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SUMMARY

As technology advances, more industrial devices are achieving higher reliability

and longer lifespans. However, challenges such as limited sample sizes of exper-

imental data and the complexity of factors influencing device degradation are

becoming increasingly prevalent. Simultaneously, abundant degradation informa-

tion from other data sources, including data from other components, historical

batches, and different experimental stress levels, is available. Thus, there is an

urgent need to find ways to fully utilize these multi-source data for industrial device

reliability analysis. Therefore, this thesis proposes several data fusion methods to

perform the reliability analysis of industrial devices that collect degradation data

from different sources. The research addresses three primary research objectives:

developing a data fusion-based framework for predicting the remaining useful life

(RUL) of industrial devices that collect multivariate sensor data, formulating reli-

ability analysis methods for degradation data from different batches of industrial

devices, and establishing a framework for analyzing degradation data under varying

experimental stresses and stress levels.

For the first research objective, a novel feature-based degradation index is pro-

posed, which automatically selects features and captures the nonlinear degradation

trends of industrial devices that collect multivariate sensor data. A corresponding

framework for predicting RUL is then developed. The effectiveness of this frame-

work is validated through simulations and case studies on industrial induction

motors, demonstrating superior predictive accuracy over existing methods.

For the second research objective, this thesis first focuses on improving the reli-

ability evaluation of industrial devices by integrating current and historical batch

degradation data through the consistency of failure mechanisms. Utilizing a Wiener

process-based degradation model, the proposed method achieves accurate and sta-

ble reliability estimates, as evidenced by their application to simulation studies and
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a case study on Metal-Oxide-Semiconductor Field-Effect Transistor degradation

data. Additionally, motivated by the early cycle data from lithium-iron batteries, this

thesis proposes a robust transfer learning method by employing a model average

framework, where the weights are determined based on the distance between the

source domain and the target domain. This method addresses the challenge of

robustness and generalization of lifetime predictions for batteries from different

batches due to the lack of diversity in training data.

For the third research objective, to model the intricate relationships between

degradation patterns, various stress variables, and stress levels, this thesis intro-

duces a functional data-driven framework for understanding such relationships.

The superior performance and effectiveness of the proposed approach are demon-

strated by simulation studies and a case study on accelerated degradation data of

the waxy lubrication layer.

Overall, this thesis presents several data fusion-based methods for the reliability

analysis of industrial devices using data from different sources. The proposed

methods demonstrate effectiveness and performance, and their applicability is not

limited to the presented case studies; they can also be extended to the reliability

analysis of other industrial devices with similar data sources. This indicates the

potential for these methods to address broader challenges in reliability engineering

across various industrial applications.



SAMENVATTING

Naarmate de technologie vordert, bereiken meer industriële apparaten een ho-

gere betrouwbaarheid en een langere levensduur. Uitdagingen zoals beperkte

steekproefgroottes van experimentele gegevens en de complexiteit van factoren

die de degradatie van apparaten beïnvloeden, worden echter steeds meer pro-

minent. Tegelijkertijd is er een overvloed aan degradatie-informatie uit andere

gegevensbronnen beschikbaar, waaronder gegevens van andere componenten, his-

torische partijen en verschillende experimentele belastingniveaus. Daarom is er

een dringende behoefte om manieren te vinden om deze gegevens uit verschillende

bronnen volledig te benutten voor de betrouwbaarheidsanalyse van industriële

apparaten. Dit proefschrift stelt daarom verschillende methoden van datafusie voor

om de betrouwbaarheidsanalyse van industriële apparaten uit te voeren op basis

van degradatiegegevens uit verschillende bronnen. Het onderzoek richt zich op drie

primaire onderzoeksdoelen: het ontwikkelen van een op datafusie gebaseerd raam-

werk voor het voorspellen van de resterende gebruiksduur (RUL) van industriële

apparaten op basis van multivariate sensorgegevens verzamelen, het formuleren

van betrouwbaarheidsanalysemethoden voor degradatiegegevens van verschillende

industriële apparaten, en het opzetten van een raamwerk voor het analyseren van

degradatiegegevens onder verschillende experimentele belastingniveaus.

Voor het eerste onderzoeksdoel wordt een nieuwe, op kenmerken gebaseerde,

degradatie-index voorgesteld die automatisch kenmerken selecteert en de niet-

lineaire degradatietrends vastlegt op basis van multivariate sensorgegevens. Ver-

volgens wordt een soortgelijk raamwerk ontwikkeld om de RUL te voorspellen. De

effectiviteit van dit raamwerk wordt gevalideerd door simulaties en casestudies van

industriële inductiemotoren, waarbij ten opzichte van bestaande methoden een

uitstekende voorspellende nauwkeurigheid wordt geobserveerd.

Voor het tweede onderzoeksdoel richt dit proefschrift zich eerst op Voor het

XIII



XIV SAMENVATTING

tweede onderzoeksdoel richt dit proefschrift zich eerst op het verbeteren van de

betrouwbaarheidsevaluatie van industriële apparaten door huidige- en historische

partijdegradatiegegevens te integreren via de consistentie van faalmechanismen.

Met behulp van een op het Wiener-proces gebaseerd degradatiemodel geeft de

voorgestelde methode nauwkeurige en stabiele betrouwbaarheidsschattingen, zo-

als blijkt uit simulatiestudies en een casestudy over de degradatiegegevens van

Metal-Oxide-Semiconductor Field-Effect Transistoren. Bovendien, gemotiveerd

door de vroege cyclusgegevens van lithium-ijzerbatterijen, stelt dit proefschrift een

robuuste transfer learning methode voor door een “raamwerk van modelgemiddel-

den” te gebruiken, waarbij de gewichten worden bepaald op basis van een afstand

tussen het brondomein en het doeldomein. Deze methode adresseert de uitdaging

van robuustheid en generalisatie van levensduurschattingen voor batterijen uit

verschillende partijen bij gebrek aan diversiteit in trainingsgegevens.

Voor het derde onderzoeksdoel, om de ingewikkelde relaties tussen degradatiepa-

tronen, verschillende belastingvariabelen en -niveaus te modelleren, introduceert

dit proefschrift een functioneel data gestuurd raamwerk voor het begrijpen van

dergelijke relaties. De uitstekende prestaties en effectiviteit van de voorgestelde

benadering worden onderbouwd door simulatiestudies en een casestudy over ver-

snelde degradatiegegevens van de zogenaamde was-achtige smeerlaag.

Concluderend, presenteert dit proefschrift verschillende op datafusie gebaseerde

methoden voor de betrouwbaarheidsanalyse van industriële apparaten met be-

hulp van gegevens uit verschillende bronnen. De voorgestelde methoden laten

effectiviteit en goede prestaties zien. De toepasbaarheid van de methoden is niet

beperkt tot de gepresenteerde casestudies; ze kunnen ook worden toegepast op

andere industriële apparaten met vergelijkbare gegevensbronnen. Dit onderstreept

de potentie van deze methoden om bredere uitdagingen op het gebied van betrouw-

baarheidstheorie aan te pakken in andere industriële toepassingen.
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2 1. INTRODUCTION

1.1. BACKGROUND

A S technological advancements push the capabilities of industrial devices

to new heights, achieving higher reliability and longer lifespans has become

increasingly critical. However, this progress introduces significant challenges.

One major issue are the limited sample sizes of experimental data, which

complicate the accurate assessment of device reliability. Another challenge is

the complexity of factors influencing device degradation, making it difficult to

develop comprehensive models that accurately reflect real-world conditions.

Despite these challenges, there is a wealth of degradation information

available from different but related data sources, including data from different

components [1], historical batches [2, 3], and varying experimental stress levels

[4]. These diverse data present a valuable opportunity for enhancing reliability

analysis through data fusion methods.

The examples in Figure 1.1 provide an intuitive understanding of the

degradation data collected from various sources. Figure 1.1(a) shows an example

of the degradation data collected from multivariate sensors in a NASA jet engine

[1]. The plot displays signal measurements as a function of experimental

cycles, where each subplot corresponds to a different sensor. While many

sensor signals exhibit discernible trends over time, no single sensor signal can

adequately represent the performance degradation process of the jet engine.

Figure 1.1(b) presents degradation data from different batches of a kind of

lithium-iron batteries [3], revealing that degradation trends and cycle lives

vary across different batches. Figure 1.1(c) illustrates degradation data from

different experimental stresses and stress levels (such as different temperature

and pressure levels in this case) for a type of waxy lubrication layer, showing

distinct variations in degradation trends across different stress levels.

As mentioned above, degradation data of industrial devices collected from

various sources can be integrated to enhance reliability analysis. To achieve

this, this thesis aims to explore several data fusion methods for analyzing

the reliability of industrial devices with different data sources. By leveraging

multi-source degradation data, this thesis seeks to develop accurate models that

improve the predictive accuracy and generalization of reliability assessments for

industrial devices. These methods will not only improve predictive accuracy
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degradation data-with dynamic covariates. Recent devel-
opments in statistical methods for degradation data with
dynamic covariates can be found inHong et al. (2015) and
Xu, Hong, and Jin (2016). Chen and Ye (2018) considered
uncertainty quantification for degradation models. How-
ever, many other research opportunities arise due to the
arrival of big data, especially related to complexity fea-
tures.

2.1. Degradation index construction

Most of the existing research on degradation data mod-
eling assumes that the degradation index for a product
or system is well-defined. Modern sensor technology
allows one to collect multichannel sensor data that are
related to the underlying degradation process. However,
any single channel may not be sufficient to represent
the underlying degradation process. Figure 1 shows an
example of multichannel sensor data from the NASA
jet engine simulation data (e.g., Saxena and Goebel
2008). Without a well-defined index, many of the existing
methods will not be applicable. Thus, constructing an
appropriate degradation index is a fundamental step in

degradation modeling. Liu, Gebraeel, and Shi (2013) pro-
posed a data-level fusionmodel for developing composite
health indices for degradation modeling and prognostic
analysis. Fang, Paynabar, and Gebraeel (2017) studied a
multistream sensor fusion-based prognostics model for
systems with a single failure mode. Chehade et al. (2018)
considered a data-level fusion approach for degradation
index building under multiple failure modes.

Here we briefly discuss a general approach for degra-
dation index building based on an additive-nonlinear
model with variable selection. The approach is more flex-
ible than a linear combination of sensor signals, and the
approach can automatically select the most informative
variables to be used in the degradation index. Let xi(t ) =
[xi1(t ), · · · , xip(t )]′ be themultivariatemeasurements for
unit i at time t , i = 1, · · · , n. Here, p is the number of sen-
sor channels and n is the number of units. The degrada-
tion index is built as

zi(t ) =
p∑

j=1

f j[xi j(t ); β j],
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Figure . An example of multi-channel sensor data from the NASA jet engine simulation data. The plot shows the signal measurement as
a function of cycles from a subset of variables from one randomly selected unit.(a) Example 1: Multi-sensor

degradation data.
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Figure 1.1: Illustrative examples of degradation data from various sources.

and robustness but also demonstrate flexibility in their application to various

industrial devices, which will highlight the potential for these methods to be

extended beyond the presented case studies, offering valuable tools for reliability

analysis in a wide range of industrial applications.

1.2. RELATED CONCEPTS IN RELIABILITY ENGINEERING

T HIS section introduces definitions of some concepts in reliability engineering

related to this research.

• Reliability: Reliability is the probability that a system, vehicle, machine,

device, and so on will perform its intended function under encountered

operating conditions, for a specified period of time [5, 6].

