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A B S T R A C T

This study presents an investigation on the fate of natural organic matter (NOM) and its dynamics throughout
the treatment train at various drinking water treatment plants (WTP) in South Africa. The characteristics,
concentration and removal efficiencies of NOM at various treatment stages on the basis of dissolved organic
carbon, UV absorbance, specific ultra-violet absorbance, spectroscopic indices, maximum fluorescence intensity
(Fmax), and polysaccharides removal, were studied. The highest polysaccharide concentration was in coastal
plants compared to inland plants for the raw water samples. A Parafac model fitting four components was
established for the raw waters, and validated based on the split half criteria. The Fmax values of the components
was higher for terrestrial humic-like component (C1) and fulvic-like component (C2) than for humic-like
components (C3), and for protein-like component (C4). Strikingly, the mean Fmax values for C2 and C3 were
higher for plants located on the south west coast of South Africa than the plants located inland. While the
humification index and UV254 removal correlated (R2=0.797), the correlation between the freshness index
(β:α) and UV254 removal was also mild (R2=0.787). The removal efficiencies of bulk NOM were higher than for
FNOM in the rapid sand filtration (RSF) stage, regardless of the location of the plants, suggesting that the RSF
process is more efficient in removing non-fluorescent NOM than FNOM fractions. This study demonstrated the
capability of optical methods in characterizing the fate, occurrence and removal of NOM in surface waters.

1. Introduction

Recently, natural organic matter (NOM) has attracted significant
research attention because it compromises the performance of water
treatment plants (WTPs). Natural organic matter affects the efficiency
of water treatment stages such as the coagulation-flocculation [1], and
potentially leads to the generation of disinfection by-products (DBPs)
[2–4]. Optimization of treatment processes for the removal of NOM
requires data on its characteristics and seasonal variation in the water
source [5]. Conventional WTPs, which are commonly used in devel-
oping countries such as South Africa, are not designed to remove NOM
[6,7]. Moreover, the removal of NOM is costly, hence the need to track
temporal changes of its quality using online monitoring techniques.
Many WTPs in South Africa depend solely on specific UV absorbance
(SUVA) to assess the quality of NOM [8]. However, a similar SUVA
value does not always translate to similar reactivity; these values may
differ in their distribution around an average value. Therefore com-
prehensive and sensitive analytical approaches are required to provide

more detail on the reactivity and treatability of NOM.
On the one hand, fluorescence spectroscopy is a rapid and user-

friendly technique that provides detailed analytical information. This
technique can discriminate between diverse types of NOM based on
light scattering properties upon irradiation of the fluorophores [9].
Combining fluorescence data with routine water quality monitoring
data such as dissolved organic carbon (DOC) and ultraviolet absorbance
(UVA) can be effective in determining the origin of NOM and evaluating
a treatment process [10]. When applied in the three-dimensional mode,
fluorescence produces an emission excitation matrix (EEM), which
provides a spectral signature of the fluorescent NOM [11]. EMMs
contain large volumes of intricate data, whose explanation can be dif-
ficult [12–15]. Identification of fluorescence peaks and comparison of
the intensities of individual peaks by visual inspection of the fluores-
cence maps is a commonly used technique. Recently, chemometric
techniques such as parallel factor analysis (Parafac) and fluorescence
regional integration (FRI) have been used to elucidate the wavelength-
dependent fluorescence intensity data points embedded in EEMs [16].
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On the other hand, the source, composition, and reactivity of
chromophoric DOC (CDOM) has been traced in natural waters using
UV–vis spectroscopy [17]. Furthermore, differences in the feed water
and impact of treatment at each stage in the treatment train on the
water quality, have been followed using indices derived from UVA,
DOC, SUVA, and fluorescence [18]. Opportunities for rapid and prac-
tical use of these indices can be enhanced by automating and per-
forming online analyses, which increase the safety, responsiveness, and
treatment precision on plant operations. Moreover, the analysis of
biogenic NOM in water research uses the high performance liquid
chromatography with on-line organic carbon detection (LC-OCD)
technique, which is costly and laborious. In view of this, the present
work uses the sulfuric acid–UV method, which is a rapid and accurate
method for determining the fluorescent fractions of NOM.
To date, only a few studies on the character of NOM found in water

