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Preface

Deep learning models have achieved state-of-the-art performance on several image
classification tasks over the past years. Several studies claim to approach or even
surpass human-levels of performance when using such models to classify images.
However, these architectures are notoriously complex, thus making their interpre-
tation a challenge. This limited interpretability, in turn, leads to several issues, such
as restricting their applicability to critical domains like health care and finance.

Several methods in literature attempt to address this issue by providing local
explanations which describe individual predictions or global ones that explain the
model behaviour for a specific class. When focusing on global methods, we notice
that they are limited with respect to the interpretability queries that they answer.
For instance, consider we want to query whether the simultaneous presence of two
objects is associated with predicting a specific class. To the best of our knowledge,
there is no existing method that can tackle such a query type due to their limited
expressivity. In this thesis, we address this limitation by answering the following
research question: to what extent can image classification models be interpreted
by analysing semantic features extracted from groups of salient image pixels?

We begin our study by investigating existing research work to devise the ideal
characteristics that an interpretability method should adhere to. Our analysis high-
lights the aforementioned gap regarding the query complexity that existing methods
cover. To address this limitation, we propose a new global interpretability method
called SEmantic Feature Analysis (SEFA). To elaborate, it combines explanations of
individual image predictions with semantic descriptions provided by human annota-
tors about them, thus extracting the aforementioned semantic features. We argue
that by analysing a structured data representation extracted out of semantic fea-
tures will allow us to answer a wider range of interpretability queries compared to
existing methods. The proposed method poses several challenges, such as iden-
tifying the number of image annotations required to obtain reliable results at a
reasonable annotation cost.

Our results show that SEFA provides its users with the flexibility to answer
several types of interpretability queries, including the ones that we found exist-
ing methods to be lacking. Further experimentation on its hyperparameters using
three separate image classification tasks provides us with a set of suggested set-
tings that one should use on similar datasets. Finally, we showcase the ability of
SEFA to output semantic features relevant to the model classification behaviour by
fine-tuning existing model architectures on biased datasets and evaluating whether
the salient semantic features output describe the previous bias.

Panagiotis Soilis
Delft, August 2020
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Introduction

The use of Artificial Intelligence (AI) techniques and Machine Learning (ML) models
is becoming more and more prominent in our daily lives [2]. A wide range of systems
performing tasks such as classification and regression is used in several domains,
namely commerce, legal and more. However, many of these models operate in a
complex non-transparent way often referred to as “black box” [2] [24]. This lack
of interpretability creates numerous issues. These include leading to unnecessary
waste of model training effort [59], limiting the use of such methods in critical
domains [29] like banking, leading to legal issues [23] [24] and more.

The aforementioned issues constitute interpretability as one of the essential
characteristics of an ML system, both in research [2] and industry [22]. Inter-
pretability within the ML field refers to explaining the model behaviour “in under-
standable terms to a human” [19]. Hence, understanding these behaviours would
allow us to optimize the model training process, reduce the scepticism towards
complex models in critical domains and provide the interpretability needed to avoid
legal issues. For instance, being able to explain why a model classifies a CT scan
image as “heart disease” would allow us to reason about the validity of the decision-
making process and to build trust. While numerous methods have been proposed
in literature, both to interpret existing systems and to create new models that have
interpretability as a built-in component, several challenges remain.

One of these challenges is to explain the behaviour of state-of-the-art Deep
Learning (DL) models used in image classification tasks [32]. In particular, existing
DL studies claim to approach [18] or even surpass [26] human-levels of perfor-
mance when classifying image data. However, these architectures are notoriously
difficult to interpret meaning that we do not fully understand how they achieve such
a high performance. For example, do they learn how a specific class is described
in the real world or do they simply overfit on some dataset-specific bias? Dataset
bias can correspond, for instance, to having specific background colours for each
class, thus leading the model to classify images solely based on their background.

In this thesis project, we focus on interpreting the behaviour of these state-

1



2 1. Introduction

of-the-art image classifiers. More specifically, we propose a new interpretability
method that combines explanations of individual image predictions with semantic
descriptions provided by human annotators to reason about the model for a class
of interest. Its goal is to answer a wider range of interpretability queries regarding
model behaviour compared to existing methods while using terms understandable
to us humans.

The rest of the chapter is structured as follows: we first specify the problem
statement of the research gap that we are addressing. Then, we define the research
questions that we answer via this thesis project, we present the contributions of
our work and conclude with an outline of this document.

1.1. Problem Statement

Interpretability methods can be divided into local and global depending on their
goal when providing explanations. To be more exact, local interpretability refers
to explaining a model’s prediction for a specific sample while global interpretability
corresponds to explaining a model’s behaviour with respect to a specific class of
interest. In order to make this distinction more clear, we provide a series of images
from a gender classification task in Figure 1.1.

Predicted

Label: Female Female Male

Figure 1.1: Image examples - Gender classification.

The previous images are representative samples of pedestrian images annotated
with the person’s gender. They depict humans in different orientations with diverse
information in the image such as the objects present, their colour, the background
and more. When training a deep learning model on this dataset, a few examples
of interpretability queries that we would like to answer are the following:

¢ Q1: Why does the model classify the image above as male?

* Q2: Does the model associate the presence of a "bag” in the image with the
female class?

¢ Q3: Does the model utilize the presence of “black” objects to classify as male?

Q1 is a typical example of a local interpretability method while Q2 and Q3 corre-
spond to global interpretability queries. While the previous examples can be an-
swered by existing methods, our literature review reveals that the current methods
are unable to answer more complex questions, such as the ones available below:

¢ Q4: Is the combination of a “white bag” and “long hair” associated with
the female class by the model?
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* Q5: Does the model associate the presence of a “white bag” and absence
of “long hair” with the male class?

Existing methods are unable to answer queries containing feature combinations
(Q4) or combinations of feature presence and absence from the image (Q5). There-
fore, we set out to design a method that is more expressive in that it can answer
more complex global interpretability queries such as the previous ones. This new
method is called SEmantic Feature Analysis (SEFA). We hypothesise that ob-
taining groups of pixels that the model is sensitive to, on an image level, across
several images and annotating those salient pixels with semantic descriptions will
allow us to obtain the extra expressivity required. The idea is that we can structure
the semantic description per image in a structured representation where the rows
correspond to the images and the columns to the semantic data annotated. Then,
we can analyse the extracted representation using traditional structured data anal-
ysis methods to answer more complex interpretability queries due to the flexibility
that this structure provides.

Given that existing local interpretability methods can highlight the salient pixels
on an image level (Figure 1.2), we can use them to get these groups of pixels across
several images.

Figure 1.2: Local interpretability output. Figure 1.3: Semantic features output.
Left: short,black-hair|pale-ear. Middle:
short, black-hair|white-road|black,white-shirt.
Right: tan-neck|black-tshirt|pale-shoulder.

However, when working with image data a semantic gap arises since pixels are a
too low-level representation from a semantic perspective for us humans, an issue
that has been highlighted by several existing studies [29] [57] [59]. To be more
specific, the highlighted pixels in these images provide no semantic meaning to
humans when looked at a global interpretability level. For example, if pixel 200 is
salient in the first image but not in the second one, it does not make us any wiser
about the model behaviour as a whole. While such information makes sense on a
local level, using the pixel numbers as features to aggregate their values globally
does not provide any meaningful information about global interpretability.

To address this limitation we introduce a new notion called semantic features.
We define them as groups of pixels that are extended with semantic meta-data.
These can refer to different elements-objects in the images and their attributes-
properties. Semantic features can be annotated using domain experts or potentially
even crowd workers. Examples of semantic features for the previous images can
be found in Figure 1.3. Moreover, we term the structured representation of images
and semantic features mentioned previously as semantic representation.
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1.2. Research Questions

Based on the problem statement presented in the previous section, our focus is on
extending the output of local interpretability methods with semantic descriptions
and analysing them to provide global explanations for image classification models.
The main research question addressed in this work is the following:

Main Research Question

To what extent can image classification models be interpreted by
analysing semantic features extracted from groups of salient im-
age pixels?

The main idea is to develop a way to interpret image classification models by
analysing semantic features extracted from local interpretations. More specifically,
we hypothesise that using these semantic features to interpret an image classifi-
cation model will allow us to provide more expressive global explanations that can
answer more complex queries. In order to answer the main question, we break it
down into the following four research sub-questions:

RSQ1: Which are the state-of-the-art interpretability methods for image
classification models?

This question aims at finding the state-of-the-art interpretability methods and spot-
ting their limitations with respect to global explanations. We answer this question
via a detailed literature review which covers the definition of interpretability, its
use cases and a categorization of existing methods. Finally, we lay out the charac-
teristics of an ideal method, highlight the shortcomings of existing literature work
according to them and showcase how SEFA addresses these limitations.

RSQ2: How can we use local interpretations to extract semantic features
that allow for global interpretability?

This question refers to the methodology of extracting such semantic descriptions
out of local explanations to enable for global explanations. The answer is given by
presenting the SEFA methodology in detail, together with the design considerations
and decisions made.

RSQ3: How do different design choices influence the method’s ability to
interpret the model’s behaviour?

This question refers to the SEFA hyperparameters that can influence the global
interpretability output. To answer this question we perform extensive experiments
on three classification tasks derived from two separate datasets. The empirical
evidence obtained enables us to reason about the optimal hyperparameter values.

RSQ4: To what extent does the analysis of semantic features enable us to
answer a wider range of global queries for image classification models?



1.3. Contributions 5

This question evaluates the extent to which SEFA allows us to answer more complex
global interpretability queries for image classifiers compared to existing methods.
The answer to it is given by applying the proposed methodology on two datasets,
namely the pedestrian PA-100K [38] and the 1,000 class ImageNet ILSVRC-2012
[45], using the VGG16 [50] and Inception-V3 [55] deep learning image classifiers.
A series of bias injection tests are also performed to evaluate the method’s reliability
and robustness.

1.3. Contributions
To summarize, the contributions of our work are the following:

C1: We provide an in-depth literature survey on image classification interpretability
methods which answers RSQ1. In particular, we present a categorization of existing
methods and discuss local interpretability methods that could be used to extract
semantic features. Furthermore, we underline the limitations of existing methods
compared to a set of ideal interpretability requirements. Our review highlights
the challenge associated with creating an interpretability method for deep learning
models due to the absence of a ground truth output. Therefore, one has to be
inventive when evaluating the reliability of an interpretability method.

C2: We propose a new method which extracts semantic features from local inter-
pretability output and structures them in a tabular representation. We then analyse
this representation using existing structured data methods to answer complex global
interpretability queries. This contribution addresses RSQ2.

C3: We implement SEFA, a system that takes trained models and a random subset
of images as input and provides global explanations able to answer a wider range of
queries as output. The SEFA implementation is required to answer three research
questions, namely RSQ2, RSQ3 and RSQ4.

C4: We evaluate the proposed method extensively. To elaborate, we experiment
with the hyperparameter values under which it provides the optimal output and
observe its behaviour in a variety of classification tasks and models to reason about
the types of queries that it can answer. Contrary to existing global interpretability
methods, we experiment with more than one image datasets and classification
model architectures. That way, we ensure that our method can be applied to other
datasets while we also analyse its behaviour in more depth with respect to its
hyperparameters. For that purpose, we pre-processed the existing PA-100K [38]
dataset to create a new gender classification dataset, termed as PA-49K Gender,
which can be found on 4TU?. Inspired by our literature review, we came up with
several bias injection experiments that can be used to evaluate the reliability of an
interpretability method. The output of the SEFA evaluation is a discussion of the
circumstances under which SEFA performs reliably, the types of queries that it can
answer and its inherent limitations. This discussion enables us to answer research
questions RSQ3 and RSQ4.

2}
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6 1. Introduction

1.4. Outline

The rest of the thesis is structured as follows. In Chapter 2 we conduct an in-
depth literature survey on image classification interpretability methods. Chapter 3
details the methodology and design choices made when creating SEFA. Following
that, in Chapter 4 we report the experiments conducted to evaluate the proposed
method and its hyperparameters, while we also discuss the findings arising from the
empirical evidence collected. Finally, Chapter 5 concludes the thesis by summarizing
our work, its limitations and proposing directions for future research. An overview
of the thesis structure with respect to the research questions and contributions is
available in Figure 1.4.

1. Introduction }—{ 2 Literature }—»{ 3. SEFA Method }—»{ a. Experiments]—){ 5. Conclusion }
RSQ2, RSQ3, RSQ4

P C3,C4-
C1 - Literature C2 - Proposed 4 -
. SEFA Implementation
Review Method (SEFA) Experimentation !

Figure 1.4: Thesis Outline - Chapters, Research Questions & Contributions.

Research Questions

Contributions



Literature Review

This chapter presents the existing work on interpretability with a focus on image
classification models. The goal is to answer our first research question (RSQ1),
namely “"Which are the state-of-the-art interpretability methods for image classifi-
cation models?”. To answer this question, we break it down to three sub-questions:

e RSQ1.1: How is interpretability defined and which are its uses?

* RSQ1.2: How can we categorise existing interpretability methods based on
their characteristics?

¢ RSQ1.3: Which are the ideal requirements that an interpretability method
should adhere to?

The rest of the chapter addresses these questions. In particular, we first define
interpretability and present the uses that it can be applied for. Then, we present
the different characteristics of an interpretability method, introduce the main ideas
behind key existing methods and categorize them into a taxonomy based on the
aforementioned characteristics. Finally, we introduce the ideal requirements of an
interpretability method and analyse existing methods based on them.

Before providing the answers to the previous questions, we want to briefly ex-
plain our selection strategy behind the papers included in this survey. We started
by studying the latest literature surveys on the topic of interpretability [2] [15] [24]
[64]. These surveys enabled us to get an overview of the domain and to under-
stand the categorization of different methods, such as their distinction between
local and global methods. Following that, we looked into the most significant meth-
ods published in top-ranked machine learning and computer vision conferences on
the topic, including NIPS®, CVPR*, ECCV°, AAAI® and more.
3hit
4,
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2.1. Interpretability Definition & Needs

To begin with, we consider it crucial to discuss how we define the term interpretabil-
ity in our work before diving into the details of existing methods. While it is generally
accepted that interpretability is a key aspect of machine and deep learning models
[42] [44] [64], there is no common term used in literature. To elaborate, a variety
of terms is used throughout existing studies, such as interpretability, explainability,
comprehensibility, and intelligibility [24] [57].

The definitions of these words within the machine learning domain ranges from
broad non-technical to specific technical ones. For instance, Bhatt et al. [9] describe
it as “any technique that helps the user or developer of ML models understand” their
behaviour. On the other hand, Ribeiro et al. [43] define interpretability in a more
precise manner as providing “qualitative understanding between the input variables
and the response” of the model. Zeiler and Fergus [61] describe it in a technical
way as “interpreting the feature activity in intermediate layers”.

While some researchers have attempted to disambiguate these terms, with the
work of [15] being one such example, it is generally agreed that there still is no
concrete definition [19] [37] of interpretability that is applicable across a range of
studies and applications. Therefore, inspired by Doshi-Velez and Kim [19] and Du
et al. [20], we define interpretability within the scope of our work as follows:

Interpretability Definition

The ability to explain the behaviour of a deep learning image clas-
sification model in terms that a human can understand.

We would like to clarify that the term behaviour can refer to either explaining why
a specific prediction was made by the model or to explain which features the model
uses to classify a class of interest.

Following the interpretability definition, we want to present the different needs
that it covers and the corresponding use cases that it can be applied on. Based on
existing literature [2] [19] [24] [46], we summarise the four main needs that in-
terpretability fulfils, namely (1) system verification, (2) performance improvement,
(3) legislation compliance and (4) knowledge gain. An overview of these needs
coupled with example use cases for each one of them can be found in Table 2.1.

Interpretability Need Use Case Example
System Verification [24] [46] “Spot the background bias in the dataset.”
Performance Improvement [2] [46]  “Understand AlexNet to improve its performance.”
Legislation Compliance [2] [24] [46] “Comply with the GDPR law.”
Knowledge Gain [2] [19] [46] “Improve our knowledge in the game of Go.”

Table 2.1: Interpretability needs with use case examples.

System Verification
The first need is to verify the behaviour of a trained model. In particular, recent
progress in machine and deep learning systems has been made possible by training
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them on massive amounts of data [24]. However, these datasets often contain
biases which can lead models to demonstrate unwanted behaviours [24] or to base
their predictions on wrong features. The unwanted biases present in the datasets
are then picked up or even amplified by the models, as shown by existing studies
on text data [10] [14].

Ribeiro et al. [43] provide an example of this issue by training a logistic regres-
sion classifier on images with biased backgrounds and show that their method can
detect the bias by highlighting the background artefacts. Similarly, Buolamwini and
Gebru [12] discover that commercial gender classification systems have significant
performance differences across users with different demographics. Therefore, the
use of interpretability methods is crucial to understand the weaknesses and limita-
tions of such models [24] [46] so that they can be addressed.

Performance Improvement

The second need for interpretability methods stems from our desire to continuously
improve the performance of existing architectures. It is safe to assume that under-
standing the behaviour of a model will make our life much easier towards achieving
this goal. Existing studies [2] [46] highlight that understanding a model and its
weaknesses is a step in that direction. An example of such use case is the work
of Zeiler and Fergus [61] who attempt to understand how AlexNet [35] achieved
its performance on the ImageNet [45] benchmark dataset. Their method allowed
them to visualise the intermediate feature layers of AlexNet which enabled them to
come up with architectures that outperform the original model.

Legislation Compliance

Given the increasing presence of ML systems in our daily life, they are receiving
more and more attention regarding their legal aspects [46]. One such example is
the General Data Protection Regulation (GDPR) [23] law in the European Union.
More specifically, it enables every individual to ask for an explanation regarding
the decision taken by an automated system. Hence, interpretability methods that
provide explanations for individual predictions could assist in addressing the GDPR
requirements and other similar needs [2] [24] [46].

Knowledge Gain

Our need to extend human knowledge can be supported by the use of interpretabil-
ity methods to explain existing models [2] [19] [46]. Doshi-Velez and Kim [19]
highlight this need by claiming that “the human’s goal is to gain knowledge”. How-
ever, since some of the these ML systems are extremely complex for humans to
perceive [46], designing methods that enable us to understand the behaviour of
these models will allow us to extract further knowledge [2]. For example, explain-
ing the strategy learned by the AlphaGo Zero [49] reinforcement learning algorithm
would enable us to improve our knowledge at the game. Similarly, interpretability
can potentially lead us to learn more about the hidden laws of nature in sciences
such as physics, chemistry and biology [2] [46].
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2.2. Interpretability Method Taxonomy

Having defined interpretability within the scope of our work and presented its use
cases (RSQ1.1), we would like to summarise the existing methods in literature.
To elaborate, we present existing interpretability methods that enable us to explain
image classification models and structure them in a taxonomy (RSQ1.2). While
our taxonomy is by no means exhaustive, we focus on discussing the main inter-
pretability methods presented so far in terms of scientific impact.

2.2.1. Taxonomy Dimensions
Our taxonomy comprises of two dimensions: interpretability scope and model rela-
tion. The details of each dimension are presented below.

Interpretability Scope

One of the most common separations of interpretability methods made by existing
studies [2] [22] [24] [29] [32] [59] is based on the method scope. To be more
exact, the term scope refers to the goal that the method output attempts to achieve.
Existing studies strive for two separate goals, local and global interpretability.

On the one hand, local interpretability methods [7] [43] [51] explain an indi-
vidual prediction generated by the classification model for an image of interest.
However, given that machine learning models are commonly trained on datasets
containing millions of images, it is impractical for system designers to interpret their
behaviour via individual image explanations [59]. Therefore, a range of global in-
terpretability methods [22] [29] [59] has been proposed to address this limitation
of local methods. Global methods attempt to explain the behaviour of an image
classification model in terms that a human can understand. These methods allow
us to interpret a model with respect to entire classes or sets of examples [32].

Model Relation

The second dimension of our taxonomy describes the relation of the interpretability
method to the classification model [2] [24]. In particular, we refer to the range of
models that an interpretability method can be used with. Based on existing work,
methods can be classified as model-specific or model-agnostic.

Model-specific methods are designed with a specific image classification model
in mind. To be more specific, the model is created with built-in interpretability,
meaning that it can provide explanations about its predictions and its behaviour.
For example, Zhang et al. [65] propose a Convolutional Neural Network (CNN) that
can explain its features maps by using the same labeled training data as ordinary
non-interpretable CNNs. On the contrary, model-agnostic interpretability methods
can be applied to any existing deep learning architecture and are independent of
the trained model.

An existing literature review by Adadi and Berrada [2] also proposes separating
methods into intrinsic and post-hoc. Intrinsic methods refer to algorithms that
are inherently interpretable while post-hoc correspond to methods that are applied
to algorithms following their training without any change in their architecture [2].
However, we argue that intrinsic and post-hoc distinction matches the categorisation
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made by the model relation while also having a similar overlapping meaning. Thus,
we decided to exclude this dimension from our taxonomy.

2.2.2. Existing Methods

In this section, we summarise the main existing interpretability methods and de-
scribe how they fit in our taxonomy based on the two aforementioned dimensions.
More specifically, we focus on methods that can be used to explain deep learning
image classification models. To provide more structure, we group methods with
similar characteristics. We should underline that although our focus is on methods
explaining classification models, there is also the possibility to look into explanations
of complex dataset distributions [31].

Gradient-Based

The first group of methods base their explanations on a gradient related compu-
tation of the activation function learned by the deep learning model. The gradient
calculation allows us to test the effect of a small change in the image to the classi-
fication score output by the model [33].

Simonyan et al. [51] introduced the notion of saliency map which is currently
one of the most popular ways to interpret an individual prediction of a deep neural
network trained on image datasets [3] [33]. Given a specific image and a class of
interest, they proposed to compute the gradient of the activation function for that
class with respect to every image pixel input into the network. The calculated pixel
intensity values can then be visualised to highlight the parts of the image that the
model uses to discriminate the class of interest. Given that this method can be used
with any trained model to explain individual image samples, it can be characterized
as local and model-agnostic according to our taxonomy.

While gradient saliency maps seem to capture a correlation between the pixel
input space and the label predicted by the model, their output can be particularly
visually noisy [52]. Therefore, Smilkov et al. [52] proposed SmoothGrad which
is a method that can sharpen the output of these gradient-based maps. More
specifically, they sample several images from the original image by adding noise,
then calculate the gradients for each of these images and obtained their average
values for the resulting saliency map.

