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Explainable Artificial Intelligence Techniques for the Analysis of
Reinforcement Learning in Non-Linear Flight Regimes

G. de Haro Pizarroso∗ and E. van Kampen †, supervisor
Delft University of Technology, P.O. Box 5058, 2600GB Delft, The Netherlands

Reinforcement Learning is being increasingly applied to flight control tasks, with the objective
of developing truly autonomous flying vehicles able to traverse highly variable environments and
adapt to unknown situations or possible failures. However, the development of these increasingly
complex models and algorithms further reduces our understanding of their inner workings.
This can affect the safety and reliability of the algorithms, as it is difficult or even impossible to
determine which are their failure characteristics and how they will react in situations never
tested before. It is possible to remedy this lack of understading through the development of
eXplainable Artifial Intelligence and eXplainable Reinforcement Learning methods like SHapley
Additive Explanations. This tool is used to analyze the strategy learnt by an Actor-Critic
Incremental Dual Heuristic Programming controller architecture when presented with a pitch
rate or roll rate tracking task in non-linear flying conditions, such as at high angles of attack
and large sideslip angles. This same controller architecture has been previously explored with
the same analysis tool but limited to the nominal linear flight regime, and it was observed that
the controller learnt linear control laws, even though its Artificial Neural Networks should be
able to approximate any function. Interestingly, it was discovered in this research paper that
even in the non-linear flight regime it is still more optimal for this controller architecture to
learn quasi-linear control laws, although it seems to continuously modify the linear slope as if it
was an extreme case of the gain scheduling technique.

I. Introduction

Interest in the development of civil aerospace autonomous systems has continued to rise in the last few years. Whereas
these systems were originally restricted to consumer recreation, modern Remotely Piloted Aircraft Systems (RPAS)

have been found to be very reliable in a variety of industries. Some modern applications include the agricultural sector
where RPAS are used for various tasks like monitoring crop health [1] and spraying pesticide [2, 3]; as well as different
industrial sectors where RPAS can be used to help infrastructre development and maintenance [4, 5]. Moreover, these
types of systems are also being considered as the future of urban transportation [6].

Combined with the large selection of possible business applications for RPAS, in the last few years regulators in
Europe, the US, and the rest of the world have started to consider seriously the existence of these systems. Thanks to that,
regulation is being developed that will propel the development and advancement of these technologies, as regulatory
frameworks across the world are created and homogenized and these types of vehicles are included in non-segregated
airspaces [7, 8].

However, to enable these new business applications and technologies, it is necessary to have fully autonomous
Ground, Navigation and Control (GNC) systems. Otherwise, it is not possible to ensure the required levels of safety and
to achieve economic feasibility. An important aspect of any of these GNC autonomous systems would be to be able to
adapt to a changing environment [9] and to be sufficiently fault tolerant. In addition, if these systems are also model
independent, it could significantly help in their development [10].

A possible set of technologies that could fill the need for fully autonomous GNC systems comes from the domain of
Artificial Intelligence (AI). AI has been defined as the ability of an autonomous agent to interpret and learn from external
data in an independent manner, in order to achieve a specific outcome through flexible adaptation [11]. Just like RPAS,
AI applications have multiplied exponentially in the last few years. Nowadays it is used virtually in every industry,
ranging from manufacturing [12], finance [13], social media [14], and even political campaigning [15]. Moreover,
as computers continue to advance, more data becomes available thanks to the modern internet, and new algorithms
are developed; AI will continue to expand its influence across our modern world. A subset of AI, known as Machine
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Learning (ML) has been one of the most influential fields of study of the last decade, affecting almost every aspect of
our society and industries [16–20]. This field can be defined as the programming of machines to learn from external
data or experiences, without being explicitly programmed for that task [21]. Usually, ML can be further divided into
three main areas: Supervised Learning (SL), Unsupervised Learning (USL) and Reinforcement Learning (RL) [21]. RL
is substantially different from SL and USL, as it seeks to replicate a biological learning process based on trial and error
[22]. In RL, the learning algorithm is referred to as the agent. This agent is allowed to explore its environment and
take decisions along the way. Based on the agent’s decisions and the environment’s response, a reward is given to the
agent. The objective of the RL algorithm is to maximize the agent’s reward over time. Through trial and error, the agent
should learn which actions to take depending on its state and the environment. Thanks to this learning philosophy, RL is
specially suited for real-time applications and decision-making processes such as the control of autonomous vehicles.

Traditional RL methods are only able to handle very reduced action spaces and discrete states. Whereas this can be
enough for some applications, the use of RL in autonomous vehicles requires the use of continuous time and highly
dimensional action spaces. Normally, this would lead to an exponential growth in computational cost known as the
curse of dimensionality [23]. To avoid this problem, it is possible to introduce function approximators into RL. Some of
the most powerful function approximators available today are Artificial Neural Networks (ANNs) [24]. Algorithms
that combine ANNs with RL are said to belong to the Deep Reinforcement Learning (DRL) category. This type of
algorithms have been very active in research in the last years [25, 26]. Initially, they were used to beat humans at
practically any game such as Go [27] or even incredibly complex games such as Starcraft II [28]. With time, companies
like DeepMind are starting to showcase the real potential of ANNs and RL, as well as many other ML techniques, thanks
to developments like AlphaFold, a deep learning system that is able to accurately predict the folding of proteins and
could revolutionize the way new medicines are developed [29].

Current flight control systems used in certified vehicles are based on the use of a series of linear controllers. Gain
scheduling techniques are then used to switch between these controllers, depending on the operating conditions [30].
These different linear controllers are developed in advanced with the use of a model of the system. However, the lack
of adaptability makes these techniques unsuitable for the future of autonomous vehicles. Whereas non-linear control
strategies exist, like Nonlinear Dynamic Inversion (NDI) [31–33]; they are highly dependant on the availability of
an accurate system model. This can be partially alleviated through the use of incremental models like Incremental
Nonlinear Dynamic Inversion (INDI), but at the expense of needing high sample rate measurements [34–38].

On the other hand, DRL systems are able to solve many of these problems and more. In the first place, they are
able to provide the required level of adaptability and fault-tolerance to allow navigation and control in complex and
continuously changing environments [39]. Moreover, using DRL systems allows to avoid the time-consuming process of
engineering the gain scheduling system. Some of these systems are also able to be trained completely online. Thanks to
all these characteristics, DRL systems are being increasingly applied for the development of autonomous flight control
systems [40–43].

However, all these great advances in DRL techniques come at the expense of a very significant increase in the
complexity of the underlying algorithms. This increasing complexity of DRL techniques, or even ML algorithms in
general, has a major drawback related with the lack of understanding of the models. Whereas traditional ML methods
were sufficiently simple to be able to understand what the algorithm had learnt to do without external aid, modern
versions of these algorithms are becoming increasingly complex [44]. For this reason, current ML models are often
referred to as black boxes, in the sense that their inner workings are not easily understood [45]. As ML techniques keep
on advancing, this problem will grow even worse. In general, this lack of transparency can slow down the progress of
ML applications, due to the possibility of unknown interactions in the data that could lead to a variety of problems.
However, this is even more acute in the case of flight control, as it would be unwise to certify a vehicle that flies with a
control algorithm whose understanding is limited.