treatment plants in South Africa have characterized NOM occurring at
individual plants (e.g., [19,20,6]. This work is the first in South Africa
to report on the occurrence, behavior and removal efficiencies of
fluorescent EEM components throughout the water treatment processes.
It is of interest therefore, to assess the treatment efficiency of these
plants for the treatment of NOM, given the variability of the water types
in South Africa [21]. It is expected that the water types influence the
occurrence of NOM components, and the treatment regimen at the
plants in turn influences the behavior and removal efficiency of NOM
components.
Nine WTPs in different regions were sampled with the objectives of:

(1) characterizing NOM parameters and identifying the correlation
between NOM composition and optimal NOM removal at the respective
sites, (2) examining the input of individual NOM components to the
overall fluorescent NOM in treated water of dynamic quality
throughout the treatment train, and (3) determining the process ro-
bustness and/or selectivity in the removal of fluorescent NOM com-
ponents.

2. Materials and methods

The study was composed of two distinct phases. Phase I was an
assessment of the spatial changes on NOM in raw water at abstraction
points of all plants, while phase II evaluated variations of NOM con-
centrations after treatment at various unit processes for each WTP.

2.1. Sampling

Sampling was conducted at nine water treatment plants re-
presentative of the five water quality regions found in South Africa
(Fig. 1) using clean 1L glass bottles with Teflon lined caps. Triplicate
samples were obtained after each major treatment step, namely: raw,
flocculation/coagulation, settling, rapid sand filtration, and disinfection
(Fig. A1). Turbidity, pH, temperature, and conductivity were measured
onsite using potable multimeters. The samples were transported in ice
boxes and then immediately filtered using a 0.45 μm GF/F filters before
storage at 4 °C and analysed within 48 h. Filtered samples were ana-
lysed for DOC using a total organic carbon analyser (Teledyne Tekmar,
TOC fusion).

2.2. Fluorescence and UV absorbance analysis

Triplicate water samples taken after each treatment stage were fil-
tered through a 0.45 μm filter and equilibrated to 25 °C before analysis.
Fluorescence EEMs, absorbance spectra, and simulated synchronous
scans at Δλ=60 nm, were obtained using a fluorescence spectrometer
(Aqualog, HORIBA, Jobin Yvon) in the wavelength range 200–800 nm
at 2 nm excitation intervals, and 248.58–830.59 nm at 3.28 nm emis-
sion intervals.
Parameters such as SUVA were derived by DOC normalization of

UV254 absorbance and dimensionless indices such as the fluorescence
index (FI), humification index (HIX), and freshness index (β:α) were
calculated (Box 1). Higher HIX values are indicative of a greater extent
of humification of the NOM. The FI index indicates the origin of the
NOM, where a smaller value (< 1.3) indicates microbial source, while a
greater value (around 1.8) means the NOM is of terrestrial origin. The
β:α index indicates the age or extent of decomposition, and a high value
indicates freshly produced NOM [22].

2.3. Fluorescence regional integration of removed fractions

The fluorescence regional integration method was applied in the
identification and quantification of individual fluorescent components
from the EEM spectra. Precisely, the EEM spectra were divided into five
wavelength-dependent regions representative of where the maximum
fluorescence occurs for each chemical standard used. The standards
used had the same character as specific components of NOM (aromatic
protein I, aromatic proteins II, microbial by-products, humic-like, and
fulvic-like). The volume under region i, was calculated using Eq. 1 [23]:

Fig. 1. The location of selected WTPs in South Africa.
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= I d d( )
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Where θiis the volume under region I, I(λexλem) is the fluorescence in-
tensity at the excitation-emission wavelength (λexλem)pairs, Δdλex and
Δdλem are the excitation, and emission wavelength increments, re-
spectively.
The study used Δλ=2 nm for both excitation and emission wave-

lengths increments. The quantity of the respective component is pro-
portional to the volume under the curve. The percentage volume ex-
pressed for region i was calculated using Eqs. 2 and 3 [23]:

=
=

iTot,5 i 1

5
i,5 (2)

=P *100%
Tot

i,n
i,5

,5 (3)

Where, Tot,5 is the total volume of all the five regions. The specific
region is denoted by number n; and Pi,n is the percentage volume of
specific region i.
FRI was applied in the quantification of fractions making up the

differential EEMs (ΔEEM) (Eq. 4):

ΔEEM=EEM of removed FDOM=EEMbefore – EEMafter (4)

2.4. The sulphuric acid-UV absorbance method for polysaccharide
quantification

The procedure for the proposed sulfuric acid–UV method was
adopted from Albalasmeh et al. [24]. Briefly, 3mL of concentrated
sulphuric acid was added to a 1mL aliquot of sample and cooled in ice
to bring it to room temperature. Thereafter, the sample was vortexed
for 30 s before UV analysis at 315 nm using a UV spectrophotometer
(Lambda 650S, PerkinElmer).

3. Results and discussion

3.1. Occurrence and distribution of fluorescence NOM components at
source

3.1.1. Pseudo-quantitative determination of polysaccharides in raw water
UV-visible scans from 200 to 600 nm of samples prepared after the

sulphuric acid-UV method [24] is presented in Fig. 2. The maximum
absorbance peaks are slightly at shorter wavelength than that reported
by Albalasmeh et al. [24]. In their work, they used pure carbohydrate
samples whereas in this work real water samples were used, possibly
containing a variety of carbohydrates. This slight hypsochromic shift
arises because the range of chromophores that absorb in UV–vis region
is high with varied concentrations giving rise to undistinguishable ab-
sorption spectra [25,26]. Additionally, molecular and intermolecular
interactions, vibration and rotation distort the absorption spectral sig-
natures in the UV spectrum [25,27]. However, for consistency with
literature, UV absorbance at 315 nm was used for discussion, and the
results are indicative rather than absolute.
Plant H exhibited the highest UV315 absorbance (0.73 cm−1) and EB

the lowest (0.46 cm−1) (Fig. 2). Overall, the highest UV315 absorbance
occurred in coastal compared to inland plants for the raw water sam-
ples. There was a strong correlation (R2=0.93) between the UV315 and
the FI spectroscopic ratios (Fig A. 2a), suggesting that the source of
polysaccharides in the samples is of aquatic origin due to microbial
activities releasing extracellular polymeric substances [28]. Costal
plants have low FI index, indicating that microbial NOM has a high
UV315 absorbance with high polysaccharide content. Polysaccharides
are of interest to WTPs because they have a high membrane fouling
propensity caused by their large molecular size and gelling properties,
which enhance filtration resistance and attract bacteria to adhere to the
membranes [29]. Thus costal plants intending to incorporate membrane
technology must consider this implication critically.

3.1.2. 2D synchronous fluorescence spectra for raw water
Using 2D-SFS scans, one major peak and three broad shoulders were

observed for all water sources (Fig. 3a). The protein like fluorescence
(PLF) peak, which is associated with the presence of tyrosine-like and
tryptophan-like components, was in the wavelength region 260–314 nm
[30]. The microbial humic-like fluorescence (MHLF) component was
the first shoulder in the wavelength range 314–355 nm [31], and the
fulvic-like fluorescence (FLF) component was the second shoulder
(355–420 nm) [32]. The humic-like fluorescence (HLF) component was
the third and weak shoulder in the wavelength range 420–500 nm [33].
The 2D-SFS scan was able to resolve one peak and three shoulders,
denoted as PLF, MHLF, FLF, and HLF, respectively. The area under each
fluorescent region is proportional to the relative abundance of the
fluorescent component in that region [31].
The variation of FLF and HLF follow a similar trend with the highest

mean FLF area being that of a coastal plant, H (277.92 RU), which was
about 5 times greater than the least, MT (76.03 RU).The raw water
feeding plant H had high DOC (6.03mg/L C) and high turbidity (5.32
NTU), indicating high quantities of colloidal and clay material [5].