Another gradient-based method presented by Sundararajan et al. [54] is the
Integrated Gradients, a local interpretability method similar to the original gradient
approach that computes a saliency map. However, their approach computes the
pixel intensities via a gradient integral along a straight-line path between the input
image and a baseline image instead. In their work, they propose the use of a black
image as a baseline when explaining image networks. Similarly to the “vanilla” gra-
dients, their method can be applied to any deep neural network. However, Adebayo
et al. [3] found that it has limited sensitivity to network weights by comparing the
saliency map of trained and random network weights.

Signal-Based
This group of interpretability methods uses network signals instead of gradient val-
ues to compute the pixel intensities for the saliency maps. More specifically, a
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relevance signal is backpropagated using the network’s trained weights from the
output neuron through each previous layer until it reaches the input pixel space
[48]. Since these methods can be used with any trained neural network and their
output is a saliency map similar to the gradient-based approaches, they can be
characterized as local and model-agnostic.

Zeiler and Fergus [61] proposed the DeconvNet interpretability method moti-
vated by the need to explain the state-of-the-art network [35] at the time. Contrary
to Zeiler et al. [62] who experimented with deconvolutional networks, the Decon-
vNet of Zeiler and Fergus [61] focuses on explaining an already trained CNN. In
particular, it visualises the input pixels that caused “a given activation in the fea-
ture maps” [61]. This functionality is achieved by performing typical CNN functions
such as filtering and pooling in reverse, hamely from the feature maps to the input
pixel space. The process resembles backpropagating “a single strong activation”
[61] instead of the usual network gradients.

That said, Springenberg et al. [53] observed that the aforementioned Decon-
vNet method does not perform well in the absence of a max-pooling layer. There-
fore, they proposed a new variant of DeconvNet named Guided BackProp, which
can visualise the salient pixels for higher CNN layers. Similarly to DeconvNet, their
method backpropagates the trained network but only uses the top gradient sig-
nal when computing the gradient of a non linear function. Guided BackProp was
found to perform well both for intermediate and higher network layers [53], thus
addressing the aforementioned limitation of DeconvNet.

Another approach that takes advantage of network signals is the “Layer-Wise
Relevance Propagation” (LRP) proposed by Bach et al. [7]. Contrary to the previous
methods [53] [61], LRP starts from the final network layer and backpropagates
relevance values through each prior layer until it reaches the input pixel space.
As a result, it can compute the importance of each pixel for the model prediction,
thus providing a similar output to gradient-based methods. Given the way the
pixel intensities are computed, the LRP method provides information about pixels
that contributed both negatively and positively towards a specific prediction. On
the contrary, gradient-based methods only highlight the pixels that the model is
sensitive to without an indication of positive or negative effect.

Finally, the “Deep Learning Important FeaTures” (DeepLIFT) method of Shriku-
mar et al. [48] is another interpretability method that computes the contributions
of each pixel to the prediction for a specific image. Similarly to LRP, it backpropa-
gates the contribution values through all the neurons of the trained neural network.
However, its contributions scores are computed by comparing the neuron activa-
tions to “reference activations” and calculating their differences. The “reference
activations” are based on an input that is selected per use case. For instance, for
the MNIST dataset, [48] use a reference image of zero values since this is the back-
ground value of the digit images. As a result, DeepLIFT explains the differences of
an image of interest versus the corresponding values of the “reference” one.

Local Approximation
The local approximation group of methods focuses on methods that attempt to
interpret a complex model by approximating its behaviour locally in the pixel space.
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The methods presented in this section can be used to reason about both local and
global interpretability, and can be used with any trained model.

Ribeiro et al. [43] proposed the “Local Interpretable Model-agnostic Explana-
tions” (LIME) method which provides explanations for individual images-predictions
of any model. Their key idea is that a complex non-linear classifier can be inter-
preted by learning a linear interpretable model that locally approximates its predic-
tion behaviour. In their work, they also modify the LIME method to provide global
explanations about the model as a whole. In particular, they propose a submod-
ular pick method, SP-LIME [43], which selects specific instances from the dataset
that should be explained. The intuition is that by sampling multiple representative
instances from the dataset and analysing their local explanations provided by LIME,
they can reason about global interpretability. That said, they leave the sampling
criterion of SP-LIME for image data as future work. Hence, we only consider the
local variant LIME in our image data interpretability taxonomy.

Their work on LIME was followed up with Anchors [44] which is another local
model-agnostic interpretability method that attempts to locally approximate the
behaviour of complex models. Contrary to LIME, the desired behaviour is achieved
via high-precision “if-then” rules instead. The motivation behind this new method
is to address a limitation of LIME explanations, namely that they may not apply to
unseen samples. Anchors are designed in such a way that their explanations are
more faithfull by “adapting their coverage to the model’s behaviour” [44].

Interpretable Models

The next group of existing interpretability methods focuses on designing models
that are inherently interpretable and can interpret their own predictions. Hence,
the methods in this group are characterized as local and model-specific.

Xu et al. [58] propose a model that is trained to describe image contents via a
neural architecture that utilises attention. Their network can focus on salient objects
in images and generate an output text sequence that describes these objects that
are important for its prediction. The idea is that by visualising the attention layer
of the model, they can provide explanations for specific outputs.

On the other hand, Zhang et al. [65] present a methodology that modifies ex-
isting CNNs to provide interpretable outputs. In particular, the filters in the higher
convolutional layers of their modified network map to specific salient objects. The
proposed method can be applied to modify numerous types of CNNs with different
architectural choices to provide interpretable outputs.

Concept-Based

Finally, the group of concept-based methods resolves around providing global expla-
nations via high-level concepts that are understandable by humans for any trained
network. As such, they are characterized as global and model-agnostic.

The idea of concepts was first put forward by the work of Kim et al. [32]. To
elaborate, they propose “Testing with Concept Activation Vectors” (TCAV), a method
that aims to quantify the influence of high-level human concepts to neural network
image classifiers with respect to a specific class. The Concept Activation Vectors
(CAVs) described in their work enable us to interpret a network’s internal state
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in human concepts. This is done by collecting sample images that represent the
human concept of interest, projecting the concept images coupled with random
ones into a feature space learned by one of the model’s intermediate layers and
training a linear classifier to separate the concept from the random images. The
CAV is then derived by using the orthogonal vector to the decision boundary. The
importance of a concept is provided by a numeric value ranging from zero to one.
That way, we can quantify, for instance, the influence of the concept “striped” to
the predictions of class “zebra” for a trained neural network of interest.

However, TCAV only responds to user queries and requires significant workload
to provide labeled images of the high-level human concepts [22]. To address its
limitations, Ghorbani et al. [22] proposed “Automated Concept-based Explanation”
(ACE), a framework that automatically extracts high-level concepts based on the
dataset and trained model representation. This is achieved by utilizing image seg-
mentation and clustering techniques, to extract image segments and to group them
into similar concepts based on the representation of an intermediate network layer.
Then, they use TCAV to compute the importance scores of the extracted concepts
for the model with respect to the class of interest.

Another method that is based on the “concept-based” idea is “Global Interpreta-
tion via Recursive Partitioning” (GIRP) [59]. In particular, Yang et al. [59] proposed
an “interpretation tree” that presents the decisions rules that a complex model uses
for its predictions. The proposed tree is learned on top of a “contribution matrix”
that quantifies the contribution of the input features for each sample to the model
predictions. In the case of image data, they utilise an semantic segmentation algo-
rithm to extract image “superpixels”, a.k.a. concepts, for each image. Then, they
use LIME [43] to compute the contribution of each concept for a classification, thus
extracting the required contribution matrix.

While the aforementioned concept-based methods enabled us to answer a range
of global interpretability queries that local methods were unable to, we argue that
they struggle to provide answers to complex questions. In this work, we present
a new model-agnostic interpretability method, called SEmantic Feature Analy-
sis (SEFA), which utilises human-understandable concepts nhamed semantic fea-
tures. The analysis of these features allows us to answer more complex queries
compared to existing methods. While its primary goal is to provide global expla-
nations, SEFA can also reason about individual predictions as a side-effect of the
way its global interpretations are obtained. The differences between SEFA and the
existing methods are discussed in more detail in Chapter 2.3.

2.2.3. Method Taxonomy
Using the descriptions of the interpretability methods provided in Chapter 2.2.2,
we map them to our taxonomy dimensions from Chapter 2.2.1. The output of this
process is presented in Table 2.2.

Based on the aforementioned table, it becomes clear that interpretability meth-
ods usually have either a local or a global scope. We argue that both of them are
equally important since they address different needs from Chapter 2.1. To elab-
orate, local methods can explain individual predictions, thus enabling us to check
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Interpretability Method Interpretability Scope Model Relationship

Gradient-Based [51], [52], [54] Local Model-agnostic
Signal-Based [ 7], [48], [53], [61] Local Model-agnostic
Local Approximation [43], [44] Local Model-agnostic
Interpretable Models [58], [65] Local Model-specific
Concept-Based [22], [32], [59] Global Model-agnostic
SEFA (ours) Local, Global Model-agnostic

Table 2.2: Taxonomy of existing interpretability methods.

whether a model makes unbiased decisions using features related to the classifi-
cation task at hand. Similarly, they can visualise trained feature maps for specific
images which give us a better understanding of trained models. Moreover, they ad-
dress existing legislation regulations and can expand our understanding of certain
tasks by observing how certain decisions are made.

That said, local methods provide limited information about the behaviour of
the model as a whole, an issue that global interpretability methods address. More
specifically, they allow us to interpret the sources of dataset bias and to evalu-
ate whether the model uses the right features to discriminate a class of interest.
What is more, they can help us understand the human concepts that the inter-
mediate network layers have learned, thus enhancing our understanding of neural
architectures and their behaviour. Finally, being able to explain complex high per-
forming models can further our knowledge on certain tasks by providing us with
new problem-solving strategies.

Moving on to the issue of the method’s relation to the model, the majority of
existing methods can be used with any existing trained network of choice. We
strongly believe that having model-agnostic methods that are not inherently tied
with a model is the research direction we should focus on. While model-specific
interpretability offers simplicity, it cannot be used with existing models without re-
training or modifying them, a process which can prove extremely costly for users
with existing high performing models [32]. Therefore, our focus for the rest of the
chapter is on model-agnostic methods.

2.3. Ideal Interpretability Requirements

Inspired by our reflections on existing literature and experiments of existing meth-
ods on the use case datasets of our work, we propose several interpretability re-
quirements that any new method should adhere to (RSQ1.3). In this section, we
evaluate how the existing methods and SEFA fare against them. The ideal require-
ments for an interpretability method can be summarised as follows:

» Model Relation: it should be able to explain any deep neural network with-
out requiring to modify or retrain the model.

o Interpretability Scope: it should answer both local and global queries.
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o Complex Queries: it should be able to answer complex queries concerning
multiple entities in an image.

¢ Concept Diversity: it should allow us to reason both about elements in the
images and their characteristics.

e Convenience: it should be relatively easy to use and able to provide expla-
nations in a reasonable amount of time.

¢ User Expertise: it should not require a high level of expertise.

At this point, we would like to discuss the reasoning behind our requirements. The
need to focus on model-agnostic methods stems from our literature review and is
also discussed by the authors of TCAV [32]. Moving on to the interpretability scope,
several studies underline that local and global methods answer different types of
queries [2] [24], thus necessitating a different output per scope type. The ability to
answer complex queries and to provide high concept diversity is a need that arose
during our review of existing methods. We provide a more concrete example of
this argument later in the section. As for the method’s convenience, existing work
[19] [24] has mentioned the need to take into account possible time restrictions.
We argue that interpretability methods that are convenient to use and have a low
computational cost are more desirable since they can tackle a wider range of use
cases. Finally, given the wide range of interpretability stakeholders mentioned by
[9] [19] [24], we believe that an interpretability method should not require high
expertise to appeal to more target users, such as decision-makers, regulators and
more. This point is especially important when considering that the user groups of
several interpretability needs from Chapter 2.1 are non-experts.

In this work, we present SEFA, a new interpretability method that is designed
with the previous requirements in mind. SEFA's goal is to explain a model’s be-
haviour with respect to a specific class using semantic features. The main idea is
to annotate groups of pixels highlighted by a local interpretability method with se-
mantic descriptions to obtain the aforementioned semantic features. The semantic
features extracted per image are then structured into our semantic representa-
tion, thus providing a structured representation similar to the contribution matrix
of [59]. Concrete examples of our semantic representation are available in Chapter
3.5.4. The extracted representation can then be analysed using traditional struc-
tured data analysis methods to answer global interpretability queries. A comparison
of the main model-agnostic methods presented in Chapter 2.2.2 and SEFA according
to the ideal interpretability requirements can be found in Table 2.3.

According to the previous table, it becomes clear that SEFA is one of the first
methods able to answer both local and global queries for image data, thus neces-
sitating the use of just one method to answer both types of queries. As for the
query complexity, while GIRP and SEFA provide the flexibility to answer complex
interpretability queries, such as whether the presence of multiple elements leads
to the classification of a specific class. TCAV and ACE are more limited since they
can answer questions such as “does the presence of a desk point towards class
office_room?” but fail to answer whether “the presence of a painting, a bed and
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Interpretability Local Global Complex Concept Convenience User
Method Queries Queries Queries Diversity Expertise

Local methods Yes No Yes Yes High Low

TCAV [32] No Yes Limited Yes Low Low

ACE [22] No Yes Limited Yes Average High

GIRP [59] No Yes Yes Limited High High

SEFA (ours) Yes Yes Yes Yes Average Low

Table 2.3: Comparison of existing methods to ideal interpretability characteristics.

a desk point towards class bedroom”, contrary to GIRP and SEFA. Similarly, local
methods can answer any type of query but only for individual images, a limitation
which does not allow us to reason about the model behaviour as a whole.

Despite the aforementioned flexibility, a key difference between GIRP and SEFA
is in how their structured representations are obtained. GIRP uses a semantic seg-
mentation algorithm to obtain the features of its contribution matrix while SEFA
takes advantage of human annotations to extract the features of its semantic rep-
resentation. We argue that this key difference allows SEFA to answer a much wider
range of queries concerning not only elements in images but also their attributes
such as colour, shape and more. We should also mention that both TCAV and ACE
can also answer queries related to the element attributes but are unable to per-
form combinations of them contrary to SEFA. Another distinction between GIRP and
SEFA is on the main focus of their studies. While the former centres around the
interpretation tree analysis method proposed, the latter focuses on the extraction
of a semantic representation that can be analysed via existing analysis methods.

Moving on to the convenience of each method, local methods and GIRP require
minimum input by their users. On the other hand, we argue that ACE is of av-
erage convenience given that the user has to carefully select the images that will
be segmented and those that will be used to compute the TCAV scores. Similarly,
SEFA requires the user to annotate a number of images with semantic features to
obtain global explanations. TCAV is arguably the least convenient of the methods
analysed since the user has to collect the images for all the concepts that will be
evaluated, on top of creating the image folders needed for the score computation.
As for the user expertise required to interpret the output of each method, we argue
that SEFA, TCAV and local methods require no computer vision or machine learning
background. On the contrary, GIRP and ACE users should already have some ex-
pertise to reason about their outputs. For instance, GIRP provides an output similar
to a decision tree, meaning that users without any technical knowledge may find it
counter-intuitive at first. Similarly, ACE requires knowledge of the method internals
regarding the concept extraction to understand its output.

To conclude, this section makes clear what the contributions of SEFA are over
the existing interpretability methods. To elaborate, it is a method that provides
increased flexibility and expressivity in terms of the types of interpretability queries
that it can answer. At the same time, it allows us to reason about both local and
global interpretability in a convenient way that requires minimum user expertise,
thus making it accessible to a wide range of stakeholders.
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2.4. Summary

This chapter answers our first research question defined in Chapter 1.2. To achieve
our aim, we broke down RSQ1 into three sub-questions which we answered in or-
der throughout the chapter. In particular, we first defined interpretability within this
line of work and laid out the four main interpretability needs that current methods
address (RSQ1.1). Then, we presented the main methods in literature and framed
them within a taxonomy according to two dimensions, namely interpretability scope
and model relation (RSQ1.2). Finally, we presented the ideal interpretability re-
quirements stemming from our literature review and evaluated how existing meth-
ods and SEFA fair against those characteristics (RSQ1.3).



SEFA Method

In this chapter, we present the details of our proposed method. We first provide an
overview of SEFA and its four components, and then we describe the design choices
and considerations for each of them individually. By presenting SEFA in detail,
we answer our second research question (RSQ2), namely “How can we use local
interpretations to extract semantic features that allow for global interpretability?”.

Input SEmantic Feature Analysis (SEFA) Output

Trained model

1. Local 2. Semantic W ( 3. Semantic W ( 4. Semantic . Rich
Interpretability Feature i i 3
- Extraction i J L E i J L FAnaIysis Global Interpretations

Dataset
Subset

b

3, [image_name predicted_label shirt-white shirt-black hair-blac
0384a1.jpg male

098445.jpg male

034524jpg female

098447.jpg male

094525.jp female

Inception-V3

Female features: long hair,
gray pavement, pale face

Male features: short hair,
brown neck, brown ear

4. + Statistical tests
« Rule mining
« Decision tree

Figure 3.1: SEFA overview. Top: main steps of the method coupled with its input-output.
Bottom: example output of each intermediate step for one of our use cases.

3.1. SEFA Overview

We begin by providing an overview of the proposed method in Figure 3.1. SEFA
takes the trained model that is to be explained coupled with a random dataset

19
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subset as input and outputs semantically rich global explanations. The global inter-
pretability extraction is done in four steps which are summarised below:

1. Local interpretability extraction: we use a gradient-based local inter-
pretability method to obtain a heatmap that highlights the pixels of each im-
age that the model is sensitive to.

2. Semantic feature annotation: we annotate the highly sensitive areas of
the heatmaps with semantic information using human annotators to extract
the semantic features described in Section 1.1.

3. Semantic representation extraction: the semantic features obtained dur-
ing the previous step are utilised to create the aforementioned semantic
representation.

4. Semantic representation analysis: we analyse the semantic representa-
tion to answer complex queries about the model’s behaviour with respect to
a particular class. The analysis can be done using a plethora of techniques
such as statistical tests, data mining techniques and fitting a decision tree.

In the following sections, we present the design details and considerations of each
intermediate step in detail.

3.2. SEFA Input

As mentioned previously, SEFA needs a trained model and a subset of images as
input. In particular, the trained model can be any deep learning network that takes
the pixel values of an image as input and outputs a prediction for that sample.
As for the image subset, it is randomly sampled from the dataset which we train,
validate and test the model on. An important factor influencing the method'’s output
is the number of images that are selected for annotation. The effect of this factor
on SEFA is analysed in detail in Section 4.2.1.

3.3. Local Interpretability Extraction

The first step of SEFA is to extract the local explanations for each of the images
sampled. In this section, we describe the design choices and considerations made
regarding the method selected to extract these explanations.

3.3.1. Method Selection

Given the plethora of local interpretability methods presented in Chapter 2.2.2, a
key question arises: “which interpretability method is more reliable and robust to
extract local explanations?”.

We have already mentioned in Chapter 2.2.2 that gradient-based local inter-
pretability methods are one of the most popular ways to explain individual predic-
tions of a deep learning image classification model. However, to further strengthen
the reasoning behind this choice, we performed a series of bias injection exper-
iments where we compared a gradient-based approach [51] with a signal-based
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one [7] and a local approximation method [43]. The output of these experiments
is available in Appendix A. Based on the empirical evidence obtained, gradient ap-
proaches seem to capture the biases introduced for the images in our study in a
more reliable manner.

Despite narrowing down our choice, there are numerous gradient-based meth-
ods to choose from. To select the specific method that we should use, we compiled
a list of requirements that it should adhere to in order to provide reliable and robust
local explanations:

o It should be sensitive to the relationship between instances and labels. This
characteristic ensures that the method captures the association between the
model predictions and the images.

e It should be sensitive to the parameters of the trained model. This desired
characteristic enables us to compare the classification behaviour of separate
models trained on the same tasks.

o It should provide the same explanations for networks that process the im-
ages in identical manners. This requirement makes certain that the local
interpretability method provides robust outputs.

The studies of [3] and [33] evaluate local interpretability methods based on the
aforementioned characteristics. In particular, Adebayo et al. [3] perform a label ran-
domization test and a network parameter randomization test, and evaluate different
local methods based on our first two characteristics. Similarly, Kindermans et al.
[33] evaluate the output of separate saliency methods when shifting the dataset by
a constant vector. By comparing the methods that pass the sanity checks of both
studies, we conclude that the “vanilla” gradient calculation [51] satisfies the three
criteria that we defined and is appropriate for our study.

3.3.2. Vanilla Gradients

The “vanilla” gradient calculation is a straightforward way of computing a saliency
map for a specific image. In particular, the sensitivity of the model with respect to
each pixel in an image can be computed by the gradient of the activation function
with respect to the class of interest for each pixel in the image [52]. Several authors
have already proposed ways of mathematically computing these derivatives [8] [21]
[51]. More specifically, the saliency map M_.(x) of an image can be computed as:

M) = —— (3.1)

where S, the activation function of the model with respect to the class of interest
c and x the image that is interpreted. The idea behind this computation is to find
the pixels in the image that the model is most sensitive to when computing the
activation score for class c. Another way to view the gradient values according to
Simonyan et al. [51] is as “which pixels need to be changed the least to affect the
class score the most”. As a result, a saliency map for a specific image highlights
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the pixels in the image that are discriminative for the model given a specific class
of interest [51].

That said, this particular method of extracting local explanations has an impor-
tant limitation. More specifically, gradient saliency maps are known to be partic-
ularly noisy [3] [52]. This issue is something that we were also able to observe
during our initial experiments. To showcase the issue at hand, we provide exam-
ples of noisy saliency maps from the paper of Smilkov et al. [52] and our work in
Figures 3.2 and 3.3 respectively.

Image Sensitivity map A/,

Figure 3.2: “Vanilla” gradients noise issue Figure 3.3: “Vanilla” gradients noise issue
example provided by Smilkov et al. [52]. observed during our experiments.

In the next section, we describe how we addressed the issue of gradient noise
while maintaining the use of “vanilla” gradients for the saliency map computation,
a method which satisfies the selection criteria defined in Chapter 3.3.1.

3.3.3. SmoothGrad

Smilkov et al. [52] proposed SmoothGrad, a method that directly addresses the
gradient noise issue. Their proposal is based on the idea that smoothing the partial
derivative of the activation function 3S.(x) with a Gaussian kernel will reduce the
influence of the saliency map to gradient fluctuations. However, since computing
its local average in a high-dimensional pixel input space would be intractable, they
resorted to an approximation [52]. To be more precise, they create random samples
in the neighbourhood of the input image by adding noise and then compute the
saliency map by taking the average of all the sampled maps. The aforementioned
procedure can be computed as follows:

MeG) = = ) Mc(x+N(0,0%)) (3.2)
1

where n the number of random samples obtained and N(0, ¢?) the amount of Gaus-
sian noise added. The effectiveness of applying SmoothGrad to the gradient com-
putation becomes visible when comparing saliency maps using “vanilla” gradients
versus their SmoothGrad counterparts in Figure 3.4.

