhyay et al., 2018)). In some of the results that follow,
the resulting radii are below this threshold and are therefore unphysical. While these results are still
used to provide insights into how the control variables affect the condensation mechanisms, the reader
should keep in mind that condensation is likely not to have actually occurred in these cases.

With these points in mind, a targeted presentation and discussion of the results can start.

1A script has been written in the Python language to import the raw CFD data from OpenFOAM and perform the post-
proccessing of the results as presented here.
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7.1 Effect of stagnation pressure
The variation of the total pressure allows to examine phenomena that are largely present in the rest of
results presented in this chapter, as well.

Fig. 7.3 depicts the Mach/Temperature contours for each stagnation pressure and Figs. 7.4 and
Figs. 7.5 list the respective results for saturation ratio/nucleation rate and liquid mass fraction/droplet
radius. Recall that on all instances the walls are kept at 473K and the outlet pressure and temperature
are 30Pa and 293K, respectively. The nozzle geometry is the one with a 30 deg expander angle and
100μm depth.

Firstly, the stagnation pressure has an obvious impact on the flow topology. It can be seen that
at 1 bar the inertia of the flow is too low for the supersonic core to persist at the maximum Mach
number until the nozzle exit and it drops from 𝑀 = 2.5 roughly half-way through the expander to
less than 2 by the exit. The low inertia gives room for thick viscous layers to develop along the walls,
which in turn allows the temperature to maintain values higher than 300K in the larger portion of the
flowfield. The effect is alleviated as the total pressure is increased, with the subsonic layers becoming
much thinner, the core expansion persisting largely undisturbed until the exit, the temperatures in the
expander dropping to as low as roughly 210K and the Mach number climbing to as high as 3 in the 5
bar case. In this latter case, it is interesting to note that the temperature topology is almost identical
to the one in the 3 bar case, even though one would expect lower temperatures as a result of the faster
expansion. More on that below.

Now turning the attention to condensation, the baseline case exhibits radii smaller than the dimer
threshold and therefore nucleation barely takes place. The other two cases, however, do see regions of
clusters of 2-4 molecules, at liquid mass factions of roughly 2% or less.

What is particularly striking is the degree of supersaturation. As was explained in Ch. 5, the
saturation ratio in most conventional nozzles exhibiting condensation is typically in the range 6-20. In
this case, the rapid expansion and resulting extreme supercooling has driven this ratio up to values in
the order of 103, with some small regions in the core of the fastest expansion (5 bar case) even narrowly
veering into the 104 range. The high supersaturation keeps the critical radius value low and results
in high nucleation rates. Whereas in conventional nozzles these rates are somewhere in the vicinity
of 1020, here they climb to 1029. Physically, this means that if condensation does ensue, the high
supersaturation implies it will occur very impulsively, with bursts of enormous numbers of very small
clusters, spanning 3-4 water molecules at most, forming in the vapour simultaneously.

This helps explain the aforementioned abnormality in the temperature topology of the 5 bar case.
To get a clearer picture of the impact of condensation, this simulation has been ran for a second time,
in this instance with the condensation model switched off (i.e., purely gaseous flow). The Mach number
and temperature fields between the cases with and without condensation are compared in Fig. 7.1.
Apparently, even though the liquid clusters are about as small as they can physically be, the fact that
they spontaneously nucleate in such abundance still manages to inflict a sensible effect on the flow.
The temperature is raised by more than 20K near the centerline and the Mach number drops by about
0.2 or more. This also has a macroscopic effect, albeit a small one: the thrust rises by roughly 1.5%,
from 2.95 mN to about 3 mN. Whether this is significant or not is left to the future mission designer
to judge. Performance metrics in the nominal condition, meaning with the condensation model active,
are listed in Table 7.1. A complete overview of all simulations with and without condensaiton is given
in Table 7.5. It can be seen there that the 1 bar case stays virtually unaffected by the condensation,
as the small mass fractions that emerge as a result of it are not sufficient for any substantial effect.

The fact that the thrust increases as a result of the condensation is in itself peculiar. It was shown
in the validation cases of Sec. 5.9 that the latent heat release causes a pressure rise that should act
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Table 7.1: Variation of macroscopic performance with stagnation pressure

Parameter [Unit] 1 bar 3 bar 5 bar

Thrust [mN] 0.503 1.72 2.95

Specific Impulse [s] 97.08 105.22 107.74

Sp. Impulse Efficiency [-] 0.832 0.902 0.924
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FIGURE 7.1: Comparison of the flowfield for the 5 bar case with (upper half) and without (lower half)
the effect of condensation

to slow the expansion. Indeed, in those cases, the velocity exhibited a sharp dip following the onset
of condensation, so, if anything, it would be expected here that the thrust should drop. Especially so,
given the Mach number is clearly affected here. Why does it not?

The answer can be found by a) revisiting the definitions of the thrust force and Mach number (here,
for convenience, in a simplified one-dimensional form for an ideal gas):

𝐹𝑡 = ∫
𝐴

[𝜌𝑈2
𝑥 + (𝑝 − 𝑝∞)]𝑑𝐴

𝑀 = 𝑈𝑥√𝛾𝑅𝑇
b) recalling that the momentum and energy effects of the condensed phase are captured in the following
source terms (𝑆𝑌 being the generation rate of liquid mass per unit volume of vapour):

𝑆𝑈 = −𝑈 ⋅ 𝑆𝑌 & 𝑆ℎ = −ℎ𝑝 ⋅ 𝑆𝑌

and c) by taking a closer look at the velocity, rather than the Mach number field (Fig. 7.2):