Box 1
Spectroscopic indices for NOM characterization

=

= +
=

=

( )
HIX I I I
FI

SUVA( ) x100

/( )
Em /Em

: Em /max(Em 435)

L
mgM

UV cm

DOC

( )

435 480 300 345 435 480

470 520

380 420

mg
L

254 1

Fig. 2. UV absorbance after the sulfuric acid-UV method.
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Water laden with humic acid and fulvic acid is characterized by a
brownish-yellow coloration, typical of the surface water on the south-
west coast of South Africa [5]. The mean MHLF and PLF areas for plant
H (209.78 and 127.50 RU, respectively) were the highest and more than
doubled the least plant, MT (66.05 and 58.89 RU, respectively). Al-
though MT had the least MHLF area, it had the highest DOC value
(12.51mg/L C), further confirming the heterogeneity of the NOM.
These results suggest raw water at MT (FI=1.53) is of less microbial
origin than at H (FI=1.37), and that the source of DOC at MT is largely
non fluorescent, containing mainly biopolymers, which are not easily
assimilable by microorganisms [34,35]. Humic-like and fulvic-like
material act as substrates for microbial growth, and thus support the
survival of microorganisms [36,37]. Similar results were obtained on
investigatiing biodegradable organic carbon (BDOC) for various WTPs
in South Africa [5]. Plant H exhibited a high BDOC fraction (5mg/L C)
compared to other plants, which averaged 2mg/L C.

3.1.3. Fluorescent dissolved organic matter components and their
distribution at source
Parafac analysis was conducted using the Aqualog inbuilt SOLO

software to study the quantitative removal of FDOM in detail. The
Parafac model was built from the data acquired from all drinking water
sources save for EB because its inclusion resulted in invalidated results
when the split half analysis was used. For all water sources, modeling

was carried out to maximize data collection and data points with the
aim of deriving components which represented universal variance be-
tween water sources. The objective was to assess the occurrence and
distribution of fluorescent components at source and draw correlations
with other water quality parameters for predicting occurrence and
treatability.
Fig. 4a shows the spectral signatures of the obtained components.

The OpenFluor database was used to cross-reference the derived
fluorescence components against those obtained globally [38]. This is
however, a guideline, and the components identified in the study are
not necessarily from similar origins. Similarity scores greater than 0.97
were found for each of the four identified components (Table 1).
A model fitting four components was established and validated

based on the split half criteria as described by Murphy et al. [9], and
Ndiweni et al. [39]. After validation, the distribution of the components
at each water source was quantified using their maximum fluorescence
intensities (Fmax). The value of Fmax was higher for terrestrial humic-
like component (C1) and fulvic-like component (C2) than for humic-like
components (C3), and for protein-like (C4) components (Fig. 4e), sug-
gesting C1 and C2 have high quantum efficiencies and low responses to
quenching effects compared to C3 and C4 [40]. Strikingly, Fmax for C2
and C3 was higher for plants located on the south west coast of the
country (P and H) than the other plants. The raw water feeding these
plants has a brown-yellow coloration, characteristic of the presence of

Fig. 3. (a) Synchronous scan of raw water sources, (b) relative abundance of NOM fractions in the raw water samples.

