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Abstract
Fluid flows such as rowing and animal flight involve both acceleration and vortex shedding. Some
of such flows also involve complex fluids, as in blood flow from left atrium into the left ventricle in
a human heart. Among the complexities of such fluids, we are interested in the viscoelastic nature.
The effect of acceleration in vortex dynamics and forces has been studied for a long time. However,
there have been discrepancies in the origin of the unsteady forces and modelling them. It is still not
very well understood how unsteady forces scale in laminar, highly separated flows? On the other
hand, the presence of viscoelasticity alters the vortex dynamics and hence the forces. It has been
well studied how the viscoelasticity may affect steady state forces. However, the change in vortex
dynamics and forces due to presence of viscoelasticity during acceleration is not well understood. This
experimental study aims to add to the literature on unsteady force modelling, effect of viscoelasticity in
unsteady forces and vortex dynamics. To begin with, shear and extensional rheological experiments
were performed to identify a weakly elastic fluid. An experimental setup was built with a linear traverse,
PIV system and force sensor. The experiments were performed with an accelerating flat plate (aspect
ratio of two), in the identified viscoelastic fluid and also in a viscosity matched Newtonian fluid for
one-one comparison. To understand the vortex dynamics, we use FTLE fields, Lamb-Oseen model,
and Q-criteria. We quantify the vortex formation time and other properties of a vortex ring. Overall,
we observe that both the vortex growth rate and the decay rate are enhanced by the presence of
viscoelasticity. We extend the idea of optimal vortex formation to two time-scales instead of one. One,
when the plate no longer provides energy and the other, when the vortex is filament free without any
more addition of coherent fluid parcels. Furthermore, a limit for optimal vortex formation is proposed to
indicate a completely different type of vortex dynamics at lower accelerations. The drag reduction and
enhancement due to the presence of viscoelasticity qualitatively agrees well with the trend in literature.
In terms of unsteady forces, we try to interpret an equivalent mass for potential flow’s added mass in
separated Newtonian flows. We propose a model using wake’s mass, and it reasonably agrees with
our experimental results in Newtonian cases. We use FTLE ridges and vortex-frame streamlines to
estimate wake mass, along with a literature driven model for third dimension. We also propose that the
added mass in separated flows is time varying and eventually reaches a constant value. Furthermore,
the effect of viscoelasticity is primarily observed in unsteady forces for acceleration less than optimal
vortex formation limit.
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1
Introduction

Vortex shedding is a classic phenomenon in fluid dynamics that we come across every day, in the
form of a cyclone, wake of flying and swimming animals, etc. To put it simply, the region in a flow
where fluid revolves around an axis can be termed as a vortex. When fluid flows past a bluff geometry
that opposes flow streamlines, vortices form, grow and eventually lead to vortex shedding. This phe-
nomenon has wide impacts in the living world such as Jellyfish propulsion, swimming, drag acting over
a car and cyclist, etc. Hence, a large amount of research was done in the last century to understand
the dynamics of the flow separation at the geometry, wake (disturbed flow region downstream of the
geometry) and the associated forces. One of the most notable people in fluid dynamics, Theodore
Von Kármán, studied vortex shedding due to flow past a cylinder and observed a repeating pattern of
swirling vortices, which are now termed as Von Kármán vortex street. An example of such a naturally
occurring Von Kármán vortex street is shown in Figure 1.1.

Figure 1.1: Kármán vortex street around Heard Island. This figure is taken from [1]

Early steps to understand these dynamics started with fundamental studies in canonical geometries.
If a geometry opposes flow streamlines, it is called a bluff body, whereas a geometry that is aligned
with streamlines is called a streamlined body. In bluff bodies, cylinder and flat plate (oriented 90°to
flow) are widely used as the canonical geometry. The flat plate has been investigated mostly involving
unsteady kinematics for their significance in drag based propulsion of various systems like rowing[2],
insect flight, and micro air vehicles[3]. It is important to note that flat plates, oriented 90°to flow have a
fixed point of flow separation, unlike curved geometries such as cylinder. The fixed separation point is
due to the inability of highly inertial fluid (Re ⪆ 50) to change the flow direction instantaneously at sharp
edges; whereas the Reynolds number (Re) is defined as the ratio of inertial forces to viscous forces.
Therefore, flat plate can be preferred over cylinder as it is easier to study a sharp-edged separation
compared to a curved section with moving separation point. Vortex shedding behind such bodies is
not only seen in simple fluids like water and air, but also other complex fluids like blood, polymers etc.

1
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Figure 1.2: Rod climbing effect: Newtonian water (left) behaves differently than Non-Newtonian polyethylene oxide in water
(right), when a rotating rod is inserted. Newtonian fluid experience being thrown outward, whereas positive normal stresses are

induced in the Non-Newtonian fluid, drawing fluid towards and up the rod. This figure is taken from[5]

1.1. Viscoelastic fluids
Fluids like water, and air consist of small molecules with simple structures. These fluids have a con-
stant viscosity for any applied shear stress, following Newton’s law of viscosity, and so they are termed
as Newtonian fluids. However, many fluids in nature do not show such a simple behaviour due to
the presence of large internal structures, which are often caused by large molecules. These type
of fluids are called Non-Newtonian fluids. Some examples include, paint, mucus, polymer solutions
and wheat dough, etc[4]. Many types of Non-Newtonian fluids exist, often as a combination of vis-
coelasticity (decaying elastic memory), time dependent viscosity and stress dependent viscosity. In
the Non-Newtonian fluids involving viscoelasticity, many notable studies have been done in both poly-
mer fluids and biofluids. Unlike Newtonian fluids, viscoelastic fluids exhibit peculiar effects such as
Rod climbing/Weissenberg effect (refer Figure1.2) due to the presence of normal stress differences
caused by viscoelasticity. The normal stress differences are caused as an effect of polymer relaxation
in viscoelastic fluids. When such normal stress differences exist, it will be interesting to see how vortex
shedding is affected, compared to a Newtonian fluid. Let’s first discuss the relevance of viscoelastic
vortices to real world applications to motivate the study.

1.2. Motivation
Microscale collective flows
Viscoelastic flows are studied in both micro and macro scale. Inspired from nature, various robotic
microswimmers have been developed for biomedical applications such as microsurgery, drug delivery,
etc[6]. To further understand and advance such microswimmers, many studies focused on microbe-
biofluid interactions, which are often viscoelastic. In collective behaviour of pusher swimmers, vortex
structures are found to be suppressed, whereas swimmer aggregation is enhanced in the presence of
viscoelasticity [7]. These microswimmers however, operate mostly in inertia-less viscoelastic regimes.

Red mud transport
Viscoelastic polymer solutions also have wide applications in macro flows, one such example is using
viscoelasticity for red mud transport in pipes without clogging[8]. In such cases of viscoelastic transport,
it is critical to understand the vortex dynamics, as the viscoelastic effects may affect the local separa-
tion regions at pipe junctions or bends. Often, red mud waste produced during alumina production
were stored in large dams because of difficulty in transport and sometimes resulted in deadly accidents
like ’Hungarian red mud disaster’ causing casualties, long term economical and ecological damage[9].
Although, viscoelastic transport provide a safer solution to avoid such disasters, it is important to un-
derstand the change in local vortex dynamics that it may bring along.

Flocculation
Polymer additives are also used in waste water treatment as flocculants to bind the suspensions to-
gether [10] and flocculation is enhanced by mixing the solution with the help of impeller shed vortices
[11]. Thus, a viscoelastic solution during flocculation involves vortex dynamics and may even affect the
impeller forces required.
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Figure 1.3: Turbulent jet mixing in water (Newtonian-left) and dilute Polyox solution (Viscoelastic-right) shows that
viscoelasticity suppresses mixing. This figure is taken from[13]

Turbulent drag reduction & Mixing inhibition
When high molecular weight polymers are added to a Newtonian fluid, the drag acting in turbulent pipe
flow is reduced, thus saving pumping energy[12]. As turbulent flows are made up of vortices that form
and evolve continuously, understanding vortex dynamics is critical to interpret the mechanisms of drag
reduction. On the other hand, it has a negative effect on mixing as the typical turbulent structures are
suppressed as shown in Figure 1.3 [13], which would mean more energy is required for mixing these
solutions.

Blood flows
The viscoelastic effects on vortex dynamics can also provide insights on blood flows in heart and arteri-
ovenous fistula, since blood is also viscoelastic. Blood’s viscoelastic behaviour is a due to the presence
of large protein molecules and deformation of red blood cells [14, 15]. Interestingly, it has been reported
that vortex rings formed in a healthy heart follows the optimal vortex formation as in starting propulsive
vortex rings in Newtonian fluids, which will be discussed in later chapters [16] (see Figure 1.4).

Viscoelastic effect on unsteady vortex dynamics and forces
All the aforementioned applications, do not always occur in steady flow regimes, which has been well
investigated for both viscoelastic and Newtonian cases. They also act in accelerating flows such as
startup of the system, pulsating flows and propulsion. Despite their widespread applications discussed
so far, a clear understanding of viscoelastic vortex dynamics and force changes in accelerating flows
is still scarce to the best of our knowledge. Hence, this study aims to understand the vortex dynamics
due to an accelerating flat plate in a constant viscosity viscoelastic fluid (see section.2.9) compared
to a Newtonian fluid and their implications in forces. In this study, a flat plate oriented normal to its
direction of motion shall be used to understand the effect of viscoelasticity and acceleration in vortex
dynamics and corresponding forces.

Figure 1.4: Vorticity contours: Optimally formed vortex ring during diastole in heart. This figure is taken from[16]



2
Background & Literature review

In order to study viscoelastic effects on vortices and forces, the theory and state of current literature will
be discussed in this chapter. The discussion will include vortex dynamics, relevant forces, viscoelastic
theory and viscoelastic effects on vortex dynamics and forces.

2.1. Vortex dynamics
Let’s first define some important terminologies to understand and study vortex dynamics.

2.1.1. What is a vortex?

Figure 2.1: Fluid parcels aligned as a line vortex(a), line vortices arranged as a vortex sheet (b), Vortex sheet rolled up as a
vortex tube(c). These figures are self-made inspired from [17]

The most important term to begin with is vorticity, which is conventionally defined as the curl of
velocity, ωωω = ∇× u and a concentration of codirectional vorticity can be called as a vortex. In reality, a
region of non-zero vorticity can be interpreted as a set of fluid parcels experiencing an angular/rotational
motion, since angular velocity of a fluid parcel is the half of its vorticity. In other words, a local region
without any vorticity is called irrotational and otherwise is rotational. Based on this definition, ideal
vortices can be classified as rotational and irrotational vortices. In rotational vortex, fluid parcel rotate
about themselves and revolve around an axis, in crude words, similar to earth around the sun. On the
other hand, in an irrotational vortex (not physically realizable) fluid parcels do not rotate about their own
axis but only around a fixed centre with decreasing velocity along the radial direction. The dynamics of

4
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Figure 2.2: Vortex ring formed due to finite size and wing symmetry in a pigeon(a), U-shaped ring formed due to surface
discontinuity in a water strider(b).This figure is taken from[19]

vorticity can be expressed by applying curl to the Navier-Stokes equation (Equation 2.36),

Dωωω

Dt
= (ωωω ⋅ ∇)u+ ν∇2(ωωω) (2.1)

The left-hand side characterizes the motion of the vorticity due to advection and local time variations,
whereas ν∇2(ωωω) refers to the diffusion of the vorticity and (ωωω ⋅ ∇)u refers to the tilting and stretching
of vorticity which occurs only in three dimensions. The lines drawn tangent to the vorticity vector can
be called as vortex lines, and a large set of them parallel to each other is a vortex sheet. When
vortex sheets roll up forming a cylindrical material volume, it can be called as a vortex tube [17, 18] as
visualized in Figure2.1.The vortex tubes have a constant strength across any cross-section, similar to
volume flow rate in a tube and this strength is called as circulation Γ, defined as the flux of vorticity

Γ = ∮
δS
u.dl =∬

S
ωωω.n̂dA (2.2)

As a consequence of constant circulation, the vortex tube can be a closed loop or infinitely long or end
at solid boundary or discontinuity. Such examples can be found in nature, as in Figure 2.2[19]. A closed
vortex line is often formed because of the flow symmetry, and the resulting closed tube can be called a
vortex ring[18].

2.1.2. Laws of vortex motion
In 1858, Helmholtz published Helmholtz-vortex theorems on vortexmotion in an ideal inviscid barotropic
flow with conservative body forces, described as follows[17, 18]:

• Vortex lines/tubes move with the fluid. They can only be a closed loop, infinitely long or end at
boundaries.

• Circulation is constant along the length of a vortex tube and in time
• Fluid parcels originally free of vorticity, remain so

The aforementioned laws can also be approached using kelvin’s circulation theorem, defined as ”In an
inviscid, barotropic flow with conservative body forces, the circulation around a closed curve moving
with the fluid remains constant with time” for a closed contour[17].

DΓ

Dt
= 0 (2.3)
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This can be extended to a viscous fluid by substituting equation 2.2 for Γ, and the right-hand side of
the Navier-Stokes equation by assuming the fluid to be barotropic and incompressible, we get[20]

DΓ

Dt
= ν ∮

δS
∇2u.dx = ν ∮

δS
(�����:0
∇(∇ ⋅ u) −∇ ×ωωω).dx = ν∬ ∇2ωωω.n̂dA (2.4)

where ν = η/ρ, is the kinematic viscosity. Thus, in real fluids with viscosity, the vortex core (solid-body
like rotating fluid parcels) will be influenced by viscosity and there exists an irrotational region outside
the core region. Vortices have high energy due to rotating fluid parcels, and so they lose energy by
viscous dissipation in the core. This region of viscous dissipation around a vortex follows[21],

dE

dt
= −ν∭ ωωω2dV (2.5)

where E is the kinetic energy and dV is the control volume around the core.When there is no energy
input, the vortex core expands and gradually becomes a rigid body motion surrounded by irrotational
flow. Such a decaying vortex can be modelled using Lamb-Oseen vortex, which can be derived from
vorticity equation in 2D (without stretching/tilting) with circular symmetry and an initial condition of ωωω =
Γ0 δxδy. The exact solution is[18],

uθ = Γ/2πr (2.6)

Γ = Γ0(1 − e−r
2/4νt) (2.7)

where uθ is the tangential velocity and the radius of the viscous core, Rc =
√
4νt which changes over

time due to viscous diffusion. In unsteady flows, the vortex core radius and circulation can be estimated
by fitting the ideal Lamb-Oseen model, when the vortex core centre is identified[22]. It could be noted
that circulation decay, dissipation of kinetic energy and diffusion of vorticity in above equations are
simply viscous stress effects in different representations. Speaking in terms of kinetic energy using the
mean kinetic energy equation without fluctuations (see Turbulence section of [17]), the viscous stress
can be written as a sum of diffusive energy transport and energy dissipation, in which the aforemen-
tioned dissipation equation only represents the dissipation component. The vortex tubes also induce a
velocity around them due to the circulation it has, and it can be estimated using Biot-Savart’s law[17].

2.1.3. Vortex ring

Figure 2.3: A Circular vortex ring with circulation Γ, radius Rv ,core radius Rc and translational velocity Uvortex. This figure is
self-made

As we discussed so far, a vortex filament (a strip of concentrated vorticity) can form a tube that is
infinitely long, end at boundaries or loop to form a ring. In most real life applications, such as human
heart, animal flight, Dandelion flight, fish swimming, etc[16, 19], the ratio of major to minor axis of
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a geometry is finite. Such geometries very often does not have a nearby boundary to end the tube,
resulting in vortex rings. Even in flow past a normal flat plate at small major to minor axis ratio similar
to the aforementioned applications, vortex rings are formed. A vortex ring is characterized by vortex
ring radius Rv (= Dv/2), vortex core radius Rc (= Dc/2), translational velocity of vortex ring Uvortex,
circulation Γ and Energy Evortex of the vortex ring. An example of such a vortex ring is illustrated in
Figure.2.3

Drag vs Propulsive vortex rings
Fortunately, a lot of analytical and experimental studies were conducted in the past decades on vortex
rings[18, 23]. However, the majority of experimental works are based on the propulsive vortices, where
a piston cylinder setup is used to propel the fluid and the flow gets separated at the sharp edges to form
a vortex ring [23]. Recently, there have been a few studies on drag vortex rings (formed due to flow
past a bluff body) mainly in the context of biomimetics and added mass, but at relatively high Reynolds
numbers[2, 24, 25]. The propulsive vortices reach their maximum energy, separates and outpaces the
shear layer at the same time, so understanding the causality is difficult. By using drag vortices, it has
been found that vortex pinch-off does not necessarily cause the maximum vortex energy and the theo-
retical velocity of these vortex rings based on steady case were found to match the experimental data
very well. Furthermore, the dimensionless energy, translational velocity and circulation were reaching
constant value in their experimental window [24]. A notable distinction between drag and propulsive
vortices is that the induced translational velocity would be pointed towards the source in drag vortices
and away from the source in propulsive vortices.

Parameters of a vortex ring
For a circular steady vortex ring, analytical solutions exist to calculate the corresponding energy and
translational velocity when Γ, Rc and Rv are measured using along a cross-sectional plane of the
vortex ring. It will be interesting to see how far circular steady vortex ring equations for Uvortex can
predict the behaviour of equivalent elliptical steady vortex rings with different major and minor axis and
their applicability to viscoelastic cases. The early equation for translational velocity of thin vortex rings
was given by Lord Kelvin[18]. However, in experiments with propulsive vortices, Fraenkel’s second
order velocity equation has been successfully used at relatively high Reynolds numbers[26].It has been
reported that at relatively low Reynolds numbers, these equations does not hold due to thicker core
and so, a new relation was proposed based on experimental findings[27].

U∗v =
16π

k
(D∗)−3/2 (2.8)

where U∗v is the non-dimensional velocity of the vortex ring defined as 2πUvortexLc/Γv and D∗ is the
non-dimensional vortex ring diameter defined as Dv/Lc, assuming the initial diameter is the same as
the chord length Lc. In the above, Uv is the vortex ring velocity, Γv is the circulation in the vortex core
and Dv is the vortex ring diameter. Now expanding D∗,

D∗ = 1+ 16k′t∗ (2.9)

where t∗ = νt/4L2
c and k = 14.4 , k′ = 7.8 are the empirical constants found using experimental data[27].

We can interpret this as, when there is enough time for viscosity to act, the radius of the vortex ring
increases. Saffman’s[18], velocity equation for axisymmetric viscous vortex rings has also been tested
at relatively high Reynolds numbers. This was done by measuring the average of axial velocity in the
vortex core, assuming the circulation induced translational velocity of a steady vortex ring would be the
same as the average velocity at the core [24]. Saffman’s velocity equation in relation to dimensionless
energy E∗ can be written as[18],

Uvortex/Uplate =
Γ∗

D∗π
(E∗
√
π +

3

4
) (2.10)

where Γ∗ is the dimensionless circulation, E∗ is the dimensionless energy of the vortex ring and D∗ =
Dv/Lc is the non-dimensional vortex ring diameter. These terms will be further discussed separately in
the results and discussion.Now, let’s further discuss how vortex rings are formed, and they are related
to the phenomenon of vortex shedding.
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2.2. Vortex shedding
To describe vortex shedding, first we need to understand the basic difference in geometric types, as
any object can be classified as either a bluff body or streamlined body. A bluff body is defined as an
object with geometry that opposes the flow streamlines and vice versa for streamline bodies[28]. As
we are interested in flow past a bluff body (flat plate oriented perpendicular to flow), let’s discuss how
vortex shedding would occur in such a bluff body.

Process of vortex shedding
The separation of boundary layer is the foremost reason behind vortex shedding. A boundary layer is
a fluid layer closer to the bounding surface where no-slip at the wall imparts velocity gradient, whereas
a shear layer is a region with velocity gradient containing both a separated region and a recirculation
region after separation. When a boundary layer withRe ⪆ 50, approaches a sharp edge, the fluid parcels
separate away from the body due to their high inertial forces, resulting in a shear layer emanating from
the plate’s edge. Consequently, the free end of the shear layer roll up into a solid body like rotational
region called vortex core, surrounded by an irrotational region[29]. The vortex core grows over time
due to more rotating fluid parcels fed by the shear layer till reaching a threshold energy. Then vortex is
shed from the shear layer and this remaining shear layer repeats the aforementioned process, resulting
in the phenomenon of called vortex shedding. Thus, vortex shedding is a periodic flow that emerges
when a fluid flows past a body, and it is characterized by the velocity, shape, size and kinematics of
both the body and flow. The region behind the bluff body that are disturbed compared to mean flow is
called a wake.

Relevance to living world
This periodic shedding of vortices in the near wake, leads to large fluctuating pressure forces and
may cause structural vibrations, acoustic noise, or resonance. We experience these phenomena in
everyday life even with simplest of geometries such electric cables, pipeline suspension bridges, chim-
neys and structural buildings[30]. This not only has negative effects such as failure of aforementioned
components but also useful in natural cases such as animal flight, swimming and atmospheric meso-
cyclones to maintain the ecosystem and geophysical cycles[31]. These structures are often studied
using generalized fundamental geometries. One such example that we are interested in this study is
flow past a flat plate. We are particularly interested in flat plate oriented perpendicular to the flow, as
they provide rich information and are often used as a canonical case to understand flight and swimming
in nature.

What affects vortex shedding?
Apart from kinematics and shape of the body, the vortex shedding also depends on the constitutive
equations. For example, in a Newtonian fluid, only viscous and inertial forces play a vital role, whereas
in a viscoelastic fluid, elastic forces are also included. First, let’s discuss Newtonian vortex shedding in
order to compare and understand the viscoelastic effects. Since, viscous and inertial forces dominate
the flow, it can be characterized by Reynolds number Re,

Re =
Inertial stress
Viscous stress

=
ρu2

ηu/Lc
=
ρuLc

η
(2.11)

where Lc is the characteristic geometric length scale which is often the diameter in case of cylinders
and plate width in case of flat plates. In case of Newtonian fluids, bluff bodies with separation has
enormous pressure/form drag, which due to the integrated surface pressure distribution acting over
the body. In attached flows, friction drag is more important, which is due to the friction between surface
and fluid. In this study, our focus is limited to bluff bodies. The important regions in such a bluff body
flow are the boundary layer, wake and separated shear layer[28, 32]. A typical shedding of a starting
vortex can be distinguished into different phases as following[33] (see Figure. 2.4),

• Boundary layer separation
• Shear layer formation
• Vortex roll up
• Pinch-off
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Figure 2.4: Stages of vortex formation: Boundary layer separation leading to a shear layer, shear layer roll up forming a vortex
core and wake, finally vortex pinches off fro shear layer. This figure is self-made

2.2.1. Boundary layer separation
The concept of boundary layer was introduced by Prandtl in 1904[34].When a viscous fluid flows past a
body, it shears and slows down in areas in proximity to the solid-fluid interface (due to no slip) forming
a moving boundary layer. Within the boundary layer, the positive (adverse) pressure gradient causes
a decrease in momentum in the flow direction till the flow reverses towards a favourable gradient,
thus affecting fluid parcel separation from the interface. This phenomenon is called the boundary layer
separation.Typically, in blunt bodies and sharp edges, the separation happens due to inability of inertial
fluid parcels to follow a sudden discontinuity in geometric profile. Thus, it is easy to keep track of
separation points along such sharp edges. An example of boundary layer separation is visualized in
the Figure. 2.4. Although there are no analytical solutions to understand a separating boundary layer
perpendicular to the flow, Hiemenz boundary layer could provide some insights on boundary layer
for stagnation region in a flat plate normally oriented to flow, before separation. The boundary layer
thickness of Heimenz flow, for a flat nosed body with velocity gradient of B ≈ 1.57U∞

Lc
, is given by[35],

δ

Lc
=

2.41√
1.57Re

=
1.92√
Re

(2.12)

It is notable that the boundary layer thickness for a stagnation flow is constant as the effects of fluid
acceleration due to geometric profile is balanced by the viscous diffusion[35].