While SmoothGrad does indeed reduce gradient noise, an important question
arises: “does it maintain the same desired characteristics as the “vanilla” gradi-
ents?”. Kindermans et al. [33] found that SmoothGrad inherits the sensitivity of
the method used to compute the pixel attribution in the first place. As a result,
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adient Sensitivity Map Mc ~ SmoothGrad Sensitivity Map Mc

Figure 3.4: Saliency maps: “vanilla” gradients vs Smoothgrad.

given that the “vanilla” gradients were found to have the desirable behaviour, we
are confident that SmoothGrad maintains it and is suitable for our use case.

Finally, we should underline that SmoothGrad has two hyperparameters that
need to be tweaked: the number of random samples that we average over and
the standard deviation o which defines the amount of noise added. We suggest
tweaking these values accordingly for each dataset used. The values used in our
use cases are presented in detail in Chapter 4.1.3.

3.4. Semantic Feature Annotation

The next step in the SEFA methodology is to annotate semantically the groups of
salient pixels in each image. To that end, we design an annotation task that can be
used either by domain experts or crowd workers to provide the semantic features
necessary to answer complex global interpretability queries. More specifically, we
create a task that takes the image and its SmoothGrad [52] saliency map as input,
and enables users to provide semantic information for the groups of pixels that the
trained model is most sensitive to. The rest of this section presents the design and
technical considerations taken when developing this task.

3.4.1. Annotation Task Input

The first step during the task design was to prepare the task input, i.e. the con-
tent that human annotators will annotate. The SmoothGrad implementation’ used
allowed us to interpret the classification of an image in three separate ways:

1. Visualise the pixel sensitivity with its grayscale value.
2. Plot the grayscale values using a colormap that resembles a heatmap.

3. Depict the x% most salient pixels in the image.

7htt ps://github.com/PAIR-code/saliency
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Examples of these three different op-
tions are provided in Figure 3.5. Given
these options, we chose to use the
heatmap version since the areas of
higher intensity are more clearly visi-
ble compared to the grayscale version
while it also provides information about
every part of the image, contrary to the
Figure 3.5: Smoothgrad visualisation options. top x% option. Furthermore, we de-
cided to overlay the original image with

the heatmap to make it easier for the annotators to understand which semantic
feature is highlighted in an image. For that reason, we experimented with different
opacity levels to understand which one is more suitable. The different levels tested

can be found in Figure 3.6.
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Based on the previous opacity level tests, we concluded that a level of 50% opacity
strikes a balance between the clarity of the original image and the colour intensity
of the heatmap.

Finally, for datasets where the original image is of low resolution, we propose
upsampling to make the image content clearer to the human annotators. A com-
parison of an upsampled image which has a resolution that is three times larger
than its original 75x75 counterpart is available in Figure 3.7. By observing the fig-
ure, it becomes clear that increasing the resolution makes the blurry parts in the
original image smoother, thus allowing the annotators to understand what these
pixel groups represent in an easier manner.
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Original Image Image - Heatmap overlay

Upsampled Original Image Upsampled Image - Heatmap overlay

Figure 3.7: Upsampled vs original image - 50% opacity.

3.4.2. Human Annotator Characteristics

The next design step concerns the human annotator characteristics. In particular,
we assumed that the task will be used by lay men/women without any Information
Technology (IT) or Computer Science (CS) background. The reason for this choice is
that we wanted the task to be suitable both for domain experts with IT/CS expertise
and crowd workers from a crowdsourcing platform, such as MTurk®. This way, we
enable SEFA users the option to scale out the annotation process with non-expert
annotators. Therefore, the task instructions were kept as simple as possible while
we also avoided the use of terminology and jargon.

3.4.3. Annotation Task User Interface
With the previous considerations in mind we designed the User Interface (UI) of the
semantic feature annotation task. The UI is made up of four components: framing,
instructions, examples and annotation task. An overview of the designed task can
be found in Figure 3.8.

The UI of the task was designed with the following considerations in mind:

8https://www.mturk.com/
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1. Framing Bounding box annotation

In this task, vou are provided with highlighted images that show which areas of an image, an artificial intelligence prediction model uses. Your
annotations will aszist us in understanding what these areas represent by drawing bounding boxes and describing them.

Instructions: 2. Instructions
« Draw z box using vour mouse over each highlighted area in the image on the right, describe that area and press ENTER.
« Tou only nesd to ider zreas that are highlighted with orange, red or vellow colours.
« Each box should contain at most one element. If vou identify multiple elements within a highlighted area. then draw multiple boxes.
« An element can refer to clothing, an object, a body part, an ac: rv or other information vou ider worth annotating.
« For each box description, use single words separated by a comma.

o Each description should contain 2t most one noun corresponding to the element.

o Each element should zlzo be described by one or more adjectives related to its attributes. For instance, these can refer to the colour,
length, texture, pattern, shape of each element and more.

o Ifthe element cannot be described by an adjective, enter the word "nene” in the attribute field.

Example 1: Example 2: 3. Examples
Original image Highlighted image to Original image Highlighted image to

This image contains 2 large and 2 small highlizhted area. The small one This image contzins three highlighted areas which comprise of four

comresponds to the persen’s "shirt" while the large cne contains two separate elements, "forehead"”, "hair”, "shirt" and "pavement”.

elements, "hair” and "face”. The three boxes get described with these Therefore, four separate boxes are required to annotate those areas.

nouns and extra adjectives that describe the element attributes. Notice how each element is annotated with at least one attribute.

Task: Pleaze provide your annotation for the image below. 4. Annotation Task

Original image Highlighted image to

Figure 3.8: Overview of the human annotation task.

General Considerations

¢ Domain experts and crowd workers are already used to performing bounding
box and image tagging annotations. Therefore, we created a task that is
easily identifiable by such a user group and avoided too much information to
minimise their cognitive load.

¢ The images are randomly presented to each annotator to avoid potential dif-
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ficulty bias. For instance, having more difficult samples to annotate first can
lead them to lose motivation.

Framing/Instructions

» We added a short framing introduction since quality is known to improve when
workers are aware of how their annotations contribute [16]. While we con-
sidered adding extra information, such as what task the system performs or
how the results will be used, we believe that it would make the combination
of framing, instructions and examples sections too long. More importantly, it
would run the risk of biasing the workers by having them only look at task
specific parts of the image, such as gender characteristics in this example.

» Terminology such as sensitive, saliency maps, classification etc., was avoided
since we assume that the annotators do not have any CS experience.

* We do not show any classifier related information to the annotator, such as
the predicted class or the classification confidence to avoid biasing their pre-
dictions. Besides, such information is not related to the goal of the task.

Examples
¢ Human annotators are provided with two example annotations together with
a small explanation for each one of them. While we understand that this may
bias them towards our interpretations, we believe that the task is not trivial
and would be confusing if no examples were provided.

Annotation Task
* We provide annotators with both the image and the heatmap overlay that
needs to be annotated. This is done because the overlay can be vague or
even mask important information, such as the actual colour of the element.

e The annotation of each semantic feature
is made by drawing a bounding box and
providing a description. The description
is broken down into a single “Element” T )

and its “Attributes” to encourage annota-

tors to describe element properties such as
length, colour, texture etc. This idea was
inspired by [6] that distinguish the informa-
tion annotated by crowd workers in saliency
maps as “Saliency-Features” and “General- Figure 3.9: Human annotation task -
Attributes”. An example of the element- Worker input
attributes breakdown is found in Figure 3.9.

» One of the most crucial design choices made was whether we should provide
the annotators with a list of options or open text fields. We moved ahead
with the latter option since we felt that providing our pre-filled options would
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heavily bias the study and we would potentially miss out on important infor-
mation. What is more, these pre-filled options would have to be modified for
each dataset/task. That said, this decision poses several aggregation chal-
lenges which are addressed in the next section.

e We ask the workers to provide descriptions with single words separated by
comma. This is done to discourage long sentence inputs while it also simplifies
the annotation post-processing step.

3.4.4. Annotation Quality Control
Moving on to the annotation quality, we made three considerations, namely User
Interface (UI) quality checks, annotator selection and annotation post-processing.

UI Quality Control

We check the input in the UI before allowing the annotation to go through. In
particular, the submit button is disabled until the worker provides at least one valid
bounding box annotation per image. What is more, we check the descriptions
provided and allow them only if the user fills both the “Element” and “Attributes”
areas, and provided they described the element with a single word. Examples of
the aforementioned checks are available in Figures 3.10 and 3.11.

Please fill in both requested fields! Each element should be described by a single noun! L

Original image Highlighted image to annotate Original image Highlighted image to annotate

\
[Attributes
=

Figure 3.10: Description annotation - Figure 3.11: Element annotation -
completion check. single word check.

Annotator Selection

For SEFA users that want to use crowd workers for the human computation step,
we suggest filtering workers that have completed at least 5,000 HITs with a 95%
HIT approval rate, as suggested by MTurk®. Moreover, the location filter provided
can be utilised to limit the task to workers from USA and UK. This way, the user can
ensure that the task is completed by native English speakers.

ghttps ://blog.mturk.com/qualifications-and-worker-task-quality-best-
practices-886f1£f4e03fc
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Post-processing

In cases of more than one annotators, we suggest the use of majority voting [36]
for the elements and attributes provided. We also considered adding honeypot
questions but the absence of a commonly agreed ground truth makes it challenging.
An alternative could be to purposefully inject an image twice in a batch and check
if the workers provide a similar annotation between these two image instances.

3.4.5. Pilot Study
The aforementioned task was validated by performing a pilot study of 20 images
from a gender classification dataset using ten human annotators. More specifically,
we randomly selected ten female and ten male images from the dataset and used
five lay-men/women and five workers with a CS background. This selection was
made to receive more in-depth feedback from the latter group and to judge the
task effectiveness on end-users without any expert knowledge from the former.
Following the annotation of the 20 images, each annotator that participated in
the pilot study was asked to fill in a short feedback questionnaire containing the
following questions:

» Was the task clearly defined? Were the instructions clear enough?

« Did you face any difficulty deciding which areas containing orange, red and
yellow, and should be annotated? If so, explain what the difficulties were.

o Was it tricky to find the proper words to describe the area and its attributes?
If so, can you explain what was tricky?

« Did you find the annotation of background areas particularly challenging?
» Was the task too time-consuming or uninteresting?

e Is there something else that you would like to comment on? Any potential
issues or positives that you found?

The valuable qualitative feedback obtained from answering these questions is sum-
marised in Table 3.1.

Positive remarks Points for improvement
“Providing proper wording challenging.
Gets easier with task experience.”
“Hard to come up with suitable attributes.
Recommended attributes would be nice to have.”
“Tool was easy to use.” “Some of the images are blurry/low quality.”

“Instructions clearly defined.”

“Task was not too time consuming.”

Table 3.1: Pilot study feedback.

The pilot study enabled us to compute the average completion time of an annotation
and to make a few task modifications based on the feedback given. In particular,
we updated the instructions to provide examples of attributes that the users should
annotate and we modified the annotation examples to showcase more challenging
annotation cases with a wider variety of semantic features.
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3.4.6. Semantic Image Segmentation

Before moving on to the next SEFA step, we should mention that a reasonable ques-
tion would be, “would the use of semantic image segmentation be able to provide
automatically extracted semantic features?”. Inspired by the work of Yang et al.
[59], we experimented with the pre-trained semantic image segmentation model
of [17] to extract semantic features for the classification tasks that we experimented
within this study. The output of those experiments can be found in Figure 3.12.

Original Image Semantic Segmentation Original Image Semantic Segmentation Original Image Semantic Segmentation
e =

e /
female wall, person, water building, road, car, bus, van wall, person, mountain, shelf, rock, box, food

-

female road, person, car building, road, car, pole, van, trade name American_lobster

o

ﬂ

male wall, road, person moving_van building, sky, tree, road, person, truck

male sidewalk, person moving_van sky, road, truck tench sky, tree, grass, person, water, rock
(a) PA-49K Gender (b) ImageNet Vehicle (c) ImageNet Fish

Figure 3.12: Indicative examples of semantic segmentation during our initial experimentation.

Original Image Human Annotation Original Image Human Annotation Original Image Human Annotation
ey

S

¥

male hair-black,short|neck-brown|shirt-browngrey tree-green|vehicle_top-silver|sky-blue hand-beigelarm-beige|trout_body-yellow

male hair-dark brown,short|ear-brown|shirt-white moving_van trout_body-grey|trout_body-green|water-green

I

truck_cargo-browntruck_ramp-white
OE .

-

male hair-short,black|neck-pale moving_van sky-white|truck_cargo-brown,white great_white_shark eye-black|shark_head-grey,white

moving_van

trout_wing-dark_grey|trout_body-grey

female hair-long,black|background-gray tire-black,gray|vehicle_under-yellow,black

(a) PA-49K Gender (b) ImageNet Vehicle (c) ImageNet Fish

Figure 3.13: Indicative examples of human annotations.

Based on Figure 3.12, the pre-trained segmentation model used seems to generalize
poorly to unseen datasets. Moreover, when comparing the output to that provided
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by human annotators in Figure 3.13, it becomes clear that the automated segmen-
tation has limited element expressivity and does not provide any information about
the element attributes. Hence, we did not pursue this direction any further.

3.5. Semantic Representation Extraction

Following the semantic feature annotation of the sampled images, we aggregate
the features obtained and we then convert the extracted information to the struc-
tured semantic representation. SEFA offers different ways of structuring the seman-
tic features, each one enabling to answer different types of global interpretability
queries. Moreover, the semantic features annotated can be aggregated in two
separate ways leading to a binary or numeric representation. The details of these
options are mentioned in the sub-sections below.

3.5.1. Semantic Feature Aggregation

The first step towards extracting the semantic representation is to aggregate the
annotations of the human annotators. We begin this process by stripping white-
space and converting characters to lowercase to normalise the annotator output.
The normalised terms are then spellchecked using existing tools. Following that,
we are faced with a challenge that stems from our choice to have open text fields
in the semantic feature annotation task.

The natural language that annotators use for the same element and attribute
may differ significantly in some cases. For instance, the words “cap” and “hat”
are in theory different elements, but in practice, they refer to the same element in
the image. Given that the number of such cases during our experiments was not
extensive, we simply provide the SEFA user with the option to map an annotation
term to the word of choice, a process that we call word mapping. In the previous
example, the SEFA user has to specify that the words “cap” and “hat” refer to the
same element “hat” and the system accounts for that during the aggregation step.

In the case of crowd workers, we aggregate the annotations using majority
voting [36] following the spell correction and the word mapping. Essentially if an
element or attribute is annotated by at least 50% of the workers for a specific image
it is extracted as a feature to use in the semantic representation. In the case of
domain experts, we assume that their annotations are correct and simply normalise
their vocabulary.

3.5.2. Representation Rows - Columns

Following the semantic feature aggregation, we extract the rows and columns of
the semantic representation. Since the rows correspond to the annotated images,
we add the image name as the first column in the semantic representation. The
image name is then followed by the label predicted by the model and the semantic
features that we want to evaluate. SEFA provides several ways of converting the
aggregated semantic features into a structured representation. In particular, the
user can utilise the following representation options:

1. Elements: element related information only (e.g. hair, shirt).
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2. Attributes: attribute related information only (e.g. long, black).

3. Pairs: pairs of elements and attributes that have been observed within the
same image (e.g. long-hair, black-shirt).

4. Combinations: the previous options can also be evaluated according to the
presence of combinations within the same image (e.g. hair AND shirt, long
AND black, hair-long AND shirt-black).

5. All: this option extracts the semantic features of all of the previous represen-
tation in one table.

Apart from the previous options, we also provide a "NOT"” operator which reasons
about the absence of “elements”, “attributes”, or “pairs” and their association with
a specific class. However, this operator dramatically increases the feature space
which leads to significantly increased computational time. For instance, the “all”
representation option for PA-49K Gender answers 3,932 and 1,265 interpretability
queries with and without the “"NOT"” operator respectively. The results of our initial
experimentation with this operator highlight that a significant portion of the "NOT”
semantic features, such as "NOT hair AND NOT road”, provide limited added value.
Therefore, we suggest utilising the “NOT"” operator only at cases where reasoning
about the absence of a semantic feature is absolutely necessary.

The reason that we provide a wide range of options to the SEFA user is that
each one of these representations enables us to answer a different type of query.
To elaborate, options one to three can be used to answer more trivial types of
queries, such as does the model associate “carrying a bag with the female class?”
and “black colours with the male class?” respectively. The rest of the options can be
used to answer more complex types of queries that current methods are unable to
answer, such as “does the combination of a white bag and long hair point towards
female?”. The information that each representation type brings and its limitations
are analysed in more detail in Chapter 4.2.1. Finally, we would like to underline
that SEFA can be extended with even more operators according to user needs due
to the flexibility that its structured representation provides.

3.5.3. Representation Values
So far we have mentioned that the rows of the representation represent each image
and the columns correspond to the different representation options discussed in the
previous section. However, what do the values of the representation look like? SEFA
provides both a binary and a numeric option for its semantic representation. The
binary representation simply encodes the presence or the absence of the semantic
feature in the image. We first compute the unique “vocabulary” of all the semantic
features aggregated. Then, we simply check whether they exist in each specific
image or not and fill in the table with binary values accordingly.

As for the numeric representation, we take advantage of the SmoothGrad [52]
pixel intensity values computed and the bounding boxes provided by the human
annotators. In particular, we compute the mean value of the SmoothGrad pixel
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intensities within the annotated box. This mean value is then used as the nu-
meric feature value for the semantic features that correspond to the “elements”,
“attributes” and their “pairs” for that specific box. For the “combinations” option,
we compute the mean pixel intensity value between the two features that comprise
it. The same process is repeated for all the bounding boxes in every annotated im-
age to calculate the numeric values for the semantic representation. The intuition
behind the numeric version is to encode the ranking of different semantic features
within each image by using their mean pixel intensities.

Based on the aforementioned feature value computations, both the binary and
numeric representations can be used with the “elements”, “attributes”, “pairs” and
“combinations” options presented in Chapter 3.5.2. However, the "NOT" operator
is currently only available with the binary representation. A detailed comparison of
these two ways of calculating the feature values is presented in Chapter 4.2.1.

3.5.4. Representation Table

Having specified how the rows, columns and their values are computed, we want to
conclude the section by providing some examples of the aforementioned represen-
tation options. The “elements” and “attributes” options for a binary representation
are available in Figures 3.14 and 3.15 respectively. In Figure 3.16, we provide
an example of a numeric representation for “elements”. Lastly, Figures 3.17 and
3.18 present the more expressive “pairs” and element “combinations” options for a
binary case.
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Figure 3.14: Elements - Binary Figure 3.15: Attributes - Binary
representation. representation.

image_name predicted_label shirt hair pavement ear road face background
098441.jpg. male 0.53 0.0 0.0 00 00 00 0.0
098445.jpg. male 0.33 0.59 0.43 00 00 0.0 0.0
094524.jpg. female 0.24 05 0.0 0.52 0.43 0.31 0.0
098447.jpg. male 0.0 0.44 0.0 091 0.0 041 0.0
094525.jpg. female 0.0 0.49 0.0 00 00 00 0.0
098451.jpg male 0.0 0.31 0.0 0.0 0.0 064 0.28
098453.Jpg male 0.0 0.43 0.0 00 0.0 041 0.0
098454.jpg. male 0.0 0.46 0.0 0.0 0.0 043 0.33
098457.jpg male 0.19 0.46 0.0 00 0.0 00 0.0
094531.jpg. female 0.35 0.36 0.57 00 00 00 0.0

Figure 3.16: Elements - Numeric representation.

Based on the previous figures, it becomes clear that a by-product of this novel
structured representation is that we can also reason about the explanations of spe-
cific images using the extracted semantic features. To elaborate, SEFA allows us
to reason about specific predictions using semantic features instead of looking at
highlighted pixels. This unique characteristic enables it to answer both local and
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Figure 3.17: Pairs - Figure 3.18: Element combinations -
Binary representation. Binary representation.

global queries. However, since the main contribution and focus of this work is on
global interpretability, this functionality is not looked into in more detail.

3.6. Semantic Representation Analysis

The final step of SEFA is to analyse the extracted semantic representation so as to
answer queries regarding the model’s behaviour. In essence, this representation
is a form of structured data. Therefore, we can use one of the humerous exist-
ing methods for structured datasets to understand the associations between the
semantic features and the predicted labels of the model. As a first step in that
direction, we evaluate three straightforward ways of analysing the representation
although more complex methods can be considered in future work. The details of
each option are presented during the rest of the section.

3.6.1. Statistical Testing

To extract the semantic features that the model utilises for its predictions, we per-
form a series of statistical tests. Given that the binary and numeric representations
have different feature value types, separate statistical tests need to be selected
in each case. Before presenting the test details, we should mention that we only
consider tests with a p-value of 0.05 or lower to achieve a 95% confidence interval.

Binary Representation

In this case, both the semantic features and the target label are categorical vari-
ables, meaning that one of the tests that could be used is the chi-square indepen-
dence test [67]. This statistical test can compute whether two categorical variables
are associated based on their frequencies in the data population. In our case, the
data sample corresponds to the semantic representation and the two variables are
the predicted labels and the binary values of each feature tested for dependence.
When we evaluate whether a semantic feature has an association with the predicted
label, a contingency table between the two is computed. Then, this frequency table
is used to compute the chi-square statistic y? as follows:

(0; — Ey)*
2 _
=) (3.3)
where 0; the observed frequencies and E; the expected frequencies calculated ac-
cording to the contingency table. That said, the chi-square statistic only provides
a binary answer as to whether a semantic feature and the predicted labels are
dependent on one another. There is no information about the strength of their
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association. For that reason, we use a second statistical test called the Cramér’s V
test [1] which measures the strength of the association within a decimal range [0,
1]. The details of its computation are found below:

XZ
V= | NminG - Le— D] (34)

where N is the number of annotated images, y? the chi-square statistic value, r
the number of possible label values and c the number of possible semantic feature
values which is always two in our case. To conclude, by using these two tests we
can reason about which semantic features have an association with the predicted
labels of the model as well as the magnitude of each association.