For all these reasons, this paper intends to continue previous efforts [46] to develop tools able to increase the
transparency of RL techniques in the context of flight control. Thanks to these advances, RL flight control algorithms
can be improved in terms of performance, reliability, and safety. Moreover, their teachings can also be used to improve
other control techniques as they might shine a light on aspects previously ignored of the flight control process. On top
of all this, it is possible to reduce the development time thanks to the better understanding of the models and being able
to debug more easily the increasingly complex DRL models.

The remainder of this paper is structured in the following way. Section II will introduce the basis of RL applied to
Adaptive Flight Control, the main characteristics of the Incremental Dual Heuristic Programming method selected as
algorithm for this research and the eXplainable Artificial Intelligence (XAI) technique that will be applied to study
the RL controller. Section III will introduce the flight simulation environment used as training for the RL framework.
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Section IV will present the controller training in the non-linear flight regimes of the considered simulation environment,
together with the generated explanations with the help of the selected XAI technique. Finally, the conclusions are
included in Section V

II. Foundations
This section intends to present the foundational knowledge of the different aspects of this paper, including the

application of RL for flight control and the selected XAI technique.

A. Reinforcement Learning for Adaptive Flight Control
Reinforcement Learning seems to present an adequate way to develop many of the necessary adaptive intelligent

systems needed for the integration of autonomous flight vehicles. Adaptive control usually deals with what is considered
low level tasks, such as following a designated trajectory and providing robustness or adaptability in the presence of
failures or disturbances. Adaptive Critic Design (ACD) methods can be used to solve the adaptive control problem.
They are based on the actor-critic framework. This allows them to provide the necessary level of adaptability, as well as
the possibility to handle non-linear and continuous system dynamics. Moreover, these methods are said to belong to
the Approximate Dynamic Programming family, as they use approximators like Artificial Neural Networks (ANNs) to
compute the policy (the actor) and the value function (the critic).

There are several possible ACD frameworks, depending on the output of the critic and whether a system model is
needed to perform the actor and critic updates. Examples of ACD methods include the Heuristic Dynamic Programming
(HDP) and Dual Heuristic Programming (DHP), which have been used for the design of an auto-lander, including the
effect of wind shear and stochastic wind gusts [47]. DHP has also been successfully applied to the full flight control
problem of a business jet [48]. However, these types of ACD frameworks usually require a priori knowledge of the
systems dynamics, either to perform the updates of the critic or the actor, or because the algorithms require a preliminary
offline training phase.

Since a priori model information may not be available or it may have very large uncertainties, it is beneficial to
avoid this dependence. For this reason, incremental model architectures based on classical adaptive control design were
developed. These new methods were Incremental Heuristic Dynamic Programming (IHDP) [49] and Incremental Dual
Heuristic Programming (IDHP) [50]. Thanks to these methods it is possible to eliminate the need for a preliminary
offline training phase, as well as improve the efficiency of the online learning phase. This paper uses IDHP as the base
RL algorithm to which the selected XAI technique will be applied.

As already indicated, the RL framework used in this thesis is based on an actor-critic architecture. On the one hand,
the actor represents the policy 𝜋(s, s𝑅) that is used to select the next action vector a𝑡 ∈ ℜ𝑛×1 where 𝑛 is the number of
actions, based on the current state vector s𝑡 ∈ ℜ𝑚×1 where 𝑚 is the number of states, and the reference state vector
s𝑅𝑡 ∈ ℜ𝑝×1 where 𝑝 is the number of reference states; as indicated by Eq. 1. As a function of the current state and the
selected action, the system will evolve based on a non-linear discrete transition as indicated by 𝑓 in Eq. 2. Finally, the
agent will receive a reward 𝑟𝑡 depending on its current state and the intended reference state. This reward is used to
construct the total return at time step 𝑡, defined by the state-value function 𝑣(s, s𝑅), as indicated in Eq. 3, where 𝛾 is the
discount factor used to reduce the weight of future rewards and control how far-sighted the actor is.

a𝑡 = 𝜋(s𝑡 , s𝑅𝑡 ) (1)

s𝑡+1 = 𝑓 (s𝑡 , a𝑡 ) (2)

𝐺𝑡 = 𝑣(s𝑡 , s𝑅𝑡 ) =
∞∑︁
𝑗=𝑡

𝛾 𝑗−𝑡𝑟 𝑗 (3)

1. Incremental Dual Heuristic Programming
The IDHP framework presented here and used for the development of this paper is based on [51]. The reward that

is produced by the environment every time step is given by Eq. 4. It is defined as the negative weighted difference
between s𝑅𝑡 and s𝑡+1 in order to penalize the system if the achieved state is different from the desired one. The boolean
matrix P ∈ ℜ𝑝×𝑚 is used to select the controlled states from s𝑡+1, whereas the weight matrix Q ∈ ℜ𝑝×𝑝 is used
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to set the relative cost between the different controlled states. Just like DHP, IDHP does not use the scalar reward
itself for updating the ANNs weights, it employs the derivative of the reward function with respect to the state vector
𝛿𝑟𝑡+1
𝛿s𝑡+1

∈ ℜ1×𝑚, as given in Eq. 5.

𝑟𝑡+1 = 𝑟 (s𝑅𝑡 , s𝑡+1) = −[P · s𝑡+1 − s𝑅𝑡 ]𝑇Q[P · s𝑡+1 − s𝑅𝑡 ] (4)

𝛿𝑟𝑡+1
𝛿s𝑡+1

= −2[P · s𝑡+1 − s𝑅𝑡 ]𝑇QP (5)

A schematic representation of the feed-forward signal flow of the IDHP framework is included in Fig. 1. In this
figure it is possible to observe the three main modules: the critic which outputs the derivative of the state-value function
with respect to the state _̂𝑡 =

𝛿𝑣 (s𝑡 ,s𝑅𝑡 )
𝛿s𝑡 , the actor which outputs the action a𝑡 as indicated by the policy �̂�(s, s𝑅), and the

incremental model which outputs the estimations of the system matrix F̂𝑡−1 and of the control effectiveness matrix Ĝ𝑡−1
which are defined in Section II.B.2. The incremental model uses Recursive Least Squares to approximate the unknown
dynamics of the system, whereas the actor and the critic use ANNs to approximate the optimal control policy and the
derivative of the value function with respect to the state, respectively. The ˆ is used to indicate that the outputs of these
models are estimates or parametric approximations. Just this combination of modules is enough to obscure the inner
workings of the algorithms and complicate the understanding of the controller. However, the selected XAI technique
will only be applied to the actor module in order to extract information equivalent to the control laws by analyzing the
policy 𝜋(s, s𝑅). Note that the feed-forward diagram also includes a target critic module with an output denoted by an
apostrophe _′, however this capability was not used for this research paper and the mixing factor 𝜏 was always left equal
to 1, such that the target critic is always equal to the critic.