Fig. 4. Validated fluorescent components derived from the Parafac model on drinking water sources showing (a) component 1 (C1), (b) component 2 (C2), (c)
component 3 (C3), and (d) component 4 (C4), and (e) the Fmax distribution of each component.
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fulvic material, thus corroborating the SFS results (Section 2.1.2). It is
of interest to assess the Fmax of the typtophane-like component (C4)
because it is a surrogate for wastewater contamination [41]. The try-
pophane-like component dominated the wastewater effluents unlike the
components C1 and C2 which were dorminant in reservoirs and rivers
[42]. This is because NOM originating from surface water is pre-
dominantly terrestrial mainly from plant matter, whereas sewage-de-
rived NOM mostly originates from autochthonous microbial matter
[41]. These distinctions in spectral signatures have facilitated the
tracking of wastewater impacted surface waters. Although C4 was

always lower than that of any of the other components, its presence
signals the impact of wastewater contamination. Plants H and P were
less impacted than the other plants because their source waters are less
impacted by anthropogenic activities.

3.1.4. Assessment of conventional parameters to evaluate the treatability of
NOM at source
Data on physico-chemical properties of NOM is key for the com-

prehension of its treatability. Source waters had DOC in the range
2.60–12.51mg/L C (Table 2), which concurs with previous research

Table 1
Identities of similar components using the OpenFluor database.

Component λex (nm) λem (nm) Similarity scorea Component Identity Reference

C1 316 <240 (292) 0.97
0.98

Terrestrial humic like, reprocessed organic matter
Humic-like, possible photo degradation product

[16]

C2 336 <240 (348) 0.98 Soil derived fulvic acid like
C3 364 <240 (450) 0.97

0.98
Humic acid like
Aromatic, conjugated
macromolecular substances of terrestrial origin.

C4 270 270 0.99
0.98

Protein, tryptophan-like
tryptophan-like

Table 2
Dissolved organic carbon and spectrophotometric parameters for raw water sources (n=3).

Plant C1 Fmax
(RU)
C2

C3 C4 tCDOM
(nm/cm)

a315
(/cm)

TotAbs
/DOC
(nm.mg/L.cm)

SUVA
(L/mg.m)

UV254
(/cm)

DOC
(mg/L)

FB 0.010 0.007 0.003 0.001 5.882 0.514 1.061 1.692 0.094 5.544
UM 0.009 0.007 0.003 0.001 9.360 0.578 1.242 1.872 0.141 7.535
OL 0.009 0.005 0.003 0.002 16.351 0.497 2.723 3.018 0.181 6.005
AM 0.005 0.008 0.001 0.001 16.224 0.638 3.436 3.896 0.184 4.721
HL 0.009 0.008 0.003 0.001 12.768 0.558 4.912 6.339 0.165 2.600
MT 0.007 0.008 0.003 0.001 12.012 0.463 0.960 1.117 0.140 12.509
H 0.006 0.010 0.004 0.000 35.935 0.674 5.960 7.988 0.482 6.030
P 0.004 0.010 0.004 0.000 19.572 0.643 3.328 4.379 0.258 5.881

Fig. 5. The variation of UV254 reduction as a function of (a) HIX, (b) β:α, (c) FI, and (d) SUVA for the raw water samples.
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that reported that the quantity and quality of NOM have spatial and
temporal variability [5]. The measured DOC is what is detected as
carbon dioxide after the photo-oxidation of carbon containing organic
matter. Therefore, it is not all natural sources of carbon that is mea-
sured, instead, runoff of dyes, pesticides and synthetic polymers can
exaggerate the obtained values. It is necessary therefore, to further
characterize NOM found in surface water. Natural organic matter found
in natural waters is the main light absorbing component in the visible
range [43]. As expected, the colored raw water laden with humic
substances feeding plants H and P showed high UV254 absorbance
(Table 2). Full UV scans also record absorbance from non-humic sub-
stances with high UV–vis absorbance such as inorganic compounds, for
example peroxides, nitrates, ammonium [43]. As a result, UV absor-
bance data in the region< 240 nm is excluded, and instead UV absor-
bance at 254 nm is used an as indicator for aromaticity [44]. Coastal
plants (H and P) showed high UV254 absorbance, implying high aro-
matic content. Other studies have shown that SUVA gives an indication
of NOM composition and hence treatment processes can be tailored for
its removal [45]. Research has shown that SUVA < 2 L/(mgM) implies
the major fraction of NOM in the water is of non-humic substances, and
SUVA > 4 L/(mgM) indicates humic substances. Further, DOC > 50%
is expected to be removed when SUVA > 4, and< 25% should be
removed when SUVA < 2 [46]. Therefore, it is expected that coagu-
lation will remove DOC > 50% in plant H, HL and P; and< 25% from
plants FB, UM and MT. Data analysis using Spearman correlation on
Xlstat statistical software generated a correlation matrix (Fig A3). As
expected, the correlations of spectroscopic parameters were higher with
UVA254 than DOC. This is because the non-dispersive infra-red de-
tector (NDIR) that quantifies the DOC measures the concentration of
carbon released as carbon dioxide, while UVA254 and spectroscopic
ratios measure organic matter moieties that absorb and/or fluoresce in
the UV–vis range [40].