Numeric Representation

When using the numeric representation, the semantic features take continuous
values ranging from zero to one while the predicted labels are still a categorical
variable. One of the tests that fits these data types is the point-biserial correlation
[56], provided that we explain a model trained on a binary classification task. To
be more exact, it computes the correlation coefficient between a continuous and a
dichotomous variable. In our work, we use this statistic to calculate the correlation
coefficient between every numeric semantic feature and the predicted labels. The
calculation of the point-biserial correlation is found below:

NoNny

= - Y)

where ny/n; the number of samples belonging to class zero/one, Y,/Y; the mean
semantic feature values of class zero/one, X; the semantic feature value for sample
i and X the mean semantic feature value across the semantic representation.

(3.5)

3.6.2. Rule Mining
Another way to analyse the structured representation is to use the concept of asso-
ciation rules from the field of data mining. In particular, Agrawal et al. [4] proposed
a way of extracting association rules from a large collection of customer transac-
tions in a supermarket. These rules can provide information about the relationships
between these items. For instance, an association rule can be that "90% of trans-
actions that purchase bread and butter also purchase milk” [4]. In this example,
the antecedent is the “bread and butter” while the “milk” is called the consequent.
Given that these association rules can be computed on any set of binary at-
tributes, they are easily applied to our semantic representation. To be more exact,
we can use the semantic features as the antecedent of a rule and the predicted
label as the consequent. More formally, given a set of m binary semantic features
I = 1,,1;,..,I, and the predicted labels Y, we can compute an association rule
X — Y where X is a subset of semantic features from I. Therefore, it becomes
clear this data analysis method is viable only with our binary representation.
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The association rules that appear frequently in the semantic representation can
be computed efficiently using the Apriori algorithm of Agrawal et al. [5] which uses
a two-pass approach. More specifically, it uses the frequent itemsets L from Lj_, to
compute possible L, itemsets when searching for frequent combinations of k items.
For instance, when looking for pairs of semantic features related to a specific class,
it first computes the semantic features that frequently appear with that class and
then creates pairs by evaluating the frequent individual attributes. The main idea
is that if a semantic feature I; is not frequent in isolation, it cannot be frequent
when paired with another feature. For the exact details of association rules [4] and
Apriori [5], we encourage the reader to look at the original publications.

To conclude, association rules allow us to answer queries both regarding sin-
gle semantic features in isolation and their combinations, without having to use
the “combinations” option of the semantic representation. In particular, since the
Apriori algorithm extracts all frequent combinations, this functionality is built-in the
analysis method itself. For instance, provided that we use the “elements” repre-
sentation, possible association rules could be the following: “ear — male” and
“neck AND hair — male”,

3.6.3. Decision tree

The third method that we use to understand the semantic representation is “Classi-
fication and Regression Trees” (CART) proposed by Breiman et al. [11]. To be more
exact, we can fit a decision tree classifier on the extracted semantic representation
by using the semantic features as the classification features and the predicted class
as the target label. The trained decision tree can then be visualised similarly to
Figure 3.19.

neck<0.5
gini=05
samples = 400
value = [206, 194]
class = female

shirt<0.5
gini = 0.484
samples = 314
value = [185, 129]
class = female

ear<0.5
gini = 0.369
samples = 86
value = [21, 65]
class = male

shirt<0.5
gini = 0.298
samples =22
value = [4, 18]
class = male

pavement < 0.5 s0. shirt<0.5
gini = 0.466 ini = 0. gini = 0.39
samples = 251 6 samples = 64
value = [158, 93] value = [27, 36] value = [17, 47]
class = female class = male class = male

<05
gini= 0.416
samples = 44
value =[13, 31]
class = male

ear<0.5
gini = 0.483
samples = 203
value = [120, 83]
class = female

ear<0.5

‘ gini=0.33 gini = 0.463

samples = 11
value =[4,7]
class = male

gini=0.198
samples = 18
value = [2, 16]
class = male

gini=0.5
samples =4
value = [2, 2]

class = female

<05
gini = 0.493
samples = 52
value = [23, 29]
class = male

samples = 48
value = [38, 10]
class = female

<0.5
gini =0.32
samples = 20

value = [4, 16]
class = male

Figure 3.19: Example visualisation of trained decision tree.

By observing the different splits learned, we can reason about the model behaviour.
For instance, in the previous example, it becomes clear that the model uses the
semantic features neck, ear, shirt and pavement to classify images between male
and female.
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3.7. Summary

In this chapter, we described the details of SEFA, a novel interpretability method
which enables us to reason about the model behaviour with respect to a specific
class via the use of human-understandable semantic features. We first presented
an overview of the proposed method and its four steps, namely local interpretabil-
ity extraction, semantic feature annotation, semantic representation extraction and
semantic representation analysis. Then, we discussed the method’s input and moti-
vated the selection of the local interpretability method used to extract the sensitive
pixels per image. Afterwards, we presented the annotation task designed that en-
ables us to extract the required semantic features. Following that, we detailed the
process during which the semantic representation is extracted from the semantic
features annotated and proposed three separate ways of analysing the extracted
representation to reason about complex global interpretability queries. This chapter
answers the second research question (RSQ2) defined in Chapter 1.2.







Experiments

In this chapter, we perform extensive experiments to evaluate our proposed method.
We first detail the experimental setup used throughout our experiments to enhance
the clarity and reproducibility of our work. Following that, we perform a series of ex-
periments that evaluate the different SEFA hyperparameters and their effect on its
output. By conducting these experiments we are able to answer our third research
question (RSQ3). Moreover, we reason about its ability to answer more com-
plex interpretability queries by comparing SEFA to an existing global interpretability
method, thus answering our fourth research question (RSQ4). Finally, we perform
a sanity check regarding the semantic features output by the method and evaluate
its ability to explain separate models trained on the same task.

4.1. Experimental setup

In this section, we present the details of our experimental setup. In particular,
we begin by describing the datasets used to evaluate SEFA together with the pre-
processing steps that we applied to them. Then, we provide the details about the
models we used to perform the classification task and their training process. We
also lay out the SmoothGrad hyperparameters used to extract the local explanations
and explain the evaluation process used throughout our experiments. Finally, we
detail the annotation setup and provide the details of our technical implementation.

4.1.1. Datasets

We evaluate the performance of SEFA on two publicly available datasets that are
appropriate for our study, namely PA-100K [38] and ImageNet ILSVRC-2012 [45].
To elaborate, PA-100K contains images of pedestrians annotated with several at-
tributes and was selected since it provides a realistic image classification use case,
such as predicting the gender of individuals in surveillance footage. On the other
hand, ImageNet ILSVRC-2012 was chosen since it is an image classification bench-
mark that has been used to benchmark various state-of-the-art deep learning image

39
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classification models [27] [35] [50] [55] throughout the years. More details about
each dataset are presented below.

PA-100K

The PA-100K dataset was made publicly available by Liu et al. [38]. It contains
100,000 images of pedestrians from real street surveillance footage which are an-
notated with 26 attributes such as gender, age, orientation of the person in the
image and more. These images are divided into train, validation and test sets us-
ing a 80-10-10 split. For our experiments, we focus on the gender classification
task where we train a model to predict whether the person in the image is male or
female. Example images of this dataset can be found in Figure 4.1.

Original Image Resize width Select top 75px Output Images

Figure 4.1: PA-100K - Figure 4.2: PA-49K Gender - Pre-processed images.
Original images.

However, the aforementioned images vary greatly in resolution which means that
pre-processing the dataset to an image size that fits the model used was necessary.
More specifically, the model trained requires the input to be at least 75x75. Given
that for this specific dataset the image width is always smaller than their height, we
filtered images that have a width of 75 pixels or more. For images wider than 75
pixels we made sure to resize them to the required width while maintaining their
ratio. Following that step, since every image still had varying height, we cropped
the top 75 pixels in each image, as can be seen in Figure 4.2.

The aforementioned process led us to a new dataset of 49,302 pre-processed
images (75x75), termed as PA-49K Gender. We have to underline that the main
assumption behind our pre-processing step is that the top 75 pixels of the image
maintain sufficient information for the gender classification task since the upper part
of the body and the head of the person are still retained in the images. The pre-
processed dataset is publicly available on 4TU'". Finally, for the human annotation
task we upsample the images to 225x255 using the Laplacian pyramid technique
[13] for the reasons mentioned in Chapter 3.4.1.

ImageNet - ILSVRC2012
The second dataset that we evaluate SEFA on is the ImageNet Large Scale Visual
Recognition Challenge 2012 (ILSVRC12) [45]. ImageNetis an image dataset whose

10y, ¢ tps://doi.org/10.4121/uuid:38dab37¢c-1179-495e-b357-0568b%aaa’a
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classes match the noun hierarchy of the WordNet [41] lexical database. Overall,
ImageNet contains 10,000,000 labeled images corresponding to 10,000+ classes.
Its ILSVRC image classification competition versions, such as the one in this study,
are 1,000 class subsets of the full dataset split into train, validation and test data
which contain 1,200,000, 50,000 and 100,000 images respectively. That said, the
labels of the test data are not made publicly available, thus we are limited to using
the train and validation splits for our experiments.

Given that the ILSVRC12 contains 1,000 classes, we had to select a subset of
those to evaluate SEFA on. Inspired by an online article written by Nicolas Malevé
11, we selected three ImageNet classes, namely American lobster, great white shark
and tench, which depict different types of fish in vastly different settings. In par-
ticular, the American lobster is usually shown on a dish, the great white shark is
seen swimming in deep blue water and the tench is usually dead in the hands of a
human. The idea behind this choice is to evaluate whether SEFA can help us reason
about biases present in the data. Similarly to the aforementioned classes, we also
chose two classes of vehicles, ambulance and moving van, which contain vehicles
of similar colours and orientations in the images but differ in fine details, such as
the coloured stripes and the emergency lights in the case of the ambulance.

Similarly to the PA-49K dataset, ImageNet contains images of different reso-
lutions which necessitate data pre-processing. However, contrary to PA-49K, the
images are relatively square which meant that we simply center-cropped the im-
ages to obtain square regions and reduced the resolution to match that of the model
used (224x224 or 299x299). Examples of the previous fish and vehicle classes can
be found in Figures 4.3 and 4.4 respectively.

Ambulance

Figure 4.3: ImageNet Fish - Example images. Figure 4.4: ImageNet Vehicle - Example images.

For simplicity, the fish and vehicle classes are mentioned as ImageNet Fish and
ImageNet Vehicle classification tasks for the rest of the document.

Dataset Limitations

Before moving on, we would like to briefly highlight the limitations of the two
datasets. To elaborate, during our experiments we noticed that PA-100K contains
several images of the same person in some cases which can lead to partial repeti-
tion of data. That said, its creators ensure that images of the same person appear

Wy
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within the same data split [38], thus avoiding data leakage. As for ImageNet, we
observed that some of the classes, such as ImageNet Fish, might be lacking in vi-
sual concept diversity which can limit the model’s generalization ability. While we
acknowledge the limitations of these datasets, we argue that no dataset is perfect
and that these use cases are well-suited to evaluate SEFA's ability to explain image
classification networks.

4.1.2. Model Training - Hyperparameters

The bulk of our experiments is performed using the Inception-V3 architecture pro-
posed by Szegedy et al. [55]. In particular, for the PA-49K Gender we fine-tune an
Inception-V3 architecture initialised with weights trained on ImageNet by removing
its final softmax layer and adding a new one with two output neurons that corre-
spond to the male and female classes. The reason we chose to train our model using
transfer learning is that it is shown to achieve high performance on visual recog-
nition tasks [47]. Moreover, there is no need to train the model from scratch'’
which leads to significantly reduced training time. We have to underline that dur-
ing fine-tuning we update the network weights in every layer of model. While we
also experimented with freezing the lower layers of the network and fine-tuning
only the higher ones, we found it to yield worse performance as measured by the
accuracy of the model on the validation set. As a result, we concluded that the
distance between the base task (ImageNet) and the target task (PA-49K Gender) is
too significant to use the pre-trained lower layer weights without fine-tuning. For
the final models used to extract the saliency maps, we report the accuracy achieved
on the test set of the PA-49K Gender.

Moving on to the ImageNet Fish and Vehicle tasks, we perform experiments us-
ing both the Inception-V3 model pre-trained on ImageNet and a fine-tuned version
of it. To be more specific, for the ImageNet Fish fine-tuned variant we remove the
softmax layer and add a new one with three outputs and update every layer of
the network. The performance of the ImageNet models reported is based on the
validation set since the test set labels are unavailable.

Given that a global interpretability method should be able to explain any deep
learning model, we also evaluate SEFA on explaining the VGG16 [50] model pre-
trained on ImageNet. While we originally considered using the ResNet [27] archi-
tecture which outperforms VGG, existing literature work argues that Inception and
ResNet learn similar features when using the same training data [39] [40]. This
issue is further highlighted by the work of Zhang et al. [66] who compare Inception
with ResNet and VGG, and show that VGG yields significantly different outputs than
the other two. Therefore, we decided to use Inception and VGG to evaluate the
output of SEFA for two significantly different models.

All of the fine-tuned models are trained using the Adam optimizer with a binary
cross-entropy loss and saving the model that yields the lowest validation accuracy.
An overview of the full model training hypeterparameters used and the model ac-
curacy values obtained is available at Table 4.1.

For Adam we used the learning rate and g values suggested in the original

2hty ps://www.tensorflow.org/tutorials/images/transfer learning
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Dataset Hyperparameter Values Validation/Test Accuracy
PA-49K Gender Epochs: 15, Batch size: 128, Dropout: 0% 76.25%
fine-tuned Inception-V3 Adam: «=0.001, p_1=0.9, p_2=0.999 o0

PA-49K Gender Epochs: 15, Batch size: 128, Dropout: 0%
Adam: @=0.001, 8_1=0.9, B_2=0.999

Orientation Bias 90.46%
fine-tuned Inception-V3
ImageNet Vehicle
pre-trained Inception-V3
ImageNet Fish
pre-trained Inception-V3
ImageNet Fish
pre-trained VGG16
ImageNet Fish
Background Bias
fine-tuned Inception-V3

77%

88%

80.67%

Epochs: 15, Batch size: 8, Dropout: 0%

Adam: @=0.001, §_1=0.9, §_2=0.999 97.56%

Table 4.1: Models Used - Hyperparameters & Classification Accuracy.

paper [34] while for the number of epochs, batch size and dropout percentage,
we experimented with different values and selected the ones with the lowest the
validation accuracy. While the hyperparameter tuning performed is by no means
exhaustive we argue that it is sufficient for this study. In particular, the goal is not
to obtain a new state-of-the-art but to train a model with reasonable performance
which will be evaluated by SEFA. For the rest of the chapter, all the experiments
are performed using the Inception-V3 model unless specified.

4.1.3. SmoothGrad Hyperparameters

Moving on to the saliency map hyperparameters used, the authors of SmoothGrad
[52] propose a standard deviation value o of 10-20% and observe that there is
no added benefit when using 50 or more samples. That said, we conducted ex-
periments for each of the classification tasks using six different noise and sample
levels. Our results indicate that a o of 5% and ten samples per saliency map are
enough for our use cases. Moreover, the heatmaps for our classification tasks have
insignificant differences from ten samples onward, while it also reduces the extrac-
tion time required. A more detailed description of our experiments and the outputs
observed can be found in Appendix B.

4.1.4. Evaluation
One of the crucial parts of our experimental setup concerns how we evaluate the
effectiveness of our proposed interpretability method. A key challenge is that when
attempting to interpret a deep learning model, we are not aware of what the ground
truth of our output is [28] [33]. To elaborate, we are unaware of the exact image
features that the model utilises for its predictions, thus it is difficult to judge the
behaviour of the interpretability method and whether it outputs the right features.

Existing research work by Yang and Kim [60] attempts to create a dataset with
artificially injected bias and train a model on that dataset, therefore knowing what
the expected output should be. Similarly, Hooker et al. [28] remove salient features
from the input space and then retrain a model on the modified data to check whether
its performance degrades.

Inspired by these studies, we perform similar tests by training models on either
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inherently biased datasets or by artificially injecting bias into the images and eval-
uating SEFA’s ability to output the expected explanations. The reason we created
our own bias injection tests is to match the hypotheses that we want to test. For
instance, the work of Yang and Kim [60] would only allow us to test for the presence
of single semantic features in the image instead of the more complex queries that
we aim to answer. Finally, we also evaluate the output qualitatively as is common
practice in existing interpretability work [22] [52].

4.1.5. Human Annotations

The human annotations of our work were conducted by the MSc student and super-
vising PhD candidate of this work. The first step was to break down the different
dataset annotation tasks, both regarding the original and biased versions, between
the two human annotators. In particular, each dataset annotation task was com-
pleted by a single annotator who was chosen based on his or her experience with
the semantic feature descriptions required for the task images.

Before each annotation task, we discussed which semantic features to annotate
in each image, their granularity, as well as the element and attribute names to
be consistent with one another. As for minor annotation vocabulary differences
that were spotted post annotation, we used the SEFA word mapping function to
normalise the text output. A characteristic example that we run into was annotating
a hat as “hat” or “cap”.

At this point, we would like to underline that we acknowledge that using just
one annotator per task introduces our own biases in the study. However, we argue
that this choice was necessary to ensure that no ambiguities are introduced by
having multiple annotators per task. More specifically, having multiple annotators
per image would increase the post-processing workload required for each task and
also risk introducing annotation noise based on each person’s perceptions of the
task. Another option would be the use of crowd workers for our experiments,
however, that would run the risk of “missing” semantic feature annotations. That
could be due to a lack of task knowledge by the workers or limited annotation
vocabulary concerning the task. Furthermore, crowd worker annotations would
most likely lead to lower quality semantic features given their desire to complete
the task as soon as possible.

Given that the goal of this study is to verify the applicability of SEFA on answering
complex interpretability queries based on its output, we believe that this annotation
setup is sufficient. The annotations mentioned during the rest of the section are
obtained using the aforementioned process.

4.1.6. Technical Implementation

We provide a few details regarding the technical implementation of our work to en-
hance its reproducibility. SEFA was developed in Python 3.6 and is publicly available
on GitHub'. The software used for each SEFA component is mentioned below.

By ps://github.com/psoilis/SEFA
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SEFA Input

The input is pre-processed using scikit-image'* and Python Imaging Library'>. The
data analysis/visualisation of the images required the use of common Python mod-
ules such as NumPy'®, SciPy!’ and pandas'®. Regarding the pre-trained models
used and the ones trained in our work, we used the Keras'® deep learning frame-
work with a TensorFlow 1.15 back-end.

Local Interpretability Extraction

We used the SmoothGrad implementation’’ provided by Smilkov et al. [52] on
GitHub. The LRP and LIME experiments found in Appendix A were implemented
using two public repositories”'/?%, For the image upsampling, we used the pyra-
mid_expand >*> method which implements the work of Burt and Adelson [13].

Semantic Feature Annotation

The annotation task was developed using HTML, CSS and jQuery and can be used
with the MTurk editor. Its implementation is based on an MTurk blog post** and was
modified to accommodate our task needs. For the image segmentation experiments
found in Chapter 3.4.6, we used the DeeplLabV3 [17] image segmentation model
provided by the GluonCV?> computer vision toolkit.

Semantic Representation Extraction

To extract the semantic representation, we used a series of aforementioned tools,
namely NumPy'® and pandas'®. For the spell checks during the annotation aggre-
gation, we used the publicly available SymSpell autocorrection tool?®.

Semantic Representation Analysis

The statistical tests were carried out with the help of the SciPy stats module?’. The
association rules and the apriori algorithm are tested using mixtend”®. Finally, the
decision tree classifiers are trained using the implementation of scikit-learn?°.

//scikit-image
//pillow
//numpy

readthedocs.io/en/stable/

//github.com/PAIR- saliency
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4.2. Results & Discussion

In this section, we present the experiments conducted to evaluate the effect of
different SEFA hyperparameters on its output (RSQ3) and to reason about the
extent to which SEFA can answer a wider range of global interpretability queries
(RSQ4). The experiment details and the findings arising are presented below.

4.2.1. SEFA Hyperparameters

SEFA offers a range of hyperparameters that influence its ability to reason about a
model’s behaviour. To evaluate their effects, we perform a series of experiments
on the number of annotated images required, the different semantic representation
options and the semantic representation analysis methods available. More specifi-
cally, we answer the following research questions:

e RSQ3.1: How many images do we need to annotate in order to obtain robust
and reliable model behaviour explanations?

* RSQ3.2: Which types of interpretability queries does each semantic repre-
sentation option answer?

¢ RSQ3.3: Does the numeric representation provide extra information com-
pared to the binary one?

¢ RSQ3.4: Do separate representation analysis methods provide similar or con-
tradicting salient semantic features?

RSQ3.1 - Number of annotated images

Our hypothesis is that the dataset and task complexity, referring to the semantic
diversity of the elements in the image and the number of classes, influence the
minimum number of annotated images required to obtain robust query answers.
We expect that the more images we annotate per use case the more robust the
results will be since they will be less susceptible to sampling noise. In order to
evaluate our hypothesis, we experiment with four use cases, each aimed at giving
us different information about the required number of annotations.

For each use case, we annotate 800 images and extract a ground truth of se-
mantic features and Cramér’s V values pairs by randomly sampling 400 annotations.
The semantic representation is obtained using the “all” binary representation option
and analysed via the binary statistical tests presented in Chapter 3.6.1. We consider
features as significant when they have a p-value of 0.05 or lower. Following that,
we randomly sample different annotation sizes out of the 800 annotations, ranging
from 20 to 400 in increments of ten, and compare the extracted features-Cramér’s
V pairs to the aforementioned ground truth. We proceed to repeat the process for
ten iterations to compute the average and standard deviation observed for each
metric. In particular, we calculate the precision and recall of the features extracted
to reason about how many features we retrieve and to ensure that the features
retrieved are accurate enough. Moreover, we compute the Mean Absolute Error
(MAE) between the ground truth Cramér’s V values and the ones extracted for each



4.2. Results & Discussion 47

annotation size-iteration to observe how many annotations we need to obtain sta-
ble Cramér’s V values. We want to underline the importance of Cramér’s V values
since they can be seen as a semantic feature importance metric for the model. The
aforementioned experiment is performed on the following four classification tasks:

o PA-49K Gender: we use SEFA with Inception-V3 fine-tuned on the gender
classification task to observe how many annotations are needed to obtain
reasonable precision, recall and a low MAE.

o ImageNet Vehicle: we use SEFA with the pre-trained Inception-V3 to evaluate
whether the number of images varies significantly based on the dataset se-
mantic complexity. To elaborate, the images on ImageNet are more diverse
with regards to the elements that appear in the image compared to PA-49K
Gender. As a result, we want to check whether SEFA requires more annota-
tions to provide a robust output for datasets with more diverse elements.

o ImageNet Fish: we also repeat the previous experiment on the Fish task to
observe the effect of the number of classes on the annotations required. We
hypothesise that a higher number of classes will require more annotations.