Fig. 1 Schematic of the feed-forward signal of the learning framework, extracted from [51]. The 1/𝑧 blocks
represent one time step delays

B. Learning Framework

1. Critic and Actor Neural Networks
Both the actor and the critic use a similar ANN. They both use a single hidden layer fully connected Multilayer

Perceptron. They both have the same input, which includes the current state vector and the reference state tracking
error. Moreover, both have their single hidden layer made up of 10 fully connected neurons with a hyperbolic tangent
activation function. The main difference is in the output layer, as the actor uses a scaled hyperbolic tangent function
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whereas the critic utilizes a linear output. The actor’s output is scaled according to the saturation limit of the control
surfaces of the aircraft model. If the limits are asymmetric, then the largest absolute limit is used as scaling constant.
Finally, the ANNs do not use neuron bias as the trim values of the aircraft are known to the controller.

2. Incremental Model
The use of an incremental model is the main advantage of IDHP as compared with other ACD frameworks. As long

as measurements have a sufficiently high frequency, and the state evolves relatively slow, the incremental model should
be able to approximate the non-linear unknown system dynamics [35, 39]. The main equation for the incremental model
can be derived from the original non-linear dynamics

¤s = 𝑓 (s(𝑡), a(𝑡)) → s𝑡+1 ≈ s𝑡 + F𝑡−1 (s𝑡 − s𝑡−1) + G𝑡−1 (a𝑡 − a𝑡−1) (6)

Finally, the previous equation can be written in incremental form

Δs𝑡+1 ≈ F𝑡−1Δs𝑡 + G𝑡−1Δa𝑡 (7)

where Δs𝑡+1 = s𝑡+1 − s𝑡 is the state increment, F𝑡−1 = F(s𝑡−1, a𝑡−1) is the system matrix, G𝑡−1 = G(s𝑡−1, a𝑡−1) is the
control effectiveness matrix, and Δa𝑡 = a𝑡 − a𝑡−1 is the control increment. The update rules for the incremental model
are derived in [52].

C. Explainable Artificial Intelligence
Artificial Intelligence and Machine Learning algorithms have exploded in terms of new applications in the last

decades. However, this has been at the expense of increasing the complexity of these models. Whereas the capabilities
of the new much more complex algorithms are necessary to achieve accomplishments such as the control of fully
autonomous flying vehicles, tools must be developed to compensate for the increased complexity and empower the
different audiences to understand and interpret what these black-box algorithms are doing.

The most important terms that must be defined for this purpose are [53]:
• Interpretability: It is defined as the ability to explain or to provide meaning in understandable terms to a human
• Explainability: Explainability is associated with the notion of explanation as an interface between humans and a

decision maker that is, at the same time, both an accurate proxy of the decision maker and comprehensible to
humans

• Transparency: A model is considered to be transparent if by itself it is understandable.
Moreover, it is necessary since the beginning to define which target audience are the explanations intended for, as

this will determine what is understandable or not [53]. For reference, this paper will produce explanations intended for
RL researchers and control design engineers.

The XAI techniques can be grouped in two categories: transparent models and post-hoc explainability [53].
Transparent models are not necessarily the same as an interpretable AI algorithm. An interpretable AI algorithm is
inherently understandable, such as a linear regression model or a decision tree algorithm. On the other hand, transparent
models are all those that include some method of interpretability in their design such as reward decomposition [54].
Reward decomposition separates the single numerical reward signal into different components, and computes the value
function for each of these reward components. Through an analysis of the components of the value function and reward
signal it is possible to gather knowledge about the algorithm’s inner workings. Finally, post-hoc techniques include
methods like text explanations and visualizations, together with feature relevance [53] which is the method of interest
for this paper. The main advantage of post-hoc techniques is that they do not need to modify the ML algorithm. As such,
they can be applied to most models directly.

1. SHapley Additive exPlanations (SHAP)
The chosen XAI technique for this research is SHAP analysis [55]. It is a post-hoc technique based on the Additive

Feature Attribution Method which generates a simple surrogate model to explain the workings of the desired algorithm.
As it is a post-hoc technique, it does not require any modifications of the RL algorithm and it can be applied directly to
the trained model. Compared with other feature relevance techniques such as LIME [56], SHAP is able to provide more
accurate explanations, although at the expense of a higher computational cost. In spite of this, since the target audience
for these explanations are RL researches and control engineers, the increased computational cost is less important than
the improved accuracy.
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SHAP analysis is inspired by Shapley values from cooperative game theory and it employs a simple surrogate model
approximation

𝑓 (𝑥) ≈ 𝑔(𝑥 ′) = 𝜙0 +
𝑀∑︁
𝑖=1

𝜙𝑖𝑥
′
𝑖 (8)

where 𝑓 (𝑥) is the original model, 𝑔(𝑥 ′) is the approximate explanation model, and 𝑥 ′
𝑖

is the simplified binary input
found using the mapping 𝑥 = ℎ𝑥 (𝑥 ′). The variable 𝜙0 is known as the base value and it represents the mean output
value, as this would be the output of the model without any knowledge of the features. Finally, the variables 𝜙𝑖 are
known as SHAP values and they represent the marginal contributions of each feature to the overall model output.

To apply SHAP analysis to the actor’s ANN in this paper, the algorithm DeepSHAP [57] is used, which is based on
a combination of SHAP and DeepLIFT [58]. In this algorithm, the mapping 𝑥 = ℎ(𝑥 ′) simply represents whether a
feature is included in the data set. As this research assumes that the states are constantly observable, all features will be
assumed to be known and hence 𝑥 ′

𝑖
= 1 ∀𝑖.

III. Flight Simulation
This research paper uses a flight control framework adapted from [51]. This framework utilizes a high-fidelity Cessna

Citation II aircraft simulation model as the environment, that is controlled by an IDHP model as already indicated.

A. Cessna Citation II Simulation Model
The environment for the flight control framework is composed of a high-fidelity, six degrees-of-freedom, non-linear

model of the Cessna Citation 500, developed by Delft University of Technology. The model includes engine dynamics,
as well as potentially actuator dynamics and sensor models. The state space and action space are included in Eqs. 9 and
10, respectively.

s𝑇 = [𝑝, 𝑞, 𝑟, 𝑉𝑇𝐴𝑆 , 𝛼, 𝛽, 𝜙, \, 𝐻] (9)

a𝑇 = [𝛿𝑒, 𝛿𝑎, 𝛿𝑟 ] (10)

The elements of the state space include: 𝑝, 𝑞, and 𝑟 as the roll rate, the pitch rate, and the yaw rate, respectively;
𝑉𝑇𝐴𝑆 as the true airspeed; 𝛼, and 𝛽 as the angle of attack, and sideslip angle; \, and 𝜙 as the pitch angle, and the roll
angle; and finally 𝐻 as the aircraft’s altitude. While the reference signals are not part of the simulation model, they
follow a similar notation being 𝑞𝑅, 𝑝𝑅, and 𝛽𝑅 the reference pitch rate, roll rate, and sideslip angle, respectively.The
elements of the action space are the elevator deflection 𝛿𝑒, the aileron deflection 𝛿𝑎, and the rudder deflection 𝛿𝑟 .

