Design and quantitative assessment of a monolithic compliant gripper
that can estimate grasped object stiffness without using tactile sensors
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Abstract— Determining the ripeness of fruits is a major
point of interest for the fruit industry, since this dictates
harvest time, storage conditions and edibility. However, the
current state of the art method, which is the penetrometer,
performs destructive measurements on the fruits. Recently,
ripeness-estimating grippers are being developed to overcome
this destructiveness. However, the extra tactile sensors used
to achieve this increase complexity, costs and susceptibility to
wear. Therefore, in this paper, a gripper is designed that can
determine the grasped object’s stiffness without using additional
force or pressure sensors, but instead estimates force from
actuator calibration data, position sensor readings and the
control signal. The gripper is designed to be affordable and
simple to fabricate to facilitate potential commercial use in
the end. To achieve this, a compliant linear guide is designed
with on each of the two ends a gripper finger. The mechanism
is printed as a single part on an FDM 3D-printer out of
PETG, which facilitates the ease of fabrication. The chosen
actuator is a solenoid actuator and a Time of Flight (ToF)
distance sensor is chosen for position recording. To enable the
device to measure object stiffness, calibration of the actuator
and the mechanism’s intrinsic stiffness is performed. To test
the mechanism’s performance, calibrated metal compressive
springs with a known stiffness are used as test object for
the gripper. The stiffness value that was estimated by the
gripper is then compared to the known stiffness calibration
value. The measured stiffness values differ by 1.0-8.0% from
the calibrated spring stiffness values, which on the low error
value side compared to general stiffness estimation methods.
This implicates that the gripper works satisfactory in terms of
stiffness estimation accuracy. Therefore, it can be stated that
the main objective of this project is achieved, while also keeping
the device low-cost and simple to manufacture.

I. INTRODUCTION
A. Background

Determining the ripeness of fruits is a major point of
interest for fruit farmers, distributors, selling markets and
consumers worldwide [1]-[14]. This is relevant to determine
when fruit needs to be harvested, how it needs to be stored
and whether it is edible or not in its current state. Therefore,
it is important to be able to determine the ripeness of fruit
in a reliable and efficient manner.

The two most commonly measured mechanical fruit prop-
erties to determine the fruit’s ripeness are stiffness and
hardness. Those parameters correlate directly to ripeness [1]—
[21]. The current state of the art of determining fruit ripeness
is the penetrometer [10] [8]. This device applies pressure on
the fruit with a probe until the probe pierces the fruit. The
force applied at the moment of piercing is registered and
from this, the hardness of the fruit is calculated. This then
directly correlates to the ripeness of the fruit.

However, using a penetrometer has a significant drawback
[10] [8]: the fruit that was tested gets punctured and damaged
in the process, which is generally undesirable for fruit that
needs to be sold. Another potential drawback is that the
penetrometer measurement can only be applied in the fruit
processing factory in a lab setup where a fruit sample needs
to be taken out of the sorting and distribution chain. This is
not very time-efficient compared to directly measuring the
fruit’s ripeness within the sorting and distribution chain. In
most cases it would be more convenient to have a gripper

that could directly grasp a fruit to determine its ripeness. In
that case, while in a sorting factory, the gripper system can
immediately discriminate between ripe and unripe and sort
the incoming fruit supply accordingly. Furthermore, such a
gripper could be used to determine the ripeness of a fruit
while it is still connected to the tree or bush on which it
grows. This could for example facilitate that underripe fruits
can be left on the tree or bush for further ripening and
only the ripe fruits can be harvested. This possibility would
increase the yield and profit of ripe consumer-ready fruits and
decrease food waste. In this case, instead of harvesting both
ripe and unripe fruits, of which only the ripe ones are ready to
be sold and eaten, only the fruit that is at that moment ready
for picking will be picked and the rest will be left to ripen
further until its ripeness is appropriate before harvesting.

B. Recent advancements

Recently, there have been attempts to solve the mentioned
drawbacks of the current state of the art, which is the
penetrometer [1]-[21]. To achieve this, grippers have been
designed that can grab the fruit to determine its ripeness
in-situ with on-board sensors instead of operating in an
isolated lab setup. Furthermore, these systems determine
the ripeness of the grasped fruit in non-destructive ways
to ensure fruit integrity. Either fruit hardness or stiffness
are measured to determine the fruit ripeness. Also, some
of those gripper setups have potential to be used directly
at the fruit harvesting stage to only harvest ripe fruits and
leave the underripe fruits to ripen further. With all those
recent developments, the most significant drawbacks of the
traditional penetrometer tests are overcome.

C. Problem statement

The recent designs to overcome the penetrometer draw-
backs can be divided into two categories, namely tactile
and non-tactile systems. Regarding the non-tactile category,
acoustic or accelerational sensors are used [5], [9], [10], [21].
However, acoustic sensors are considered quite impractical
in real-life applications and accelerational sensors can po-
tentially destroy the fruits since they rely on extremely high
accelerational vibration forces. Therefore, these options are
not considered to be practical solutions and we will consider
the tactile category. All designs in the tactile category have
two things in common [1]-[4], [6]-[8], [11]-[20]. Firstly,
the grippers consist of an assembly of multiple components.
Secondly, the grippers use sensors in the fingertips that are
in direct contact with the grasped fruit to enable them to
sense for example applied force or pressure. However, the
multi-component design and assembly, together with the use
of a sensor in the fingertip contact points, adds to increased
manufacturing complexity, increased wear and more difficult
serviceability. This also leads to higher manufacturing and
maintenance costs and reduced reliability.

D. Objective

Considering the previously mentioned drawbacks of the
tactile systems, it would be beneficial to design a gripper



that consists only of one mechanical part to reduce assembly
time, cost and complexity. Also, it would be beneficial to
design a gripper that is able to determine the hardness or
stiffness of a grasped object without using any added force
or pressure sensors at the fingertips or anywhere else in the
mechanism.

Since stiffness is more straightforward to measure for a
gripper than hardness, since it is merely the applied force
on the object divided by its displacement, it was decided to
focus on stiffness estimation rather than hardness estimation
for a ripeness-estimating gripper.

So to conclude, the objective of this research is stated as
follows:

The objective of this research is to design and
experimentally evaluate a two-finger gripper of which
the mechanism can be fabricated as a single mechanical
part, which can estimate grasped object stiffness without
the need of tactile sensors on the finger surfaces and
to quantitatively assess the accuracy of the stiffness
measurements.

E. Structure

In section II, the used methods will be elaborated upon.
In section III, the results from the method will be stated.
In section IV, the results will be discussed and coupled
back to the research objective. In section V, conclusions are
drawn. In appendix I, all measured calibration data is shown.
In appendix II, all used MATLAB scripts are shown. The
used Simulink model, SolidWorks model and SolidWorks
simulation results are added as an attachment to this paper.

II. METHODS
A. Concept

In Figure 1, the initial concept for the to-be-designed
prototype is shown. This initial concept will be elaborated
upon in the remainder of this subsection.

To be able to determine the stiffness of the grasped object,
one could consider to select an actuator with a direct relation
of its applied force as a function of its position and control
signal. This relation could be established through proper
actuator calibration. To achieve such a proper relation, the
actuator must not have backlash or compressibility and have
minimal friction. Then, the mechanism can be designed in
such a way that it facilitates direct coupling between the
actuator force and position on one side and the gripper
force and displacement on the other side. In this way, only
the actuator position or gripper displacement needs to be
measured by an external sensor. This sensor can be placed
on a practical location and is not prone to wear and tear since
it does not get into contact with anything. This approach thus
eliminates the use of an extra force sensor next to a position
sensor for object stiffness estimation, which would make the
system more complex, more expensive and more prone to
wear.

To facilitate direct coupling between the actuator, the
grasped object force and the position/displacement, a com-
pliant mechanism is chosen. This eliminates friction and
backlash, resulting in a direct coupling, in which only
the mechanism’s intrinsic stiffness is added to the actuator
measurement. If this intrinsic stiffness is then properly deter-
mined first, the system can determine the object’s stiffness.
This is done by firstly extracting the overall stiffness from
the overall force-displacement curve that is generated when
compressing the object. Then, from that overall stiffness,
the mechanism’s determined intrinsic stiffness, which is also
extracted from its measured force-displacement curve, is
subtracted to get the estimated object stiffness. Also, the
wish to make the mechanism as a single part would make
a compliant mechanism a suitable option for the gripper
design.

Another requirement of the design is that the compliant
mechanism can be 3D-printed as a single mechanical part
on a standard FDM 3D-printer out of plastic. This ensures
that the mechanism is simple to fabricate and affordable.
Also, the used electrical and other components of the total
setup must be affordable and readily available, since this
results in a total system that is affordable and of which the
required parts are readily available for system assembly and
part replacement. This is taken into consideration, since it
would be beneficial if the mechanism would in the end be
used on a commercial base after its development.

B. Electrical components and setup

1) Actuator selection: For the actuator selection, an ac-
tuator type is needed for which the force that it applies
can accurately be estimated from knowing its position and
the control signal. Therefore, actuators with for example
high friction, backlash and compressibility can be eliminated.
Considering this, one option draws the attention, namely a
linear solenoid actuator. Solenoid actuators consist of a rod
that sits in an electromagnetic coil. Applying a voltage on
the coil creates a force that moves the rod. Due to the con-
struction of a solenoid, the force as a function of the stroke
length and control signal can accurately be determined. Also,
solenoids are 1 order of magnitude less expensive than voice
coil actuators, which would also satisfy the same criteria as
solenoids. Due to this, a solenoid is a proper option for the
mechanical gripper and will therefore be used. The specific
solenoid that is selected for this project has a maximum
stroke length of 18 mm this, together with the stated force-
stroke characteristic in the datasheet, [22] is sufficient for
this project, since deformations of several millimeters are
enough to determine force-displacement characteristics. The
solenoid works on a maximum voltage of 6V.

2) Distance sensor selection and control: To measure
the gripper position, a distance sensor is needed that is
affordable, compact, abundantly available and has a sufficient
range and accuracy. For this, a Time-of-Flight (ToF) distance
sensor is chosen. These sensor types are generally affordable,
costing 2 orders of magnitude less than commercial laser
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Concept sketch of the to-be-designed gripper. As can be seen, the concept gripper consists of a fixed and movable finger. The movable finger can

translate towards the fixed finger by means of an actuator. In this way, an object with a certain stiffness can be compressed. The movable finger is guided
by a compliant linear guide. A distance sensor is added to measure the inter-finger distance. To perform stiffness measurements, the actuator is calibrated
to give its applied force as a function of its stroke length and the control signal. In this way, only a position sensor is necessary to determine the object
stiffness, eliminating the need for an additional tactile sensor for force estimation.

distance sensors. Also, they generally consist of a PCB that
is 1.6mm high and 1-2 cm in dimensions, making them
quite compact compared to alternative distance sensors, such
a commercial laser distance sensors. Also, they are quite
abundantly available and are available in the required range
category. One drawback of these sensor types is that their
resolution and noise uncertainty are generally quite low
and high, respectively. The resolution is generally in whole
mm with an noise uncertainty of +1-2 mm. Nevertheless,
considering all the other advantages of such sensor types,
a ToF sensor is chosen. The ToF sensor that is specifically
chosen for this project is the VL6180 ToF distance sensor
[23]. This sensor specifically is quite compact, being a flat
rectangular PCB with dimensions of 20.3 x 17.7 mm. The
range of the sensor is 5-100mm, which is also sufficient
for this project, which requires a range of approximately
30-50mm. The only drawback is that this sensor has quite
a low resolution of just 1 mm and quite a high noise
uncertainty of £2 mm, making the sensor not very accurate.
For comparison, the laser distance sensors mentioned have
a resolution of 50 — 100pm. However, considering the
affordability, availability, compactness and sufficient range,
this sensor is chosen. This sensor can work with both 3.3V
and 5V microcontrollers. The sensor data is filtered with a
moving average filter to reduce the noise.

For reading the sensor data, an Arduino script was made
using the “Adafruit_-VL6180X” library [24]. This library
makes it possible to read out the sensor with only a single

command instead of an entire I2C communication protocol.
The maximum reading frequency of the sensor was deter-
mined to be 50Hz, giving a sample period of 0.02s or 20ms.

3) Motor driver selection and control: To control the
solenoid, a motor driver was chosen. In this case, a sim-
ple DC motor driver that can be controlled by a pulse
width modulation (PWM) signal was chosen to control the
solenoid. Specifically, a 15A motor driver was chosen, since
it was available to the author [25] [26]. One drawback is
that this motor driver needs a minimum supply voltage of
6.5V to operate, while the solenoid works on 6V. To solve
this, the voltage was set to 7V and by measurement with a
multimeter, it was determined that at a PWM value of 225,
the average output voltage was 6V, complying to the solenoid
specifications. Therefore, PWM values between 0-225 were
used instead of the full range of 0-255 (8-bits). This full
range is generally supported by standard microcontrollers,
like the Arduino and ESP32 series. Furthermore, the motor
driver can work with both 3.3V and 5V microcontrollers.

Considering the above, a motor driver like the L298N
would likely be an even better option since it only costs one
third of the price, while being able to deliver enough current
to the solenoid (around 2A) [27]. Also, this driver already
works from 5V onwards, which ensures that the motor can
be driven with a 6V source instead of a 7V source, enabling
the use of the full PWM control range of 0-255, giving an
even finer control signal resolution.



4) Microcontroller selection and communication: Since
using the VL6180 sensor requires the controller to be
programmed via Arduino IDE [28] due to the mentioned
library, it was decided to run a dedicated Arduino Uno [29]
that communicates over an UART connection to the main
controller and on request from the main controller reads out
the VL6180 data and sends it back to the main controller.

Also, since it is desired that the system is controlled
through Simulink [30], an ESP32 development board [31]
was chosen as the main microcontroller. This was firstly
done since this board is supported by Simulink through the
”Simulink Support Package for Arduino Hardware” addon
[32], so it can be programmed and used by it. Secondly it
was chosen since it has 3 UART ports, which ensures that
one port can be used to communicate with the Arduino Uno
to receive the distance sensor readings, while another port
can be used to communicate with the connected computer
over a serial connection to the running Simulink software
for monitoring, tuning and data post-processing. The ESP32
board is also capable of PWM control for values between 0-
255. Therefore, it is also directly used to control the motor
driver.

Since the ESP32 and Arduino Uno work on 3.3V and 5V,
respectively, a logic level converter was used between them
for the UART communication to protect the ESP32 against
overvoltage [33].

Also, a tactile push button was connected to the ESP32 so
that the measurement cycle of the gripper can be triggered
externally through a physical push button [34].

The entire electrical setup and its connections are schemat-
ically shown in Figure 2 and a picture of the wired electronics
can be seen in Figure 3. All the selected components and
their properties can be seen in Table 1.