» ImageNet Fish Background Bias: we fine-tune an Inception-V3 on the Ima-
geNet Fish task to test whether models that learn more obvious biases, need
less annotated images. We assume that if more semantic features are only
annotated for one of the classes, less annotations will be required to retrieve
them. We term this characteristic as representation sparsity.

At this point, we would like to mention that since ImageNet only contains 50 valida-
tion images per class, we randomly sampled the remaining images from the training
set to reach the 800 images for this experiment. Example images overlaid with their
local explanations for each of the four tasks are available in Figure 4.5.

PA-49K Gender ImageNet Fish

ImageNet Fish Background Bias

Figure 4.5: Image examples for the “number of annotated images” experiments. We show the image
and heatmap overlay for each of the four use cases.

We begin by evaluating how many semantic features are retrieved at each anno-
tation size. In order to decide on the number of samples required, we plot the
average recall and standard deviation observed over the ten runs with respect to
the size. The results obtained for each use case are presented in Figure 4.6.
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Figure 4.6: SEFA Recall for the four models explained. The blue lines show the Recall values when
considering all of the features, while the other curves consider separate bins of features based on their
Cramér’s V values. It appears that SEFA is able to reliably retrieve the features with a Cramér’s V of 0.4

or more for our use cases with approximately 100 annotations.

The overall recall values for each case suggest that more annotations are required.
In particular, SEFA's recall with 400 annotations is around 0.6 and 0.8 when ap-
plied to PA-49K Gender and the three ImageNet cases respectively. That said, we
observed a different behaviour depending on the Cramér’s V value of each feature
by visually inspecting the output. We showcase this aspect of SEFA by plotting re-
call curves per Cramér’s V value intervals for each dataset. Based on these curves,
SEFA is able to retrieve all of the semantic features that have a score of 0.4 or above
with just 100 annotations. Features with values between 0.2 and 0.4 need roughly
300 annotations to be reliably retrieved. Moreover, the standard deviation for these
value intervals decreases when we increase the annotation size, meaning that SEFA
becomes more robust in retrieving these features. However, the ones with 0.2 or
less do not seem to be retrieved in a satisfactory way for the tested annotation sizes
and their standard deviation increases the more annotations we use, a behaviour
that we further investigate below. To better understand the relationship between
the Cramér’s V values and the importance of each concept, we manually observe
several feature-value pairs and provide a few examples in Table 4.2.
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Dataset-Task Semantic Feature

Cramér's V

Frequency per class

American Lobster: 80%,

ImageNet Fish lobster_claw 0.85 Great White Shark: 0%, Tench: 0%
PA-49K Gender short 0.61 Female: 9%, Male: 70%
PA-49K Gender long AND grey 0.45 Female: 39%, Male: 2%

. American Lobster: 21%,
ImageNet Fish  brown-lobster_claw 0.39 Great White Shark: 0%, Tench: 0%

. American Lobster: 4%,
ImageNet Fish  spots-lobster_claw 0.17 Great White Shark: 0%, Tench: 0%
PA-49K Gender red-hair 0.12 Female: 4%, Male: 0%

Table 4.2: Examples of semantic feature Cramér’s V values and their feature frequency per class.

According to these examples, one could argue that semantic features with a value
of 0.2 or lower constitute “outliers” retrieved due to the random image sample
selected. More specifically, both such features in the previous table have a very
low frequency in just one of the task classes. Therefore, we do not consider these
semantic features as salient in the rest of our experiments.

While the recall values are satisfactory for significant semantic features, we still
need to check whether SEFA is accurate enough in its predictions and does not
retrieve too many irrelevant features. For that reason, we plot the overall precision
graphs in Figure 4.7.
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Figure 4.7: SEFA Precision for the four models explained.
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Based on the previous figures, the precision of SEFA is around 0.7 for the PA-49K
Gender task and 0.8 for the three ImageNet models. Moreover, we observe a
gradual decline in the precision of SEFA as the annotation size increases. While this
behaviour might seem counter-intuitive at first, it is caused by the retrieval of more
semantic features with Cramér’s V values of 0.2 or less as we increase the number of
annotations. This is another indication of the fact that these features are sensitive
to the annotation sample collected. To highlight our claim, we plot the count of
“wrongly” retrieved features by comparing the extracted semantic features with
the “ground truth” ones for each annotation size and according to their Cramér’s V
score interval. The resulting plots for each dataset can be found in Figure 4.8.
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Figure 4.8: SEFA “wrong” features for the four models explained. It appears that SEFA makes more
mistakes for features with a Cramér’s V score of 0.2 or less as the number of annotations increases
from 100 images onward.

By observing these four plots, we notice that the number of “wrong” features with
a score of 0.2 or less gradually increases following 100 annotations for the PA-49K
Gender and ImageNet Vehicle datasets. The same behaviour is observed for both
the pre-trained and fine-tuned ImageNet Fish task from 150 annotations onward.
Our intuition is that this behaviour is due to the aforementioned sensitivity of the
statistical tests’ output to the annotation sample selected.

So far, we have determined the annotation size that enables us to retrieve the
significant semantic features for our four use cases. That said, we also need to
reason about the number of annotations at which the Cramér’s V values approxi-
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mate those computed in the “ground truth” at each iteration. For that reason, we
compute the average MAE values and standard deviation for each annotation size
per use case. Our results can be found in Figure 4.9.

PA-49K Gender - Mean Absolute Error ImageNet Vehicle - Mean Absolute Error

MAE
A

—— PA-49K Gender —— ImageNet Vehicle

20740 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400
Annotations Annotations

ImageNet Fish - Mean Absolute Error ImageNet Fish Background Bias - Mean Absolute Error

MAE
1A

— ImageNet Fish —+ ImageNet Fish Background Bias

20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400
Annotations Annotations

Figure 4.9: SEFA MAE for the four models explained.

Similarly to the recall values, we observe that the MAE curve drops below 0.05 and
flattens out following 150 annotations for the three ImageNet tasks. The same
behaviour is observed for the PA-49K Gender at around 170 annotations. However,
for all four cases, the MAE seems to be well below 0.10 at 100 annotations, which
is the threshold we determined for semantic features with Cramér’s V values of 0.4
or more. Regarding the standard deviation observed for MAE over the ten runs, it
goes down as the annotation size increases.

While we expected significant differences between the four models explained,
that was not the case which led us to investigate in more detail. To elaborate,
we hypothesised that the number of classes, the dataset semantic complexity and
the representation sparsity will influence the number of annotations required. We
provide an overview of these characteristics per model explained by presenting
the number of classes, the number of elements-attributes, the average annotation
frequency of feature combinations and the percentage of semantic features with
a significantly high Cramér’s V in Table 4.3. Our intuition is that the number of
elements-attributes is not sufficient in isolation since if these features co-occur, less
annotations are required. Moreover, we argue that the frequency of features with
high Cramér’s V values is an indication of the representation sparsity. For example,
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observing rows three and four in Table 4.2 indicates that the representation sparsity
significantly influences the Cramér’s V value.

Metric PA-49K Gender ImageNet Vehicle ImageNet Fish ImageNet Fish Background Bias
# classes (1) 2 2 3 3

# of elements + attributes (2) 68 103 110 96

Avg. combination

annotation frequency (2) 2.5% 3.1% 1.9% 2.3%

3 -

7 of semantic features 0.6% 0.03% 1.4% 2.02%

with Cramér’s V > 0.5 (3)

Table 4.3: Metrics per model explained that describe the factors influencing the annotations required:
(1) number of classes, (2) dataset semantic complexity and (3) representation sparsity.

We hypothesised that the ImageNet Vehicle would require more annotations than
the PA-49K Gender due to its increased dataset semantic complexity. While the
ImageNet Vehicle indeed has 103 unique elements and attributes compared to 68
for the PA-49K Gender, these features co-occur more often in the images, thus
mitigating the effect of the increased number of semantic features. In particular,
the average annotation frequency of the combinations for ImageNet Vehicle and
PA-49K Gender is 3.1% and 2.5% respectively. As for the comparison of the Ima-
geNet Vehicle and Fish classification tasks while the latter one has an extra class,
its representation is more sparse meaning that its salient features can be output
with less annotations per class. For instance, features such as “lobster_claw” and
“shark_body” only appear for the American lobster and great white shark classes
respectively. This means that they can be output by SEFA with less annotations
than a semantic feature which is annotated in more than one classes. Finally, while
we expected the ImageNet Fish Background Bias to be significantly more sparse
than ImageNet Fish due to the bias introduced by fine-tuning. That turned out not
to be the case since both semantic representations are similarly sparse, but output
slightly different semantic features as salient. To elaborate, the ImageNet Fish and
Fish Background Bias have 1.4% and 2.02% of their features with a Cramér’s V
value of 0.5 or more while the corresponding values for PA-49K Gender and Ima-
geNet Vehicle are 0.6% and 0.03% respectively.

To summarise, based on the aforementioned experiments and analysis, 300
annotations are enough to retrieve the significant semantic features with accurate
Cramér’s V values for all four use cases experimented (RSQ3.1). That said, one can
also retrieve all the features with a value of 0.4 or more with just 100 annotations,
provided they sacrifice a bit of Cramér’s V value accuracy. Furthermore, we did not
observe any significant differences in the required annotation sizes for the three
classification tasks in our study. However, we argue that more experiments with
more extreme cases are needed regarding the number of classes and the dataset
bias since a significantly higher number of classes and a stronger bias might lead to
different conclusions. At this point, one could wonder whether we observe similar
results for the three ImageNet use cases due to the human annotator behaviour.
We would like to underline that the ImageNet Fish and Vehicle tasks were completed
by separate human annotators, thus excluding this possibility. Finally, following the
empirical evidence obtained, we filter out semantic features with Cramér’s V values
of 0.2 or less for the rest of the experiments.
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RSQ3.2 - Representation Options

SEFA offers several representation options, described in Chapter 3.5.2, that answer
different types of queries depending on how we convert the human annotations into
a structured representation. We hypothesise that each representation option can
answer a different type of global interpretability query. To test our hypothesis, we
perform a series of bias injection experiments where we inject bias in the PA-49K
Gender dataset, fine-tune an Inception-V3 model on the biased dataset and extract
new heatmaps. More specifically, we test the following four biases:

e Date vs Datetime: we inject a date and a datetime stamp in the female and
male images respectively. We expect the “elements” SEFA representation
option to capture this model bias.

e Date Colour: we add a white date in the female class and a yellow date in the
male class. The “attributes” option is expected to capture the bias.

o Date, Datetime & City: we inject a date in 50% of the female and a datetime
+ city name combination in the other 50%, while the male class receives
50% datetime and 50% date + city name. The reasoning behind this setup is
that the model learns that datetime on its own means male whereas datetime
+ city name corresponds to female. That way, we can show that while the
“elements” option is unable to capture the bias, the element “combinations”
is able to do so. We also expect the use of the "NOT” operator to be required
for the cases where the date and datetime appear without a city name.

o Coloured Date vs Datetime: similarly to the previous case we add a white date
and a yellow datetime in the two halves of the female class, and a yellow date
and a white datetime for the male one. While the “elements” and “attributes”
in isolation fail to capture the bias, the “pairs” should be able to do so.

Examples of the biased images and heatmaps extracted are provided in Figure 4.10.

Date, Datetime & City Date vs Datetime

in

li-l‘ﬁ

Coloured Date vs Datetime Date Colour

Figure 4.10: Indicative examples of the four dataset biases injected.
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All four fine-tuned models achieve a test accuracy of 98.98% or more on the biased
datasets, leading us to conclude that the models have fit the bias introduced. That
way, we create an artificial interpretability ground truth and evaluate which SEFA
representation option picks up the bias. For each biased model, we annotate 200
images randomly obtained from the test set and observe the output. In particular,
we use the binary representation and the binary statistical tests presented in Chap-
ter 3.6.1 with a p-value of 0.05. Given that 100 images were enough to retrieve
the highly significant features for the unbiased PA-49K Gender, we argue that the
200 images that we annotate in this case are more than enough to retrieve the four
biases that we inject. The main semantic features output for each use case can be
found in Table 4.4. The full output for each dataset is available in Appendix C.

Date vs Datetime Date Colour Date, Datetime & City Coloured Date vs Datetime
ic Feature Cramér's V ic Feature Cramér's V ic Feature Cramér's V ic Feature Cramér's V
hour (1) 0.93 yellow-year (1) 0.96 NC;:':'t);\gl'J\:‘D(I) 0.46 yellow-hour (1) 06
minute (2) 0.93 yellow (2) 0.94 city AND hour (2) 0.45 yellow-minute (2) 0.6

city_name-city AND yellow-hour AND

white-hour (3) 0.93 white (3) 0.83 i 0.45 M 06
white-minute (4) 0.92 yellow-day (4) 0.82 city AND day (4) 0.45 white-minute (4) 0.53
r';‘i’rflft:"(‘?) 0.9 yellow-month (5) 0.81 white-ty QND ©) 0.45 white-hour (5) 0.52
htemme() 08 whteyar®) o7z (WMEEE e GRS 04
day (39) 0.24 white-month (12) 0.48 m?:\txc:'\(‘?s) 0.4 ;{;'I'g“,’v"_"j:g’r‘("l“g 0.37
NOT iy G31) 0 () 03

Table 4.4: Semantic features describing the bias injected in each of the four datasets. The rank of
each feature based on its Cramér’s V value is included in parenthesis.

Based on the aforementioned results, we can conclude the following about each
biased dataset. For the Date vs Datetime bias, it becomes clear that SEFA can cap-
ture the datetime bias introduced in the male class using the “elements” options as
can be seen by the “hour” and "minute” semantic features. Moreover, combinations
of these elements and their attributes are output by the “pairs” and “combinations”
options. However, the date bias introduced in the female class is only picked up
by the “day” semantic features with a Cramér’s V value of just 0.24. The reason
for this behaviour is that the SmoothGrad heatmaps extracted often fail to highlight
the biased regions in the female images as can be seen in Figure 4.11.

Figure 4.11: SmoothGrad heatmap output for the female class of the Date vs Datetime case.

What we found interesting in this case is that it looks like the areas highlighted are
where the timestamp is located in the male class. This leads us to assume that
the model learned to classify between the two classes based on the presence or
absence of a timestamp. To capture this bias, we utilised the “"NOT" operator for
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the Date vs Datetime and repeat the experiment. When observing the output with
this additional operator, SEFA is able to capture the absence of the timestamp for
the female class via the semantic features "NOT hour” and “NOT minute”, both of
which have a Cramér’s V value of 0.93. The Date vs Datetime experiment illus-
trates that SEFA depends on the elements and attributes that are highlighted by
the local interpretability method used. Therefore, the method used to extract local
explanations greatly influences the output and effectiveness of SEFA.

Moving on to the Date Colour bias, the “attributes” option is able to capture the
bias introduced in the female and male images with the “white” and “yellow” se-
mantic features respectively. Also, most of the semantic features with high Cramér’s
V values are using these colou attributes either in “pairs” or “combinations”.

As for the Date, Datetime & City case, element “combinations” such as “city AND
hour” and “city AND day” capture the date/datime + city nhame bias introduced.
That said, the cases which only contain the date or the datetime are not captured
from SEFA without the “"NOT"” operator. In particular, an equal number of male and
female images contain a date or datetime either in isolation or in combination with
a city name. As a result, in order to output the date and datetime only bias of the
female and male classes respectively, we include the “"NOT” when extracting the
“all” representation. This functionality allows us to evaluate “combinations” such
as “city AND NOT hour” which is indicative of the date + city name bias of the
male class, thus capturing all four bias types injected in the images. An interesting
point that we would like to highlight in this case, is the low values of “day AND
NOT city” and “year AND NOT city”. The reason for that is that the day and year
appear both in the date and datetime only images resulting in a lower frequency
difference between male and female, and thus a lower Cramér’s V value. That said,
their values are higher than 0.2, meaning that they still get picked up by SEFA.

Finally, in the Coloured Date vs Datetime, the yellow and white datetime bias
is picked up by element-attribute “pairs” such as “yellow-hour”, “yellow-minute”,
“white-hour” and “white-minute”. Similarly to Date, Datetime & City, the day, month
and year related semantic features have lower scores because they appear in both
classes as a coloured date or datetime. That said, they are still able to be output
by our method.

The experiments in this section showcase the types of interpretability queries
that each representation option answers (RSQ3.2). To elaborate, the “elements”,
“attributes”, “pairs” and “combinations” options enabled us to highlight four sepa-
rate cases of bias picked up by the model. Moreover, we showed two cases where
incorporating the “"NOT” operator can actually bring added value to the SEFA user.

RSQ3.3 - Numeric vs Binary Representation

When presenting the semantic representation in Chapter 3.5, we introduced two
ways of aggregating the semantic information provided by human annotators. In
particular, we proposed a binary representation encoding the presence/absence of
a feature in the image and a numeric representation that computes the average
heatmap pixel intensity within the feature bounding box. We hypothesise that the
numeric representation contains more information than the binary since it encodes
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a form of feature ranking. To elaborate, we expect the numeric representation to
encode not only the frequency of the semantic features that the binary version
does, but also to account for the significance of each semantic feature as provided
by the heatmap pixel intensity.

To test our hypothesis, we compare the binary and numeric representations
on the PA-49K Gender and the ImageNet Vehicle tasks using the “all” represen-
tation option and the statistical tests from Chapter 3.6.1. The reason we do not
experiment on the ImageNet Fish task is that the point-biserial correlation used
to evaluate the numeric representation can only be used with binary labels. For
each task, we annotate 300 images based on our “number of annotated images”
experiments and report the top ten semantic features according to the magnitude
of the statistics computed, using a p-value of 0.05. We then evaluate the output
of SEFA qualitatively to observe the similarities and differences between the two
representations. The top ten semantic features extracted for the PA-49K Gender
and the ImageNet Vehicle are available in Tables 4.5 and 4.6 respectively.

Binary Representation Numeric Representation
Semantic Feature Cramér's V Semantic Feature Point-Biserial Correlation

long 0.5 long -0.5
long-hair 0.5 long-hair -0.5
black AND long 0.47 black AND long -0.47
black-hair AND long-hair 0.47 black-hair AND long-hair -0.47
short 0.44 short 0.45
short-hair 0.44 short-hair 0.45
short-hair AND black-hair 0.44 short-hair AND black-hair 0.44
short AND black 0.43 short AND black 0.43
long AND grey 0.42 long AND grey -0.42
short AND grey 0.33 short AND grey 0.32

Table 4.5: PA-49K Gender - Comparison of numeric vs binary representation.

Binary Representation Numeric Representation
Semantic Feature Cramér’'s V Semantic Feature Point-Biserial Correlation
stripe 0.51 stripe AND tire 0.34
window AND stripe 0.49 stripe AND vehicle_side 0.33
stripe AND vehicle_side 0.46 window AND stripe 0.33
stripe AND mirror 0.44 stripe 0.29
stripe AND tire 0.44 stripe AND mirror 0.29
stripe AND hood 0.39 stripe AND hood 0.25
orange 0.38 stripe AND windshield 0.24
transparent AND orange 0.38 black-window AND orange-stripe 0.24
orange-stripe 0.38 orange-stripe AND black-mirror 0.24
orange AND black 0.35 orange-stripe 0.23

Table 4.6: ImageNet Vehicle - Comparison of numeric vs binary representation.

Regarding the PA-49K Gender, both representations retrieve the same semantic
features, in the same order and with similar magnitude values, thus suggesting
that the numeric representation provides highly overlapping information. As for the
ImageNet Vehicle, the two representations have the same semantic features for
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seven out of the top ten, albeit in a different order. Moreover, the magnitude of
the statistics computed are significantly different, in contrast to the PA-49K Gender.
To better understand the behaviour of the numeric representation, we decided to
investigate the annotations and the output of SEFA in more detail.

Following discussions with the two human annotators and visual observation
of their output, we conclude that the heatmaps of the ImageNet Vehicle and Fish
tasks are noisier, thus making the precise annotation of areas more challenging.
In particular, while in the PA-49K Gender the annotator could draw the boxes in
such a way that they contain only pixels with high intensity, that is not always
possible in the ImageNet Vehicle. This annotation behaviour is helped by the fact
that the PA-49K Gender heatmaps usually contain intensity scores that are either
above 0.5 or close to zero. As a result, we hypothesise that the heatmap noise
of the ImageNet heatmaps explains why the ImageNet Vehicle task had significant
differences between the two representations while the PA-49K Gender provided
almost the exact same output.

To validate our intuition, we repeat the previous experiment on the ImageNet
Fish which has a wider range of intensities based on the annotator behaviour ob-
served. To be more specific, we randomly select 300 annotations containing only
American lobster and great white shark images, thus artificially creating a binary
classification problem that can be analysed with the point-biserial correlation. The
results for the modified ImageNet Fish can be found in Table 4.7.

Binary Representation Numeric Representation
Semantic Feature Cramér's V Semantic Feature Point-Biserial Correlation
lobster_claw 0.8 shark_head -0.43
orange 0.79 orange 0.41
lobster_body 0.74 shark_mouth -0.4
shark_body 0.7 grey-shark_head -0.4
grey-shark_body 0.69 lobster_claw 0.39
orange-lobster_claw 0.68 orange-lobster_claw 0.38
shark_wing 0.62 shark_body -0.37
shark_head 0.62 grey-shark_body -0.37
lobster_claw AND lobster_body 0.62 lobster_body 0.37
grey-shark_wing 0.6 shark_mouth AND shark_head -0.35

Table 4.7: ImageNet Fish - Comparison of numeric vs binary representation.