What is observed is that the velocity field itself is only very subtly slowed down by the condensed
phase, staying essentially unchanged. The drop in Mach number noted in Fig. 7.1 came not as a
result of a decrease in velocity, but rather due to the increase in temperature following the release of
latent heat. The secondary question that arises then is why the condensible has a notable heat energy
contribution but not a notable momentum one. This is likely attributable to the fact that as the vapour
spontaneously transitions phase after it has been supercooled to the extreme value of almost 200 K, it
releases an unusually high amount of latent latent heat per unit mass (refer to Fig. 4.3 in Sec. 4.8.5).
At the same time, however, this mass of the condensible itself in absolute value is rather low: Fig. 7.5e
indicates mass fractions in the vicinity of 1% relative to the vapour. In such a case, the mass generation
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the effect of condensation

rate 𝑆𝑌 stays low, but the high value of ℎ𝑝 still drives the energy source term 𝑆ℎ to high contributions,
whereas the momentum source term 𝑆𝑈 contributes little to the bulk of the flow. Correspondingly,
since the velocity remains largely unperturbed, the effect of the change in momentum on the thrust
force is also benign. The majority of the contribution towards the noted 1.5 % thrust increase is then
due to the increase in pressure in the expander as a product of the latent heat, which drives upwards
the integral ∫𝐴(𝑝 − 𝑝∞)𝑑𝐴 at the nozzle exit.
The phenomena discussed above also largely apply to the rest of the results presented in this chapter.
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FIGURE 7.3: Isolines of Mach number and temperature at pressures of 1-5 bar
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FIGURE 7.4: Isolines of supersaturation ratios and nucleation rates at pressures of 1-5 bar
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FIGURE 7.5: Isolines of liquid mass fractions and droplet radii at pressures of 1-5 bar
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7.2 Effect of stagnation temperature
Examining the influence of varying the stagnation temperature (473, 573, 673 K) is particularly inter-
esting, as it would be expected that raising its value is the most effective approach for avoiding the
onset of condensation. The most notable findings emerging from Figs. 7.8 - 7.10 are the following:

• The higher stagnation temperature in the 573 K case obviously leads to a higher temperature in
the expander, but that actually appears to encourage the nucleation of clusters at approximately
the size of a dimer, relative to the baseline 473 K case (Figs. 7.10b and 7.10d). Even so, the
condensation results in very small mass fractions (10−5) and its impact on the flow was found
to be practically non-existent. The reason why the mass fractions are so low in this case has to
do with the fact that the liquid mass generation rate is dependent on the nucleation rate of new
droplets and the interfacial surface area of existing droplets (Eqn. 5.39). The nucleation rate is
observably lower in the 573 K case. The droplet surface area follows a simular trend, as there is
a smaller number of droplets being generated and no substantial growth follows.

• The 673 K case exhibits no condensation whatsoever (which is why no relevant results are given).
Fig. 7.8f shows that only a small portion of the expander flowfield will drop below 300 K (down to
roughly 285 K), while the pressure in the same region (not shown in these results) is at roughly
7.5kPa. Interestingly, examining a typical phase diagram of water (e.g., Fig. 2.4 in Sec. 2.5.2)
shows the flow will still become supersaturated and enter what would have normally been the
liquid region, even at this high stagnation temperature. The supersaturation ratio, however, is
very low (𝑆 ≈ 6), therefore no condensation ensues in the short timeframe the flow spends in the
nozzle.

It is interesting that the 573 K case results in the nucleation of physically plausible liquid clus-
ters, whereas the 473K one does not. One would expect that a lower stagnation temperature would
encourage condensation. Physically, the cause can eventually be traced to the difference in the degree
of supersaturation between the two cases, although there is also a numerical aspect to it. To help
illustrate this, it is helpful to make an example calculation.

Recall from Ch. 5 the basic expressions for the critical radius 𝑟𝑐 and associated nucleation rate 𝐽 ;
the relation between the droplet radius and the liquid mass fraction Y and droplet number N; as well
as the fact that N is directly related to J via the source term in its conservation equation and, similarly,
Y is related to J, N, r. Briefly, these are listed below.

𝐽 = 𝑞𝑐
𝜌2

𝑔
𝜌𝑙

√ 2𝜎
𝜋𝑚3 𝑒𝑥𝑝 (− 4𝜋𝜎

3𝑘𝐵𝑇𝑔
𝑟2

𝑐) & 𝑟𝑐 = 2𝜎
𝜌𝐿𝑅𝑇𝑔𝑙𝑛(𝑆)

𝑁 ∼ 𝑓(𝐽) & 𝑌 ∼ 𝑓(𝑁, 𝐽, 𝑟) & 𝑟 = 3𝑌
4𝜋𝜌𝐿𝑁

For the sake of the calculation, we select a typical control volume in the domain along the nozzle
centerline in the expander. We wish to focus on the nucleation phenomena, so we assume that the effect
of convection in the volume is equilibrated, such that any substantial change in the droplet number
and other properties in the cell over time results only due to the condensation. The conservation
law for N then reduces to simply 𝑑𝑁/𝑑𝑡 = 𝐽 . To simplify things, we will also further assume that
since the droplet only spends an almost infinitesimally small amount of time in the cell, the effect of
droplet growth can be neglected, such that the liquid mass fraction varies only as a function of droplet
nucleation. Then, the conservation equation for Y also reduces to simply 𝑑𝑌 /𝑑𝑡 = 𝜌𝑙𝐽 4

3 𝜋𝑟3
𝑐 . It is also

reasonable to assume that, all other factors being equal, a higher stagnation temperature will result in
a higher temperature in the expander, at locations featuring the same static pressure for both nozzles.
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For the calculation, a static pressure in the control volume of 6kPa is assumed, a value typical in these
nozzles. Consulting Figs. 7.8b and 7.8d, it may also be assumed that the temperatures along the
centerline near the nozzle exits are roughly 210K and 230K, respectively. For the sake of brevity the
detailed calculations are skipped, but using the above relations and the thermodynamics of Ch. 4 one
finds for 𝑇 = 230K a supersaturation ratio 𝑆 ≈ 443 and nucleation rate 𝐽 ≈9 × 1026 droplets/m3/s;
for 𝑇 = 210K, 𝑆 ≈ 4900 and 𝐽 ≈7 × 1029 droplets/m3/s. It can be seen that a difference of just 20K
in that range causes a stark offset in the nucleation rate of three orders of magnitude. While a portion
of this is due to the fact that the surface tension differs by about 5% between the two cases, the main
driver behind the offset actually turns out to be the variation of saturation pressure with temperature.