C. Compliant gripper design and fabrication

1) Chosen mechanism type, fabrication method and ma-
terial: For the design of the gripper, a compliant design was
chosen. The first reason for this is that it does not create
friction and backlash. This is beneficial since the force must
be estimated from the actuator by means of calibration and
position measurement data instead of using an external force
sensor. The second reason is that a compliant design can be
3D-printed as a single piece, which makes the fabrication
process simple, reduces the assembly time and makes the
system more affordable.

For the fabrication, PETG was chosen as the material,
since it is easy to print, affordable and relatively ductile,
making it a suitable choice for compliant parts [35]. Specif-
ically, PETG from the 123-3D Jupiter series was used [36].

2) Configuration of the mechanism: Since a linear
solenoid was chosen as the actuator, the most simple solution
is to add one finger of the gripper to the solenoid perpendic-
ular the solenoid’s direction of motion and the other finger to
the solenoid rod parallel to the other finger. In this way, there
is a direct motion and force coupling between the solenoid
and the fingers in which the object will be compressed. Then,
a compliant linear guide is designed to support perfectly

linear translational motion in the direction of motion of the
solenoid so that both fingers can linearly translate towards
each other. For the design of a compliant linear guide, it
was chosen to use a double compliant parallelogram since
this ensures perfectly linear motion between both linear guide
ends. The described configuration is shown in Figure 4.

3) Chosen dimensions of the mechanism: The flexures
were designed to be as flexible as possible in the direction
of motion. Therefore, their thickness was chosen to be the
minimum printable feature thickness. Since the available
FDM 3D-printer had a 0.6mm nozzle installed and the
minimum feature thickness that a FDM 3D-printer can print
is 2 times the line width, or nozzle diameter, this ended up
to be 1.2mm.

Also, it was chosen to make the flexures as long as
possible to create maximum flexibility in the direction of
motion. Since the maximum print size of the available printer
was 220mm, it was therefore chosen to print the mechanism
without the fingers attached to it to ensure that the compliant
linear guide could be printed with the maximum possible
flexure lengths on the print bed. In the end, while ensuring
that the solid regions of the compliant stage remained solid
enough to be considered rigid bodies, the remaining flexure
length became 150mm. Another advantage of printing the
fingers separately, is that during the design and experimen-
tation phase, each finger can be reprinted separately with
some modification if that was considered necessary, instead
of needing to reprint the entire mechanism for a minor
adjustment to one of the fingers.

The height of the mechanism was chosen to be 20mm.
The first reason for this was to ensure that the mechanism
has proper bending stiffness in the out-of-plane direction of
the mechanism, while not becoming too stiff or material-
consuming. This height was determined empirically. Also,
this thickness ensures that the fingers are high enough to be
able to grasp objects between them. Furthermore, this also
ensures that the fingers are high enough to facilitate mounting
of the ToF distance sensor on the side of one finger, pointing
with its direction of sensing perpendicular to the finger on
which it is mounted in the direction of motion, towards the
side of the other finger. In this way, the compact ToF distance
sensor can be integrated into the mechanism. All mentioned
feature dimensions are shown in Table II.

4) Solenoid location and integration: Furthermore, it was
chosen to place the solenoid in the middle of the height
of the planar mechanism to ensure that its force is exactly
aligned with the height middle of the the planar mechanism.
In this way, the solenoid does not create an extra out-of-
plane twisting torque on the mechanism. To facilitate this, a
part of one of the fingers was made slightly higher in both
directions with an appropriate rectangular hole in it to ensure
that the solenoid could be shoved into the finger. This finger
was chosen to be the static finger of the mechanism. Also,
a hole was made in the other finger so that the solenoid rod
could be pushed into it. This finger was chosen to be the
moving finger. The reason for the selection of a moving and
fixed finger is that this facilitates a perfect linear guide. The
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Schematic of the entire electrical setup and connections. The ESP32 is the main microcontroller that runs the control loop. It communicates with

Simulink for data transfer. The VL6180 distance sensor that is mounted on the mechanism gives the readings to the Arduino over 12C, which then sends
it to the ESP32 over UART. The ESP32 sends PWM values as motor commands to the motor driver, which controls the solenoid. The solenoid actuates

the mechanism.

TABLE 1
USED COMPONENTS AND THEIR PROPERTIES.

Solenoid [22] 6 0-18 -
VL6180 distance sensor [23] 3.3-5 5-100 1-2
15A motor driver [25] [26] 6.5-40 -
L298N motor driver [27] 5-35

ESP32 development board [31] 3.3
Arduino Uno [29] 5
Logic level converter [33] 3.3-5
Tactile push button [34]

solenoid finger was chosen to be the static one since this
finger contains the most weight. Since the rod is lighter, this
finger was chosen to be the movable finger.

5) Torsional stiffness reinforcement: One problem with
using long and slender compliant flexures is that they have
a low twisting torsional stiffness along the axis in the
same direction as their length. therefore, this problem was
addressed by adding triangles to the outside of the outside
flexure of each parallelogram [37]. These triangles increase
the torsional stiffness of each parallelogram without adding
much to the bending stiffness. Also, in this location, the
triangles are not in the way of other parts of the mecha-
nism in both the resting state as well as in the deformed
states along the entire range of motion of the mechanism.
Since optimizing this triangle reinforcement is not part of
the design problem, this is not performed. Instead, design
parameters were chosen that result in sufficient torsional
stiffness, without investigating whether there would be more
optimal configurations, since this falls outside the scope of
this research. In the end, the triangles were designed to be
isosceles triangles with the base attached to the flexure 50mm
in width and the height perpendicular to the base to also be
50mm in height. This resulted in sufficient torsional stiffness
for the mechanism. The selected triangle dimensions can be
seen in Table II, next to the other feature dimensions from
subsubsection II-C.3.

6) Asymmetric loading problem: One drawback of the
mechanism is that it can deform asymmetrically under certain
asymmetric load conditions. This could for example happen
in a real-life situation where one of the gripper fingers
collides against an object that results in an in-plane force
perpendicular to the direction of motion. This possible asym-

50Hz/20ms - -
- 15 0-225@7V

2 0-255@6V
- 0-255 3
0-255 1

TABLE II

CHOSEN FEATURE DIMENSIONS.

1.2
Flexure length 150
Mechanism height 20
Triangle base 50
triangle height 50
Max print length 220

Flexure thickness

metric deformation is not trivial to solve with the current
mechanism. However, in the remainder of this paper, this
problem is not further investigated. Furthermore, during the
experiments performed in this paper, asymmetric loading has
not been present, since the system is tested in a controlled lab
setup, where the gripper is mounted onto a static plate and the
only objects that touch the gripper are placed in between the
gripper fingers. Due to this, collisions of the gripper fingers
with objects that result in an in-plane force perpendicular
to the direction of motion are not created. In this way,
measurements can be performed without asymmetric loading
disturbance to analyse the proof of concept.

7) SolidWorks finite element method (FEM) analysis of the
mechanism’s stiffnesses: To estimate the bending stiffness
and torsional stiffness of the designed mechanism, FEM anal-
ysis was performed in SolidWorks. For this, a new material
definition was made for PETG, using material properties
from [38]. These material properties are stated in Table III.
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Fig. 3. The entire wired electrical setup. All components visible are labeled.
The mechanism and the solenoid and distance sensor that are connected to
it are on the left outside of the image. The laptop running Simulink is on
the right outside of the image.

For the bending analysis, the large displacement button that
pops up during the simulation was pressed, since there
are indeed large displacements for the simulated compliant
mechanism. In the end, the mechanism’s intrinsic bending
stiffness is experimentally determined through calibration
and then compared to the measurement data obtained by the
mechanism’s own intrinsic stiffness measurements. Due to
this, the SolidWorks FEM data is only used to give a first
estimate of the performance and properties of the mechanism
and is therefore not required to be extremely accurate.
Considering this, the FEM results are not coupled back to the
measurement and calibration data and the material properties
used in the simulation are not investigated further on their
exactness.

TABLE III
USED MATERIAL PROPERTIES FOR 3D-PRINTED OBJECTS FROM PETG
FILAMENT [38].

Modulus of elasticity 2.2 GPa
Poisson’s ratio 0.33

Shear modulus 470 MPa
Density 1290 kg/m?
Tensile strength 53 MPa
Compressive strength 55 MPa
Yield strength 47.9 MPa

8) Assembly: The mechanism’s fingers were connected
with bolts and nuts to the compliant linear guide and the
solenoid and its rod were also connected to the fingers with
bolts and nuts. Furthermore, a base was 3D-printed that could
be screwed onto a wooden base plate, on which the mecha-
nism and its electrical components could be mounted. Onto
this 3D-printed base, the mechanism is also connected with
bolts into threaded inserts placed into the 3D-printed base.
The entire assembled mechanism can be seen in Figure 4.
The entire assembly of the mechanism and its electronics, all
mounted onto the wooden base plate, can be seen in Figure 5.

Fig. 4. Image of the gripper. Here, it can be seen that the mechanism
consists of one fixed finger and one movable finger that can translate towards
the fixed finger. The motion is facilitated by the compliant linear guide. The
guide’s outer beams are reinforced with triangles to increase the torsional
stiffness. The solenoid facilitates the gripping motion and the inter-finger
distance is measured by the VL6180 ToF sensor.

D. Simulink control model design

The Simulink control model that was developed can be
seen in Figure 6 and Figure 7. The model consists of several



Fig. 5. Entire assembly of the mechanism and its electronics mounted to
the wooden base plate.

parts. Part 1 is the main control loop, part 2 is the solenoid
control, part 3 is the position sensor reading and processing,
part 4 is the triangle wave reference force generator with
trigger input, part 5 is the measurement logging and stiffness
calculation and part 6 is the triangle wave trigger circuit.
Also some “To Workspace” blocks and oscilloscope blocks
are added to several parts of the total model. The first one
to log the data to the MATLAB [39] workspace for further
analysis and the second one to visualize the data live.
Looking at part 1, the control loop, it can be seen that
there is a reference force given and from this, the estimated
force is subtracted. This gives an error that goes through a
PID control block. This block then gives a PWM value as a
control signal. This PWM value subsequently goes through
a saturation block to ensure that it stays between 0-225 and
after that, the resulting value is rounded to an integer value.
This value is then used to control the motor. Also, the current
sensor distance is read from the sensor in part 3. This data
is subsequently modified to state the displacement, which is
used for the force-displacement analysis, and current stroke
length, which is used for the force estimation. Then, in the
control loop, both the current PWM value and the measured
stroke length are put into a 2D lookup table block that uses
linear 2D interpolation to estimate the exerted actuator force.
This force is then again subtracted from the reference force
and this error is fed back again to the PID controller block.
For the controller design, a PI controller was chosen. The I
was added to the P to compensate for the steady-state error.
The D was not used. The first reason for this is that the
controller does not need to be very fast, so overshoot is not
a problem. The second reason is that the position sensor
data is very noisy, even with filtering. Therefore, a D term
would only increase instability of the system due to noise
amplification. The PI controller was tuned using the Ziegler-
Nichols approach [40]. Firstly, Kp was increased until sus-
tained oscillations occurred. From that signal, the oscillation
period Ty was determined. Then, these two values were used

to calculate initial & p and K values for the controller, based
on this formula [40]: Kp = 0.45Ky, K; = 0.54Ky/Ty.
After that, the Kp and K values were experimentally fine-
tuned to improve the control loop behaviour. In Table IV, the
Ziegler-Nichols PID tuning process is stated step by step.

The function generator of part 4 is a MATLAB function
block that is used to create a triangle wave that starts at 0,
linearly increases to the amplitude value and then linearly
decreases to 0 again. The amplitude, period and the number
of periods can all be set manually and the block triggers
on an external trigger, originating from part 6. In part 5,
a MATLAB function block is used to record the force and
displacement values during the triangle wave. After the wave
is over, it calculates the measured loading stiffness from that
data.

To control and monitor the system, a control panel is
designed in Simulink. With this panel, the signals and states
of the mechanism can be monitored. Also, a measurement
can be triggered from the control panel. Next to that, the
parameters of the triangle wave can be set from here and the
stiffness data for each measurement cycle is shown on the
panel.

TABLE IV
ZIEGLER-NICHOLS PID-TUNING METHOD [40].

Increase K p until sustained oscillations occur
Determine the oscillation period T,

Calculate Kp = 0.45Ky

Calculate K7 = 0.54Ky /Ty

Experimentally fine-tune Kp and Ky

VAW =

E. Calibration of the gripper system

1) Actuator calibration: To obtain the 2D actuator cali-
bration curve of actuator force as a function of stroke length
and PWM value, a calibration setup was created. This setup
can be seen in Figure 8. Here, a sturdy wooden frame is
created in which a kitchen scale is placed. On top of it,
the actuator is mounted facing upwards with a 3D-printed
bracket. On the solenoid rod, a downwards facing U-shaped
3D-printed profile is mounted. In this way, when the solenoid
is turned on, it pulls the U-profile down against the scale
and the scale can then read out the applied force. Business
cards with a thickness of 0.75mm are used as spacers
between the U-profile and the scale. Possible inaccuracies
in this thickness value and compressibility of the cards are
neglected in the experiments. In this way, the stroke length
of the solenoid can be changed to enable measurement of
the solenoid force at different stroke lengths. Before each
measurement, it is ensured that the scale is reset to a reading
of 0 when the net weight of the objects is modified, for
example by adding or removing some business cards.

In this way, the stroke length is increased from 4 to
16mm in increments of 3mm (i.e. 4 business cards). At each
stroke length, different PWM values ranging from 0 to 225
in increments of 45 are applied. For each combination of
stroke length and PWM values, the displayed weight on the
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Fig. 6. Part 1 of the Simulink control model developed and used for controlling the gripper. The first 3 parts of the model are shown here. Part 1 is the
main control loop, part 2 is the solenoid control, part 3 is the position sensor reading and processing. Also some “To Workspace” blocks and oscilloscope
blocks are added to several parts of the total model. The first one to log the data to the MATLAB workspace for further analysis and the second one to
visualize the data live.
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scale in grams is read and recorded. This entire sequence
is repeated 5 times so that for each combination of stroke
length and PWM value, 5 data points are recorded. Then for
each combination, the mean and standard deviation of the 5
data points are calculated. With this information, conclusions
about the accuracy of the calibration data can be made. In this
way, a proper calibration curve of the solenoid is established.
This calibration curve can then be used with 2D interpolation
to obtain the estimated force for a given stroke length and
PWM value.

-

4

Fig. 8. Solenoid calibration setup. Here, the solenoid is mounted vertically
onto a wooden base plate and a downward-facing U-beam is connected to the
solenoid’s rod. The solenoid can in this way apply force onto a kitchen scale.
The stroke length of the solenoid is altered by putting 0.75Smm business
cards between the U-beam and the kitchen scale. In this way, for different
control signal values and different stroke lengths, the created force by the
solenoid can be determined by reading the scale output. This results in a 2D
calibration curve that gives the solenoid force as a function of its current
stroke length and the applied PWM value.