The results for the ImageNet Fish show a similar behaviour to the Vehicle as ex-
pected. In particular, seven out of ten features are the same between the binary
and numeric representations but in significantly different orders and statistic mag-
nitudes. To better understand why the differences between the numeric and binary
representation appear, we decided to look at the values of the two statistical tests,
the average pixel intensity and the frequency per class for a variety of semantic
features. We provide a subset of the semantic features analysed in Table 4.8.
Based on the aforementioned analysis, we further validate our claim about the
PA-49K Gender bounding boxes which can be drawn in a more precise manner while
the intensity values observed are either significant or close to zero. In particular,
the average pixel intensities for “long AND grey” are 0.149 and 0.006 for the female
and male classes respectively, leading to a -0.42 point-biserial correlation. On the
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Dataset-Task Semantic Feature ng:,:;?;sﬁe;:: ! Cramér's V Me::ri :fae:ss ity Fpr::]:ﬁ;‘lst;y
PA-49K Gender long-hair -0.50 0.50 Female: 0.235 e
ImageNet Fish  shari_head 043 062 Great wite Sharc 0.021 _Great Whie Shark: 54%
PA-49K Gender long AND grey -0.42 0.42 Fiﬂn::é?:o%};ég’ FeI\TaaIE:: 13;2 o
ImageNet Vehicle  stripe AND hood 0.25 0.39 Qrga\rilgar:/c; 06?02032’ A&?ﬁ;?&; :3‘31:2'
ImageNet Vehicle grey-window 0.16 0.19 AT,Ib:J?nngC(\e;ag 0(()) > QT&?EI'\Z?: 9(%%
magetet Vehice  \iCE e 0.10 029 ovngan: 0027 Movng van: 31%

Table 4.8: Examples of semantic feature statistics values, mean pixel intensity and feature frequency.

contrary, the intensity values for the “shark_head” of ImageNet Fish are only 0 and
0.021. That said, the fact that these two cases have a similar statistic value shows
that the point-biserial correlation mostly depends on the relative value between the
two means and not their absolute difference. Another interesting finding arises
when observing “window AND vehicle_side” which is a feature that is picked up as
significant from the binary representation with a Cramér’s V value of 0.29 but is not
significant for the numeric representation. This semantic feature appears almost
twice as often in the ambulance class which means that it has significantly more
non-zero intensity values, i.e. images where a semantic feature was annotated, but
has similar mean intensities for the two classes. The reason for that is that the pixel
intensity of the non-zero values is higher for the moving van than the ambulance.
As a result, the two effects cancel each other out leading to a relative difference in
mean intensity that is not considered significant by the point-biserial correlation for
the two classes.

Regarding the magnitude range for the point-biserial correlation, it is clear that
it does not reach as extreme values as the Cramér's V when comparing the top
ten for each dataset. More specifically, the highest magnitude observed for point-
biserial correlation was 0.5 while the corresponding value for Cramér’s V was 0.8.
Finally, we argue that semantic features with a point-biserial correlation statistic
value of around 0.15 or less are not that significant for the model and could be
picked up as salient due to sampling noise, similarly to Cramér’s V values of 0.2
or less. More specifically, looking at the “grey-window” and “black-lobster_head”
semantic features which have point-biserial correlation magnitudes around 0.15,
they have zero frequency/mean intensity for one of the classes and very low values
for the class where they are annotated. We argue that such features could be
output due to the random sample selected and not their significance for the model.

To conclude, our experiments show that the numeric representation does indeed
capture additional information compared to the binary representation (RSQ3.3). In
particular, it accounts not only for the frequency difference between the two classes
but also the pixel intensity of the bounding boxes. However, that is true only for



4.2. Results & Discussion 59

datasets that contain more noisy heatmaps and semantic features with varying pixel
intensities, such as ImageNet. We argue that for datasets which contain either high-
intensity areas or no intensity, the binary representation is enough to capture the
salient features reliably. Based on the aforementioned, special care has to be given
by the annotators to draw the bounding boxes in a precise manner, avoiding the
annotation of unnecessary pixels that are not highlighted at all within an annota-
tion. Moreover, we argue that the annotators should describe every group of pixels
highlighted regardless of its intensity values when using the numeric representa-
tion. This way, SEFA will be able to encode more information from the heatmap by
giving more or less significance to semantic features depending on their pixel inten-
sity. While our current numeric representation implementation is based on a simple
setup, we argue that it offers a promising direction for future work to obtain even
more precise answers to global interpretability queries. A possible improvement
could be to modify the computation of the mean pixel intensity values to account
for the bounding box size since it is easier to achieve higher average values for
small boxes.

RSQ3.4 - Representation Meta-analysis Tools

In Chapter 3.6, we presented three separate ways of performing the semantic rep-
resentation analysis, namely statistical testing, rule mining and training a decision
tree. We hypothesise that although some of the semantic features will be output by
all of the methods others will be selected based on the artefacts introduced by each
meta-analysis method. To validate or reject our hypothesis, we evaluate SEFA on
the PA-49K Gender, ImageNet Vehicle and Fish tasks using its binary representation
and annotating 300 random images for each case. For the statistical tests, we use
the binary statistical tests from Chapter 3.6.1 with the “all” representation and a
p-value of 0.05, similarly to the previous experiments.

Moving on to the data mining rules, we perform rule mining using the Apriori
algorithm as described in Chapter 3.6.2 and sort the semantic features output using
their lift values. In particular, we extract the “elements”, “attributes” and “pairs”
representation options and perform rule mining on those. The reason we do not
use the “combinations” is that the Apriori algorithm evaluates combinations of two
or more semantic features by default meaning that we do not have to explicitly
specify which feature combinations to evaluate. Regarding our choice to evaluate
semantic features based on the lift values instead of the more common confidence
metric, confidence only accounts for the support of the antecedent. This means
that it does not account for potential class imbalance in the annotations samples.
Lift addresses this limitation by taking into account the support of the consequent as
well. As for how lift values provide us with information about global interpretability,
values higher than one mean that the semantic feature and the class often appear
together, values close to one mean that there is no dependence between them, and
when lift is close to zero the feature appears when the class is absent.

Finally, we train a decision tree on the “elements” and “attributes” representation
options and report the feature importance values sorted based on their magnitude.
The reason that we do not use the “combinations” option is that each branch of the
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learned tree represents a rule that is comprised of node combinations which rep-
resent SEFA elements and attributes. That said, one could argue that the “pairs”
representation option should also be added to ensure that we include informa-
tion about the presence of an element-attribute within the same bounding box.
However, the “elements” and “attributes” alone lead to 78 features for the PA-49K
Gender, while adding the “pairs” increases them to 273 features. Given that we
only have 300 samples for each dataset to train the tree, we decide to leave the
“pairs” out to minimise issues arising from the curse of dimensionality.

The output of the three methods on our use cases is evaluated quantitatively
to reason about the semantic feature similarities and differences observed among
them. We provide the top ten semantic features for PA-49K Gender, ImageNet
Vehicle and ImageNet Fish in Tables 4.9, 4.10 and 4.11 respectively.

Statistical Testing Rule Mining Decision Tree

Semantic Feature Cramér's V S tic Feature Lift S tic Feature Feature Importance
long 0.49 long AND grey AND black 1.75 long 0.275
long-hair 0.49 long AND grey 1.73 road 0.058
long AND black 0.47 long-hair AND black-hair  1.71 car 0.045
long-hair AND black-hair 0.47 long AND black 1.69 black 0.042
short 0.37 long-hair 1.69 neck 0.041
black AND short 0.37 long 1.69 white 0.039
long AND grey 0.37 hair AND neck 1.48 forehead 0.038
short-hair 0.36 black AND short 1.46 short 0.035
black-hair AND short-hair 0.36 black-hair AND short-hair  1.46 red 0.031
short AND grey 0.24 short 1.45 ear 0.026

Table 4.9: PA-49K Gender - Comparison of the three analysis methods.

Based on the aforementioned results, both the statistical testing and rule mining
methods highlight semantic features concerning “attributes”, “pairs” or “combina-
tions” related to “hair”. In particular, eight out of the top ten semantic features are
overlapping, albeit in a different order. As for the decision tree, it also considers
the “long” attribute of the “hair” element as the most important feature and then
focuses on other elements/attributes such as “road”, “car”, “black” and more.

While the output of the decision tree cannot be directly compared to the other
two analysis methods, it also underlines the importance of “hair” attributes for the
model. Moreover, we observe that the most important tree feature has a very
significant difference in magnitude compared to the rest. This leads us to question
whether we have enough annotations for the decision tree to reliably capture the
model behaviour and its applicability for global model explanations. That said,
visualising the trained decision tree allows us to extract complex classification rules
that describe the behaviour of the model. We argue it could prove useful when
trying to locate model bias edge cases in the data. To provide some intuition about
this claim, we visualise the top five layers of the trained decision tree for PA-49K
Gender in Figure 4.12.

According to the previous tree, the rule “"NOT long AND NOT ear AND NOT
background AND NOT black AND road” leads to four samples that are classified as
female. Given that the whole branch up to "AND road” was indicating the male
class, one can argue that the presence of “road” is a female class edge case.

Moving on to the ImageNet Vehicle task in Table 4.10, the statistical tests focus
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Figure 4.12: PA-49K Gender - Trained decision tree.
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Statistical Testing Rule Mining Decision Tree

tic Feature Cramér's V ic Feature Lift ic Feature Feature Importance
stripe 0.54 black-window AND orange-stripe 1.95 stripe 0.303
stripe AND window 0.5 transparent-window AND orange-stripe 1.95 emergency_light 0.095
vehicle_side AND stripe 0.46 transparent AND orange AND white 1.91 Cross 0.058
stripe AND tire 0.42 transparent AND white AND black AND orange 1.9 yellow 0.052
orange-stripe 0.42 transparent AND orange 1.84 red 0.043
orange AND transparent 0.41 black AND orange AND transparent 1.83 door 0.04
orange 0.39 orange-stripe 1.82 vehicle_side 0.038
hood AND stripe 0.38 black-tire AND orange-stripe 1.79 brown 0.033
window 0.37 white-vehicle_side AND orange-stripe 1.77 vehicle_under 0.031
orange AND black 0.37 white-vehicle_side AND black-tire AND orange-stripe  1.73 mirror 0.03

Table 4.10: ImageNet Vehicle - Comparison of the three analysis methods.

” o\

on “combinations” and “pairs” of the elements “window”, “stripe” and the attribute
“orange”. The rule mining output focuses on similar semantic features but mostly
outputs “combinations” of them. In particular, they contain pairs or triplets of
“attributes” and “pairs” which contain features such as “orange-stripe”, “orange”,
“transparent”, “black-window"” and more. The fact that the rule mining can check for
combinations of more than two semantic features without explicitly having to spec-
ify them is one advantage of rule mining over statistical tests. As for the decision
tree, it uses the “stripe” on the vehicle to differentiate between an ambulance and

a moving van, followed by “emergency_light” with significantly lower importance.

Statistical Testing Rule Mining Decision Tree
ic Feature Cramér’'s V ic Feature Lift ic Feature Feature Importance

lobster_claw 0.88 trout_head AND fingers 3.19 lobster_claw 0.38
trout_body 0.85 trout_body 3.19 trout_body 0.333
orange 0.84 yellow_green 3.19 fish_body 0.129
shark_body 0.79 trout_head AND eye 3.19 lobster_body 0.091
grey-shark_body 0.78 yellow_green-trout_body 3.19 shirt 0.019
orange-lobster_claw 0.78 trout_head AND trout_body AND eye 3.19 orange 0.016
lobster_body 0.77 trout_head AND trout_wing AND trout_body 3.19 crab 0.009
trout_head 0.74 trout_head 3.19 water 0.009
trout_head AND trout_body 0.74 trout_head AND trout_body 3.19 shark_head 0.006
trout_wing 0.74 trout_wing 3.19 black 0.006

Table 4.11: ImageNet Fish - Comparison of the three analysis methods.

Based on Table 4.11, the statistical testing and decision tree both showcase the
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importance of “lobster_claw” and “trout_body” for the lobster and tench classes of
the ImageNet Fish. Similarly to the previous cases, the rest of the features have
significantly lower importance for the decision tree while the statistical tests can
evaluate quantitatively a wider range of interpretability queries. This experiment
also highlights an important limitation of the rule mining output. In particular, the
top 20 semantic features output have the exact same lift value. While counter-
intuitive at first, this behaviour can be explained by the fact that when a semantic
feature always appears in combination with a specific class, their lift is equal to
one divided by the support of the class. As a result, when sorting the rules using
lift only, this phenomenon can arise if the semantic representation is sparse. By
sparse, we refer to the fact that several semantic features are annotated only in
one of the classes and are completely absent from the other ones.

This issue can be overcome by filtering the output rules based on a pre-defined
support threshold. That way, we ensure that the semantic features with high
lift are also significantly annotated for their respective classes. For instance, the
“trout_head AND fingers, tench” and the “trout_body, tench” both have identical
lift values but their support is 0.1 and 0.25 respectively. This difference indicates
that they have significant differences in how important they are for the model’s
classifications. To showcase how the use of a support threshold modifies the out-
put of the method, we provide the top ten features of rule mining when using a
support threshold of 0.2 in Table 4.12.

Rule Mining (support > 0.2)

Semantic Feature Lift
trout_head AND trout_body 3.19
trout_head 3.19
trout_wing 3.19
trout_body 3.19
orange-lobster_claw 3.13
lobster_claw 3.13
lobster_body 3.13
orange 2.9
shark_body 2.73
shark_wing 2.73

Table 4.12: ImageNet Fish - Rule mining output when filtering rules with a support of 0.2 or more.

According to the previous table, it becomes clear that filtering rules based on their
support reduces the output noise and enables us to pinpoint the features that have
both a high lift and a reasonable confidence level. What is more, the filtered output
closely resembles that of the statistical testing with nine out of ten features over-
lapping. That said, the rule mining analysis still provides the same lift value for all
the salient features of each class since the lift in these cases is equal to one divided
by the class support due to the representation sparsity. We would also like to un-
derline that one has to be careful when selecting the threshold value. In particular,
setting it too high might lead to loss of semantic features that are important for the
image classification model while setting it too low will allow features to be retrieved
due to sampling noise, similarly to the Cramér’s V values discussed previously.
Another important point for the representation analysis methods is to ensure
that they output the actual features that the model is sensitive to. Therefore, we



4.2. Results & Discussion 63

perform a sanity check for the three analysis methods by applying them to the four
PA-49K Gender cases from the “representation options” experiments. All of them
were found to pick up the sources of bias introduced in each case. We provide the
output for one of these cases in Figure 4.13.

Statistical Testing Rule Mining Decision Tree
ic Feature Cramér's V ic Feature ic Feature Feature Importance

=
B

yellow-year 0.96 yellow-day AND yellow-month AND yellow-year yellow

2

yellow 0.94 yellow-month AND yellow-year 2 white 0.051

white 0.83 yellow-year 2 month 0.013

yellow-day 0.82 yellow-month 2 long 0.013

yellow-month 0.81 yellow-day 2 day 0.001
yellow-day AND yellow-year 0.81 grey AND yellow 2
yellow-month AND yellow-year 0.80 grey AND white 2
white-year 0.72 white AND black 2
yellow-day AND yellow-month 0.72 yellow-day AND yellow-year 2
shirt 0.62 yellow-day AND yellow-month 2

Table 4.13: PA-49K Date Colour - Comparison of the three analysis methods.

Based on the aforementioned table, all three methods output the colour bias in-
troduced in their outputs, suggesting that the analysis tools used output semantic
features relevant to the model. However, while the statistical testing highlights
both the “yellow” and “white” colours in its output, the decision tree mostly uses
the presence or absence of the “yellow” colour to classify the semantic representa-
tion. This output further highlights the limited information that a decision tree can
provide regarding global interpretability when used with SEFA. As for rule mining,
we are again faced with a series of semantic features with the same lift value due to
the sparsity of the semantic representation. An example that highlights the severity
of this issue is the semantic feature “white-year” which is annotated 74 times for
the female class and once for the male due a mistake by the human annotators.
While it is one of the most important semantic features for the model, it appears at
position 11 since its lift is 1.97 instead of two due to the annotation mistake.

To conclude, in this section we evaluated the three analysis methods that SEFA
currently offers (RSQ3.4). All three of them were able to retrieve the bias intro-
duced in the four PA-49K Gender cases showing that they can retrieve features
relevant to the model behaviour. Moreover, we argue that the statistical testing
analysis is the most flexible option since the user has the ability to create any
semantic feature they want to evaluate, whereas it is not as straightforward for
the other two. More specifically, they provide some flexibility with the evaluation
of “elements”, “attributes” and “pairs” but not “combinations” of them. The deci-
sion tree, in particular, can only provide quantitative evaluation of the features in
terms of feature importance values, thus limiting the explanations to “elements”
and "attributes” only. Therefore, we argue that training a decision tree is not well
suited to analysing our semantic representation, especially given the shortage of
samples-annotations at hand. On the other hand, rule mining has an advantage
over statistical tests in that it is able to evaluate combinations of more than two
semantic features without needing to explicitly specify them. That said, the final
features that should be output based on the evaluation metric used can be prob-
lematic to decide. Based on the aforementioned, we decide to use the statistical
tests for the rest of the experiments conducted in this work.
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4.2.2. SEFA Evaluation

While we already evaluated the different hyperparameters options that SEFA offers,
we still need to check the extent to which it allows us to answer a wider range of
global queries for image classification models. To evaluate SEFA's expressivity, we
perform several experiments on the three classification tasks used in our work with
the optimal hyperparameters obtained from the experiments in Chapter 4.2.1. The
SEFA output is then compared to that of the ACE [22] global interpretability method
to reason about the complexity of the queries that these two methods answer. We
also evaluate the robustness of the proposed method on two biased models and its
ability to capture fined-grained details by comparing SEFA’s output on Inception-V3
and VGG16. More specifically, we answer the following research questions:

* RSQ4.1: To what extent can SEFA answer more complex interpretability
queries compared to existing global methods?

* RSQ4.2: To what extent can SEFA correctly identify synthetic biases intro-
duced into a model?

* RSQ4.3: To what extent is SEFA able to focus on model-specific semantic
features?

RSQ4.1 - Query Complexity

The goal of our work has been to create a method that is able to answer a wider
range of global interpretability queries for image classification models compared to
existing methods. In particular, we hypothesise that SEFA can offer more expressive
and diverse explanations compared to existing global interpretability methods. To
check our hypothesis, we evaluate SEFA on the PA-49K Gender dataset and the two
ImageNet tasks, and compare its output to that provided by ACE [22].

One reasonable question is, “why did we decide to specifically compare ACE with
SEFA?”. Based on our analysis of existing global interpretability methods in Chapter
2.3, we felt that ACE is the best candidate. In particular, while GIRP [59] offers
a structured representation similar to SEFA, it utilises semantic features extracted
from semantic segmentation techniques which we found to lack the expressive
power required for our use cases in Chapter 3.4.6. To elaborate, its expressivity
is hindered by the fact that it provides limited element descriptions and does not
contain any attribute information. On the other hand, TCAV [32] gives its user
the flexibility to evaluate an interpretability query containing an element and/or
an attribute by gathering concept images. These concepts are then input in the
method and a concept importance value from zero to one is output for a specific
model-class combination. That said, initial experimentation with the method when
evaluating the “long-hair” versus “short-hair” concepts for the PA-49K Gender high-
lighted some of its limitations. The user has to provide hand-labeled concept images
to the method which requires a significant amount of time, namely, a single concept
can take up to an hour. More importantly, the users gathering the concepts can
introduce their own bias in the explanation process [22]. ACE [22] was proposed
to address the limitations of TCAV by using the learned representation space of a
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trained neural network to automatically extract concept segments relevant to the
model behaviour. These concept images are then input into TCAV to obtain their
importance scores. Therefore, we chose to experiment with ACE over TCAV.

For our experiments with SEFA, we use the optimal hyperparameters obtained
from the empirical evidence in the previous section. To be more specific, we anno-
tate 300 images for each of the three classification tasks, extract a binary semantic
representation using the “all” option and use the statistical tests analysis method.
As for ACE, we use the minimum hyperparameter values suggested by Ghorbani
et al. [22] and their public implementation®’. The exact details of the ACE setup
used can be found in Table 4.14.

Hyperparameter PA-49K Gender ImageNet Vehicle ImageNet Fish

300 images/class 300 images/class
(250 train + 50 validation) (250 train + 50 validation)
Random discovery images 1,000 images/class (train) 400 images/class (train) 400 images/class (train)

Target class images All test images/class

# Random experiments 20 20 20

Random experiment images 50/experiment, 50/experiment, 75/experiment,
25/class (validation) 25/class (train) 25/class (train)

Layer representation layer mixed_8 mixed_8 mixed_8

Segmentation resolution [15, 50, 80] [15, 50, 80] [15, 50, 80]

Clustering method K-Means K-Means K-Means

# Clusters 25 25 25

Table 4.14: ACE hyperparameters for our three use cases.

For both methods, we report the top five outputs per class with a p-value of 0.05
or less. Given that ACE provides visual examples of the concepts extracted with-
out any semantic information attached to them, we attempt to annotate the ele-
ment/attribute information that describe them. That said, this process is far from
straightforward given that the concepts output by ACE are less coherent than ex-
pected, thus making the semantic feature annotation challenging. In particular, the
concepts output often depict more than one elements or attributes which leads to
confusion as to what the concept corresponds to in practice.

To overcome this issue, we extract the semantic features from the visual con-
cepts based on what the majority of the image segments correspond to. If they
contain multiple elements or attributes that consistently appear in at least three
out of ten image segments for a single concept we consider them relevant seman-
tic features for it. When multiple elements and attributes are extracted for a single
concept, we combine them using the "OR"” Boolean operator to indicate that at least
one of them corresponds to that specific TCAV score. If multiple elements appear
in the concept segments just once, we assume that ACE focuses on the attributes
of the segment, such as its colour, thus only annotating the attributes depicted.
We provide the semantic feature annotation of the ambulance class from ImageNet
Vehicle as an example in Figure 4.13, while the rest of the annotations can be found
in Appendix D.

The reasoning behind the annotation of the previous concepts is the following:

e Concept 1: six out of ten image segments highlight the “black-bumper” of the

Ohttps:/ /github.com/amiratag/ACE
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Figure 4.13: ImageNet Vehicle - Ambulance ACE top five.

vehicle. The rest of the images highlight a “shirt”, a “window", a “road” and a
“vehicle_side” in just a single segment, thus we are assuming that they were
highlighted because of their black colour.

e Concept 2: half of the segments highlight the black or grey tire of the vehicle
while the rest of them focus on different parts of it but with similar colours.

e Concept 3: all of the segments in the concept focus on different parts of the
vehicle such as the “bumper”, “tire”, “vehicle_side” and more. Therefore, we
decided to only annotate the attributes of the concept, which is the presence
of “black” colour in this case.

e Concept 4: similarly to the previous case, the image segments depict signifi-
cantly different elements, leading us to annotate the colours that make these
the ten segments stand out which correspond to “orange OR red".
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e Concept 5: the “window” and “bumper” elements both appear at three image
segments and since the grey colour is prominent in every image segment, we
annotate this concept as “grey-window OR grey-bumper”.

A similar process is followed for all seven classes belonging to the three classification
tasks that were explained with ACE. Moreover, we would like to clarify that for both
SEFA and ACE we grouped the light and dark colour versions. For instance, the
semantic features “light grey” and “dark grey” were grouped with the attribute
“grey”. The reason for this choice was that the fine-grained details of the colour
can differ significantly based on the annotator’s perception, potentially introducing
annotation noise in the explanations. The comparison of SEFA and ACE for the PA-
49K Gender, ImageNet Vehicle and Imagenet Fish classification tasks are available
at Tables 4.15, 4.16 and 4.17 respectively.