• Failure Time: Failure time involves putting items into operation and

observing them until they fail [7].

• Degradation: Degradation refers to the process by which a system or

component deteriorates in performance or quality over time due to wear

and tear, environmental factors, or operational use [6].

• Accelerated Degradation Test: An accelerated degradation test (ADT) is a

testing methodology used to induce failures or accelerate the degradation
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of a system or component under higher-than-normal stress levels to

predict its lifespan or reliability under normal operating conditions [8].

• Remaining Useful Life: Remaining useful life (RUL) of a device or system

is defined as the length from the current time to the time till failure [9].

1.3. SCOPE AND OBJECTIVES

T HIS thesis aims to explore data fusion methods in the reliability analysis

of industrial devices, where data fusion refers to the integration of data

from multiple sources to enhance the accuracy and efficiency of the reliability

analysis. The methods and models presented in this thesis are closely related

to various data fusion techniques and are validated using real reliability data

from several industrial devices. The results demonstrate the effectiveness and

performance of the proposed methods. These methods are not limited to the

case studies presented and can be directly extended to the reliability analysis of

other industrial devices with similar data sources. The research is divided into

the following three main research objectives:

• Research Objective 1: Propose a data fusion-based framework for RUL

prediction of industrial devices that collect multi-channel sensor data.

• Research Objective 2: Develop data fusion-based reliability analysis

methods for degradation data from different batches of industrial devices.

• Research Objective 3: Establish a data fusion-based framework for

analyzing accelerated degradation data under different experimental

stresses and stress levels.

1.4. OUTLINE OF THE THESIS

T HE thesis consists of six chapters, focusing on the research of reliability

assessment and RUL prediction by integrating information from different

data sources. The overall framework of this thesis is illustrated in Figure 1.2,

and the specific content of each chapter is summarized as follows:
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Figure 1.2: Overall framework of the PhD thesis.

Chapter 1 provides a brief introduction to the research background, motivated

examples, scope and objectives, and outlines the structure of the thesis.

Chapter 2 addresses the fusion of commonly used multivariate sensor

monitoring data [1, 10, 11] in industrial devices. It introduces a novel framework

for representing multi-sensor data information, extracting key features, and

predicting RUL online. The performance of the proposed framework is validated

through simulation studies and a case study on three-phase industrial induction

motors.

Chapter 3 focuses on integrating degradation information from different

batches of products using the Wiener process. The goal is to improve the
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reliability estimation accuracy for current batch products by leveraging abundant

historical batch data. A new integration framework for historical and current

degradation data is proposed, considering the consistency of failure mechanisms

across different batches. The performance of the proposed method is validated

through simulation studies and a case study on metal-oxide-semiconductor

field-effect transistors (MOSFETs).

Chapter 4 focuses on RUL prediction for batteries using early cycle data [3]

collected from different batches. A robust transfer learning [12, 13] method

based on the model averaging framework is proposed to address the problem of

different distributions between training and testing data. The effectiveness of

the proposed method is demonstrated through a case study on lithium-iron

phosphate/graphite cells.

Chapter 5 presents a functional data-driven reliability analysis framework

that leverages dense observation properties in certain degradation phenomena,

such as waxy degradation. The primary objective is to model the intricate

relationships between degradation characteristics and two experimental stresses:

temperature and pressure. This chapter introduces a novel model-free

methodology for understanding these relationships in accelerated degradation

tests. The proposed framework’s performance is validated through simulation

studies and a case study on a type of waxy lubrication layer.

Finally, Chapter 6 summarizes the thesis and suggests potential directions for

future research.



2
DEGRADATION INDEX-BASED

PREDICTION FOR REMAINING

USEFUL LIFE USING

MULTIVARIATE SENSOR DATA

Parts of this chapter have been published in Quality and Reliability Engineering International
40.7 (2024), pp. 3709–3728. DOI: 10.1002/qre.3615.

7



2

8 2. DEGRADATION INDEX FOR RUL PREDICTION

PLAIN SUMMARY

The prediction of RUL is a critical component of prognostic and health

management for industrial systems. In recent decades, there has been a surge

of interest in RUL prediction based on degradation data of a well-defined

degradation index (DI). However, in many real-world applications, the DI may

not be readily available and must be constructed from complex source data,

rendering many existing methods inapplicable. Motivated by multivariate sensor

data from industrial induction motors, this chapter proposes a novel prognostic

framework that develops a nonlinear DI, serving as an ensemble of representative

features, and employs a similarity-based method for RUL prediction. The

proposed framework enables online prediction of RUL by dynamically updating

information from the in-service unit. Simulation studies and a case study on

three-phase industrial induction motors demonstrate that the proposed framework

can effectively extract reliability information from various channels and predict

RUL with high accuracy.

2.1. INTRODUCTION

2.1.1. BACKGROUND AND MOTIVATION

T HE prediction of RUL is crucial for complex systems such as electrical

systems and has become an increasingly popular research topic in recent

years [10]. The RUL refers to the time remaining until a system can no

longer perform its intended function, and accurate RUL prediction is essential

for ensuring system safety and reliability, minimizing maintenance costs, and

maximizing its lifespan. Modern sensor technology has facilitated the collection

of multivariate sensor data, allowing real-time monitoring of a system’s health

status. These multivariate data provide valuable information on the system’s

performance, which can be used to predict its RUL. Therefore, developing

effective methods for analyzing and processing multivariate sensor data is

critical for accurate RUL prediction.

The major challenge in RUL prediction based on the multivariate sensor

data is the inability of any single channel to fully capture the variation of

RUL [1]. One example of such data is the multivariate three-phase industrial



2.1. INTRODUCTION

2

9

induction motor data used in our case study [14]. Figure 2.1 shows an example

of the motor, where 11 channels of raw signals, including current, voltage, and

temperature, are presented as a function of the experimental period (i.e., the

cycles shown in Figure 2.1), where the true value of RUL is also available. As

seen, most signals do not exhibit a significant trend during the experiment,

making them unsuitable for direct use in RUL prediction. This challenge

demonstrates the need for effective techniques to extract relevant information

from multiple sensor data for accurate RUL prediction.

Figure 2.1: Example of multivariate sensor data for a three-phase induction
motor.

In the following subsection, we provide a comprehensive review of the existing

literature on RUL prediction based on multivariate sensor data, covering the

three main areas of research: sensor fusion techniques, degradation index (DI)

methods, and RUL prediction models.
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2.1.2. LITERATURE REVIEW

SENSOR FUSION

In the field of degradation modeling for complex systems that collect

multivariate sensor data, an effective fusion of the sensor data is a critical task.

Existing fusion methods for multivariate sensor data can be broadly categorized

into three groups: signal-level, feature-level, and decision-level [15–17].

Signal-level fusion involves the direct integration of all raw sensor signals.

For instance, [18] directly fuses multisensor data using a 2-D convolutional

neural network and applies several artificial intelligence (AI) methods to the

fused data for fault detection and diagnosis of gearboxes. However, signal-level

fusion requires caution since sensor recordings may have different acquisition,

pre-filtering, and amplification settings, and raw data fusion often requires

commensurate data as input [15].

Feature-level fusion predicts the health status by combining extracted features

from the data of each raw sensor. This approach has been widely used due to

its simplicity and effectiveness. For example, [19] proposes a RUL prediction

method by performing a gated recurrent unit network on the extracted nonlinear

features generated using kernel principal component analysis. [20] proposes

an integrated deep multiscale feature fusion network for aero engine RUL

prediction using multisensor data, and they integrate features extracted from

the convolutional neural network and gated recurrent unit network.

The third category, decision-level fusion, involves integrating the decisions

made from independent analyses of multivariate sensor data, such as fault

diagnosis, RUL prediction, or other types of analysis tasks. For example, [21]

develops a decision-level fusion method by combining the high-dimensional

decisions transformed from low-dimensional decisions made based on individual

sensor data. [22] proposes a decision-level method for multisensor fusion

for collaborative fault diagnosis by using an enhanced voting fusion strategy.

However, this approach is a post-processing technique that heavily depends on

the quality of the raw data and is highly sensitive to the decision fusion rules,

limiting its practical applications [23].
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DEGRADATION INDEX

The previously reviewed multivariate sensor data fusion methods share a

common drawback: the absence of a univariate index that credibly reflects

the underlying degradation process. While some of these methods employ

the raw sensor data or extracted features as input to different AI models,

there is still no satisfactory fused indicator that meets requirements such as

monotonicity, smoothness, and maximum range information [24]. As a result,

these approaches tend to be less interpretable with respect to the underlying

degradation process, making many existing statistical methods inapplicable.

Consequently, the construction of an informative univariate index, or the DI as

referred to in this chapter, is a crucial step towards describing the underlying

degradation process based on multivariate sensor data [25, 26].

Several methods have been proposed for constructing the DI. For example,

[25] proposes a method to construct the DI by fusing multi-sensor data at the

signal level and using the resulting DI for the degradation modeling of an

aircraft gas turbine engine. Subsequent work has been done by [24, 27–30].

In particular, [31] presents a DI building method for multivariate sensor data

with censoring, which can automatically select informative sensor signals using

the group LASSO penalty. However, these methods may not be suitable for all

practical cases as they assume there should be a trend in some raw signals,

which may not be the case where only extracted features show such trends.

Furthermore, these methods are all focused on raw sensor data and may be

time-consuming for high-dimensional feature spaces. In addition, [31] also

notes that existing methods cannot perform automatic variable selection, and

the DI and variable selection procedure in their own work lacked an explanation

for the contribution of each sensor.

RUL PREDICTION

To accurately predict the RUL, it is necessary to establish a precise correlation

between the constructed DI and RUL. Univariate DI-based RUL prediction

methods typically fall into three categories: physical-based, data-driven, and

hybrid approaches [11, 32]. Physical-based methods require a thorough

understanding of the degradation behavior based on failure mechanisms, which
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can be challenging to obtain for complex systems. Conversely, data-driven

methods have gained attention in recent years due to their mechanism-agnostic

approach, which infers the health status of products from monitored degradation

signals. Hybrid methods combine both physical-based and data-driven methods,

but their effectiveness may be limited by the difficulty of obtaining accurate

failure mechanisms for complex systems.

Data-driven methods can be further classified into statistical and AI methods

[33]. Statistical methods based on the Wiener process, Gamma process, and

inverse Gaussian process have been widely used. Examples and applications can

be found in [34–40], and references therein. However, these stochastic process

methods have some strong assumptions such as the Markov property, and are

also prone to model misspecification problems, which limit their application in

engineering [41]. In contrast, AI methods are not affected by these limitations

[42]. Among them, the similarity-based method is widely used for DI-based RUL

prediction due to its intuitive and interpretable nature [43]. Further examples

can be found in the review paper [44].

2.1.3. OBJECTIVE AND OVERVIEW

B ASED on the literature review, the issues of existing methods can be

summarized as follows. Although direct mapping of multivariate sensor

data and RUL is possible, DI-based methods are often more intuitive and

explainable. However, existing DI-based methods mainly focus on cases where

the raw sensor data have significant trends, which is not suitable for many

applications, as demonstrated in Figure 2.1. Despite the inclusion of feature

engineering procedures, existing DI-based methods may still lack efficiency and

applicability in high-dimensional feature spaces. Additionally, the accuracy of

existing DI-based methods for RUL prediction heavily relies on the form of DI

and the sample size of the training dataset, limiting their usefulness in certain

applications.