Fig. 7.6 depicts the variation of the saturation pressure with temperature for 𝑇 ≤ 273K, as given
in Ch. 4 by Eqn. 4.51. What can be seen is that the variation is very rapid (essentially exponential)
and, at the lower temperature end, an offset of just 20K is already enough to cause a difference of an
order of magnitude (from the order of 1 to the order of 10) to the value of the saturation pressure (and,
by extension, to the supersaturation ratio for a given local static pressure).
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FIGURE 7.6: Variation of the water vapour saturation pressure with the local temperature, for 𝑇 ≤
273K. The saturation curve is given by Eqn. 4.51.

Over a given interval 𝑑𝑡, this difference in nucleation rates will yield a corresponding offset in the
droplet number N and liquid mass fraction Y between the two cases. Such an offset will also cause
the liquid generation rate to be substantially smaller by orders of magnitude for the 573 K, as was
mentioned in the beginning of this discussion and and can be observed in Figs. 7.10a and 7.10c.
And here is where the numerical artefact stemming from the assumption of a monodisperse droplet
distribution comes into effect: we have assumed all droplets have the same size, given by an average

radius 𝑟 = ( 3𝑌
4𝜋𝜌𝐿𝑁 )1/3

. Since N and Y scale comparably due to their direct dependence on J, the
resulting radii have similar values both for the 473 K and the 573 K cases (in the range of 2-3 × 10−10m),
with the latter case featuring a value higher by about 20%. In reality, it is likely the droplets come at
an array of sizes and, since the resulting values are very near the minimum physical limit, it may be
that a substantially less amount of condensation would actually take place, as a portion of the vapour
that now appears to condense would actually not be able to form droplets. Still, as was previously
mentioned, the liquid mass fraction for the 573 K is extremely low and its effect on the flow negligible.
So, while locally the conditions may marginally encourage the emergence of physically stable droplets
despite the increase in temperature, in the global picture a higher stagnation temperature actually
helps eliminate the macroscopic impact of condensation.

The main conclusion to be drawn from this example calculation is that the subtle uncertainties
involved in the model (in terms of the assumptions made, the thermodynamics, the nucleation physics)
can shift the outcome on the occurence or not of condensation in either direction, when the resulting
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liquid clusters are so close to the physically meaningful size threshold. That is why also results with
radii slightly smaller than 2.75 × 10−10m have been included in this work.

In view of the above, from a design perspective, it would be desirable for the designer to be able to
predict what the minimum stagnation temperature is to avoid condensation in the nozzle altogether,
for given nozzle conditions/expected performance. Doing this accurately is rather difficult due to the
complex physics, many variables and the uncertainty that are inherently involved in any condensation
model, as has perhaps become clear from the discussion above. The development of an analytical
model for the prediction of the point of onset of condensation2 has received widespread attention in
condensation literature and still no method has comprehensively achieved this goal, despite the fact
that the proposed models are often quite involved. Examples of notable works the reader may refer to
are those of Huang and Young (1996) and, more recently, Azzini et al. (2018). A simpler method, which
however gives a very conservative estimate, is to employ quasi-1D isentropic flow theory. By utilising
the well-known isentropic relations:

𝑇0 = 𝑇 ⋅ (1 + 𝛾 − 1
2 𝑀2)

𝑃0 = 𝑃 ⋅ (1 + 𝛾 − 1
2 𝑀2)

𝛾
𝛾−1

and the relation of the saturation temperature as a function of the local pressure given in Sec. 4.5.2 by
Eqn. 4.33, it is possible to compute the minimum stagnation temperature required to avoid supersatu-
ration (and, hence, condensation) in the nozzle, for a selected stagnation pressure and nozzle exit Mach
number. A plot of this variation for 𝑃0 = 1, 3 and 5 bar is shown in Fig. 7.7, for an indicative range of
Mach numbers that may be expected at the exit of a supersonic micronozzle. A value of 𝛾 = 1.33 has
been used. It can be seen that the required temperature increases with stagnation pressure for a given
exit Mach number. It can also be seen that the required temperature is already rather high (≥ 600K)
in the exit Mach number range 2.5-3.5 , a range which is quite common in supersonic (micro)nozzles.
It is emphasized again that this estimate is very conservative, perhaps unnecessarily so, for at least
the following reasons:

• Quasi-1D isentropic flow theory does not account for the heat input from the planar wall and
therefore most likely underpredicts both the flow pressure and temperature at the nozzle exit. So,
the calculation may show that the flow may reach saturation when it, in reality, would actually
not, which may in turn lead the designer to choose an unnecessarily high stagnation temperature.

• The above methodology aims at eliminating condensation by avoiding supersaturation altogether.
But as has become clear by now, the rapid cooling rates allow the flow to dive deeply into the
supersaturated region without condensation occuring. Therefore, in reality the design is likely to
be able to afford a lower stagnation temperature that gives thermodynamic room to the flow to
become supersaturated without (significantly) condensing, as is shown in the 573 K and 673 K
cases above.

• The actual average Mach number at the nozzle exit will almost certainly be lower than predicted
by ideal rocket theory for a given pressure/temperature ratio, due to the obstruction of the flow
by the boundary layers and the heat input from the wall.

Even so, the method is convenient if one is after a rough first estimate. For more elaborate methods,
the afore-mentioned cited works and others similar to them are to be consulted. It appears from the
results above, however, that for a flowcase as convoluted as the ones in the present micronozzles,
the necessity for a detailed numerical simulation and/or experiment may be unavoidable, should the

2Often referred to in literature as the ”Wilson point”, after Charles Thomson Rees Wilson, a Scottish pioneer in water conden-
sation studies.
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designer need to be highly confident about whether condensation occurs or not, but at the same time
keep the stagnation temperatures as low as possible.
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FIGURE 7.7: Variation with exit Mach number of the minimum stagnation temperature required to
avoid supersaturation in the nozzle, for selected values of stagnation pressure, according to quasi-1D
isentropic theory

It is important to realise that while increasing the stagnation temperature has a favourable effect
towards eliminating nucleation, it actually decelerates the flow and has a substantially adverse effect
on the macroscopic performance of the nozzle. Comparing the Mach and temperature contours in Fig.
7.8 of the 473 K and 573 K cases shows that, even though in the latter the supersonic core initially
accelerates to slightly higher Mach numbers, it eventually decelerates and the temperature increases
again by the time the flow has reached the exit. In the 673 K case, the heat flux from the wall is so high
that the flow exhibits lower Mach numbers relative to its 473 K counterpart throughout the flowfield.
The subsonic layer (delineated by the M = 1 contour) grows thicker and the temperature barely drops
below 300 K even in the region of highest expansion. It turns out that the increased heat input from
the walls is substantial enough to raise the pressure to a degree that overshadows the effect of the
expansion.

