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Abstract

In this thesis max-plus algebra is introduced and applied to the problem of controlling
train delays. Two control strategies for the propagation of delays are discussed. The first
is by letting certain trains run faster when a delay is detected, the second is by breaking
connections between trains that have to wait for each other in order to enable passengers
to changeover from one train to the other. The goal is to understand how to model the
propagation of delays when different control strategies are applied, in order to provide
train operators tools for making quick decisions on how to intervene when a delay is
detected.

The models provided in the report are in the form of max-plus-linear systems and
switching max-plus linear systems. These can be programmed in Python to automate
the decision making. The report starts with providing a basic understanding of max-
plus algebra, where also max-plus linear systems and switching max-plus linear systems
are explained. Subsequently, a railway network is designed that serves as an example
during this thesis. This railway network is modelled into a max-plus linear system and,
additionally, a desirable train timetable for passengers is designed for this network by
means of the power algorithm. The main results are two switching max-plus linear systems
that model the propagation of delays when the two control strategies are applied. The
report ends with a larger railway network at which all acquired knowledge is applied.

It can be concluded that the models in this thesis provide methods to calculate exactly
how the delay propagates through the network when certain control strategies are applied
and, based on that, decisions can be made quicker. Moreover, it is possible to calculate
the consecutive departure times. As a result the passengers can be informed quickly
about the new departure times as a consequence of the delay and how long it will take
for the trains to run according to timetable again. This thesis adds the modelling of
faster running trains to existing literature. We have seen that speeding up trains is also
a control strategy to solve delays and can be modelled systematically.
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1 Introduction

Train delays are always inconvenient and cost a lot of money, time and annoyance. We
want to solve them as quick as possible to prevent the delay from propagating through
the whole railway network, causing even more hindrance. To be able to solve the delay
quickly, it would be helpful if train operators had tools for deciding how to intervene when
a delay is detected, since currently it happens somewhat intuitively. Train operators need
to make a lot of tradeoffs when it comes to deciding which strategy to use to tackle the
delay. That is why it would be useful if they have models to automate the decision mak-
ing and to be able to visualize the consequences by simulating the effects of a control
strategy. Therefore, the goal of this thesis is to model the propagation of delays when
certain control strategies are applied.

The control strategies discussed in this thesis are 1. letting certain trains run faster
when a delay is detected and 2. breaking connections between trains that have to wait
for each other before they can depart. The first strategy of letting trains run faster adds
to the existing literature about modelling railway networks. The models are constructed
with max-plus algebra, which differs slightly from the conventional algebra in which we
use addition and multiplication, but turns out to be more practical when modelling train
departures.

This report starts with providing basic knowledge about max-plus algebra, max-plus-
linear systems and switching max-plus-linear systems. In chapter 3 a simple railway
network is constructed and modelled into a max-plus-linear system. Additionally, a de-
sirable train timetable for the passengers is designed. In chapter 4 delays in the railway
network are modelled and the two control strategies are applied. This leads to switching
max-plus-linear models for the control strategies. In chapter 5 all required knowledge is
applied to a larger, more realistic railway network. The report ends with a conclusion
(chapter 6) and some remarks that may lead to further research (chapter 7).



2 Max-plus algebra

A railway network is an example of a discrete event system (DES). A DES deals with
sequences of events. In this case the events are trains leaving the station but other
examples are papers being printed and serial production systems. These events need to
be modelled and timed, subject to synchronization constraints. For example, a train may
not depart before another train has arrived [Heidergott et al., 2006]. The modelling of
discrete event systems traditionally leads to nonlinear systems in conventional algebra.
However, there are certain types of DESs that are described linearly in max-plus algebra.
These DESs are called max-plus-linear (MPL) systems [Van den Boom and De Schutter,
2012]. This chapter begins with providing a basic understanding of max-plus algebra
(2.1). Thereafter some extensions of this theory, that are used during this thesis, are
explained. These are max-plus-linear (MPL) systems (2.2) and switching max-plus-linear
(SMPL) systems (2.3).

2.1 Basic concepts and definitions

In max-plus algebra the addition (+) and multiplication (X) in conventional algebra are
replaced with maximization (@) and addition (®), respectively. Maximization is used for
the synchronization of events; an event can only start as soon as all connected events are
finished. The addition operation follows from the time instants at which events occur;
the time an event is finished equals the time at which it started plus the time it takes to
complete its task [Kersbergen, 2015]. These are the only operations being used in max-
plus algebra and they lead to linear systems that work analogously to conventional linear
algebra. In this section an overview of the basics of max-plus algebra is given, based on
the theory in the book “Max Plus at Work” [Heidergott et al., 2006].

2.1.1 Basic definitions

We define two important constants in max-plus algebra:

£ = —00, e = 0. (2.1)
Let Ryax be the set RU {e}. Let a,b € Ry, then the operations @ and ® (pronounced
“o-plus” and “o-times”) are defined by
a® b :=max(a,b), a®b:=a+b. (2.2)
For example, 5@ 3 = max(5,3) =5 and 5®3=5+3 =38,

We now define max-plus algebra as the set R, together with the operations ¢ and ®,
and denote it by
Rmax = (Rmaxa EB; ®7 g, 6)'

As in conventional algebra, we let the operation ® have priority over the operation ®. So
5®—-9@7®1 means (h® —9) & (7® 1) and is equal to max(5 — 9,7+ 1) = 8. A list of
algebraic properties of max-plus algebra is given on the next page.



Associativity:
Va,b,c € Rypax : a® (bBc)=(adb)®c

and
Va,b,c € Rpax : a® (b®¢) =(a®b) ® c.

Communitativity:

Va,bE Rpax: a®Pb=0Pa and a®b=>bR a.

Distributivity of ® over &:

Va,b,c € Rpax : a®@ (bBc) =(a®b)® (a®c).

Existence of a zero element:

Va € Ryax : aDe=cPa=a.

Existence of a unit element:

Vo e Rpax: aQe=€e®a = a.

The zero is absorbing for ®:

Va €ERpox: aRQe=e®Ra=c¢c.

Idempotency of &:
Va € Rpax : aPa=a.

2.1.2 Vectors and matrices

We can extend the theory to vectors and matrices. Let R be the set of n x m matrices

max

with underlying max-plus algebra. For n € N with n # 0, define n .= {1,2,...,n}. Then
for A, B € R the matriz addition A @ B is defined by

[A D B]z] = CLZ']' D bij = max(al-j, bl]) (23)
fori € n and j € m.

For A € R'X! and B € R, the matriz multiplication A ® B is defined by

max ’?

l
[A® Blix = @ ai; @ by, = max{ai; + by} (2.4)

j=1

for i € n and k € m.



At last, for A € RY™ and o € Ry, the scalar multiple o ® A is defined by

[Oé & A]z] =a® Q5 (25)
forv € n and j € m.

= ”). Then
1 €

_ (max(e,—1) max(e, 11)\ (e 11
A® B = ( max(3,1) max(2,¢) /] \3 2
-1 11
A®B = ( 3 14) )
because according to (2.4), [A® Bl;1 =e® (1) ®e®1 =max(0 — 1,—co + 1) = —1,
and the other elements are calculated similarly.