Motivated by the above-mentioned issues, this chapter proposes DI-based

prognostic frameworks for predicting RUL in complex systems. In contrast to

existing DI-based methods, our constructed DI is feature-based and performs

automatic feature selection, which is essential for accurately capturing the
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underlying degradation trend of the system. Furthermore, our proposed DI

incorporates a nonlinear relationship between the selected features and the

degradation process, better reflecting the complex and nonlinear nature of

practical engineering applications. Based on the constructed DI and similarity

matching method, we have developed three frameworks for prognostic RUL

prediction of complex systems that collect multivariate sensor data. These

frameworks are designed to overcome the challenges of accurately predicting

RUL. The basic principles of these frameworks are illustrated in Figure 2.2,

highlighting the importance of data preprocessing, feature extraction and

selection, DI construction, and RUL prediction.

Figure 2.2: The basic procedures of the developed prognostics frameworks.

The main contributions of this chapter are summarized as follows:

(1) Introduction of feature-level prognostics frameworks for DI-based RUL

prediction, which can also automatically select informative features.

(2) Development of a nonlinear form of DI to amalgamate representative

features extracted from collected multivariate sensor data.

(3) Proposal of an ensemble approach that stably integrates common and

individual features.

The remainder of this chapter is organized as follows. In Section 2.2, we

provide details of the feature engineering process for multivariate sensor
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data and the method used to construct a DI. The procedure for deriving

similarity-based RUL and quantifying the uncertainty of predictions is presented

in Section 2.3. We then illustrate the developed prognostics frameworks for

DI-based RUL in Section 2.4. In Section 2.5, we conduct a simulation study to

investigate the performance of the proposed frameworks. In Section 2.6, we

provide a case study based on real-world induction motors degradation data.

Finally, we give some concluding remarks and discussions in Section 2.7.

2.2. DEGRADATION INDEX CONSTRUCTION

2.2.1. FEATURE ENGINEERING

R AW sensor data typically consists of time series data with a fixed sampling

frequency. However, analyzing the data at each time point can be

computationally expensive and may not yield useful information. To address this

challenge, feature extraction is commonly used to generate features from the

raw time series that accurately describe the data while reducing computational

costs [10, 11]. Additionally, feature selection can be employed to select the

most informative subset of features, as not all extracted features may be useful.

Therefore, feature extraction and feature selection techniques are crucial for

exploring useful information and reducing computational costs.

In this study, we focus on investigating time-domain feature extraction

techniques. Specifically, we employ the time domain features used in previous

works such as [10] and [11]. The details of the extracted features are presented

in Table 2.1, where h represents a time series with a length of k. Among all the

features, (p1, p3, p4, p7) are used to capture the amplitude and energy of each

signal, while the remaining ones reflect the distribution of the signal over the

time domain. Note that the features listed in Table 2.1 differ for each signal and

k denotes the total length of the signal.

Since noisy features can impede modeling accuracy, feature selection is often

utilized to retain the most important subset of features. In many existing works

on DI construction, Fisher’s discriminant ratio is used as a criterion for feature
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Table 2.1: Extracted features from raw sensor signals.

Feature Description Equation
p1 Average amplitude 1

k

∑k
i=1 h(i )

p2 Standard deviation (
∑k

i=1(h(i )−p1)2

k−1 )1/2

p3 Root mean square amplitude ( 1
k

∑k
i=1 h(i )2)1/2

p4 Squared mean rooted absolute amplitude ( 1
k

∑k
i=1 |h(i )|1/2)1/2

p5 Kurtosis coefficient
∑k

i=1(h(i )−p1)4

(k−1)p4
2

p6 Skewness coefficient
∑k

i=1(h(i )−p1)3

(k−1)p3
2

p7 Peak value max |h(i )|
p8 Peak factor p7

p3

p9 Margin factor p7
p4

p10 Waveform factor p3
1
k

∑k
i=1 |h(i )|

p11 Impulse factor p7
1
k

∑k
i=1 |h(i )|

selection [41]. This ratio can be formulated as follows:

SF (X j ) = (µ j ,1 −µ j ,2)2

σ2
j ,1 +σ2

j ,2

, (2.1)

where µ j ,c and σ2
j ,c are the mean and variance of feature X j within the healthy

(c = 1) or unhealthy (c = 2) class. To determine these two classes, we follow the

approach used in [10] and [11], which assumes that the first few cycles are

relatively healthy and the last few cycles become faulty. Specifically, we use the

first 4 and the last 4 cycles and select top features with the highest Fisher’s

discriminant ratio to train the model, which reduces the number of features and

improves computational efficiency [41].

Fisher’s discriminant ratio method only identifies unit-specific informative

features rather than general informative features across multiple reference units.

To address this limitation, we propose a new feature selection method that

selects the most common informative features across reference units. First, we

calculate Fisher’s discriminant ratios for all features in Table 2.1 of each unit
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and sort them in descending order. We then select a certain percentage of

features with the highest ratios. In practice, this percentage can be chosen by

engineering background or cross-validation. In this chapter, the top 50% is used

for a fair comparison, which is consistent with [10] and [11]. Next, we generate

the most frequent features by selecting a certain percentage of the reference

units (e.g., 5 out of 7 units in our case study) and taking the intersection of

features from each subset. Finally, we select the union of these intersections

as the set of selected features. This approach improves the robustness and

generalization of our feature selection method. The entire feature engineering

process is presented in Algorithm 2.1.

Algorithm 2.1: The overall process of feature engineering.

Input : Multivariate sensor signal data for all reference units after
preprocessing.

Output : The general informative features of most reference units.

1 for each unit do
2 Calculate the Fisher’s discriminant ratios for all features according to

Table 2.1;
3 Sort these ratios in descending order;
4 Take out a certain percentage of the top-ranked features;

5 Take a certain percentage of the reference units as subsets;
6 Find the intersection of features for each subset;
7 return The union of these intersections.

2.2.2. CONSTRUCTING DEGRADATION INDEX

A FTER feature engineering, the next step is to construct a suitable DI based

on these selected features. Let p be the number of selected features from

the raw sensor data, and x(s) = [x1(s), x2(s), · · · , xp (s)] be the corresponding

features generated at operational time s.

To construct the DI, we employ the cumulative damage model [1, 31], which

assumes that the degradation of a system accumulates over time and is widely
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used in many engineering systems. Specifically, the DI Z (t ) is defined as follows:

Z (t ) =
∫ t

0
u(s)d s, (2.2)

where u(s) is called the damage at the operational time point s which is a

positive value and can be constructed by the selected features following the

additive model

u(s) =
p∑

j=1
β j f j [x j (s),φ j ], (2.3)

where β j is the parameter reflecting the contribution of the j -th feature, and

f j [x j (s),φ j ] is the corresponding effect function. To make f j [x j (s),φ j ] flexible

to capture potential nonlinear patterns of the features, we adopt a linear

combination of spline basis

f j [x j (s),φ j ] =
L∑

l=1
φ j l bs j l (s), (2.4)

where j is the feature index, bs j l (s), l = 1, · · · ,L are the B-spline basis functions,

L is the number of degrees of freedom, and φ j l are the corresponding weight

coefficients. The B-spline is used due to its simplicity of computation and wide

applicability. More details can be found in [45].

Regarding the properties to construct the DI, we employ the following three

widely used properties [25, 27–31]:

(1) Monotonic degradation trend: The trend of a constructed DI is assumed

to be monotonic, showing a clear increasing or decreasing trend as the

failure progresses during degradation. Without loss of generality, we

assume that the DI is monotonically increasing in this work.

(2) Consistent initial status: In practice, the initial states of different units

are often assumed to be the same, which can be achieved by setting the

initial value of the constructed DI to 0.

(3) Maximized range information: The range information of the constructed

DI starting from the initial to the failure time point should be maximum

to guarantee a clear degradation trend.
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The constructed Z (t ) naturally satisfies the first two properties, i.e., Z (0) = 0

and Z (t) is monotonically increasing. As pointed out in [24] and [30], the

maximum range information ensures that the range of the constructed DI (i.e.,

initial degradation level to the level of failure) is maximized, providing a clear

degradation trend. To achieve this, we propose the following unconstrained

optimization problem to determine the parameters β= (β1, · · · ,βp ),

min
β

(1−λ)R(β)+λ∥β∥1, (2.5)

where R(β) = 1/mini Zi with Zi being the DI value of the i -th reference unit at

the failed time, λ ∈ [0,1] is a tuning parameter which can be determined by

cross-validation, and ∥·∥1 is the L1 norm. Note that minimizing R(β) maximizes

the overall range of the reference units. Moreover, by incorporating the lasso

penalty, the proposed method automatically performs feature selection, which is

a critical step often overlooked in DI-related studies. Because the objective

function Eq. (2.5) is highly complex, it is recommended to use heuristic

optimization algorithms [46] such as simulated annealing for optimization.

2.3. RUL PREDICTION

2.3.1. SIMILARITY-BASED RUL

W ITH the constructed DI, we propose a similarity-based method for

RUL prediction. The similarity-based prediction method is a popular

data-driven approach that is widely used in RUL prediction because it does not

require pre-knowledge of failure mechanisms or specific degradation models

[43, 44]. The basic principle is to compare the DI of a test unit with those

of reference units at specific time points. If they are similar, the RULs of the

test and reference units should also be similar. The commonly used Euclidean

distance is adopted in this chapter to measure the similarity between the DI of

the test unit and the DIs of the reference units [43, 44].

Because the length of DIs for the test and reference units are often different,

the distance cannot be calculated directly. Therefore, a reconstruction of the DIs

is necessary to ensure that the test and reference units share the same length
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of DI at the reconstructed segments. Assuming there are n failed reference

units, the DI of the i -th reference unit is Zi = (Zi ,1, · · · , Zi ,ni ), where i = 1,2, · · · ,n

and Zi , j is the value of the DI for the i -th reference unit at time j . Note

that the ni values are integers, representing the cycle number at which the

i -th reference unit failed. Let the DI of the test unit be ZT,t = (ZT,1, · · · , ZT,t ),

where t is the current operating time, which is also an integer. Then,

the DI of the i -th reference unit is reconstructed into ni − t +1 segments

{Zi ,1, · · · , Zi , j , · · · , Zi ,ni−t+1}, where Zi , j = (Zi , j , · · · , Zi , j+t−1), j = 1, · · · ,ni −t+1. The

Euclidean distance between ZT,t and Zi , j is calculated by

di , j ,t = ∥ZT,t −Zi , j ∥2, (2.6)

where ∥ ·∥2 is the L2 norm.

The most similar segment from the i -th reference unit is then selected by

using the smallest distance di ,t = min j di , j ,t . Let k be the index number of

the most similar segment, and Zi ,k = (Zi ,k , · · · , Zi ,k+t−1). The corresponding

predicted RUL at time t based on the i -th reference unit is derived as

RULi ,t = ni − (k + t −1). (2.7)

Consequently, the similarity-based RUL of the test unit at time t is estimated by

a weighted sum of the RULs derived from all the reference units, which can be

expressed as

RULt =
n∑

i=1
ωi ,t RULi ,t , (2.8)

where ωi ,t := 1/di ,t∑n
i=1 1/di ,t

is the weight for the i -th reference unit at time t . Note

that it is reasonable to use ωi ,t as the weight since a smaller value of di ,t

indicates stronger similarity and
∑n

i=1ωi ,t = 1 [44].