The macroscopic impact of these phenomena is given in Table 7.2, in terms of the thrust, specific
impulse and specific impulse efficiency. In addition to the above points, it is also interesting to note
that the thicker boundary layers resulting from the higher heat flux at the wall are reflected on the
specific impulse: while the thrust drops with increasing temperature, the specific impulse increases,
because the thickening of the subsonic layers and the generally decelerating flow reduces the mass flux
at the nozzle exit. Even so, the fact remains that globally the performance deteriorates, as is shown by
the decreasing impulse efficiency.

Table 7.2: Variation of macroscopic performance with stagnation temperature

Parameter [Unit] 473 K 573 K 673 K

Thrust [mN] 1.72 1.67 1.62

Specific Impulse [s] 105.22 114.28 122.16

Sp. Impulse Efficiency [-] 0.902 0.890 0.878

These findings are consistent with those of Louisos and Hitt (2012), who performed an extensive
investigation of the effects of heat transfer on 3D micronozzle flows and found that the thrust consis-
tently scales at inverse proportion with the wall temperature. In this regard, it is interesting to make
a comparison with ideal rocket theory predictions. If it is assumed that the static temperature varies
only slightly from the stagnation value 𝑇0 at the inlet of a quasi-1D, isentropic, chocked nozzle flow of
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an ideal gas, then the exhaust velocity and mass flow can be related to the temperature as (Sutton and
Biblarz, 2017):

𝑈𝑒 =
√√√
⎷

2𝛾
𝛾 − 1𝑅𝑇0 [1 − (𝑝𝑒

𝑝𝑖
)

(𝛾−1)/𝛾
]

�̇� = 𝑝0𝐴𝑡
√𝑅𝑇0

⋅ √𝛾 ⋅ (1 + 𝛾
2 )

1+𝛾
1−𝛾

where 𝐴𝑡 is the nozzle throat area and
𝑝𝑒
𝑝𝑖

is the ratio of static pressures at the exit (e) and inlet (i). The
expression shows that increasing the stagnation temperature has no practical effect on the thrust force
𝐹𝑇 = �̇�𝑈𝑒, as the mass flow scales in inverse proportion to √𝑇0 while the velocity in direct proportion
to it. This is in contrast with the results here. The reason, of course, is that the high surface-to-volume
ratio of the micronozzle and the elevated wall temperatures render this flowcase neither inviscid nor
adiabatic and serves to illustrate why the classical ideal rocket theory is of limited relevance in inferring
performance trends for this type of systems.

In summary, it is shown that while the raising the flow temperature has a generally beneficial effect
in eliminating nucleation, it comes at a notable expense in performance. What has become apparent in
the analysis so far is that the baseline case of a 30 deg expander and 3 bar stagnation pressure is not
impacted by condensation phenomena at a stagnation temperature of 473 K. In view of this, it would
be advisable that, unless other system requirements demand it, the stagnation temperature is kept at
that value or some value near it.
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FIGURE 7.8: Isolines of Mach number and temperature at stagnation temperatures of 473-673K
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FIGURE 7.9: Isolines of supersaturation ratios and nucleation rates at stagnation temperatures of
473-673K

1.8 1.9 2.0 2.1 2.2 2.3 2.4
X [m] 1e 3

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Y 
[m

]

1e 4

Liquid mass fraction [-]
Expander = 30 deg
Depth = 100 m
P0 =  3 bar
T0 =  473.15 K

0.005 0.010
0.020

0.024

(a) Liquid mass fraction - 473 K

1.8 1.9 2.0 2.1 2.2 2.3 2.4
X [m] 1e 3

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Y 
[m

]

1e 4

Droplet radius [m] (×10 10)
Expander = 30 deg
Depth = 100 m
P0 =  3 bar
T0 =  473.15 K 2.00

2.20

2.4
0

2.20

(b) Mean droplet radius - 473 K

1.8 1.9 2.0 2.1 2.2 2.3 2.4
X [m] 1e 3

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Y 
[m

]

1e 4

Liquid mass fraction [-] (x10 5)
Expander = 30 deg
Depth = 100 m
P0 =  3 bar
T0 =  573.15 K

1 2 3 4 5

5

(c) Liquid mass fraction - 573 K

1.8 1.9 2.0 2.1 2.2 2.3 2.4
X [m] 1e 3

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Y 
[m

]

1e 4

Droplet radius [m] (×10 10)
Expander = 30 deg
Depth = 100 m
P0 =  3 bar
T0 =  573.15 K

4.00

2.80

(d) Mean droplet radius - 573 K

FIGURE 7.10: Isolines of liquid mass fractions and droplet radii at stagnation temperatures of 473-
673K
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7.3 Effect of expander angle
The expander angle is varied between 15, 30 and 45 degrees to assess what influence the expansion rate
has on the results. Similarly to previous cases, contours for Mach number and temperature, saturation
rate and nucleation, liquid fraction and droplet radius are given in Figs. 7.11 - 7.13.

It is can be seen that the expansion rate has a competing influence with the temperature effects
from the wall that were described in the previous section. The 15 deg case exhibits the lesser expansion
of the three, but also has the longest expander section. As a result, not only is the Mach number lower
but also the heat flow from the wall is given more time to manifest in the flow. It is observed in Figs.
7.11a and 7.11b that already roughly half-way through the 15 deg conical section, the expansion is
essentially halted and the Mach number and temperature drops by about 25 % by the nozzle exit. It
is reasonable to assume that in this particular case, the pressure rise due to heat input in the flow is
further augmented by the fact that some small degree of condensation takes place, with clusters in the
size of a dimer or a trimer appearing at mass fraction in the vicinity of 1%.