For example, let A = (g ;) and B = (

and

We can also define matriz powers. For A € R"" denote the kth power of A by

max ?

AP = AQA®---QA (2.6)

k times

for k € N with k # 0 and A® ° := E(n,n), with

efori=y
[E(n,m)li; = \
€ otherwise
We end this subsection about matrices with eigenvalues and eigenvectors. Let A €
R™ ™ he a square matrix. If A € R, is a scalar and v € R, is a vector that contains

max

at least one finite element such that
ARv=A®u, (2.7)

then A is called an eigenvalue of A and v an eigenvector of A associated with eigenvalue
A. A square matrix can have more than one eigenvalue. The eigenvectors are also not
unique. Suppose v is an eigenvector, then a ® v, with a an arbitrary finite number, is
also an eigenvector.

2.2 Max-plus-linear systems

As mentioned before, max-plus linear (MPL) systems are discrete event systems that
result in linear models in max-plus algebra. A characteristic of MPL systems is that
synchronization occurs, but there is no concurrency and no choice. No concurrency in
our case means that no more than one train can occupy a track. No choice means that a
train follows a fixed sequence of stations. However, there is synchronization, meaning that



trains can only depart as soon as other trains are arrived, in order to enable passenger
changeovers. MPL systems are modelled in the following form:

r(k)=A®z(k—1)® B u(k)

y(k) = C @ x(k),
with A € RV? B € R and C' € RoX". Here, n is the number of states, m is the
number of inputs, o is the number of outputs and & is the event counter [Kalamboukis,
2018]. x(k) describes the time instants at which the internal events occur for the kth
time, u(k) describes the time instants at which the input events occur for the kth time

and y(k) describes the time instants at which the output events occur for the kth time
[Van den Boom and De Schutter, 2012].

In the next chapters it becomes clear how to set up a MPL model for a simple railway
network. In this case the vector z(k) describes the kth departure times of the trains. The
input u(k) will be the scheduled departure times of the trains at event step k (they are
predefined in a timetable). The output equation (2.9) will be excluded from this thesis,
since the output of the system y(k) equals the state vector z(k).

2.3 Switching max-plus-linear systems

When we are solely using a MPL system, the structure of the model is fixed. However, in
this thesis the propagation of delays and ways to control this propagation are researched.
Therefore we need to be able to model changes in the structure of the system. That is
why switching max-plus-linear (SMPL) systems are introduced. SMPL systems are MPL
systems where switching is allowed between different modes of operation. Each mode
represents a different state of the model, in which for instance the synchronization is
changed or a certain train will drive faster. This results in different system matrices for
each mode. SMPL systems are modelled in the following form:

z(k) = A® @ 2(k —1) ® B™ @ u(k) (2.10)
y(k) = C'™ @ x(k), (2.11)

in which (k) € {1,2,...np} represents the mode that is valid at event k, with n, the
number of possible modes. A'*) € Rnxn BIk) ¢ Rrxm and CUK) € ROX™ are the system
matrices for mode /.

For each event k, the mode of the system [(k) is determined by a switching mechanism
z(k). This switching variable may depend on the previous state z(k — 1), the previous
mode [(k — 1), the input u(k) and a control variable v(k):

max*

(2.12)

The Rz is partitioned into ny subsets Z°, with i = 1,2,...ny. The mode I(k) is now

max

determined by the Z* the z(k) is in. When z2(k) € Z' the system switches to mode ¢
[Van den Muijsenberg, 2015].



3 Modelling of a simple railway network

For the analysis of delays in a railway network we design a simple fictional railway network,
which will serve as an example during this report. At this example the theory in chapter
2 is applied. The network is a modification of a railway network used in the book of
[Heidergott et al., 2006]. In this chapter the form of the railway network is explained
(3.1), the network is modelled into a MPL system (3.2) and a desirable train timetable
for the network is designed (3.3).

3.1 The railway network

Consider a railway network with two stations, S; and Ss, as indicated in Figure 1. The
stations are connected by two tracks. One track runs from S; to S and we assume the
travel time on this track to be 5 time units. The other track runs from S5 to S; and has
a travel time of 9. Together, these two tracks form a circuit. The train on the track from
S1 to Sy continues on the track from Sy to S;. Our railway network contains two other
circuits, which connect the suburbs of a city to its main station. The left circuit has a
travel time of 3, the right circuit has a travel time of 5 time units. Each of the four tracks
is occupied by a train.

Figure 1: A simple fictional railway network.

The trains arriving at each station should wait for each other in order to allow the
changeover of passengers. The transfer time for passengers is set to 2 time units. This
means that as soon as both trains have arrived at a station, they will wait 2 time units
in order for passengers to changeover from one train to the other.

3.2 The max-plus-linear model

In this section the previously described railway network is modelled into a MPL system
as described in section 2.2. The model should meet five criteria [Heidergott et al., 2006]:

1. The travel times of the trains along each of the tracks is fixed and given.

2. The frequency of the trains (the number of departures per unit of time) must be as
high as possible.



3. The frequency of the trains must be the same along all four tracks, yielding a
timetable with regular departure times.

4. The trains arriving at a station should wait for each other in order to allow the
changeover of passengers.

5. The trains at a station depart the station as soon as they are allowed.

Let z;(k) denote the kth departure time of the train going in direction i, with i =
1,2,3,4. These departure times are the events in the model. So z3(0) is the first train
going in direction 3, which is the track running from S1 to S2. In Figure 2 the tracks in
the different directions ¢ = 1,2, 3,4 are labeled in red.

/&Q{ Q\»@

i B0 )
®~4° %@ 5

Figure 2: A simple fictional railway network with the different directions labeled in red.

Let a;; denote the travel time of the train going in direction j, that is connected to the
train going in direction ¢. Let ¢ be the transfer time to enable passengers to changeover.
From the rules given in the previous subsection, it follows that for x3 (the train traveling
in the direction 3):

$3(k‘) Z aso + xg(k — 1) + t, (31)
ZE3<I{3) Z asy + ZE1<I€ — 1) +t.

Equation (3.1) follows from the assumption that the train going in direction 2 continues
in direction 3. Hence the train in direction 3 can depart as soon as the train in direction 2
has arrived, which is at agy + x2(k — 1), plus the transfer time, which is t. Equation (3.2)
follows from the fourth rule in the previous section: the train going in direction 3 should
wait until the train going in direction 1 has arrived, so that passengers can changeover at
station 1. Since it is more convenient to include the transfer time ¢ in the travel time a;;,
we leave this constant out of the equation. Then for the departure time of the train in
direction 3 it holds that:

333(]6’) Z HlaX((Zgg + ﬂfg(k — 1), asy + ZEl(/{? — 1))
=az @ Ta(k — 1) ©az @z1(k —1) (3.3)
=11®Rz(k—1) @5z (k—1),

11



where azy = travel time + transfer time = 9+ 2 = 11 and a3y = travel time +
transfer time = 3+ 2 = 5. Since the frequency of the trains should be as high as possi-
ble according to the second criterion, we replace the >-sign in (3.3) with an =-sign.