Male Female
Semantic Feature Cramér's V Semantic Feature Cramér's V
short 0.52 long 0.58
short-hair 0.52 long-hair 0.58
short-hair AND black-hair 0.5 long-hair AND black-hair 0.54
short AND black 0.49 long AND black 0.53
short AND grey 0.37 long AND grey 0.41

(a) SEFA Output.

Male Female
Semantic Feature TCAV Semantic Feature TCAV
grey 1.0 grey-road OR grey-pavement 1.0
white-shirt OR grey-shirt 1.0 grey-pavement 1.0
white-shirt OR white-background  0.99 grey-road OR grey-pavement 1.0
white-shirt OR white-background  0.93 grey-background 0.99
grey-pavement 0.75  brown-hair OR brown-background  0.97

(b) ACE Output.

Table 4.15: PA-49K Gender - Top five semantic features.

According to Table 4.15, “hair length” related attributes are the main discriminator
between the two classes according to SEFA. Further interesting findings can be
extracted by looking at the semantic features with lower Cramér’s V values, such
as the “ear” and “neck” being indicative of the male class with a value of 0.24 and
0.21 respectively. These semantic features seem intuitive given that the ear and
the neck are not usually visible in female images due to their long hair. As for
ACE, its output seems very dependent on the colour of its concepts-segments. In
particular, grey is considered salient for both classes while white is important for
male classifications and brown for female ones.

A likely reason why ACE is unable to capture coherent element semantic features
in the PA-49K Gender is the network weight values. To elaborate, when looking at
the trained weights for a sample of network layers, we observed that there is a
significant number of zero values. This weight behaviour is potentially due to only
having two classes for the fine-tuned network compared to the 1,000 of ImageNet
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for which the Inception-V3 was designed. As a result, we argue that only a fraction
of its expressive power is needed to classify a two-class classification problem,
thus leading to a series of zero weights. This behaviour hypothetically limits the
information of the feature representation space that ACE uses both to extract the
segments and to compute the TCAV scores, thus leading to limited visual concepts.

Ambulance Moving Van
Semantic Feature Cramér’s V Semantic Feature Cramér's V
window AND stripe 0.51 vehicle_under 0.3
stripe 0.49 vehicle_side AND vehicle_under 0.27
stripe AND vehicle_side 0.4 vehicle_top AND vehicle_under 0.26
stripe AND mirror 0.39 black-vehicle_under 0.25
stripe AND tire 0.38 black-vehicle_under AND black-tire 0.22

(a) SEFA Output.

Ambulance Moving Van
Semantic Feature TCAV Semantic Feature TCAV
black-bumper 1.0 black-vehicle_under 0.69
black-tire OR grey-tire 1.0 black OR grey 0.18
black 1.0 tire 0.15
orange OR red 1.0 white-sky 0.05

grey-window OR grey-bumper 0.99  orange-letters OR red-letters  0.01

(b) ACE Output.

Table 4.16: ImageNet Vehicle - Top five semantic features.

Moving on to the ImageNet Vehicle task, SEFA mainly focuses on the presence of
“stripe” for the ambulance class while it uses the underside of the vehicle for the
moving van. The importance of the coloured stripes for the ambulance class is
further highlighted by the semantic features “orange-stripe” and “red-stripe” which
have a Cramér’s V value of 0.35 and 0.27 respectively. On the other hand, ACE
is centered around describing colour related information, combined with some ele-
ments. Interestingly it extracts the feature “orange OR red” with a TCAV value of
one for the ambulance class suggesting that it also picks up on the stripe colour
importance, similarly to SEFA. Other than that, it also highlights the importance of
the vehicle underside for the moving van.

By comparing SEFA and ACE based on the types of queries they answer, an
important difference is observed. To elaborate, both of them can reason about
“elements”, “attribute” and element-attribute “pairs”, but SEFA is also able to answer
queries containing “combinations” of them. The usefulness of such an option is
apparent when looking at the “vehicle_side” semantic feature in the SEFA output.
When the side of the vehicle is highlighted in combination with a coloured stripe it
indicates the ambulance class whereas when both the side and the underside of the
vehicle are highlighted, it is classified as moving van. ACE and the other existing
global interpretability methods are unable to answer such an interpretability query.

As for the ImageNet Fish output in Table 4.17, SEFA captures elements and
combinations of them that are specific to each class, such as “lobster_claw”, “lob-
ster_claw AND lobster_body”, “shark_body” and “trout_body”. Moreover, it asso-
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American Lobster Great White Shark Tench
S ic Feature Cramér’s V ic Feature Cramér’s V ic Feature Cramér’s V
lobster_claw 0.9 shark_body 0.78 trout_body 0.84
orange 0.82 grey-shark_body 0.76 trout_wing 0.68
lobster_body 0.81 shark_wing 0.72 trout_head 0.68
orange-lobster_claw 0.77 grey-shark_wing 0.7 trout_head AND trout_body 0.67
lobster_claw AND lobster_body 0.76 shark_wing AND shark_body 0.64 trout_wing AND trout_body 0.65

(a) SEFA Output.

American Lobster Great White Shark Tench

ic Feature TCAV S ic Feature TCAV Semantic Feature TCAV
grey_blue-water 1.0 blue-background OR grey-background 1.0

OR grey_blue-shark_body* ' OR green-background '

orange-lobster_head 1.0 grey-shark_wing 1.0 yellow-trout_body OR grey-background 1.0
OR orange-lobster_claw : OR grey-shark_head* ' OR yellow-background '

orange-lobster_claw 0.99 water OR shark_stomach* 1.0 grey-shirt OR grey-trout_body 0.96

- blue-water OR blue-shark_body beige-fingers
white-dish 0.86 OR grey-shark_body* 1.0 OR green_yellow-trout_body 0.91
beige-lobster_claw

OR orange-lobster_claw 0.49  blue-shark_body OR blue-water* 1.0 brown-trout_body 0.45

orange-lobster_body 1.0

(b) ACE Output.

Table 4.17: ImageNet Fish - Top five semantic features.

ciates the “orange” and “grey” colours with the American lobster and great white
shark respectively. Another interesting finding provided by SEFA's combinations is
that the combinations of separate fish parts, such as “shark_wing AND shark_body”,
have one of the highest Cramér’s V values for their classes. Therefore, we can as-
sume that large parts of the fish are highlighted in the heatmaps, hinting that the
Inception-V3 pre-trained on ImageNet is sensitive to large parts of the fish body
instead of fine-grained details such as the eyes, mouth and more.

On the contrary, TCAV outputs surprising similar semantic features to SEFA con-
cerning the fish parts highlighted but pairs them with several colours. Furthermore,
it highlights some extra semantic features related to the background bias of Ima-
geNet Fish discussed previously, such as “white-dish”, “blue-water” and “beige-
fingers”. At this point, we want to highlight that all eight concepts output for the
great white shark by ACE have the exact same values with a TCAV of one and a
p-value of 0.066. Also, the p-values fail to satisfy the 0.05 threshold. The afore-
mentioned issues, lead us to view the ACE concepts for the shark class with some
scepticism. That said, these concepts are the only output ACE provides and since
their p-values are only marginally higher than 0.05, we decided to report them in
our study.

When observing the differences and similarities between the two methods for
our three use cases, we have to keep in mind that they attempt to achieve slightly
different interpretability goals. For instance, when considering ImageNet Vehicle,
SEFA answers which semantic features discriminate an ambulance from a moving
van and the other way around. On the other hand, ACE provides information about
the concepts that make an ambulance belong to that class out of the 1,000 classes
that the pre-trained ImageNet model classifies. To make this different behaviour
clearer, we compare the behaviour of the two methods for features that are only
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highlighted by ACE in Table 4.18.

Semantic Feature TCAV Cramér'sV Frequency per class

grey | male 1.0 0.08 female: 0.59 | male: 0.8

grey-background | female  0.99 0.08 female: 0.22 | male: 0.3
black | ambulance 1.0 0.09 ambulance: 0.83 | moving van: 0.75
tire | moving van 0.15 0.02 ambulance: 0.64 | moving van: 0.61

Table 4.18: SEFA class frequencies for metrics that are only output by ACE.

According to the previous table, it is clear that some of the features with high
TCAV scores were not considered as salient by SEFA because they had similarly
high frequencies for both classes. We argue that these examples underline our
previous claim that the output of two methods answer a slightly different question.
That said, SEFA could be easily modified to reason in a similar manner to ACE. To
be more exact, simply printing semantic features sorted by their class frequency,
regardless of their annotations for the other class, would allow us to achieve that.

The experiments conducted in this section show that both SEFA and ACE can an-
swer global interpretability queries regarding “elements”, “attributes” and element-
attribute “pairs”. We also noticed that some of those semantic features are output
by both methods suggesting that they are indeed salient for the model. That said,
SEFA can also reason about “combinations” of the aforementioned query types
which allows us to define more complex interpretability questions about the model
behaviour, thus providing increased expressivity (RSQ4.1). We argue that SEFA
provides higher flexibility compared to existing methods due to the structured rep-
resentation it provides. In particular, SEFA users need a specific number of annota-
tions and then they can define any type of global interpretability query. Apart from
the query types and operators evaluated in this study, users can also defined any
other question based on their needs, such as checking for combinations of three
or more semantic features, using the "OR" operator and more. We suggest experi-
menting with more query types aimed at different use cases, such as locating bias
edge cases, as a promising direction for future work.

Finally, we want to highlight that the absence of a benchmark or ground truth
within the interpretability domain makes it almost impossible to say with confidence
which interpretability method closer describes the model behaviour. Nonetheless,
we perform two rigorous experiments in the next section that evaluate the robust-
ness of our proposed method with respect to its ability to capture dataset biases
which we assume that image classification models learn.

RSQ4.2 - Output Robustness

As mentioned in Chapter 4.1.4 we are unfortunately not aware of what the ground
truth of our output should be when interpreting a deep learning model. However,
since we want to evaluate the reliability of SEFA to output the right semantic fea-
tures as salient, we train two Inception-V3 models on datasets where we introduce
synthetic bias and evaluate the method’s output quantitatively. The idea is that by
injecting the bias, we create a form of ground truth that we expect SEFA to capture.
To be more exact, we perform the following experiments:
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e PA-49K Gender - Orientation Bias: the PA-100K comes with annotations re-
garding the orientation of the person in the image, namely “front”, “back”
and “side”. We take advantage of this fact and sample all of the male images
with “front” orientation and the female ones with “back” orientation. As a
result, when we fine-tune an Inception-V3 model on this biased dataset, we
expect it to predict the gender by checking whether the image contains “hair”
or “facial” characteristics.

o ImageNet Fish - Background Bias: by observing the background of the three
classes in ImageNet Fish task, we noticed that the white shark class is always
depicted in the sea, whereas the lobster is served on a dish and the tench
is held by humans. By taking advantage of this inherent dataset bias, we
fine-tune the model on the biased data and observe whether SEFA picks up
the aforementioned biases.

We provide examples of how the heatmap outputs change when we fine-tune the
models on the aforementioned biased datasets in Figure 4.14.

PA-49K Gender ImageNet Fish
PA-49K Gender ImageNet Fish
Orientation Bias Background Bias

Figure 4.14: Image examples for the robustness experiments. We show how the heatmap outputs
change when we fine-tune the models on the biased datasets.

By observing these examples we can see how the focus of the heatmaps shifts
from other elements in the image to the hair and the facial characteristics of the
individuals in the orientation bias PA-49K Gender. Similarly for ImageNet Fish, the
biased model focuses more on image details that are related to the background
bias of the dataset. We evaluate SEFA's ability to describe the biases introduced by
annotating 300 images, using the binary representation with the “all” option and
the statistical tests with a p-value of 0.05. The top ten semantic features observed
for each biased dataset and their original counterparts can be found in Tables 4.19
and 4.20 for PA-49K Gender and ImageNet Fish respectively.

Based on the aforementioned results we conclude that SEFA is able to capture
the synthetic biases introduced in both cases. More specifically, for the PA-49K
Gender, our method is able to output that “hair” related semantic features, such as
“long-hair”, “black-hair” and more, are related to the female class. On the contrary,
elements such as “neck” and “cheek” are associated with the male class since they
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PA-49K Gender PA-49K Gender Orientation Bias

Semantic Feature | Class Cramér's V Semantic Feature | Class Cramér's V
long | female 0.48 hair | female 0.71
long-hair | female 0.48 black-hair | female 0.69
long-hair AND black-hair | female 0.45 neck | male 0.61
long AND black | female 0.44 black | female 0.53
short | male 0.43 long | female 0.51
short-hair | male 0.43 long-hair | female 0.51
black AND short | male 0.43 long AND black | female 0.49
black-hair AND short-hair | male 0.41 long-hair AND black-hair | female 0.49
grey AND long | female 0.39 cheek | male 0.48
short AND grey | male 0.3 cheek AND neck | male 0.44

Table 4.19: PA-49K Gender - Comparison of original vs model with orientation bias.

ImageNet Fish Pre-trained ImageNet Fish Background Bias
Semantic Feature | Class Cramér'sV Semantic Feature | Class Cramér's V
lobster_claw | lobster 0.9 trout_body | tench 0.9
trout_body | tench 0.86 lobster_claw | lobster 0.83
shark_body | shark 0.82 orange | lobster 0.79
grey-shark_body | shark 0.81 grey-trout_body | tench 0.76
orange | lobster 0.8 orange-lobster_claw | lobster 0.73
orange-lobster_claw | lobster 0.79 lobster_body | lobster 0.71
lobster_body | lobster 0.75 blue-water | shark 0.71
shark_wing | shark 0.69 green | tench 0.7
grey-shark_wing | shark 0.69 beige | tench 0.7
trout_head | tench 0.68 water | shark 0.7

Table 4.20: ImageNet Fish - Comparison of pre-trained vs fine-tuned ImageNet model.

are only visible in male images due to the bias introduced in the data. Similarly,
for the ImageNet Fish case, only five out of the top ten semantic features are the
same between the original pre-trained network and the fine-tuned biased one. In
particular, SEFA is able to pick up semantic features that correspond to the back-
ground bias of each class, such as the “green” grass in the background of tench
images and the “water” that the white sharks are depicted in.

To summarise, the experiments conducted in this section indicate that SEFA is
robust enough to capture synthetic biases introduced in datasets (RSQ4.2). How-
ever, the local interpretability method used to extract the heatmaps needs to high-
light the image regions containing the bias for SEFA to include it in its salient se-
mantic features. The reason for that, is that human annotators can only describe
the bias if it is highlighted in the individual image heatmaps as salient for the model.
For instance, if the “water” where the great white shark is depicted in the Back-
ground Bias case is not highlighted, then the annotators will be unable to describe
it and it will not be included in the SEFA output. Therefore, it is crucial that the local
interpretability method captures the association between the model predictions and
the input images, as discussed in Chapter 3.3.1.
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RSQ4.3 - Model Sensitivity

An interpretability method should be able to focus on the image details that each
model uses to classify a specific class. Hence, such a method needs to be sensitive
to the parameters of an image classification neural network. We hypothesise that
when two separate model architectures are trained on the same task, SEFA will be
able to capture the subtle differences in their behaviour.

To test our hypothesis, we run SEFA on the unbiased ImageNet Fish task using
the VGG16 model and compare its output to that of Inception-V3 architecture used
throughout the rest of our experiments. As already mentioned in Chapter 4.1.2, the
reason why we chose the VGG16 architecture over other higher-performing archi-
tectures, such as the ResNet-50, is that it has been found to focus on significantly
different pixels compared to the Inception-V3 [66]. This fact is also evident by the
validation accuracy values of Inception-V3 and VGG16 which achieve an accuracy
of 88% and 80.67% respectively on ImageNet Fish. The subtle differences in the
pixels that these two models focus on can be found in Figure 4.15.

ImageNet Fish - Inception-V3

ImageNet Fish - VGG16

Figure 4.15: ImageNet Fish - Inception-V3 vs VGG16 heatmap examples.

While at first glance the two architectures seem to focus on roughly the same
areas, upon closer inspection we observe some subtle differences. For example,
the Inception-V3 focuses more on the mouth and teeth of the shark than VGG16
in the previous example images. We run SEFA on the ImageNet Fish with these
two models by annotating 300 random images and taking advantage of the binary
representation with the “all” option. Then, we analyse the representation using the
binary statistical tests with a p-value of 0.05. The top ten semantic features output
by SEFA for Inception-V3 and VGG16 are available in Table 4.21.

According to the previous table, SEFA is able to pick up on the different semantic
features that the two image classification architectures focus on. In particular, seven
out of the top ten features are the same for both models but with a significantly
different ranking and Cramér’s V values. For instance, while features such as “grey-
shark_wing” and “trout_head” are in positions nine and ten for Inception-V3 they
only appear at positions 19 and 17 for VGG16 respectively. By further analysing the
top 40 outputs for the two models we observed the same findings, namely, thereis a
high number of overlapping semantic features for the two models but in significantly
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Inception-V3 VGG16

Semantic Feature | Class Cramér'sV Semantic Feature | Class Cramér's V
lobster_claw | lobster 0.9 trout_body | tench 0.99
trout_body | tench 0.86 lobster_claw | lobster 0.93
shark_body | shark 0.82 grey-trout_body | tench 0.92
grey-shark_body | shark 0.81 orange | lobster 0.91
orange | lobster 0.8 lobster_body | lobster 0.85
orange-lobster_claw | lobster 0.79 shark_body | shark 0.83
lobster_body | lobster 0.75 grey-shark_body | shark 0.83
shark_wing | shark 0.69 orange-lobster_claw | lobster 0.82
grey-shark_wing | shark 0.69 shark_head | shark 0.8
trout_head | tench 0.68 grey-shark_head | shark 0.79

Table 4.21: ImageNet Fish - Comparison of salient semantic features for Inception-V3 vs VGG16.

different rankings and Cramér’s V scores. We argue that this behaviour is expected
given that the VGG16 has a significantly lower accuracy compared to Inception-V3
but not that much lower to indicate that it focuses on completely different parts of
the image.

To conclude, the Inception-V3 versus VGG16 comparison in this section indi-
cates that SEFA can indeed focus on model-specific semantic features (RSQ4.3).
Similarly to the robustness experiments, we have to underline that the output of
SEFA greatly depends on the ability of the local interpretability method to pick up
the differences between separate models on an image level. Given that one of the
reasons why we selected SmoothGrad gradients is that they were shown by Ade-
bayo et al. [3] to be sensitive to network parameters, we are confident that they
can pick up such differences among separate models. That said, we argue that
if these differences are too subtle to be noticed by humans during the semantic
feature annotation, then SEFA might fail to output their differences in such cases.

4.3. Summary

In this chapter, we investigated the extent to which the analysis of semantic fea-
tures enables us to answer a wider range of global queries for image classification
models. To answer this question, we first conducted a series of experiments evalu-
ating different SEFA hyperparameters to better understand its behaviour in practice
and the options that one should use to obtain reliable and robust explanations
(RSQ3). Following that, we compared SEFA with ACE, one of the latest global in-
terpretability methods, to reason about the types of queries that these methods can
answer and to evaluate whether SEFA indeed offers more expressive explanations
(RSQ4). Finally, we tested SEFA on datasets with artificial bias and on two sepa-
rate model architectures to reason about its ability to output semantic features that
are important for the model and its sensitivity to network parameters respectively.
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RSQ3.1: How many images do we need to annotate in order to obtain robust
and reliable model behaviour explanations?

We tested SEFA with different annotation sizes, ranging from 20 to 400, for four sep-
arate Inception-V3 models. Our results suggest that 100 annotations are enough
to capture the semantic features that are of absolute importance for the model.
Annotating an extra 200 annotations can also provide information about semantic
features that are less commonly present in the images of each class. That said, we
argue the choice to annotate more than 100 images depends on the cost-quality
trade-off decided by each SEFA user and their needs. We would like to underline
that the aforementioned annotation sizes are suggested for datasets with a rela-
tively small number of classes, i.e. two or three. Further experiments are required
to reason about the number of annotations required for datasets with significantly
higher numbers of classes.

RSQ3.2: Which types of interpretability queries does each semantic repre-
sentation option answer?

SEFA offers several representation options, namely “elements”, “attributes”, “pairs”
and “combinations”. We performed experiments on four artificially biased datasets
derived from the PA-49K Gender dataset. Our results indicate that each representa-
tion option is able to answer different types of queries that capture separate cases
of dataset bias. Moreover, they highlight that some use cases may necessitate the
use of the “NOT” logical operator which checks about the absence of a semantic
feature in an image. Based on the aforementioned empirical evidence, we suggest
the use of the “all” option which evaluates the semantic features extracted by all
four representation options to evaluate the widest range of queries that SEFA offers.
The additional use of the "NOT"” operator should be decided according to the user
needs since it significantly increases the computational complexity of the method.

RSQ3.3: Does the numeric representation provide extra information com-
pared to the binary one?

We compared the output of the numeric and binary representations on three sep-
arate classification tasks, namely PA-49K Gender, ImageNet Vehicle and ImageNet
Fish. Our results suggest that when the heatmaps of a dataset-model are not noisy
and their areas either have a high pixel intensity or no intensity at all, then the
binary representation is sufficient to explain the model. However, if the maps are
noisy and have areas that are highlighted with various pixel intensity values, then
using the numeric representation leads to more reliable explanations. That said,
this option comes with a higher annotation cost since the human annotators need
to describe all the highlighted areas in the image based on their pixel intensity.

RSQ3.4: Do separate representation analysis methods provide similar or
contradicting salient semantic features?

We also compared the output of the three available analysis methods on the three
classification tasks mentioned before. The results indicate that the statistical tests
provide meaningful quantitative evaluations of the semantic features requested by
the user. On the other hand, while the rule mining allows the method to evaluate
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combinations of more than two semantic features without the need to explicitly
specify them, we showed that it requires a combination of at least two evaluation
metrics, lift and confidence. We argue that its output analysis is more challenging
than statistical testing. As for the decision tree, it provides limited quantitative
information about the semantic features in the form of feature importance values
for the trained tree. Therefore, we propose the use of the statistical tests since they
are flexible, more intuitive and can be easily evaluated via their magnitude values.

RSQ4.1: To what extent can SEFA answer more complex interpretability
queries compared to existing global methods?

As for SEFA's ability to answer a wider range of queries compared to existing meth-
ods, we compared its output versus ACE. In particular, we used the optimum hyper-
parameters according to our previous experiments and evaluated the two methods
on the three classification tasks used in our work. Our results showcase that both
methods are able to answer queries regarding “elements”, “attributes” and “pairs”
of semantic features. That said, ACE provides a fixed output where you have no op-
tion to perform extra queries of your choice while SEFA gives the user the flexibility
to create different types of queries based on their needs. Even more importantly
SEFA provides increased expressivity that allows to reason about “combinations” of
the aforementioned semantic features, thus allowing us to answer interpretability
queries that current methods are unable to.