2.3.2. PREDICTION INTERVAL FOR RUL

I N practice, the prediction interval is often more valuable and can be used to

measure the uncertainty in prediction. To calculate the prediction interval of

similarity-based RUL, we propose a method that applies the bootstrap method
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after constructing the DIs of all units. The basic idea is to resample with

replacement from the DIs of the reference units and then derive the prediction

for the similarity-based RUL for the test unit using the procedures described in

Section 2.3.1 based on the resampled data. This procedure is repeated M times

to derive M predicted RULs. Finally, the corresponding prediction interval can

be obtained by using the empirical percentiles of the M predicted RULs. For

example, the 95% prediction interval can be calculated using Algorithm 2.2 by

setting γ= 0.05.

Algorithm 2.2: Procedures of constructing the 100(1−γ)% prediction
interval for RUL.

Input : Constructed DIs of reference units and the DI of the test unit at
time t .

Output : The 100(1−γ)% prediction interval for the RUL of the test unit.

1 for m ← 1 to M do
2 Resample with replacement from the construct DIs of reference units,

and the sampling size is consistent with the number of reference units;
3 Derive the most similar segments for the DI of the test unit based on

the resampled DIs and Eq. (2.6);
4 Determine the similarity-based RUL of the test unit at time t using Eq.

(2.7) and Eq. (2.8);

5 Calculate the γ/2 and 1−γ/2 quantiles of the M predicted RULs;
6 return The γ/2 and 1−γ/2 quantiles of the M predicted RULs.

2.4. FRAMEWORKS FOR RUL PREDICTION

W ITH the identified features, we can compute the similarity-based RUL for

the test unit using the DIs constructed in Section 2.2 and the prediction

procedure outlined in Section 2.3. In this section, we introduce three frameworks

for RUL prediction. The first framework considers only the information from the

reference units, the second framework dynamically incorporates information

from both the test and reference units, and the third framework is an ensemble

of the first two methods.
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2.4.1. THE STATIC FRAMEWORK

F OR the collected multivariate sensor signal data, a straightforward approach

is to train the parameter vector β in Eq. (2.5) based on the selected

common features from the reference units and then use this parameter vector

to predict the RUL for the test unit. We refer to this method as a static method

since it relies solely on the information from reference units to derive the

parameter vector β.

To determine the DIs for the reference and test units, the common features

are first selected from the raw sensor data of the reference units using the

feature engineering method outlined in Section 2.2.1. Then, the contribution

parameters β j , j = 1, · · · , p in Eq. (2.3) can be derived by solving Eq. (2.5) using

these data, denoted as βR . Thus, the DIs of reference and test units can be

determined by substituting βR and the corresponding feature data into Eq.

(2.2). Using these DIs and the prediction method described in Section 2.3, the

similarity-based RUL for the test unit can be derived. The flowchart of this

method is illustrated in Figure 2.3.

Figure 2.3: Flowchart of the static prognostics.
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2.4.2. THE DYNAMIC FRAMEWORK

W HILE the static method presented relies solely on the common information

shared by the reference units, it is important to note that each unit also

has unique individual features that affect its degradation process. In order to

account for both the common and individual features, we propose a dynamic

prognostic method that integrates both. We divide the DI at time t in Eq. (2.2)

into two parts, the common part Z (1)(t ) and the individual part Z (2)(t ), which

can be expressed as

Z (t ) = Z (1)(t )+Z (2)(t ) =
∫ t

0
u1(s)d s +

∫ t

0
u2(s)d s, (2.9)

and,

u1(s) =
p1∑

j=1
β1 j f1 j [x1 j (s),φ1 j ],

u2(s) =
p2∑

j=1
β2 j f2 j [x2 j (s),φ2 j ],

(2.10)

where p1 and p2 are respectively the numbers of common and individual

features, β1 j and β2 j are the corresponding contribution parameters, and

f1 j [x1 j (s),φ1 j ] and f2 j [x2 j (s),φ2 j ] capture the effects of the corresponding

features.

To obtain the DI of the test unit, the contribution parameters of the common

part β1 j , j = 1, · · · , p1 are assumed to be consistent with the reference units,

while the individual parameters β2 j , j = 1, · · · , p2 are allowed to vary based on

the data collected from the test unit at operating time t . Using the common

features of reference units and Eq. (2.5), β1 j , j = 1, · · · , p1 can be derived by the

static framework, denoted as βRC . Each reference unit’s individual contribution

parameter, denoted as βRI , is independently computed by solving Eq. (2.5).

This computation focuses on the top informative individual features exclusive to

each reference unit, excluding common features. It is important to note that

there is no overlap between the sets of common and individual features, and

the values of βRI vary among distinct reference units.
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Up until this point, the proposed framework only utilizes the degradation data

from the reference units and can be performed offline: the DIs of reference

units can be determined by βRC and βRI . As for the test unit, the individual

contribution parameter βTI can be dynamically updated by solving Eq. (2.5)

using the selected individual features at operating time t . Combining with the

common parameter βRC , we can dynamically obtain the DI of the test unit and

calculate the corresponding similarity-based RUL at each operation time point.

The flowchart of the dynamic method is illustrated in Figure 2.4.

Figure 2.4: Flowchart of the dynamically updating prognostics.

2.4.3. THE ENSEMBLE FRAMEWORK

T HE effectiveness of the proposed dynamic framework largely depends on

the individual features selected for the test unit. This is because the data

size of the test unit is typically smaller than that of the reference units, making

it more susceptible to random errors during the dynamic updating process,

particularly when the operating time t is short. To address this issue, the

following ensemble framework is proposed to achieve a more stable prediction.

The basic idea is to ensemble the predicted RULs from the static and dynamic
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frameworks based on the fact that the RUL of a unit will not improve over

time and will not experience a sudden big drop [10, 11]. Let RULS,t denote

the predicted RUL at the operating time t from the static framework, RULD,t+1

denote the predicted RUL at the operating time t +1 from the dynamic

framework. Then RULS,t −RULD,t+1 can be defined as the ensemble condition.

Specifically, if RULS,t −RULD,t+1 is smaller than a preset minimum drop, mind ,

then the prediction at time t +1 is RULS,t −mind . If RULS,t −RULD,t+1 is

larger than a preset maximum drop, maxd , then the prediction at time t +1 is

RULS,t −maxd . Otherwise, the prediction at time t +1 is RULD,t+1. The values of

mind and maxd can be determined through cross-validation. The flowchart of

the ensemble method is illustrated in Figure 2.5.

2.5. SIMULATION STUDY

2.5.1. SIMULATED DATASET

I N this section, a simulation study is conducted to evaluate the performance

of the proposed frameworks. The settings are designed to be similar to

those in the case study in Section 2.6. Specifically, there are 10 units, and

for each unit, 10 signal data are collected. The failed cycles for the units

are (24,26,25,23,28,22,25,24,21,19). Similar to [31], we assume each signal is

a trend function of the experimental cycle with some noise, which can be

formulated as Xm(t ) = gm(t )+εm(t ),m = 1, · · · ,10. Without loss of generality, the

trend function gm(t ) can be a constant, linear, power, or trigonometric function,

and the noise εm(t) follows a zero-mean normal distribution. The simulated

dataset and corresponding functions gm(t ) are shown in Figure 2.6.

2.5.2. FEATURE ENGINEERING AND DATA NORMALIZATION

P RIOR to applying the proposed frameworks, feature engineering is necessary

as discussed in Section 2.2.1. Using the data in Figure 2.6, the features in

Table 2.1 can be calculated. Each unit has a total of 110 features, with 10 signals

and 11 features per signal. In the feature selection stage, we employ Fisher’s

discriminant ratio and Algorithm 2.1 to select useful features. In the simulated

dataset, the number of subsets is 36, as we consider 7 out of 9 as the percentage
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Figure 2.5: Flowchart of the ensemble prognostics.

mentioned in Algorithm 2.1. The number of selected common features for

different units are as follows: (43,43,43,48,44,48,43,43,48,45). Figure 2.7

illustrates a set of randomly selected features along with their corresponding
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Figure 2.6: Simulated data for 10 units with 10 signals. Each panel represents a
single signal. The horizontal axis shows experimental cycles and the
vertical axis shows signal measurement. Different colors and line
types represent different units.

coefficients, which were estimated by the static framework using simulated data.

The visual representation demonstrates the successful generation and selection

of informative features by the proposed framework. Additionally, it effectively

captures both increasing and decreasing trends. The feature numbers (NO)

represent the identifiers, while the coefficients reflect the contribution of each

feature to the model.

To reduce the impact of varying data magnitudes, the min-max approach

is used to normalize the selected features before model training [47]. For a

selected feature, it can be formulated as

X ′ = X −min(X )

max(X )−min(X )
, (2.11)
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Figure 2.7: Example of the selected features and the corresponding coefficients
in the simulated dataset.

where X denotes the original feature, max(X ), min(X ) are calculated over

cycles, and X ′ refers to the normalized version.

2.5.3. PERFORMANCE EVALUATION

T O evaluate the performance of the RUL prediction, the commonly used

metric, the root mean square error (RMSE), is employed [10]. Let RUL and�RUL be the vector of true and predicted RULs of one specific unit, respectively,

and nT be the corresponding failed cycle number. Then, the RMSE can be

formulated as,

RMSE = ∥RUL−�RUL∥2/
p

nT . (2.12)

In addition to RMSE, it is also important to quantify the uncertainty associated

with RUL predictions. To do this, a 95% prediction interval is widely used, which

can be calculated using Algorithm 2.2 by setting γ= 0.05.
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2.5.4. SIMULATION PERFORMANCE

T O verify the feasibility and effectiveness of the proposed frameworks in

this chapter, we utilize two additional methods from [10] and [11] as

benchmarks since they also concentrate on the same dataset as in our case

study.

These studies assume that the DI and RUL have a fixed linear [10] or

nonlinear [11] relationship. To predict the RUL, they first build the model from

the input features to the DIs using the feed-forward neural network with one

hidden layer, and then they smooth the DI dynamically to improve the quality

of the DI. Finally, with the fixed linear or nonlinear relationship, they predict the

RUL based on the constructed DI. More details can be found in [10] and [11].

The leave-one-out approach is utilized to validate the performance and

determine the reference units. For instance, if unit 1 is chosen as the test unit,

the remaining 9 units are treated as reference units. RMSEs based on different

methods are reported in Table 2.2, where M1 is the method in [10], M2 is the

method in [11], M3 is the static method in Section 2.4.1, M4 is the dynamic

method in Section 2.4.2, and M5 is the ensemble method in Section 2.4.3. The

average value of the RMSE in predicting all the units is reported in the last row

in the table and the minimum RMSE value for each unit is highlighted in bold.

For uncertainty quantification, the results of 4 representative units are shown in

Figure 2.8, where the solid black line is the true value of RUL.

Table 2.2 and Figure 2.8 suggest that the proposed methods (M3 and M5)

generally outperform the existing methods (M1 and M2), as indicated by their

smaller RMSE and narrower prediction intervals. In particular, the ensemble

method (M5) outperforms the static method (M3) in most cases (6 out of 10

and the mean RMSE case), highlighting the effectiveness of integrating static

and dynamic methods using the proposed ensemble framework. The dynamic

method (M4) yields comparable results per unit to the existing methods,

suggesting that it is able to extract useful information using dynamic updating.

However, the inconsistent performance also underscores the necessity of the

ensemble method (M5).

Note that M1 and M2 demonstrate similar performances, as evidenced by

their comparable RMSEs. This could be due to the simulated dataset having a
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Table 2.2: RMSE of RUL prediction for the simulated dataset.