The departure times of the trains in direction 1, 2 and 4 are described similarly. This
leaves us:

r1(k) =5®@z1(k—1) @11l @ xo(k — 1),

2o(k) = T@ w3k — 1) ® T @ 24(k — 1), (3.4)
23(k) =5@z1(k — 1) ® 11 ® 2o(k — 1), '
r4(k) =T x3(k — 1)@ 7@ x4(k — 1).

In general,

j=1
for i = 1,2,...n, with n the number of trains. We set a;; = € when there is no connection
between train ¢ and train j. These values will not participate in the maximum operation.

Remark that in this example the departure times of the train in direction 1 are the same
as the ones of the train in direction 3, likewise for train 2 and train 4.

The equations in (3.4) can be written in matrix form as:

z(k)=A®xk—-1), (3.6)
with
5 11 ¢ ¢
e e 77
A= 5 11 ¢ ¢
e e 77

This matrix is larger than the system matrix in the example in the book of [Heidergott
et al., 2006], which is a 2 x 2 matrix. That is because Heidergott et al. (2006) defined
x; as the departure time of the two trains at station i, hence the vector z(k) contains
an element for each of the two stations. In this thesis we have chosen to define z; as
the departure time of the train going in direction ¢, causing the vector z(k) to have an
element for each of the four directions. This will be more convenient for the analysis of
breaking connections between trains, later in this thesis. Breaking connections causes the
two trains at a station to have different departure times, because they are not obligated
to wait for each other anymore. Therefore it is clearer to assign a departure time to the
trains in each direction separately.

There is one last criterion that is included in the MPL model, that is the fifth rule
“The trains at a station depart the station as soon as they are allowed”. This also means
that the trains may not leave before the scheduled departure times in the train timetable,
otherwise this would be confusing for the passengers. Hence when d(k) denotes the kth

12



scheduled departure times in the train timetable, it must hold that

5 11 ¢ ¢
e 77

z(k) = 51l e e ®x(k—1) @ d(k). (3.7)
15 77

The scheduled departure times d(k) are determined beforehand by means of the power
algorithm. This will be explained in the next section.

We have now arrived at a MPL system in the form of (2.8), where z(k) are the kth
departure times, A is the state matrix of which the elements represent the travel time
plus transfer time, and d(k) are the scheduled departure times which serve as input of the
system. As mentioned before, the output equation (2.9) is omitted since the output y(k)
equals the state x(k).

3.3 Power algorithm: designing a desirable train
timetable

In this section the train timetable is designed such that the frequency of the trains is as
high as possible and the timetable is convenient for passengers. Let d(k) denote the kth
departure times in the train timetable. We are trying to find the best first departure times
of the day, d(0), that lead to a regular train timetable. The timetable is regular when the
time between two consecutive departures in the same direction, the interdeparture time,
is constant. For this the power algorithm is applied.

With the power algorithm the eigenvalue and eigenvector of a n X n matrix can be
computed. It turns out that the eigenvector of matrix A is a suitable choice for d(0) and
the eigenvalue will then be the minimal interdeparture time. The power algorithm is given
below [Heidergott et al., 2006].

1. Take an arbitrary initial vector x(0) such that z(0) has at least one finite element.

2. Compute x(k) = A®z(k — 1) until there are integers p, ¢ with p > ¢ > 0 and a real
number ¢, such that z(p) = z(q) ® ¢, i.e., until a periodic regime is reached.

3. Compute as the eigenvalue A = ¢/(p — ¢q).
4. Compue as an eigenvector v = @I_{(A*P~1) @ x(q + j — 1)),

In appendix A the power algorithm is programmed in Python. For our example we

13



start with 2(0) = in step 1. Next, step 2 gives us

o O O O

5 11 e ¢ 0 11
e e 77 0 7
=151 - |®lo|= 0|
e e 77 0 7
(3.8)
5 11 ¢ ¢ 11 18
e e 77 7 18
M@=15 11 ¢ |®11] = |1s
e e 77 7 18

Hence z(2) = 2(0) ® 18 and so p = 2, ¢ = 0 and ¢ = 18. Subsequently the eigenvalue can
be calculated as in step 3. We get A = 18/(2 — 0) = 9. This means that every 9 time
units the trains will depart in every direction. This is the smallest interdeparture time
possible. However, for the passengers it is easier if the trains depart every 10 time units
since it is easier to remember and to deal with, i.e.,

d(k) =10 @ d(k —1). (3.9)

The only thing left to know for the train timetable is a suitable starting vector with
departure times, d(0). When there are no delays, we must have

A@x(k—1) <d(k), (3.10)
so that the trains run according to the timetable. Substituting (3.9) into (3.10) gives us
A@z(k—1) <10®d(k —1) (3.11)

and thus also
A®z(0) <10 ® d(0). (3.12)

When there are no initial delays, we have z(0) = d(0) and hence it must hold that
A®d0) <10®d(0) =d(1). (3.13)

For the eigenvector v of A, it holds that A®@v =9 ® v < 10 ® v. Therefore, choosing the
eigenvector for d(0) satisfies (3.13). Step 4 in the power algorithm gives us

v=9%"®2(0)® 9 ® (1)

9 11 11
R 7] |9 (3.14)
ol ® 1] Tl

9 7 9

14



As mentioned in subsection 2.1.2, the eigenvector is unique up to an additive constant,

2
01 . :
hence NE also an eigenvector.
0
Note that the eigenvector of A is not the only vector that satisfies (3.13). For instance,
1
the reader can check that (1) is also a suitable choice for d(0), that satisfies (3.13).
0

We have now arrived at a desirable train timetable for passengers. The d(k) are listed
below

2 12 22 32
0 10 20 30

do)=| 4| d=| 5| d@ =[5 | a3 =]5%] - 1)
0 10 20 30

15



4 Control strategies for the propagation of
delays

In this chapter methods to solve a train delay will be introduced. To test the effect of
these methods, we first need to know how to model the propagation of delays when there
is no intervention. This will be discussed in (4.1). Thereafter two control strategies will
be discussed. One is to allow certain trains to run faster (4.2) and the second method
is breaking connections, whereby the passenger changeover constraint is neglected (4.3).
Both control strategies are modelled in a switching max-plus-linear model to automate
the system.

4.1 Modelling the propagation of delays

We speak of a delay when for a certain train j, x;(k) > d;(k). To find out the subsequent
delayed departure times, we apply the MPL model (3.7) until x;(k) = d;(k) for all 4. This
will eventually happen because the network contains some slack time. Slack time appears
when the train is ready to depart before the scheduled departure time indicated in the
timetable. Since the trains are not allowed to depart before the scheduled departure time,
the slack time serves as some buffer time to absorb delays. For example, the trains are
ready to leave the second time at

o 11 e « 2 11
e € 177 ® o1 19
5 11 ¢ ¢ 2| |11
e e 177 0 9
12
while the second scheduled departure times in the timetable are d(1) = 12 . The
10

“@ d(k)” part in the MPL model (3.7) makes sure that the trains do not leave before
d(1).