2.2.2. Vortex formation
Once the boundary layer is separated, we have a separated region and recirculating region on either
side of the separation line (see flow separation in Figure.2.4). This would cause concentrated regions
of vorticity along the separation line, resulting in the formation of a vortex sheet in the leeward side of
a body, also called shear layer. By law of vortical induction, every fluid parcel in a vortex sheet with
would induce a motion on other parcels and the sheet itself (self-induction) resulting in evolution of the
sheet. According to Helmholtz, these sheets are inherently unstable, as any irregularity in otherwise
stationary flow should give rise to a progressive spiral unrolling. This results in a self-similar roll up with
respect to the plate’s velocity, where the shape remains the same but grows with time, resulting in a
vortex was explained with theoretical formulations by Pullin based on Kelvin-Helmholtz instability and
Kaden based on wing tip vortex.Furthermore, it has also been established that the centre moves in a
oblique line with a velocity proportional to t2/3, while rolling up[36]. An example of vortex sheet roll up
is show in Figure.2.5.
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Figure 2.5: Dye visualization of vortex formation due to drain hole by rolling up of vortex sheets. This figure is taken from[39]

2.2.3. Optimal vortex formation distance
The aforementioned growth of vortex by roll up has been reported to reach its threshold at a distance
of, 4Lc universally for propulsive vortex rings[23]. This was explained by using Kelvin-Benjamin vari-
ational principle which states that ”a steady-translating axis-touching vortex ring possesses maximum
energy with respect to impulse-preserving iso-vortical perturbations”, in other words, energy is locally
maximized such that impulse is preserved. By using this idea, it has been established that a vortex
cannot accept any more vorticity when the impulse normalized energy of the vortex ring reaches higher
than the piston in case of propulsive vortices, furthermore it was concluded that ring impulse is equal
to total momentum flux at exit for propulsive vortex ring[37]. This principle has also been found to work
on non-axisymmteric vortex rings [38].

2.2.4. Effects of flow separation
The above processes lead to cause a wake in the leeward side of the body. The pressure inside the
wake region is low after separation, forming a net pressure drag on the body, and the shear stress at the
wall gives rise to skin friction drag. This theoretical link between vortex street and drag was established
by Von Kármán in 1912[32]. For a wake due to steady flow over a bluff body, on applying continuity
and momentum surface balance for a chosen control volume, we get the drag experienced by the body
as[40],

FD = ∫
A
ρu(Umean − u)dA (2.13)

The alternate shedding of vortices in the near wake, leads to large fluctuating pressure forces and may
cause structural vibrations, acoustic noise, or resonance. This alternate shedding is characterized by
Strouhal number St,

St =
fsLc

u
(2.14)

where fs is shedding frequency. However, the topology of wake depends on the geometry of a bluff
body. The widely studied bluff body geometries are finite curvature, sharp-edged and combined shapes.
In the case of curved surfaces like circular and elliptical cylinders, flow separation may oscillate and
occur over a segment of the surface, whereas in sharp-edged cases such as flat plates, flow separates
at a defined point[41]. For further understanding, let’s discuss vortex shedding past such canonical
geometries with constant velocity (steady) and uniformly accelerated flows.

2.3. Canonical cases
2.3.1. Steady cylinder
The most well studied bluff geometry in a steady velocity flow is the unconfined infinitely long cylinder.
Although, we are primarily interested in a flat plate, the cylinder provides a complete overview of vortex
shedding regimes owing to their extensive literature. The flow behaviours are characterized based on
Re. For Re < 5, there is no separation of boundary layer, which is called creeping flow. Till about a
Re = 49, the wake is steady and laminar with two symmetrically placed vortices, then at Re = 49 Hopf
bifurcation kicks in causing laminar, periodic vortices extending till Re = 190 and it is called primary von-
karman vortex shedding. From Re = 190 to 260, the 3D wake transition occurs due to primary vortex



2.3. Canonical cases 11

Figure 2.6: Re regimes in steady flow past a cylinder. The vortex street becomes turbulent only for Re > 300. This figure is
taken from [43]

deformation and vortex phase dislocations. At Re = 260, the Reynolds stress reaches maximum and
decreases till Re = 103 with periodic and fine 3D scales. So far, the drag coefficient CD decreases with
Re, whereas St increases with Re. On the contrary, from Re = 103 to 2 × 105, the CD remains nearly
to be a constant around 0.4, whereas the St is maintained around 0.2. In this region, Kelvin-Helmholtz
instability occurs at the separated shear layer, transforming the shear layer turbulent.The drag crisis
happens around Re = 105 to 106. This is due to the mixing of boundary layer with unseparated region
aided by shear layer instabilities causing flow reattachment. It again separates, and eventually the
boundary layer turns turbulent at extremely high Re [32, 42]. These discussed phenomena that occur
at various Re are illustrated in Figure.2.6. In this study, vortex shedding regime at Re < 300 is focussed
to avoid the complexity of turbulence, and they are further discussed for a flat plate in the below section.

2.3.2. Steady flat plate
Another important geometry is the thin flat plate as it is considered as the extreme bluff body with
sharp edges and constant flow separation. It is generally used as a standard geometry for insect/bird
hovering and Micro air vehicles. Although, it was studied first by Prandtl in 1904, the literature is not
as extensive as cylinder. The flat plate with different inclinations has been studied in the past, however
the flow normal to the plate is very rich in information. It has fixed separation points with twin vortices
and the separated near-wake is known to remain symmetrical and steady in the Reynolds number
range Re = 5 − 20. The near wake undergoes hopf bifurcation around Re = 30 − 35, resulting in onset
of unsteady vortex shedding, then the quasi periodic mode destabilizes the wake at Re = 105 − 110 ,
the dominant mode destabilizes at Re = 125 resulting in 3D wake transition at Re = 200[44–46]. On
comparison with cylinder, the instabilities seem to occur even at slightly lesser inertial stresses.

2.3.3. Impulsively started cylinder
As we discussed earlier, the vortex dynamics and flow topology depend on a multitude of factors, kine-
matics being an important one. Various kinematics have been studied in the past, such as oscillation,
constant rate of rotation and translation, accelerating rotation and translation. In this study, we limit
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Figure 2.7: Unsteady translational velocity as a function of time in Impulsively started vs uniform accelerated. This figure is
self-made

ourselves to translation motions of impulsively started and uniformly accelerated cases, as shown in
Figure.2.7. The flow development around an impulsively started cylinder has been studied as one of
the classic problems in both numerical and experimental studies. Typically, impulsively (a =∞) started
circular cylinder can be usually categorized into two phases. In the initial transient phase, the boundary
layer grows as the square root of time, whereas in the second phase the vortices form. Many numerical
studies have been done compared to experimental work[47, 48]. One of the earliest experimental work
on impulsively started cylinder was done by Honji and Taneda in 1969 [49]. In the beginning, the flow
is irrotational, and the boundary layer slows grows in thickness, causing flow separation followed by
symmetrical twin vortices. Two non-dimensional numbers are used to characterize this flow, which Re
and dimensionless viscous diffusion timescale tv, which is defined as

tv =
νt

L2
c

The length between cylinder and core centre for the twin vortices in an impulsively started cylinder has
been reported to be scaled as,

xv
Lc

= k
s

Lc
(2.15)

where xv is the distance from rear to the vortex (see Figure.2.4 for xv in plate) and s is the displacement
of the body. This is found to be applicable till Re < 550, where k are constant values that change with
different regimes of Re. At Re = 550, the secondary vortices are found to appear on the surface of the
cylinder, but not earlier. In another study of an impulsively started cylinder, a classic closed wake occurs
for Re > 4.4 and the recirculation zone grows in length and width. In the meanwhile, the separation
point moves upstream with time and the wake length decreases continuously with increasing Re. This
classic low Re regime is marked in the range 4.4 < Re < 60. The intermediate secondary vortices are
found to occur at Re > 60, unlike the earlier study. It is also noted that a bulge in streamline happens
aroundRe > 60with a pair of secondary vortices, furthermore the wake evolves inRe = 60−500marking
the intermediate range. The presence of streamline bulge and secondary eddies causes a kink in the
exterior boundary of recirculation zone and secondary vortices isolate at Re = 500 [50].

2.3.4. Uniformly accelerated cylinder
The early study by Honji and Tandea [49] also included a case with accelerating cylinder characterized
by Dimensionless viscous diffusion timescale tv and dimensionless acceleration α, which is defined as

α =
aL3

c

ν2
=
Re(t)

tv
=
Re2(t)

2T ∗
(2.16)
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where Re(t) is the instantaneous Re defined using u = at. In this case, the distance between plate to
vortex centre xv is found to be scaled as

xv
Lc

= kt2vα = k
at2

Lc
= k

s

Lc
(2.17)

The significance of these non-dimensional numbers can be realized using vorticity equation (Equation
2.1). The diffusion timescale tv represents the viscous diffusion term in the right-hand side of the
vorticity equation, Re or α represents the rate of change of vorticity on the left-hand side of the equation.
It can be noted that both impulsively started and uniformly accelerated cases scale with s/Lc but with
different constants of k. Therefore, T ∗ = s/Lc can be defined as the non-dimensional time. When
we try to generate impulsive or uniformly accelerated flows at high Re, it may be hampered by the
formation of compression waves or cavitation bubbles in liquids. To account for these effects, an extra
parameter of acceleration is used which includes initial flow history, defining it as

α′ = Lcau
2
t (2.18)

where ut is the terminal velocity after acceleration[51].

Characteristic formation time
As we have discussed earlier, when the circulation or energy of the vortex ring has reached a certain
level, it ends up in the first shed vortex and this time is defined as characteristic vortex formation time.
It is defined using the concept of optimal vortex formation time, based on instantaneous circulation Γ,
strength of shear layer (u − u∞) and characteristic length scale Lc of the shear layer

Tf =
CΓ

(u − u∞)Lc

where C is the constant defined by the physical configuration of the flow. This was initially studied for
vortex ring formation using piston-cylinder apparatus, for which C is 2 and Γ = u2t

2
. Based on this,

Tf is redefined as the T ∗ at which the formation is complete.Interestingly, for both a vortex ring and a
starting cylinder, the pinch off time has been universally found to be Tf = 4. It has been suggested
that it is reasonable to consider that optimal vortex formation may be a general feature in flows with
coherent, three-dimensional vortex shedding[23].In case of a starting cylinder with low acceleration the
wake remains symmetric till Tf = 4 and then it sheds, while for acceleration above a critical value, the
initial symmetry breaks. The circulation Γ of the first shed vortex is found to be equal to the circulation
at Tf = 4[33].

2.3.5. Impulsively started and uniformly accelerated flat plate
In this study, we are interested in the flow behaviour around a flat plate oriented normal to its accelerat-
ing direction. As stated earlier, this canonical flow is a simplification of the accelerating cylinder case as
the boundary layer separation points are fixed, but it has been less extensively studied than the cylinder
case. A flat plate accelerating to its normal direction was studied in 1970 by Taneda and Honji[52]. It
was studied with both an impulsive and accelerating case, similar to cylinder. In either case, the initial
motion is irrotational, then the separation occurs at the edges, and at small times the symmetrical twin
vortices appear, they grow longer and longer with time. Finally, they become asymmetrical and the von
Kármán street forms. For an impulsive case, the distance from plate to centre of twin vortices xv (see
Figure.2.4) scale as[52],

xv
Lc

= 0.89(Retv)
2/3 = 0.89(T ∗)2/3, tv < 0.1 (2.19)

whereas for acceleration case, it is scaled as

xv
Lc

= 0.48(
at2

Lc
)2/3 tv < 0.1 (2.20)

An interesting point to note here is that this power of 2/3 is the same as in vortex roll up studies we dis-
cussed earlier in section 2.2.2. In impulsive cases, once the two counter rotating vortices emanate from
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the plate tip, they induce secondary vorticity behind the plate at early stages as shown in Figure2.8a. In
this figure, the thin vortex at the plate tip is called primary vortex and the larger rolled vortex to the right
of the plate is secondary vortex. The strength of this secondary vorticity increases for higher Re. Here
diffusion increases the width of the shear layer, by weakening the secondary vortices, and ends up in a
stable configuration. On the other hand, for accelerating cases, the primary vortex becomes stronger
with a and forms closer to the tip of the plate. In accelerating cases at sufficiently high Re, the primary,
secondary vortices interact causing Kelvin-Helmholtz instability due to variable shear as shown in Fig-
ure2.8. In both cases, a secondary vortex is formed by a strong primary vortex that interacts with the
plate. [53]. For a finite plate accelerating normal to itself, the flow regimes can be classified into three

(a) Impulsively started case (b) Accelerating case

Figure 2.8: Vortices in unsteady flat plate: In accelerating case, Kelvin-Helmholtz instability can be found due to interaction of
primary (near plate tip) and secondary vortices (behind the plate), unlike in an impulsively started flat plate. These figures are

taken from[53]

different stages[54].

• The Rayleigh layer regime is the initial flow consisting of of uniform viscous boundary layer sur-
rounding the plate and tip without any separation.

• The second regime is the self-similar growth of the vortex core till the plate moves to T ∗ = 0.5−1.
The circulation grows and reaches maximum when the vortex detaches the plate

• Finally at the third regime, plate shape effects are found.

In an accelerating plate, at 1000 > Re > 20, the effect of wall proximity has been reported to be significant
compared to lower Re cases [44]. A study on accelerating starting vortex of normal flat plate has been
reported using hydrogen bubbles[55] and they have reported that the growth rate of core diameter dcore
and the translational speed of the vortex core Uvortex are constant for a range of accelerations at low
Re. A peculiar aspect of the aforementioned study is the definition of non-dimensional acceleration as
Rea =

√
α, a more compact way to represent α in terms of numerical values.

2.3.6. Effect of Aspect ratio
During experiments, a few parameters influence the flow behavior such as aspect ratio AR and end
effects. The aspect ratio, AR can be defined as

AR =
Depth of geometry

Diameter (or Width) of geometry

In this study we will focus on the mid-plane of the geometry with constant finite aspect ratio and so it
is important to understand their influence. In general, 3D finite aspect ratio effects can be minimized
using the geometry extending along fluid-air interface whereas lower end is placed in proximity to bottom
surface. Although slight 3D effects maybe seen in such settings, they don’t seem to vary with AR > 10
[56]. The critical Re for different regimes tend to delay for smaller aspect ratios, likewise AR > 50 is
found to be required for Re < 230 to get results corresponding to a standard quasi-infinite cylinder. For
different regimes, different minimum aspect ratios are found, ranging from 25 to 100 [57]. However, in
terms of practical interest such as animal flight[58], rowing blade[2], have low aspect ratio of 2.75-6.
The unsteady forces at high angle of attack are due to leading trailing edge vortex (TEV), tip vortex.
The major lift forces are due to suction from the leading edge vortex(LEV), whereas free end causes
a tip vortex (TV).Interaction of tip and leading-edge vortices generates a high transient drag of a local
maximum in CD vs Re graph[58].It has been found that the aspect ratios highly influence the pinch off,
forces and vortex evolution. Vortex evolution has been shown to be strongly dependent on not only
the total size of the shear-layer-feeding perimeter, which supplies vorticity to the separated wake, but
also on the geometric area available for vortex growth, as defined by the hydraulic diameter. Pinch-off
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Figure 2.9: Dye-visualized vortex ring behind a flat plate with AR = 2 shows a 3D deformation switching their major and minor
axis at T ∗ = 2.5 due to different induced velocities at varying curvatures.This figure is taken from[25] and, s∗ here is 0.8T ∗

is expected to occur when a pressure maximum forms behind the vortex. In squares/rectangles, the
formed vortex ring has slightly higher radius (0.6Lc) than in smooth cases (0.5Lc). It has also been
shown that for rectangular plates with AR = 2, an elliptical vortex ring is formed and goes through axis-
switching (periodical change of major axis to minor axis and vice versa) for Re ≈ 104. This is because
of different induced velocities along the filaments due to rectangular/elliptical nature, despite having
the same circulation as visualized in Figure.2.9 [25].

2.4. Forces
The flow separation and vortex ring formation discussed so far cause a wake region beside the plate
and circulation along the edges. A wake with velocity defect and circulation induce forces on the object.
The forces acting on the plate can be decomposed into steady and unsteady forces corresponding to
the effects of fluid velocity and acceleration, respectively.

2.4.1. Steady forces
An immersed bluff body is likely to experience forces and moments due to the external flow. The forces
acting on a body can be decomposed into drag force FD, that is aligned to the body’s principal axis and
lift force FL, that is aligned perpendicular (y-direction) to the principal axis and side force on the other
direction. The drag and lift forces are often denoted by non-dimensional coefficients defined as,

CD =
FD/A

1
2
ρU2

mean

(2.21)

CL =
FL/A

1
2
ρU2

mean

(2.22)

where Umean is the free stream mean velocity and A is the reference area. The reference area is often
frontal projected area for bluff bodies, top view area for wings and hydrofoils and wetted area in case of
surface ships etc.[59]. The CL of a body is mainly characterized by circulation produced [40]. However,
CD is of primary interest in bluff bodies, and it is mainly due to pressure drag as a result of wake. Any
wake with velocity defect (Umean − u>0) due to fluid flow past an object is likely to cause drag force on
the object, as described by equation.2.13. It is important to note that, although self-propelled bodies
have wake behind them, the net integral of velocity defect would be zero as it would have both regions
of Umean − u>0 and Umean − u<0[40].
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2.4.2. Added mass
An interesting aspect of unsteady flows, is the increase in force required to accelerate a body at a
(apart from body’s own mass contribution), compared with the force required to translate the body at
a constant velocity. This additional force is represented by the concept of added mass or virtual mass.
It can also be seen as the additional work (acts as force on body) done to impart kinetic energy (E)
needed to cause fluid motion. The rate of change of kinetic energy dE

dt
required to accelerate the fluid

is given by −FU , whereas kinetic energy can be written as

E =
U2

2
ρ∭

u2i
U2

dV

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
ma

(2.23)

Now assuming that the parameter ma is independent of time, the inviscid unsteady force acting on an
object is defined by[40],

Fus =
1

U

dE

dt
=maa (2.24)

wherema is the added mass, U is the object’s velocity, ui is the fluid velocity component in each direc-
tion and a is acceleration.However, the aforementioned assumption of time independent added
mass that works with potential flows may not be applicable for vortex shedding flows[40]. In
potential flow theory, the added mass of a cylinder can be interpreted as the mass of displaced fluid,
however it has been argued this correlation cannot always be extended. For example, in a thin flat
plate with no displaced fluid, the ideal added mass is equal to the volume of a cylinder (called as drift
volume of plate) with plate width as diameter[60],

ma
plate =

π

4
L2
cH (2.25)

where H is the height of the plate. It has been reported that, other than ground/surface effects,
viscosity in the form of boundary layer separation and vortex shedding also might cause changes
in the addedmass. A few experiments with oscillating bodies were found to be supporting this argument,
as values of added mass changed with acceleration[60]. For flat plate, there was no systematic effect
was found with Re on these changes. Although such viscous effects are noted, it was concluded to be
contradictory among the studies[60].

2.4.3. Modelling unsteady forces
In general, the drag force increases with time on acceleration, and after it reaches steady velocity, it
reduces to steady state drag. At high Re,the total drag force can be decomposed into,

Fx(t) = Fs(t) + Fus =
1

2
ρu(t)2CDA+ (ma +mp)a (2.26)

where Fs is steady drag, Fus is the unsteady drag which can further be split into plate mp and hydro-
dynamic added mass ma contributions. For a rectangular normally oriented flat plate with an arbitrary
aspect ratio, the hydrodynamic mass is given by an earlier study[61]

ma
(Y u) = ρ[0.788

l2al
2
b

(l2a + l2b )
1/2

+ 0.0619lalbl
1/2
c [ (2.27)

where la, lb are the dimensions of the flat plate with la > lb and lc being the thickness of the plate.

Additional force due to entrainment rate
However, a recent study [2] indicated that there is a residual force that has not been taken into account
for hydrodynamic mass and found it to be,

dmh

dt
a(t)(t − tsr)

where tsr is the offset accounting for step response and dmh

dt
is the rate of entrainment of fluid in plate

wake. Now rewriting the unsteady total drag equation,

Fx(t) = Fs(t) + Fus(t) =
1

2
ρu2(t)CDA+ (mp +m

(Y u)
h )a(t) +

dmh

dt
a(t)(t − tsr) (2.28)
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Vorticity based modelling
Alternatively, the concept of added mass can be represented using vorticity. In potential flow theory,
where the flow is inviscid, the vortices are infinitely thin attached to the surface. However, in a real
fluid, the flow separates and forms a vortex. Based on this difference, the plate is represented by a
vortex sheet due to u1 and u2 corresponding to the surface slip velocities on both sides of the plate.
The boundary layer vorticity is represented by a vortex sheet of strength γbγbγb, which is the circulation per
unit length dΓ

dx
= u2 − u1.

γbγbγb = γncγncγnc + γcγcγc (2.29)

here γncγncγnc is the added mass or non-circulatory component, γcγcγc is the circulatory. The circulatory compo-
nent can be calculated from vorticity in the bulk flow field and can be subtracted from the experimental
boundary layer component. PIV-acquired and potential theory-derived added-mass attributed vorticity
are found to be in agreement, as they depend only on kinematics and geometry[62]. As viscous effects
result in the transport of vorticity into the wake, it is included in the circulatory component[62]. Although
a vertical flat plate is not inclined, the vortices behave similar to LEV (Leading Edge Vortex) and TEV
(Trailing Edge Vortex). So the total force acting on the body can be separated into circulatory (corre-
sponding to growth and advection of a LEV and TEV pair) and non-circulatory (corresponding to added
mass) similar to the earlier study.

Lamb’s vortex pair modelling
Another lower order model has been proposed in [22] where the flow was treated two-dimensional. It
deconstructs total drag force into added mass and Lamb’s circulatory force of a vortex pair. In this
model, circular force has been represented by two counter rotating vortices separated by a distance dv
and a non-circulatory force from added mass. It has been proposed that added mass is a mechanism
of vorticity production and also circulatory force coefficient is proportional to circulation growth Γ̇[22].
Using Lamb’s momentum of a vortex pair, the total force based on the lower order model is[22],

F = Fc + Fnc = ρ(Γ̇dv +Γḋv) +
ρπL2

c

4
H (2.30)

where dv is the distance between two vortices and ḋv is the relative rate of advection.

Energized mass
In a recent study, a new approach based on Lagrange equations called energized mass was proposed,
which is the total kinetic energy scaled with object velocity [63]. The added mass definition in equa-
tion 2.23 is reportedly called as energized mass me and applying to total force F = D

Dt
meu with time

dependent me,
F =meu̇+ ṁeu (2.31)

This is concluded to be in agreement with the measured force results[63, 64]. Furthermore, this ap-
proach reinforces the findings of other study about the influence of time dependent mass (entrainment)
at high Re.

2.4.4. Effect of forming vortex in added mass
Added mass of vortex ring
An interesting effect of accelerating vortex rings is that have their own added mass, similar to an equiv-
alent solid body [65]. In potential flow around solid bodies, the added mass of an object is calculated
by the product of fluid mass corresponding to the object’s volume and an added mass coefficient, Ci

defining the factor of fluid volume accelerated (drifted) with respect to their own volume. The added
mass coefficient Ci can be written as a matrix of components corresponding to each direction. In this
study we limit to the stream wise direction added mass coefficient Cx as we are interested in the drag
forces. For example, Cx = 1/2 for potential flow past sphere[60]. The standard way of calculating
added mass coefficient based on the geometry is given by the ratio of drift volume (due to Lagrangian
displacement of fluid parcels around, see Figure.2.10) VD to geometric volume VB ,

Cx =
VD
VB

=
ma

ρVB
(2.32)
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Figure 2.10: Drift volume, VD due to Lagrangian displacement of fluid parcels with respect to their initial position caused by
moving geometric volume VB . Self-made figure, but inspired from experimental results of [65]

However, for a growing vortex, the surrounding fluid is entrained (converted from irrotational to rota-
tional) and so this effect was taken into account using

Cx =
VD(t) − VE(t)
VB0 + VE(t)

(2.33)

as entrained volume VE is the change from initial volume, VB(t) − VB0 , with VB0 as the initial volume
of the body. Based on this idea, Cx has been estimated for a propulsive vortex ring with Re = 1400,
Rv/Rc = 1.37 to be 0.72 (applicable even for a growing vortex as both VD & VB are function of time)
[65]. Interestingly, this was found to be precisely equivalent to potential flow added mass coefficient of
an equivalent boundary geometry (ellipsoid in this case) [65]. It has to be noted that this study uses
a constant entrainment rate for a formed vortex ring. As an extension of the aforementioned study, it
has been proposed that the total locomotive force acting on a self propelling animal with a vortex ring
volume Vvortex can be written as[66],

Ftotal = ρ
d

dt
[Vvortexuvortex(1 +Cx)] (2.34)

Vortex boundary estimated using Finite Time Lyapunov Exponents [66] or stream function [65] is used
to extract the geometry of vortex rings and their corresponding added mass based forces. Another
study using Elliptic LCS (discussed later) quantified that the added mass coefficient of a propulsive
circular vortex ring is higher early in formation and reaches a steady value when formed [67] (same
value as reported in [65]). This could be thought of as large entrainment of irrotational region to a core
at the beginning, however for subsequent vortices the shear layer is already present to roll up.