2) Mechanism calibration: To obtain the intrinsic stiff-
ness of the mechanism itself, another calibration process was
performed. The setup for this can be seen in Figure 9. Here
a pulley is made out of 2 stacked ball bearings in a 3D-
printed retainer ring. The bearings are connected to a 3D-
printed bracket with a bolt and some nuts. This bracket is
screwed to the wooden base at a position that allows the
pulley to be properly aligned with the mechanism’s fingers.
Then, a rope is attached to the movable finger and the other
end goes over the pulley. In this way the other end of the
rope is horizontally oriented in the direction of motion. This
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way, the other end of the rope then drops down from the
pulley in the direction of gravity. To this downward-facing
end, a metal hook is added. On this hook, metal rings can
be added as weights.

The weight of the hooks and rings are firstly measured
with the same kitchen scale used for the solenoid calibration.
Then, for the calibration process, the mechanism is firstly
put into its neutral position without the hook pulling on it.
This position is recorded. Then, the hook is left to dangle
downwards along the rope, exerting its weight as a force on
the movable finger along the direction of motion. The current
position of the movable finger is then recorded. Next, 2 metal
rings at a time are added to the hook and the finger position
is recorded for each addition of 2 rings. This continues for up
to 5 times 2 rings, at which point the gripper is fully closed.
Then, the cycle is performed in the other direction. This
means that firstly, the current position with all the weights on
it is recorded again and then each time 2 rings are removed
and the finger position is recorded again. When all rings
are removed, then the hook is also removed and the finger
position is recorded again. In the end, the position values
are converted to displacement values where the mechanism’s
neutral position is set to be zero displacement. In this way,
the entire trajectory of the finger is recorded in terms of
force-displacement and due to the bidirectional approach
of loading and unloading the finger, the hysteresis of the
mechanism is captured. This entire approach is repeated 5
times. In this way, the mean and standard deviation of each
force-displacement point can be calculated again. With this
data, something about the accuracy of the calibration data can
be stated. In this way, a proper force-displacement calibration
curve is established. From this, the linear part for the loading
and unloading curve are taken and linear regression is used
to create a stiffness line through both linear regions. This
results in a loading and unloading stiffness value. These
stiffness values can then be compared to stiffness values
obtained from measurements of the mechanism itself for its
own force-displacement curve in order to state something
about the performance of the mechanism.

o

Fig. 9. Mechanism calibration setup. Here, rope is connected to the
movable finger and it goes over a pulley so that the other end of the
rope faces downward in the direction of gravity. Weights are added to the
downward-facing rope end and the displacement of the movable finger is
recorded as a function of the applied weight.



F. Synthesis, design and calibration of a compressive spring
assembly

1) Spring selection: For the measurement of object stiff-
ness by the mechanism, compressive metal springs were
selected. Since metal springs have a completely linear force-
displacement curve without hysteresis, this makes the analy-
sis more straightforward. Also, since the gripper is made to
compress objects, compressive springs make the most sense
to select. Furthermore, these compressive metal springs can
be added in parallel to each other to create different stiffness
values, which are multiples of the stiffness value of a single
spring. The springs that were selected were springs from
a general spring assortment box. The springs need to be
calibrated to obtain the exact spring stiffness.

2) Spring holder design: To facilitate the containment
of the metal compressive springs in a way that they can
easily be mounted in between the 2 gripper fingers and to
ensure that multiple springs can be placed in parallel at once,
a spring holder was designed and 3D-printed. The spring
holder consists of 2 identical parts, which are essentially flat
plates with a 3x3 grid of rings cut out into it, in which the
ends of the selected compressive springs fit. Each plate then
also has 2 perpendicularly oriented plates on it. This creates
a U-shape that fits around a gripper finger to ensure that
the assembly can be connected to the fingers. The 3x3 grid
gives variability in the number of and the location of the
compressive springs that can be added to it. The thickness
of the spring-holding base plate was designed in such a way
that the spring assembly is only slightly smaller than the
distance between the fingers in the neutral position. This
is done to ensure that it fits well in between and that the
stiffness measurement of the springs can be performed along
nearly the entire range of motion of the gripper. The entire
spring assembly can be seen in Figure 10.

3) Spring stiffness calibration: To calibrate the spring
stiffness, the spring holder parts were modified. Each base
plate with a 3x3 spring grid now does not have a U-profile
on top of it, but instead has L-shaped pillars at each corner.
One of the plates is made slightly wider than the other one,
so that those L-shaped pillars can fall into each other with
some space in between them. In this way, a linear motion
guide is created to ensure that during compression, there is
no sideways motion of the spring system due to asymmetric
loading. The inner pillars are made of such a length that
the springs can be compressed far enough before the pillars
hit the other holder plate, which would act as a mechanical
stop. In this way, the spring stiffness can be determined with
large spring displacements to give more accurate results. The
spring calibration assembly can be seen in Figure 11.

For the calibration process, 4 parallel springs were used in
the holders, one at each corner, to make the system as stable
as possible. To calibrate the spring stiffness, the height of
the upper plate in the undeformed position was measured.
Also, a gym weight, which was weighed to weigh 3001g,
was added on top of the upper plate. This can be seen in
Figure 12. When the weight is applied on the upper plate,
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Fig. 10. Spring assembly. Here, 2 spring holders are 3D-printed out of
PETG with a 3x3 grid in which the chosen metal springs fit. In this way,
the stiffness of multiple parallel springs can be measured. Each holder has
a U-shape at the side that does not contain the springs. This U-shape is
meant to hook around the gripper fingers to ensure that the spring assembly
remains connected to the gripper fingers.

the height of the upper plate was measured again. Since metal
springs are perfectly linear, only these 2 force-displacement
data points are required to determine the spring stiffness
constant. This entire process is then repeated 5 times and for
each of the 2 force-position points, the mean and standard
deviation are calculated. In this way, something about the
calibration accuracy can be stated. From these measurements,
the displacement of the springs can be calculated by taking
the absolute difference between both mean position points.
From this, the spring stiffness constant can be calculated by
dividing the force exerted by the weight, converted in N, by
the absolute displacement value. This then gives the spring
stiffness for 4 parallel springs. By dividing this stiffness value
by a factor of 4, the spring stiffness of a single spring is
determined.

G. Stiffness measurements with the gripper system

1) Intrinsic stiffness measurement with the gripper: To
verify that the system can determine its own stiffness,
experiments were performed. A signal generator was made
in Simulink that outputs a triangle wave. This wave linearly
increases from O to 0.75N (at which the gripper is almost
entirely closed) in the first 5 seconds and then linearly
decreases from 0.75N to O in the next 5 seconds. This wave
is repeated 5 times. This data is subsequently filtered with
a moving average filter with a window size of 45. From
this filtered data, for each single wave, the values between



Fig. 11. Spring assembly calibration setup. Here two spring holder parts
are 3D-printed with a 3x3 spring grid. Both spring holders have a linear
guide at each corner to ensure that the spring assembly does not buckle
when a weight is laid on top of the upper spring holder.

Fig. 12.  Spring assembly calibration setup with a calibration weight on
top. Here, a gym weight is laid on top of the spring assembly and the spring
deflection is recorded. Dividing the weight by the deflection gives the spring
stiffness.

1-4 seconds are chosen for the part of interest from the
loading curve and between 6.5-10 seconds for the unloading
curve from the total wave duration of 10 seconds for each
wave. For this selected loading and unloading data, the linear
part is selected by placing a displacement bound between 4-
8mm. Here, on both the loading and unloading linear region,
a linear regression is applied, which gives a loading and
unloading stiffness. All these steps are performed 5 times
to give 5 different force-displacement curves with 5 loading
and unloading stiffnesses. From these 5 stiffnesses, the mean
and standard deviation are calculated. In this way, a bar
plot with 20 error bars can be created for the loading and
unloading stiffness. These stiffness bars are then compared to
the stiffness value obtained from the mechanism calibration
in subsubsection II-E.2.

2) Spring assembly stiffness measurement with the grip-
per: The stiffness of the metal compressive springs is mea-
sured with the calibrated gripper. To perform this, the spring
holder assembly is placed between the gripper fingers. For
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the first analysis cycle, 2 springs are placed in the holders.
Then 3 springs and lastly 4 springs. The experiments were
not performed with 1 spring, since this resulted in an unstable
control loop with large oscillations. This situation was not
further investigated since it falls outside the scope of this
project. To analyse the spring assembly stiffness for each
mentioned number of springs, the following was performed
for each number of springs: Another triangle wave with the
same period as for the intrinsic stiffness analysis in subsub-
section II-G.1 was created, but this time, the maximum value
was set to 7N. This wave is also repeated 5 times. The data
is then again smoothed with a moving-average filter with a
window size of 45. Then differentiation of the force signal
is applied to determine the loading and unloading region of
the hysteresis curve. On the loading and unloaidng regions of
the hysteresis curve, force bounds are set between 1-6N for
the linear loading and unloading region. Linear regression is
applied on the linear loading and unloading curve, resulting
in a loading and unloading stiffness. All the steps were
repeated 5 times so that in total, 5 loading and unloading
stiffnesses were created. From these stiffnesses, the mean
and standard deviation were calculated, resulting in a bar plot
with 20 error bars for the loading and unloading stiffness.
These stiffness bars are compared to the calibration spring
stiffness values obtained from subsubsection II-F.3 for the
corresponding number of springs.

III. RESULTS
A. SolidWorks Mechanism Simulation Results

1) SolidWorks bending analysis: The SolidWorks mech-
anism bending analysis stress and deformation results are
shown in Figure 13. Here, one finger is fixed and on the
other finger, a force of 0.75N towards the fixed finger is
applied. It can be seen that the bending displacement and
maximum stress are 14mm and 3.0MPa, respectively. From
this, it can be observed that the entire range of motion of
the mechanism can be reached and that the maximum stress
stays below the material’s yield strength by over a factor of
10.

2) SolidWorks torsion analysis: The SolidWorks torsion
analysis stress and deformation results are shown in Fig-
ure 14. Here, the intermediate body of the linear guide is
fixed and on one finger a torsional force couple of 2x 10N
is applied with a perpendicular distance between both forces
of 15mm. It can be seen that the torsion displacement and
maximum stress are 1.2mm and 2.3MPa, respectively. From
this, it can be observed that the maximum stress stays below
the material’s yield strength by over a factor of 10.

B. Calibration of the gripper system - Results

1) Actuator calibration data: The actuator calibration
graph is shown in Figure 15. Here, the actuator force in
Newtons can be seen as a function of the stroke length and
control signal PWM value. It can be seen that a decreasing
stroke length and increasing PWM value both lead to a larger
force value. Also, 95% confidence (20) intervals are shown
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for each data point. The entire original dataset can be seen
in appendix I.

2) Mechanism intrinsic stiffness calibration: In Figure 16,
the force-displacement curve for loading and unloading can
be seen for the calibration process of the mechanism. The
data points are given with a 95% confidence bound again.
Through the linear parts of the loading and unloading curve,
linear regression was used to determine the loading and un-
loading stiffness of the mechanism. The entire measurement
dataset can be seen in appendix I.

3) Spring stiffness calibration: In Figure 17, the force-
displacement curve for the calibration of the spring assembly
is shown. The experiment was performed with 4 parallel
springs, so that is the original measurement data. Since the
metal spring has a perfectly linear stiffness, only 2 data
points were measured. Each data point is shown with the
95% confidence bound. Through these 2 data points, a line
is drawn of which the slope is the calibrated spring stiffness
of 4 parallel springs. The values are then divided by 4
to give the spring stiffness of a single spring. The entire
measurement dataset can be seen in appendix I.
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C. Simulink model tuning - Results

1) Tuning of the PI controller: The PI-controller is tuned
according to the Ziegler-Nichols method. Sustained oscilla-
tions were observed at K, = 25. The resulting oscillation
profile is shown in Figure 18. Here, it can also be seen that
the oscillation period is 0.02s. Therefore, K,, = 25 and
T,, = 0.02s. Then, according to [40], for a PI controller,
the initial values for K, and K; are: K, = 0.45K, = 11.25
and K; = 0.54K,,/T,, = 675. These values were manually
fine-tuned and the resulting values were K, = 11 and
K; = 600. The tracking results of this calibrated PI controller
can be seen in Figure 19. Here, it can be seen that the
reference force is tracked properly at externally enforced
position/displacement changes and that for a fixed position,
the reference force changes are also followed.

2) Sensor filtering: In Figure 20, the raw distance sensor
data can be seen, together with the filtered sensor data. As
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Fig. 16. Intrinsic stiffness calibration data of the mechanism. From this,
the loading and unloading stiffness are determined.

can be seen, the raw sensor data has a substantial amount
of discrete noise. The filtered sensor data with a moving
average filter with a window size of 10 has a substantially
lower noise value than the unfiltered discrete data. This
moving average filter with a window size of 10 gives a
proper balance between filtering quality and introduced delay
(0.2s). Therefore, this filter with this window size is chosen
to filter the sensor input data. As can be seen, the force and
control signal values also contain less noise due to the filtered
position input.

3) Control panel: In Figure 21, the image of the used
control panel is shown. At the top of the control panel,
the time graphs of displacement, force and PWM value are
shown from left to right, respectively. At the bottom left,
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Force-Displacement Analysis: 4 Springs and 1 Spring
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Fig. 17. Calibration data for the spring stiffness of 4 parallel springs. The
data is divided by 4 to get the stiffness value for a single spring.

there is a running button and an active button to show
whether the Simulink model is running via “monitor and
tune” and whether a measurement is currently in progress,
respectively. Also, there is a start measurement button there
to start a measurement sequence. In the bottom center,
the amplitude, period and number of periods of the used
measurement triangle wave can be modified. In the bottom
right, the calculated total loading stiffness, calculated in
the same way as for the object stiffness analysis, is shown
together with the offset value for the initial location of the
linear regression line and the cycle number. This data is all
given for the last performed measurement cycle.
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Fig. 18. Sustained oscillations, induced by increasing K p. From this,

the oscillation period can be determined to be 0.02s and together with the
oscillation gain, the initial values for K'p and K can be determined for
the PI controller.

D. Stiffness measurements with the gripper system - Results

1) Mechanism intrinsic stiffness measurement with the
gripper: In Figure 22, the results of the mechanism’s mea-
surements of its own intrinsic stiffness are shown with an
applied moving average filter over the data with a window
size of 45. Here, 5 subfigures are shown that each contain 5
hysteresis loops. In these figures, a substantial part of the
loading and unloading curve are coloured red and green,
respectively. Within these region, the linear parts are coloured
cyan and magenta, respectively. Through these linear parts,
linear regression is performed, resulting in a loading and
unloading stiffness value for each of the 5 subfigures. Then,
for these 5 loading and unloading stiffnessess, the mean and
standard deviation are calculated. The resulting mean loading
and unloading stiffness together with their 95% confidence
interval are shown in subfigure number 6.