Test Unit M1 M2 M3 M4 M5
Unit 1 2.44 3.14 0.58 1.51 0.42
Unit 2 3.20 6.32 1.84 3.76 1.90
Unit 3 2.60 4.90 1.00 2.55 0.87
Unit 4 2.71 1.83 1.43 2.76 1.28
Unit 5 4.61 9.02 4.61 4.99 4.40
Unit 6 3.28 1.39 3.25 4.69 3.26
Unit 7 2.61 4.90 0.93 1.52 0.80
Unit 8 2.44 3.22 1.43 3.59 1.17
Unit 9 3.99 2.53 0.83 2.66 1.43
Unit 10 5.84 5.91 1.96 4.36 2.20
Mean 3.37 4.32 1.79 3.24 1.77

predominantly linear relationship between DI and RUL. As a result, M1 and M2

may have similar capabilities in capturing the underlying trend.

2.6. CASE STUDY

I N this section, a case study on the degradation data of 8 three-phase

industrial induction motors is presented to demonstrate the implementation

of the proposed frameworks.

2.6.1. DATA OVERVIEW

T HE data was reported by [14], where ten 5-horsepower motors were used

for the accelerated thermal aging process. As depicted in Figure 2.9(a), each

thermal aging cycle lasts approximately one week. Further details of each cycle

are provided below.

(1) Initial heating: Heat the motor in one of 3 identical EW-52402-91 ovens at

160◦C (or 140◦C) for 72 hours.

(2) Air cooling: Remove and allow to air cool for 6 hours.

(3) Quenching/humidity chamber: Quench in an enclosed shallow water pool

for 15 minutes.
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(a) Unit 1 (b) Unit 4

(c) Unit 8 (d) Unit 9

Figure 2.8: RUL predictions and the 95% prediction interval for the simulated
dataset.

(4) Second heating: Immediately place back in the oven and heat again for 72

hours.

(5) Second air cooling: Air cool for 18 hours before data collection.

In the data collection stage, as shown in Figure 2.9(b), each motor

was connected to a Winco generator through an elastomeric coupling and

instrumented with a data collection system. The steady-state data was collected

for 2 seconds every 15 minutes at 10 kHz and 4 times per cycle for each motor

[10, 11, 14]. The process of thermal aging and data collection was repeated
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(a) Thermal aging process

(b) Data collection

Figure 2.9: Timeline of the accelerated thermal aging and data collection
process.

until the motor failed to startup normally. The experimental device setup for

accelerated thermal aging motor experiments is illustrated in Figure 2.10 [14].

In general, this experiment collected 13 channels of key signals including

three-phase current (Current 1, 2, 3), three-phase voltage (Voltage 1, 2, 3),

two directions of vibration (Accelerometer 1, 2), acoustic (Microphone), speed

(Tachometer), temperature (Temperature), and load (output current and voltage)

signals. The two channels of load signals were excluded because they were

measured by connecting a motor to specific load equipment which is unavailable

in practical systems [10, 11]. Since 2 out of the 10 motors experienced abnormal

faults during the experiment, the data from 11 signal channels of the rest 8

motors were used in this chapter. The details of time to failure for each motor

and the corresponding missing values are given in Table 2.3.
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Figure 2.10: Experimental device for accelerated thermal aging of electric motor.

Table 2.3: Details of time to failure for each motor and the corresponding
missing values.

Motor Failed cycle Missing values
1 18 Current 2: cycle 5 & 6; Voltage 3: cycle 5, 6 & 7
2 27 Current 2: cycle 5 & 6; Voltage 3: cycle 5, 6 & 7
3 26 Current 1: cycle 7; Current 2: cycle 5, 6 & 7; Current 3:

cycle 7; Voltage 3: cycle 5, 6 & 7
4 29 Current 2: cycle 5 & 6; Voltage 3: cycle 5, 6 & 7
5 28 Current 2: cycle 2; Voltage 3: cycle 2 & 3
6 27 Current 2: cycle 5; Voltage 3: cycle 5, 6 & 7
7 27 Current 2: cycle 5 & 6; Voltage 3: cycle 5, 6 & 7
8 25 Current 2: cycle 5; Voltage 3: cycle 5 & 6
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2.6.2. DATA PRE-PROCESSING AND FEATURE ENGINEERING

A S shown in Table 2.3, some cycle signals have missing values due to human

error in data acquisition or short-term damage to the data collection

system. Following [10, 11], these missing values are replaced by the nearest

historical values. Specifically, when a cycle of signals at a channel is missing, it

is replaced with values from its previous cycle. For instance, for the missing

values of Current 1 in cycle 7 for Motor 3, they are replaced by signals from

cycle 6. Then, the features listed in Table 2.1 can be calculated. Each motor

has 121 features in total, as there are 11 channel signals with 11 features per

signal. The leave-one-out approach is employed to validate the performance

and determine the reference motors, which is consistent with the simulation

study. As highlighted in Section 2.2.1, we first select useful features using

Fisher’s discriminant ratio and Algorithm 2.1. For the proposed frameworks, the

number of subsets is 21, as we consider 5 out of 7 as the percentage mentioned

in Algorithm 2.1, and the number of selected common features for different test

motors are (50,50,50,48,47,48,50,51).

Figure 2.11 displays an illustration of the selected features and their

corresponding coefficients estimated by the static framework. The visual

representation reveals that the proposed framework successfully generated and

selected informative features, while also effectively capturing both increasing

and decreasing trends.

2.6.3. PERFORMANCE OF THE PROPOSED FRAMEWORKS

S IMILAR to the simulation study, the RMSE in RUL prediction based on

different methods of each motor is reported in Table 2.4. Recall that M1

refers to the method proposed in [10], M2 corresponds to the method presented

in [11], M3 denotes the static method detailed in Section 2.4.1, M4 represents

the dynamic method shown in Section 2.4.2, and finally, M5 indicates the

ensemble method elaborated in Section 2.4.3. The last row in the table shows

the mean value of the RMSE in predicting all motors, and the minimum RMSE

value in each row is highlighted in bold for easy comparison of these methods.

For uncertainty quantification, the results of 4 representative motors are shown

in Figure 2.12, where the solid black line is the true value of RUL.
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Figure 2.11: Example of the selected features and the corresponding coefficients
in the case study.

Table 2.4: RMSE of RUL prediction for the case study.

Test motor M1 M2 M3 M4 M5
Motor 1 5.38 10.70 8.44 6.83 8.50
Motor 2 3.50 4.77 1.18 2.57 0.30
Motor 3 4.00 4.05 1.01 1.17 1.17
Motor 4 5.53 6.71 2.18 2.49 2.13
Motor 5 6.17 5.50 1.23 2.54 1.09
Motor 6 3.45 5.73 0.96 2.88 0.33
Motor 7 4.81 4.58 3.45 4.09 1.50
Motor 8 2.95 3.72 1.06 1.75 1.76
Mean 4.47 5.72 2.44 3.04 2.10

Table 2.4 and Figure 2.12 indicate that, in general, the proposed methods

(M3 and M5) outperform the existing methods (M1 and M2), as evidenced

by their lower RMSE values and narrower prediction intervals. While the

dynamic method (M4) does not consistently improve prediction performance

compared to the static method (M3), it still provides valuable information,
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(a) Motor 2 (b) Motor 4

(c) Motor 5 (d) Motor 7

Figure 2.12: RUL predictions and the 95% prediction interval for the case study.

underscoring the importance of the ensemble method (M5). Notably, Table 2.4

and Figure 2.12 demonstrate that M5 achieves the best performance in terms

of RMSE in most cases, indicating that the proposed ensemble framework

effectively integrates the static and dynamic methods. Further comparisons of

the RMSE performance of the proposed methods show that Motor 1 always got

the worst RMSE performance compared to other motors, and this may be due

to the much shorter failure time of Motor 1 (18 cycles vs. 25 ∼ 29 cycles).
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2.7. CONCLUSIONS

T HIS chapter presented novel DI-based prognostic frameworks for predicting

RUL in complex systems that collect multivariate sensor data. The proposed

DI, Z (t ) in Eq. (2.2), is feature-based and performs automatic feature selection,

which is essential for capturing the underlying degradation trend of the system.

Moreover, Z (t) incorporates a nonlinear relationship between the selected

features and the degradation process, which reflects the complex and nonlinear

nature of the practical engineering applications. Based on the constructed

DI, three frameworks were developed for prognostic RUL prediction utilizing

various degradation sources. The proposed frameworks do not require prior

knowledge of failure mechanisms or specific degradation models, making them

applicable to a wide range of engineering systems. The performances of the

proposed frameworks were validated through both simulation studies and a

case study on the degradation data of 8 three-phase industrial induction motors.

The numerical results demonstrate that the proposed prognostic frameworks

outperform existing methods by a large margin in terms of predictive accuracy.
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PLAIN SUMMARY

For high-reliability and long-life electronic devices, reliability analyses based

on degradation data with small sample sizes are important challenges in

practice. Recently, increasing attention has been paid to leveraging abundant

historical degradation data. Exploiting the information in these historical data

efficiently and integrating them to benefit the current reliability analysis is an

important issue. This study proposes a new integrating method for the historical

and current degradation data based on the Wiener process by considering the

consistency of failure mechanisms between the different batches of degradation

data. Simulation studies show that the new method leads to superior reliability

estimation, and is robust to the assumption of consistent failure mechanisms.

Finally, the proposed method is used to analyze a real data set consisting of the

metal-oxide-semiconductor field-effect transistor (MOSFET) degradation data.

3.1. INTRODUCTION

I N reliability engineering, it is oftentimes infeasible to analyze reliability based

on the exact lifetimes of devices or systems due to their high reliability

[8, 48, 49]. Some models based on ADT data have been proposed in the

literature to overcome this challenge, including non-stochastic and stochastic

processes [8, 50–55]. Compared with non-stochastic processes, the degradation

models based on stochastic processes have better application prospects. For

example, [56] utilizes the Wiener processes with random effects to model the

degradation data, and applies the proposed method to bridge beam data. [57]

explores the traditional Wiener process with positive drifts compounded with

i.i.d. Gaussian noise and improved estimation efficiency. [58] proposes a general

Wiener process-based degradation model to evaluate real-time reliability. In

[59], a modified Wiener process is proposed to describe the dynamic, random,

and non-linear degradation behavior of LED devices. The review paper [60]

summarizes the recent methods for degradation data analysis based on the

Wiener process, and introduces their applications in the field of prognostics

and health management. Based on the Wiener and gamma processes, [61]

models the degradation process under different types of thresholds. Additionally,
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[62] employs the Wiener process to truncate normal distribution to model

the metal-oxide-semiconductor field-effect transistor (MOSFET) data with both

degradation and shock processes. [63] considers the measurement errors and

proposes a two-stage degradation model in which the adaptation term also has

the characteristics of the Wiener process.

In many applications, such as the experiments for MOSFET used in the

intelligent power distribution system, it is hard to obtain enough degradation

data from the current experimental batch due to long test cycles and high costs.

Assessing reliability based on a small amount of degradation data is a significant

challenge. However, additional historical degradation data are often available

from the previous experimental batches. Some methods have been proposed in

the literature to merge the historical and current data. [64] uses the Wiener

process to model the degradation process and proposes a Bayesian method to

integrate the historical ADT data from the laboratory with the failure data from

the field. [65] considers the degradation data from historical units to determine

the parameters in the prior distribution for the gamma process and applies their

method to analyze the reliability of the computer numerical control machine

tools.