Entrainment ratio
The method of circulatory and non-circulatory force decomposition assumes that the forces are super-
posable and follows a perfect self-similarity. However, it has been reported that the vortex involved
acceleration is inherently non-self similar and cannot be superposed[64]. Using the above arguments
and entrainment contribution, the idea of energized mass that we discussed before was developed,
agreeing well with the experimental force measurements[64]. Another study looked at the entrainment
ratio of a turbulent starting circular plate using 4D PTV, enstrophy and FTLE (discussed later). They
found that entrainment ratio (Entrained mass to enstrophy based mass) was increasing with time in
turbulent cases compared to laminar cases (almost constant). The compilation of entrainment ratio is
shown in Figure 2.11[68]. If we use this conclusion over the definition of added mass coefficient (Equa-
tion 2.33), we can safely assume that the added mass coefficient is constant with time for laminar vortex
rings. Although the entrainment ratio does not change in time, it has been reported that added mass
increases with increase in acceleration for laminar vortex rings where vortices roll-up to form a vortex
ring[69].
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Figure 2.11: Entrainment ratio η for a circular vortex ring taken from * [68]. Here, L/D is stroke length, and s/D is T ∗. For
Re ≤ 40 × 102, η is constant unlike highly turbulent cases of Re > 90 × 102, so we can assume constant Cx for laminar regime

2.5. Non-Newtonian fluids
So far, we discussed the vortex dynamics in a simple Newtonian fluid, that follows Newton’s law of

viscosity. By Newton’s law of viscosity, the strain rate experienced by the fluid is proportional to the
applied shear stress and this proportionality constant is defined as viscosity. However, Non-Newtonian
fluids that do not obey this law are also found in biological and industrial systems, ranging from blood
to paint. They can be classified depending on change in their viscosity for an applied stress as time
dependent and shear dependent fluids. The time dependent Non-Newtonian fluids can be further
classified into Rheopectic and Thixotropic. In Rheopectic fluids, the viscosity increases as a function of
applied stress duration, whereas viscosity decreases with applied stress duration in Thixotropic fluids.
A few examples of Thixotropic fluid are yogurt, peanut butter, xanthan gum; Rheopectic fluids include
printer ink, synovial fluid, etc. Similarly, the shear dependent effects can be classified based on the
existence of a yield stress, which is a minimum stress required for the fluid to start flowing. If yield
stress exists, as in toothpaste, mayonnaise and chocolate, then the fluid is called Bingham plastic.
On the other hand, if a shear dependent Non-Newtonian fluid starts immediately flowing, then it can
be classified further into shear thinning (pseudoplastic) and shear thickening fluid (dilatant). A few
examples of shear thinning fluids are paint, polymer solutions and blood, whereas shear thickening
fluids include quick sand and thick starch solutions [70, 71]. The time dependent and shear dependent
characteristics of the above discussed fluids are illustrated in Figures 2.12a and 2.12b respectively.
Apart from viscosity based differences, some Non-Newtonian fluids possess elasticity like a solid along
with viscous effect and these are called viscoelastic fluids. They are characterized by their ability to
store energy temporarily as elastic stresses, eventually losing it due to viscous action. In other words,
they exhibit a decaying elastic memory.
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Figure 2.12: Classification of fluids based on viscosity: The proportionality constant (slope) between applied shear stress and
shear strain is called viscosity. These figures are self-made
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Figure 2.13: A naturally occurring Non-Newtonian fluid can have a combination of viscoelastic effects, stress dependent and
time dependent viscosity, but not often viscoelastic with constant viscosity. This figure is taken from [81]

2.5.1. Viscoelasticity
Non-Newtonian fluids depend on both time and stress, along with viscoelastic effects. An example

of Non-Newtonian fluid is represented in Figure 2.13, where the fluid exhibits stress dependent shear
thinning and time dependent thixotropy along with viscoelastic effects. Such Non-Newtonian viscoelas-
tic fluids can be seen all around us, both naturally occurring and man made. They are often found in
different forms such as paints, ciliary motion of mucus, toothpaste, wheat flour dough, cheese, etc
[72–75]. However, in this study the focus is solely on viscoelastic effects independent of other Non-
Newtonian effects. To realize this, a constant viscosity viscoelastic fluid will be used, and they will be
further discussed in section.2.9. The viscoelasticity is usually characterized by creep, stress relaxation
and hysteresis. A typical Newtonian viscous material continue to deform when a stress is applied. On
the other hand, purely elastic materials store energy once a stress is applied. When applied stress
is removed in an elastic material, they return to the equilibrium position by using stored energy. Both
of these properties can be found in the viscoelastic fluids, where viscosity is associated with loss of
energy due to diffusion and elasticity is associated with storage of energy due to bond stretching. Thus,
viscoelastic materials do not store 100% of the energy, but dissipate some of its energy, and it is called
hysteresis. Another interesting characteristic called stress relaxation occurs when the stress reaches
a peak and decreases over time, after a constant strain is applied over the fluid. Similarly, when a
constant step stress is applied to the fluid, it’s strain increases with time. This phenomenon is called
creep [75–78].Furthermore, these fluids are usually accompanied by shear thinning (or thickening of
viscosity), extensional thickening of viscosity and normal stresses in strain[74]. Because of these nor-
mal stresses, peculiar effects are observed such as rod climbing/ Weissenberg effect, die swell during
extrusion, vortex enhancement (due to high extensional viscosity[79]) and elastic instabilities[80]. Thus,
the normal elastic stress due to viscoelasticity can have unique effects over the flow field, and conse-
quently they obey unique constitutive models. Hence, standard constitutive equations of Newtonian
fluids will be discussed followed by viscoleastic models in the following section.

2.6. Constitutive equations
The basic constitutive equation for any fluid flow begins with mass conservation, which is given by

the continuity equation.
∂ρ

∂t
+∇ ⋅ (ρu) = 0 (2.35)

where t is the time,ρ is the fluid density and u is the velocity vector.For an incompressible fluid, this
equation reduces to ∇⋅u = 0, whereas the momentum conservation is given by Navier-stokes equation,

ρ
∂u

∂t
+ ρu ⋅ ∇u = ∇ ⋅ σ + ρg (2.36)

which includes local acceleration, convection of momentum, total stress tensor (σ) and body force
respectively. Now the total stress can be written as the summation of isotropic and deviatoric stress
tensors, in which p is the pressure.

σ = −pI + τ (2.37)
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For a Newtonian fluid, the shear stress τ is given by,

τ = ηγ̇, γ̇ = ∇u+ (∇u)T (2.38)

where viscosity η is constant. However, when it comes to viscoelastic fluids, the Newtonian shear
stress relation does not work and so specific constitutive models are required.

2.7. Viscoelastic models
Various models are available to describe viscoelasticity, and the effective viscoelasticity of a fluid that
simultaneously loses and stores energy, can be characterized by a timescale called relaxation time λ.
Viscoelasticity is often due to the presence of polymers in a base solution, and they have a spectrum
of multiple relaxation time periods characterizing relaxation to an equilibrium state when a stress is
applied. However, it is customary to approximate them with the dominant or largest relaxation time
for simpler representation. Furthermore, a fluid flow can be classified based on the applied stress
into shear flow and extensional flow, having their own relaxation timescales and viscosities. In order
to account for both viscous and elastic effects, continuum models based on dashpots and springs
are used, accounting viscous and elastic effects respectively. The most prevalently used models are
Maxwell, Oldroyd-B, Giesekus, FENE-P models and higher order non-linear models with multiple re-
laxation times as viscoelasticity is characterized by a spectrum of relaxation times. When it comes to
extensional viscosity, a single relaxation model like Maxwell fails with large errors. Oldryod-B is the
simplest of these to use, however the validity is limited to an extensional strain rate of, ϵ̇ ≤ (2λ)−1 as
predicted stresses may grow unbound at larger strain rates. Although limited, it is argued that such
high rates are rarely reached in industrial flows[82–87]. A single-mode Oldroyd-B model is found to
be inadequate in accurately predicting transient flows of Boger fluids (constant viscosity viscoelastic
fluids) at low Deborah numberDe (discussed later) and low Reynolds number Re for a falling sphere in
Boger fluid. Though it has marginal error at higherDe, the qualitative behavior is relatable[88]. When it
comes to Boger fluid flow through contractions, the Oldroyd B model has failed to predict the significant
increases observed experimentally in the pressure drop[89]. Although, Oldroyd-B is not the most ac-
curate model for predictions, most of the numerical studies even involving turbulence have been done
due to its simplicity and marginally low error in most cases[90]. Hence, Oldryod-B model will be used
to characterize the fluid in this study. Let’s first discuss Maxwell model as it is the simplest fundamental
model on which other models are built upon and then Oldryod-B model shall be discussed.

2.7.1. Maxwell model
In the Maxwell model, a spring and a dashpot are added in series, experiencing the same stress σ as
in Figure 2.14. This stress σ will be represented as τ , E is the elastic modulus of the spring and γ is
the strain in the following,

γ1 =
τ

E
, γ̇2 =

τ

η
, γ = γ1 + γ2 (2.39)

differentiating the strain equation with respect to time and and replacing η/E with a characteristic re-
laxation timescale λ, we get

τ + λτ̇ = ηγ̇ (2.40)

This λ based on Maxwell model is represented by λm. The Maxwell model predicts creep, but not
the decreasing strain-rate. There is no anelastic recovery, but there is the elastic response and a
permanent strain.

Figure 2.14: Maxwell model—a dashpot with viscosity η and a spring with elastic modulus E in series experiencing a stress τ
on both ends. This Figure is self-made, but inspired from[91]
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Figure 2.15: Stress relaxation behaviour of Maxwell fluid (continuous line), relaxation behaviour following the initial relaxation
rate (blue line), 36.8% of initial value at relaxation time λ(dotted line). This Figure is self-made

Relaxation time
To understand λ clearly, let’s take an ideal fluid that follows the Maxwell model with single relaxation
time, defined as the ratio of viscosity to elastic modulus. The stress response of such a fluid is given
by,

τ/τ0 = e−t/λ (2.41)

The relaxation time is when the initial stress approaches zero with the initial relaxation rate at t=0 (see
dashed line in Figure. 2.15)[92]. The stress response following the initial relaxation rate is given by

τ/τ0 = 1 − t/λ (2.42)

In other words, relaxation time is defined as the time required for the initial stress to decay to 36.8% of
its magnitude following stress response of a Maxwell fluid defined in equation 2.41. It is notable that
this idea is analogous to the penetration depth of diffusion. An example behaviour of such a fluid with
relaxation time of 0.2s is shown in Figure.2.15.

2.7.2. Upper convective time derivative
Although the Maxwell model works well for an 1D case, it does not obey the objectivity rule for constitu-
tive relations for higher dimensions. Here, the objectivity rule refers that the material properties should
be invariant of deformations and rotations with respect to observer’s view. In order to solve that, let’s
take the well known material (A) derivative that connects the Lagrangian change in material to Eulerian
frame through first order Taylor approximation and rewriting it for local derivative,

∂A

∂t
°
▿
A

=
DA

Dt
− u ⋅ ∇A (2.43)

Now, substituting second order tensor τ for A and rewriting[93], the rate of change of stress tensor in
a rotating and stretching frame of reference is represented by an Upper-convected time derivative[4,
93],

▿
τ =

D

Dt
τ − (∇u)T ⋅ τ − τ ⋅ (∇u) (2.44)
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Figure 2.16: Oldroyd-B model with a series of dashpot for polymer viscous contribution ηp and a spring for elastic contribution
E, in parallel to a dashpot for solvent viscous contribution ηs. This Figure is self-made, but inspired from [95]

Rewriting the time derivatives with upper convected time derivative in tensor form, we get upper con-
vected maxwell model that obeys objectivity,

τ + λ
▿
τ = η

▿
γ (2.45)

2.7.3. Oldryod-B model
Let’s start with Jeffry’s model, which looks the same as Oldroyd-B model in 1D. It consists of a dashpot
parallel to a series of spring and a dashpot. Here, the dashpot in parallel corresponds to the solvent
contribution whereas, series dashpot corresponds to polymer contribution as in Figure.2.16. The ob-
jects in series experience the equal stress, whereas it is equal strain for parallel. Beginning with objects
in series, which is derived the same as maxwell model.

τ1 +
ηp

E
τ̇1 = ηpγ̇ (2.46)

where ηp is the viscosity contribution due to polymer. The total zero shear viscosity is given by η0 = ηp+
ηs, in which ηs is solvent viscosity. Now, this object and the solvent dashpot are in parallel, where both
experiences the same strain, but different stresses. Solving the mechanical system with , relaxation
time λ =

ηp

E
and retardation time λr = ληs

η0
, we get

τ + λτ̇ = η0(λrγ̈ + γ̇) (2.47)

Now, writing in tensor form with the upper convected time derivative we get Oldryod-B model,

τ + λ
▿
τ = η0(λr

▿
γ̇ + γ̇) (2.48)

In this model, a relaxation time λ (= λo) due to polymer contribution and a retardation time λr due to
viscous solvent are both used to characterize the fluid unlike maxwell model, which uses one relaxation
time (λm) for the whole solution.The retardation time λr defines the time delay in expression of elastic
behaviour where the strain is still accumulating[78]. This model can predict both creep and stress
relaxation behaviours of viscoelastic fluids, with some limitations[4]. Furthermore, it is useful in splitting
the viscous and elastic stress contribution in the Navier-Stokes equation for CFD studies (neglecting
the body force),

ρ
∂u

∂t
+ ρu ⋅ ∇u = −∇p+∇ ⋅ (τe + τv) (2.49)

τv = η0γ̇ (2.50)

where,τv is the viscous stress tensor and τe is the elastic stress tensor. Now, τv is subtracted from total
stress τ in equation 2.48. The elastic stress can be written as [94]

τe + λ
▿
τe = η0(λ − λr)

▿
γ̇ (2.51)
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2.8. Rheology
From the above discussion, we can interpret that, the constitutive equations are primarily predicting

the stress relaxation behaviour of viscoelastic fluids using the relaxation time λ. One important point to
understand at this juncture is that the viscoelastic fluids also have normal stresses induced perpendic-
ular to the shearing direction. This is a result of polymer relaxation, as shown in Figure.2.17. However,
their relaxation behaviour in a shear flow and extensional flow is quite different. In shear flow, fluid com-
ponents shear past one another, while in extensional flow, fluid component flows away or towards from
one other. Therefore, relaxation time for shear and extensional flow have to be measured separately.

Figure 2.17: Polymer shearing due to shear stress τxy causes the stretching of polymer chains, and they exert the normal
stresses σyy , σxx in vertical and horizontal directions respectively. This Figure is taken from [96]

2.8.1. Shear flow
In a typical shear flow, the fluid is placed between two plates and one of them moves, causing a shear
strain. The behaviour of viscoelastic materials in such a flow is studied using shear rheology. The main
characteristics of sheared viscoelastic materials such as creep, stress relaxation and hysteresis are
usually used as test methods to characterize the viscoelastic aspect of the fluid [97].

Hysteresis
Unlike purely elastic materials, viscoelastic materials do not store all the energy, but dissipate some
of it. This dissipation can be observed as hysteresis in a cyclic test, that involves repeated stress
loading-unloading over the fluid.

Stress relaxation
One more notable characteristic test for a viscoelastic fluid is the stress relaxation test. In a stress
relaxation test, a constant strain is applied, resulting in a peak stress that decreases over time.

Creep test
But when stress is held constant in a creep test, strain increases till an asymptotic level, and on removal
of stress, strain drops suddenly, followed by an anelastic recovery (recovery over time). [77, 78].

Shear rheometers
The aforementioned characteristics are generally measured using a rheometer, which is a device that
measures the response of a fluid to an applied perturbation. This perturbation consists of a predeter-
mined stress or strain, in either shear or extensional directions, and can be either steady or unsteady
in nature. In shear rheometers, stress controlled rheometer which measures strain has better torque
sensitivity, whereas strain controlled rheometer which measures applied stress can reach higher fre-
quencies. The mechanisms are completely different for both rheometers.For example, in case of strain
controlled rheometers both plates are movable, but stress controlled rheometer uses a static plate[98].
An example of stress controlled rheometer is shown in Figure.2.18
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Figure 2.18: A shear controlled rheometer with Plate-Plate geometry with fixed bottom-plate and movable top-plate. The fluid
is placed in-between and shear perturbations are applied through the rotation of the top-plate. This Figure is taken from[99]

Types of shear rheometers
As we discussed so far, the shear perturbations are applied to characterize a fluid’s response, when
placed in-between two parallel plates. The shear perturbations are applied to the fluid using the relative
displacement of the plates, as shown in Figure.2.18. Apart from parallel Plate-plate setup, Cone-plate,
Couette cell are the other usual geometrical configurations used in a shear rheometer.The Couette
geometry has more accuracy compared to others for low viscosity fluids, but then it cannot be used
for Small Amplitude Oscillatory Shear (SAOS) tests that measures unsteady moduli of the fluid. Cone-
plate has uniform strain rate, unlike Plate-plate, where strain rate depends on radial distance and
height. Plate-plate is preferred for change in temperature measurements. Also, the normal stress can
be measured better with Cone-plate configuration[4, 96].

Steady viscosity
The steady shear viscosity is the foremost important characteristic of defining a fluid. It is measured by
applying a controlled stress or strain-rate and looking at the response of the fluid. The viscous resis-
tance of this proportionality is given by,

η =
τ

γ̇
(2.52)

where η is the steady shear viscosity. This is the most important test to characterize both Newtonian
and viscoelastic fluids.

Linear viscoelasticity
Unlike Newtonian fluids, unequal and non-zero normal stresses are induced along principal directions of
viscoelastic fluids as a result of polymer relaxation.To account for these normal stresses in viscoelastic
fluids, extra parameters like N1, N2 and Ψ1 are introduced. The first normal stress difference, N1 is
the normal stress in the flow direction τxx minus that in the gradient direction τyy. The second normal
stress difference, N2 is the difference between the normal stress in the gradient direction and that in
the neutral direction [100]. The first normal stress difference coefficient Ψ1 can be measured from N1,

N1 = τxx − τyy = Ψ1γ̇
2 (2.53)

Because of the aforementioned normal stresses, a viscoelastic material can be classified as linearly
viscoelastic (stress is proportional to strain history) and non-linearly viscoelastic. In this study, the
focus is on linear viscoelastic material, as they are widely prevalent and less complex. At this instance,
it is important to note that the previously discussed Maxwell and Olryod-B models work only for linear
viscoelastic fluids. Therefore, we need to limit ourselves within Linear Viscoelastic region.

Oscillatory test
Unlike steady shear measurements for viscosity, characterizing viscoelasticity requires a time depen-
dent Small Amplitude Oscillatory Shear (SAOS) test. In a parallel plate measuring system, SAOS is
performed by loading sample between the plates at a known gap and the top-plate oscillated sinu-
soidally for increasing frequencies. If a very low viscosity sample (water) is to be measured at low
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shear rates, a large surface area is used to maximize the torque response from the applied shear rate.
The gap is chosen such the instabilities are avoided. SAOS provides the dynamic moduli of a material,
that enables Amplitude sweep and frequency sweep to characterize a viscoelastic fluid. An amplitude
sweep looks at the dynamic moduli of a viscoelastic fluid for a sinusoidal perturbation that has constant
frequency and varying amplitude. On the other hand, frequency sweeps looks at the dynamic moduli
by varying frequency at constant amplitude.

Amplitude sweep
As we discussed so far, a linear viscoelastic model can determine the elastic stress relaxation timescale
λ using a frequency sweep (discussed in the next section). Therefore, the frequency sweep should be
done within a linear response region of a viscoelastic fluid. First, amplitude sweep is done to identify
an amplitude within linear viscoelastic (LVE) limit that can be used in frequency sweep. For amplitude
sweeps, the strain amplitude is increased step-wise from one measuring point to the next while keeping
the frequency at a constant value. The fluid response to applied stress or strain is characterized using a
complex modulus G∗, which can be split into storage modulus G′ and loss modulus, G′′ as in Equation
2.54. The higher boundary of this LVE region can be detected as the point at which the elastic or loss
moduli is no longer a horizontal line on a log-log plot of G′,G′′ vs strain, as in Figure 2.19. If G′ > G′′,
then the sample refers a viscoelastic solid material, whereas ifG′′ > G′, the sample refers a viscoelastic
liquid as represented in the same figure [101].

Figure 2.19: LVE region: The boundary of Linear Viscoelastic region is indicated by γL. Left-hand side refers to viscoelastic
solid material, right-hand side refers to viscoelastic liquid. This Figure is taken from [101]

Frequency sweep
A frequency sweep is important to characterize the relaxation time of a viscoelastic fluid. This test is
important to determine the characteristic relaxation time of the fluid, where relaxation time is defined as
the time it takes to relax back to an equilibrium position for a shear stretched polymer, as in Figure 2.17
[96, 102]. First, a sinusoidal strain with a strain amplitude γ0 and an angular frequency ω is applied

γ(t) = γ0sin(ωt)

The resulting stress is also sinusoidal with the same frequency, but leads the strain by phase angle
δ. An elastic material is said to be in phase, while for viscous material the lag is 90°. For viscoelastic
cases, it’s between 0 to 90°, where 45° marks the domination of solid like to liquid like properties

τ(t) = τ0sin(ωt+ δ)

The complex shear modulus G∗ is the ratio of applied stress to detected strain, which in turn means
the stiffness of the material. It is important to split this complex shear modulus into storage modulus G′
corresponding to the elastic nature of the material and loss modulus G′′ indicating the viscous nature
of the material. This is vital in predicting the type of material and its flow behaviour.

G∗ = G′ + iG′′, ∣G∗∣ = τ0/γ0 (2.54)
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G′ = G∗cosδ, G′′ = G∗sinδ

The degree of energy dissipation is denoted by tanδ and it can be derived from the two moduli as ,

G′′/G′ = tanδ

Based on Maxwell’s model, the elastic stress decays exponentially with time (G(t) = G0e
−t/λ), there-

fore,
G′ = ω∫

∞

0
G(t)sin(ωt)dt = G0(ωλ)

2/(1 + (ωλ)2) (2.55)

G′′ = ω∫
∞

0
G(t)cos(ωt)dt = G0(ωλ)/(1 + (ωλ)2) (2.56)

Thus whenG′ = G′′ at the crossover as in Figure 2.20, λ = λm = 1/ω, where λm refers to the relaxation
time based on Maxwell model [103, 104]. The different notations of relaxation time such as λo (referring
to Oldryod-B model) are used in order to indicate the model with which it is based on. This is very
important, because not every model can represent the fluid behavior in a single dominant relaxation
time like the Maxwell model. Furthermore, λs and λe are used to distinguish the relaxation time based
on the shear flow and extensional flow, respectively.