3.1.5. Relating optical indices at source to the treatability of natural organic
matter
A good correlation between HIX and UV254 removal was established

(R2=0.797) (Fig. 5a). The index HIX for raw water gives an indication
of NOM removal efficiency [23]. A high HIX value means the NOM
sample contains high quantities of humic substances. These are easily
removed by coagulation in conventional water treatment processes
[40]. Thus higher HIX should lead to a larger NOM removal. At the
same time, the freshness index (β:α) was correlated to UV254 removal
(R2=0.787) (Fig. 5b). A low β:α value indicates aged and condensed
humic substances susceptible to removal by conventional unit opera-
tions such as coagulation [47,20,48]. Microbially derived NOM
(FI<1.3) showed greater susceptibility to removal than the terrest-
rially derived NOM (FI>1.7) (Fig. 5c). Lidén et al., [22] reported si-
milar findings. Interestingly, the correlation of FI and β:α followed a
similar trend. This could be because they are both influenced by mi-
crobial derived NOM, either by source (FI) or degree of degradation
(β:α). Specific UV absorbance showed a mild relationship to the UVA
reduction (R2=0.746) (Fig. 5d).

3.2. Selectivite removal of NOM fractions at different stages of the
treatment train

3.2.1. Selective removal of biogenic NOM at each treatment stage
The extent of removal of polysaccharides at different stages of the

treatment plant as exemplified by plant H is shown in Fig. 6a. The
characteristic peak is shown for the differential absorbance scans after
each treatment stage. Coagulation removed between -21% (OL) to
15.3% (H) of polysaccaharides. No correlation could be established
between polysaccahardes and microbial by-product removal at the
coagulation stage. Neither could trends relating spatial locations and
polysaccharide treatability be established. This can be attributed to
many factors such as coagulant type and charge, pH, and the presence

of other charged species that can be entraped within the polysaccharide
matrix necessitating its agglomeration into flocs. The negative values
for OL (-21%) and FB (−3.7%) indicate a build-up of polysaccharides in
the treatment stage. Visual inspection of the abstraction points at these
plants showed waxy material characteristic of extracellular polymeric
substances (EPS) on the walls of the coagulation/floccultation channels.
High molecular weight (HMW) substances, such as polysaccharides,

are generally easily removed in conventional WTPs at the sedimenta-
tion stage than low molecular weight (LMW) substances [49]. Therefore
the size and type of the polysaccharides detemine its ability to be sus-
pended or to settle at the bottom. While plants in the east coast of South
Africa and inland showed similar trend in their ability to remove
polysaccharides: HL (22%); AM (22%); MT (19%); UM (18%); OL
(21%) and FB (5%), those in the south east coast: H (-5%) and P
(-700%) showed a build-up of polysacchaides at the sedimentation
stage suggesting their poor settleability.
Polysaccharide reduction at the sand filteration stage correlated