Almost all of these methods assume that the current experimental units have

the same degradation characteristics as those of the historical experimental

units, which means that all batch degradation data have the same parameters.

However, in practice, this assumption is not reasonable [66]. For example,

Beijing Spacecrafts Manufacturing Factory uses the same manufacturing process

for different batches of MOSFETs. However, in different batches, the raw

materials and technicians would not be exactly the same, which will produce

changes in degradation parameters. In this situation, the interest of engineers

centers around whether the historical data can be employed to improve the

accuracy of estimation of reliability for the current batch. This is also the main

motivation for our study.

In the literature, there are few works to consider the problem of degradation

heterogeneity [67–69] between different batches. In this chapter, a new method

based on the Wiener process is proposed to integrate different batches of

current and historical data by assuming consistent failure mechanisms. Inspired
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by [70] and [71], this chapter uses the variance-to-mean ratio to quantify the

consistency of failure mechanisms in the Wiener process. The newly proposed

method includes two steps: (1) testing the assumption by using the likelihood

ratio and (2) integrating the data if the assumption is accepted significantly.

Some simulation studies and real data analyses are conducted to demonstrate

the performance of the new method. The main contributions of this chapter are

summarized as follows.

(1) Based on the ratio of the squared diffusion and drift parameters in

the Wiener degradation process, a novel method is proposed to model

different batches of data by considering the degradation heterogeneity.

(2) A failure mechanism consistency test for the Wiener process is proposed

based on the likelihood ratio.

(3) A new integrated framework based on the Wiener process is proposed to

fuse different batches of current and historical degradation data.

The remainder of this chapter is organized as follows. Section 3.2 shows the

degradation model and parameter estimation based on the Wiener process. The

likelihood ratio test for failure mechanism consistency is presented in Section 3.3.

The newly integrated framework for reliability analysis based on the Wiener

process is developed in Section 3.4. Simulation analyses demonstrating the

feasibility and effectiveness of the proposed method are presented in Section 3.5.

In Section 3.6, a case study based on real-world MOSFET degradation data is

provided. Some conclusions and discussions are given in Section 3.7.

3.2. DEGRADATION MODEL AND PARAMETER ESTIMATION

I N the literature, the Wiener process is commonly used in the degradation

models due to its mathematical properties and physical interpretations [57],

which can be formulated as,

X (ti ) = X (t1)+µΛ(ti )+σB(Λ(ti )), i = 2, · · · ,n, (3.1)
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where n is the number of collected data points, X (t1) is the initial degradation

value at the first time point, µ is the drift parameter, σ is the diffusion parameter,

B(·) is standard Brownian motion, and Λ(t) is a positive non-decreasing

function known as the transformed time scale, which is commonly employed

to capture potential curvature in the degradation path [72]. Λ(t) =Λ(t ,θ) is a

deterministic function with parameter θ, which is used to describe potential

nonlinear degradation [34, 57]. For example, Λ(t) can be linear Λ(t) = t or a

power-law form Λ(t ) = tθ,θ ≥ 0.

Due to the independent increments of the Wiener process, it is easy to obtain,

∆Xi = X (ti+1)−X (ti ) i.i.d∼ N (µ∆Λi ,σ2∆Λi ), (3.2)

where ∆Λi =Λ(ti+1)−Λ(ti ), i = 1, · · · ,n −1 represents the time increment for the

collected data. The maximum likelihood estimators (MLEs) µ̂, σ̂ of parameters

µ,σ are calculated as,

µ̂=
∑n−1

i=1 ∆Xi∑n−1
i=1 ∆Λi

, σ̂=
√√√√ 1

n −1

n−1∑
i=1

(∆Xi − µ̂∆Λi )2

∆Λi
, (3.3)

by maximizing,

ℓ(µ,σ|θ) = ln
n−1∏
i=1

1√
2πσ2∆Λi

exp

(
− (∆Xi −µ∆Λi )2

2σ2∆Λi

)

=
n−1∑
i=1

[
−1

2
ln(2πσ2∆Λi ) − (∆Xi −µ∆Λi )2

2σ2∆Λi

]
.

(3.4)

For the case when θ in Λ(t ,θ) is unknown, the profile log-likelihood method

[34] is employed to estimate the θ. Specifically, for any given θ, the estimators

(µ̂, σ̂) could be formulated as functions of θ, denoted as (µ̂, σ̂) = (µ̂(θ), σ̂(θ)). By

substituting the estimators into Eq. (3.4), the log-likelihood function of θ can be

derived as ℓ(θ) = ℓ((µ̂(θ), σ̂(θ))|θ). Then, the estimator for θ can be calculated

by maximizing the profile log-likelihood, which can be formulated as,

θ̂ = argmax
θ

ℓ((µ̂(θ), σ̂(θ))|θ). (3.5)
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3.3. TEST FOR FAILURE MECHANISM CONSISTENCY

A S the sample in the current batch of an experiment is sometimes very small,

the MLEs of parameters could be inaccurate. To improve the accuracy

of MLEs, the historical data, which is often sufficiently available in practice,

are considered for data fusion. Usually, the degradation parameters are not

the same in different batches of data, but the failure mechanisms could still

be consistent. Here, we present a method to test the consistency of failure

mechanisms between different batches. Then, a natural fusion method is

proposed based on the assumption of consistent failure mechanisms.

According to [70] and [71], for Wiener process models, the consistent failure

mechanism equivalents to a consistent ratio of the squared diffusion and drift

parameters, i.e., ensuring the consistency of variance-to-mean-ratio in the

increments of degradation data, σ2∆Λi
µ∆Λi

= σ2

µ .

Let ∆Λc i represent the increment of time for the current data, where the

subscript c denotes the current batch data, and let Xc (tci ) be the corresponding

degradation observations, which follows Eq. (3.1) with drift parameter µc and

diffusion parameter σc . Let ∆Λh j be the increment of time for the historical

data and Xh(th j ), j = 1, · · · ,nh be the historical degradation observations with

different parameters µh , σh . Test the same failure mechanisms is equivalent to

test
σ2

c
µc

= σ2
h

µh
= k, which can be formulated as,

H0 : kc = kh = k versus H1 : kc ̸= kh (3.6)

where kc = σ2
c

µc
,kh = σ2

h
µh

.

The log-likelihood function under H0 and H1 can be derived as

ℓ(µc ,σc ,µh ,σh) = ℓ(µc ,σc )+ℓ(µh ,σh)

=
nc−1∑
i=1

[
−1

2
ln(2πσ2

c∆Λc i )− (∆Xc i −µc∆Λc i )2

2σ2
c∆Λc i

]

+
nh−1∑

j=1

[
−1

2
ln(2πσ2

h∆Λh j )−
(∆Xh j −µh∆Λh j )2

2σ2
h∆Λh j

]
,

(3.7)
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and

ℓ(µc ,µh ,k) =
nc−1∑
i=1

[
−1

2
ln(2πkµc∆Λc i )− (∆Xc i −µc∆Λc i )2

2kµc∆Λc i

]

+
nh−1∑

j=1

[
−1

2
ln(2πkµh∆Λh j )−

(∆Xh j −µh∆Λh j )2

2kµh∆Λh j

]
,

(3.8)

respectively. Denote the parameter estimators based on Eqs. (3.7) and

(3.8) as
{
µ̂c , σ̂c , µ̂h , σ̂h

}
and

{
µ̃c , µ̃h , k̃h

}
. Then, the corresponding maximum

log-likelihood function ℓ̂(µ̂c , σ̂c , µ̂h , σ̂h) and ℓ̃(µ̃c , µ̃h , k̃) can be simplified as,

ℓ̂(µ̂c , σ̂c , µ̂h , σ̂h) =
nc−1∑
i=1

[
−1

2
ln(2πσ̂2

c∆Λc i )− (∆Xc i − µ̂c∆Λc i )2

2σ̂2
c∆Λc i

]

+
nh−1∑

j=1

[
−1

2
ln(2πσ̂2

h∆Λh j )−
(∆Xh j − µ̂h∆Λh j )2

2σ̂2
h∆Λh j

]
,

(3.9)

ℓ̃(µ̃c , µ̃h , k̃) =
nc−1∑
i=1

[
−1

2
ln(2πk̃µ̃c∆Λc )− (∆Xc i − µ̃c∆Λc )2

2k̃µ̃c∆Λc

]

+
nh−1∑

j=1

[
−1

2
ln(2πk̃µ̃h∆Λh)−

(∆Xh j − µ̃h∆Λh)2

2k̃µ̃h∆Λh

]
.

(3.10)

Here, the likelihood ratio test method is employed and the corresponding

statistic W can be derived as,

W = 2
[
ℓ̂(µ̂c , σ̂c , µ̂h , σ̂h)− ℓ̃(µ̃c , µ̃h , k̃h)

]
. (3.11)

The following Theorem 3.1 shows that the asymptotic distribution of the test

statistic W under H0 is χ2(1). Thus, the null hypothesis H0 is not rejected when

W <χ2
1−α(1), where χ2

1−α(1) is the (1−α) quantile of χ2(1). Otherwise, the null

hypothesis is rejected.

Theorem 3.1. Assume the mild regularity conditions hold (see Lemma 3.1).

Under H0 : kc = kh = k, the test statistic W in Eq. (3.11) satisfies W
d−→χ2(1).

Lemma 3.1. Let X1, X2, · · · , Xn be i.i.d from N (µ,kµ) and the corresponding

probability density function is fθ with respect to a σ-finite measure ν on (R,B),
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where R is the real line, B is the Borel σ-field, θ = (µ,k) ∈Θ and Θ is an open

set in R2. Then, the following regularity conditions are satisfied.

(a) For every x, fθ(x) is twice continuously differentiable in θ.

(b) Let fθi (x), i = 1,2,θ1 =µ,θ2 = k satisfy

Ç

Çθi

∫
ψθi (x)dν=

∫
Ç

Çθi
ψθi (x)dν

for ψθi (x) = fθi (x) and = Ç fθi (x)/Çθi , where ν is a σ-finite measure.

(c) The Fisher information matrix

I1(θ) = E

{
Ç

Çθ
ln fθ(X1)

[
Ç

Çθ
ln fθ(X1)

]T
}

is positive definite.

(d) For any given θ ∈Θ, there exists a positive number cθ and a positive

function hθ such that E [hθ(X1)] <+∞ and

sup
γ:∥γ−θ∥<cθ

∥∥∥∥∥Ç2ln fγ(x)

Çγ2

∥∥∥∥∥≤ hθ(x)

for all x, where ∥A∥ =
√

tr(AT A) for any matrix A.

The proof of Theorem 3.1 can directly follow Theorem 6.5 in [73] when the

mild regularity conditions in Lemma 3.1 hold. The proof of Lemma 3.1 can be

found in APPENDIX A.1.

3.4. RELIABILITY ANALYSIS BASED ON INTEGRATED DATA

A CCORDING to Section 3.3, for the degradation increments of the current

and the historical degradation data, we have,

∆Xc i ∼ N (µc∆Λc i ,σ2
c∆Λc i ),∆Xh j ∼ N (µh∆Λh j ,σ2

h∆Λh j )).
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If only the current data are considered, the estimators can be derived as,

µ̂c =
∑nc−1

i=1 ∆Xc i∑nc−1
i=1 ∆Λc i

, σ̂c =
√√√√ 1

nc −1

nc−1∑
i=1

(∆Xc i − µ̂c∆Λc i )2

∆Λc i
. (3.12)

However, if the assumption that the failure mechanisms of the current and

historical data are consistent has not been rejected, the estimators µ̃ and k̃ can

be derived by maximizing Eq. (3.8) and then we have σ̃=
√

k̃µ̃.