Let’s have a look at an example of the propagation of a delay. Suppose at k£ = 1 the

12
train in direction 2 has a delay of 8. Hence we have z(1) = g . Applying the MPL
10
model (3.7) gives
29 34 83 92
20 36 80 90
z(2) = 99 | - z(3) = s | z(8) = g3 | z(9) = 92 | - (4.1)
20 36 80 90

Hence at k = 9, 2(9) = d(9) and all trains will leave on time again. Note that the elements
of x are never smaller than the elements of d, so that the timetable is always leading.

16



The MPL model can be programmed in Python such that the z(k) are calculated, see
appendix A.

If we want to know the magnitude of the total delay in the system and which trains are
delayed, the vectors z(k) = z(k) —d(k) are calculated. This vector displays the magnitude
of the delay of each train at event k. Note that always z;(k) > 0 for all i. We get

L 2(8) = (4.2)

N

—

—

SN—

I
O O oo O

N

—~

[\

S—

I
O N O

N

—~~

(UN)

SN—

I
DN O N
O = O

and the total delay in the system is 72 (sum all elements of all z), where the first delay of
8 is not included since that delay already happened and cannot be influenced anymore.

4.2 Control strategy: Let trains run faster

One way to catch up a train delay is by letting trains run faster for a period of time until
the trains can run according to the timetable again. In general, not every train is allowed
to run faster because of safety reasons. But when a train travels a long distance through
grasslands for example, it is allowed to slightly speed up the train. In our fictional railway
network we assume that only the train in direction 2 is allowed to reduce its travel time
to 7 instead of 9. In section 2.3 was mentioned that the structure of a MPL system
is fixed. This means that when we want to reduce the travel time of one train, this
leads to a change in the state matrix A, and consequently we need to build a switching
max-plus-linear (SMPL) model.

4.2.1 Switching max-plus-linear model

The SMPL model consists of two modes: one contains the state matrix from the original
MPL model, the second mode contains the altered state matrix where the train in direc-
tion 2 runs faster. The model should constantly switch between the two modes in such a
way that the trains run as much as possible according to timetable. The SMPL model is
described as in section 2.3.

Let I(k) € {1,2}. Recall that (k) represents the mode that is valid at event k. If
[(k) = 1, the vector z(k) is calculated with matrix 1 (the original matrix). If [(k) = 2,
the vector z(k) is calculated with matrix 2 (the altered matrix). Note that the matrix of
mode 2 has a smaller eigenvalue and consequently a smaller interdeparture time. How-
ever, since we always take the maximum with d(k), the train timetable is always leading
and the trains will therefore never leave before the scheduled departure times. This is
more convenient for the passengers.
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Mode 1

5 11 ¢ ¢
=[5 5 T T oetk-1)®dk) (4.3)
5 11 ¢ ¢ ) '
e e 177
Mode 2
5 9 ¢ ¢
e e 77
z(k) = 50 & ¢ — 1) @ d(k). (4.4)
e e 177
For each event k, the mode of the system

[(k) is determined by the switching variable z,
)

that depends on the previous state x(k — 1) and the input variable d(k). We define

5 11 ¢ ¢
e e T 7 4
z(k) = TR Rx(k—1)®dk) e R, . (4.5)
e e 77

The space R% _is partitioned into two subsets, one for each mode:

= {2(R)| 2(k) = d(R)}, (4.6)
= {2(k)| Fi€{1,2,3,4} : z(k) > di(k)}. (4.7)

If 2(k) € Z', the system switches to mode 1 and if z(k) € Z2, the system switches to
mode 2. Both modes are calculated with the same Python program but with a different
state matrix, see appendix A. Note that z(k) is equal to the original MPL system for
the train departures. The original matrix is used for z(k) because the switching variable
should test whether it is possible to let the trains run as usual. When travelling with
the original travel times leads to a delay, the system should switch to the altered matrix.
Conversely, suppose the altered matrix is used in the switching variable, then the outcome
of z(k) may be that z(k) = d(k), so that the system switches to the original matrix to
calculate z(k). However, when subsequently the original matrix is used to calculate z(k),
it is possible that there is still a delay present. For example, suppose at £ = 3 we have
that

99 € ¢ 21 32 32
e e 77 22 30| |30 ,
=159 ||| ® 5| ]
e e 77 22 30 30
so that the system switches to mode 1 to calculate x(3). But then
5 11 ¢ ¢ 21 32 33 32
e e 177 22 30 30| . 30
=5 1 e | @ | ®|g2] T | g msteadof |41
e e 77 22 30 30 30

hence the system switched to early. That is why the original matrix is used in the definition

of z(k).
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4.2.2 Example of a delay

Suppose at £ = 1 the train in direction 2 has a delay of 8. In section 4.1 the propagation
of this delay is calculated. In this example the SMPL model is applied. We have:

12
18
z(1) = 12
10
5 11 ¢ ¢ 12 22 29
e e 77 18 20| |20 )
D=5 17 ¢ |®|12|®|22|= |02
e € 77 10 20 20
hence 1(2)=2, so the system switches to mode 2 to calculate x(2).
5 9 ¢ ¢ 12 22 27
e e 77 18 20 20
M2=159 ¢ |®|12|®|2|= |
e e 77 10 20 20
5 11 ¢ ¢ 27 32 32
e e 77 20 30| |34 )
@) =15 11 c c|®|or|® 32| =522
e e 77 20 30 34
5 9 ¢ ¢ 27 32 32
e e 77 20 30 34
=159 ¢ | ®l2r|® 52| = |3
e e 77 20 30 34
5 11 ¢ ¢ 32 42 45
e e T 7 34 401 |41 2
W=15 11 ¢ c|®|32|®|e|l 5|2
e e 77 34 40 41
5 9 ¢ ¢ 32 42 43
(4) = e e 7T 7 2 34 & 40 |41
W= 15 9 ¢ ¢ 32 427 |43
R 34 40 41
5 11 ¢ ¢ 43 52 52
e e 77 41 5| |50 ,
O)=15 11 ¢ |®|a3|® 52|~ |n|Z:
e € 77 41 50 50
hence 1(5)=1 and the system switches back to mode 1.
5 11 ¢ ¢ 43 52 52
e € 77 41 50 50
G)=15 11 ||| ® 52| =5
e e 177 41 50 50
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By letting the train in direction 2 run faster, the delay is solved at k = 5, compared to
k = 9 when no control is applied. Next to that the total delay in the system is now 22
compared to 72. The switching variable z(k) decides if z(k) will be calculated in mode 1
or mode 2.

The steps can be interpreted as follows. To start with, somewhere something hap-
pened and as a result the train in direction 2 was able to depart the station eighth time
units past the scheduled departure time. When the trains keep travelling with their usual
speed, the trains in direction 1 and 3 will also depart the station too late in the next step
k = 2 (shown by z(2) in the first and third element). This is because these two trains have
to wait for the arrival of the originally delayed train before they are allowed to depart.
To limit the effect of the originally delayed train on these two trains, we let the train in
direction 2 speed up to catch up some of the delay. As a consequence, the delay of the
departure times of the trains in direction 1 and 3 at k = 2 are reduced by 2 (shown in
x(2) in the first and third element). At k = 2, train 2 and 4 can depart as usual, because
the trains to which they are connected (train 2 is connected to train 3 and 4 and train 4
is connected to train 3 and itself) were not delayed at & = 1. These two trains also did
not notice that the train in direction 2 drove faster, because they are not connected to
that train. In the next steps approximately the same happens but for different trains.