Together with the IDHP flight controller architecture, the simulation model includes a built-in auto-throttle to control
the airspeed. The model also included an additional yaw-damper, but it was disabled to let the IDHP controller have full
control of all the aerodynamic surfaces. Moreover, the states are assumed to be perfectly observable and all the sensor
models were deactivated. The control surface deflection limits are included in Table 1, and these are enforced inside the
simulation model by trimming the controller inputs if necessary.

Table 1 Control surface deflection limits

Control surface Saturation limits
Elevator (𝛿𝑒) [-20.05, 14.90] deg
Aileron (𝛿𝑎) [-37.24, 37.24] deg
Rudder (𝛿𝑟 ) [-21.77, 21.77] deg

B. Flight Controller
The flight controller adapted from [51] is included in Fig. 2. This architecture controls the longitudinal and lateral

degrees of freedom separately. A series of PID controllers are used to produce the desired reference angular rates.
These are then used as input for the actual actor-critic IDHP longitudinal and lateral controllers. The selection matrices
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from Eq. 4 are defined to select the relevant controlled states for each sub-controller. Additionally, the weight matrix Q
for the longitudinal controller is simply 1, as it only considers the pitch rate error in the reward; whereas the weight
matrix for the lateral controller is Q = 𝑑𝑖𝑎𝑔(1, 100) to compensate for the difference in scale between the roll rate error
𝑝 − 𝑝𝑅 and the sideslip error 𝛽 − 𝛽𝑅, being the latter usually smaller.

Fig. 2 Flight controller architecture, extracted from [51]

As observed, this controller architecture assumes no significant coupling between the longitudinal and lateral
controller. This approximation may not hold in the non-linear flight regimes which are to be explored in this research
paper. This suggests that further investigation could try to analyze fully coupled models, like the one based in the Soft
Actor Critic (SAC) algorithm developed in [59]. Regardless, whereas longitudinal-lateral coupling effects will not be
investigated, many other non-linear maneuvers are available for study.

Finally, the hyperparameters of the lateral and longitudinal controllers can be adapted to help the agents train in
the different maneuvers. Since the IDHP controller will be tested in non-linear flying conditions, the learning rates
will have to be adjusted to achieve training without divergence. Some parameters that were maintained constant for all
maneuvers were the discount factor 𝛾 = 0.8, and the initialization parameters of the actor’s and critic’s ANNs, which
both used a normal distribution 𝑁 (` = 0, 𝜎 = 0.01). Finally, the maneuvers were always carried out with the same time
step, Δ𝑡 = 0.02 s.

IV. Results and Discussion
This section presents the main results of this research. Firstly, a series of maneuvers are selected with the objective

of studying the performance of the IDHP controller and the analysis capability of the SHAP technique in a non-linear
flying regime. Afterwards, the controllers are trained for these maneuvers and a segment of time is chosen to be used in
the SHAP analysis. This is important as SHAP assumes the weights of the neural network are fixed, however the IDHP
controller is made to continuously adapt. For this reason, it is necessary to select a segment of time with converged, or
at least slowly changing, weights to be suitable for the SHAP analysis. Finally, the results are verified by reconstructing
the control laws predicted by the SHAP analysis. This final step also helps in analysing the strengths and weaknesses of
this XAI technique.

A. Maneuver selection
In previous research [46], it was already shown that the IDHP controller learns linear control laws when trained

to fly in a linear flight regime. However, this does not mean that an IDHP controller can be directly substituted by a
gain scheduled family of linear controllers. It could simply showcase that the IDHP controller was able to identify the
linearity of the dynamics in the considered flight regime. Therefore, it is of interest to study the performance of this
architecture in a non-linear flight condition.

Previous analysis of this controller architecture [46, 51] had considered sinusoidal pitch rate and roll rate tracking
tasks to initially train the IDHP. This paper considers the same simple tasks to train the controller, although the trim
conditions are modified to force the airplane into a non-linear regime. For the longitudinal maneuvers, from the
simulator aerodynamic models it was identified that the static stall angle of attack was between 10 and 11 degrees.
At the selected flying altitude of 2000 m, this corresponded to a stall velocity close to 55 m/s. However, since the
longitudinal maneuvers use a pitch rate tracking task to train the agent, a slightly higher velocity between 56 and 58 m/s
was selected. On the other hand, the lateral roll rate tracking task was modified by trimming the aircraft with a large
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reference sideslip angle. This can induce a non-linear coupling of the lateral and directional dynamics. All in all, the
three considered maneuvers are summarised in Table 2.

Table 2 Selected non-linear maneuvers, all performed at a trim altitude of 2000 m

Maneuver Amplitude [deg/s] Frequency [Hz] Trim velocity [m/s] Reference sideslip angle [deg]
Pitch rate tracking 5 0.2 58 0
Pitch rate tracking 5 0.05 56 0
Roll rate tracking 5 0.2 90 13

B. Training and segment selection
Similar to [51], the longitudinal and lateral controllers are trained separately to allow the weights and the incremental

model to converge properly. Given the complexity of the dynamics, whereas it took more or less 60 seconds to train
the controllers in the linear flight regime [51], in this case it required between 500 and 1000 seconds of simulation.
Moreover, the hyperparameters had to be significantly modified to allow the model to train reliably. The learning
rates of the critic [𝐶 had to be reduced for all the maneuvers, from an original value of 10 down to just 1 or 2. The
learning rates of the actor [𝐴 also had to be reduced in general down to 1 or 2, except for the case of the pitch rate
tracking at 0.05 Hz in which the learning rate of the actor could be left at its original value of 5. Finally, a damped
sinusoidal excitation signal was applied to the elevator in the longitudinal maneuvers and to the ailerons in the lateral
ones to promote exploration, just like it was done in the original controller implementation [51]. However, the excitation
amplitude 𝐴0 was doubled for the longitudinal maneuvers to account for the larger range of required elevator movement.
The hyperparameters are summarized in Table 3, noting that the mixing factor 𝜏 of the target critic is always equal to 1
as this feature of the architecture was not used for this research.