Angular frequency ω (s−1)

G'
,G

''

G''
G'
ω= λ−1

Figure 2.20: Frequency sweep : when the storage modulus G′ is equal to loss modulus G′′, the maxwell relaxation time can
be found as ω = λ−1. This figure is self-made

2.8.2. Time-temperature superposition principle
Most shear rheometers have limited frequency of operation highly sensitive to viscosity, thereby limiting
the experimental window. This would make the identification of relaxation time difficult. However, this
can be solved by using the time-temperature superposition principle. In linear viscoelastic fluids, when
the temperature is increased, the viscosity and elastic moduli decreases, but the shape of the curve
remains the same. It is based on the idea that at higher temperature (higher energy), the amount of
energy required to cross an Arrhenius like energy barrier gets smaller, resulting in faster curve[105]. In
other words, the moduli curve at short times of a relatively higher temperature state would exhibit the
response same as the longer time response of a lower temperature state shifted by a factor aT . By
using this concept, shift factors are often used to make curves at different temperatures to be overlaped
for a master curve in frequency spectrum. The shift factor aT is given by[106, 107]

aT = e

− Ea

2.303R
(1
T
− 1

Tref
)

≈ η(T )

η(Tref )
(2.57)

Now applying this to frequency-moduli plot along with an empirical vertical shift factor bT would result
in a master curve. This principle can be extended to different moduli and compliance. Furthermore,
the factors obtained from viscosity measurements can be verified by fitting it with William-Landel-Ferry
(WLF) model, to see if the coefficients are positive. The WFL model is given by[108],

log(aT ) =
−C1(T − Tref )
C2 + (T − Tref )

(2.58)

An example of this principle applied to frequency-moduli plot is shown in Figure 2.21 [107].
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Figure 2.21: Time-temperature superposition principle applied to frequency sweep data of different temperatures This Figure is
taken from[107]

2.8.3. Extensional flow
When a fluid element is stretched away from one another in the same axis, it is termed as extensional

flow. This is often employed by retracting two circular plates to study the extensional flow behavior of
the fluid, which is quite different from shear flow. This is more relevant to this study as it has been
argued that, the flow in case of steady cylinder’s wake can be considered much like an extensional
flow, as the fluid is accelerated from zero to the undisturbed velocity, whereas shear flow is relevant
to flow separation[4]. Let’s take a case of uniaxial tension in a cylindrical material extended in the x
direction, while new material is supplied from the other two directions. The extensional viscosity for
such a cylindrical filament can be written as ηe(ϵ̇) = N1

ϵ̇
. The relationship with shear viscosity is given

by the Trouton ratio which is the ratio of the transient extensional viscosity and the zero shear rate
viscosity, Tr = ηe(ϵ̇)/η. For Newtonian fluids and for extremely slow flows, the ratio is exactly 3, while it
can be significantly greater for elastic fluids and are strain-rate dependent. Time and rate-dependence,
is often due to strain-hardening and tension-thickening respectively[4, 109]. Depending on the shear
viscosity and relaxation time of the fluid, the extensional rheometer can be chosen for characterization
as in Figure 2.22 [110]. CaBER corresponds to Capillary breakup extensional rheometer; FiSER to
Filament stretching extensional rheometer; EVF the Extensional viscosity fixture; SER to Sentmanat
extensional rheometer. In this study, the focus of extensional rheology is limited to characterization of
extensional relaxation time λe

Figure 2.22: Optimal choice of extensional rheometers based on shear viscosity and relaxation time. This Figure is taken
from[110]
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Solvent c (PAM) Mw (PAM) NaCl (wt%) η (mPas) λs (s) λe (s)

Deionised water[106]

50

18 x 106

0 - - 0.01
125 0 - - 0.059
250 0 - - 0.098
400 0 - - 0.105
50 1 1 - 0.004
125 1 1.05 - 0.01
250 1 1.43 - 0.018
400 1 4.5 - 0.029

60% Glycerol[117] 2000 5-6x106 0 36 (η0) 0.0367(λm) -

85% Glycerol[114] 200 - 1 160 0.13 (λo) 0.0867
400 - 1 180 0.197 (λo) 0.0977

88% Glycerol[118] 350 15x106 0 220 (η0) - 0.19

90% Glycerol[115] 100 - 1.5 487 1.947(λo) -
300 - 1.5 735 1.952(λo) -

Table 2.1: PAM Boger fluids based on glycerol-water mixture, where λe is the extensional relaxation time and λs is the shear
relaxation time represented either using λm, the Maxwell relaxation time or λo, the Oldryod-B relaxation time

2.9. Boger fluids
A general Non-Newtonian fluid exhibits stress dependent and time dependent viscosity along with

viscoelasticity, as discussed earlier in section 3.3. We want to isolate viscoelasticity from other effects,
therefore we need a fluid which has minimal to no stress and time dependent effects other than vis-
coelasticity. In Non-Newtonian theory, viscoelastic and shear thinning fluids can be classified based
on a simple shear experiment as[111],

• A viscoelastic fluid that exhibits shear thinning properties as well as elastic properties. In this
type, the viscosity decreases with shear rate and normal stress effects are detectable by normal
stress differences N1 and N2

• A shear thinning fluid, which exhibits shear thinning properties but hardly any normal stress effects
• A fluid which exhibits elastic behaviour but maintains a steady shear viscosity independent of
shear rate. Such a fluid is called Boger fluid

To understand the effects of viscoelastic effects independently, Boger fluids can be used. A Boger
fluid is defined as ”highly viscous (constant, or slight shear thinning masked by high viscosity) and
highly elastic fluid which exhibits a nearly constant viscosity and which can be processed at room
temperature”[87].

2.9.1. Types of Boger fluids
The original Boger fluid was reported to have 0.08% of polyacrylamide (PAM), in a concentrated aque-
ous corn syrup[84]. Later on, various other Boger fluids have been developed. Boger fluids can be
classified broadly into three different categories based on their ingredients as PAM based Boger fluids,
Polyisobutylene based Boger fluids and Polystyrene based Boger fluids[112, 113]. Among these, PAM
based Boger fluids are much easier to prepare, economic and also Boger fluids of PAM-glycerol- water
mixture is used in relevant studies such as flow past a cylinder[4, 114], so PAM based fluids will be
preferred in this study. Solvents such as maltose syrup, glucose syrup, corn syrup and glycerol have
been used in the past for PAM based Boger fluids, however glycerol-water mixture is predominantly
used in the recent, and it also offers more flexibility for tuning the fluid viscosity and relaxation time
compared to others[4, 84, 115, 116]. Studies associated with PAM Boger fluid based on glycerol-water
mixture are tabulated with important parameters in Table.2.1.

2.9.2. Additions to Boger fluid
Sometimes, when PAM Boger fluids with water based mixture are prepared, repulsive forces increase
due to increased negative charges in the polymer (PAM) chain. The repulsive forces lead to chain
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stretching and increased hydrodynamic radii of PAM molecules. This causes shear thinning behaviour
with high values of viscosity and relaxation time. However, these effects can be reduced by addition of
NaCl (Sodium Chloride) as sodium cations neutralize the negative charges, thus reducing the repulsive
forces and hydrodynamic radii of stretched case[106]. Therefore, adding NaCl gives the desirable
Boger fluids as they can provide nearly constant viscosity response, but with reduced relaxation times.
To avoid bacteriological degradation of the solutions, a biocide can also be added (Example:Kathon),
whereas for avoiding mechanical degradation, magnetic stirrers should be used at low speeds and kept
in a refrigerator prior to their use [115]. However, in this study, we will not add any biocide, but keep
the solution in a safe and clean container.The extension of the chains in a flow causes elastic effects,
but their net effectiveness depends on how the viscous effects balance them. This net effect can be
characterized by a relaxation timescale λ.

2.10. How to measure relaxation time?
It is often the case that it is difficult to obtain relaxation time directly with a simple frequency sweep
(refer section 2.8.1) in case of a shear flow and, on the other hand, extensional rheometers are not
commonly available. Therefore, other methods of finding relaxation time discussed here will be used
to characterize λ.

2.10.1. Shear relaxation time
Carreau-Yasuda
The non-Newtonian fluids, that have both shear thinning and viscoelastic properties, reach a constant
viscosity η∞ at high shear rates. In such fluids, Carreau-Yasuda model can be used to predict the
relaxation time λ. The Carreau-Yasuda model is given by,

η = η∞ + (η0 − η∞)[1 + (λγ̇)a]
n−1
a (2.59)

However, the applicability is limited to the experimental values of shear thinning and thickening fluids.
Here, a is the transition parameter from Newtonian to power law, n is the power law exponent (slope
control) and λ is the relaxation time of the fluid that controls curve bending [4, 119].

Zimm’s formula
At extremely low concentrations, Zimm’s formula is used as a theoretical prediction of relaxation time,
given by

λZ =
KηpMwηs

RgT
or ηs(N

3/5z)3

KbT
(2.60)

where K is a parameter depending on solvent quality, Kb is Boltzmann constant, N is the number
of repeating monomers and z is the length of a single monomer.However, this constant value λZ is
applicable only for c/c∗ < 0.04, where c∗ is the overlap concentration at which the polymers start to
interact and entangle with adjacent chains [120, 121]. The overlap concentration for any solution can
be predicted with a viscosity vs concentration curve as in Figure 2.23. Although, we will limit ourselves
within c∗, we will be far from Zimm’s equation limit to obtain reasonable elastic stresses.

Figure 2.23: Overlap concentration: c∗ can be detected where the shear viscosity increases at a significantly higher rate, with
increasing concentration, than the lower concentrations[122]
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Multimodal (linear) model fit
The general approach used for Boger fluids is to model fit the G′ and G′′ curves from frequency sweep
with multimodal Maxwell or Oldroyd-B models similar to Equations 2.55 and 2.56. The following equa-
tions are used to find the relaxation time based on Oldryod-B model λo, usingG′,G” values of frequency
sweep[4, 115],

G′ =
k

∑
i=1

Gi(ωλi)
2/(1 + (ωλi)

2) (2.61)

G′′ =
k

∑
i=1

ηiω +Gi(ωλi)/(1 + (ωλi)
2) (2.62)

Since it gives a spectrum of relaxation times, the mean Oldroyd-B relaxation time can be written as,

λo =
∑k

i=1 ηiλi

∑k
i=1 ηi

(2.63)

The Maxwell relaxation time λm can also be calculated by fitting the G′ and G′′ data from frequency
sweep or if the first normal stress difference is known, since N1 = 2ηpλmγ̇

2 [87]. In this study, shear
relaxation time λs will be characterized using λo. Overall, a clear difference in λm or λo values are
observed with the above approach and extensional λe (see Table.2.1), due to different flow behaviours.
Therefore, extensional relaxation time has to be measured separately.

2.10.2. Extensional relaxation time

Figure 2.24: Thinning dynamics of a viscoelastic thread is represented by diameter of thinning filament hthr , which falls
exponentially unlike elastic and Newtonian materials. This can be used to extract λe [95]

Vortex formation and pinch off is a combination of shear and extensional flows[114]. So exten-
sional timescale might be important to characterize the fluid. However, when extensional rheometer
is not available, we need an alternative approach. Since filament stretching or extensional thinning
is the basis of extensional rheometers, it can also be reproduced with a pendant droplet experiment,
where the filament between the droplet and needle thins over time unlike a Newtonian fluid (linear thin-
ning[123]). The initial regime is dominated by inertial and capillary forces, followed by a regime where
elasto-capillary forces dominate, in which exponential thinning is observed. The viscous forces during
thinning are negligible for fluids with η < 70mPa.s[124]. For exponential thinning, Oldroyd-B model can
be used to predict the longest extensional relaxation time λ = λe, provided the model is valid for the
fluid (usually for dilute solutions, c < c∗) as shown in Figure 2.24. [125, 126].

Dmin(t)

D0
= e−t/3λe (2.64)

where Dmin(t) is the minimum radius of the filament at time t, and D0 is the filament diameter at t=0
(needle radius).Furthermore, Oldroyd-B model has been reported to be in agreement with experimental
data for dilute viscoelastic fluids in predicting λe [125]. One might wonder about the absence of surface
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tension in this equation, since the regime is dominated by both elastic and capillary forces. The earlier
equation for thinning also included a third power of prefactor called Elasto-capillary numberEc =

ηpD(t)

2λeσt
.

However, it was reported that the polymer selects a constant extension rate just enough to cross the
entropic relaxation of the longest mode, when capillary forces are balanced by the viscous solvent and
the longest polymeric mode. Based on this, it has been extensively studied that for a constant viscosity
solution, exponential thinning can be predicted just by equation.2.64[123]. This was further confirmed
by other studies, even with infinite relaxation time λ in an Oldryod-B fluid, equation.2.64 is applicable
without accounting for instantaneous Ec [127]. Consequently, the extensional viscosity of an Oldryod-B
model ηex is given by[128],

ηex = ηs + ηp/(1 − 4Wi2e) (2.65)

where extensional Wie is given by extensional strain rate and relaxation time ϵ̇λe and this explains
that larger the polymer added viscosity ηp , larger the extensional viscosity. In real fluids, the exten-
sional viscosity has been reported to be a clear function of Hencky strain (Strain rate integrated over
time)[129].

2.11. Effect of viscoelasticity in flow field
So far, we discussed the Newtonian flow fields with vortices and viscoelastic theory. Now, let’s try to
understand how a flow field is affected by the presence of viscoelasticity.In the past few decades, it
has been found that adding long-chain viscoelastic polymers into a flow can reduce turbulent friction
losses significantly and studied in detail. It is mainly because of the reduction in wall friction, leading to
redistribution of shear in the boundary layer[121]. However, when it comes to a steady flow past a bluff
body, most of the studies are theoretical or numerical, and aimed at very low Re regime in cylinder(s)
and sphere. In general, viscoelastic flows are characterized by Weissenberg number Wi, Polymer
viscosity ratio βr = ηp/η, Reynolds number Re and Elasticity number El as shown in Figure.2.25

Figure 2.25: Non-dimensional numbers in an accelerating dilute polymeric solution: Reynolds number,Weissenberg number,
Elasticity number, Polymer viscosity ratio βr and Dimensionless acceleration α

Non-dimensional numbers
The effect of acceleration a in balancing viscous and inertial stresses is captured by using the non-
dimensional acceleration,

α = aL3
c/ν

2 = Re2/2T ∗ (2.66)
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The Weissenberg number indicates the degree of anisotropy or orientation generated by the deforma-
tion[90, 130],

Wi =
Elastic stress
Viscous stress

=
τxx − τyy
τxy

= λγ̇ ≈ λ U
Lc

(2.67)

The Deborah number indicates how solid the material is; the greater the Deborah number, the more
solid the material; the smaller the Deborah number, the more fluid it is.

De =
λ

td
(2.68)

where td is the characteristic time for deformation. Ideally De is used for flows with clear timescales,
such as flagella beating frequency in algae, whileWi is used in cases with simple shear. Although not
shown for every case,De for acceleration time as td can be derived from targetWit and dimensionless
acceleration distance T ∗a ,

De =
2Wit
T ∗a

=
4Elα

Ret
(2.69)

The elasticity number is useful in the regimes where both inertial and elastic forces dominate.

El =
Wi

Re
=

Elastic stress
Inertial stress

=
λη

ρL2
c

(2.70)

The characteristic relaxation time λ in the above numbers should represent the fluid behavior in a single
relaxation time. The Oldryod-B relaxation time represents only the polymer contribution, but not the
retardation caused when polymer contribution to viscosity is smaller. Therefore, the shear relaxation
time λs and the extensional relaxation time λe should be used along with the polymer viscosity ratio βr to
define a flow of interest. Out of all the non-dimensional numbers, we will use instantaneousWi(t) and
βrβrβr to characterize the elastic nature of fluid, as we may need to understand both steady and unsteady
regimes. For inertial and unsteady part, Re(t) and T ∗a respectively will be primarily used throughout,
however other parameters will be defined whenever necessary.

2.11.1. Viscoelastic effect on drag forces
In our study, the viscoelastic fluids will be limited to Boger fluids, because the elastic effects are easier to
understand. For the laminar range, in an unbounded cylinder, CD decreases withRe and increases with
polymer concentration. The streamlines around the cylinder are displaced (attributed to the presence
of normal forces) compared to the Newtonian case[131]. For a Boger fluid in creeping flows for an
unbounded cylinder, the drag is not affected by elasticity when Wi < 0.1, reduces when 0.1 < Wi < 1,
a plateau appears to exist in 1 < Wi < 2, and then the drag increases with Wi. The streamlines
around the sphere are slightly shifted downstream at smallWi but shifted upstream at higherWi with
some exemptions. Elasticity can affect the wall effects if the blockage ratio is high. In such cases, the
drag coefficient decreases in the viscoelastic fluid. If the blockage ratio is small, the drag coefficient
increases due to elasticity[132]. An extensive computational study based on the Oldryod-Bmodel helps
us to understand the effect ofWi and the polymer viscosity ratio β =

ηp

η
at aBR = 0.5. WhenWi is low,

the drag of the cylinder is unaffected, but as the Wi increases, the pattern of variation in the cylinder
drag depends on the Re. For flows with a low Re, the drag increases as the Wi increases, whereas
for flows with vortex shedding, the Newtonian drag dominates till aWi =Wi1, whereWi1 is a function
of Re. For Wi beyond Wi1, drag initially decreases and then increases at higher Wi =Wi2, which is
also a function of Re. In the same study, the polymer viscosity ratio (polymer contribution to the total
viscosity) was found to play a significant role in the drag force changes at both low Re and low Wi
numbers, but its effect was negligible for flows with high Reynolds numbers.It has been found that drag
reduction and enhancement properties of viscoelasticity are dictated by the critical Wi1 and Wi2.The
phenomena of drag alteration as a function of Wi and Re is illustrated in Figure 2.26 that represents
viscosity ratio of 0.01[133].

2.11.2. Viscoelastic flow characteristics
An increase in cylinder aspect ratio and fluid elasticity reduced the various critical Reynolds numbers
that alters the flow regimes in a cylinder (discussed earlier with Newtonian flows). The extension of
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Figure 2.26: This graph provides an example of drag modification with respect to Newtonian inWi −Re space for flow past
cylinder and βr = 0.01. Wi1 indicates the onset of drag reduction compared to Newtonian drag, andWi2 (>Wi1) indicates

the onset of drag force enhancement from Newtonian. This graph is taken from [133]

the wake transition regime was reduced by fluid elasticity significantly depending on concentration of
polymers, for instance 0.4% carboxymethyl cellulose at higher aspect ratios ended at Re=208, which is
2000 in Newtonian case. It is also concluded that El is a better way to characterize the flow[134]. The
vortex shedding frequency and the vorticity of the shed vortices were reduced for increasing polymer
concentration. The wake was stabilized by polymer additives and the critical Re increased linearly
with polymer concentration for constant viscosity solutions[135]. The stoke’s flow behavior is altered if
Wi > 6, as vortices behind the cylinder are stretched gradually. For Re =100, the vortex shedding is
gradually suppressed with increasing Wi and totally stops around Wi = 6[133]. In the flow past the
cylinder, the maximum streamwise normal stresses in the wake increase as De3 and De5 for low and
high Deborah numbers, respectively. It has been demonstrated that the vortex shedding frequency
was much lower for the viscoelastic fluid than for water.[136].

2.11.3. Viscoelastic instabilities
Due to the presence of elastic effects, the instabilities (the physical characteristics that alters the flow
behaviour at critical non-dimensional numbers) that can possibly happen in a flow can either be fully
due to elastic effects at lowRe or Inertial and elastic effects at high Re. For the cylinder, the streamwise
velocity indicated no change with increasingWi in upstream of the cylinder, whereas the downstream
wake extended with increasing Wi. Beyond a critical Wi, a flow instability is observed which can be
characterized as a transition from steady, 2D flow to a 3D, spatially periodic cellular structure[137]. The
curvature of the cylinder provides a perturbation to the fluid streamlines that can initiate viscoelastic
instabilities above a critical condition. The onset of elastic instability is found to be scaling with charac-
teristic curvature of the flow and stress along the streamlines called Pakdel-McKinley scaling[90],

λuN1

R∣τ ∣
>=M2 (2.71)

whereM is the viscoelastic Mach number. In order to take the speed of viscoelastic shear waves into
account cs,M is defined as

M =
u

cs
= (ReWi)1/2 (2.72)

Flows above high viscoelastic Mach number result in a change of type in the underlying constitutive
equations, from parabolic (similar to a diffusion equation) to hyperbolic (similar to a wave equation), and
give rise to many anomalous phenomena in the inertio-elastic flow of complex fluid. The disturbance
of the elastic instability propagates far upstream in the form of an elastic wave, yet remains relatively
isolated from the flow in the cylinder wake. The elastic wave speed is found to increase with increasing
Wi[90]. The peculiar phenomena of negative wakes has been found to have multiple regimes if they
onset with conditions favoring them. They are classified into the creeping flow type front wake (Wi < 2),
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Figure 2.27: Instabilities in a viscoelastic planar poiseuille flow[90]

Wi >= 2 with two steady vortices , Wi >= 4 representing vortices fluctuating weakly in time, Wi>9
representing vortices fluctuatingly generate and degenerate with time. These front vortices are formed
by suppression of back vortices, these are found to be formed for minimization of the flow extension
due to high fluid extensional viscosity, by providing a long entrance path reducing extension rate[138].
Unlike the extensive literature for cylinders and spheres, viscoelastic flow past a normal flat plate is
quite limited to few early studies long before the Boger fluids were developed. It was concluded that
the effects of elasticity are well observed near the leading edge of the plate as the shear rates are high
around there, furthermore the history of deformation was not seem to affect the flow in far wake[139].

2.11.4. Unsteady kinematics in viscoelastic flow
In unsteady kinematics involving viscoelastic fluids, the literature is found to be very scarce with some
exceptions like unsteady motion of sphere falling in gravity and few other cases in numerical studies
with cylinder. Even in these cases, the fluids are shear dependent, hence the elastic effects of flow past
unsteady bluff bodies is largely unknown. However, in order to distinguish the free stream instabilities
from the effects of the bluff body, we need to know the critical numbers Rec, Dec, βc andM associated
with a planar viscoelastic poiseuille flow which are represented in Figure 2.27. From this figure it is
noticeable that the elastic instabilities are bound to happen forWi of order greater than one. Similarly,
inertial-elastic instabilities are found to occur at high Re around a thousand of order. In this study,
we are interested in the elastic effects on vortex shedding, which means we need to be away from
poiseuille flow viscoelastic instabilities. Therefore, we will be looking at orders ofWi < 1 and Re < 1000
to avoid the interplay of elastic and inertial forces. This region will be the focus of this study and termed
throughout as weakly elastic, inertial regime. [88, 140].

2.12. Flow visualisation
In order to quantify the effects of elastic stresses in vortex shedding and their scaling, experimental
measurements have to be done for these flows. Early flow visualisation techniques based on parti-
cles developed by the likes of Friedrich Ahlborn were mostly qualitative, and promoted by prominent
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Figure 2.28: A typical 2D-2C PIV setup to extract the flow field data[142]

people like Ludwig Prandtl. Development of better lasers and sophisticated data processing methods
have led to quantitative flow visualisation. In order to determine flow velocity, various indirect intrusive
methods like pressure probes, hot wire, hydrogen bubbles exist. However, direct optical methods such
as Laser Doppler Velocimetry (LDV), Laser Two Focus and Particle Image Velocimetry (PIV) provide
non-intrusive velocity measurements. Measurements based on particles can be classified based on
the increasing density of tracer particles as Particle Tracking Velocimetry , Particle Image Velocimetry,
Laser speckle Velocimetry, whereas in this study we focus on Particle Image Velocimetry as it has
become a nearly standard way of measurements.

2.12.1. Particle Image Velocimetry
In PIV, the fluid is seededwith particles which closely follow the flow dynamics. The velocity is calculated
from the motion of these seeding particles by taking two images with a short time gap ∆t and the
distance is calculated based on the displacement of the seeding particles between the two images.
In the design of PIV experiment, the prioritized goals are high spatial and temporal resolution of field,
good enough to capture the dynamics of the flow field of interest and its velocity fluctuations. PIV can
be implemented as Double exposure/single frame and Single exposure/ double frame, however single
exposure/double frame is preferable as double exposure/single frame processes with auto correlation
which has inherent limitations. Therefore we will focus on single exposure/double frame which uses
cross correlation[141].