2) Spring stiffness measurement with the gripper: In Fig-
ure 23, the measured spring stiffness data by the mechanism
for 2, 3 and 4 parallel springs is shown with an applied
moving average filter over the data with a window size of
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Tracking Results of the PI Controller
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Fig. 19.  Tracking results of the calibrated PI controller. Here, it can
be seen that the reference force is tracked properly at externally enforced
position/displacement changes (red part) and that for a fixed position, the
reference force changes are also followed (green part).

45. Here, again 5 subfigures are shown that each contain 5
cycles. For each subfigure, the linear parts of the loading and
unloading region are shown in red and green, respectively.
For these linear regions, linear regression is used again
to determine the loading and unloading stiffness. Then,
the loading and unloading stiffnessess for all 5 subfigures
are used to calculate the mean and standard deviation. In
subfigure number 6, the mean loading and unloading stiffness
are shown together with the 95% confidence bound.

E. Comparison of calibration and measurement data

1) Mechanism intrinsic stiffness data comparison: In Fig-
ure 24, the mechanism’s intrinsic stiffness data from the
calibration process and the mechanism’s own measurements
are compared. In Figure 25, the error percentages of the
mechanism’s measured intrinsic loading and unloading stift-
ness (absolute values), compared to the calibration data, are
shown. These error values are 18% and 60% for loading and
unloading, respectively.
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moving average filter with a window size of 10, giving a balance between
filtering performance and induced delay (0.2s).

2) Spring stiffness data comparison: In Figure 26, the
spring stiffness values for 2, 3 and 4 springs are shown. This
is done for the loading and unloading stiffness extracted from
the mechanism’s own measurements and their average single
stiffness value and also for the calibration data value. In
Figure 27, the error percentages of the loading and unloading
stiffness values (absolute values) for 2, 3 and 4 parallel
springs, compared to the calibration data, are shown. The
average error values for 2, 3 and 4 parallel springs are 4.2%,
8.0% and 1.0%, respectively.

IV. DISCUSSION

A. Mechanism performance

In Figure 24, it can be seen that the mechanism’s estima-
tion of its own intrinsic stiffness is not extremely accurate,
varying 18 and 60% from the calibration data for loading
and unloading, respectively. Nevertheless, since this intrinsic
stiffness has such a low value that it falls within the 95%
confidence interval of the spring stiffness measurements,
the inaccuracy in the intrinsic stiffness measurement can
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be considered negligible when measuring the object spring
stiffness.

Also, in Figure 26, it can be seen that for the stiffness mea-
surement of 2, 3 and 4 parallel springs, the estimated average
spring stiffness varies by 4.2%, 8.0% and 1.0%, respectively.
Since generally, the error percentage for determining stiffness
values lies between 3.5%-30.7% [41], the values obtained by
the gripper designed in this paper are on the low error value
side, stating that the gripper performs satisfactory in terms
of stiffness estimation accuracy.

B. Research objective evaluation

As can be seen in section III, it is possible to create a
mechanical gripper that can estimate grasped object stiffness
by using inter-finger distance measurement, the control signal
and calibration data, eliminating the need for a tactile sensor
in the finger tips. This is achieved by choosing a solenoid
as the actuator and calibrating it to get a 2D force curve as
a function of its stroke length and the applied PWM value
control signal. Here, the stroke length is measured by using
a ToF distance sensor. To facilitate proper motion without
additional friction, a compliant linear guide is used to guide
the gripping fingers that are actuated by the solenoid. In
the end, by means of calibration, proper calibration data
is obtained for the actuator characteristics, the mechanism’s
intrinsic stiffness and the grasped springs’ stiffnesses.

Furthermore, the demand to be able to fabricate the
mechanism as a single mechanical part is satisfied, since the
mechanism can be 3D-printed as a single piece on a standard
plastic FDM 3D-printer out of PETG, which, as stated in
subsubsection II-C.1, is also one of the most affordable and
easy to print materials, while having enough ductility for
making compliant parts.

Considering all of this, it can be concluded that the objec-
tive of this research paper, namely to design and experimen-
tally evaluate a two-finger gripper of which the mechanism
can be fabricated as a single mechanical part, which can
estimate grasped object stiffness without the need of tactile
sensors on the finger surfaces and to quantitatively assess the
accuracy of the stiffness measurements, is achieved and that
the quantitative results of the object stiffness measurements
are in the upper spectrum of performance.

C. Recommendations for future research

A recommendation for future research would be to in-
vestigate whether the mechanism is also able to accurately
determine the stiffness of real tomatoes or other fruits and
vegetables, since this was the original perspective from
which this thesis arose and this gives the device a practical
use now its performance is validated for the ideal case of
using perfectly linear metal springs. Also, since fruits and
vegetables consist of organic matter, which is generally not
linearly elastic, but contains viscoelastic damping effects
and material hysteresis, it would be a larger challenge to
determine the stiffness of such an object. Therefore, future
research is needed and suggested to investigate the suitability
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of the currently developed mechanism for determining the
stiffness of such fruits and vegetables.

Another recommendation would be to try to integrate the
distance sensor reading into the main microcontroller. In this
way, no extra microcontroller is needed for that, which also
saves on cost and complexity.

Also, it should be tested how well the system performs
when mounted onto a robotic arm in a real use-case scenario.
Furthermore, since in this case, the system gets exposed to
accelerational forces due to the movement of the robotic arm,
it should either be ensured that these accelerational forces
remain negligibly low or they should be accounted for in
the stiffness measurements. Both possibilities should also be

further investigated.

As mentioned in subsubsection II-C.6, one of the possible
drawbacks of the current design is that it can deform asym-
metrically under certain asymmetric loading conditions. This
could for example happen in a real-life situation where one
of the gripper fingers collides against an object that results
in an in-plane force perpendicular to the direction of motion.
Therefore, this effect needs to be studied further to determine
whether this can be prevented or made insignificant by
properly controlling the robotic arm on which it is mounted,
or whether the design needs to be altered to remove this
possible phenomenon to ensure that the mechanism can be
used in real-life applications.
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Furthermore, when using the system in the field, parts
of the mechanism should be enclosed against dirt, rain and
other elements to protect the mechanism. The mechanism’s
performance in such outdoor field conditions should then be
evaluated.

Another recommendation would be to integrate the control
electronics into a single control electronics box that is
weather proof. In this way, the electronics are neatly worked
away and protected from outside moist and dust.

A further recommendation would be to investigate the
stability of the system with its control loop. This would
give more insight into the functioning and limitations of the
mechanism and also give more insights into the occurring
oscillations that arose when using only a single metal spring,
as mentioned in subsubsection II-G.2.

A last recommendation would be to increase the measure-
ment speed of the mechanism by using only one triangle
wave instead of five, as well as shortening the period of
that wave. Using only one triangle can be implemented
immediately. However, when shortening the wave period, the
intrinsic stiffness calibration must also be redone, since the
mechanism’s intrinsic hysteresis is speed-dependent. In this
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way, a single stiffness estimation, which in the experiments
performed in subsubsection III-D.2 took 50 seconds, can
be reduced to only a few seconds. This is a more realis-
tic speed for commercial implementation. When shortening
the stiffness estimation time in this way, the measurement
performance should be evaluated to determine whether it
is considered sufficient or not. Also, the results could be
compared to the results from this paper with 50 seconds
measurement time to see how much the results from the
increased measurement speed vary from it.

D. Broader use case perspective

Originally, this project arose from the idea to design a
gripper that is able to determine the ripeness of fruits and
vegetables by feeling them when they are still connected to
their trees, bushes and vines. The idea of this is that the grip-
per can determine whether the fruit is ripe or not and in this
way only pick the ripe fruits, increasing yield and reducing
waste. Nevertheless, there are also other opportunities where
such a mechanism could be used.

One obvious application would be inside a fruit sorting
factory, where the fruits must also be sorted based on their
ripeness. Here, such a mechanism could perform that task.
In this way, each piece of fruit can be picked up from the
incoming supply with the gripper. Then, the gripper directly
determines its ripeness and subsequently drops the fruit into
the right end station. This can make the process quicker and
also non-destructive, compared to using penetrometers for
ripeness estimation. Also, this will help to reduce waste and
increase edible yield again.

Another possible use case would be at home. Here, con-
sumers could be able to put their fruits into such a gripper
to determine whether it is still edible or not and potentially
even to predict how long the fruit can still be stored before
it will spoil. This can also reduce food waste and make
the life of people easier. Since the gripper is designed to
be as low-cost as possible, this is specifically beneficial
for personal consumers, since personal consumers generally
have a lower budget available than large companies for such
devices. Therefore, this device could also be targeted at the
personal consumer market.

A further possible use case is for example in labs and
factories. Here, it could be used by the engineers and factory
workers to determine the stiffness of certain springs or other
components of which they want to know the stiffness. In this
way, the person can just grab a spring or component with
unknown stiffness and put it in between the gripper fingers.
Then, the gripper can quickly give the estimated stiffness
value of the object, which can then immediately be used by
the person. In this way, this gripper could be a useful tool for
engineers and factory workers that need to know a certain
object’s stiffness every once in a while.

In a more general sense, the principle that was investigated
in this paper, namely to estimate force by means of actuator
calibration, position measurement and the control signal,
may have more potential use, since it has been proven to
work. This principle could be used in a multitude of other
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scenarios where it can be beneficial to measure force, torque
or weight without using force, pressure or similar sensors and
an actuator is already required for actuation. One example
could be a weight lifting crane. Here, if the lifting motor is
calibrated to give a relation between the applied lifting force
and the control signal, the weight of the lifted object can be
determined.

V. CONCLUSION

The objective of this research paper was to design and
experimentally evaluate a two-finger gripper of which the
mechanism can be fabricated as a single mechanical part,
which can estimate grasped object stiffness without the need
of tactile sensors on the finger surfaces and to quantitatively
assess the accuracy of the stiffness measurements.

To achieve this objective, a solenoid is chosen as the
actuator and is calibrated to obtain a 2D curve that gives
the actuator force as a function of its stroke length and
the applied PWM control signal value. The stroke length
is measured with a ToF distance sensor. To facilitate the
required motion, a compliant linear guide is designed. This
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Error percentages of the measured loading and unloading stiffness (absolute values) for 2, 3 and 4 parallel springs, compared to the calibration

guide is 3D-printed as a single piece out of PETG, making
the mechanism and its fabrication process straightforward
and affordable. In the end, the mechanism’s intrinsic stiffness
is calibrated. In this way, the mechanism is used to determine
the stiffness of 2, 3 and 4 parallel metal springs, which
results in estimated stiffness values that vary by 1.0-8.0%,
respectively, from the spring’s calibrated stiffness values.
This is in the upper end of stiffness estimation accuracy,
which lies between 3.5%-30.7%.

In the end, it can be stated that the objective of this
research paper is achieved, since a two-finger compliant
gripper is designed that can be fabricated as a single me-
chanical part with 3D-printing and it can estimate grasped
object stiffness without the need of tactile sensors on the
finger surfaces and its measured stiffness values have a
deviation from the objects’ calibrated stiffness value of 1.0-
8.0%, suggesting satisfactory performance.
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APPENDIX I
ALL MEASURED CALIBRATION DATA

A. Solenoid calibration data

TABLE V
SOLENOID CALIBRATION DATA

1 Mean
s (mm) PWML_val (-) s (mm) PWM._val (-)
0 45 92 135 180 225 0 45 90 135 180 225
4 0 22 185 476 783 1035 4 0 23 187.4 473 7674 1011,8
55 0 17 145 384 675 953 5,5 0 168 140,8 3714 652,8 917
7 0 15 114 308 575 860 7 0 14 112,2 303,2 565,2 8374
8,5 0 11 93 260 493 775 8,5 0 11,8 924 2544 482 747
10 0 11 80 222 431 690 10 0 10,2 78,2 216,4 417,8 668
11,5 0o 8 64 179 355 577 11,5 0 88 65,4 181,2 354,6 576
13 0 8 53 145 284 470 13 0 68 51,8 142,8 281,6 465.4
14,5 0 4 38 105 208 344 14,5 0 5 38,6 105,6 207,6 343,6
16 0 2 29 79 156 259 16 0 28 28,4 78,8 155 256,4
2 Std
s (mm) PWM.val (-) s (mm) PWM.val (-)
0 45 92 135 180 225 0 45 90 135 180 225
4 0 25 188 474 753 991 4 0 1,870829 3,507136  7,245688  10,99091 15,8019
55 0 15 140 364 644 916 55 0 1,30384 2,387467  8,018728  12,59762  21,48255
7 0 15 112 303 560 824 7 0 1,224745  1,095445  3,49285 5,890671  16,27268
8,5 0 12 91 253 474 738 8,5 0 0,83666 0,894427  3,781534  8,154753  16,23268
10 0 11 80 217 415 663 10 0 130384 2,683282  3,646917  8,983318  13,94633
11,5 0 10 68 187 367 595 11,5 0 1,095445 1,67332 3,34664 7,635444  12,40967
13 0 6 51 144 286 474 13 0 0,83666 1,095445  1,788854  3,209361  6,69328
14,5 0 5 40 108 214 357 14,5 0 1 1,341641  1,949359  4,505552  8,734987
16 0 3 28 80 159 264 16 0 0447214 0547723  0,83666 2,738613  5,029911
3
s (mm) PWML.val (-)
0 45 92 135 180 225
4 0 25 193 483 767 1008
55 0 18 139 371 648 900
7 0 14 111 299 563 830
8,5 0 11 92 256 488 745
10 0 11 80 216 418 665
11,5 0 8 65 180 354 578
13 0o 7 53 143 280 460
14,5 0 4 37 105 205 340
16 0 3 28 78 152 253
4
s (mm) PWM.val (-)
0 45 92 135 180 225
4 0o 22 184 465 763 1010
55 0 18 140 373 650 901
7 0o 14 112 301 562 824
8,5 0 13 93 250 476 734
10 0 10 77 215 419 670
11,5 0o 8 64 181 347 563
13 0o 7 51 141 279 458
14,5 0 6 40 107 209 344
16 0o 3 29 79 155 254
5
s (mm) PWM.val (-)
0 45 92 135 180 225
4 0 21 187 467 771 1015
55 0 16 140 365 647 915
7 0 12 112 305 566 849
8,5 0 12 93 253 479 743
10 0 8 74 212 406 652
11,5 0 10 66 179 350 567
13 0 6 51 141 279 465
14,5 0 6 38 103 202 333
16 0 3 28 78 153 252
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B. Mechanism calibration data
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TABLE VI
MECHANISM CALIBRATION DATA

Mean
Incr. Weight

Displacement (mm) ‘Weight (g) Distance (mm)  Displacement (mm)
1 0 12 0
25 11,5 9.9 2,1
6 222 8 4
8 329 59 6,1
11 43,6 38 82
12 543 1.2 10,8
12 65 0 12