To conclude, when one train has a delay, all trains connected to that train also have
delayed departure times, except when the delay is absorbed by slack time. Speeding up
a train that departed too late can help reduce the delay of the departure times of the
connected trains. The trains that are not connected to a delayed train can depart as usual.
The departure times of the connected trains will not alter, when the speeding leads to an
earlier arrival than scheduled. The trains that are not connected to the train that speeds
up, do not experience any influence of the speeding.

/Qgga»@

g b))
@45 Qr@ 5

Figure 3: A simple fictional railway network with the different directions labeled in red.
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4.3 Control strategy: Breaking connections

The second control strategy, that will be discussed in this thesis, is to break certain con-
nections between trains. In some situations, it can be a more efficient choice to break a
connection. In general, these are the connections that allow a passenger changeover at a
station. For example, if the train in direction 2 has a large delay, it is inconvenient that
the train in direction 1 should keep waiting for the arrival of that train in order to enable
a passenger changeover between both trains at station 1. If we break the connection
between these trains, the train in direction 1 can keep running according to timetable.
Other connections cannot be broken. For example, the train in direction 3 should still
wait for the arrival of the train in direction 2, because a train cannot depart before it has
arrived.

To find the control strategy that indicates which connections should be broken, the
theory of [De Vries et al., 1998] is used. In the next subsection this control strategy will
be implemented in the switching max-plus model for speeding up trains. First, a decision
variable u; is introduced, that indicates whether the kth train in direction ¢ will wait for
the connecting train in direction [.

(4.8)

¢ otherwise

{0 if ¢ will wait for [
il =

The goal is to choose the u; such that the delays of all trains are minimal and at the
same time as many connections as possible will be maintained. The chosen u;; will define
the control strategy used in the SMPL model.

The u;’s are chosen such that the objective function J is minimal, with

(S,
L+, Zi,l ujy (k)

The numerator denotes the total delay, with z(k) = x(k) — d(k). The total delay must be
as small as possible. The denominator denotes the number of connections, where

u;l<k>={ L

J (4.9)

Oifuy =¢

and the 1 in the denominator is added to prevent that the denominator becomes 0. We
want the number of connections to be as high as possible. The « indicates which of the
objectives is more important.

To find the best control strategy (that leads to a minimal J), first the set U of possible
control variables is determined. Only the unnecessary connections are considered. In our
railway network, these are uya, usz1, us3 and ugy. The possible u;;(k)’s are the controls that
correspond to delayed trains. These are the controls that give a;;®@z;(k)®u;;(k) > d;(k+1)
when u;; = 0, starting from the k of the initial delay. Only these controls can influence the
total delay in the system. To find these w;;(k) a Python program is written that can be
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found in appendix A. Once the controls are determined, different control strategies can be
composed by setting one or more elements of U equal to €, meaning that the connection
is broken. For each of these control strategies the J can be calculated. The strategy
for which J has the smallest value will be chosen to include in the switching model. An
example of how to find the optimal control strategy will be given in subsection 4.3.2.

4.3.1 Switching max-plus-linear model for both strategies
combined

The controls will be added to the SMPL model of the previous control strategy, in which
we let one train run faster to catch up the delay. The first mode is again the original
MPL system, the second mode contains the altered system matrix in which we let one
train run faster. Additionally, mode 2 contains the broken connections determined by the
method in the article of [De Vries et al., 1998].

Mode 1
5 11 € ¢
=5 5 7T T euk-1)edk (4.10)
5 11 ¢ ¢ ' '
e e 177
Mode 2
k)y=A E—1)®d(k
where [A]ZJ = [S]U &® u”(k: — 1)
In mode 2, the matrix S is the matrix where the train in direction 2 runs faster,
5 9 € ¢
e e 77
5= 5 9 ¢ ¢
e e 77
and g (k) — {0 if i will wait for j
€ otherwise
The switching variable z(k) is again defined by
o 11 ¢ ¢
e e T 7 4
z(k) = 51l e e @x(k—1)®dk) € Ry, (4.12)
e e 177
and
21— [2(k)] (k) = d(k)}, (4.13)
Z2={z(k)| 3ie€{1,2,3,4} : 2z(k) > di(k)}. (4.14)
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4.3.2 Example of a delay

The same delay as in example 1 of the previous section is analysed. First we need to
determine the set U. Hence we need to know which of the unnecessary connections,
ur2(k), usi(k), uaz(k), ua(k), give a;; ® z;(k) @u;j(k) > d;i(k+ 1) when u;; = 0, starting
from k = 1. This is programmed in Python and can be found in appendix A. The controls
found for this initial delay are

Ulg(l), u12(3), U43(2) and U24(3).

Now the different control strategies can be composed by setting these equal to 0 or €. The
number of possible control strategies is 2", with n the number of controls found. In this
case there are 2* control strategies possible, these are given in Table 1.

u1p(1) | u12(3) | ua3(2) | u24(3)
1 0 0 0 0
2 € 0 0 0
3 0 € 0 0
4 € € 0 0
5) 0 0 € 0
6 € 0 € 0
7 0 € € 0
8 € € € 0
9 0 0 0 €
10 € 0 0 €
11 0 € 0 €
12 € € 0 €
13 0 0 € €
14 € 0 € €
15 0 € € €
16 € € € €

Table 1: Possible control strategies.

For each of these control strategies, we calculate the value of the objective function
(4.9) for « =1 and @ = 3. When « = 3, maximizing the number of connections is more
important than minimizing the total delay. The total delay is calculated as in section 4.1,
but when u;;(k) = ¢, the [A];; is set to ¢ in the MPL model. This leads to the following

results
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u | Yz | N J1

1 4 22 4.4 0,938
2 3 17 425 | 1,031
3 3 21 5,25 1,146
4 2 16 5,333 | 1,333
5 3 16 4 1

6 2 11 3,667 | 1,106
7 2 15 |5 1,291
8 1 10 5) 1,681
9 3 21 |525 | 1,146
10 2 16 5,333 | 1,333
1|2 20 | 6,667 | 1,491
12 1 15 7,5 1,936
13 2 16 5,333 | 1,333
4 |1 11 |55 | 1,658
15 1 15 7,5 1,936
16 0 10 10 3,162

Table 2: Value of J for different control strategies.

We conclude that when a = 1, control strategy 6 is best. That is when uj5(1) = ¢
and uy3(2) = . When o = %, control strategy 1 is best. Hence when the focus lays on
maximizing the number of connections, it turns out that breaking no connections is best.
This leads to the example in section 4.2 when the SMPL model is applied. When control
strategy 6 is applied, the total delay in the system reduces to 11 and the SMPL model

takes the following steps

12
18
o) =19
10
5 11 ¢ & 12 99 29
e e T 7 18 200 120 2
=517 - | ®|12|®|22|=|0]| €2
e e 77 10 20 20
5 € ¢ ¢ 12 22 22
e ¢ 77 18 20 20
2)=15 9 . |®|12]|®|2|=|or
e e T 7 10 20 20
5 11 ¢ ¢ 99 39 32
e e 77 20 30| (34 )
) =15 11 - 2|97 ®| 32| = 32| €2
e e 77 20 30 34
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5 9 ¢ ¢ 22
e e 77 20
B)=159 ¢ %]
€ € ¢ 7T 20
5 11 ¢ ¢ 43
e € 77 40
V=15 11 ¢ |93
e e 77 40
5 11 ¢ ¢ 43
e e 77 40
O)=15 11 ¢ -|®|43
e e 77 40

32
30
32
30

52
50
52
50

52
50
52

50

52
20
52
50

52
30
92

20

e z!