Spatial configurations
Depending on the spatial configuration, PIV can be classified into planar (2D-2C) with one camera,
stereoscopic (2D-3C) with two cameras, and volumetric (3D-3C) with multiple cameras, where D refers
to Dimension and C to Component. However, in this study we stick to planar (2D-2C) setup that looks
as in Figure.2.28. Initially, the particles are seeded with tracer particles followed by two frame snapshot
recordings of the flow illuminated by synchronized laser sheet separated with a time ∆t. Thereafter,
the scattered light intensity due to particles as an ensemble is correlated to find the displacement and
velocity vectors[142]. The typical subsystems of PIV are Seeding, Illumination, Recording, Calibration,
Evaluation, Post Processing. The typical planar 2D-2C PIV based on these subsystems are explained
below.

• Seeding: The particles are added to the fluid such that they closely follow the flow. The smaller
particles follow the flow better whereas larger particles are better with scattering light.To reduce
velocity lags, smaller particles are preferred,while they should be large enough for the camera
sensitivity. The size of the particles should be of the same density as the fluid to make sure that
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they are neutrally buoyant, which can be verified when the stokes number Stk < 0.1,

Stk =
tp

tc
, tp = d2p

ρp

18η
(2.73)

Where tc is the characteristic time scale of the flow and ρp is the particle density. Usually particles
of mean diameter dp = 10-100 µm is used in liquid flows.

• Illumination: A laser pulse is used to illuminate the seeded particles for recording. The duration
of the light pulse should be low enough to freeze the motion of particles, whereas the time delay
between two pulses should be long enough to see displacement of particles between images, and
short enough not to see too many particles with out of field components leaving the light sheet.
The light sheet (to freeze the flow) is produced by pulsed lasers typically Neodymium-doped
Yttrium Aluminum Garnet crystal (Nd-YAG) laser.

• Recording The recording usually is done using a CCD (Charge coupled device) or CMOS (Com-
plementary metal oxide sensor) based high speed camera. Usually a frequency of 10-20Hz is
employed (CCD based), but can also be 1-100kHz (CMOS based) depending on time scale of
flow phenomena. A synchroniser is used in order to match the pulses of laser and the exposure
time in the camera.

• Calibration: An optical setup with cylindrical or spherical lens is used in order to focus the laser
into a thin plane of light sheet. However, the recording is done only after a calibration of grid
to pixels is done as a means of understanding spatial resolutions in image resolutions and the
spatial resolution should be good enough to capture the velocity gradients in the field [142, 143].

• Evaluation: Since the particle density is high, the evaluation is done with ensembles of images,
not with individual particles. This ensembles of images stacked together is called an interrogation
window, and each interrogation window determines one velocity vector by correlation methods.

– Interrogation window: The interrogation windows should be big enough for several particle
images ensuring a high valid detection probability of the velocity vector. In case of constant
gradients, very less bias error is detected, whereas for varying gradients like boundary layer,
the interrogation-window size and the optical magnification should be resolve according to
the scales of interest to reduce errors[144].

– Cross-correlation: Once the image ensembles are available, cross-correlation of inten-
sities is used for the interrogation windows with a gap ∆t. The peak value of the cross
correlation is used to predict the average displacement of particles in an interrogation area
and velocity can be calculated given∆t. Often, Fast Fourier Transforms are used to perform
cross correlations to reduce computational cost[145].

– Uncertainty: Similar to any other experimental method, PIV also has errors and uncertainty
associated with it. The major sources of systematic error are tracer particle response, hard-
ware synchronization, Interrogation window size and algorithm, etc. These uncertainties can
be quantified by various direct and indirect approaches such as Uncertainty surface, Cross-
correlation signal-to-noise ratio metrics, Correlation statistics and particle disparity[146].

2.12.2. Does viscoelasticity affect PIV measurements?
PIV experiments are predominantly done in simple Newtonian fluids. Although, a few studies have used
PIV on viscoelastic fluids[115, 135], onemight wonder whether viscoelasticity affects the tracer particles
in following streamlines without interacting with each other. One study showed, that particles in shear
thinning polymeric fluids even in low volumetric concentrations can sometimes interact, causing particle
chain or string formation. However, it was further studied and concluded that even in shear thinning
viscoelastic fluids, PIV measurements are completely unaffected[147]. Sometimes, the behaviour of
neutrally buoyant stokes flow particles in viscoelastic fluids, might be confused with generalization
of particle migration in microchannel flows. It has to be noted that such behaviours scale with both
Deborah number De and square of blockage ratio, whereas a vortex shedding study like our case
would have minimal blockage ratio[148]. Furthermore, such migration behavior of particles is due to
competing effects of fluid shear thinning and elasticity. But in this study, we will use a boger fluid with
almost no shear thinning[148]. Hence, PIV measurements in this study can be safely assumed to not
be affected by viscoelasticity .
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2.13. Feature extraction
Once we have the PIV data, we will be looking for interpretable patterns and features of the flow. How-
ever, it is hard to recognize such patterns and the wake behaviour with raw velocity data, and so we
need a feature extraction process that can convert velocity to easily recognizable visualizations for the
flow features. In this study, we will focus on Q-criterion and Lagrangian Coherent Structures (LCS), to
understand the vortex dynamics.

2.13.1. Q-criterion
The strain rate tensor (velocity gradient) can be decomposed into shear rate γ̇ = 1

2
(∇u + ∇uT ) and

rotation rate , R = 1
2
(∇u−∇uT ). A vortex is a region of high rotation rate as it is a concentrated region

of vorticity. Therefore a rotationally dominant region can be identified using Q > 0, where Q is defined
as

Q =
1

2
(∣R∣2 − ∣γ̇∣2) (2.74)

Formally, when we perform eigen value decomposition of the velocity gradient, we end up with a char-
acteristic equation,

λ3 + Pλ2 +Qλ+M = 0 (2.75)

where P,Q,M are the invariants and λ is the eigen value. Thus Q is defined as the second invariant of
velocity gradient[149].

2.13.2. Lagrangian Coherent Structures
The coherent structures that we are interested in this study are the vortices and derivatives formed due
to flow around the geometry. When we try to track these structures in Lagrangian fluid motion, they are
inherently unstable due to their sensitivity to initial conditions. These dynamically distinct regions of
space (coherent structures) can be separated by invariant manifolds called separatrices, which often
change with time in unsteady systems. LCS as complimentary approach has an edge over eulerian
coherent structures (like Q-criterion, λ2 criterion) by separating these structures into dynamically distinct
regions of space with less ambiguity and more objectivity[150]. Let’s consider a hyperbolic point as in
Figure.2.29. The points either side of stable manifold (vertical axis) diverge when integrated forward in
time, whereas points on either side of the unstable manifold (horizontal axis) diverge when integrated
backward in time [151]. Since separatrices divide these regions, the coherent structures can be defined
based onmaximumdivergence or stretching. FTLE provides a simpler way of evaluating the divergence
between trajectories. Therefore, ridges of Finite Time Lyapunov Exponents (FTLE) are used as a
diagnostic approach to extract the approximate Lagrangian Coherent Structures (LCS) in unsteady
cases.

FTLE based approach
In FTLE based diagnostic approach, first a flow map ΦΦΦT

0 (x0) is made from points arranged in a Carte-
sian grid, which changes its skeleton to a different structure after some time Tn. To understand where
the fluid comes from (or entrainment), it can be integrated backward in time, referring to the stable
manifold(Negative-FTLE). On the other hand, to understand how it separates forward, it has to be inte-
grated forward in time(Positive-FTLE). This corresponds to unstable manifold called repelling surfaces.

x(t) = x0 + ∫
Tn

0
(u(x(t), t)dt =ΦΦΦTn

0 (x0) (2.76)

Then, for each material element of these points, the deformation and rotation has to be calculated
by making a Jacobian of the flow map, for which the determinant should be approximately one for
incompressible flows.

DΦΦΦTn

0 ≈
⎡⎢⎢⎢⎢⎣

∆x(Tn)
∆x(0)

∆x(Tn)
∆y(0)

∆y(Tn)
∆x(0)

∆y(Tn)
∆y(0)

⎡⎢⎢⎢⎢⎣
(2.77)

The maximum singular value λλλmax of the Cauchy-Green deformation tensor, ∆ = (DΦΦΦTn

0 )T (DΦΦΦTn

0 )
indicates the direction in which the growth of the stretching or perturbation is maximum. Now, the
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Figure 2.29: Normally attracting (or stable manifold) surface marked by red (integrated forward in time) and normally repelling
(or unstable manifold) surface marked by blue (integrated backward in time). The fluid parcels do not pass through FTLE

ridges or separatrices making them transport barriers. This figure is self-made, but inspired from [151, 152].

FTLE field is calculated as
σσσ(Φ0;x0) =

1

∣Tn∣
log
√
λλλmax(∆(x0)) (2.78)

This FTLE field has to be done for every time step in order to understand the entire dynamics of the
coherent structures, which are basically invariant manifolds that acts as a boundary for the points to
stay in or out according to this theory[150, 153]. The topological Lagrangian saddle points are found to
be at intersections of the positive and negative finite-time Lyapunov exponent ridges. Furthermore, the
unsteady vortex shedding around a cylinder has been widely studied using this method, an example
of negative-time FTLE field for flow around cylinder is presented in Figure 2.30.In case of cylinder,
the saddle points are found to be useful in understanding flow separation, vortex formation time and its
shedding. When the vortex begins to form behind the wake, the saddle point slowly moves downstream
until the vortex sheds. Then, the saddle point accelerates until reaching the advection speed of the
vortex [154].

Figure 2.30: Negative-time FTLE field representing unsteady vortices in flow past a cylinder[155]

Although it is widely used, the FTLE based LCS approach suffers from several issues [156],
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• FTLE ridges not only highlight hyperbolic LCS (attracting and repelling material surfaces), but
also high shear surfaces

• There are other types of LCS such as parabolic and elliptic LCS other than hyperbolic LCS
• Ridges of FTLE are not necessarily LCS and material surfaces

To solve for inconsistencies in LCS based on FTLE, variational theory was proposed based on the
idea that thematerial surfaces acting as centers of patterns (with zero flux across the boundary), identify
themselves by attracting or repelling nearby trajectories at the highest rate locally[156]. The hyperbolic
LCS gives an invariant manifold, elliptic LCS gives the boundary of vortices and parabolic LCS gives
the cores of jet flows. A clear implementation of the hyperbolic LCS algorithm can be found in [157].
However, FTLE fields are much more physically interpretable and less complex. Therefore, we will use
FTLE fields to understand the wake and vortex dynamics in this study.

Rotational coherence based Elliptic LCS
Elliptic LCS are closedmaterial surfaces that act as building blocks of lagrangian equivalents of vortices.
So what are these coherent vortices? Although there is no universal definition, the widely accepted
criteria are concentrated regions of vorticity and evolving invariant material regions[158]. In 2D it can
be calculated using different approaches such as polar rotation angle (PRA), Lagrangian averaged
vorticity deviation (LAVD), and variational theory[156]. Among these, we limit ourselves to LAVD based
on relative rotation tensor as it is dynamically consistent, applicable to 3D flows and simpler to compute.
The relative rotation tensor has been proven to be dynamically consistent and therefore the total angle
swept by this tensor around its own axis is consistent[158]. Using this idea, the intrinsic rotation angle
is defined as in Figure.2.31 and it can be calculated as

ψTn

0 =
1

2
LAV D (2.79)

LAVD can be used to identify lagrangian coherent vortices experiencing same rotation compared to
mean rigid body rotation of the flow field. For a 2D planar flow, LAVD is calculated by

LAV DTn

0 (x0) = ∫
Tn

0
∣ωz(x(s;x0), s) − ωz(s)∣ds (2.80)

where the mean vorticity is given by

ωz(t) =
∫ ω(x, t)dV
vol(U(t))

(2.81)

The initial positions of the vortex centers are found to be the points where LAVD has local maxima that
act as attractors for debris and positively buoyant particles, finally the vortex boundaries are chosen
with criteria as in [158]. In this study, we will use LAVD to identify the vortex boundaries and advect
them separately to understand the dynamics of fluid parcels in a lagrangian frame.

Figure 2.31: Intrinsic rotation angle ψTn
0 in a deforming material trajectory[158]
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2.14. Research objectives
In summary, the vortex shedding due to flow past the cylinder and a flat plate (facing 90°to the flow) has
been extensively studied in the past for both steady and unsteady translations in the case of Newtonian
fluids. The forces and instabilities have also been quantified well in such cases. Similarly, the vortex
shedding due to viscoelastic flow past a steady cylinder has been studied well in both experimental
and numerical studies. However, the dynamics of unsteady translations in viscoelastic fluids is very
much limited to a few studies in spheres and cylinders with stress-dependent fluids. The dynamics of
viscoelastic flow past an accelerating normal flat plate is largely unknown, despite the geometry being
rich in information about the flow separation. Furthermore, the effect of elastic forces in accelerating
flows has not been reported so far. To improve the focus of the study and to understand the shedding
effects clearly, the Wi and Re numbers will be limited to the laminar—weakly elastic vortex shedding
regime (Wi < 0.6,50 < Re < 250) without elastic free stream instabilities as shown in Figure 2.27. Taking
into account the statements above, the objectives of this study will be

• To understand the effect of viscoelasticity in wake/vortex ring dynamics in a starting normal flat
plate

• To investigate the changes in unsteady forces due to the presence of elastic forces and acceler-
ation.

How?
To achieve the aforementioned objectives,

• Initially shear rheological experiments on viscosity, amplitude sweep and frequency sweep, fol-
lowed by extensional pendant droplet experiments were conducted to identify the Boger fluids
with a constant viscosity, shear and extensional relaxation times that allow working in laminar-
weakly elastic - vortex shedding regime.

• Then an experimental setup was designed and fabricated considering the effects of Re,Wi, AR.
• The investigations were carried out, using linear acceleration of flat normal plates in the identified
viscoelastic fluid. For this, Particle Image Velocimetry was used to get 2D-2C velocity field data,
and a force transducer was used to measure the forces exerted on the flat plate.

• Finally, relevant data processing techniques were used to extract the features of the flow. They
are analyzed along with PIV and force data to understand the phenomena and the scalings in-
volved.



3
Methodology

3.1. Shear Rheology
In order to characterize the fluids for their viscosity and relaxation time, shear rheological experiments
were conducted using an Anton-Paar 302 shear rheometer, as shown in Figure.3.1. In order to be
consistent with the measurement technique for both viscosity and oscillatory tests, we are limited to
cone-plate and plate-plate configurations. For both cases, the stress σ (based on the torque) depends
on the diameter as σαd−3, thus larger the diameter, smaller the stress possible. The viscosity of a
typical fluid that we are interested in this study should be low enough to reach a maximum of Re ≈ 250,
using a simple stepper motor based linear traverse and a small plate. For such low viscosities (a
few times more than water), larger plate diameters (40-60 mm) are needed in order to have sufficient
sensitivity[159]. Unfortunately, cone-plate of such large diameters were not available. Therefore, a
plate-plate configuration with 50 mm diameter is used throughout the measurements. For a plate-plate
configuration, the shear rate (based on angular velocity) scales inversely with gap height between the
two plates. However, this gap height should be large enough to avoid the surface roughness effect; but
small enough to avoid any instabilities with enough capillary forces to keep the fluid intact. It has been
recommended to use a gap of 0.5 − 1mm for a plate-plate configuration with a diameter of this range
[159].Therefore, a gap of 0.5mmwill be used throughout the study. The fluid sample has to be prepared
before characterizing them; hence, preparation procedure is discussed in the following section.

3.1.1. Fluid preparation
Looking at the Table.2.1 shear relaxation time is a weak function of viscosity, however pure water
viscosity is not enough despite high molecular weight and concentration of PAM to a have a reason-
able relaxation time with constant viscosity. Also considering the Re requirement into consideration,
a glycerol-water mixture between around 50 : 50Wt% will be used as a base solution in the prepara-

Figure 3.1: Shear Rheometer used for fluid characterization

42
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Figure 3.2: Suppression of shear thinning at 20○ by adding NaCl to Glycerol-Water-PAM solution, λ : Carreau-Yasuda

tion of a viscoelastic fluid. As the relaxation time is a strong function of molecular weight and NaCl
reduces it, we will use Polyacrylamide(PAM) with a molecular weight of 18 × 106g/mol based on Ta-
ble.2.1. 0.5 − 1Wt% NaCl will be used to neutralize some charges in the polymer thereby reducing
the shear thinning but with some relaxation behaviour (based on [106]), an example of this behaviour
can be seen in Figure.3.2. Initially, glycerol is measured for its viscosity and corresponding purity is
estimated. The base solution is then prepared by adding ≈ 56Wt% glycerol with the rest of the deion-
ized water in a closed container. Unfortunately, the zero shear viscosity measurement was not in the
sensitivity limit of the Rheometer to measure overlap concentration. However, looking at Table.2.1, the
typical dilute concentrations used were 100-400 ppm in both pure water and Glycerol in the presence
of NaCl. PAM of desired concentration with 0.5 − 1Wt% of NaCl are added to the base solution. They
are allowed to mix using magnetic stirrers at room temperature for approximately 6-12 hours, on the
basis of visual inspection for the presence of any inhomogeneous blobs of polymers.

3.1.2. Fluid characterization
To characterize the prepared solution, let’s list the procedure in steps as follows,

(A) The viscosity of prepared fluid is measured at temperatures 10 − 40○C with intervals of 10○C
(B) The shift factor aT is estimated using equation 2.57 with 20 ○ as reference (lab temperature).
(C) By fixing an angular frequency of 10 rad/s (assuming an order of λ = 0.1 s based on Table.2.1),

an amplitude sweep is performed to identify the strain limit for the linear behavior of the fluid at
different temperatures.

(D) With an amplitude (typically 0.1 strain) less than the identified limit, the frequency sweep is per-
formed to find the curves of G′ and G” versus the angular frequency.

(E) Using the Time-Temperature superposition principle as discussed in section 2.8.2, we use aT as
shift factor for angular frequency and an empirical factor bT for the moduli to make the master
curve.

(F) Finally, the Oldryod-B model with 3 modes is fitted to the master curve and relaxation time is
calculated as discussed in section 2.10.1

3.1.3. Preliminary experiments
In order to identify and characterize the fluid for the vortex shedding experiments, a set of preliminary
rheological experiments were performed in the aforementioned manner. The results are discussed in
the following sections
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(A-B) Viscosity measurements
As a first step, the base solution was prepared by mixing 56Wt% (50 volume %) of Glycerol and the
rest with water. Then, splitting into separate batches, PAM of concentrations 100,300,400 ppm were
prepared. The weight of the solutions was measured and 1 Wt%NaCl was added to each batch.
By measuring viscosity at different temperatures, the shift factor is calculated and cross-checked by
looking for positive constants C1, C2 in William-Landel-Ferry model as shown in Figure.3.3. For this,
mean viscosity for shear rate>20s−1 is used, avoiding the noisy measurements.

Figure 3.3: Viscosity measurement and shift factor estimation
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(C) Amplitude sweep
The amplitude sweep, with a constant angular frequency of 10 rad/s, was conducted in the same way
as the viscosity measurements, for the corresponding PAM concentrations. It has been found that
the fluids were behaving in the linear viscoelastic range for shear strain < 1, in all the concentrations
measured. Unfortunately, the measurements for 100 ppm is noisy at high temperatures mainly because
of the sensitivity limit of measurement device. Therefore, 100 ppm is not pursued further. The results
of the amplitude sweep is shown in Figure.3.4

Figure 3.4: Amplitude sweep of the prepared fluids

(D-F) Frequency sweep
Once, the strain amplitude limit was found by amplitude sweep, frequency sweep was carried out with
a shear strain amplitude of 0.1. Then the previously estimated shift factor aT is applied to the angular
frequency and an empirical factor bT was applied to the moduli to make the master curve. Thereafter,
equations 2.62 and 2.61 were fitted to the master curve and the relaxation times were estimated as
model constants. The fitting was done with Levenberg-Marquardt algorithm for minimization of the least
squares using SciPy.optimize.curve_fit. For 300ppm, data at 40○C was not used in fitting as the data
for storage modulus was off from the curve, mainly because of noisy measurement due to low modulus
at high temperature. The results are shown in Figure 3.5.

3.1.4. Shear Relaxation time
All the above procedures were repeated for a lower Glycerol concentration of, 42Wt%and the relaxation
time was estimated. However, due to the space constrain, we report the final relaxation time without
each graph in steps. The Oldroyd-B shear relaxation (λs) time was found to be a very weak function of
Glycerol concentration and a strong function of PAM concentration. The identified relaxation times are
reported in Figure 3.6
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Figure 3.5: Frequency sweep, Oldroyd-B fit after applying Time-Temperature superposition principle
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Figure 3.7: Experimental setup for pendant droplet - filament thinning experiment

3.2. Extensional Rheology
As we discussed previously, vortex shedding involves both shear and extensional relaxation behaviour.
To identify the extensional relaxation time, we use a pendant droplet setup and allow the droplet to fall,
resulting in thinning of the filament between the falling droplet and the liquid in the needle. For this pur-
pose, an optical goniometer (used for contact angle measurements in droplets) wasmodified with a high
frequency camera and brighter light source as shown in Figure3.7. The syringe pump was controlled
using SCA-20 software, an LED light source was kept against the droplet and a Photron-Nova-s12
camera (CMOS sensor) with a long-distance microscope (Navitar 2x - telecentric zoom system) was
used to record images at 1000 Hz. The camera was controlled with PFV4 software and the calibration
was carried out using the needle diameter (≈ 0.51 mm, Magnification : 0.0096 mm/pixel), assuming
no optical aberrations. The recorded images were further processed using a subpixel edge detection
algorithm based on the partial area effect [160]. The evolution of filament thinning due to the falling
droplet is shown in Figure3.8. The minimum diameter of the filament found using edge detection was
fitted to equation 2.64 and extensional relaxation time was estimated.

Figure 3.8: Evolution of filament thinning due to a falling droplet (56Wt% Glycerol, 300ppm PAM, 1% NaCl)
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Figure 3.9: Filament thinning behaviour of 56Wt% Glycerol, 300ppm PAM, 1% NaCl

3.2.1. Extensional relaxation time
Initially, filament thinning is dominated by gravity-driven inertial force and capillary forces(Bo = ρgR2

mid

σt
≤

0.16). Then, exists a region of exponential thinning dominated by elastic and capillary forces (with a
polymer-chosen constant strain rate of 2/3λ). The viscous forces are negligible, as discussed in Section
2.10.2. An example of a filament thinning graph is shown in Figure.3.9. The extensional relaxation
time λe is determined with Oldryod-B model for extensional thinning in elasto-capillary regime and
this procedure is repeated for other batches as in Figure.3.10. The extensional relaxation time λe
for different PAM concentrations and Glycerol concentrations can be found in the Figure. 3.6. Now,
compared to the shear relaxations in the same figure, it is notable that the extensional relaxation time
scales are smaller than the shear relaxation time scales.This trend agrees with the data tabulated in
the literature.