well with change in FI (R2=0.881) (Fig A. 2b). Because of longer re-
sidence times in the sand filter, NOM is usually degraded in sand filters
[50]. Unexpectedly, east coast plants perfomed poorly at this stage: HL
(−27%); MT (−18%); UM (−12%) and AM (2%), while inland and
south east coast plants perfomed better: P (48%); H (25%); FB (17%)
and OL (6%). The sand filter is a habitat for many bacterial species
which use DOC as a source of nutrients [50]. The assimilability of NOM
depends on molecular weight, with heterotrophic bacteria pre-
ferentially degrading LMW than HMW NOM [51]. Polysaccarides are
macromolecular polymers with high molecular weight (> 20 000 Da),
and are not easily assimilable by heterotrophic bacteria [52]. The re-
sults suggest that plants in the east coast receive HMW polysaccharides
which are not easily degraded by the bacteria.
Polysacaccharide concentration increased at the disinfection stage.

This can be attributed to an increase of EPS from bacteria killed during
chlorination [13,51]. All plants showed a build-up of polysaccharides at
this stage: P (−43%); UM (−36%); AM (−19%); H (−19%); OL
(−11%); FB (-7%) and HL (-6%).

3.2.2. Selective removal of chromophoric DOC at each treatment stage
UV-Vis spectra for drinking water samples are nearly featureless

except a monotonical absorbance decrease as wavelength increases.
Chemometric techniques such as differential spectra (DS) can be used to
gain more insights. This tool can present largely comparable features
from a UV–vis spectra and can be used to calculate and evaluate the
dynamics of CDOM properties after coagulation, sedimentation, rapid
sand filtration and disinfection.
The removal by coagulation at shorter wavelengths (< 290 nm) was

relatively constant, whereas the removal at longer wavelengths
(> 290 nm) shot up by up to 20% (Figure A. 4a). The percent tCDOM
removed by coagulation had a correlation coefficient of 0.67 with re-
spect to UV254 removal. This was expected since both these parameters
measure the part of NOM that is responsible for fluorescence.
Intriguingly, the percent tCDOM removed by coagulation correlated
well with percent DOC removed (R2=0.962) (Fig A. 2d). This was
unexpected because DOC measures all types of both fluorescent and
non fluorescent organic matter [53].
While DOC varied considerably (5–30%) at the sedimentation stage,

there was minimum variation of tCDOM (<10%) (Table A2). This
could be because of the phase transformation of particulate organic
matter (POM) and NOM as it settles [51]. Sand filtration followed the
same trend as sedimentation, with a narrower tCDOM variation
(< 5%).
The graph of differential arbsorbance revealed a characteristic ab-

sorbance in the region 260–270 nm at the disinfection stage (Fig. 6b).
Similar results have been reported in literature [45,18]. Fig. 6c shows a
characteristic peak removal from around 260–290 nm of CDOM. These
results are consistent with previous findings which reported that the
absorbing species in this range are especially reactive during
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chlorination and chloramination [54].
Save for AM, which had accumulation of organic matter, compar-

ison of the DOC removals for the present work and those reported in
literature shows the values were generally of the same order of mag-
nitude (Table 3). Membrane filtration and use of nanocomposites were
considerably higher, perhaps because these are known to be more ef-
fective, and were carried out under optimized laboratory conditions.

3.2.3. Selective removal of fluorescent NOM at each treatment stage
Coagulation was more effective in removing the humic like fractions

than the other fractions (Fig. 7a). Bulk DOM removal (in terms of
UV254) was higher compared to FDOM in the rapid sand filtration
stage, regardless of the location of the plant (Fig. 7b). This suggests that
non-FDOM fractions are removed more efficiently than FDOM fractions
at the RSF stage. Although the removal of the humic FDOM (Pi,5) cor-
related weakly with the SUVA for the raw water (R2=0.52), the trend

Fig. 6. (a) Differential absorbance as exemplified by H for the removal of polysaccharides throughout the treatment train. (b) Differential absorbance (ΔAbs) during
disinfection, (c) % ΔABS removed at the disinfection stage.

Table 3
Comparison of DOC removal using different methods.