Std

Incr. Weight

Displacement (mm) Weight (g)  Distance (mm)  Displacement (mm)
1 0 0 0
4 115 0.223606798 0,223606798
6 222 0 0
9 32,9 0,223606798 0,223606798
11 43,6 0,447213595 0,447213595
12 543 0.447213595 0,447213595
12 65 0 0
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C. Spring stiffness calibration data

TABLE VII
SPRING STIFFNESS CALIBRATION DATA

Weight (g) 0 3001

Measurement nr (-) D0 (mm) Dend (mm) K4 167,6536
1 48 29 K1 4191341
2 48 28

3 47 31

4 47 31,5

5 48 29

Mean 47,6 29,7

Std 0,547723 1,4832397
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APPENDIX IT
ALL MATLAB CODE

A. 01. Plot_solenoid_mean_and _std

% Load Force Data (Mean and Std) in grams
stroke_lengths = [4; 5.5; 7; 8.5; 10; 11.5; 13; 14.5; 16]; % Stroke lengths in mm
pwm_values = [0, 45, 90, 135, 180, 225]; % PWM values

% Mean Force Data (in grams) —> Convert to Newtons
force_mean = [
0, 23, 187.4, 473, 767.4, 1011.8;

0, 16.8, 140.8, 371.4, 652.8, 917;
0, 14, 112.2, 303.2, 565.2, 837.4;
0, 11.8, 92.4, 254.4, 482, 747,

0, 10.2, 78.2, 216.4, 417.8, 668;
0, 8.8, 65.4, 181.2, 354.6, 576;
0, 6.8, 51.8, 142.8, 281.6, 465.4;
0, 5, 38.6, 105.6, 207.6, 343.6;

0, 2. 28.4, 78.8, 155, 256.4

9

89
1 .80665e-3; % Convert to Newtons

*

% Standard Deviation Data (in grams) —> Convert to Newtons
force_std = [
0, 1.8708, 3.5071, 7.2457, 10.991, 15.8019;
0, 1.3038, 2.3875, 8.0187, 12.5976, 21.4826;
0, 1.2247, 1.0954, 3.4928, 5.8907, 16.2727;
0, 0.8367, 0.8944, 3.7815, 8.1548, 16.2327;
0, 1.3038, 2.6833, 3.6469, 8.9833, 13.9463;
0, 1.0954, 1.6733, 3.3466, 7.6354, 12.4097;
0, 0.8367, 1.0954, 1.7889, 3.2094, 6.6933;
0, 1, 1.3416, 1.9494, 4.5056, 8.735;
0, 0.4472, 0.5477, 0.8367, 2.7386, 5.0299
] = 9.80665¢-3; % Convert to Newtons
% Create Meshgrid for Interpolation
[StrokeGrid , PWMGrid] = ndgrid(stroke_lengths , pwm_values);

% Interpolation Function for Mean Force
forcelnterpMean = griddedInterpolant(StrokeGrid , PWMGrid, force_mean, ’linear’,
linear ) ;

)

% Interpolated Grid for Plotting
[PWMInterp, Strokelnterp] = meshgrid(0:5:225, 4:0.5:16);
InterpolatedForceMean = forcelnterpMean (Strokelnterp , PWMInterp) ;

% Plot 2x2 Subplots

figure;
% Subplot 1: Force vs Stroke Length for Each PWM (with Error Bars)
subplot(2, 2, 1);
hold on;
confidence_factor = 2; % 95% confidence level
for i = l:length(pwm_values)
errorbar (stroke_lengths , force_mean(:, i), confidence_factor % force_std (:, i),
o=, ...
"DisplayName ™, sprintf ('PWM = %d’, pwm_values(i)));
end
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xlabel (" Stroke Length (mm)’);

ylabel (" Force (N)’); % Update unit to Newtons

title (" Force vs Stroke Length (with 95% Confidence (2 ))’);

legend (’Location’, ’Best’, ’FontSize’, 12); % Increase font size of legend
grid on;

hold off;

% Subplot 2: Force vs PWM Value for Each Stroke Length (with Error Bars)
subplot (2, 2, 2);

hold on;
for i = l:length(stroke_lengths)
errorbar (pwm_values, force_mean(i, :), confidence_factor % force_std (i,
"DisplayName ', sprintf(’ Stroke = %.1f mm’, stroke_lengths(i)));
end

xlabel ('PWM’) ;

ylabel (" Force (N)’); % Update unit to Newtons

title (’Force vs PWM Value (with 95% Confidence (2 ))’);

legend (’Location’, ’Best’, ’FontSize’, 11); % Increase font size of legend
grid on;

hold off;

% Subplot 3: 2D Surface Plot of Raw Mean Force Data
subplot(2, 2, 3);

surf (PWMGrid, StrokeGrid, force_mean, 'EdgeColor’, ’'none’);
xlabel ('PWM’) ;

ylabel (" Stroke Length (mm)’);

zlabel (" Force (N)’); % Update unit to Newtons

title (’Raw Mean Force Data’);

colorbar;

grid on;

% Subplot 4: 2D Surface Plot of Interpolated Force Data

subplot(2, 2, 4);

surf (PWMlInterp, Strokelnterp , InterpolatedForceMean , EdgeColor’, ’'none’);
xlabel ('PWM’) ;

ylabel (* Stroke Length (mm)’);

zlabel (’Interpolated Force (N)’); % Update unit to Newtons

title (" Interpolated Force Data’);

colorbar;

grid on;
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B. 02. Plot_mechanism_F_D

% Input Force (grams) and Displacement Vectors for Loading and Unloading
force = [0 11.5 22.2 32.9 43.6 54.3 65]; % Force vector in grams

% Loading and Unloading Displacement Data (mean values) in mm

displacement_loading = [0 2.1 4 6.1 8.2 10.8 12]; % Mean loading displacement

displacement_unloading = [0.9 3.3 6.4 8.4 11 12 12]; % Mean unloading
displacement

% Standard Deviations for Loading and Unloading Displacement (example values)

std_loading = [0 0.223606798 0 0.223606798 0.447213595
0.447213595 0]; % Standard deviation for loading
std_unloading = [0.223606798 0.670820393 0.418330013 0.418330013 0 00

]; % Standard deviation for unloading

% Convert Force to Newtons (Optional)
force_N = force % 9.80665 / 1000; % Conversion: 1 gram = 9.80665e-3 Newtons

% Step 1: Specify Indices for Linear Regression

% Manually choose indices for regression

indices_loading = 1:6; % Example: Use indices 2 to 6 for loading
indices_unloading = 1:5; % Example: Use indices 2 to 6 for unloading

% Extract Data Based on Specified Indices

force_load_selected = force_N(indices_loading);
disp_-load_selected = displacement_loading (indices_loading);
force_unload_selected = force_N(indices_unloading);
disp-unload_selected = displacement_unloading (indices_unloading);

% Step 2: Perform Linear Regression for Loading

coeffs_loading = polyfit(disp_-load_selected , force_load_selected, 1); % Linear fit (
degree 1)

slope_loading = coeffs_loading(1); % Stiffness in N/mm

intercept_loading = coeffs_loading(2); % Offset

% Step 3: Perform Linear Regression for Unloading

coeffs_unloading = polyfit(disp-unload_selected , force_unload_selected, 1); % Linear
fit (degree 1)
slope_unloading = coeffs_unloading(1); % Stiffness in N/mm

intercept_unloading = coeffs_unloading (2); % Offset

% Generate Regression Line Data

displacement_fit_loading = linspace(min(disp-load_selected), max(disp-load_selected)
, 100);

force_fit_loading = polyval(coeffs_loading , displacement_fit_loading);

displacement_fit_unloading = linspace (min(disp-unload_selected), max(
disp-unload_selected), 100);

force_fit_unloading = polyval(coeffs_unloading , displacement_fit_unloading);

% Step 4: Plot the Data and Linear Regression

figure;

hold on;

% Plot Data Points with Horizontal Error Bars (2 Sigma = 95% Confidence)
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errorbar (displacement_loading , force.N, 2%std_loading, "horizontal’, “bo’

’MarkerSize’, 8, *MarkerFaceColor’, ’b’, *CapSize’, 5, ’DisplayName’,
Data (with 95% Confidence (2 ))’);

errorbar (displacement_unloading , force N, 2xstd_unloading, "horizontal’,

*MarkerSize’, 8, ’MarkerFaceColor’, 'c’, *CapSize’, 5, ’DisplayName’,

)

"Loading

>cdiamond’,

>Unloading
Data (with 95% Confidence (2 ))’);

% Highlight Selected Points for Regression

plot(disp_load_selected , force_load_selected , 'r.’, "MarkerSize’, 12,
*DisplayName’, ’Selected Loading Points’);

plot(disp_-unload_selected , force_unload_selected , 'm.’, "MarkerSize , 12,
"DisplayName’, ’Selected Unloading Points’);

% Plot Linear Regression Lines

plot(displacement_fit_loading , force_fit_loading , 'r—’, 'LineWidth’, 2, ...
"DisplayName *, sprintf(’ Loading Fit: Stiffness = %.4f, Offset = %.4f",

slope_loading , intercept_-loading));
plot(displacement_fit_unloading , force_fit_unloading , 'm-', 'LineWidth’,

2 b

’DisplayName ', sprintf(’Unloading Fit: Stiffness = %.4f, Offset = %.4f’,

slope_unloading , intercept_unloading));

% Labels, Title, and Legend
xlabel (’Displacement (mm)’);
ylabel (" Force (N)’);

title ("’ Force—Displacement Curve: Loading vs. Unloading with Linear Regression’);

legend (" Location’, “best’);
grid on;

% Step 5: Display Results
fprintf (’Loading Linear Fit: F = %.4f = d + %.4f (N)\n’, slope_loading,
intercept_loading);

fprintf (’Unloading Linear Fit: F = %4f % d + %.4f (N)\n’, slope_unloading ,

intercept_unloading);
fprintf ( Loading Stiffness: %.4f N/mm\n’, slope_loading);
fprintf (’Unloading Stiffness: %.4f N/mm\n’, slope_unloading);
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C. 03. Show_spring_kalibration_stiffness

% Input Data

Force = [0 3001]; % Force in grams

Position_mean = [47.6 29.7]; % Mean position in mm

Position_std = [0.547722558 1.483239697]; % Standard deviation in mm

% Compute Displacement (Negative Difference from Initial Position)

Displacement_mean = —(Position_mean - Position_mean(1)); % Mean displacement in mm

Displacement_std = Position_std; % Standard deviation in displacement

% Analysis for 4 Springs in Parallel

% Compute Stiffness for 4 springs

Stiffness_4springs = (Force(2) — Force(l)) / (Displacement_mean(2) -
Displacement_mean(1)); % Stiffness in g/mm

Stiffness_4springs_Nmm = Stiffness_4springs * (9.80665 / 1000); % Convert to N/mm

% Generate Linear Stiffness Line for 4 springs

Displacement_fit = linspace (Displacement_-mean(1l), Displacement_-mean(2), 100); %
Displacement values for fit

Force_fit_4springs = Force(l) + Stiffness_4springs % (Displacement_fit —
Displacement_mean (1)); % Linear relationship

% Analysis for 1 Spring (1/4 Force and 1/2 Std)

Force_lspring = Force / 4; % Force vector for | spring in grams
Stiffness_lspring = Stiffness_4springs / 4; % Stiffness in g/mm for | spring
Stiffness_1spring_.Nmm = Stiffness_lspring % (9.80665 / 1000); % Convert to N/mm

% Adjust Displacement Standard Deviation for 1 Spring

Displacement_std_lspring = Displacement_std / 2; % Standard deviation for | spring

% Generate Linear Stiffness Line for 1 spring
Force_fit_lspring = Force_lspring(l) + Stiffness_lspring % (Displacement_fit —
Displacement_mean (1)); % Linear relationship

% Convert Forces to Newtons for Plotting
Force_N_4springs = Force # 9.80665 / 1000; % Convert grams to Newtons (4 springs)
Force_N_lspring = Force_lspring % 9.80665 / 1000; % Convert grams to Newtons (I

spring)

% Plot Data Points with 2 Sigma Error Bars
figure;
hold on;

% Plot displacement points for 4 springs with 2 sigma horizontal error bars
errorbar (Displacement_mean, Force_N_4springs, 2 % Displacement_std, ’horizontal’,

"bo’, *MarkerSize’, 8, *MarkerFaceColor’, ’b’, *CapSize’, 5,
"DisplayName’, ’Data (4 Springs, 95% Confidence (2 ))’);

% Plot displacement points for 1 spring with 2 sigma horizontal error bars
errorbar (Displacement_mean, Force_N_lspring, 2 % Displacement_std_lspring,
horizontal ’,
>cdiamond’, *MarkerSize’, 8, 'MarkerFaceColor’, 'c¢’, ’CapSize’, 5,
’DisplayName’, ’Data (1 Spring, 95% Confidence (2 ))’);

% Plot Linear Stiffness Line for 4 springs
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plot(Displacement_fit, Force_fit_4springs % 9.80665 / 1000, 'r—", 'LineWidth’, 2,

"DisplayName ’, sprintf(’Stiffness (4 Springs): %.4f N/mm’,
Stiffness_4springs _Nmm));

% Plot Linear Stiffness Line for 1 spring
plot(Displacement_fit, Force_fit_lspring * 9.80665 / 1000, 'm-", 'LineWidth , 2, .
'DisplayName ', sprintf (’Stiffness (I Spring): %.4f N/mm’, Stiffness_lspring_-Nmm)
)

% Labels, Title, and Legend

xlabel (" Displacement (mm)’);

ylabel (" Force (N)’);

title (’Force—Displacement Analysis: 4 Springs and 1 Spring’);
legend (" Location’, “best’);

grid on;

% Display Stiffness in Command Window

fprintf (*Stiffness (4 Springs): %.4f N/mm\n’, Stiffness_4springs_ Nmm);
fprintf (* Stiffness (1 Spring): %.4f N/mm\n’, Stiffness_lspring_ Nmm);
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D. 04. Mechanisme_eigen _stijfheid_bepaling 3

% Signal parameters

T = 10; % Period in seconds

N = 5; 9% Number of periods

time_window = 60; % Total time window for each iteration in seconds
analysis_duration = 50; % Analysis duration in seconds within each window

% Time bounds for loading and unloading

t_loading _min = 1;
t_-loading_max = 4;
t_unloading _min = 6.5;
t_unloading_max = 10;

% Smoothing parameters

window_size = 45; % Adjust based on noise level
smooth_disp = movmean(Displacement, window_size); % Smooth displacement
smooth_force = movmean(Force, window_size); % Smooth force

% Bounds for displacement

Dminbound
Dmaxbound

4;
8;

% Initialize arrays to store stiffness values
loading_stiffnesses = zeros(1l, 5);
unloading_stiffnesses = zeros(l, 5);

% Prepare figure for subplots

figure () ;
for iteration = 1:5
% Time bounds for current iteration
start_time = (iteration — 1) * time_window;
end_time = start_-time + analysis_duration; % Limit to first 50 seconds