Expectedly, as the angle is increased, these effects are alleviated. However, they are not eliminated.
Even in the 45 deg angle case, it can be seen in Figs. 7.11e and 7.11f that the flow does not accelerate
unhindered until the nozzle exit and the region of the highest Mach number is quickly slowed down to
lower values.

The increased expansion rate that results from increasing the expander angle drives the flow further
into non-equilibrium before any nucleation starts. This is evident in Figs. 7.12b, 7.12d and 7.12f, where
progressively larger supersaturation ratios are recorded with increasing angle. As expected, this also
induces higher nucleation rates. Even so, the resulting mass fractions are not large, no more than
roughly 3% and the droplet radii remain small, at the vicinity of the smallest physical size or below it.
This indicates that, similarly to the baseline case, nucleation will either not occur or, if it does, it will
have a mostly negligible impact. In the case of the 45 deg expansion, for instance, which exhibits the
most intense nucleation and largest droplet sizes, it was found that the thrust rises from roughly 1.67
mN to 1.7mN (between the droplet-free and nominal case), a difference of about 1.2%. In the 15 deg
case, the same difference is less than 0.2%. The mechanisms behind this are the same as described in
Sec. 7.1.

Some indicative performance estimates are given in Table 7.3, for the reader’s reference. It is notable
that the nozzle with the 30deg expander seems to be an optimum between the three cases, with all three
performance metrics being at a maximum in that setting. This is in agreement with past observations
in literature (Louisos et al., 2008) and reflects the fact that that angle seems to strike a balance between
avoiding excessive interference from the boundary layers at the wall, but also keeping expansion losses
due to the opening angle contained. For the tabulated results, recall that the theoretical specific impulse
is computed according to quasi-1D theory, which is not concerned with expander angles (when the
expansion ratio stays unchanged), hence its value is the same for all three nozzles (at roughly 116.63s).

Table 7.3: Variation of macroscopic performance with expander angle

Parameter/Angle [Unit] 15 deg 30 deg K 45 deg

Thrust [mN] 1.65 1.72 1.62

Specific Impulse [s] 101 105.22 122.16

Sp. Impulse Efficiency [-] 0.866 0.902 0.878
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FIGURE 7.11: Isolines of Mach number and temperature at expander angles of 15-45 deg
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FIGURE 7.12: Isolines of supersaturation ratios and nucleation rates at expander angles of 15-45 deg
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(e) Liquid mass fraction - 45 deg
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FIGURE 7.13: Isolines of liquid mass fractions and droplet radii at expander angles of 15-45 deg
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7.4 Effect of nozzle depth
Sec. 7.2 clearly demonstrated that the stagnation temperature has a dominant effect on the flow,
primarily as it is assumed the wall is fixed at that temperature. It was shown it has a conflicting effect,
in the context of this work, where - if raised sufficiently high - it can be helpful in effectively eliminating
the prospect of any condensation, but simultaneously degrading the micronozzle’s performance. One
may then reasonably wonder what happens if the contribution from the planar wall is reduced. This
is the purpose of this last results-oriented section in this work, where the nozzle depth is doubled to
200μm and the influence of that is assessed.

The results are presented in Figs. 7.14 - 7.15. It becomes readily clear that the planar wall has a
most decisive effect on the internal flowfield. As the depth is increased, the core of the flow is distanced
from the wall’s thermal boundary layer and a larger portion of it can expand undisturbed. Unlike
the results shown so far, the core of the flow attains a maximum Mach number and temperature and
persists at those values until the nozzle exit, virtually unperturbed by the heat influences noted in the
previous cases. However, it also becomes clear that despite the reduced thermal effects and the extra
volume available for the expansion to develop, the core Mach number is actually substantially lower
than in the 100μm case, by more than 10%. Similarly, the temperature of the core is several tens of
degrees higher, with the majority of the expander staying above 273K, as opposed to previous cases
where it was near 200K. These observations hint at a substantial presence of condensation.

Indeed, Figs. 7.15c and 7.15d show that vapour molecules collapse to liquid water en mass, with
mass fractions in excess of 20% and radii substantially larger than in previous cases, almost in the
order of 10−9m. It must be noted, the liquid mass fraction is so high that it in fact exceeds the validity
range of this model. Recall it was assumed in Ch. 5 that the liquid mass fraction does not exceed 0.1,
such that interactions between the droplets and their effect on the flow can be ignored. Even so, these
results are still explored, as they provide a good indication of how a decreased wall influence gives room
for condensation to significantly impact the nozzle flow.

A comparison between the flow with condensation and the hypotherical one without, given in Table
7.4, is instructive in pointing out the effects. Both parameters exhibit notable behaviours. In this case,
the thrust is lower than in the droplet-free case, which is in constrast to the trends observed in the
comparisons of the previous sections. On the contrary, the specific impulse is lower in the droplet-free
case.

Table 7.4: Comparison of the macroscopic performance between the condensed and condensation-free
flow cases for the 200μm-deep micronozzle (𝑃0 = 3bar, 𝑇0 = 473K, Expander angle = 30deg)

Parameter [Unit] Two-phase Gaseous Offset

Thrust [mN] 3.45 3.65 -5%

Specific Impulse [s] 115.68 110 +5%

To address these particularities, we take a more detailed look at the flow topology. Fig. 7.16 presents
contours of pressure, temperature, velocity and Mach number on the plane of the nozzle exit. The
properties have been plotted on 1/4th of the exit plane and can be extended to the full geometry by
symmetry. The left hand side of each plot shows the properties for a simulation with the condensation
model switched off (a hypothetical situation of purely gaseous steam, for comparison purposes only)
and the right side depicts the nominal case. Some interesting observations can be made.