In general, the maneuvers could be trained reliably, although they failed in some cases. Moreover, the pitch rate
tracking at 0.05 Hz proved to be the maneuver most difficult to train, with a failure rate of approximately 50%. Whereas
it may seem like decreasing the actor’s learning rate could have improved this failure rate, this was tested and no
significant reliability improvement was observed. Figure 3 shows the convergence of the weights for each of the three
maneuvers. Even though it takes a significant amount of time, the weights of the actor’s neural network do seem to
converge eventually. In spite of this, a small periodic variation of some weights can be observed in some cases as in Fig.
3b.

Table 3 Training hyperparameters for the two longitudinal and single lateral maneuvers

Maneuver [𝐴 [𝐶 𝐴0 [deg] 𝜏

Pitch rate tracking at 0.2 Hz 2 2 1 1
Pitch rate tracking at 0.05 Hz 5 1.5 1 1
Roll rate tracking at 0.2 Hz 1 1 0.5 1

Based on Fig. 3, it is possible to select a segment of time for each of the three maneuvers to analyse with the SHAP
analysis. Since the weights should ideally be constant, or at least slowly varying, the segments were selected ensuring
that the variation in the weights, defined as the difference between the maximum and minimum of each weight in the
segment, was less than 10% of the maximum absolute weight magnitude in that same segment. While this selection
criteria is rather arbitrary, the results seemed to be satisfactory. With this weight variation criteria, the time segments
delimited in Fig. 3 were chosen∗. Moreover, whereas the actor’s weights are mostly converged in all the maneuvers, the
critic’s weights of Fig. 3a have a series of spikes. These are related with the stall and recovery events that are observed
in the evolution of the states in Fig. 4a, and showcase that in those moments the IDHP architecture is changing its value
function quite suddenly. Additionally, the last seconds of Fig. 3a show a very significant change in the critic’s weights
which is caused by the divergence of the controller.

∗The weights’ variation were 7.8% for the pitch rate tracking at 0.2 Hz, 7.2% for the pitch rate tracking at 0.05 Hz, and 1.9% for the roll rate
tracking wih 𝛽𝑅 = 13 deg
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(a) Longitudinal pitch rate tracking at 0.2 Hz near the stall
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(b) Longitudinal pitch rate tracking at 0.05 Hz near the stall
regime
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(c) Lateral roll rate tracking with 𝜷𝑹 = 13 deg

Fig. 3 Evolution of the weights for the three selected maneuvers where w𝐴 and w𝐶 are the actor’s and the
critic’s weights, respectively

Some interesting characteristics can be observed from the evolution of the states during training in Fig. 4. Firstly,
only a section of the full training in shown for the pitch rate tracking at 0.2 Hz since due to the large frequency and long
training times, it was not possible to appreciate the results. Secondly, Fig. 4a shows that at some points during the
training, the aircraft actually entered into a stall but it was able to recover. Whereas it is possible the behaviour could be
improved thanks to the IDHP controller, it was observed that a simple PD controller on the pitch rate was able to achieve
a very similar recovery in case of stall. Hence, these recovery events are probably thanks to the natural stability of the
aircraft rather than any controller. Additionally, the last 25 seconds show a significant worsening in the behaviour of the
controller and the appearance of chatter in the elevator deflection. This is caused by the divergence of the controller, as
pointed out in the discussion of the critic’s weights in Fig. 3a. This divergence was simply avoided when selecting the
time segment for analysis, but it could probably be eliminated if instead of using constant learning rates, these were
reduced dynamically whenever the controller starts to converge on a working flight control policy. In Fig. 4b, it can be
observed that the elevator deflection seems to have a double frequency component, indicating the possible existence of a
non-linear control law. Finally, the sideslip maneuver in Fig. 4c shows a very good performance and it does not seem to
present nothing too dissimilar to what was observed in previous studies.

It was attempted to increase the sideslip angle of the roll rate tracking maneuver further. However, it was found that
this maneuver at a larger sideslip angle required a larger rudder deflection than the maximum limit of 𝛿𝑟 ,𝑚𝑎𝑥 = 21.77
deg. The maneuver was tested at 𝛽𝑅 = 14 deg, which has a trim rudder deflection of 21.89 deg. This value is barely
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(b) Longitudinal pitch rate tracking at 0.05 Hz near the stall
regime

−5
0
5

p 
[d
eg

/s
]

−2.5
0.0

r [
de

g/
s]

12
13

β 
[d
eg

]

−10
0

10

ϕ 
[d
eg

]

−4
−2

δ a

20
21

δ r

380 400 420 440 460 480 500
time [s]

88

90

V 
[m

/s
]

(c) Lateral roll rate tracking with 𝜷𝑹 = 13 deg

Fig. 4 Evolution of the main state and control variables for the three selected maneuvers. The black dashed
line indicates the reference signals, whereas the red dashed line indicates the trim value for the different control
surfaces

over the limit of the available rudder deflection. In spite of this, the controller was trained for this reference sideslip
angle producing the results shown in Fig. 5. Whereas the roll rate tracking performance is decent, the sideslip angle
error never decreases and stays oscillatory for the entire duration of the simulation. This occurs because of the inability
of the controller to command a larger rudder deflection. In fact, the attempts by the controller to correct the observed
sideslip error are apparent, as the rudder deflection continuously increases in magnitude, even though the command is
then cut-off at the deflection limit by the environment model. In Fig. 5b, it can be observed how a few of the weights
also tend to continuously increase. This indicates that these weights are probably directly correlated with the rudder
deflection magnitude. Since the controller was not able to achieve a decent level of performance, as it failed to control
the sideslip angle, it was decided to stay at 𝛽𝑅 = 13 deg. This reference sideslip angle was deemed high enough to
observe any existing non-linear coupling effects, while ensuring a minimum level of performance.

C. SHAP analysis
After training the agents and selecting the time segments for analysis, it is possible to evaluate the learnt control laws

by applying the SHAP technique to the actor’s neural network. This will directly return the SHAP values of each input
feature, representing the marginal contribution of each of them to the overall control surface deflection. In addition,
since for this research 𝑥 ′

𝑖
= 1 ∀𝑖, the SHAP values 𝜙𝑖 as a function of the input features can be considered directly as the
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(b) Evolution of the controller’s weights

Fig. 5 Lateral roll rate tracking maneuver with 𝜷𝑹 = 14 deg. The black dashed line indicates the reference
signals, whereas the red dashed line indicates the trim value for the different control surfaces

equivalent control law of the IDHP architecture. There is no general consensus on the necessary number of background
samples to achieve sufficient global accuracy, but based on previous research [46], it was considered that 200 random
samples for each segment of time would provide enough resolution. Moreover, the weights at the mid point of the
segment would be considered as representative and used for the SHAP analysis. With all these details in mind, the final
results are shown in Figs. 6 and 7.
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(a) Longitudinal pitch rate tracking at 0.2 Hz near the stall
regime
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(b) Longitudinal pitch rate tracking at 0.05 Hz near the stall
regime

Fig. 6 SHAP analysis of the longitudinal pitch rate tracking maneuvers with a single time segment. Note that
the SHAP values axes of each feature have a different scale

According to the SHAP analysis in Fig. 6, the following qualitative relations exist between the longitudinal features
and the final elevator deflection for the longitudinal maneuvers:

• The pitch rate and the elevator deflection are related such that a positive pitch rate induces a positive elevator
deflection and viceversa. This behaviour implies that for more positive pitch rates, the controller wants to pitch
down the aircraft, and it does so by using more positive elevator deflections. This behaviour is stabilizing, and it
makes sense as the controller is trying to anticipate the fact that the pitch rate should not increase beyond the
necessary value.