% Filter data for the current time window

time_indices = t >= start_time & t < end_time;
t_window = t(time_indices);

disp_-window = smooth_disp(time_indices);
force_window = smooth_force(time_indices);

% Identify loading and unloading regions using time
loading_indices = [];
unloading_indices = [];

for i = l:length (t_window)
current_time = mod(t_window (i), T); % Map time to within a single period
if current_time > t_loading_min && current_time < t_loading_max

loading _indices = [loading_indices 1i];
elseif current_time > t_unloading_min && current_time < t_unloading_max
unloading_indices = [unloading_indices 1i];

end
end

% Extract loading and unloading data

loading_disp = disp-window (loading_indices);
loading_force = force_window (loading_indices);
unloading_disp = disp_.window (unloading_indices);
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unloading_force = force_window (unloading_indices);

% Apply bounds to loading and unloading data

bounded_loading_indices = (loading_disp > Dminbound & loading_disp < Dmaxbound) ;

bounded_unloading_indices = (unloading_disp > Dminbound & unloading_disp <
Dmaxbound) ;

bounded_loading_disp = loading_disp(bounded_loading_indices);

bounded_loading_force = loading_force (bounded_loading_indices);
bounded_unloading_disp = unloading_disp(bounded_unloading_indices);
bounded_unloading_force = unloading_force(bounded_-unloading_indices);

% Perform linear regression on bounded data

% Loading regression

coeffs_loading = polyfit(bounded_loading_disp, bounded_loading_force, 1);
stiffness_loading = coeffs_loading(1l);

offset_loading = coeffs_loading(2);

% Store loading stiffness for current iteration
loading_stiffnesses (iteration) = stiffness_loading;

% Unloading regression

coeffs_unloading = polyfit(bounded_unloading_disp, bounded_unloading_force, 1);
stiffness_unloading = coeffs_unloading(1);

offset_unloading = coeffs_unloading(2);

% Store unloading stiffness for current iteration
unloading_stiffnesses (iteration) = stiffness_unloading;

% Generate loading and unloading fit lines

disp_fit_loading = linspace (min(bounded_loading_disp), max(bounded_loading_disp)
, 100);

force_fit_loading = polyval(coeffs_loading , disp-fit_-loading);

disp_fit_unloading = linspace (min(bounded_unloading_disp), max(
bounded_unloading_disp), 100);
force_fit_unloading = polyval(coeffs_unloading , disp_fit_unloading);

% Plot results in subplot

subplot(2, 3, iteration);

hold on;

plot(disp_window , force_window , 'b-—"); % Original data

plot(loading_disp , loading_force, 'ro’); % Loading points

plot(unloading_disp, unloading_force, 'go’); % Unloading points

plot(bounded_loading_disp , bounded_loading_force, ’'c#%’); % Bounded loading

plot(bounded_unloading_disp, bounded_unloading_force, 'm:#’); % Bounded unloading

plot(disp_fit_loading , force_fit_.loading , 'k-', "LineWidth’, 2); % Loading fit

plot(disp_fit_unloading , force_fit_unloading , 'k—-", “LineWidth’, 2); %
Unloading fit

% Add stiffness values as text annotations

text (0.1, 0.7, sprintf( Fit (L): K = %.4f N/mm’, stiffness_loading), 'FontSize’,
12, "Color’, ’k’, ’“VerticalAlignment’, ’“top’);

text (0.1, 0.65, sprintf(’ Fit (UL): K = %.4f N/mm’, stiffness_unloading),
FontSize’, 12, "Color’, ’k’, ’“VerticalAlignment’, ’top’);

% Add labels , title , and grid
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xlabel (" Displacement (mm)’, "FontSize’ , 14);

ylabel (" Force (N)’,

>FontSize’, 14); % Font

title (sprintf (’Iteration %d: Time [%d—%d]s’,
, 16); % Title size

FontSize’

grid on;

% Disable legend
legend (" off ")

hold off;

% Print stiffness

fprintf (’Iteration %d:\n’, iteration);
fprintf (’ Loading Stiffness: %.4f N/mm\n’, stiffness_loading);
fprintf (’ Loading Offset: %.4f N\n’, offset_loading);

fprintf (> Unloading Stiffness: %.4f N/mm\n’,
fprintf (’ Unloading Offset: %.4f N\n’, offset_unloading);

end

% Calculate the mean and

std of the stiffnesses

% Font size for labels
size for labels
iteration , start_time ,

and offset values in the command window

stiffness_unloading);

mean_loading_stiffness = mean(loading_stiffnesses);
std_loading _stiffness = std
mean_unloading_stiffness =
std_unloading_stiffness = std(unloading_stiffnesses);

% Print the mean and

(loading_stiffnesses);

mean(unloading_stiffnesses);

standard deviation values

fprintf (’\nMean and Standard Deviation of Stiffnesses:\n’);
fprintf (> Mean Loading: %.4f N/mm\n’, mean_-loading_stiffness);

fprintf (’ Loading: %.4f N/mm\n’,

std_loading_stiffness);

fprintf (> Mean Unloading: %.4f N/mm\n’, mean_-unloading_stiffness);
4f N/mm\n’, std_unloading_stiffness);

fprintf (’ Unloading:

% Plot the mean
subplot(2, 3, 6)
hold on;

% Plot bars

stiffness values

b}

%.

bar(l, mean_loading_stiffness , “FaceColor’, 'b’);
bar(2, mean_unloading_stiffness , ~FaceColor’, 'c’);

% Add error bars

errorbar (1, mean_loading_stiffness ,

"CapSize’, 10);

errorbar (2, mean_unloading_stiffness , 2 =
2, ’CapSize’

% Add text annotations
text(l, mean_loading_stiffness + 2 =

, 10);

sprintf ("%.4f\n %.4f",
"HorizontalAlignment’,
text(2, mean_unloading_stiffness + 2 % std_unloading_stiffness + 0.01,
sprintf (" %.4f\n %.4f",

above the bars with larger
std_loading_stiffness + 0.01,
mean_loading_stiffness , 2 =

>center’, 'FontSize’,

mean_unloading_stiffness , 2 =

std_unloading_stiffness , 'm’,

font

14);

"HorizontalAlignment’, ’center’, ’FontSize’ , 14);

hold off;

% Add title and

labels

36

with 2-sigma error bars as a bar chart

)

size

s

end_time) ,

in subplot 6

2 % std_loading_stiffness , 'r’, ’'LineWidth’, 2,

"LineWidth’,

std_loading _stiffness),

% Increased font

% Increased font

size here

std_unloading_stiffness),

size here



o title(’Mean Stiffness Values (95% Confidence (2 ))’, ’FontSize’, 16);
161

2 % Assign the x—ticks and labels

e ax = gca();

e ax . XTick = [1, 2];

s ax.XLim = [0, 3]; % Adjust X-limits to fit the new tick labels properly
ws ax . XTickLabel = { Loading’, ’Unloading’};

i ax.TickLabellnterpreter = “tex’; % Interpret newline in tick labels

168

1w % Increase font size of the x—axis tick labels

m  ax . XAxis.FontSize = 14; % Adjust this value to your desired font size

171

m % Add y—axis label

m  ylabel (" Stiffness (N/mm)’, *FontSize’ , 14);

174 gI‘id on;

175

w % Set y—axis to start at O

7 ylim ([0, max([ mean_loading_stiffness + 2 * std_loading_stiffness ,
mean_unloading_stiffness + 2 % std_unloading_stiffness]) + 0.02]);

178

m % Add a main title for the entire figure

o sgtitle (’Smoothed Force—-Displacement Curves of the Mechanism, Measured by the
Mechanism Itself with Stiffness Fits’, FontSize’, 16);
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E. 04. Mechanisme_eigen_stijfheid_bepaling_legendaylot

% Signal parameters

T = 10; % Period in seconds

N = 5; 9% Number of periods

time_window = 60; % Total time window for each iteration in seconds
analysis_duration = 50; % Analysis duration in seconds within each window

% Time bounds for loading and unloading

t_loading _min = 1;
t_-loading_max = 4;
t_unloading _min = 6.5;
t_unloading_max = 10;

% Smoothing parameters

window_size = 45; % Adjust based on noise level
smooth_disp = movmean(Displacement, window_size); % Smooth displacement
smooth_force = movmean(Force, window_size); % Smooth force

% Bounds for displacement

Dminbound
Dmaxbound

4;
8;

% Initialize arrays to store stiffness values
loading_stiffnesses = zeros(1l, 5);
unloading_stiffnesses = zeros(l, 5);

% Prepare figure for subplots

figure () ;
for iteration = 1:5
% Time bounds for current iteration
start_time = (iteration — 1) * time_window;
end_time = start_-time + analysis_duration; % Limit to first 50 seconds

% Filter data for the current time window

time_indices = t >= start_time & t < end_time;
t_window = t(time_indices);

disp_-window = smooth_disp(time_indices);
force_window = smooth_force(time_indices);

% Identify loading and unloading regions using time
loading_indices = [];
unloading_indices = [];

for i = l:length (t_window)
current_time = mod(t_window (i), T); % Map time to within a single period
if current_time > t_loading_min && current_time < t_loading_max

loading _indices = [loading_indices 1i];
elseif current_time > t_unloading_min && current_time < t_unloading_max
unloading_indices = [unloading_indices 1i];

end
end

% Extract loading and unloading data

loading_disp = disp-window (loading_indices);
loading_force = force_window (loading_indices);
unloading_disp = disp_.window (unloading_indices);
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unloading_force = force_window (unloading_indices);

% Apply bounds to loading and unloading data

bounded_loading_indices = (loading_disp > Dminbound & loading_disp < Dmaxbound) ;

bounded_unloading_indices = (unloading_disp > Dminbound & unloading_disp <
Dmaxbound) ;

bounded_loading_disp = loading_disp(bounded_loading_indices);

bounded_loading_force = loading_force (bounded_loading_indices);
bounded_unloading_disp = unloading_disp(bounded_unloading_indices);
bounded_unloading_force = unloading_force(bounded_-unloading_indices);

% Perform linear regression on bounded data

% Loading regression

coeffs_loading = polyfit(bounded_loading_disp, bounded_loading_force, 1);
stiffness_loading = coeffs_loading(1l);

offset_loading = coeffs_loading(2);

% Store loading stiffness for current iteration
loading_stiffnesses (iteration) = stiffness_loading;

% Unloading regression

coeffs_unloading = polyfit(bounded_unloading_disp, bounded_unloading_force, 1);
stiffness_unloading = coeffs_unloading(1);

offset_unloading = coeffs_unloading(2);

% Store unloading stiffness for current iteration
unloading_stiffnesses (iteration) = stiffness_unloading;

% Generate loading and unloading fit lines

disp_fit_loading = linspace (min(bounded_loading_disp), max(bounded_loading_disp)
, 100);

force_fit_loading = polyval(coeffs_loading , disp-fit_-loading);

disp_fit_unloading = linspace (min(bounded_unloading_disp), max(
bounded_unloading_disp), 100);
force_fit_unloading = polyval(coeffs_unloading , disp_fit_unloading);

% Plot results in subplot
subplot(2, 3, iteration);

hold on;

plot(disp_window , force_window , 'b-—", ’DisplayName , “~Smoothed Data (N = 45)7);
% Original data

plot(loading_disp , loading_force, 'ro’, ’'DisplayName’, ’Loading’); % Loading
points

plot(unloading_disp, unloading_force, ’'go’, ’'DisplayName , ’Unloading’); %
Unloading points

plot(bounded_loading_disp, bounded_loading_force, ’'c#’, 'DisplayName’, ’Bounded
Loading’); % Bounded loading

plot(bounded_unloading_disp , bounded_unloading_force, 'ms#’, ’DisplayName’ , °’
Bounded Unloading’); % Bounded unloading

plot(disp_fit_loading , force_fit_loading , 'k-", ’LineWidth’ , 2, .
"DisplayName’, sprintf(’ Fit (L): K = %.4f", stiffness_loading)); % Loading

fit
plot(disp_-fit_.unloading , force_fit_.unloading , 'k——", 'LineWidth’, 2,

"DisplayName ', sprintf(’Fit (UL): K = %.4f", stiffness_unloading)); %
Unloading fit
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% Add labels , title ,

and grid

xlabel (’Displacement (mm)’, ’FontSize’, 14); % Font

ylabel (" Force (N)’,

grid on;

% Scale legend size
, 'northwest’, ’FontSize’, 16); % Legend font size

legend (" Location’
hold off;

% Print stiffness

end
% Calculate the mean

std_loading_stiffness

% Print the mean and

fprintf (’ Loading: %.4f N/mm\n’,

>FontSize’, 14); % Font size for
title (sprintf ( Iteration %d: Time [%d—%d]s’,

FontSize’, 16); % Title size

iteration , start_time , end_time),

size for labels
labels

i

and offset values in the command window
fprintf (’Iteration %d:\n’, iteration);
fprintf(’ Loading Stiffness: %.4f N/mm\n’, stiffness_loading);
fprintf (’ Loading Offset: %.4f N\n’, offset_loading);

fprintf (’ Unloading Stiffness: %.4f N/mm\n’, stiffness_unloading);
fprintf (> Unloading Offset: %.4f N\n’, offset_unloading);

and std of the stiffnesses
mean_loading_stiffness = mean(loading_stiffnesses);
= std(loading_stiffnesses);
mean_unloading_stiffness =
std_unloading_stiffness = std(unloading_stiffnesses);

mean(unloading_stiffnesses);

standard deviation values
fprintf (’\nMean and Standard Deviation of Stiffnesses:\n’);
fprintf (> Mean Loading: %.4f N/mm\n’, mean_loading_stiffness);

std_loading_stiffness);

fprintf (> Mean Unloading: %.4f N/mm\n’, mean_unloading_stiffness);

fprintf (’ Unloading: %.4f N/mm\n’,

% Plot the mean stiffness

subplot(2, 3, 6);
hold on;

% Plot bars

values with 2-sigma error bars

bar(l, mean_loading_stiffness , ~FaceColor’, 'b’);
bar(2, mean_unloading_stiffness , °FaceColor’, 'c’);

% Add error bars

std_unloading _stiffness);

as a bar chart in subplot 6

errorbar (1, mean_loading_stiffness , 2 % std_loading_stiffness , 'r’, ’LineWidth’, 2,

"CapSize’, 10);

errorbar (2, mean_unloading_stiffness , 2 =

2, ’CapSize’, 10);