The pressure is distinctly higher (by roughly 500Pa in the regions shown) in the condensation case,
as expected due to the release of latent heat. The temperature exhibits less uniform behaviour. Near
the core of the flow, where also the condensation mainly takes place, there is a very sharp difference
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in temperature: the condensation case stays entirely above 270K, while the droplet-free case plum-
mets to lower than 160K. This serves to indicate just how much heat a condensation at such mass
fractions may release. Away from the core and close to the walls, however, the temperatures of the
two cases converge to similar values, with the condensation case being hotter only by a few degrees.
It appears that the thermal energy released is mostly expedited at heating the extremely cold vapour
in the immediate vicinity of the droplets. Its effect is less apparent near the walls, where the flow is
already elevated to a very high temperature via the wall’s much larger heat input and is therefore not
particularly influenced by the incoming heat. It should also be understood that since the flow near the
walls is moving at a much lower velocity, the mass flux is also lower. The majority of the gaseous mass
is being convected by the supersonic core (which is also colder) and it is there where most of the heat
generated is consumed.

A result that is somewhat puzzling is the velocity’s response to the condensation. Rather than
dropping as would be expected following the temperature increase, the velocity in the condensation case
is actually slightly higher, by a few metres per second, than its droplet free counterpart. The velocities
converge to practically equal values in the directions of the walls. This behaviour is in contrast both
with how supersonic flows are generally known to respond to heat addition (Louisos and Hitt, 2012)
and with the observations made in Sec. 5.9, which are typical of supersonic nozzle condensation. To
understand the reasons behind these discrepancies it is helpful to look at the internal flow topology
from yet one more perspective.

Fig. 7.17 portrays the evolution of the pressure, temperature, density and velocity along the nozzle
centerline, from the nozzle throat to the nozzle exit, for both the condensed and droplet-free case. There
are a few things to unpack here. The first observation confirms what is also shown in Figs. 7.15c and
7.15d, namely that the condensation initiates almost immediately downstream of the nozzle exit. It
can be seen that the pressure starts rising at that location and deviates from the droplet free case until
the nozzle exit. Stark is the difference between the tempereratures of the two cases, as was also earlier
observed at the nozzle outlets. The behaviour of the velocity curves is particularly interesting, since it
shows that initially the velocity in the condensed case responds as expected: i.e., it experiences a dip
and a local decrease in slope (a sign of deceleration) as a result of the heat release and the subsequent
pressure rise. A short distance downstream, however, it continues accelerating and in fact overtakes
the velocity of the droplet-free case, eventually resulting in the higher exit velocity that was observed
earlier. One last notable observation is that the condensation-free case experiences a local pressure and
temperature increase, a bump, roughly half-way through the expander, which results in a respective
dip in the velocity: a local deceleration. A similar behaviour is noted in the condensed case, albeit to a
much lesser extent.

The combination of the above observations indicates that when condensation does substantially
occur in the flow, it enters a complex interaction mechanism with the viscous and heat transfer effects
that anyway characterise a micronozzle’s flowfield. The local dip in velocity in the droplet-free case is
frequently observed in studies of the internal flow topology in micronozzles with hot walls (Alexeenko
et al., 2006; Moríñigo and Hermida-Quesada, 2009). It is the result of the fact that the boundary layers
that have been rapidly building along the wall downstream of the throat are locally impeding the flow,
before the effect of the expansion becomes dominant enough to overcome their influence and encourage
the flow to keep accelerating. When condensation occurs, the sharp increase in pressure originating
from the central core of the flow serves to slightly suppress the boundary layers at the wall. This is
also clear in Fig. 7.16a, where it can be seen that the sonic boundary is thinner along the walls for the
condensed case. So, even though at the onset of condensation the flow does temporarily slow down,
eventually the suppressed boundary layers allow more room for it to expand and also subtract less
momentum due to viscous effects. The condensed case goes on to expand at a faster rate than its
droplet-free counterpart and the velocity attains a higher value until the exit.
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FIGURE 7.14: Isolines of liquid mass fractions and droplet radii at nozzle depths of 100-200μm
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FIGURE 7.15: Isolines of liquid mass fractions and droplet radii at nozzle depths of 100-200μm
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FIGURE 7.16: Comparison of a selection of properties between the cases with and without condensation
along the nozzle exit cross-section of the 200μm-deep micronozzle (𝑃0 = 3bar, 𝑇0 = 473K, Expander
angle = 30deg). By symmetry, only a quarter of the exit cross section is shown. In each instance, the
droplet free case is on the left half and the case with condensation on the right half.
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FIGURE 7.17: Flow properties for the 200μm-deep nozzle along the centerline, from the throat to the
exit. The dotted lines correspond to prely gaseous flow, for comparison.

As a last remark the 200μm nozzle has a specific impulse efficiency of 0.99, as opposed to roughly
0.9 of the 100μm case. This is an expected result, as 1) the extra depth provides a better approxi-
mation to the quasi-1D assumption and partially alleviates viscous losses and 2) the energy released
by condensation provides an increment in acceleration by the mechanism described above. Of course,
this is not predicted by ideal rocket theory, which is why the efficiency has almost reached unity.
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7.5 Summary of macroscopic performance
The macroscopic performance values for the micronozzle cases examined in this work are summarised
in Table 7.5, for the reader’s reference. The table is divided into a left and a right half, with the
condensation model’s results listed on the left and the purely gaseous case presented on the right,
for comparison. The baseline case is re-introduced in every subcategory of the table, to visually aid
comparison between the cases.