At k = 2, the system switches to mode 2. This mode gives [A]12 = [S];; ® u12(1) =9 ®
e = e. At k = 3, another connection is broken, namely [A]y3 = [S]43 ® u43(2) =T ® € = &.
Breaking these connections leads to a smaller total delay. However, the number of steps

it takes to solve the delay stays the same.
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5 Modelling of a larger railway network

The theory discussed in the previous chapters will be applied to a larger, more realis-
tic railway network. The railway network is a modification of the railway network dis-
cussed in chapter 8 of the book of [Heidergott et al., 2006]. Our version consists of three
long-distance lines that connect the Dutch cities Amsterdam (Asd), Amersfoort (Amf),
Deventer (Dv) and Zwolle (Z1). On these lines intercity trains run back and forth. The
railway network is shown in Figure 4. The three different intercity lines are colored, the
ten different directions are labeled in red, the connections are displayed with blue arrows
and the travel times in minutes are shown for each track. The travel times also include
waiting times and transfer times. The tracks in direction 3 and 7 are large circuits that
pass other stations as well. The tracks between these stations are combined to one track
with a large travel time. Track 3 goes all the way to the Dutch city Groningen and track
7 goes to 's Hertogenbosch and back.

138

Figure 4: A larger, more realistic railway network with the different directions labeled in
red. The connections between the three different intercity lines are displayed with blue
arrows.

This railway network differs from the example in the book of [Heidergott et al., 2006].
Some line segments are left out and some are combined to one track. That is because
the modelling of the example in the book of [Heidergott et al., 2006] requires additional
techniques that are not in the scope of this thesis. Within our smaller version of the
railway network in the book, we assume the same travel times and connections as the
example in the book. Remark that the assumptions made in this chapter do not exactly
correspond to reality, but they are plausible. Other situations can be modelled similarly.

The first step is to design the max-plus-linear system and to design a train timetable
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that serves as input of the system. The following equations for the ten directions can be
made:

ZEl(k‘) = Q15 ®ZE5(I€ — 1),
Z‘Q(k‘) = a91 ®$1(k5 — 1) ) 928 ®I‘8(l€ — ].),
z3(k) = az ® zo(k — 1),
ZE4(]C) = 43 [ IL‘3(I€ — 1),
z5(k) = aps @ x4(k — 1) ® ass ® xs(k — 1), (5.1)
.276(k’) = Qg1 & .Tl(k’ — 1) () g8 (024 .Tg(k — 1), .
x7(k) = a7 @ x6(k — 1) @ az10 ® x10(k — 1),
fl?g(k?) = asy ® .137(]{Z — 1),
$9(k’) = Q97 X 337(]{3 — 1) D CL9710 X 51710(]{3 — 1),
z10(k) = @109 ® T9(k — 1)
The equations in (5.1) lead to a MPL system of the form

€ € € e 36 € € € € ¢

34 ¢ & € € € € 42 ¢ ¢

e 38 ¢ E € € € € € ¢

e € 138 € e € e & € ¢

€ € e 38 & € & 42 & ¢

z(k) = U - - s e e e A2 £ & ®x(k—1)®dk). (5.2)

e € € € € 3 e e ¢ 21

e € € e € € 93 e e ¢

€ € € e € 93 ¢ ¢ 21

€ € € e € e € 22 ¢

The train time table for this railway network is again composed by means of the
power algorithm. The Python code used in the previous chapters can be used for this.
The eigenvalue of the state matrix is 58. Thus the constant interdeparture time found for
this railway network is 58, meaning that every 58 minutes the intercity trains can leave in
each direction. For the timetable we will turn this into 60 minutes, meaning every hour.
The eigenvector corresponding to the eigenvalue of 58 is (38, 20, 0, 80, 60, 20, 1, 36, 36,0)7.
Suppose we let the timetable start at 5:00 AM, then the train timetable will be as in
Table 3. In equation (5.2) is calculated with minutes, so that for example the d; (k) used
in the equation are consecutively 38, 38+60=98, 98+60=158, etc. To display the results,
the values will be converted to clock times.
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Train | d(0) |d(1) |d(2) | etc.
1 5:38 6:38 7:38
2 5:20 6:20 7:20
3 5:00 | 6:00 | 7:00
4 6:20 | 7:20 | &8:20
5 6:00 | 7:00 | 8:00
6 5:20 | 6:20 | 7:20
7 5:01 6:01 7:01
8 5:36 | 6:36 | 7:36
9 5:36 | 6:36 | 7:36
10 5:00 | 6:00 | 7:00

Table 3: The train timetable for the railway network.

Now the propagation of delays through this network can be investigated. Suppose the
train in direction 8 has an initial delay of 12 minutes. Hence z(0) = (38, 20, 0, 80, 60, 20, 1,
48,36,0)T. By applying the MPL model (5.2), we find that at k = 6 the delay is out of
the system and the total delay is 76 minutes.

Next, the effect of the control strategies is investigated by applying the switching
max-plus-linear models. In our railway network we assume that the train in direction 3 is
allowed to reduce its travel time to 134, the train in direction 7 may reduce its travel time
to 89 and the trains in direction 2 and 4 may reduce their travel time to 36. If we call
the state matrix in (5.2) matrix A!, the SMPL model for the strategy of faster running

trains becomes:

Control strategy: Let trains run faster

v(k)=A'@z(k —1) @ d(k),

Mode 1
Mode 2

e € € e 36

34 € € e €

e 36 ¢ g €

e € 134 ¢ ¢

e € e 36 e

w(k) = 3 ¢ ¢ e ¢

€ € € e €

€ € € e €

e € € e €

e € € e €

Switching variable

2(k) = A' @ a(k — 1) @ d(k)

M M M O O, M
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2 = {a(k)| 2(k) = d(k)},
Z2={z(k)| Fie{1,2,...,10} : z(k) > d;(k)}.

When applying this SMPL model to the delay, the total delay in the system reduces
from 76 minutes to 38 minutes (excluding the initial delay) and the delay is out of the
network at £ = 4, compared to k = 6 when there is no intervention. The train timetable
will change to Table 4.

Train | d(0) d(1) d(2) d(3) d(4)
1 2:38 6:38 7:38 8:38 9:38
2 2:20 6:20-+10 | 7:20 8:20 9:20
3 2:00 6:00 7:00+6 | 8:00 9:00
4 6:20 7:20 8:20 9:20 10:20
) 6:00 7:00 8:00 9:00 10:00
6 2:20 6:20+10 | 7:20 8:20 9:20
7 2:01 6:01 7:01+8 | 801 9:01
8 2:36+12 | 6:36 7:36 8:36+2 | 9:36
9 5:36 6:36 7:36 8:36+2 | 9:36
10 2:00 6:00 7:00 8:00 9:00

Table 4: The train timetable for the railway network when train 8 is delayed. As a
consequence certain trains will drive faster.