3.2.2. Choice of concentration
Ideally, we would choose a concentration within the overlap limit using simple equations as a function of
polymer added viscosity, however in the presence of NaCl, such relations become invalid. Furthermore,
our rheometer cannot measure zero shear viscosity due to high noise, preventing us from quantifying
it. Therefore, based on the results of shear and extensional rheology, we empirically choose a PAM
concentration of 300ppm (for experiments). We assume this is dilute, as we need to have sufficient
relaxation time in a constant viscosity solution and also does not result in entanglement behaviours.
This assumption can be further cross-checked in extensional filament thinning experiments, based
on whether the elasto-capillary slope can be captured simply by using a single dominant relaxation
time[161].
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3.3. Experimental setup
Since we are interested in an accelerating flat plate, we need an electro-mechanical system that pro-
vides translational motion and also controllable using a serial port. For this purpose, we use IMS
MDrive-17 plus stepper motor with motion control driver with a resolution of 51200 steps/rev. This is
attached to a linear traverse of 38 cm length, with a conversion factor of 2.54 mm/rev, resulting in a
net resolution of approximately 4.9 µm/step. In this configuration, the maximum possible theoretical
velocity is 0.177 m/s and an acceleration of 74.4 m/s2. Once the traverse is ready for operation, we
need the plate and tank that operate without any wall effects on fluid phenomena. Blockage ratio (BR)
is a major parameter that affects the flow phenomena, and it can be defined as

BR =
Ap

At

whereAp is the projected area of geometry andAt is the cross-section area of test section.Theoretically
blockage ratios anything above zero affect the flow in terms of pressure distribution, drag for any bluff
body making it a confined flow. But in actual experiments that’s not possible, so a blockage ratio < 6% is
preferred[162]. Taking the lab space into account, we decided to use a normal flat plate with horizontal
chord length of 30mm , vertical span length of 60mm (AR = 2) and thickness of 3mm; whereas the tank
dimensions are 50cm(l)× 13.5cm(b)× 32cm(h). The fluid is filled to a height of 24cm leaving remaining
height to avoid spilling of fluid, resulting in an effective BR ≈ 5.5%. The mid-span of plate was placed in
the middle of the tank, with approximately equal heights from top and bottom interfaces. Furthermore,
the initial position of the plate was placed 6cm from the wall to avoid wall effects, although the flow would
not develop instantaneously. The structural element of the set-up was built using an X95 aluminum rail,
while the plate and tank (thickness of 5 mm) were made using laser-cut acrylic sheets.

3.3.1. Force sensor
In order to measure forces, we use a YZC-131 1 kg load cell along with HX-711 amplifier controlled with
Arduino Uno with an acquisition frequency of 80Hz (after lifting the ground connection of the RATE pin
on HX-711 and connecting to the power input). A hollow stainless steel rod of length 25cm , diameter
6mm and thickness 2.3mm was used to connect the flat plate to the force sensor, which was connected
to traverse using a right-angled steel plate. After being connected to the plate, the force sensor was
calibrated using four known weights, which were measured using a high-resolution weighing scale.
The calibration graph of the force sensor is shown in Figure.3.11 and corresponding slope is 5.17×10−6
N per unit signal. Before the start of measurement, the force sensor was systematically given 20s to
settle down the initial signal drift. Both the force measurements and PIV trigger were synced using the
arduino digital output, while the linear traverse and arduino were both controlled using pySerial module
of Python.

Figure 3.11: Force sensor calibration curve (dots: measured data, line: linear fit)
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3.3.2. PIV setup
Once, the above steps were performed, PIV system was set up. Our PIV system consists of seed-
ing particles, recording camera, 45○ mirror, double pulsed Nd:YAG laser, Programmable Timing Unit
(PTU) and DaVis 8.4 software as shown in Figure.3.13. The simplified setup schematic is shown in
Figure.3.12b.

Field of View
We are interested in the vortex dynamics of the starting vortex at the mid-span, which would form by
T ∗ = 4[23], however, to be safe with the design, we choose a field of length T ∗ ≈ 10 corresponding
to 30cm. Assuming each side vortex reach a distance equal to one chord length from the plate tip
eventually, we assume a Field of Width 3Lc ≈ 9cm. Thus, the choice for total Field of View is 30cm×9cm

Camera
Although we are interested in large-scale vortex, we would look for a frequency of around 150Hz as
a means of safely understanding the evolution of vortex by at least 100 frames within formation time,
assuming a steady velocity (impulsively started) of 0.1 m/s. For this Field of View and frequency, we
use LaVision Imager pro HS camera (CMOS sensor) with 2016 x 2016 pixels. Since, we are interested
at the mid-span to avoid tip effects, our view should be from the bottom of the tank which means the
lens should look upwards positioning the camera along vertical axis. However, this setup would be
unsafe to camera due to potential spilling of liquid. Therefore, we use a 45○ inclined mirror that projects
the field of view to horizontally aligned camera. Now to achieve sufficient magnification, we chose
Nikon-35mm lens by trial and error.

Seeding particles
It was estimated using literature [163] that the 50Wt% Glycerol-water mixtures typically have a density
of around ρ ≈ 1150kg/m3. Therefore, we use the available Sphericel 110-P8 hollow glass spheres
as seeding particles due to a close density (to be nearly neutrally buoyant) of ρp = 1100kg/m3 and
mean diameter of 11.7µm. The volume of particles was empirically chosen by slowly increasing the
concentration and looking for sufficient particle concentration through DaVis window.

Illumination
The particles were illuminated using a Double-pulsed Nd-YAG laser (Quantronix, Darwin Duo) of wave-
length 527nm. When the trigger signal comes from PTU to Q-switch of the laser, the pulse is emitted
and this is redirected to the mid-span axis by using two inclined mirrors (Thor labs). Once, the laser
beam is in the proper axis, an optical setup of spherical lens (500mm) and cylindrical lens (-25mm)
were used to convert the beam to laser sheet required for illuminating the Field of View. The camera
and laser are connected to a PTU (LaVision), which is controlled using the computer through DaVis soft-
ware. The signal for PTU comes from both DaVis and Python such that the camera, force sensor, linear
traverse and laser are synced. A complete flow chart of the signal flow is illustrated in Figure3.12a.

(a) Control configuration of PIV setup

(b) A simplified diagram of the
experimental setup
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Figure 3.13: Experimental setup with PIV system

Calibration
When we record the images through camera, they are stored as pixels. In order to convert them to
real world co-ordinates, calibration has to be done. For this purpose, we use dots of 3mm with 10mm
from each other printed over a rectangular acrylic sheet (47mm × 10mm). This is sheet is aligned in
the Field of View , illuminated by a bright LED light source and the frames are captured. These images
are processed in DaVis to make a 2D polynomial fit for converting pixel data to mm in the Field of View.
The calibration target used for our experiments is shown in Figure.3.14.

Data acquisition settings
The recording parameters such as frame rate, exposure time and trigger control were specified using
DaVis software. An external trigger was specified such that a digital signal from arduino would start the
recording process, however 10 additional images before the trigger was included in order to account
for any signal delay. The image frame rate was varied around 200-400Hz for different accelerations
and terminal Reynolds numbers providing nearly 2000 images. These are further subsampled during
post processing to provide approximately 300-400 frames for each experiment. The recordings were
done in single frame-single exposure mode with an exposure time of 99 µs.

Processing
Once, we have the images, displacement vectors have to be found for estimating the velocity vectors.
As a first step, we employ a geometric mask such that only the required Field of View is included for
PIV processing. For estimating the displacement vector, we split the entire filed into small interrogation
windows and look for how the particles of the same window have displaced between subsequent im-
ages. In each interrogation window, we look for high 2D cross correlation value between light intensity

Figure 3.14: PIV calibration target
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(scattered by particles) signals of subsequent frames, thereby estimating the directional displacement.
The images were processed sequentially with 5 passes of cross-correlation , in which first 2 passes
were of interrogation window 48×48 pixels and the last 3 passes were of 24×24 pixels with 50% overlap
between adjacent interrogation windows. It is based on the idea that more passes would provide better
accuracy and signal-noise ratio. Initially it applies the standard cross correlation to estimate the zeroth
order displacement and using that vector, the interrogation window of second image is shifted/deformed
to apply cross correlation again. Now, the first order displacement is estimated and by repeating this
process, we can reach a higher orders of displacement at eventual iterations. Finally, total displace-
ment is calculated as the sum of all orders of displacements in previous iterations . Pixel-locking is a
major source of bias error in PIV as the size of pixels are sometimes smaller than or equal to particle
image size resulting in correlation peak toward integer pixel values[164]. In this study, slight defocusing
of objective lens to increase the particle image size was used as a mitigation strategy [165]. The size
of particles were visually checked to be around 3-6 pixels to ensure that pixel-locking would not be a
major source of error in our cases.

Vector-post processing
Once, the vectors are estimated, they are post processed in multiple steps such as deleting the vector
if peak ratio is lesser than 1.1 (high noise), applying (3x) universal outlier detection based median filter
(5x5 vectors) to remove vectors with residual (Velocity fluctuation normalized by, median of 8 neigh-
bouring fluctuations lowest being 0.1pixel) greater than 2[166], choosing the second/third correlation
peak if it agrees with median of neighbouring points and finally filling up the empty vectors by planar in-
terpolation[164]. The increment in frames (net∆t) is chosen based on whether more than 95% vectors
are of first choice with least frames,but resolved enough (1.95mm/vector) to capture vortex evolution.

3.4. Design of experiments
To understand the effect of viscoelasticity with respect to Newtonian, we need to perform experiments
in both the identified viscoelastic fluid and viscosity-matched Newtonian fluid. Therefore, viscoelastic
fluid of 56% Glycerol-water mixture, 300PAM and 0.5% NaCl of total volume 17.5L was prepared in
the lab. Similarly, a viscosity matched fluid of 69% Glycerol-water mixture with same volume was also
prepared for one-one comparison. It can be noticed that 0.5%NaCl is used here, this is because we
observed that the effect of more NaCl addition is negligible beyond a certain concentration. However,
these fluids were prepared and characterized before the PIV experiments to measure viscosity ,density
and relaxation time. The density of these fluids measured using Anton Paar DMA-5000 density meter
were found to be 1146kg/m3 for viscoelastic solution and 1176kg/m3 for Newtonian solution. The mean
viscosity (shear rates: 30-100 s−1) and shear relaxation time were measured to be η ≈ 19.5mPa.s and
λs = 0.135s as discussed previously, the viscosity and frequency sweep plots are shown in Figure3.16.
Since,the values are closer to the preliminary results, we will use the previously estimated extensional
relaxation time for 1%NaCl, assuming similar flow behaviour.
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Figure 3.16: Design of experiments by changing Ret and T ∗a ,Wit applicable to viscoelastic cases

3.4.1. Parameter sweep
Once, the complete setup with the fluid was ready, the choice of parameters was decided. For these
fluids, the maximum Re possible with our setup was found to be 225, although acceleration was not
a limiting factor. Therefore, we vary the acceleration for a target terminal Reynolds number Ret, by
changing non-dimensional acceleration distance T ∗a = Sa/Lc (Sa: Distance travelled), as acceleration
is related to Re(t) by

√
α = Re/

√
2T ∗. Then, each

√
α corresponds to an equivalent, De as shown in

Figure.3.16b. The non-dimensional acceleration α, that we defined before, will be used with square
root for ease of numerical representation. Viscosity ratio defined as βr = (η − ηsolvent)/η is another
important parameter used to characterize a viscoelastic fluid apart from stress based non-dimensional
numbers[90]. The Elasticity number,El = 2.46 × 10−3El = 2.46 × 10−3El = 2.46 × 10−3 and viscosity ratio βr = 0.57βr = 0.57βr = 0.57 are kept constant in
all our cases as the chord length and viscoelastic fluid were not changed.

Force measurements
Using T ∗a and Re, the experiments were designed as shown in Figure.3.16a and a Python notebook
was prepared to automate the kinematics-Mcode conversion, Loadcell-Traverse-PIV communication,
and data-storage such that the fluid choice, Ret and T ∗a were the only inputs for each experiment. As
we have previously mentioned, the plate is connected to the load cell using a hollow steel rod, which
might contribute to both steady and unsteady forces. Therefore, a set of experiments were performed
using a similar rod without the plate blinded section with respect to free stream (see Figure.3.17). The
raw signals from the plateless case Fwithout_plate, were subtracted from the flat plate case Fwith_plate,
to isolate the net forces acting on the flat plate Fnet_plate . Finally, the force due to the remaining
structural massmrest (plate+bolt+nut mass) was subtracted from the net plate force during acceleration
T ∗ = 0−T ∗a , to obtain the hydrodynamic forces (see Figure.3.17).The final results of the hydrodynamic
forces acting on the plate will be used for further discussion.

Fnet_plate = Fwith_plate − Fwithout_plate

mrest =mwith_plate −mwithout_plate

Fhydrodynamic = Fnet_plate∣
T ∗a
0 −mresta (3.1)

Figure 3.17: Rods with and without plate used for force measurements
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(a)
(b)

Figure 3.18: a)Positive FTLE field for double gyre at A=0.1,ϵ = 0.25 taken from[169],b)LAVD field for bickley jet taken from
[168]

3.5. Data analysis
After the experiments were done, velocity data has to be further processed in order to extract the
coherent structures. For this purpose, we will be using FTLE fields, LAVD and Q-criterion. Therefore,
it is first important to validate our codes for FTLE and LAVD with synthetic cases from literature. We
use Double gyre [153] and Bickely jet [167] for FTLE and LAVD respectively, the functions can be
found in the given references. These two are cases are used as a standard to compare different vortex
detection methods throughout the literature [168].The standard results from literature are presented in
Figure.3.18

3.5.1. Application of FTLE
The results from our FTLE codewere qualitatively validatedwith literature (see Figure.3.18, Figure.3.19),
whereas the choice of free parameters used for Double gyre are A=0.1, ϵ = 0.25, step-size for numerical
integration is 0.01s , 15s of integration length and 10s of advection period. Themaxima normalized FTLE
contour integrated in positive direction and the bidirectional ridges (defined here as highest quarter of
FTLE values) are shown in Figure.3.19. In our experiments, we use minimum eigen values of hessian
matrix and thresholding (typically >0.5-0.7 of extrema) to define these ridges. Sometimes, when the
integration time is not enough to calculate thin ridges as in our cases, we end up with thick ridges.
To resolve this issue , we use medial axis transform using Python’s skeletonize algorithm (skimage
package).

3.5.2. Application of LAVD
The Bickley jet parameters used were 62.44 m/s, L=1170km and r0 as radius of earth (6371km) ,
whereas the center of the vortex cores were identified using maximum LAVD values and the boundary
is defined as a closed contour boundary with maximum area. The boundary and centre of the vortices
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Figure 3.19: Maxima normalized positive FTLE field (left), positive and negative ridges defined by maxima normalized FTLE
values of 0.75 (right)
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identified using LAVD is shown in Figure.3.20a (compared to Figure.3.18). Although LAVD is widely
used for vortex detection and tracking, it uses angular displacement over an integration time and this
eventually gives a structure that was coherent throughout that period. Then LAVDmaxima is chosen as
the centre, and boundaries are detected based on convexity deficiency and closed contour with maxi-
mum area surrounding the centre. Convexity deficiency is the deviation from its convex hull, which is
defined as the smallest convex polygon having all points inside or at boundary. This approach although
provides a robust approach for material coherence, a starting vortex is entraining and detraining the
mass over its formation [168] which we are interested in. Therefore, the direct application of LAVD in
this study will be limited to detecting a formed vortex ( defined based on FTLE-saddle point velocity)
and advecting the fluid parcels inside to see how they evolve over time.

3.5.3. Frame transformation
As a first step before any analysis, we transform the laboratory frame into plate frame by subtracting
the plate translational x-velocity up from x-component of fluid velocity u and tracking the plate with a
fixed frame of 3.5Lc with plate centre as the origin.This simplifies the analysis as if it is a flow past a
flat plate and this difference can be clearly seen in streamlines as it is frame dependent[17]. For a few
initial frames, we use ghost cell padding of free stream velocity to achieve this. An example case of
streamlines before and after transformation is shown in Figure.3.21. Note that all T ∗ values provided
in the title are with respect to lab-frame and in the axis are with respect to plate-frame.
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Figure 3.21: Frame dependent streamlines for
√
α = 290.47, Ret=225
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Figure 3.22: Circulation in frame for
√
α = 290.47, Ret=225

3.5.4. Analysis limit
Since, we are using a 2D-2C PIV data, we do not want out of plane flow features to be present. There-
fore, to cross-check we invoke Kelvin’s circulation theorem for inviscid fluid, assuming the viscous
dissipation rate is small relative to inertial effects in a forming vortex. By conservation of circulation,
the total circulation should remain zero for negligible viscous dissipation and without, out of plane flow
features. So, we first split the domain into upper half and lower half to look at total positive and negative
circulation in the domain. We also look at the net circulation to choose the frame limit of our analysis
(Typically T ∗ = 8) to make sure we do not have any third dimensional structure in the system. An
example of total circulation in domain is shown in Figure.3.22. In all our cases, circulation is calculated
as a surface integral of vorticity. Although, the acceleration distances T ∗a can be much smaller, we
analyse the whole evolution process of a starting vortex.

3.5.5. Vortex detection method-1
The first method that we tried was simply to use same conditions of vortex boundary detection in a LAVD
field, but we use it over +Q criterion and centroid of this boundary is used to detect vortex location.
This method suffers from a disadvantage that the convexity deficiency is given as a user input and
it continuously varies for a forming vortex. Although, we extracted some results with this approach,
they were found to be highly sensitive to the shape of the chosen boundary and convexity deficiency.
Nevertheless, this method helps us in understanding the aspect ratio (ARv = xmax/ymax) of the vortex
to a reasonable extent as the boundary is defined, and these definitions does not seem to affect the
aspect ratio. In this study, we will use this method only to define the aspect ratio.

3.5.6. Vortex detection method-2
The second method that we employed is to utilize the saddle point. The intersecting point of forward
integrated FTLE and backward integrated FTLE is called a saddle point.It can be seen that the positive
and negative FTLE ridges form a closed region around a vortex (see Figure.4.7c), signifying the dynam-
ical distinction. Therefore, we utilize the saddle point location to detect the horizontal boundary of this
distinct region and plate centre for the vertical boundary, since we have symmetrical vortices. Although
this detected region is dynamically distinct, it does not mean a vortex, as it also includes a high shear
region inside this region (see section 2.13.2). We cross verified this by applying the Q-criterion and
observed that it had regions of both rotational and shear dominance. Therefore, we use the Q-criterion
with Q>0 to isolate regions of rotational dominance to detect the vortex, and this approach is found to
work well even for a filamented forming vortex. An example of aforementioned methods in plate frame
of reference are shown in Figure.3.23. Note that in this study, we will analyse only the Y+ side vortex
assuming symmetry.
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Figure 3.23: Vortex detection methods based on Q-criterion vortex boundary and saddle bounded Q-criterion for
√
α ≈ 290.47

3.5.7. Vortex detection method-3
Although vortex detection by using method-2 gives the circulation similar to method-3 (see Figure.3.24),
it results in large noise when we calculate kinetic energy, for example. The reason behind this is that the
vorticity is highly concentrated in the vortex core, and it is expected to be negligible outside the vortex
core. Therefore, circulation calculation based on vorticity is less noisy, however this logic does not
apply to kinetic energy, as regions outside the vortex core also has their own kinetic energy. To avoid
this, we fit the Lamb-Oseen model (Equation.2.7) after applying method-2 to extract the equivalent
ideal vortex diameter dv, we use dv and the aspect ratio from method-1 to further constrain the region
to reduce the free stream noise. Note that we do not apply this for slowly accelerated cases, as the
vortex forms much later and free stream noise using method-2 is negligible there. Thus, vortex region
is separated without contours and an example of Lamb-Oseen fit is shown in Figure.3.20b.
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Figure 3.24: Comparison of circulation calculated by Method-3 and Lamb-oseen fit shows that circulation calculation is
unaffected by remaining noise



4
Results & Discussion

Now that we have the experimental data, let’s revisit our research questions.

• How does viscoelasticity and acceleration affect vortex dynamics in a starting plate?
• How are forces affected by the presence of elastic forces and acceleration?

Understanding vortex dynamics will eventually help us to understand the changes in forces, therefore
first we look at the vortex dynamics from the PIV data, followed by force measurements.

4.1. Vortex dynamics
In order to understand the basic difference in vortex dynamics due to acceleration, we analyse the
vorticity field in Newtonian fluid. Then we look for comparative (Newtonian vs Viscoelastic) details
during the evolution of vortex ring using FTLE saddle points, LAVD, vortex core circulation, vortex ring
energy, vortex ring/core size, and vortex velocity. Furthermore, to simplify, we will present results only
Ret : 225,150 (refer Figure.3.16a) to also represent differences due toWit or Ret .

4.1.1. Vorticity field
High acceleration cases
Among the Newtonian cases, we choose two accelerations, representing higher acceleration T ∗a = 0.3
and lower acceleration T ∗a = 4 (refer Figure.3.16a). Since, the vortex has to be formed by T ∗ = 4
according to universal vortex formation distance, let’s examine the vorticity field with T ∗ = 4. Note that
we use non-dimensional vorticity, defined as ω∗ = ωLc/Up in the following figures. From Figure.4.1, it
can be observed that asRet increases, the vortex core is more tightly pronounced in impulsively started
cases (T ∗a = 0.3).Although the accelerations are different, we seeRet as the affecting parameter of core
size, since the acceleration distance/time is extremely small.At high accelerations, the vortex rolls up
and eventually pinches off, after a certain point, as reported in literature.
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Figure 4.1: Ret = 150,225 at T ∗ = 4 representing impulsively started cases with T ∗a = 0.3
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Low acceleration cases
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Figure 4.2: Ret = 150,225 at T ∗ = 4 representing slowly started cases with T ∗a = 4

On the otherhand, the lower acceleration cases in Figure.4.2 seems to be having a region of shear
without rolling up, although the Re has reached the same as high acceleration cases. To cross verify
this, let’s take a closed contour of a completely formed structure using LAVD and advect those fluid
parcels backwards to see the type of motion they experience. In Figure.4.3, we choose the fluid parcels
(black dots) inside closed contour at T ∗ > 6, one representing high acceleration cases (T ∗a = 0.3) and
another representing low acceleration cases (T ∗a = 4). The idea behind choosing T ∗ > 6 is to have
a closely common dimensionless-timescale where coherent closed contours can be observed. Now,
we advect the chosen fluid parcels (black dots) backward in time T ∗ = 4 (white dots) to see how
they have evolved over time in a Lagrangian frame. It can be observed from Figure.4.3 that at high
accelerations the separated fluid parcels undergoes a spiralling motion at a few chord lengths, but the
slowly accelerated fluid parcel seem to extend downstream as a thick sheet which we can think of as
an unrolled separated shear layer.

Figure 4.3: Comparing evolution of coherent fluid parcels using LAVD backward advection (Newtonian)

Unusual vortex formation
Do these slowly accelerated cases ever roll up? They do, but in an interestingly different manner. At a
longer time, we observe a kink in this shear layer around one chord distance downstream the plate. The
kink eventually breaks one side of the shear region, to rollup into a vortex, as shown in Figure.4.4. Now,
to understand the reason behind this unusual rollup and overall effect of viscoelasticity in parameter
space, let’s distinguish the process of vortex shedding into boundary layer separation, shear layer
roll-up, vortex formation and Pinch-off as discussed earlier [33].
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Figure 4.4: Vortex pinch-off for Ret = 225 representing slowly started cases with T ∗a = 4

4.1.2. Boundary layer separation
As discussed in section 2.2.1, we use equation 2.12 to estimate the thickness of the boundary layer in
the stagnation region before separation, as this eventually affects the strength of the shear layer formed
after separation, further affecting the core formation at T ∗ < 1[24]. The boundary layer thickness in the
stagnation region, assuming quasi-steadiness, is shown in Figure.4.5. It shows that the boundary
layer thickness at such lower acceleration is much larger due to smaller instantaneous Re(t), therefore
we would expect a weaker shear layer due to smaller gradient in lower accelerations. We can also
quantitatively verify this by looking at the instantaneous circulation of the vortex, as in the following
section.
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Figure 4.5: Analytical quasi-steady estimation of stagnation boundary layer thickness (δ)

4.1.3. Shear-layer rollup
By comparing the circulation (Method-2) basedReΓ = Γ/ν [24] in the Figure.4.6, it can be noted that the
lower acceleration cases (T ∗a = 4) have relatively smaller ReΓ at T ∗ < 1 than impulsively accelerated
cases (T ∗a = 0.3). It means that the low acceleration cases are much more dominated by viscous forces,
unlike the impulsively accelerated cases. The circulation data was filtered using linear Savitzky-Golay
filter (9 points average : empirical choice).