Table 7.5: Overview of the macroscopic performance metrics for the micronozzle cases examined in
this work

Two-phase model Single-phase model

FT [mN] Isp [s] nIsp [-] FT [mN] Isp [s] nIsp [-]

Baseline
𝑃0 = 3bar, 𝑇0 = 473K,
𝜃𝑒𝑥𝑝 = 30deg,
𝑑𝑒𝑝𝑡ℎ = 100μm

1.72 105.22 0.902 1.72 105.09 0.901

Stagnation pressure
1 bar 0.503 97.08 0.832 0.507 97.07 0.832
3 bar 1.72 105.22 0.902 1.72 105.09 0.901
5 bar 2.95 107.74 0.924 2.99 107.1 0.918

Stagnation temperature
473 K 1.72 105.22 0.902 1.72 105.09 0.901
573 K 1.67 114.28 0.890 1.67 114.28 0.890
673 K 1.62 122.16 0.878 1.62 122.16 0.878

Expander angle
15 deg 1.65 101.00 0.866 1.646 101.6 0.871
30 deg 1.72 105.22 0.902 1.72 105.09 0.901
45 deg 1.69 104.40 0.895 1.708 104.17 0.893

Nozzle depth
100 μm 1.72 105.22 0.902 1.72 105.09 0.901
200 μm 3.45 115.68 0.992 3.65 110.0 0.943
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Conclusions and Recommendations

109



CHAPTER 8

Conclusions
This work set out on the objective to implement a numerical model that would be used to examine
whether the phenomenon of metastable condensation - common in supersonic nozzles operating on
superheated steam - is a probable occurence during the operation of the water-fed, micropropulsion-
oriented nozzles developed at TU Delft for microsatellite applications. The model was compiled in three
sequential steps: an existing compressible solver was supplemented with slip conditions to capture
the mild degrees of rarefaction in the supersonically expanding flow; a thermodynamic model for the
real-gas behaviour was assembled; and a model for the determination of the generation of new clusters
was then built upon the compressible solver. The likelihood and impact of condensation was then
examined for selected nozzle geometries featuring expander angles of 15-45 deg, depths of 100-200μm
and stagnation pressures and temperatures of 1-5 bar and 473-673 K respectively.

The main conclusion to be drawn is that condensation is in fact a likely scenario, especially as the
nozzle depth is increased. It is, however, not necessarily a consequential one: it was shown that in most
instances the effect on macroscopic performance is either negligible or no more than roughly 2%. The
only exception has been the deeper micronozzle, which indeed saw a deterioration in performance of
5% or more. In a more general sense, one further concludes that assessing the impact of condensation
on this type of nozzles is not as straightforward as in their large-scale counterparts and it is difficult to
note consistent trends. If it does occur, the phenomenon will enter a complex interaction mechanism
with the heat supplied from the walls, the viscous layers developing on these walls and the degree to
which the expansion can overcome either or both. While in conventional scale nozzles the occurence of
the phenomenon typically guarantees a reduction in thrust and efficiency, here there is no consistent
trend and the nature of the influence depends on the extent to which the release of latent heat can
match in severity the rest of the phenomena inside the micronozzles.

It is now possible to address the research questions that were postulated at the start of this work.

RQ1: Does condensation ensue within the operational envelope of the micronozzles of interest?
It was shown the condensation process is typically divided into a nucleation phase, during which

droplets first spontaneously emerge out of the vapour and a subsequent growth phase. The results
indicate that nucleation is a likely phenomenon in nearly all instances when the stagnation temperature
is at 473 K, even when the depth is relatively shallow (100μm). However, the droplets are afforded
only a miniscule amount of time to grow before they exit the nozzle, hence the phase of growth is not
significant and the droplets often stay (approximately) at the size at which they nucleated. The situation
is different when the nozzle depth is increased. The nucleation then takes place so far upstream in the
nozzle (almost at the throat), that the droplets grow nearly an order of magnitude by the time they exit
the nozzle, which also results in substantially more latent heat being released. So, condensation does
often ensue, but is largely limited to the nucleation phase.

RQ2: How is the potential onset of condensation affected by the stagnation conditions (pressure
and temperature) in the nozzle?
In the case of the stagnation pressure, it has been noted that changing the value from the baseline 3

bar in either direction will act to encourage nucleation, albeit in different ways. A lower total pressure
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will decrease the inertia of the flow in the expander, leading to higher pressures there, which establish
a favourable pressure/temperature combination for the onset of nucleation. Instead, increasing the
total pressure results in faster expansion and higher supersaturation, which may result in larger mass
factions condensing to liquid. In both instances, however, the macroscopic effect was small, in the
vicinity of 1% or less.

Raising the stagnation temperature to 300 °C or more generally serves to eliminate condensation
altogether. However, the resulting heat flux into the flow tends to have an adverse effect on the mi-
cronozzle’s performance, decreasing both its thrust output and its specific impulse efficiency. So, one
has to trade off whether any gains from the elimination of the small amounts of nucleation are worth
the losses resulting from increasing the temperature.

In any case, it should be understood that the occurence of condensation is not simply a function of
either the pressure or the temperature separately, but of both at the same time. Therefore, its occurence
will depend on the particular combination of the two conditions that results in the nozzle expander.

RQ3: How is the potential onset of condensation affected by the nozzles’ geometry in terms of their
expander opening angle and their depth?
For both geometric parameters, their use as a means to control the onset of condensation is in

conflict with improvements in the nozzle condensation-free performance. It was found that increasing
the expander angle helps reduce the likelihood of nucleation, but results in higher expansion losses
for the velocity. Similarly, the results implied that it is suggested to keep the nozzle as shallow as
possible to prevent extensive condensation by exploiting the high wall temperatures, but that will in
turn result in significant viscous losses. Generally, a geometry with a 30-deg expander and a 100μm
depth appears to provide the best compromise between the various effects.

RQ4: If condensation does ensue, does it have a substantial impact on the nozzles’ macroscopic
performance (thrust and specific impulse)? And if so, what is that impact?
In most instances, the effect is negligible or rather small, within less than 2% in thrust, specific

impulse and specific impulse efficiency. An exception was the deeper 200μm nozzle, that exhibited
changes of at least 5%, an estimate that is likely to be worse in reality, as effects that have been
neglected turned out to play a role in this case (high mass factions mean the droplet inertial effects and
cross-droplet interactions must be accounted for). The nature of the impact seems not to be consistent
and instead depends on the severity of the condensation occurence. It was found that in instances
where only limited condensation occurs (mass fractions of 1-2% or less), a small increment is added
to the thrust, as a result of the fact that the momentum is relatively unaffected but the pressure rises
at the nozzle exit. Inversely, in the deeper nozzle that saw extensive condensation, the thrust dropped
markedly. The specific impulse followed the opposite trends, for similar reasons.