The switching max-plus-linear model in which speeding up trains and breaking con-
nections is combined is the following:

Control strategy: Let trains run faster and break certain connections

Mode 1
r(k) = A'@z(k — 1) @ d(k), (5.8)

Mode 2

o(k) = A2 @ x(k — 1) ® d(k),

where [A%];; = [S]y; ® uy(k — 1). (5.9)

In mode 1, A' is the state matrix as in equation (5.2). In mode 2, the matrix S is the
matrix where four trains run faster, which is the state matrix in equation (5.4). Also,

0 if ¢ will wait for j
uij(k) = .
¢ otherwise

Switching variable

2(k) =A'@x(k—1)®dk) e RY (5.10)
Z' = {z(k)| =(k) = d(k)}, (5.11)
Z2={z(k)| Fie{1,2,...,10} : z(k) > d;(k)}. (5.12)
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To determine the controls u;; that can influence the delay, the same Python code
as in the previous chapters is used. The unnecessary connections in this network are
uss(k), uei(k), uas(k), ugr(k), and ur19(k). The controls found by the Python code,
that can influence this delay, are uss(0) and wug7(2). This leads to 22 = 4 different control
strategies for breaking connections. For each of the control strategies the value of the
objective function J (4.9) is calculated. The results are shown in Table 5.

Uzg(()) U97(2) Zu’ ZZ Jl J%
1 0 0 2 38 12.667| 2.055
2 € 0 1 22 11 2.345
3 0 € 1 36 18 3
4 3 3 0 20 20 4.472

Table 5: The control strategies for breaking connections and the values for the objective
function J, with a =1 and o = %

When o = 1 (minimizing the total delay and maximizing the number of connections
are equally important), control strategy 2 is best. When a = % (maximizing the number
of connections is more important), control strategy 1 is best. Control strategy 1 leads to
the same results as in Table 4. When control strategy 2 is applied, the total delay in the
railway network reduces to 22 minutes. At k& = 4, the delay is out of the network. The
train timetable changes to Table 6.

Train | d(0) a0 a2) a03) )
1 5:38 6:38 7:38 8:38 9:38
2 5:20 6:20 7:20 8:20 9:20
3 5:00 6:00 7:00 8:00 9:00
4 6:20 7:20 8:20 9:20 10:20
5! 6:00 7:00 8:00 9:00 10:00
6 5:20 6:204-10 | 7:20 8:20 9:20
7 5:01 6:01 7:01+8 8:01 9:01
8 9:36412 | 6:36 7:36 8:36+2 9:36
9 5:36 6:36 7:36 8:36+2 9:36
10 5:00 6:00 7:00 8:00 9:00

Table 6: The train timetable for the railway network when train 8 is delayed. As a
consequence certain trains will drive faster. Additionally, the connection between train 8
and train 2 will be broken at the first step.

To conclude, the total delay of 76 minutes can be reduced to 22 minutes when the
trains run faster and one connection is broken. The models provided in this chapter
can calculate exactly how the delay propagates through the railway network and provide
passengers information about the new departure times.
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6 Conclusion

To summarize, the goal of the thesis was to model train delays and to model possible
control strategies to solve these delays. First a basic understanding of max-plus algebra
is obtained, where also max-plus-linear (MPL) systems and switching max-plus-linear
(SMPL) systems are explained. Then a simple railway network is constructed, for which
a desirable train timetable is designed using the power algorithm. The departure times of
each event step in this railway network are modelled into a MPL system. Subsequently,
delays are executed on the departure times and the propagation of these delays is mod-
elled. The delays are solved by applying two control strategies: let certain trains run
faster and break unnecessary connections. Both strategies are modelled into a switching
max-plus-linear model to automate the system. Finally, all required theory is applied at
a larger, more realistic railway network.

In the examples it can be observed that the total delay in the system reduced drasti-
cally by letting certain trains run faster. The delay was reduced some more by additionally
breaking connections. It can be concluded that the switching max-plus-linear models ob-
tained in this thesis, provide train operators a more automated way to decide how to
intervene when a delay is detected. This has often been done more intuitively. The mod-
els in this thesis provide methods to calculate exactly how the delay propagates through
the network when certain control strategies are applied and, based on that, decisions can
be made quicker. Moreover, it is possible to calculate the consecutive departure times so
that the passengers can be informed quickly about the new departure times as a conse-
quence of the delay and how long it will take for the trains to run according to timetable
again.

This thesis adds the modelling of faster running trains to existing literature. In general,
slowing down the trains does not require additional modelling methods, since it is always
possible to let a train wait a little longer before a railway signal for instance. However,
to let a train run faster is less straight forward. As we have seen in this thesis, speeding
up trains is also a control strategy to solve delays and can be modelled systematically.
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7 Discussion

A few remarks on this thesis can be made that may lead to further research of this topic.

First of all, in our SMPL models the altered matrix, where some trains run faster,
is used in every step until the delay is out of the system. However, it may be safer to
speed up as few times as possible. So only when the train that is allowed to speed up has
a delayed departure time, we let that train speed up. In the steps in which trains that
are not allowed to speed up have delayed departure times, the regular state matrix can
be used, since the altered matrix has no effect on the delay. This can be noticed in the
example of subsection 4.2.2. Here z(3) and x(3) have the same outcome, hence it was
actually not necessary to speed up the train in direction 2. When this train unnecessarily
speeds up, it has a higher risk of causing accidents, while at the end station it just stands
still because it arrived too early. Also, when multiple trains in the network are allowed
to speed up, not all of them need to speed up in every step to solve the delay. This can
be adjusted in the SMPL model.

Secondly, when a train has an extremely large delay, it may be more convenient to
replace that train by a bus. Otherwise the necessary connected trains keep waiting on
that train, because these connections cannot be broken. Then a new MPL model can be
constructed such that the departure times are synchronized with the bus. This can be
added as a mode to the SMPL model.

Moreover, the models do not automate the decision making completely. To determine
which control strategy for breaking connections one wants to implement into the SMPL
model, humans need to choose what is more important: minimizing the total delay or
maximizing the number of maintained connections. This choice may depend on the situ-
ation.

Further remarks mainly relate to the appliance of these methods to an even larger,
realistic railway network. To start with, including all tracks in the model leads to an
extremely large state matrix. It also takes a while to set up all separate equations to form
the matrix. Solutions for this should be investigated. Moreover, the number of possible
control strategies to be analysed for breaking connections can blow up. A solution for this
is suggested in the article of [De Vries et al., 1998]. Furthermore, the Python program
can be written more efficiently or another programming language can be used, such that
the program’s running time will be reduced for a large network.