Induced motion
According Birkoff-Rott equation for a vortex sheet[18], fluid parcels in a shear layer (assuming it as
a vortex sheet) would induce a motion on other parcels and the sheet itself to roll up. This induced
velocity is proportional to strength of the vortex sheet , which is equal to circulation gradient along
the sheet thickness[17]. We suspect that a weak (small circulation gradient due to viscous effects)
separated shear layer is not able to roll up in such lower accelerations. An existing literature[170] has
also reported that viscosity was found to weaken the vortex sheet rollup process. Though this provides
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Figure 4.6: Comparing (upper) vortex Re(Γ), the viscoelastic cases have steeper slope than Newtonian case

some insight on why it has not rolled up at usual rollup distances, the rest of question remains, why
don’t these cases roll up even when ReΓ reach large enough? We believe this could be an effect of
growing shear layer. Although shear layer growth results in growth of circulation, it may not necessarily
substantially increase the gradient of circulation as the shear layer size also grows over time.

Effect of viscoelasticity
Now comparing viscoelastic effects with respect to Newtonian in Figure.4.6, the ReΓ seem to be larger
in viscoelastic cases with more elastic stress (Wi) compared to their Newtonian counterparts. However,
this difference is observed to be slightly larger in the lower acceleration cases. We hypothesize that this
behaviour is because of the elastic nature of the polymers dissolved, as they tend to pull neighbouring
fluid parcels along (similar to the filament between droplet and needle) when circulation is imparted to a
fluid parcel during entrainment around the boundary of these coherent structures (shear layer/ vortex).

4.1.4. Vortex formation
FTLE saddle position
As we discussed earlier, FTLE saddle points can be used to detect the formation distance of a vortex
core. However, in our case the integration time is unfortunately not enough for calculating thin ridges
to extract those saddle points directly. Therefore, we apply medial axis transform to thin the ridges
and identify the forward and backward FTLE intersection points. These points are tracked using a
combination of nearest neighbour algorithm and visual inspection. An example of identified saddle
point placed over the FTLE ridges is shown in Figure.4.7c and their change in saddle point position
with respect to plate (xp) is shown in Figure.4.7. In high acceleration cases (T ∗a = 0.3,1: Figure. 4.7a)
irrespective of Re, the saddle points start moving away from the plate around the same T ∗ (We define
this as the FTLE based formation time Tf ), whereas in slower acceleration cases (T ∗a = 4: Figure.
4.7b) the saddle point moves relatively much later, with a steep slope for rollup and inclined slope
after formation. Furthermore, in Figure. 4.7a, we can also observe that the viscoelastic cases in high
accelerations seem to have an equivalent slope (marked by black dotted line) to Newtonian cases, but
with earlier saddle point inflection.

FTLE based formation time
We perform a linear fit for saddle point positions to properly measure the points of inflection, and the
results are shown in Figure 4.7d. It was found that the mean formation distance in high acceleration
Newtonian cases was Tf = 2.7 with a standard deviation of 0.13 and corresponding viscoelastic cases
have Tf = 2.3 with a standard deviation of 0.06. This Newtonian formation time agrees closely with the
experimental observations Tf ≈ 2.5 of [25] with AR=2 but high Re. The only exception case where both
were matching was T a=1,Ret:150 was found to be off frommen values in viscoelastic case. The overall
trend in both Newtonian and viscoelastic cases shows that, for cases with acceleration higher than a
critical value, the formation distance is constant, as we would expect from the optimal vortex formation
theory. We define this critical acceleration as the optimal vortex formation limit, as the cases below
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Figure 4.7

this acceleration has varying formation distances larger than the constant values for high acceleration
cases. From Figure.4.7d, we can identify that the limit of optimal vortex formation is

√
α ≈ 75 − 80.

These results for high acceleration cases can be explained by the Figure 4.6 as more the circulation
in viscoelastic cases sooner the formation, whereas for lower accelerations, although the circulation is
higher in viscoelastic cases, the roll up process from a shear layer seem to be delayed in the presence
of viscoelasticity. It is also interesting to note that viscoelastic effects on formation does not seem too
sensitive to Wit in our range 0.38 − 0.57 as long as it is above the optimal vortex formation limit for
acceleration (see Figure.4.7d, Figure.3.16a).

Non-dimensional energy E∗

Kelvin-Benjamin variational principle has been widely used to explain the vortex formation distances,
as we discussed in section 2.2.2. According to Kelvin-Benjamin variational principle, ”A state of steady
vorticity distribution (interpreted in literature as vortex ring) maximizes the total kinetic energy, under the
constraint: hydrodynamic impulse is constant with respect to disturbances that preserve the circulation
of each fluid element[171, 172]”. In other words, it has been explained that the vortex would no longer
take in any more vorticity whenEvortex−ring ≥ Egenerator[26]. In the previous studies, a non-dimensional
energy E∗ is used to characterize this formation and E∗ ≈ 0.27-0.34 has been found to be the limiting
value for both propulsive and drag vortex to completely form [24, 37]. A smaller value of E∗ represents
a region of vorticity that is well distributed with large energy, whereas a larger E∗ during roll-up would
imply a smaller concentrated region of vorticity. Therefore, a fully formed vortex ring is expected to
have the minima compared to earlier stages of formation. Note that in this section, Y-coordinate is
represented as r as stream functions are calculated in radial co-ordinates with plate centre as the
origin. The non-dimensional energy E∗ represents the distribution of vorticity in a vortex core, and it
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can be defined for an axisymmetric vortex ring as[24],

E∗ =
Ev√
IΓ3

(4.1)

Ev = π∬
core

Ψω dxdr, I = π∬
core

ωr2dxdr

where Ev is the vorticity based kinetic energy, I is the hydrodynamic impulse of the vortex, Γ is the
circulation of the vortex, Ψ is the stream function. A statistical way of interpreting E∗ as vorticity distri-
bution was given by the relation [24], 2.3E∗ + 0.5 = std(ωcore)/ωcore; where std(ωcore) is the standard
deviation of core vorticity and ωcore is mean of core vorticity. We perform the analysis of E∗ to explain
the formation process in our cases assuming an equivalent axisymmetric vortex ring, although in reality
is an elliptical vortex ring. The Stokes stream function is calculated by solving[173],

(
∂2

∂x2
+

∂2

∂r2
− ∂

r∂r
)Ψ = −rω (4.2)

A central difference based sparsematrix solved by assuming the far field boundary condition ofΨboundary =
0 [174] and 1

r
« ∂

∂r
far from origin. This formulation highly depends on ω as stream function is also cal-

culated using ω as the source term. Thus, regions of high vorticity (core region) would dominate the
energy calculation.

E∗ based formation time
When applied to our high acceleration cases, we found that the E∗ value was reaching a constant of
≈ 0.2 − 0.3 only by about T ∗ ≈ 4 in both Newtonian and Viscoelastic cases, as shown in Figure.4.8.
However, in slower acceleration cases, it reaches ≈ 0.4 in both viscoelastic and Newtonian cases at
T ∗ ≈ 4 (see Figure.4.8), which is closer to the initial movement of saddle points indicating vortex rollup
from a shear layer as shown in Figure.4.7d. Thus, we can say that rollup in lower acceleration cases
is driven by its need to pinch-off as a consequence of Kelvin-Benjamin variational principle unlike high
acceleration cases where the roll up is due to induced velocity, occurring much earlier T ∗ < 1 than pinch-
off time. Furthermore, higher E∗ ≈ 0.4 in low acceleration cases compared to high acceleration shows
that the rolling up filamented-vortex has vortex core less widely distributed than a fully formed vortex.
In viscoelastic cases, minimum E∗ is slightly smaller, indicating that vortex core is more distributed. On
a larger picture, we can say that there is no significant difference between Newtonian and Viscoelastic
cases on formation time of high acceleration cases. The plateau of, E∗ after reaching the minima,
shows that the vorticity distribution no longer changes in the vortex ring, indicating a steady vortex ring.
Thus, we find that the E∗ minima occurs around, T ∗ ≈ 4 and this compares well with the universal
vortex formation time reported in literature [37].
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Kinetic Energy of vortex core
Although,E∗min at T ∗ ≈ 4 is inline with universal formation distance, it is unclear why FTLE saddlemoves
around T ∗ ≈ 2.3 − 2.7.For this purpose, we use our vortex detection method (method-3 : high accel-
eration, method-2 low acceleration) to extract one core region. Now assuming zero third dimensional
velocity component, we calculate the conventional kinetic energy per unit span defined as ,

Ecore =
1

2
ρ∬

core
(u2 + v2)dA (4.3)

We normalize Ecore using energy per unit span supplied by the plate defined as[18],

Eplate =
1

2
ρu2plate(

π

4
L2
c) (4.4)

Interestingly, we found that this ratio 2Ecore/Eplate, (factor 2 accounting for the two vortex cores)
reaches ≈ 1 (see Figure.4.9a) around same Tf , as measured using FTLE saddle point (see Figure.
4.7d). However, in Figure. 4.7d, we note that viscoelastic cases with very low accelerations have
higher peak values, which we think is due to noise around the vortex as method-3 could not be applied
for an unrolled up case. In general, this formulation based on Evortex−ring ≥ Egenerator[26] explains that
the energy is no longer supplied from plate after Tf (from FTLE saddle points). Usually both of these
energy formulations are considered equal and expected to provide same results, but interestingly they
seem to capture different things of the same process.

Difference in two formulations
So, what is the difference between these two formulations? Ecore can be written as a sum of Ev and a
surface integral term that is assumed to be zero for unbounded flows[18]. Let’s recall that E∗ signifies
the distribution of vorticity in a vortex core. Since the filamented structures outside the core were
captured in method-2, we looked at the corresponding vorticity contour. We found that there was a
filamented +Q tail, connecting vortex and -Q region when the FTLE saddle started moving at T ∗ < 3
and it completely rolls up to become a part of vortex at T ∗ ≈ 4. So, the filament of vorticity rolling up to
become a part of the vortex explains why the E∗ minimum is seen at T ∗ = 4, even though the whole
structure had reached its kinetic energy maximum at T ∗ ≈ 2.7. Furthermore, looking at Γ as Re(Γ) of
T ∗a = 0.3 in Figure.4.10a, it is clear that the circulation has reached closer to its maximum at T ∗ < 3,
although a slight increase is found later. This slight increase could be potentially due to filament rolling
up. This tells us that the majority of vorticity addition to the vortex stops at T ∗ < 3, when the FTLE
saddle starts moving and the vortex ring is completely circular without filamentation at T ∗ = 4 having
maximum distribution.

Two time scales
Thus, in high acceleration cases, the vortex stops accepting vorticity and Kinetic energy first by Tf
(based on FTLE saddle position) ; then forms a free vortex core by rolling the trailing filament into the
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core around the universal vortex formation time (based on E∗ reaching minima with increased vorticity
distribution). This result extends the conclusion of [24], that the vortex pinch-off does not cause the
E∗ to converge to a minimum value. In this study, we add that the kinetic energy of the core reaching
closer to the plate is indeed the reason for pinch-off according to Kelvin-Benjamin variational principle,
however E∗min does not represent that, but instead a filament-free fully rolled steady vortex at T ∗ = 4.
On the contrary, in low acceleration cases the shear layer reaches maximum energy first, and because
of that it rolls up to pinch-off. However, it should be noted that E∗ of shear region at T ∗ = 4 already
reaches the minimum.
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Figure 4.10

Circulation of vortex core
Now that we understand there are two timescales involved, one might wonder when does the vortex
properties like circulation and core diameter reach the constant value as in a steady vortex ring. To
begin with, let’s look at non-dimensional circulation Γ∗. It is defined as the ratio of instantaneous
circulation in the vortex core to instantaneous circulation produced by the plane of plate, Γ∗ = Γ/UpLc,
where Up is the plate velocity. From Figure.4.10, we observe that the circulation growth rate during the
formation process is proportional to acceleration in both Newtonian and viscoelastic cases, although
the growth rate in viscoelastic cases is slightly higher. The maximum value of Γ∗ ≈ 2.3 is reached
around FTLE based formation time with a very slight increase till T ∗ = 4(E∗min) for high acceleration
cases.Furthermore, Γ∗ ≈ 2.3 is surprisingly same as reported in [24] for a cone with much higher Ret =
O(104) , make us wonder if this is universal for all drag vortices just as other quantities like E∗min.

Effect of viscoelasticity in Kinetic energy decay
From Figure4.9 and Figure.4.10 it is notable that dEcore/dt and dΓcore/dt in the presence of viscoelas-
ticity has a significant effect both during formation and after the formation. First, let’s try to understand
how the decay rates are affected by the presence of viscoelasticity (Note: Only using high acceleration
cases). From Figure4.9, It is clear that the dissipation (loss of energy) rate is higher in viscoelastic
cases than the Newtonian cases. In a Newtonian fluid, the Kinetic Energy corresponding to viscous
stress term of Navier-Stokes equation can be written as[18],

ν∭ u ⋅ ∇2u dV = −ν∭ ω2dV − ν∬ n̂ ⋅ u × ω dS (4.5)

where the first term corresponds to dissipation rate and the second one to viscous transport by diffu-
sion, comparing with turbulent mean kinetic energy equation in [17]. Since, energy dissipation rate and
circulation decay rate (see equations 2.5, 2.4) are both strong functions of viscosity in Newtonian, we
try to estimate the differences in the presence of viscoelasticity with respect to Newtonian. From Fig-
ure.4.11a energy decay rate increases with increase inWit (after a drop inWit ≈ 0.24) almost linearly
indicating higher percentage of elastic stress would cause a higher amount of total stress relaxation.
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Figure 4.11

Effect of viscoelasticity in circulation decay
The circulation decay rate is clearly much higher in viscoelastic cases similar to dissipation rate, and
it is notable that the dissipation clearly starts only by T ∗ = 4, the universal vortex formation time when
the vortex ring is completely filament free. We measured the decay rates for different cases using
Savitzky-Golay filter (9 points average, linear) and linear fit. It was observed that the difference in
viscoelastic decay rate is not a function of acceleration, but theWit at which the vortex has pinched off.
Based on equation.2.4, circulation decay rate is simply the action of viscous stress. Keeping that in
mind, we may try to estimate the relation between Newtonian (viscous stress) and viscoelastic cases
(viscous+elastic stress). According to the Maxwell model, the viscoelastic stress decays exponentially
e−t/λ with respect to initial stress, and we rewrite this as e−1/Wi assuming t = Lc/Up. If we write it
as a differential of time to estimate decay rate, it would be 1

λ
e−1/Wi. In real fluids, we would expect

this decay rate to be reaching the same decay rate as in Newtonian whenWi goes to zero, and so we
modify it as 1+ 1

λ
e−1/Wi assuming both had same initial stress as they have similar maximum circulation

in both Newtonian and viscoelastic cases (see Figure 4.10). However, in reality, the total stress in a
viscoelastic fluid would be larger than a Newtonian fluid. Because we apply the same instantaneous
strain rate on a viscoelastic fluid as in Newtonian, but the proportionality is no longer just viscosity but
also should account for elastic nature.In order to estimate the initial elastic stress with respect to the
equivalent Newtonian, we use a constant C1 = C2/λ. We use this idea to fit the decay rate, and we
found that the viscoelastic cases (VE) scale with Newtonian (N) as shown in Figure 4.11a,

DΓ

Dt
(V E) = (1 +

C2

λ
e−1/Wi)

DΓ

Dt
(N) , C2 = 3.03 (4.6)
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We can rewrite this in more simplified form of stresses as,

σV E = σV iscous + σMaxwell (4.7)

This can be interpreted as generalized Maxwell-fluid model that is very similar to Oldryod-B[175], but
using one equivalent relaxation time representing the spectrum as shown in Figure.4.11c. Regardless
of Ret ,

√
α or Wit, the dimensionless circulation eventually reaches a constant value of Γ∗ ≈ 2.3 by

the same T ∗ as estimated using FTLE saddle points, again reinforcing our argument the extra vorticity
is no longer accepted into the vortex core after Tf .

Effect of viscoelasticity in circulation growth
Since, the instantaneous strain rate imposed in Newtonian and Viscoelastic cases are same, we can
estimate how viscoelasticity may affect the vortex growth. Now to understand how the circulation growth
rate is affected, we measured the change in circulation growth rate with respect to Newtonian as in
Figure.4.11b. It shows that the circulation growth rate in our viscoelastic cases is consistently ≈ 28%
higher than Newtonian cases. This explains the faster pinch-off shown by FTLE Tf in viscoelastic case
compared to Newtonian cases as vortex core threshold circulation is reached faster.

Effect of viscoelasticity in Kinetic energy growth
The circulation growth rate is not much affected by acceleration, one may ask how about the Kinetic
energy? Figure.4.11b says that for a given viscoelastic fluid, the energy growth rate may depend on the
acceleration and fluid but circulation growth rate depend only on the fluid. This increase in circulation
and energy rate also explains why the FTLE saddle points move earlier compared to Newtonian cases
at high

√
α as vortex growth thresholds are reached earlier. However, it is still intriguing why all the high

acceleration cases have clear start of decay at T ∗ = 4, when the E∗ values reach constant. This would
reiterate our hypothesis that the circulation and kinetic energy reaches their maximum at T ∗ = 2.3 (VE)
measured using FTLE saddle points and the vortex completely becomes freely steady at T ∗ = 4.

Vortex core diameter
The total stress acting on a free vortex act to diffuse and dissipate the energy according to equation.4.5.
The net viscoelastic effect on the viscous stress is captured by circulation decay rate (see equation 2.4),
whereas the viscoelastic effect on energy dissipation component of the viscous stress is discussed in
energy decay rate for a vortex core. Now, the question is, how about the viscoelastic effect on diffusion
in vortex core?
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(b) Dimensionless vortex core diameter for Ret = 150

Figure 4.12

In order to see how much of the above discussed stress relaxation affects the diffusive properties of
the vortex, we look at the vortex core diameterDcore found using Lamb-Oseen fit, as the diffusion would
indicate spreading of the vortex core. One might wonder, how can Lamb-Oseen work for viscoelastic
cases? Although it is no solution for viscoelastic, we assume that the core is distributed as Gaussian
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and the diffusion timescale (core radius) is only affected because of viscoelasticity. Since, the vortex
rolls up till T ∗ < 1 in high acceleration cases and T ∗ < 5 in low acceleration cases, we restrict this
analysis only after the vortex is rolled up as we cannot measure the diameter for a shear layer. From
Figure.4.12a and Figure.4.12b, it can be observed that for high acceleration cases at given Ret, the
core is consistently around 0.6Lc for T ∗ > 4 with highest Wit = 0.55 case alone slightly decays at
higher rate. However, the effect of Ret can be observed before the universal vortex formation time
indicating the low Ret = 150 is relatively more diffused with Dcore/Lc ≈ 0.8 whereas the Ret = 225 has
a tighter core during formation withDcore/Lc ≈ 0.6. The overall trend is that during formation, the vortex
core diameter is not much affected by the presence of viscoelasticity. The Dcore was observed to have
reached its maximum value by the same Tf as measured using FTLE saddle point, similar to circulation
and kinetic energy. Now, looking at lower acceleration cases, the vortex diameter consistently rolls up
into 0.8Lc and resulting in an immediate decay despite Ret orWit.

Decay dominated by dissipation
Since both circulation and diameter decays faster at high Wi, let’s compare Figure.4.12a and Fig-
ure.4.10b, for the highestWit = 0.55 and acceleration (

√
α ≈ 290), the circulation reaches closer to half

it’s maximum value by T ∗ = 7 similar to diameter. This tells us that both are caused by the same mech-
anism. If that mechanism is dominated by diffusion, we would expect an increase in diameter rather
than a decrease. So, we can say that the effect of diffusion in a fully formed vortex is smaller than
dissipation. Thus, viscoelasticity enhances the dissipation rate of a fully formed vortex ring, causing a
faster decay of circulation and energy.
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Figure 4.13

To define a vortex ring, vortex core diameter and the vortex ring diameter are both important. Al-
though we core diameter was estimated, the ring diameter is not straightforward due to AR effects as
our vortex ring eventually deforms in the perpendicular direction similar to Figure.2.9 having different
diameters in different axis. So, in this analysis we limit ourselves to the mid-span and estimate the
radial extent of the vortex ring using D∗ = Dv

Lc
, where Dv is calculated with Y co-ordinate as r axis and

centre of chord as origin[24],
D2

v

4
= ∬

ωr2drdx

∬ ωdrdx
(4.8)

From Figure.4.13a,it can be observed that the diameter is dependent on Ret and the effect of acceler-
ation is seen only in low accelerations. The consistent rise in the diameter tells us that the vortex ring
keeps deforming, with the major axis in the radial direction of the measurement plane. This effect is
because of different induced velocities along chordwise and spanwise directions, as they have different
lengths. The equivalent diameter of the vortex ring is estimated as D∗ at T ∗ = 4 [25].Comparing the
Newtonian and viscoelastic cases at T ∗ = 4, we can observe that the viscoelastic cases have larger
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ring diameter. This can be interpreted as amplification of radial diffusion as the new factor in the Equa-
tion. 2.9 would scale up the equivalent of viscous timescale, similar to scaling of circulation decay rate
in the presence of viscoelasticity.

Vortex core translation
So far we observed that E∗,2Ecore/Eplate,Γ∗, Dcore/Lc reaches a constant value indicating vortex for-
mation, atleast in high acceleration cases. In [24], it has been reported that Uvortex/Uplate was also
reaching a constant value in circular vortex ring cases, so it will be interesting for us to look for the same
in our cases of elliptical vortex rings. Throughout the formation process of an elliptical vortex ring, we
need to directly measure. We calculate the X co-ordinate of vortex core centre with respect to origin in
mid-chord as[173],

Xv(Plate-Core) = ∬
r2xωdrdx

∬ r2ωdrdx
(4.9)

We observed thatXv (Plate-Core) has a slope till 1 < T ∗ < 3 and another slope 3 < T ∗ < 5 indicating two
different mean velocities. Therefore, a linear fit is performed around T ∗ = 3 and T ∗ = 4 to calculate
the mean translational velocities with respect to the plate. Then, we transform this to lab-frame to get
the core translational velocity in Lab-frame. From Figure.4.14, it can be observed that the differences
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Figure 4.14: Dimensionless Translational velocity Uc/Uplate

between viscoelastic and Newtonian cases are negligible, however the velocity T ∗ = 4 is consistently
higher as the vortex still follows the plate but no longer pushed away from the plate as an effect of
formation or rolling up process. The vortex core translational velocities (Lab-frame) in high acceleration
cases are found to be around 0.6Uplate − 0.8Uplate, whereas the low acceleration cases have Uc =
0.8Uplate − 0.9Uplate. Overall, the vortex velocities do not change much over time within the formation
process in both Newtonian and viscoelastic cases. Unfortunately, we cannot directly compare with
results of [24] as the elliptic vortex ring undergoes axis-switching and the velocity of vortex ring cannot
be estimated by average core velocity in our cases.