• The relation between the angle of attack and the elevator deflection is similar to the pitch rate, in the sense that a
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more positive angle of attack leads to a more positive elevator deflection. In this case, the controller is again
showcasing a stabilizing behaviour as it is trying to reduce the angle of attack by pitching down the aircraft when
it is close to the maximum.

• The elevator deflection and the pitch angle are related in an opposite way to the pitch rate and the angle of attack.
For more positive pitch angles, the controller tends to decrease the elevator deflection and pitch up the aircraft.
This behaviour seems to be de-stabilizing, but it might be the result of the phase lag between the pitch rate and the
pitch angle or because the controller is using the pitch angle to try to compensate for the natural aerodynamic
damping of the aircraft.

• Finally, the reference pitch rate has a relation similar to the pitch angle. The more positive reference pitch rate,
the more negative the elevator deflection. This apparently unstable behaviour seems to try to reduce the error
between the reference signal and the actual pitch rate. As the reference signal increases in magnitude, the elevator
deflection decreases to make the aircraft follow the reference signal, while it uses the actual pitch rate to damp the
motion and know when to stop deflecting the elevator upwards.

The same qualitative behaviour is observed in both longitudinal pitch rate tracking maneuvers. Even though the
behaviour is qualitatively the same, it does not mean that the actual control law is equal in both cases. In fact, it can be
observed in Fig. 6 that the SHAP values of each maneuver are very different from each other. This suggests that the
underlying dynamics of both maneuvers are similar in nature, even if the final required deflection is very different in
each of them. This was to be expected as both maneuvers are pitch rate tracking tasks with the same amplitude and at a
similar trim velocity, although with a different frequency.
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(a) Aileron input-output mapping
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(b) Rudder input-output mapping

Fig. 7 SHAP analysis of the lateral roll rate tracking maneuver with 𝜷𝑹 = 13 deg with a single time segment.
Note that the SHAP values axes of each feature have a different scale

According to the SHAP analysis of the lateral roll rate tracking maneuver in Fig. 7, the predicted qualitative relation
between the lateral features and the aileron deflection includes:

• Just like in the case of the pitch rate for the longitudinal maneuvers, a more positive roll rate is associated with a
more positive aileron deflection. This behaviour is stabilizing and allows the controller to damp the motion when
close to the desired maximum.

• The relation between the yaw rate and the aileron deflection is also the same as the roll rate. The more positive the
yaw rate, the more positive the aileron deflection. This effect is more complex as the yaw rate and the aileron
deflection are connected through the increased drag of the semi-wing with the positive aileron deflection. A more
positive aileron deflection implies a more positive yaw rate, as the right semi-wing tends to generate more lift and
thus more drag, which in turn leads to a positive yaw rate. Therefore, it seems like this relation between the yaw
rate and aileron deflection is a de-stabilizing one. However, the effect of the increased aerodynamic velocity in the
opposite semi-wing due to the yaw rate, could alter this relation. The yaw rate may be used by the controller to
counteract some damping effect or to control the dutch roll coupling. Regardless, the SHAP values are very small,
which suggests that the effect of the yaw rate in the aileron deflection is small.

• The effect of the sideslip angle is to increase the aileron deflection for more positive angles. This relation seems to
be stabilizing since a more positive aileron deflection would generate a positive yaw rate and thus correct the
sideslip angle error. However, like in the case of the yaw rate, the SHAP values are orders of magnitude smaller
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than the roll rate, which imply the sideslip angle barely influences the aileron deflection.
• The relation of the roll angle with the aileron, is just like the roll rate. The more positive the angle, the more

positive the deflection. As in the case of the roll rate, this should be a stabilizing influence. This contrasts with the
longitudinal maneuver, where it was observed that the pitch angle had a de-stabilizing relation with the elevator.

• The reference roll rate is related with the aileron such that a more positive roll rate induces a more negative aileron
deflection. As in the case of the reference pitch rate in the longitudinal maneuvers, this effect is de-stabilizing.
Once more, it seems like it helps the controller track the reference signal as when it increases in magnitude the
controller will tend to deflect the ailerons to follow the signal. Then, the relation with the roll rate is used to damp
the motion when closed to the maximum.

• Finally, the reference sideslip angle does not seem to affect the final aileron deflection. This reference signal has a
constant value of 13 deg, and the SHAP value is always equal to 0. It seems like the controller is learning to
maintain the required sideslip angle just considering the sideslip angle itself, without relying on the reference
signal. This behaviour is observed at least when the weights have converged, however it is possible that during the
initial training period, the reference sideslip angle does have an influence.

Finally, for the lateral roll rate tracking maneuver in Fig. 7, the predicted qualitative relation between the lateral
features and the rudder deflection includes:

• The roll rate and the rudder deflection are related exactly like they were for the aileron. This relation is de-stabilizing
as, due to the dutch roll coupling and the increased induced drag, a positive roll rate is associated with a negative
yaw rate. This effect might mean that the controller is trying to use the rudder to help with the roll rate tracking.

• The yaw rate and the rudder are related in an opposite way to the aileron, such that a more positive yaw rate
induces a more negative rudder deflection. This effect is also de-stabilizing. It seems like the controller is fully
focused just on achieving the required roll rate tracking performance, without caring much about the effects on the
yaw rate. This would make sense, as the reward of the agent does not include the yaw rate in any form, only the
error with respect to the reference roll rate and sideslip angle.

• A more positive sideslip angle seems to produce a more positive rudder deflection. This behaviour is de-estabilizing
as a more positive rudder deflection would produce a negative yaw rate and thus increase the sideslip angle. The
controller may be using this to counteract the natural reaction of the aircraft to fly at zero sideslip, that is the
weathercock stability. Since the aircraft has to fly with 𝛽𝑅 = 13 deg, it needs to overpower its natural static
stability.

• Opposite to the aileron, a more positive roll angle produces a more negative rudder deflection. A more negative
rudder input leads to a positive yaw rate, and the positive yaw rate may lead, at least initially, to a more positive
roll angle due to the increase in velocity on the left semi-wing. However, the increase in lift also increases the
induced drag and leads to a negative yaw rate. Therefore, while this seems like a de-stabilizing effect at first,
depending on the relative strength of each of these lateral-directional couplings, this may change.