Thus, the final estimators can be described as

µ̌c = I (W )µ̃c + (1− I (W ))µ̂c ,

σ̌c = I (W )σ̃c + (1− I (W ))σ̂c ,

where I (W ) is an indicator function for the test statistic W , satisfies

I (W ) =
0 W >χ2

1−α(1),

1 W ≤χ2
1−α(1).

(3.13)

In practice, µ̃c , σ̃c are used as the estimators when engineers confirm that the

failure mechanisms are consistent for different batches of degradation data,

which is a special case of µ̌c , σ̌c with I (W ) ≡ 1.

Given the relative failure threshold Q, the time-to-failure T can be described

as,

T = inf(t |X (t ) ≥Q) , (3.14)

and the corresponding reliability function can be formulated as,

R(t ) = 1−P (T < t ) = 1−Φ
(
µΛ(t )−Q

σ
p
Λ(t )

)
−exp

(
2µQ

σ2

)
Φ

(
−µΛ(t )+Q

σ
p
Λ(t )

)
. (3.15)

Then, we can estimate the reliability function as,

Ř(t ) = 1−Φ
(
µ̌cΛ(t )−Q

σ̌c
p
Λ(t )

)
−exp

(
2µ̌Q

σ̌2
c

)
Φ

(
− µ̌cΛ(t )+Q

σ̌c
p
Λ(t )

)
. (3.16)

Algorithm 3.1 describes the steps for the analyses of reliability following the
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proposed integrated method.

Algorithm 3.1: Framework of the proposed integration method

Input: The current and historical degradation data
1: Model the current and historical data with the Wiener process, and derive

the estimated parameters
{
µ̂c , σ̂c , µ̂h , σ̂h

}
and

{
µ̃c , µ̃h , k̃

}
from Eqs. (3.7) and

(3.8).
2: Calculate σ̃2

c = µ̃c × k̃, σ̃2
h = µ̃h × k̃ and W = 2

[
ℓ̂(µ̂c , σ̂c , µ̂h , σ̂h)− ℓ̃(µ̃c , µ̃h , k̃)

]
.

3: if the failure mechanism consistency is confirmed then
4: Using µ̃c , σ̃c as the estimators;
5: else if W >χ2

1−α(1), where α is the given significance level, then
6: Using µ̂c , σ̂c as the estimators;
7: else
8: Using µ̃c , σ̃c as the estimators.
9: end if

10: Calculate the reliability function of the current data with the derived drift
and diffusion parameters.

Output: Estimated reliability function for the current data.

3.5. SIMULATION STUDIES

I N this section, several simulation studies are conducted to investigate the

performance of the proposed integrated method.

During the simulation studies, the performances of the proposed integrated

method under the following two assumptions are included: 1) the linear Wiener

model, where Λ(t ) = t , and 2) the Wiener model with a widely used transformed

time scale [34, 57, 74], where Λ(t ) =Λ(t ,θ) = tθ with θ = 1
2 .

The following four methods are used to estimate the drift and diffusion

parameters for the current data.

Firstly, the estimators µ̂c , σ̂c in Eq. (3.12) can be computed when only

the current degradation data are considered, and we denote this method as

M1. When considering both the current and historical degradation data, it is

often assumed that these data follow the same distribution [58, 65, 75], and

the estimators using these data are denoted as M2. This study proposes two

methods to integrate historical and current data. The method directly based on
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the assumption of failure mechanism consistency is denoted as M3, and the

method considering both the failure mechanism consistency test and M3 is

denoted as M4.

3.5.1. PERFORMANCE OF THE LINEAR WIENER MODEL

L ET Xh(0) = Xc (0) = 1, Λ(t) = t , Q = 1.2, th = 0 ·∆Λh , 1 ·∆Λh , · · · , (nh −1) ·
∆Λh , tc = 0 ·∆Λc , 1 ·∆Λc , · · · , (nc −1) ·∆Λc , nh = 100, nc = {10,20, · · · ,100},

respectively. The significance level α is set to be 0.1 in these simulations.

In these simulations, the mean squared error (MSE) between estimated and

true values of reliability functions is considered as the metric. The MSE can be

formulated as,

MSE = 1

n

n∑
i=1

(
R̂(ti )−R(ti )

)2
, (3.17)

where R̂(ti ),R(ti ) are the estimated and the true reliability function at the time

point ti , i = 1,2, · · · ,n, respectively.

Table 3.1 shows the different setting parameters µh , σh , µc and σc used in

the simulations. To evaluate the accuracy of the estimated reliability using the

above four methods, the simulated results based on 5000 repetitions are shown

in Figure 3.1 and Figure 3.2.

Table 3.1: Different settings for k.

Setting µh σ2
h µc σ2

c k
1 1.8 0.09 0.2 0.01 0.05
2 0.9 0.09 0.1 0.01 0.1
3 0.6 0.09 0.067 0.01 0.15
4 0.45 0.09 0.05 0.01 0.2
5 0.36 0.09 0.04 0.01 0.25
6 0.3 0.09 0.033 0.01 0.3

For better visualization of the results, we use the log scale to present. The

mean value of 5000 MSEs is shown in Figure 3.1 on the log scale under different

settings according to Table 3.1. In Figure 3.1, the black square, the purple

triangle point-up, the blue point-down, and the red circle are the mean values
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(a) k = 0.05 (b) k = 0.1

(c) k = 0.15 (d) k = 0.2

(e) k = 0.25 (f) k = 0.3

Figure 3.1: Mean value of MSEs on the log scale of different models under the
setting parameters in Table 3.1, where (a) k = 0.05; (b) k = 0.1; (c)
k = 0.15; (d) k = 0.2; (e) k = 0.25; (f) k = 0.3.
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(a) k = 0.05 (b) k = 0.1

(c) k = 0.15 (d) k = 0.2

(e) k = 0.25 (f) k = 0.3

Figure 3.2: The box plots of logarithmic MSE of different models under the
settings parameters in Table 3.1, where (a) k = 0.05; (b) k = 0.1; (c)
k = 0.15; (d) k = 0.2; (e) k = 0.25; (f) k = 0.3.
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of 5000 MSEs on the log scale derived from M1, M2, M3, and M4, respectively.

The box plots of 5000 ln(MSE) is given in Figure 3.2.

Figure 3.1 and Figure 3.2 suggest that, in these simulations, the MSE of M2

is significantly larger than the other three methods when kc = kh = k, which

also confirms that it is not suitable to assume that the current and historical

degradation data follow the same distribution. From these figures, we also find

that, for different amounts of current data, the proposed M3 and M4 perform

better than M1 and M2 consistently due to the smaller mean values and the

narrower boxes. As the number of current data decreases, this trend is clearer.

The following simulations are conducted to demonstrate the necessity of the

proposed failure mechanism consistency test. Table 3.2 shows the settings for

parameters used in this simulation, and the significance level α= 0.1. For each

parameter combination, 5000 repetitions are used to calculate the MSE metric.

Considering the case where there are only 10 current data as an example,

Figure 3.3 and Figure 3.4, where the x-axis represents the deviation kc
kh

, show the

simulated results.

Table 3.2: Different settings for kc
kh

and kh .

Setting σ2
h σ2

c
kc
kh

kh

1 0.09 0.01 {0.2, 0.4, 0.6, 0.8, 1, 1.2, 1.4, 1.6, 1.8, 2, 5, 10} 0.05
2 0.09 0.01 {0.2, 0.4, 0.6, 0.8, 1, 1.2, 1.4, 1.6, 1.8, 2, 5, 10} 0.1
3 0.09 0.01 {0.2, 0.4, 0.6, 0.8, 1, 1.2, 1.4, 1.6, 1.8, 2, 5, 10} 0.15
4 0.09 0.01 {0.2, 0.4, 0.6, 0.8, 1, 1.2, 1.4, 1.6, 1.8, 2, 5, 10} 0.2
5 0.09 0.01 {0.2, 0.4, 0.6, 0.8, 1, 1.2, 1.4, 1.6, 1.8, 2, 5, 10} 0.25
6 0.09 0.01 {0.2, 0.4, 0.6, 0.8, 1, 1.2, 1.4, 1.6, 1.8, 2, 5, 10} 0.3

The mean value of 5000 MSEs is shown in Figure 3.3 on the log scale under

different settings according to Table 3.2. In Figure 3.3, the black square, the

purple triangle point-up, the blue point-down, and the red circle are the mean

values of 5000 MSEs on the log scale derived from M1, M2, M3, and M4,

respectively. The box plots of 5000 ln(MSE) is given in Figure 3.4.

Figure 3.3 and Figure 3.4 also suggest that the MSE of M2 is significantly

larger than the other three methods when kc ̸= kh . From these figures, we also
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(a) kh = 0.05 (b) kh = 0.1

(c) kh = 0.15 (d) kh = 0.2

(e) kh = 0.25 (f) kh = 0.3

Figure 3.3: Mean value of MSEs on the log scale of different models under the
setting parameters in Table 3.2, where (a) kh = 0.05; (b) kh = 0.1; (c)
kh = 0.15; (d) kh = 0.2; (e) kh = 0.25; (f) kh = 0.3.
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(a) kh = 0.05 (b) kh = 0.1

(c) kh = 0.15 (d) kh = 0.2

(e) kh = 0.25 (f) kh = 0.3

Figure 3.4: The box plots logarithmic MSEs of different models under the
setting parameters in Table 3.2, where (a) kh = 0.05; (b) kh = 0.1; (c)
kh = 0.15; (d) kh = 0.2; (e) kh = 0.25; (f) kh = 0.3.
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find that, in general, M3 will have a catastrophic effect on the estimation

accuracy of reliability when the true value of kc is far away from kh . Fortunately,

in these extreme cases, M4 improves M3 quite a lot, which also confirms the

validity and necessity of the proposed failure mechanism consistency test.

3.5.2. PERFORMANCE OF A TRANSFORMED TIME-SCALE WIENER

MODEL

I N this section, we construct several simulations on the Wiener process with

the transformed time scale, i.e., Λ(t) =Λ(t ,θ) = tθ,θ = 1
2 . The rest of the

parameter settings are consistent with Section 3.5.1. The results are similar with

Section 3.5.1, which confirms that the proposed methods can also be applied to

the transformed time scale Wiener process. Corresponding results Figure B1 to

Figure B4 are provided in APPENDIX A.2.

Combined with the results in Section 3.5.1, these simulation studies show

that the proposed integrated method outperforms existing methods in both

linear and transformed time-scale Wiener models. These results also imply

that the proposed integrated methods M3 and M4 could improve the accuracy

and stability of the reliability estimation. Besides, our methods show superior

performance when the current data are of a small sample size.

Specifically, M2 performs poorly in all cases because the drift and diffusion

parameters in these simulations are quite different. It is not reasonable

to directly assume that these data follow the same distribution. When the

difference between kc and kh is small, M3 and M4 outperform M1, which

means that the proposed integrated method is effective. In these cases, M3 is

slightly better than M4 due to the type I error [76] in the failure mechanism

consistency test, but M4 is still comparable. However, M3 can be disastrous

when kc and kh are significantly different, and in extreme cases, M4 and M1 are

more accurate and have comparable results.

In practice, the M4 is recommended when there is no prior knowledge about

the differences in failure mechanisms between different batches. Otherwise, the

M3 should be selected.