RSQ4.2: To what extent can SEFA correctly identify synthetic biases intro-
duced into a model?

We experimented with SEFA on two purposefully biased datasets to reason about
whether it outputs semantic features related to the model behaviour. More specifi-
cally, we fine-tuned two Inception-V3 models on a modified PA-49K Gender dataset
where the images of each class are filtered according to the orientation of the person
in the image and on ImageNet Fish which is inherently biased with the background
of each class. In both cases, SEFA was able to modify its output in comparison with
the unbiased cases to accommodate for the artefacts in the data which we assume
that the model picked up during training.

RSQ4.3: To what extent is SEFA able to focus on model-specific semantic
features?

We compared SEFA's output when using Inception-V3 and VGG16 trained on Ima-
geNet Fish. \We were able to observe significant differences between the two models
while keeping in mind that they achieve relatively similar accuracy. These experi-
ments suggest that SEFA does indeed retrieve semantic features relevant to model
classifications and that it can modify its output according to network parameters.



Conclusion

In this chapter, we summarise the work conducted in this thesis, draw the conclu-
sions that answer our main research question and discuss the method limitations.
Following that, we lay out directions for future work based on the conclusions and
limitations of our study.

5.1. Summary

In this section, we summarise the focus of our work, the proposed methodology,
the conclusions reached and the limitations of our method.

5.1.1. Work Focus

Deep learning is achieving state-of-the-art performance on a series of image clas-
sification tasks. However, these models suffer from limited interpretability which
creates several issues, such as their limited applicability in mission-critical domains.
Several interpretability methods have been proposed that attempt to explain the
behaviour of these models with respect to a class of interest. We argue that such a
method should be able to answer complex interpretability queries, such as whether
the combination of two objects in an image is associated with the prediction of a
class. To the best of our knowledge, no existing method can provide the expressiv-
ity required to answer these types of queries. To address this gap, we proposed a
novel global interpretability method, called SEmantic Feature Analysis (SEFA),
that utilises human annotations to provide the semantic information and structure
needed to answer such questions.

5.1.2. Methodology Approach

The SEFA method includes four main steps: (1) local interpretability extraction, (2)
semantic feature annotation, (3) semantic representation extraction and (4) seman-
tic representation analysis. To elaborate, we first extract explanations for individual
predictions by highlighting the pixels that the model is most sensitive to. Then, we
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use human annotators to describe these areas by drawing bounding boxes and de-
scribing the corresponding element and its attributes. The elements and attributes
annotated per image are termed semantic features. The next step is to extract a
structured representation where the rows correspond to the annotated images and
the columns to the semantic features. The idea is that by giving semantic structure
to the salient areas in an image, we can create the proposed semantic represen-
tation which can be analysed using traditional structured data methods. We argue
that this representation provides us with the flexibility and expressivity required to
answer any type of complex interpretability query.

5.1.3. Conclusions

Given the limited expressivity and query complexity of existing methods, we de-
signed and developed SEFA to address these issues. In particular, we studied the
extent to which the extraction and analysis of semantic features allows us to in-
terpret image classification models (MRQ). Firstly, we conducted a literature re-
view (Chapter 2) on the existing interpretability methods and the current state
of that domain (RSQ1). Then, we designed (Chapter 3) and implemented a new
interpretability method that extracts the aforementioned semantic features from lo-
cal interpretability methods and allows us to answer global interpretability queries
(RSQ2). Finally, we performed extensive experimentation of SEFA on three classi-
fication tasks and two separate deep learning models (Chapter 4). Our experiments
allowed us to obtain more insight into the hyperparameters under which SEFA per-
forms best (RSQ3) and to reason about the extent to which it can answer more
complex interpretability queries compared to existing methods (RSQ4). The main
contributions of our work can be summarised as follows:

C1: literature review. We performed an in-depth literature review on existing in-
terpretability methods and the state of the field as a whole. The review enabled us
to define interpretability within the score of our work and to understand the needs
that such methods address. Furthermore, we obtained a better understanding of
the existing methods, their limitations and their experimental setups. In particular,
it enabled us to reason about the characteristics that an interpretability method
should adhere to and highlighted the limitation of existing methods to answer com-
plex queries. Moreover, we selected SmoothGrad [52] as the method to extract the
salient pixels per image based on analysis of existing local interpretability methods.
Finally, we understood that one of the main challenges of the field is method eval-
uation. To elaborate, since we are unaware of the image areas that the models we
are interpreting are sensitive to, there is no concrete ground truth to reason about
the reliability and robustness of the method. That said, we were able to come up
with some bias injection experiments inspired by existing literature work.

C2: SEFA design. We designed a new global interpretability method, called SEFA.
This process included choosing the local method used to extract the heatmaps for
the human annotations and their visualisation during the annotation process. Fur-
thermore, we designed a user interface which can be used with minor modifications
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for any dataset and allows human annotators to extract semantic features. Follow-
ing that, we designed the process of extracting the structured representation and
its four different representation options, each one aimed at answering a different
type of interpretability query. Finally, we selected three existing structured data
methods that can be used to answer global interpretability queries.

C3: SEFA implementation. We implemented the proposed method to allow for
its experimentation. We also make the method publicly available on GitHub®! for
re-use by fellow researchers in future work.

C4: SEFA experimentation. We performed extensive experimentation of SEFA
on three classification tasks and two model architectures, both using the original
datasets and artificially biased ones. During our experimentation, we pre-processed
an existing dataset to create a new gender classification dataset, term as PA-49K
Gender, which can be found on 4TU*. The conducted experiments provided us
with the suggested hyperparameter settings under which SEFA performs optimally.
We argue that apart from the required number of annotations, these findings can
generalise to any image classification dataset. As for the annotation size, it is suffi-
cient for classification tasks with two or three classes while further experimentation
is needed for multi-class datasets with a significantly higher number of classes. Fur-
thermore, we showed that our method can answer all of the interpretability queries
that current methods cover and more, such as the combinations between different
semantic features. The main benefit of our method is its flexibility to define any
type of query a user wants, no matter how complex it is. All its users need to do
is annotate a set of random dataset images. For the three classifications tasks in
our study, 300 annotations were enough to obtain reliable results. Given that the
annotation of these images required three to five hours depending on the dataset,
we argue that it is a reasonable time investment for a model user to understand its
behaviour. To put it into context, the evaluation of a single query for a single class
using TCAV [32] requires roughly two hours of runtime on commodity hardware
without factoring in the time required to gather the image concepts.

5.1.4. Method-Study Limitations

The absence of an interpretability ground truth greatly limits our ability to reason
about SEFA's reliability and to directly compare its output to existing methods. The
fact that we are not aware of the image areas that the model utilises, in reality, is an
inherent issue with all existing deep learning interpretability methods that limits our
understanding of them. For instance, in our study, we noticed that in some images
only a part of the person’s hair is highlighted for the PA-49K Gender dataset. While
the annotators described these parts with semantic features such as “long-hair” and
“short-hair”, we do not know if the model is sensitive to the hair length in reality or
if the human annotators introduced their own bias in the study.
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Another important point is that SEFA is significantly affected by the local inter-
pretability output, meaning that human annotators can only describe areas high-
lighted in the heatmap output. This fact can lead the method to fail in cases with
fine-grained differences. For instance, if we want to compare the behaviour of
two models that are sensitive to almost the same image parts, their fine-grained
differences might not get output by SEFA if they are not noticed by the annotators.

Finally, we did not evaluate our method on datasets with a high number of
classes, i.e. tens or hundreds, meaning that we cannot reason about the number
of annotations required in those cases. In particular, we expect SEFA to require
significantly more annotations as the appearances of the same semantic features
are spread across more classes. In this case, the option of scaling out the human
computation step with crowd workers might be required to speed up the process.

5.2. Future Work

In this section, we propose directions for future work based on the findings and
limitations of our study.

5.2.1. Interpretability Benchmark

One of the most interesting directions for future work is the creation of a common
benchmark for interpretability methods. While we understand that it is by no means
a trivial task and that a universal benchmark approach applicable to every method
would be almost impossible, we argue that more work is needed to agree on a
common evaluation framework for methods with similar outputs. The presence
of a benchmark would allow us to further evaluate new methods, such as SEFA,
and to directly compare existing methods with one another. It would also help
us understand the usability of existing methods in practice and to come up with
possible additional requirements that they should adhere to.

To the best of our knowledge, the only relevant study (under review) is the
preliminary work of Yang and Kim [60] who propose an evaluation framework for
interpretability methods. However, without significant modifications in the bias in-
jection process and the metrics of the framework, it only allows to evaluate queries
referring to single concepts and not the more complex ones evaluated in our study,
such as combinations of concepts. Therefore, the aforementioned framework did
not match our requirements.

5.2.2. Human Annotation

One key step in our methodology is the annotation of semantic features. While
the use of a domain expert yielded promising outputs, such a process can be time-
consuming and costly. We argue that a promising line of work would be to attempt
to scale this step out using crowd workers. That said, we expect several challenges
regarding the quality and aggregation of their annotations. A potential first step
could be to evaluate the option of having pre-filled options of semantic features on
a dataset basis instead of the open text fields in this study.
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5.2.3. Query Types

While our work is able to answer a wider variety of interpretability queries, such
as conjunctive queries on semantic concepts (SEFA “combinations”), we argue that
there is scope for future work. To be more exact, the structured representation
introduced provides great flexibility to create any type of query based on the user
needs. An example of such a case is the "OR" operator that could answer whether
the presence of at least one of the semantic features in a query is associated with a
specific class. Moreover, SEFA can answer significantly different types of questions,
such as answering queries regarding bias edge cases, with minor modifications. In
that case, one could evaluate the rule mining output using a different metric or
analyse the decision tree graph.

5.2.4. Meta-Analysis Methods

SEFA comes with three meta-analysis methods, but can easily be extended with
extra ones that can potentially allow us to reason about the model behaviour more
reliably. Therefore, we provide a few interesting alternatives that arose during
our study. While the work of Yang et al. [59] has been mainly discussed as a
global interpretabilty method so far, they provide an “interpretation tree” which
could be used instead of the decision tree to overcome its limitations. To elaborate,
their tree also provides information about the “classification accuracy” on each tree
node, thus making it more intuitive to interpret. As a result, one can use their tree
method with our more expressive structured representation to reason about global
interpretability. Another interesting direction is the use of data mining [25] or causal
reasoning [30] [63] methods to reason about the presence of discrimination bias.
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Local Interpretability
Evaluation

We compared SmoothGrad [51] (gradient-based) with LRP [7] (signal-based) and
LIME [43] (local approximation) on three separate uses cases to evaluate their
applicability for our study. To elaborate, we wanted to evaluate which of these
methods is better able to highlight the features that the model is sensitive to. Given
that there is no interpretability ground truth when explaining deep learning models,
we decide to perform three bias injection experiments on the PA-49K Gender **
dataset and to fine-tune an Inception-V3 [55] architecture on these biased datasets.
The idea is that the bias injected creates an artificial ground truth that we can use
to check whether the methods are able to capture it reliably. The test accuracy of
the models fine-tuned exceeded 99.84% in all three datasets, indicating that they
fit the bias injected. The three types of bias injected in the female class of the
PA-49 Gender are the following:

1. Square box: we injected a square box of concrete color at the bottom right
of each female image. This case was chosen as a very obvious bias case,
expecting all three methods to be able to highlight it to some extent.

2. Horizontal line: we injected a horizontal line of concrete color at the top of
each female image. The idea was that such as bias is more subtle than the
box, thus potentially more challenging to be highlighted by each method.

3. greyscale colors: we converted all of the female images to greyscale while
maintaining the male ones as coloured. This image wide bias was injected to
check whether the method outputs will shift their focus to black, white and
grey colored pixels to differentiate between the two classes.

We provide an indicative output of SmoothGrad, LRP and LIME for each of the
aforementioned bias cases in Figures A.1, A.2 and A.3 respectively.
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A. Local Interpretability Evaluation

Original Image Smoothgrad

Figure A.1: SmoothGrad vs LRP vs LIME - Square box injected bottom right of female images.

Original Image Smoothgrad

Figure A.2: SmoothGrad vs LRP vs LIME - Horizontal line injected at the top of female images.
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Original Image Smoothgrad

Figure A.3: SmoothGrad vs LRP vs LIME - greyscale female images.

According to the previous experiments, all three methods are able to capture the
box and line biases introduced in the female images to some extent. Moreover, they
highlight black, grey and white pixels in the greyscale bias case, indicating that they
output the salient pixels for the model. However, the output of LRP suffers from
noise making it challenging to understand the exact semantic feature highlighted.
Moreover, it outputs pixels that have both a positive and negative influence on the
classification, thus increasing the complexity of the annotation task. As for LIME,
it segments relevant image areas but does not provide any visualisation of the
importance of each pixel in these segments. As a result, all of the pixels visualized
seem equally important for the annotator. We also found LIME to be particularly
sensitive to its hyperparameter settings since the output changes quite dramatically
when they are modified.

On the other hand, SmoothGrad is able to provide less noisy outputs than LRP
and can output separate pixel intensities for each image area when compared with
LIME. Furthermore, we found it has significantly fewer changes in its output when
its hyperparameters are modified. Based on the aforementioned findings, we argue
that SmoothGrad is more suited to the images used in this study. That said, we
cannot claim which method should be used universally since it depends on the
images, the model and hyperparameters selected.

3https://doi.org/10.4121/uuid:38dab37¢c-1179-495e-b357-0568b9%aaa’a
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SmoothGrad
Hyperparameters

We experimented with separate SmoothGrad [51] noise levels and number of sam-
ples for the three classification tasks in our study, namely PA-49K Gender, ImageNet
Vehicle and ImageNet Fish. To be more exact, we experimented with the following
hyperparameters:

* Noise level: 5%, 10%, 20%, 30%, 40%, 50%. The sample size used during
these experiments was 25 since it is the default value proposed by the public
implementation’ of the SmoothGrad authors.

o Sample size: 2, 5, 10, 25, 50, 100. The noise level selected was the one
that yielded the optimal output from the previous experiments.

For each of the aforementioned hyperparameter setups, we visualized the output
for six random images from the dataset and evaluated them qualitatively to choose
the optimal values. The results for all three classification tasks show that 5% noise
and ten samples are sufficient to extract the heatmaps for human annotations.
Furthermore, our experiments seem to suggest that the hyperparameters selected
can introduce their own artefacts in the explanations. However, the absence of
an interpretability ground truth does not allow us to reason about which setup
provides the most reliable and faithful interpretations. The results of each setup
per classification task are presented below.
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94 B. SmoothGrad Hyperparameters

B.1. PA-49K Gender

The noise level and sample size experiments for the PA-49K Gender dataset can be
found in Figures B.1 and B.2 respectively.

Noise level: Vanilla Gradients - 0% 30%
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Figure B.1: SmoothGrad noise levels comparison - sample size 25.
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Figure B.2: SmoothGrad number of samples comparison - noise level 5%.

Figure B.1 indicates that 5% noise is already clear enough for every image apart
from the first one which interestingly seems to become less noisy the more noise
you add. When using a noise level of 5%, we observe insignificant differences in
the explanations output from ten samples onward in Figure B.2.
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B.2. ImageNet Vehicle

The noise level and sample size experiments for the ImageNet Vehicle classification
task can be found in Figures B.3 and B.4 respectively.

Noise level: Vanilla Gradients - 0%

Sample size:
|7

Figure B.4: SmoothGrad number of samples comparison - noise level 5%.

Similarly to PA-49K Gender, the resulting explanations in Figures B.3 and B.4 indi-
cate that a noise level of 5% and ten samples are enough to provide saliency maps
with significantly less noise compared to “vanilla” gradient computations.
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B.3. [magelNet Fish

The noise level and sample size experiments for the ImageNet Fish classification
task can be found in Figures B.5 and B.6 respectively.
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Figure B.5: SmoothGrad noise levels comparison - sample size 25.
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Figure B.6: SmoothGrad number of samples comparison - noise level 5%.

The resulting explanations in Figures B.5 and B.6 suggest that a noise level of 5%
and ten samples are enough to produce less noisy outputs than “vanilla” gradients
for the ImageNet Fish classification task.



Representation Options - Full
Results

The full SEFA output for the four biased PA-49K Gender datasets presented in the
representation options experiments (Chapter 4.2.1) can be found below.

Date vs Datetime Date Colour Date, Datetime & City Coloured Date vs Datetime
Semantic Feature Cramér's V Semantic Feature Cramér's V Semantic Feature Cramér's V Semantic Feature Cramér’s V
hour 0.93 yellow-year 0.96 city AND NOT hour 0.46 yellow-hour 0.6
minute 0.93 yellow 0.94 ity AND hour 0.45 yellow-minute 0.6
white-hour 0.93 white 0.83 city_name-city AND white-hour 0.45 yellow-hour AND yellow-minute 0.6
white-minute 0.92 yellow-day 0.82 city AND day 0.45 ‘white-minute 0.53
hour AND minute 0.9 yellow-month 0.81 white-city AND white-day 0.45 white-hour 0.52
‘white-hour AND white-minute 0.89 yellow-year AND yellow-day 0.81 Gity_name-city AND white-day 0.45 ‘white-minute AND white-hour 0.51
‘minute AND shirt 0.7 yellow-year AND yellow-month 0.8 city AND day 0.45 white-day AND white-minute 0.47
hour AND shirt 0.69 ite-) 0.72 white-city AND white-day 0.45 white-day AND white-hour 0.46
‘minute AND day 0.63 yellow-month AND yellow-day 0.72 Gity_name-city AND white-day 0.45 yellow-minute AND yellow-day 0.43
hour AND day 0.63 shirt 0.62 white-city AND white-hour 0.44 yellow-hour AND yellow-day 0.42
‘white-hour AND white-day 0.63 year AND day 0.52 our AND NOT city 0.42 yellow-year 0.37
white-minute AND white-day 0.62 white-month 0.48 minute AND NOT city 0.42 yellow-day AND yellow-year 0.37
ite 0.61 day AND month 0.46 city AND minute 0.4 yellow-year AND yellow-month 0.34
grey-shirt AND white-minute 0.57 white-year AND white-month 0.46 ‘white-city AND white-minute 0.4 hour AND shirt 0.31
grey-shirt AND white-hour 0.57 ‘white AND black 0.45 city_name-city AND white-minute 0.4 year 0.3
minute AND background 0.57 day 0.45 city AND NOT minute 0.39 white-month AND white-minute 0.3
white-minute AND grey-background 0.55 white-day 0.45 city AND NOT day 0.38 minute AND shirt 0.29
hour AND background 0.55 year AND shirt 0.43 day AND NOT year 0.33 yellow-month 0.29
‘white-hour AND grey-background 0.53 month 0.41 day AND NOT shirt 0.32 yellow-day AND yellow-month 0.29
‘white AND grey 0.44 'year AND month 0.41 minute AND month 0.26 'year AND shirt 0.29
hour AND hair 0.42 white AND grey 0.39 white-minute AND white-month 0.26 white-month AND white-hour 0.29
‘minute AND hair 0.42 white-year AND white-day 0.37 year AND NOT hour 0.25 yellow AND black 0.28
‘white-hour AND short-hair 0.4 yellow AND grey 0.37 year AND NOT minute 0.25 day AND year 0.27
white-minute AND short-hair 0.4 0.36 shirt AND NOT minute 0.25 yellow-day AND black-shirt 0.25
white AND short 0.34 white-day AND white-month 0.33 shirt AND NOT month 0.24 month AND year 0.24
white-hour AND grey-hair 0.29 black-shirt 0.31 day AND NOT coat 0.24 lack 0.24
white-minute AND grey-hair 0.29 black 0.3 year AND NOT background 0.23 yellow-hour AND white-shirt 0.22
short 0.28 long 0.3 shirt AND NOT hour 0.23 yellow-minute AND white-shirt 0.22
short-hair 0.28 long-hair 0.3 shirt AND NOT background 0.23 yellow-year AND black-shirt 0.22
white AND black 0.28 white AND long 0.3 month AND NOT year 0.23 black-shirt 0.21
white-hour AND black-hair 0.28 long AND black 0.28 day AND NOT city 0.22
‘white-minute AND black-hair 0.28 white-shirt 0.27 day AND NOT bag 0.21
grey AND short 0.27 shirt AND hair 0.27 day AND NOT arm 0.21
day AND shirt 0.27 long-hair AND black-hair 0.27 year AND NOT city 0.21
white-hour AND black-shirt 0.27 month AND shirt 0.25 0.21
white-minute AND black-shirt 0.27 day AND shirt 0.25 shirt AND NOT hair 0.21
white-day AND grey-shirt 0.26 shirt AND background 0.25 shirt AND NOT face 0.21
day AND background 0.25 white-year AND black-hair 0.25 shirt AND NOT nothing 0.21
lay 0.24 white-year AND white-shirt 0.24 shirt AND NOT jacket 0.21
white-day 0.24 white-year AND long-hair 0.24 shirt AND NOT dress 0.21
long 0.24 yellow AND black 0.24 shirt AND NOT arm 0.21
long-hair 0.24 white-year AND black-shirt 0.23 shirt AND NOT costume 0.21
grey AND long 0.24 hair 0.22 shirt AND NOT neck 0.21
short-hair AND white-day 0.24 yellow-year AND grey-background 0.22
‘white-day AND grey-background 0.23 yellow-year AND grey-pavement 0.22
face AND hour 0.23 yellow-month AND grey-background 0.21
face AND minute 0.23 yellow-month AND grey-pavement 0.21
hour AND coat 0.22
beige-face AND white-hour 0.22
beige-face AND white-minute 0.22

Table C.1: Full SEFA output for the four PA-49K Gender biased datasets created.
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ACE Output - Top Five

In this section, we provide the annotated semantic features for the ACE experiments
conducted in Chapter 4.2.2.

D.1. PA-49K Gender

The annotations provided for the male and female classes are visualized in Figures
D.1 and D.2 respectively.
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Figure D.1: PA-49K Gender - Male ACE top five.
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Figure D.2: PA-49K Gender - Female ACE top five.
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D.2. ImageNet Vehicle

The semantic features annotated for the moving van can be found in Figure D.3.
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Figure D.3: ImageNet Vehicle - Moving van ACE top five.

The corresponding output for the ambulance class has already been visualized in
the experiments section and can be found in Table 4.13.



D.3. ImageNet Fish 101

D.3. ImageNet Fish

The semantic features provided for the three ImageNet Fish classes are visualized
in Figures D.4, D.5 and D.6.
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Figure D.5: ImageNet Fish - Great white shark ACE top five.



D. ACE Output - Top Five
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Figure D.6: ImageNet Fish - Tench ACE top five.
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