Self-induced velocity
The magnitude of self-induced velocity inside the vortex core can tell us something about the deforma-
tion of an elliptical vortex ring. Ideally, the Biot-savart’s law has to be solved analytically to estimate
self-induced velocity when the shape of elliptical vortex ring is known prior[29]. However, the core
averaged velocity can also be used as the self-induced velocity for a given circulation and curvature
of the vortex ring[24]. Here, core averaged velocity Ucav, is calculated by averaging the net velocity√
(u2 + v2) in the core as shown in Figure. 4.15. The overall trend in high acceleration Newtonian

cases is that the steep increase in velocity stops around FTLE based formation time, Tf ≈ 2.7 and then
there is a slight increase till T ∗ = 4. This again reiterates the story that the plate provides the energy
at a steep rate till the formation measured by FTLE based Tf and the filamented structure rolls up to
increase the energy slightly by T∗ = 4(E∗min). In the perspective of induced velocity, this would poten-
tially indicate that the deformation effects on the vortex core does not vary much after T∗ ≈ 2.7−4. The
viscoelastic cases follows a similar trend, but the only difference is that the initial velocities are larger
with smaller velocity increase .
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(b) Ucav/Uplate in Viscoelastic cases

Figure 4.15

4.1.5. Elastic stress distribution
In order to understand which regions contribute to the increased growth rate of energy and circulation
due to viscoelasticity, let’s look at the local shear Wis and extensional Wie in the flow field in Fig-
ure.4.16 as they could tell us more about the elastic stress distribution. The extensional strain rate is
calculated as 1

2
(du
dx
− dv

dy
) and shear strain is calculated as du

dy
+ dv

dx
.It can be observed that both the shear

and extensional elastic stresses are primarily in the shear layer behind the vortex indicating more elas-
tic behaviour along those regions. It is also interesting to note that the shear based elastic stresses
primarily dominate the flow (Wis > Wie) mainly because of larger relaxation time. The negative ex-
tensional elastic stresses are also mostly in the shear layer, simply working along with shear elastic
stress. However, a region downstream of the vortex seem to have a streamwise extensional stress.
For vortices that roll up after longer distance would have the fluid parcels that have experienced larger
total strain. The larger the total strain, the larger is the extensional viscosity as the polymer tries to
oppose the extensional pull with increasing strain. This explains the viscoelastic delay in formation
at low accelerations (see Figure.4.7b). At high accelerations, the extensional stress (-ve direction) is
acting to bring the fluid parcels closer, thus explaining faster rates of vortex formation.
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Figure 4.16: Elastic stress distribution in the flow field
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4.2. Forces
So far, we have discussed the dynamics of vortex formation, comparing the effects of acceleration
and viscoelasticity. In largely separated flows like our cases, the vortices contribute significantly to the
forces acting on a body. We particularly focus on drag forces here, as we are dealing with a bluff body.
An example of net forces acting on the plate for Newtonian and Viscoelastic cases is shown in Fig-
ure.4.17. The overall trend is that the net force increases linearly till about the end of acceleration T ∗a ,
followed by a sudden drop, after which the drag force converges to a steady-state value as the plate
is moving with constant velocity. However, we note that there is an instantaneous peak at the instant
of starting to accelerate, followed by relatively smaller unsteady force before reaching the steady state.
The origin of the sudden peak is not clear, we suspect that it is likely due to structural stiffness or spu-
rious measurement effects and is thus non-hydrodynamic in origin. On first impression, viscoelasticity
appears to have two effects on the force, when compared with the Newtonian case: A general increase
in the magnitude of the drag force during both the accelerative and steady-state phases of motion, and
a reduction in the magnitude of the post-acceleration drop in force. To understand them better, let’s
decompose the forces into steady and unsteady components.
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Figure 4.17

4.2.1. Steady forces
Weperform forcemeasurements at variousRet < 225with impulsively started accelerations of 1.29m/s2

and 0.86m/s2 corresponding to
√
α = 355.8,290.5. The net hydrodynamic forces acting on the body

are measured as discussed in section 3.4.1.The total force acting on the plate is separated into the
steady force component by taking the mean of forces with T ∗ > 5, such that the effect of acceleration is
avoided. The drag coefficient is calculated as the mean of two acceleration cases with corresponding
standard error is shown in Figure.4.18.
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It is interesting to observe that there is a drag reduction regime followed by drag enhancement
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regime. Comparing Figure 4.18b with Figure 2.26, the qualitative trend of drag reduction followed
by drag enhancement agrees well with the literature. Interestingly, this trend correlates well with the
relative change in energy decay rate due to viscoelasticity in Figure.4.11a. The net force acting on a
body is equal to rate of change of kinetic energy per unit velocity. In the viscoelastic and Newtonian
cases, the velocity of plate/vortex is nearly the same, thus the change in kinetic energy rate due to
viscoelasticity has to correlate with the change in forces. The aforementioned effect when occurs in
the wake is bound to affect the steady drag forces acting on the plate (see equation 2.13). However,
the magnitude of Wi for drag enhancement is much smaller compared to literature. We suspect this
discrepancy is mainly an effect of polymer viscosity ratio as the Figure 2.26 is reported for βr = 0.01βr = 0.01βr = 0.01
around cylinder, whereas the fluid in our study has βr = 0.57βr = 0.57βr = 0.57 around flat normal plate. From equation
2.47, the retardation time λr = (1−βrβrβr)λ, decreases asβrβrβr increases, thus resulting in faster elastic stress
response. This explains smaller Wi at higher βrβrβr showing similar effects as in larger Wi at smaller βrβrβr.
This agrees well with the other studies [133, 176] that βrβrβr indeed affects the vortex shedding and hence
the associated forces.

4.2.2. Unsteady forces
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Figure 4.19

Once, we know how the steady forces change as a function of Re, we can extract the unsteady con-
tribution during the acceleration phase. For this purpose, we use the drag coefficients from Figure.4.18
to remove steady force contribution in both viscous and viscoelastic cases during acceleration,

Funsteady = Fnet−hydrodynamic − Fsteady (4.10)

Then, we calculate the added mass associated with this force, dividing by the acceleration and carefully
averaging the data points without structural effects ,

Total added mass = Funsteady/a (4.11)

The measured added mass is plotted against
√
α for different cases as shown in Figure 4.19. From first

look of Newtonian cases in Figure 4.19a, we can see that the added mass estimated using potential
flow theory is under-predicting by 50%, where added mass of plate ma

plate is given by,

ma
plate = ρ (π

L2
c

4
H)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Drift volume

(4.12)

According to potential flow theory, drift volume of a plate is equivalent to that of a cylinder with equivalent
diameter of plate’s chord length; hence we use the volume of cylinder. To visualize this, let’s look
at streamlines of potential flow past flat plate (conformal mapped from cylinder-see Figure.4.20) with
complex velocity,

Uz = U(1 −R2/z2)/(1 +R2/z2) (4.13)
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, where R = Lc/4 and complex plane coordinate z = x+ iy[40]. From Figure.4.20, we can observe that
for an ideal flow past a plate, the streamlines exhibit a similar behaviour as around a cylinder. If we were
to put the Lagrangian particles, they would drift from the free stream based on streamline deviation with
respect to the mean flow. Since the streamline deviation can be represented as a cylinder, the plate’s
drift volume is represented using the volume of the cylinder. This interpretation is easy to understand,
especially in flow past a plate, as the presence of the solid object is infinitely thin unlike sphere or
cylinder. In a real inertial-viscous flow, this approximation would not work as we have non-zero vorticity
resulting in vortices. To visualize this using potential flow theory, we add an irrotational vortex pair with
equal strength separated by a distance to flow past a plate, although their vorticity is zero. The angular
velocity of an irrotational vortex is given by Uθ = Γ/2πr. We can see from Figure.4.20 that even in a

Figure 4.20: Equivalent potential flow of high acceleration cases, where plate flow is conformal mapped from cylinder

potential flow with a vortex pair, the drift volume (streamline deviation) shape looks completely different
from cylinder as in a simple flow past a flat plate. Therefore, we can safely say that the vortex pair
also contributes to the drift volume and so to the added mass. It has also been reported by [65], that
the vortex rings have their own added mass, and it has been used in addition to geometry’s added
mass in a few studies dealing with animal locomotion[177]. Furthermore, this idea formed a basis
for energized mass approach[63] (see equation 2.31) which tries to counter this problem using kinetic
energy based on equation 2.24. However, comparing at the streamlines of our case in Figure.3.21 with
Figure.4.20, we can see that there is no such cylindrical drift region before the plate in real flows and
moreover the shear region connecting vortex to the plate also contributes to drift. Therefore, in this
case, we cannot simply add the added mass of plate and vortex. On the other hand, the energized
mass approach does not differentiate into steady and unsteady components, making it difficult to use
as a simple model without PIV data. Hence, we need a simpler, generalizable and interpretable model
that accounts for the presence of vortices and shear region.

4.2.3. What is added mass?
To begin with, let’s look closer at the concept of added mass. In section.2.4.2, we discussed that the
potential flow addedmass does not predict the measured addedmass well in multiple studies and many
models were proposed. But most of those studies deal with turbulent high Re flows, so the mismatch of
the potential flow based added mass for a laminar vortex shedding with Re < 225 comes as a surprise.
However, it was noted by Charles Darwin in one of the earlier studies[178], that unlike an ideal flow,
the real flows may have a wake (translating object) or permanently entrained eddy (rotating object)
that could influence added mass solutions. It is interesting to note that a review on added mass[60]
also suspected that the flow separation and vortex shedding might have effects on the added mass;
however, by that time there were unclear results in the literature. Therefore, the review [60] called for
more research on this aspect of added mass. This would imply that the change in added mass is not
limited to turbulent flows, but also in the laminar separated flows. At this juncture, we might wonder
what is added mass in separated flows? First, let’s look back to the definitions of added mass,

• According to G.K.Batchelor[179]”The acceleration reaction (unsteady force) is related to the fact
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that, when the velocity of the body changes, the total kinetic energy of the fluid changes also.
The part of the kinetic energy of the fluid arising from the translational motion of the body, and not
from any circulation which may exist, is thus representable as an amount of energy arising from
a certain addition to the mass of the body (added mass)”

• According to Charles Darwin[178],

– ” Hydrodynamic (added) mass is the mass that is derived from the kinetic energy of the fluid
surrounding the body”.

– ”For free space the drift-volume is equal to the hydrodynamic mass; whereas Drift volume
is the total displacement of a particle in the x direction, referred to axes in which the infinite
parts of the fluid are at rest”.

– ”An amount of fluid corresponding to the hydrodynamic mass is being really carried along
by the solid body.”

What are we missing ?
Now, let us use these definitions on a separated flow. The first question that we can ask is,

• Which fluid parcels are changing their kinetic energy due to the motion of the plate ?
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Figure 4.21: Region of high kinetic energy behind the plate, indicated by kinetic energy ratio per unit parcel

From Figure.4.21, we observe that the major changes in kinetic energy occurs behind the plate,
which we call as the wake.

• Howdowemeasure the drift volume that corresponds to this region of high kinetic energy?
In[65], the drift volume of a vortex pair is estimated by transforming it to the vortex frame. By using
that and our analogy with streamlines with previous sections, we can use the streamlines in the
frame of the object of interest to see how the fluid parcels are moving around that object. The
object that we are interested here is the wake, but we can use a slightly higher approximation
of vortex velocity, assuming that the centroid of the vortex is slightly closer to the wake centroid
towards the plate. Since we know the vortex velocity (see Figure.4.14), we approximate the
average vortex velocity to be around Uvortex/Uplate ≈ 0.8 (slightly higher than vortex velocity and
lesser than plate velocity to account for total wake).

• How do we make sure that a region of fluid moves along with the body’s mass, acting as
added mass?
In order to make sure that a region of fluid parcels are moving along with the plate, we can check,
if they belong to the same dynamically distinct region using FTLE ridges. This also helps us in
making sure that our solution is Galilean invariant.

4.2.4. Drift volume estimation
By using the aforementioned arguments, we attempt to model the net drift volume that moves with the
plate, causing the unsteady added mass force. We use streamlines of the flow field with respect to
vortex frame. FTLE ridges are also ideal to extract regions delineated by transport barriers which can
be interpreted as coherent boundaries, causing drift of fluid parcels around them. First, we stick to
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analysis of the highest acceleration Newtonian case. The FTLE ridges and vortex-frame streamlines
of a vortex ring closer to FTLE based formation time Tf ≈ 2.7 (empirical choice for initial analysis) is
shown in Figure.4.22. It is notable that both approaches provide more or less the same boundary of
the wake. Therefore, we will further use streamlines in the discussion as it is computationally way less
expensive compared to FTLE calculations.
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Force decomposition
Before we proceed further, let’s take a step back. From the above arguments, it appears that added
mass is wake’s mass in our case. If it is so, how about the rest of the force components? In order to
have clear idea of decomposing the forces, we do a control volume analysis for mass and momentum
balance. Note that velocity vectors are simply represented without vector symbols for ease of reading.
The lab frame velocity of any fluid-parcel can be written as the sum of plate’s velocity and velocity
in plate’s frame ulab−frame(t) = Uplate(t) + u(t). The chosen control volume is shown in Figure.4.23.
For a deforming control volume (Wake region that is dynamically attached to plate) with instantaneous
volume V (t) that is translating with acceleration a along with massless plate, the total force is the rate
of change of velocity for fluid parcels in lab-frame

Fhydrodynamic =∭
wake

ρ
D(Uplate(t) + u(t))dV

Dt
=mwake(t)aplate
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

1

+∭
wake

ρ
Du(t)dV

Dt
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

2,3

(4.14)

where mwake = ρVwake, and Vwake is the wake volume. Now the acceleration (1) is taken care in the
lab-frame of reference. We move to plate’s frame of reference and, to estimate the drag forces, we
use x-momentum (ux) equation with free stream velocity ux(t) = U(t) for the control volume shown in
Figure.4.23,

∭
wake

ρ
Dux(t)dV

Dt
= ρ∭

wake

∂ux(t)dV

∂t
+ ρ∬

wake
ux(t)(u(t) ⋅ n̂)dA (4.15)

Since, the acceleration of free stream is already accounted for and the plate is not moving in the given
control volume, only the volumetric change contributes. Here, we assume that the local acceleration
in the accelerating frame is much smaller than the frame’s acceleration.

ρ∭
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where U(t) is the velocity of inlet fluid parcels in the plate’s frame. The negative sign for the inlet
indicates that the normal direction of the inlet boundary opposes the fluid motion. This is what we would
expect in the case of steady flow past an object (see equation.2.13). It is important to note that terms
for deformation rate (2) and momentum flux (3) are functions of instantaneous velocity. These terms
would be effective even in cases where the flow is steadily translating at constant velocity. Because,
the vortex grows and sheds even in case of a steady flow past a flat plate. Therefore, we can safely
say that the steady force acting on a fixed control volume for a given velocity can be written as,

F = ρ∭
wake

ux(t)
∂dV

∂t
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The magnitude of this force will be equal to the steady state drag Fsteady experienced by the plate, since
all of these components are a function of velocity and would be active also in constant velocity vortex
shedding. Based on our experiments, all of our steady forces that are a function of velocity are captured
using drag coefficients as a function of Re. Now assuming that drag coefficients as a function of time,
varying with, Re(t) captures these velocity forces, we can say that Fsteady is predicted by instantaneous
drag coefficients at any given instant. This would imply that, only component 1 in equation.4.14 is
dependent on acceleration. Hence, we can say that the unsteady force Funsteady solely because of
acceleration is due to the acceleration of wake mass, assuming no delay in boundary layer separation
with corresponding to instantaneous Re. The total hydrodynamic force acting on an accelerating plate
in equation. can be rewritten as,

Fhydrodynamic = Fsteady + Funsteady = CD
1

2
ρUplate(t)

2Aplate
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2,3

+m(t)wake
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

1

a (4.19)

This decomposition can be interpreted as the sum of the force due to wake momentum lost to plate,
wake mass growth rate and acceleration of wake mass along with the plate. Thus, we recover the
steady-unsteady decomposition but with mass of wake as added mass instead of potential flow based
added mass.
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Elliptical vortex ring
Now, let’s try to estimate a case of wake mass using streamlines and FTLE ridges in Figure.4.22a. We
can observe that the drift volume can be approximated to that of a 2-D cylinder but with diameter, Dc =
2Lc, differing from the typical value, Dc = Lc, predicted using potential flow past a flat plate. Assuming
that this flow field is the same throughout the span of the plate, the resulting added mass would be four
times the value predicted by potential flow theory, or twice the value we measure. However, Figure.2.9
shows the existence of the axis switching behaviour of the elliptical vortex ring behind the plate at
T ∗ ≈ 2.5. The axis switching deformation is explained as an effect of different induced velocities at
different radius of curvature (Rcc) although they would have similar circulation (related by Uinduced =

Γ
4πRcc

ln(Rcc
Rc

) [180]) ; the axis switching behaviour has been well studied in literature[25, 180]. Since
the observed diameter in the measurement plane is 2Lc, we assume that axis switching has occurred,
the out-of-plane dimension will be O(Lc). Hence, the added mass force acting on our AR=2 plate due
to a drift volume of these dimensions can be estimated as

ma
deformed_structure =mwake = ρ πL2

c(Lc)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Drift volume

(4.20)

A summary of this out-of plane dimension modelling is shown in Figure.4.24.This expression estimates
the measured mean added mass of almost all the Newtonian cases well as shown in Figure.4.19a.This
would imply that in the matching cases, the coherent wake structures around the plate are indeed
contributing to added mass. It can also be observed from Figure.4.19a that the lowest acceleration
cases has a slightly higher value, because the vortex does not roll up in all the low acceleration cases.
Unfortunately, we cannot model this difference as we do not know how the corresponding 3D structure
may look like in unrolled up cases.
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Figure 4.24: Lab-frame : (A) Vortex ring formed behind the plate undergoes axis switching. (B) The wake boundary is
measured in measurement plane using Figure.4.22a C) Assuming axis-switched height, wake volume modelled as cylinder of

height Lc

4.2.5. Change in added mass with time
Now, if we were to say that wake volume is equal to the drift volume; one might wonder, does added
mass changes with time? Because the vortex is growing and so is wake. To understand this, we
extract the wake volume for different dimensionless times, as shown in Figure.4.25a. In the optimal
vortex formation cases with AR = 2, it has been shown by another study[181] that the vortex dynamics
and forces are independent of the Re. The reason was explained as the fact that the drag forces are
mainly governed by the deforming vortices, whereas the deformation is a strongly due to elliptical vortex
ring curvature. Keeping this into account, we can assume that the vortex dynamics does not change
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much because of Re. We also need to note that the formation distance is not much different in the high
acceleration cases (see Figure.4.7d). However, the acceleration can potentially play a role about the
dynamics of the wake. The wake volume evolution with T ∗ in different cases can potentially provide an
insight for the wake volume change over time. In order to do that, we need to know the third dimension,
accounting for axis switching. In Figure.2.9 [25], the vortex axis is the same as plate axis at T ∗ ≈ 0.6
(s∗ = 0.5 in Figure.2.9) and this axis is shifted at T ∗ ≈ 2.5 (s∗ = 2 in Figure.2.9). Now, assuming
that the axis switching is linear with T ∗ , based on Figure.4.13a for D∗ growth in measurement plane;
we calculate the span of the wake, thus the wake volume as shown in Figure.4.25. The overall trend
is that the wake volume increases till around T ∗ ≈ 1 − 1.5 and remains constant till formation T ∗ ≈ 2.7.
Compared to the potential flow added mass, wake mass is higher for all T ∗ > 0.5. Moreover, comparing
Figure.4.25b and Figure.4.19a, we can say that the predicted wake mass resembles close to that of
the measurements. Note that the mean added mass is measured only after T ∗ > 0.75 in T ∗a = 1 cases
and for other cases more data points are used with T ∗ > 1 or T ∗ > 2 depending on T ∗a . Now that it’s
clear that the added mass is a function of T ∗, the measured (for T ∗a ) and predicted added mass are
plotted over each other as a function of T ∗ in Figure.4.26. The overall trend looks agreeable with the
experimental data. However, due to the experimental limitation in measuring smaller T ∗, the growing
added mass cannot be captured in our experimental data. Hence, we cannot validate the growth rate
of added mass in this study.
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Figure 4.26: Comparing measured added mass with predicted added mass using the empirical wake volume

Effect of viscoelasticity in added mass
Now that we understand how added mass works in Newtonian cases, how does it work in viscoelas-
tic cases? It can be observed from Figure.4.19b,that the added mass measured in viscoelastic cases
varies with acceleration. At higher accelerations, the measured value approximates that we observed in
the equivalent Newtonian cases, while at lower accelerations the added mass in the viscoelastic cases
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is observed to be significantly higher. For the same reason of no priori knowledge on 3D structure of low
acceleration cases, we cannot find the corresponding drift volume. However, this difference in added
mass can be compared with the relative change in rate of change of Kinetic energy with respect to
Newtonian cases of Figure.4.11b as they are equivalent by equation.2.24. The viscoelasticity is found
to amplify the added mass at lower accelerations. Invoking the observation of higher circulation and en-
ergy growth rate due to viscoelasticity, this amplification can be interpreted as larger wake volume due
to more entrainment of fluid parcels, which can be observed through the enhancement of steady drag.
When the entrainment rate is larger, we would expect a larger wake volume. In the lower accelerations
(not rolled up) that do not involve in axis-switching have larger added mass. A larger wake argument
explains this increase, and it can be cross verified by increased vortex ring diameter in the measure-
ment plane due to the presence of viscoelasticity in low acceleration cases (see Figure.4.13). Note
that the wake volume does not change much in high acceleration (optimal vortex formation) cases, as
the axis-switching behaviour (function of circulation and curvature alone) dominates the flow dynamics
as reported in [181]. We think this is indeed the case even in the presence of viscoelasticity in our
high acceleration cases that are closer to Newtonian in Figure.4.19b. Thus, we can conclude that at
high accelerations in our cases, the added mass is not much affected by viscoelasticity, whereas in low
accelerations, the wake volume increases causing increased added mass.



5
Conclusion

5.1. Vortex dynamics
• Depending on the acceleration, the vortex formation type can follow two pathways: optimal
vortex formation at T ∗ < 4 independent of acceleration and vortex formation from a larger shear
layer at T ∗ > 4 based on acceleration. The limit of optimal vortex formation is

√
α >≈ 75 − 80
√
α >≈ 75 − 80
√
α >≈ 75 − 80.

• The vortex formation process involves two different time scales, one indicated by FTLE saddle
points as T ∗ = 2.7 for Newtonian and T ∗ = 2.3 for viscoelastic. The other one is T ∗ = 4 as shown
by E∗ in this study and throughout the literature. The kinetic energy ratio and dimensionless
circulation showed that the maximum is reached at the saddle point based T ∗, which means
no more energy/vorticity is supplied by the plate to the core. However, the rest of the filamented
region between the trailing shear layer and formed vortex has to roll into the vortex and thus E∗min

explains that the vorticity distribution is maximum for T ∗ > 4 meaning a fully steady circular cored
vortex ring.This is also when the core averaged velocity reaches its maximum and circulation
decay starts. We conclude that Tf of FTLE is the pinch-off time (Plate no longer supplies
energy and vorticity to the forming core), whereas T ∗(E∗min) represents the formation time
of a steady filament-free vortex ring. This extends the conclusion of [24] that E∗min does
not indicate pinch-off.

• During vortex formation, the viscoelasticity primarily affects the circulation growth rate and
energy growth rate by enhancing them. The circulation growth rate is enhanced by ≈ 30% and
energy growth rate is enhanced inversely proportional to acceleration or De. This enhancement
can be interpreted as pulling of adjacent fluid parcels due to elasticity and here an effective stress
relaxation is not seen as the stresses keep building at an increasing rate with time.

• After formation, the viscoelasticity increases the dissipation rate withWi for a fully steady vor-
tex. This follows a similar trend as of relative change in steady force on the plate. On the other
hand, circulation decay rate increases exponentially with Wi, enabling us to reconstruct the
stress relaxation as a generalized Maxwell model which is similar to Oldroyd-B.

• For a fully formed (optimal) vortex, constant values are reached forΓ∗ = 2.3,E∗ ≈ 0.3,Ucore/Uplate =
0.5− 0.6, Eplate = Ering,D∗core = 0.6− 0.8. Interestingly, Γ∗ = 2.3 is the same found in [24] despite
having a completely different order of Re, object shape and aspect ratio.

5.2. Forces
• The Steady force has both drag reduction and enhancement regime due to the presence of
viscoelasticity. The Wi and βrβrβr are the important parameters to characterize them, which is in
agreement with CFD studies in literature.

• The unsteady force acting on the plate is due to the acceleration of wake (added) mass that is
hydrodynamically attached to the plate, whereas the laminar vortex core entrainment effects
are accounted for in the steady state drag forces. At lower accelerations, a slight increase in the
unsteady forces is observed. It can be thought of as a combined effect of larger wake volume due

80
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to extended shear layer along with no axis switching in delayed roll-up cases. The viscoelasticity
is found to amplify this increased force at lower accelerations. Invoking the observation of higher
circulation and energy growth rate due to viscoelasticity, this amplification can be interpreted as
larger wake volume due to more entrainment of fluid parcels, which can be observed through the
enhancement of steady drag. The wake volume of plate can be estimated using both the FTLE
ridges and wake/vortex frame streamlines, which similar to approaches used on propulsion based
animal wake[177].
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