RQS: Eventually, should the prospect of condensation be a design consideration in the future? If
so, what design choices are recommended?
Whether the impact of condensation is substantial or not will depend on the eventual mission imple-

mentation of the thruster and the answer to this research question is likely to differ depending on the
requirements of a given mission. The effect on performance usually did not exceed 1-2%. If the mis-
sion’s operational requirements are insensitive to this level of variation in performance, this needs not
be a concern. This changes if the nozzle geometries are less shallow, as it was shown that increasing
the depth can induce severe phase change.

For instance, a CubeSat or PicoSat that has a generic mission goal, such as the technology demon-
stration of onboard systems, is unlikely to be concerned with a 1% increment in thrust. However, for a
satellite carrying an optical payload or similar technology with a positioning and/or pointing require-
ment, a 1-2% change integrated over the impulse of a thrusting maneouvre could accummulate to a

111



substantial offset and could be a matter of concern.
Regarding a suggested design choice, it has actually turned out to be difficult to provide consistent

guidelines, as the measures that would be advisable for eliminating condensation often affect other
aspects of the nozzle’s performance negatively. From the perspective of the nozzle geometry, it appears
that a 30-deg expander angle strikes a good balance in simultaneously containing interference from the
wall boundary layers and expansion losses, while offering some room for selecting stagnation conditions
suitable for the mission at hand without the impact of condensation being very significant. The nozzle
depth should be kept as shallow as possible, but this should be traded off against viscous losses.
Concerning the stagnation conditions, it was found that the stagnation temperature should ideally be
as high as possible, but this has to be traded off against losses from thermal interferences, as well as
performance considerations such as the desired specific impulse. A recommendation will not be made
here for the stagnation pressure, as this is a primary driver behind the thruster’s system performance
as a whole and therefore is almost fully mission dependent.
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CHAPTER 9

Recommendations for future work
The numerical investigations performed in this work and the ensuing results point at directions that
future work could take. In a numerical work that has involved so many different aspects and assump-
tions, there are a lot of things one could recommend exploring further. However, rather than focusing
on such details, here 6 main recommendations are given on general aspects that the author feels must
be addressed in the near future for a complete characterisation of the micronozzles’ performance.

Recommendation 1: Eventually, experimental work is needed to assess or disprove the assumptions
made in this work and their effect on the validity of the results. Among the many simplifications
made here, the two most consequential ones were likely to assume that the wall follows the stagnation
temperature and that the ambient pressure is at 30 Pa. Will the flight-certified nozzle eventually be
made by silicon or will a different material affect the rate of heat conduction? Is it really that the cooler
gas has no time to affect the temperature of the wall? Could the thermal state of the nozzle in space,
prior to operation (for instance, exposed to the sun or not), affect how quickly the heater elevates the
wall temperature and alter the heat input to the flow?

Similar points can be made in the case of the ambient pressure. In the spectrum of deep vacuum
pressures, a value of 30 Pa is rather high. If the steam expands against real vacuum, then the expansion
rate is even faster and the nozzle flow will more closely approximate that of a free-jet expansion. The
water vapour will be driven even deeper into non-equilibrium and the expander temperatures will likely
be even lower. Does condensation still occur, then? Or is it that now the expansion is far too fast for
anything substantial to take place?

These and other questions can only be conclusively answered experimentally.

Recommendation 2: The results of this work pertaining to the influence of the wall temperature
could perhaps be a matter of concern. Ongoing experimental work in the TU Delft micropropulsion
group currently seems to be pursuing progressively higher stagnation temperatures for the thruster.
But it has been shown here and in past works that (if the assumption of the wall staying close to the
stagnation value is correct) this actually has a distinctly negative impact on the nozzle’s performance
(in terms of thrust). Possibly in tandem with the previous point, future work should focus on a more
detailed examination of the wall’s thermal response to the activation of the heating element and the
impact on the performance should be evaluated accordingly.

Recommendation 3: The present work only addressed the steady state portion of the thruster’s op-
eration. It is certainly interesting, perhaps even necessary, to show what happens during the transient
phases as well. There have been works in literature (e.g., by Louisos and Hitt (2011b)) that have demon-
strated the micronozzle flow behaviour can be drastically different during the start-up and shutdown,
when the Reynolds numbers are low and the heat transients prevalent. It would be useful to have an
impression on whether this works (un)favourably for the phase transition of the superheated steam.

Recommendation 4: The results of the present work imply that although condensation/freezing may
not take place inside the nozzle itself, it will most likely take place in the immediate vicinity of its exit.
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The products, droplets or fragments of ice, could be harmful to nearby surfaces (solar panels, optics,
electronics, etc) and this is likely to be an important systems engineering consideration. So, perhaps it
is warranted that future work focuses on the analysis of the nozzle’s exhaust plume and its potential
for contaminating sensitive spacecraft components.

Recommendation 5: Hybrid NS-DSMC simulations: Virtually every numerical examination of mi-
cronozzle performance in literature follows the same pattern: either a Navier-Stokes model is used at
the expense of accuracy because insufficient computational resources are available for the more re-
alistic stochastic approaches; or, if a particle-based tool is used, only a very limited range of cases
are examined, due precisely to its computational costs. Perhaps it is time for the department to start
looking into the prospect of a hybrid solver that would merge the two approaches or any other like
them and make use of the best of both worlds. A decade or two ago, the development of such tools
may have seemed like an insurmountably complex and uncertain task. Nowdays, however, there is a
substantial amount of literature and past work that can facilitate the effective and timely execution of
this task. Such a numerical tool would allow the micropropulsion group to run accurate estimations of
performance at virtually any operational condition. It would also provide the possibility to verge beyond
the limits of the nozzle geometry itself and assess such effects as the diffusion of its plume, interaction
with nearby surfaces, etc. Perhaps the effort would be worth it in the near future, possibly as part of a
PhD project or similar.

Having delineated possible future outlooks via the recommendations above, this work has reached
its end.
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