• The reference roll rate has the same relation with the rudder as with the aileron. Considering the discussion of the
effect of the roll rate on the rudder deflection, this could be a stabilizing influence. However, this depends on the
relative strength between the different competing effects and thus depends on the particular characteristics and
dynamic derivatives of this aircraft’s dutch roll dynamics.

• Finally, the reference sideslip has no effect on the rudder deflection, at least after the weights have converged. Its
SHAP values are always 0.

The dynamics of the aileron and the rudder deflection are much more complex to analyse due to the intricate
coupling between the lateral and directional motions. Moreover, this coupling depends on the characteristics of each
aircraft, as there are a series of competing effects that depend on the actual geometry and aerodynamic qualities of each
vehicle. However, it seems like the controller is focusing solely on achieving the roll rate tracking task, at the expense of
a possibly unstable yaw rate. In fact, in Fig. 4c it can be observed that the yaw rate is slightly increasing in magnitude
over time. However, since the reward of the agent only considers the error with respect to the reference roll rate and
sideslip angle signals, it makes sense that it is ignoring the effects on the yaw rate. Whereas this may not be a problem
when the target is to fly with a null reference sideslip angle 𝛽𝑅 = 0, for non-zero sideslip angle maneuvers, this may
eventually lead to problems due to slow but unrestrained yaw rate increase.

Having analysed the qualitative relations between the input features and the control surface deflections, it is possible
to focus on the actual function shape that relates these two magnitudes. Quite surprisingly, it can be observed that all the
analysed maneuvers present a linear relation between the features and the final control deflection. Even the stall at
0.2 Hz which presents the stall and recovery events showcases an almost perfect linear relationship. Moreover, the
stall at 0.05 Hz presents this linear relation even though the elevator deflection showcased at least a double frequency
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component that is not present in any of the input features. This unexpected result can be the product of several different
reasons. The first and least likely, is that the IDHP architecture is only able to learn linear control relations. Since
the architecture uses a fully connected neural network with a non-linear activation function, which could in theory
approximate functions of any characteristics, it is very improbable that the IDHP is limited to just linear control laws.
Secondly, it is possible that the considered IDHP architecture with its separated longitudinal and lateral-directional
dynamics is forcing the agent to learn linear control laws. However, the selected maneuvers were focused only on
the longitudinal or the lateral-directional motions to work within the limitations of the selected architecture; hence
this option is mostly discarded as well. A third possibility is that, thanks to its online learning capabilities, the IDHP
controller is able to adapt fast enough to changes in the dynamics, that it is simply more optimal to learn continuously
changing linear control laws. This option is further explored in Section IV.D. Finally, it could occur that the selected
maneuvers are not sufficiently non-linear to force the controller to learn non-linear control laws. However, it can be
observed how the aircraft is already stalling and the expected stall angle of attack is reached, or the largest sideslip angle
that the aircraft can sustain with the allowed rudder deflection is used. Moreover, it is doubtful the controller could be
properly trained in even more adverse conditions or even that the simulation model has an accurate representation of the
most non-linear regimes. For this reason, it is assumed that the presented maneuvers are enough to excite the non-linear
dynamics of the aircraft.

D. Verification of the results
In the previous section, it was observed that the IDHP controller had learnt linear control laws, even in the presence

of non-linear dynamics. However, it was still able to achieve good tracking performance and complete the desired task
while avoiding loss of control. To verify whether these results are correct, it is possible to reconstruct the predicted
controllers based on the SHAP analysis. This can be done by fitting the straight line to the predicted SHAP values
for each input feature for both the longitudinal and lateral controllers. Afterwards, this controller can be applied to
the recorded state history of the system to compare the control surface deflections commanded by the reconstructed
controller and the original actions taken by the actor. Whereas it could be possible to directly use the reconstructed
controllers to repeat the simulations and compare the state evolution, the comparison of the control surface deflection
for the same states should provide a more direct contrast.

From the SHAP model, if the SHAP values 𝜙𝑖 are assumed to be a linear function of the features 𝑥𝑖 , the following
controller can be obtained

𝑓 (𝑥) ≈ 𝜙0 +
𝑀∑︁
𝑖=1

𝜙𝑖𝑥
′
𝑖 = 𝜙0 +

𝑀∑︁
𝑖=1

(𝑐𝑖𝑥𝑖 + 𝑑𝑖) =
(
𝜙0 +

𝑀∑︁
𝑖=1

𝑑𝑖

)
+

𝑀∑︁
𝑖=1

𝑐𝑖𝑥𝑖 = 𝐷 +
𝑀∑︁
𝑖=1

𝑐𝑖𝑥𝑖 (11)

where it has been applied that 𝑥 ′
𝑖
= 1 for all the features. Additionally, as the actor ANN does not have any bias, then

Δ𝛿𝑒 = 0 when s = x = 0. If this is applied to the linear controller model, then 𝐷 = 0. This indicates that the 𝑦-intercept
of the straight line should not matter for the final controller model. Hence, only changes in the slope actually modify the
approximated linear controller as long as it is true that the SHAP values can be approximated as a straight line. Based
on all this, the longitudinal and lateral linear controllers can be written as

𝛿𝑒 = 𝛿𝑡𝑟𝑖𝑚,𝑒 + 𝑐𝑞,𝑒𝑞 + 𝑐𝛼,𝑒𝛼 + 𝑐\,𝑒\ + 𝑐𝑞𝑅 ,𝑒𝑞
𝑅 (12)

𝛿𝑎 = 𝛿𝑡𝑟𝑖𝑚,𝑎 + 𝑐𝑝,𝑎𝑝 + 𝑐𝑟 ,𝑎𝑟 + 𝑐𝛽,𝑎𝛽 + 𝑐𝜙,𝑎𝜙 + 𝑐𝑝𝑅 ,𝑎𝑝
𝑅 + 𝑐𝛽𝑅 ,𝑎𝛽

𝑅 (13)

𝛿𝑟 = 𝛿𝑡𝑟𝑖𝑚,𝑟 + 𝑐𝑝,𝑟 𝑝 + 𝑐𝑟 ,𝑟𝑟 + 𝑐𝛽,𝑟 𝛽 + 𝑐𝜙,𝑟𝜙 + 𝑐𝑝𝑅 ,𝑟 𝑝
𝑅 + 𝑐𝛽𝑅 ,𝑟 𝛽

𝑅 (14)

where the trim values have been added to the predicted incremental action of the control surfaces. It is possible to
compare these reconstructed controllers with the real actions and verify the predicted SHAP model, as shown in Figs. 8
and 9. Whereas the lateral controller comparison proves that the linear approximation is very close to the real ANN
controller, the longitudinal maneuvers are less well approximated. In the case of the pitch rate tracking at 0.2 Hz, the
shape of the deflection function is very close to the real actor, but the values are not the expected ones except close to
the stall recoveries. In the case of the pitch rate tracking at 0.05 Hz, the linear controller is even worse as it is not able to
reproduce the double frequency component of the original elevator deflection. This seems to show that even though the
SHAP analysis had predicted a linear controller, the IDHP actor follows a different behaviour and the method is not able
to properly predict the control laws.
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(a) Longitudinal pitch rate tracking at 0.2 Hz near the stall
regime