Removal Method Removal Efficiency (% DOC) Remarks References

• Ion Exchange (IE) 33–41 IE targeted hydrophobic humic (-like) compounds of NOM [55]

• Electrocoagulation 65 HA-kaolin synthetic solutions [56]

• AOPs
UV/H2O2 13 Effluent water from a municipal WWTP [57]
O3 /H2O2 10-15 Natural water from the Otonabee river Peleato et al., 2017
O3 /TiO2 18 Groundwater from the Central Banat province [58]
Fenton 27.6 Synthetic HA solutions [59]
Photo-Fenton 15 Surface water from the Pance river [60]

• Biological degradation 6 Sea water [61]

• Membrane NF 98-99 Surface water samples [52]
RO <99 Surface water samples [52]

• Nanocomposites 75 Raw water samples were obtained from the feed water at a WTP [7]

Overall

H 44 Alum (0.061mg/l) Current Work*

FB 1 Polymer U38100 (144mg/L)
OL 18 Polymer 3546 (4mg/L)
MT 64 Zeta-floc (4.6 mg/L0
AM −3 Polymer U3500 (8.55mg/L)
UM 35 Zeta-floc (4mg/L)
HL 24 Polyamine (3.3 mg/L)
P 42 SUD-floc (0.006mg/L)

* Calculated from removals at coagulation, clarification, sand filtration, and disinfection unit operations.
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was nonetheless, in agreement with the findings that SUVA > 4 results
in more than 50% removal of humics by coagulation. For example,
plant H had a SUVA of 15.63 at source and a humics removal of 88% by
coagulation. Although disinfection was efficient in removing humic-like
fractions, its efficiency on removing other FDOM fractions was low
(Fig. 7c). Chlorination results in the chemical modification of NOM by
selectively targeting double bonds and conjugated functional groups.
Depending on the number and distribution of these moieties, there are
differential removal rates of bulk NOM and FNOM, and differential
generation of DBPs (Chen et al., 2003). Overall, despite the total re-
moval efficiencies of humic-like FNOM being high, removal efficiencies
for other FNOM fractions were much lower. This indicates the drinking
water treatment processes are less effective in removing FNOM com-
pared to bulk NOM.
FNOM can be rapidly and sensitively detected online by fluores-

cence spectroscopy techniques [32,48]. An understanding of the dy-
namics of FNOM fractions in drinking water production is necessary for
monitoring and control since the overall removal of NOM is strongly
correlated to its fluorescent fractions [28,51].

4. Conclusion

The study investigated the concentration and chemical profile of
NOM in drinking water treatment sources in South Africa, as well as the
fate of NOM and its transformations throughout the treatment train at
various plants. This is the first such study conducted in South Africa to
determine the occurrence, behaviors and removal efficiencies of fluor-
escent EEM components by the country’s water treatment plants. Water
samples were analyzed for DOC, UV absorbance, SUVA, spectroscopic
indices, fluorescence intensity as well as biopolymer (polysaccharides),
and the following key findings were reported:

1 The character of NOM with respect to SUVA served as a prediction
for its removal. As expected, coagulation removed DOC > 50% in
plants: H, HL and P which had SUVA > 4; and<25% DOC re-
moval was observed from plants FB, UM and MT, which had a
SUVA < 2.

2 A model fitting four components was crafted and validated based on
the split half criteria, the distribution of the components at each
water source was quantified using their maximum fluorescence in-
tensities (Fmax). The value of Fmax was higher for the terrestrial
humic-like component (C1) and the fulvic like component (C2) than
for humic-like components (C3), and for protein-like (C4) compo-
nents, suggesting C1 and C2 have higher quantum efficiencies and
lower responses to quenching effects compared to C3 and C4.

3 Coagulation was more effective in removing the humic like fractions
than the other fractions. Bulk DOM removal (with respect to UV254)
was higher compared to FDOM in the rapid sand filtration stage,
regardless of location of the plant. This suggests that non-FDOM
fractions are removed more efficiently than FDOM fraction at the

RSF stage. Although disinfection was efficient in removing humic
like fractions, its efficiency on removing other FDOM was low.
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