The last remark is that these models do not limit to trains. We can, for instance,
connect a tram or a bus to the train network and include a suitable transfer time for pas-
sengers to changeover from train to bus or the other way around. This can be modelled
the exact same way.
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Appendix

A Python code for calculations during the

thesis

import numpy as np
# Max—plus algebra: x = 4+, + = max

# function A matrix

eps=float (”inf")

def Amat(T1,T2,R11,R22,R12,R21):
A—np full ((4,4) ,eps)

]=T1+R11

|=T2+R12

|=T1+R21

| =T2+R22

]=T1+R11

]=T2+R12

]=T1+R21

] T2+R22

# function matrix multiplication
def mult(A,B):
res=np.zeros ((len(A),len(B[0])))
Ist =[]
n=0
m=len (B)
for i in range(len(A)):
for k in range(len(B[0])):
for j in range(len(B)):
Ist .append (A[1][j]+B[]j][k])
for i in range(len(A)):
for j in range(len(B[0])):
res[i]]j]=max(lst [n:m])
n=n+len (B)
n=mt-len (B)

return res

# function matrix power
def matpow (A, power) :
if power==
B=A
if power>1:
B=mult (A, matpow (A, power —1))
return B

# Power algorithm: departures from S1 and S2

def powalg(A,x):
Ist =[x]
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48
49
50
o1
52

53
54
55
56
o7
o8
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
(0]
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101

v=(]
eigv=np.zeros ((len(x),1))
for i in range(len(lst)):
for j in range(len(x)—1):
while Ist[—1][j][0] —1st [1][j][O0]'=1st [—1][j+1][0] —lst [1i][]
+1][0] or 1st[—1][0][0] —1st[i][0][0]==0:
Ist .append (mult (A, I1st [—1]))

else:
c=lst [—1][0][0] —1st [1][0][O]
p=len(lst)—
q=i

lamb=c /(p—q)
for j in range(1l,p—q+1):

v.append (lambx(p—q—j )+1st [q+] —1])
for k in v:

for i in range(len(k)):
if k[i1][0] >eigv[i][0]:
eigv [1][0]=k[i][0]

return lamb,eigv—min(eigv) [0]

S ) ) g ) ) ) ) L

/////I///// I T eIy /////I/I/////I/I/I////// /////I////I/l///////// //
A=Amat(2,2,3,5,9,5) # A matrix

x=np.zeros ((4,1))

dly=np.array ([[12],[18],[12],[10]])

k=1

print 'A='+str(A)

print 'Eigenvalue._=.'+str (powalg(A,x)[0])
print 'Eigenvector _—=.'+str (powalg(A,x)[1])
# Desirable timetable d(k)

d=[powalg (A,x) [1]]
for i in range(20):
d.append(d[i]+powalg(A,x)[0]+1)

print ( ' Timetable _=_"+str (d))

# Delayed departure times without intervening (solved by slack time)
def delay(dly ,k,A):
=[dly]
while (x[—1]>d[k]) .any():
x.append (mult (A,x[—1]))
k=k+1
# Do not leave before departure time in timetable:
for i in range(len(dly)):
if x[—1][i]<=d[k][1]:
x[—1][i]=d[k][i]
else:

return x

# Propagation of delay z(k)
def pod(k,A):
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103
104
105
106
107
108
109
110

111
112
113

114
115
116
117
118
119
120
121
122
123
124
125
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127
128
129
130
131
132
133
134
135
136
137
138
139
140

141
142
143
144
145
146
147
148
149
150
151
152
153

z=]

n=k

for i in range(len(delay(dly ,k,A))):
z.append (delay (dly ,k,A) [i]—d[n])
n=n+1

return z

print 'Delayed.departure.time.is.'+str(dly)+'_at.step.'+str (k)

print 'Delayed._.departure.times._from_moment.of._first.delay.=."'+str (delay (dly
KA

print 'Delay.is.'+str(pod(k,A))

print 'Total_delay:.'+str (sum(sum(pod(k,A))—pod(k,A)[0]) [0])

print 'After.'+str (len(delay (dly ,k,A))—1)+'_steps_delay._is._solved_by_buffer
!

# Departure times with faster A matrix

A_inhaal=Amat(2,2,3,5,7,5)

print 'Catch_up_timetable.'+str (delay (dly ,k, A_inhaal))

print 'After.'+str(len(delay (dly ,k, A_inhaal))—1)+'_steps.delay._is._solved'
print 'Total_delay:.'+str (sum(sum(pod(k, A_inhaal))—pod(k, A_inhaal) [0]) [0])

# Breaking connections
# Find controls

def ctrl():
u_12=J]
u_31=J]
u_43 =[]
u-24=J]
for i in range(len(delay(dly ,k,A_inhaal))—2):
if A_inhaal[0][1]+ delay (dly .k, A_inhaal)[i][1]>d[k+1+i][0]:
u_12.append (k+i)
if A_inhaal[2][0]+ delay (dly ,k,A_inhaal) [i][0] >d[k+1+i][2]:
u_31.append (k+i)
if A_inhaal[3][2]+ delay (dly .k, A_inhaal)[i][2] >d[k+1+i][3]:
u_43 .append (k+i)
if A_inhaal[1][3]+4 delay(dly ,k,A_inhaal)[i][3]>d[k+1+i][1]:
u-24 .append (k+i)
return u_12,u_31,u_43,u_24

print 'u_12('+str(ctrl () [0])+"'),ou31("+str(ctrl()[1])+"'),-u_43('"+str(ctrl
O[2D+") s cu24(+str(ctrl () [3])+") "

# control strategies
def combs(places):
if len(places)==0:
return [[]]
c={]
for i in combs(places[1:]):
c+=[i, i+[places[0]]]
return c

def strat ():
I=(]
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155
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157
158
159
160
161
162
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164
165
166
167
168
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174
175
176
177
178

for i in ctrl():
1.append(len(i))
S=np.zeros ((2*«*sum(1l), sum(1l)+1))
for i in range(len(S)):
S[i][0]=1i+1
for j in combs(range(sum(1)))[i]:
S[i][j+1]=eps
return S

print strat ()

z=[22,17,21,16,16,11,15,10,21,16,20,15,16,11,15,10]
def table(z):
tab=np.zeros ((16,5))
for i in range(16):
tab[1i][0]=1+1
for j in range(1,5):
if strat()[i][j]==0:
tab[i][1]=tab[i][1]+1

tab[i][2]=2][1]

tab[i][3]=float(z[i])/float ((tab[i][1]+1))

tab[ig)[él]:float(z[i]) x%(0.5) /float ((tab[i][1]+1))
return ta

print table(z)

37




	Introduction
	Max-plus algebra
	Basic concepts and definitions
	Basic definitions
	Vectors and matrices

	Max-plus-linear systems
	Switching max-plus-linear systems

	Modelling of a simple railway network
	The railway network
	The max-plus-linear model
	Power algorithm: designing a desirable train timetable

	Control strategies for the propagation of delays
	Modelling the propagation of delays
	Control strategy: Let trains run faster
	Switching max-plus-linear model
	Example of a delay

	Control strategy: Breaking connections
	Switching max-plus-linear model for both strategies combined
	Example of a delay


	Modelling of a larger railway network
	Conclusion
	Discussion
	References
	Appendix
	Python code for calculations during the thesis