400 420 440 460 480 500
time [s]

−10

−9

−8

−7

−6

−5

δ e
 [d

eg
]

Elevator controller comparison

Linear controller
Real action

(b) Longitudinal pitch rate tracking at 0.05 Hz near the stall
regime

Fig. 8 Linear controller comparison with the real action taken by the IDHP controller in the longitudinal pitch
rate tracking maneuvers, using a single time segment for the SHAP analysis
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(a) Aileron deflection comparison
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(b) Rudder deflection comparison

Fig. 9 Linear controller comparison with the real action taken by the IDHP controller in the lateral roll rate
tracking maneuver with 𝜷𝑹 = 13 deg, using a single time segment for the SHAP analysis

However, this lack of explainability is due to the SHAP assumption of constant weights. Even though the weight
variation in the selected time segments is very small compared to the weights’ magnitude, even small changes in some
weights can significantly modify the final controller behaviour, especially at large pitch angles and angles of attack. It
must be noted that since the weights are taken in the middle of the time segment, the regions with weights similar to
those are the ones that are best approximated by the linear controller. This is especially apparent in Fig. 8a, as the stall
recovery sections are approximated much better than the rest of the segment. It is possible to investigate whether the
change in weights is the real reason behind the differences, by further dividing the single time segment into smaller
sub-segments.

Firstly, the pitch rate tracking at 0.2 Hz was investigated by dividing the previously considered time segment into 10
pieces, to repeat the SHAP analysis. The results in Fig. 10 showcase two very interesting findings. In the first place, it
can be observed how the different linear segments have a changing slope, especially in the angle of attack and pitch
angle. This supports the previous conclusion that the IDHP was indeed modifying its control law even if the weight
variation was minimal. Moreover, the IDHP was changing between linear controllers, as if it was applying a continuous
gain scheduling method. It seems like thanks to the great online learning capabilities of the IDHP architecture, it is more
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optimal to learn a continuously changing simple linear control law, rather than a complex non-linear one. However,
the second finding is that in the stall recovery segments, the controller is actually learning slightly non-linear laws.
The main non-linearities are present for very negative pitch rates and for very large angles of attack, which are the
states found during the stall and recovery. It seems like for the very quick and very non-linear (𝛼 > 12.5 deg) stall and
recovery events, the IDHP is not able to adapt its linear law and needs to rely on a non-linear one. In spite of this, it
could be argued that, except for the pitch rate, the non-linearities can actually be neglected and approximated with a
straight line with reasonable precision. This can be checked in Fig. 10b, as the linear controller is still able to perform a
good approximation in those segments.
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Fig. 10 SHAP analysis and linear controller comparison with the real action for the longitudinal pitch rate
tracking maneuver at 0.2 Hz near the stall regime, using 10 equally-spaced time segments. The colour of each
sub-segment is the same in both sub-figures. Note that the SHAP values axes of each feature have a different scale
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Fig. 11 SHAP analysis and linear controller comparison with the real action for the longitudinal pitch rate
tracking maneuver at 0.05 Hz near the stall regime, considering a single elevator deflection cycle sub-divided in 6
equally-spaced time segments. The colour of each sub-segment is the same in both sub-figures. Note that the
SHAP values axes of each feature have a different scale

To further investigate the pitch rate tracking at 0.05 Hz, it was decided to study only a single period of the elevator
deflection, to achieve a better detail of the double frequency component. A total of 6 time segments were used, by
reducing the number of samples from 200 to 150. This should still provide a decent level of local and global accuracy

16

D
ow

nl
oa

de
d 

by
 T

U
 D

E
L

FT
 o

n 
Ja

nu
ar

y 
25

, 2
02

3 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

02
3-

25
34

 



while allowing for the desired 6 segments. The results in Fig. 11 show very similar characteristics to the previous
analysis. Once again, the different segments have a slowly changing slope which leads to the same gain scheduling
phenomena as in the case of the pitch rate tracking at 0.2 Hz. The most significant slope changes seem to be found in the
pitch angle, which also played a noticeable role in the pitch rate tracking at 0.2 Hz. However, since no major non-linear
and very quick events like the stall recovery are present here, the IDHP controller has enough time to modify its linear
law and no non-linearities are found. As observed in Fig. 11b, the second frequency component is now better predicted,
although the division into smaller sub-segments has penalized the global accuracy of the linear controller model.

V. Conclusion
This paper has shown the capabilities of the Shapley Additive exPlanations (SHAP) analysis to capture the

inner workings of a complex and opaque Reinforcement Learning (RL) framework like Incremental Dual Heuristic
Programming (IDHP). Thanks to its use, it has been possible to understand how the IDHP architecture was able to adapt
in a complex environment, like flying very close to the stall limit and experiencing a stall and recovery event. It was
observed, that even though the environment was non-linear, it was more optimal in general for the IDHP controller to
learn linear control laws. It used its online learning capabilities and high sample efficiency to modify this linear control
law continuously through weight changes smaller than 10% of the largest weight magnitude, instead of having to learn a
more complex non-linear relation between the input features and the control surface deflection. Only when strictly
necessary and forced by the suddenness of the environment, like in the stall and recovery, did the IDHP showcase a
non-linear behaviour. However, even in that case, the SHAP analysis was able to provide a useful representation of the
input-output mapping of the controller.

Even though this analysis has been focused on a particular RL framework, the use of SHAP could very easily be
applied to more complex controller architectures in order to help understand them better. This showcases the real power
of eXplainable Reinforcement Learning (XRL) and eXplainable Artificial Intelligence (XAI) techniques at least when
applied to flight control, as techniques like SHAP can help break open the black box to look inside and discover the
real behaviour of the controllers in a manner understandable to the target audience. In the case of this research, these
results are oriented for RL researchers and control experts, but it should be relatively simple to use already existing tools
and techniques from linear and non-linear classic control theory to present these findings to a much wider audience.
Moreover, control experts can use the knowledge gained from studying these complex RL frameworks to improve
currently applied control techniques.

Future research on this topic could try to analyse more complex, possibly offline, RL frameworks like those based
on Soft Actor Critic (SAC) or Twin-Delayed Deep Deterministic Policy Gradient (TD3). Preliminary results indicate
that SAC controllers learn much more complex and non-linear control laws, which allow them to provide robustness
against many different failure situations, but more extensive analysis is necessary. Additionally, it could be of interest
to analyse the critic input-output mapping as this could provide information about what the controller valued the
most during training which lead to the observed linear laws. Once more, these results could possibly improve our
current understanding of control theory and improve the current flight controllers. Finally, it could be possible to apply
SHAP analysis to study how some RL frameworks are able to provide fault-tolerance and robustness to flight control
applications.
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