% Add text annotations
text(l, mean_loading_stiffness + 2 =

sprintf (" %.4f\ n

%.41",

"HorizontalAlignment ’,
text(2, mean_unloading_stiffness + 2 * std_unloading_stiffness + 0.01,

sprintf (" %.4f\ n

%.41",

std_unloading_stiffness , 'm’, ’LineWidth’,

above the bars with larger font size
std_loading_stiffness + 0.01,

mean_loading_stiffness , 2 % std_loading_stiffness),

center’, 'FontSize’, 14); %

mean_unloading_stiffness , 2 =

Increased font size here

std_unloading_stiffness),

"HorizontalAlignment’, ’center’, ’FontSize’, 14); % Increased font size here

hold off;
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% Add title and labels

title ("Mean Stiffness Values (95% Confidence (2

% Assign the x—ticks and labels
ax = gca();
ax.XTick = [1, 2];

ax.XLim = [0, 3]; % Adjust X-limits to fit

ax.XTickLabel = { Loading’, ’Unloading’};

ax. TickLabellnterpreter = “tex’; % Interpret

the new tick

newline

% Increase font size of the x—axis tick labels
ax . XAxis. FontSize = 14; % Adjust this value to your desired font size

% Add y—axis label

ylabel (* Stiffness (N/mm)’, *FontSize , 14);

grid on;

% Set y—axis to start at O
ylim ([0, max([ mean_loading_stiffness + 2

%

)7

"FontSize’ , 16);

in

labels properly

tick

labels

std_loading_stiffness ,

mean_unloading_stiffness + 2 % std_unloading_stiffness]) + 0.02]);

% Add a main title for the entire figure

sgtitle ("Smoothed Force-Displacement Curves of the Mechanism,
>FontSize’,

Mechanism Itself with Stiffness Fits’,

41

16);

Measured by the
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FE 05. Object_stiffness_estimation_4

% Load your Force—Displacement data

1)) %

% Force in

t = Force_Displacement.time;

Displacement = double(squeeze (Force_Displacement.signals. values (:,
Displacement in mm

Force = double(squeeze (Force_Displacement.signals.values(:, 2)));
N

% Parameters for smoothing

window_size = 45; % Adjust based on noise level

% Initialize arrays to store stiffness values for loading and unloading

loading_stiffnesses = zeros(1l, 5);

unloading_stiffnesses = zeros(l, 5);

% Prepare figure for subplots

figure;

for iteration = 1:5
% Define the time bounds for each iteration
start_time = (iteration — 1) * 60;
end_time = start_time + 50; % Use a 50-second

% Filter data for the current time window

window for each

time_indices = t >= start_time & t < end_time;
t_window = t(time_indices);

disp-window = Displacement(time_indices);
force_window = Force(time_indices);

% Step 1: Smooth the data

smooth_disp = movmean(disp_window ,
smooth_force = movmean(force_window ,

% Step 2: Identify

force_diff = diff(smooth_force); % Differentiate force

loading and unloading phases

decreasing trends

% ldentify indices
force)

to

detect

for loading (increasing force) and unloading

loading_indices = find(force_diff > 0);
find (force_diff < 0);

unloading_indices =

% Handle offset due to differentiation

loading_indices = loading_indices (l:end-1);

unloading_indices =

% Increasing force
% Decreasing force

unloading_indices (1:end-1);

% Extract data for loading phase
disp_load = smooth_disp(loading_indices);

force_load = smooth_force(loading_indices);

% Extract data for

% Step 3: Select Force Range

min_force_threshold
max _force_threshold

unloading phase
disp_unload = smooth_disp(unloading_indices);
force_unload = smooth_force(unloading_indices);

1.0; % Minimum force
6.0; % Maximum force

42
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window_size); % Smooth force signal
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[2N, 6N] for Loading and Unloading Curves
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% Loading Curve: Find indices within the force range

force_in_range_load = (force_load >= min_force_threshold) & (force_load <=
max _force_threshold);

disp_load_bounded = disp_load(force_in_range_load);

force_load_bounded = force_load(force_in_range_load);

% Unloading Curve: Find indices within the force range

force_in_range_unload = (force_unload >= min_force_threshold) & (force_unload <=
max_force_threshold);

disp_-unload_bounded = disp-unload(force_in_range_unload);

force_unload_bounded = force_unload(force_in_range_unload);

% Step 4: Perform Linear Regression on Bounded Regions

% Loading Curve

coeffs_bounded_load = polyfit(disp_load_bounded, force_load_bounded, 1); % |[
stiffness , offset]

stiffness_bounded_load = coeffs_bounded_load(1); % Slope = stiffness

% Unloading Curve

coeffs_bounded_unload = polyfit(disp_-unload_bounded, force_unload_bounded, 1); %
[stiffness , offset]

stiffness_bounded_unload = coeffs_bounded_unload(1); % Slope = stiffness

% Step 5: Generate Regression Lines for Bounded Regions

% Loading Curve Fit

disp_-fit_bounded_load = linspace (min(disp-load_bounded), max(disp-load_bounded),
100);

force_fit_bounded_load = polyval(coeffs_bounded_load, disp_-fit_bounded_load);

% Unloading Curve Fit

disp_fit_bounded_unload = linspace (min(disp_unload_bounded), max(
disp_-unload_bounded), 100);
force_fit_bounded_unload = polyval(coeffs_bounded_unload,

disp_fit_bounded_unload);

% Step 6: Plot Results in Subplots

subplot(2, 3, iteration);

hold on;

plot(smooth_disp, smooth_force, 'b’);
plot(disp_-load_bounded , force_load_bounded, 'ro’);

plot(disp_unload_bounded , force_unload_bounded, ’'go’);

plot(disp_fit_bounded_load , force_fit_bounded_load , 'k-', "LineWidth’, 2);

plot(disp_-fit_bounded_unload , force_fit_bounded_unload , 'k-', 'LineWidth’, 2);

xlabel (" Displacement (mm)’, °~FontSize’ , 14);

ylabel (" Force (N)’, “FontSize’ ', 14);

title (sprintf ( Iteration %d: Time [%d-%d]s’, iteration , start_time , end_time), ’
FontSize’, 16);

grid on;

xlim ([0, 10.5]); % Set the x—axis limit from 0 to 10.5

% Add stiffness values as text annotations
text (0.1, 6, sprintf( Fit (L): K = %.4f N/mm’, stiffness_bounded_load), °

FontSize’, 12, "Color’, ’k’, ’“VerticalAlignment’, ’top’);
text (0.1, 5.5, sprintf( Fit (UL): K = %.4f N/mm’, stiffness_bounded_unload), °’
FontSize’, 12, ’Color’, ’k’, ’VerticalAlignment’, ’top’);
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hold off;

% Store the stiffness values for each iteration

loading_stiffnesses (iteration) = stiffness_bounded_load;

unloading_stiffnesses (iteration) = stiffness_bounded_-unload;
end

% Calculate the mean and std of the stiffnesses

mean_loading_stiffness = mean(loading_stiffnesses);
std_loading_stiffness = std(loading_stiffnesses);
mean_unloading_stiffness = mean(unloading_stiffnesses);
std_unloading_stiffness = std(unloading_stiffnesses);

% Display the mean and standard deviation values in the command window
fprintf ( Mean Loading: %.4f N/mm\n’, mean_loading_stiffness);

fprintf (’ Loading: %.4f N/mm\n’, std_loading_stiffness);
fprintf ( Mean Unloading: %.4f N/mm\n’, mean_unloading_stiffness);

fprintf (’ Unloading: %.4f N/mm\n’, std_unloading_stiffness);

% Plot the mean stiffness values with 2-sigma error bars as a bar chart in the 6th
plot

subplot(2, 3, 6);

hold on;

% Plot bars
bar(l, mean_loading_stiffness , “FaceColor’, 'b’);
bar(2, mean_unloading_stiffness , “FaceColor’, 'c’);

% Add error bars

errorbar (1, mean_loading_stiffness, 2 % std_loading_stiffness , 'r’, "LineWidth’, 2,
"CapSize’, 10);

errorbar (2, mean_unloading_stiffness, 2 % std_unloading_stiffness , 'm’, “LineWidth’,
2, 'CapSize’, 10);

% Add text annotations above the bars with larger font size
text(l, mean_loading_stiffness + 2 % std_loading_stiffness + 0.25,
sprintf ("%.4f\n %.4f’, mean_loading_stiffness, 2 % std_loading_stiffness),
"HorizontalAlignment’, ’center’, 'FontSize’, 14); % Increased font size here
text(2, mean_unloading_stiffness + 2 % std_unloading_stiffness + 0.25,
sprintf ("%.4f\n %.4f’, mean_unloading_stiffness, 2 % std_unloading_stiffness),

"HorizontalAlignment’, ’center’, 'FontSize’, 14); % Increased font size here
hold off;

% Add title and labels
title ("Mean Stiffness Values (95% Confidence (2 ))’, ’FontSize’, 16);

% Assign the x—ticks and labels

ax = gea();

ax . XTick = [1, 2];

ax . XLim = [0, 3]; % Adjust X-limits to fit the new tick labels properly
ax . XTickLabel = { Loading’, ’Unloading’};

ax.TickLabellnterpreter = “tex ; % Interpret newline in tick labels

% Increase font size of the x—axis tick labels
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ax . XAxis. FontSize = 14; % Adjust this value to your desired font size

% Add y—axis label
ylabel (* Stiffness (N/mm)’, *FontSize , 14);
grid on;

% Set y—axis to start at O
ylim ([0, max([ mean_loading_stiffness + 2 = std_loading_stiffness ,
mean_unloading_stiffness + 2 % std_unloading_stiffness]) + 0.5]);

% Add a main title for the entire figure

sgtitle ("Smoothed Force-Displacement Curves of the Mechanism + 4 Parallel Springs,
Measured by the Mechanism Itself with Stiffness Fits’, >FontSize’, 16);
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G. 05. Object_stiffness_estimation_legend,,lot

% Load your Force—Displacement data

1)) %

% Force in

t = Force_Displacement.time;

Displacement = double(squeeze (Force_Displacement.signals. values (:,
Displacement in mm

Force = double(squeeze (Force_Displacement.signals.values(:, 2)));
N

% Parameters for smoothing

window_size = 45; % Adjust based on noise level

% Initialize arrays to store stiffness values for loading and unloading

loading_stiffnesses = zeros(1l, 5);

unloading_stiffnesses = zeros(l, 5);

% Prepare figure for subplots

figure;

for iteration = 1:5
% Define the time bounds for each iteration
start_time = (iteration — 1) * 60;
end_time = start_time + 50; % Use a 50-second

% Filter data for the current time window

window for each

time_indices = t >= start_time & t < end_time;
t_window = t(time_indices);

disp-window = Displacement(time_indices);
force_window = Force(time_indices);

% Step 1: Smooth the data

smooth_disp = movmean(disp_window ,
smooth_force = movmean(force_window ,

% Step 2: Identify

force_diff = diff(smooth_force); % Differentiate force

loading and unloading phases

decreasing trends

% ldentify indices
force)

to

detect

for loading (increasing force) and unloading

loading_indices = find(force_diff > 0);
find (force_diff < 0);

unloading_indices =

% Handle offset due to differentiation

loading_indices = loading_indices (l:end-1);

unloading_indices =

% Increasing force
% Decreasing force

unloading_indices (1:end-1);

% Extract data for loading phase
disp_load = smooth_disp(loading_indices);

force_load = smooth_force(loading_indices);

% Extract data for

% Step 3: Select Force Range

min_force_threshold
max _force_threshold

unloading phase
disp_unload = smooth_disp(unloading_indices);
force_unload = smooth_force(unloading_indices);

1.0; % Minimum force
6.0; % Maximum force

46

in
in

N
N

iteration

window_size); % Moving average smoothing
window_size); % Smooth force signal
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[2N, 6N] for Loading and Unloading Curves
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% Loading Curve: Find indices within the force range

force_in_range_load = (force_load >= min_force_threshold) & (force_load <=
max _force_threshold);

disp_load_bounded = disp_load(force_in_range_load);

force_load_bounded = force_load(force_in_range_load);

% Unloading Curve: Find indices within the force range

force_in_range_unload = (force_unload >= min_force_threshold) & (force_unload <=
max_force_threshold);

disp_-unload_bounded = disp-unload(force_in_range_unload);

force_unload_bounded = force_unload(force_in_range_unload);

% Step 4: Perform Linear Regression on Bounded Regions

% Loading Curve

coeffs_bounded_load = polyfit(disp_load_bounded, force_load_bounded, 1); % |[
stiffness , offset]

stiffness_bounded_load = coeffs_bounded_load(1); % Slope = stiffness

% Unloading Curve

coeffs_bounded_unload = polyfit(disp_-unload_bounded, force_unload_bounded, 1); %
[stiffness , offset]

stiffness_bounded_unload = coeffs_bounded_unload(1); % Slope = stiffness

% Step 5: Generate Regression Lines for Bounded Regions

% Loading Curve Fit

disp_-fit_bounded_load = linspace (min(disp-load_bounded), max(disp-load_bounded),
100);

force_fit_bounded_load = polyval(coeffs_bounded_load, disp_-fit_bounded_load);

% Unloading Curve Fit

disp_fit_bounded_unload = linspace (min(disp_unload_bounded), max(
disp_-unload_bounded), 100);
force_fit_bounded_unload = polyval(coeffs_bounded_unload,

disp_fit_bounded_unload);

% Step 6: Plot Results in Subplots
subplot(2, 3, iteration);

hold on;

plot(smooth_disp, smooth_force, 'b’, ’DisplayName ,
>Smoothed Data (N = 45)’);

plot(disp_-load_bounded , force_load_bounded, 'ro’, ’'DisplayName’, ’Load Region’);

plot(disp_-unload_bounded , force_unload_bounded, ’'go’, ’"DisplayName , ’Unload
Region’);

plot(disp_fit_bounded_load , force_fit_bounded_load , 'k-', 'LineWidth’, 2,
"DisplayName *, sprintf (’Fit (Loading)’));

plot(disp_fit_bounded_unload , force_fit_bounded_unload, k-, ’'LineWidth’, 2,

"DisplayName *, sprintf( Fit(Unloading)’));

xlabel (" Displacement (mm)’);
ylabel (" Force (N)’);

title (sprintf ( Iteration %d: Time [%d—%d]s’, iteration , start_time , end_time));
grid on;

legend (" Location’, °“Best’, “FontSize’ , 16); % Increased font size

xlim ([0, 10.5]); % Set the x—axis limit from 0 to 10.5

hold off;
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152

% Store the stiffness values for each iteration

loading_stiffnesses (iteration) = stiffness_bounded_load;

unloading_stiffnesses (iteration) = stiffness_bounded_unload;
end

% Calculate the mean and std of the stiffnesses

mean_loading_stiffness = mean(loading_stiffnesses);
std_loading_stiffness = std(loading_stiffnesses);
mean_unloading_stiffness = mean(unloading_stiffnesses);
std_unloading_stiffness = std(unloading_stiffnesses);

% Display the mean and standard deviation values in the command window
fprintf ( Mean Loading: %.4f N/mm\n’, mean_loading_stiffness);

fprintf (’ Loading: %.4f N/mm\n’, std_loading_stiffness);

fprintf (’Mean Unloading: %.4f N/mm\n’, mean_unloading_stiffness);

fprintf (’ Unloading: %.4f N/mm\n’, std_unloading_stiffness);

% Plot the mean stiffness values with 2-sigma error bars as a bar chart in the 6th
plot

subplot(2, 3, 6);

hold on;

% Plot bars
bar (1, mean_loading_stiffness , 'FaceColor’, ’'b’);
bar(2, mean_unloading_stiffness , “FaceColor’, ’c’);

% Add error bars

errorbar (1, mean_loading_stiffness, 2 % std_loading_stiffness , 'r’, “LineWidth’, 2,
"CapSize’, 10);

errorbar (2, mean_unloading_stiffness , 2 % std_unloading_stiffness, 'm’, 'LineWidth’,
2, *CapSize’, 10);

% Add text annotations above the bars

text(l, mean_loading_stiffness + 2 % std_loading_stiffness + 0.1, .
sprintf ("%.4f\n %.4f’, mean_loading_stiffness, 2 % std_loading_stiffness),
"HorizontalAlignment’, ’center’);

text(2, mean_unloading_stiffness + 2 % std_unloading_stiffness + 0.1,
sprintf ("%.4f\n %.4f’, mean_unloading_stiffness, 2 % std_unloading_stiffness),

"HorizontalAlignment’, ’center’);
hold off;

% Add title and labels
title (’Mean Loading and Unloading Stiffness (with 95% Confidence (2 ))’);

% Assign the x—ticks and labels

ax = gea():

ax . XTick = [1, 2];

ax . XLim = [0, 3]; % Adjust X-limits to fit the new tick labels properly
ax.XTickLabel = { Loading’, *Unloading’};

ax. TickLabellnterpreter = “tex’; % Interpret newline in tick labels

% Add y—axis label

ylabel (* Stiffness (N/mm)’);
grid on;
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% Set y—axis to start at 0

ylim ([0, max([ mean_loading_stiffness + 2 % std_loading_stiffness ,
mean_unloading_stiffness + 2 % std_unloading_stiffness]) + 0.2]);

% Add a main title for the entire figure

sgtitle (" Smoothed Force-Displacement Curves of the Mechanism + 2 Parallel

Measured by the Mechanism Itself with Stiffness

49
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>FontSize’,
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H. 06. Plot_mechanism_stiffness_bars

% Define the stiffness values

calibration_loading = 0.0498; % Mechanism Loading becomes Calibration Loading

mechanism_loading = 0.0589;

calibration_unloading = 0.042; % Mechanism Unloading becomes Calibration
Unloading

mechanism_unloading = 0.0673; % Calibration Unloading becomes Mechanism
Unloading

% Define the standard deviations for mechanism values (remains the same)
std_mechanism_loading = 0.004066285; % Standard deviation for mechanism (Loading)
std_mechanism_unloading = 0.00344066; % Standard deviation for mechanism (Unloading)

% Calculate 2 sigma values
two_sigma_loading = 2 % std_mechanism_loading;
two_sigma_unloading = 2 % std_mechanism_unloading;

% Create figure and hold for multiple bars
figure;
hold on;

% Plot the bars with individual colors, swapping mechanism and calibration

% Calibration Loading becomes Mechanism Loading

bar (1, mechanism_loading , 'FaceColor’, ’b’); % Mechanism (Loading) —> Bar |1
bar(2, calibration_loading , ’FaceColor’, "c’); % Calibration (Loading) —> Bar 2

bar (4, mechanism_unloading, ’FaceColor’, 'm’); % Mechanism (Unloading) —> Bar 4

bar (5, calibration_unloading , ’FaceColor’, "r’); % Calibration (Unloading) —> Bar 5

% Add error bars for mechanism values

1.5,

errorbar (1, mechanism_loading , std_mechanism_loading, 'k’, ’LineWidth’, 1.5, °
CapSize’, 10);
errorbar (4, mechanism_unloading , std_mechanism_unloading, 'k’, 'LineWidth’,
CapSize’, 10);
% Add labels above the error bars for mean and 2 sigma values
text(l, mechanism_loading + std_mechanism_loading,
sprintf ("%.4f\n %.4f’, mechanism_loading , two_sigma_loading)
>Vertical Alignment’, ’bottom’, ’HorizontalAlignment’, ’center’, ’FontSize’
text(2, calibration_loading , sprintf( %.4f°, calibration_loading)
>Vertical Alignment’, ’bottom’, ’HorizontalAlignment’, ’center’, ’FontSize’

text (4, mechanism_unloading + std_mechanism_unloading,

sprintf ("%.4f\n %.4f’, mechanism_unloading , two_sigma_unloading),

s

>Vertical Alignment’, ’bottom’, 'HorizontalAlignment’, ’center’, ’FontSize’
text(5, calibration_unloading , sprintf( %.4f", calibration_unloading),
>Vertical Alignment’, ’bottom’, HorizontalAlignment’, ’center’, ’FontSize

% Define the first row of x—axis labels
rowl = {’Mechanism’, ’Calibration’, ’Mechanism’, ’Calibration’};

% Define the second row for “Loading” and ”Unloading”
row2 = {’Loading’, ’Loading’, ’Unloading’, ’Unloading’};

% Combine the rows of labels into a cell array
labelArray = [rowl; row2];

% Combine the rows of labels into individual tick labels
tickLabels = strtrim (sprintf( '%s\\newline%s\n’, labelArray {:}));
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% Set the x—axis tick positions and labels

ax = gca;
ax.XTick = [1, 2, 4, 5];
ax . XTickLabel = tickLabels;

ax.TickLabellnterpreter = “tex’ ; % Needed to

interpret

ax . FontSize = 12; % Increase font size for x—axis tick

% Add labels and title with increased font

ylabel (* Stiffness (N/mm)’, 'FontSize’,

% Display grid
grid on;

14);
title (’Comparison of Mechanism and Calibration Stiffness’, ’FontSize’,

size

% Adjust the x—axis limits to add space around bars

xlim ([0.5, 5.5]);

% Adjust the y—axis limits

newline
labels

’

ylim ([0, max([ mechanism_loading + std_mechanism_loading ,

calibration_loading ,

mechanism_unloading + std_mechanism_unloading,
calibration_unloading]) + 0.01]);

hold off;
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L. 07. Mechanisme _eigen _stijfheid_fout_percentage_bar_plots

% Define the stiffness values (Calibration and Mechanism)

calibration_loading = 0.0498; % Calibration Loading
mechanism_loading = 0.0589; % Mechanism Loading
calibration_unloading = 0.042; % Calibration Unloading
mechanism_unloading = 0.0673; % Mechanism Unloading

% Define the standard deviations for mechanism values
std_mechanism_loading = 0.004066285; % Standard deviation for mechanism (Loading)
std_mechanism_unloading = 0.00344066; % Standard deviation for mechanism (Unloading)

% Calculate 2 sigma values for error bars
two_sigma_loading = 2 % std_mechanism_loading;

two_sigma_unloading = 2 % std_mechanism_unloading;

% Calculate the percentage errors (absolute values) for each

percent_error_loading = abs((mechanism_loading — calibration_loading) /
calibration_loading) = 100;
percent_error_unloading = abs((mechanism_unloading — calibration_unloading) /

calibration_unloading) =* 100;

% Create figure and hold for multiple bars
figure;
hold on;

% Plot the bars with individual colors (for loading and unloading)
bar(l, percent_error_loading , ’FaceColor’, 'b’); % Mechanism Loading —> Bar 1
bar (2, percent_error_unloading , ’FaceColor’, "c’); % Mechanism Unloading —> Bar 2

% Add labels above the error bars for the percentage error values (without standard
deviation)

text(l, percent_error_loading + 0.5, sprintf( %.2f%%  , percent_error_loading),
>Vertical Alignment’, ’bottom’, 'HorizontalAlignment’, ’center’, ’FontSize’, 12);

text(2, percent_error_unloading + 0.5, sprintf( %.2f%%  , percent_error_unloading),

>Vertical Alignment’, ’bottom’, 'HorizontalAlignment’, ’center’, ’FontSize’ , 12);

% Define the x—axis labels
x_labels = {’Loading’, ’“Unloading’};

% Set the x—axis tick positions and labels

ax = gca;

ax . XTick = [1, 2];

ax . XTickLabel = x_labels;

ax.FontSize = 12; % Increase font size for x—axis tick labels

% Add labels and title

ylabel (" Percent Difference (%)’ , 'FontSize , 14);

title ({ "Percentual Differences for Loading and Unloading’,
>Stiffness (Absolute) for the Mechanism’’s Intrinsic’ ,...
*Stiffness , Compared to the Calibration Data’}, ’FontSize’, 14);

% Display grid
grid on;

% Adjust the x—axis limits to add space around bars
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xlim ([0.5, 2.5]);
% Adjust the y—axis limits based on the data
ylim ([0, max([ percent_error_loading + two_sigma_loading,

percent_error_unloading + two._sigma_unloading]) + 5]);

hold off;
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J. 08. Create_spring_stiffness_barplots

% Define the stiffness values (2 springs)
loading_stiffness = 0.8432;
unloading_stiffness = 0.8699;
average_stiffness = 0.85655;
calibration_stiffness = 0.822;

% % Define the stiffness values (3 springs)
% loading_stiffness = 1.1852;

% unloading_stiffness = 1.0836;

% average_stiffness = 1.1344;

% calibration_stiffness = 1.233;

% % Define the stiffness values (4 springs)
% loading_stiffness = 1.637;

% unloading_stiffness = 1.6168;

% average_stiffness = 1.6269;

% calibration_stiffness = 1.644;

% Create the bar plot with individual bars
figure;

hold on;

% Plot each bar with its respective color

bar(l, loading_stiffness , 'FaceColor’, 'b’, ’'DisplayName’, ’Loading Stiffness

Blue

s s

s %

bar(2, unloading_stiffness , FaceColor’, "c’, ’'DisplayName , ’~Unloading Stiffness’);

% Cyan

bl

bar(3, average_stiffness , 'FaceColor’, 'm’, ’DisplayName’ , *Average Stiffness

Magenta

s s

bar(4, calibration_stiffness , FaceColor’, ’r’, ’'DisplayName’, *Calibration

Stiffness’); % Red

% Add stiffness values below each bar
text(l, loading_stiffness , sprintf( %.4f°, loading_stiffness),

>Vertical Alignment’, ’bottom’, HorizontalAlignment’, ’center’, ’FontSize’

text(2, unloading_stiffness , sprintf( %.4f°, unloading_stiffness),

*VerticalAlignment’, ’bottom’, ’HorizontalAlignment’, “center’, 'FontSize’

text(3, average_stiffness , sprintf( %.4f°, average_stiffness),

>Vertical Alignment’, ’bottom’, HorizontalAlignment’, ’center’, ’FontSize

text(4, calibration_stiffness , sprintf( %.4f°, calibration_stiffness),

>Vertical Alignment’, ’bottom’, 'HorizontalAlignment’, ’center’, ’FontSize’

% Set the x—axis tick labels with font size 12

set(gca, *XTick’, 1:4, ’XTickLabel’, {’Loading’, ’Unloading’, ’Average’,

Calibration’}, "FontSize’, 13);
% Add labels and title
ylabel (" Stiffness (N/mm)’, 'FontSize , 14);
title (" Comparison of Stiffness Values for 2 Springs’, ’FontSize’, 14);
% Display grid and legend
grid on;

% legend(’Location’, ’Best’);

% Adjust the y—axis limits to make room for the text labels
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st ylim ([0, max([loading_stiffness , unloading_stiffness , average_stiffness,
calibration_stiffness]) + 0.1]);
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ss hold off;
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K. 09. Create_spring stiffness_barplots

% Define the stiffness values (2 springs)
loading_stiffness = 0.8432;
unloading_stiffness = 0.8699;
average_stiffness = 0.85655;
calibration_stiffness = 0.822;

% % Define the stiffness values (3 springs)
% loading_stiffness = 1.1852;

% unloading_stiffness = 1.0836;

% average_stiffness = 1.1344;

% calibration_stiffness = 1.233;

% % Define the stiffness values (4 springs)
% loading_stiffness = 1.637;

% unloading_stiffness = 1.6168;

% average_stiffness = 1.6269;

% calibration_stiffness = 1.644;

% Create the bar plot with individual bars
figure;

hold on;

% Plot each bar with its respective color

bar(l, loading_stiffness , 'FaceColor’, 'b’, ’'DisplayName’, ’Loading Stiffness

Blue

s s

s %

bar(2, unloading_stiffness , FaceColor’, "c’, ’'DisplayName , ’~Unloading Stiffness’);

% Cyan

bl

bar(3, average_stiffness , 'FaceColor’, 'm’, ’DisplayName’ , *Average Stiffness

Magenta

s s

bar(4, calibration_stiffness , FaceColor’, ’r’, ’'DisplayName’, *Calibration

Stiffness’); % Red

% Add stiffness values below each bar
text(l, loading_stiffness , sprintf( %.4f°, loading_stiffness),

>Vertical Alignment’, ’bottom’, HorizontalAlignment’, ’center’, ’FontSize’

text(2, unloading_stiffness , sprintf( %.4f°, unloading_stiffness),

*VerticalAlignment’, ’bottom’, ’HorizontalAlignment’, “center’, 'FontSize’

text(3, average_stiffness , sprintf( %.4f°, average_stiffness),

>Vertical Alignment’, ’bottom’, HorizontalAlignment’, ’center’, ’FontSize

text(4, calibration_stiffness , sprintf( %.4f°, calibration_stiffness),

>Vertical Alignment’, ’bottom’, 'HorizontalAlignment’, ’center’, ’FontSize’

% Set the x—axis tick labels with font size 12

set(gca, *XTick’, 1:4, ’XTickLabel’, {’Loading’, ’Unloading’, ’Average’,

Calibration’}, "FontSize’, 13);
% Add labels and title
ylabel (" Stiffness (N/mm)’, 'FontSize , 14);
title (" Comparison of Stiffness Values for 2 Springs’, ’FontSize’, 14);
% Display grid and legend
grid on;

% legend(’Location’, ’Best’);

% Adjust the y—axis limits to make room for the text labels
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st ylim ([0, max([loading_stiffness , unloading_stiffness , average_stiffness,
calibration_stiffness]) + 0.1]);
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L. 10. Signal_plotter
% close all;

t = PWM. time ;

PWM_data = double(squeeze (PWM. signals.values));
S_data = double(squeeze(S.signals.values));

W_data =

% Plot
figure;

subplot(2,2,1)
plot(t, PWM._data);

subplot(2,2,2)
plot(t, S_data);

subplot(2,2,3)
plot(t, W_data);

% % Plot

% figure;

%

% subplot(2,2,1)

double (squeeze (W. signals . values));

% plot(t(80%50:81%50), PWM_data(80%50:81%50));

%

% subplot(2,2.,2)

% plot(t(80%50:81%50),
%

% subplot(2,2.,3)

S_data(80%50:81%50));

% plot(t(80%50:8150), W_data(80%50:8150));
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