3

54 3. RELIABILITY ANALYSIS WITH WIENER PROCESS AND HISTORICAL DATA

3.6. CASE STUDY

A real-world case study on MOSFET is presented to demonstrate the

implementation of the proposed method.

The data used in this section are the ADT data from different batches of a

type of MOSFET used in the design of Chinese Tiangong aircraft. The data

are provided by the Beijing Spacecrafts Manufacturing Factory. The engineers

wanted to know whether the degradation data from the historical MOSFETs

explored earlier using the different batches of raw materials and by different

technicians could be used to analyze the reliability of the new ones.

In this chapter, the on-resistance is adopted as the degradation indicator

follows [77] and [78], and the linear Wiener process model is considered in this

case. The failure threshold Q is 1.2 times the initial degradation value. Table 3.3

shows the historical and current data, where Th , Xh , Tc , Xc are the testing hours

and corresponding degradation data for historical and current batches. The test

temperatures for different batches are all 150◦C.

The drift and diffusion parameters are estimated from the data in Table 3.3

by Eq. (3.3), and the estimators are denoted as µ̂c0, σ̂c0, µ̂h0, σ̂h0. The

estimated values are µ̂c0 = 9.66×10−5, σ̂c0 = 1.08×10−3, µ̂h0 = 4.21×10−5, and

σ̂h0 = 1.92×10−3. Then, the value of test statistic W in Eq. (3.11) is calculated

as 2.24 < 2.71 =χ2
0.9(1), which means that the data in Table 3.3 do not reject the

null hypothesis test H0 in Eq. (3.6) at the significance level α= 0.1. Thus, these

data can be fused according to the proposed integrated method.

Table 3.4 shows the estimated results (based on MLE), where µ̂c1, σ̂c1 are

the estimated values using M1, µ̂c2, σ̂c2 are the estimated values using M2,

and µ̂c3, σ̂c3 are the estimated values using M4. In Table 3.4, we also report

the standard deviations (SD), which are obtained by normal asymptotics of

maximum likelihood estimators.

Then, we obtain the reliability functions in Eq. (3.18) according to Table 3.4

and Eq. (3.15), where R̂C1 (t), R̂C2 (t) and R̂C3 (t) are the reliability functions

derived using M1, M2, and M4 in Section 3.5.1, respectively. In practice, the

lower bound of the estimated reliability function is more concerned. All of

the unknown parameters are estimated by the MLE. Therefore, the confidence

interval for the reliability function can be obtained through normal asymptotics
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Table 3.3: The case study data.

Th (Hours) Xh Th (Hours) Xh Tc (Hours) Xc

0 38.713 1440 40.233 0 38.241
144 39.422 1584 41.551 144 38.855
288 39.220 1728 41.956 288 39.672
432 40.537 1872 41.449 432 39.877
576 39.929 2016 41.247 576 41.104
720 39.828 2160 41.956 720 40.899
864 40.334 2304 40.537
1008 39.321 2448 42.260
1152 39.524 2592 41.551
1296 39.118 2736 43.172

Table 3.4: The estimated results.

MLE SD
µ̂c1 9.66×10−5 4.01×10−5

σ̂c1 1.08×10−3 3.41×10−4

µ̂c2 5.34×10−5 3.06×10−5

σ̂c2 1.80×10−3 2.60×10−4

µ̂c3 3.80×10−5 3.31×10−5

σ̂c3 1.51×10−3 2.51×10−6
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and the delta method [34, 73]. The corresponding reliability curves are shown in

Figure 3.5, where the dashed red lines and shadow are the estimated mean

and 95% lower bound of R̂C1 (t), the dot-dash green lines and shadow are the

results of R̂C2 (t ), and the solid blue lines and shadow are the results of R̂C3 (t ).

Figure 3.5 suggests that, compared with the proposed integrated method M4 in

this study, M1 and M2 underestimate the reliability of the current degradation

data.

R̂C1 (t ) = 1−Φ
(
µ̂c1 t −1.2

σ̂c1

p
t

)
−exp

(
2× µ̂c1 ×1.2

σ̂2
c1

)
Φ

(
− µ̂c1 t +1.2

σ̂c1

p
t

)
,

R̂C2 (t ) = 1−Φ
(
µ̂c2 t −1.2

σ̂c2

p
t

)
−exp

(
2× µ̂c2 ×1.2

σ̂2
c2

)
Φ

(
− µ̂c2 t +1.2

σ̂c2

p
t

)
,

R̂C3 (t ) = 1−Φ
(
µ̂c3 t −1.2

σ̂c3

p
t

)
−exp

(
2× µ̂c3 ×1.2

σ̂2
c3

)
Φ

(
− µ̂c3 t +1.2

σ̂c3

p
t

)
.

(3.18)

With the estimators in Table 3.4, we can also visualize the fitness between the

built model and the real data. In this chapter, the bootstrap method is used

to visualize fitness, and the fitted results from 5000 repetitions are shown in

Figure 3.6, where the dashed red lines and shadow are the estimated mean and

95% confidence interval by using M1, the dot-dash green lines and shadow are

the results of M2, and the solid blue lines and shadow are the results of M4,

and the points are the first difference of the data in Table 3.3. From Figure 3.6

we can find that the proposed method does integrate historical and current data

since M1 only fits well with current data and M2 is too broad.

3.7. CONCLUSIONS

T HIS study examines the reliability evaluation for high-reliable and long-life

devices with limited degradation data from current experimental units and

abundant degradation data from historical experimental units. The Wiener

process is used to construct the degradation model, and this study proposes

two integrating methods for current and historical degradation data to improve

the estimated accuracy for reliability of current data. This study also provides

a likelihood ratio test to check the consistency of the failure mechanisms
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Figure 3.5: Reliability Curves.

Figure 3.6: Visualization of models fit to the data.
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between different batches of devices. Simulation studies show that the proposed

integrated method provides accurate and stable estimation results in both

linear and transformed time-scale Wiener models. Finally, we have applied the

proposed method to real-world degradation data of a type of MOSFET with wide

applicability in practical applications like power supply systems and solid-state

power controllers.
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APPENDIX A

APPENDIX A.1 THE PROOF OF LEMMA 3.1

Let fθ(x) be the probability density function of N (µ,kµ), which means,

fθ(x) = 1√
2πkµ

exp

(
− (x −µ)2

2kµ

)

= exp

{(
1
k − 1

2kµ

)(
x

x2

)
−

(
µ

2k
− 1

2
ln(2πkµ)

)}
.

(A.1)

Let η=
(
η1

η2

)
=

(
1
k

− 1
2kµ

)
, ϕ(x) =

(
x

x2

)
and A(η) =− η2

1
4η2

− 1
2 ln

(
π
η2

)
, then Eq.

(A.1) turns to,

fη(x) = exp

{
η1x +η2x2 −

(
− η2

1

4η2
− 1

2
ln

(
π

η2

))}
= exp

(
ηTϕ(x)− A(η)

)
. (A.2)

Therefore, Xi , i = 1, · · · ,n has distribution in a natural exponential family and

the proof is equivalent to proving that these regularity conditions hold for fη(x).

(a) fη(x) is twice continuously differentiable in η because functions in Eq.

(A.3) are continuous functions of η.

Ç fη(x)
Çη1

= fη(x)
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)
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4η2
2
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Çη2
1
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)
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Çη1Çη2

= Ç fη(x)
Çη2

(
x + η1
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(
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(A.3)

(b) This is a direct consequence of Theorem 2.7.1 in [79], because fη(x)

belongs to a natural exponential family.

(c) According to Proposition 3.2 in [73], E
(
ϕ(x)

)= ÇA(η)
Çη .
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Then,

I1(η) = E

{
Ç

Çη
ln fη(x)

[
Ç

Çη
ln fη(x)

]T
}
= Var

(
ϕ(x)

)
,

as
Ç

Çη
ln fη(x) =ϕ(x)− ÇA(η)

Çη
.

Therefore, the Fisher information matrix is positive definite.

(d) For any given η0,

sup
η:∥η−η0∥<cη0

∥∥∥∥∥Ç2ln fη(x)

Çη2

∥∥∥∥∥= sup
η:∥η−η0∥<cη0

∥∥∥∥−Ç2 A(η)

Çη2

∥∥∥∥ .

Therefore, this condition is satisfied as E

[
sup

η:∥η−η0∥<cη0

∥∥∥− Ç2 A(η)
Çη2

∥∥∥]
<+∞ holds

for any given η0.

APPENDIX A.2 SIMULATION RESULTS IN SECTION 3.5.2

We provide the simulation results for the employed transformed time-scale

Wiener model, i.e., Λ(t) =Λ(t ,θ), Λ(t) = tθ,θ = 1
2 . The parameter settings are

consistent with Section 3.5.1.

Then, similar to Section 3.5.1, we first construct 5000 repetitions to evaluate

the accuracy of the estimated reliability. Figure B1 to Figure B4 show the

corresponding simulated results, where the meanings of the legends are

consistent with the results in Section 3.5.1.

In summary, the results are similar with Section 3.5.1, which confirms that the

proposed methods can also be applied to the transformed time scale Wiener

process.
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(a) k = 0.05 (b) k = 0.1

(c) k = 0.15 (d) k = 0.2

(e) k = 0.25 (f) k = 0.3

Figure B1: Mean value of MSEs of different models under the setting parameters
in Table 3.1, where (a) k = 0.05; (b) k = 0.1; (c) k = 0.15; (d) k = 0.2;
(e) k = 0.25; (f) k = 0.3.
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(a) k = 0.05 (b) k = 0.1

(c) k = 0.15 (d) k = 0.2

(e) k = 0.25 (f) k = 0.3

Figure B2: The box plots of logarithmic MSEs of different models under the
setting parameters in Table 3.1, where (a) k = 0.05; (b) k = 0.1; (c)
k = 0.15; (d) k = 0.2; (e) k = 0.25; (f) k = 0.3.
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(a) kh = 0.05 (b) kh = 0.1

(c) kh = 0.15 (d) kh = 0.2

(e) kh = 0.25 (f) kh = 0.3

Figure B3: Mean value of MSEs of different models under the setting parameters
in Table 3.2, where (a) kh = 0.05; (b) kh = 0.1; (c) kh = 0.15; (d)
kh = 0.2; (e) kh = 0.25; (f) kh = 0.3.
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(a) kh = 0.05 (b) kh = 0.1

(c) kh = 0.15 (d) kh = 0.2

(e) kh = 0.25 (f) kh = 0.3

Figure B4: The box plots of logarithmic MSEs of different models under the
setting parameters in Table 3.2, where (a) kh = 0.05; (b) kh = 0.1; (c)
kh = 0.15; (d) kh = 0.2; (e) kh = 0.25; (f) kh = 0.3.
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PLAIN SUMMARY

Battery lifetime prediction is crucial in industrial applications. However, the

lack of diversity in training data often poses challenges regarding the robustness

and generalization of lifetime predictions for batteries from different batches.

Motivated by the early cycle data from lithium-iron batteries, this chapter proposes

a robust transfer learning method by employing a model average framework,

where the weights are determined based on the distance between the source

domain and the target domain. Kernel regression is used to build the prediction

of battery lifetime using early cycle data, and transfer component analysis is

utilized to transfer knowledge between different domains. The case study on

lithium-iron phosphate/graphite cells demonstrates that the proposed method can

mitigate the impact of negative transfer and has superior performance compared

to traditional methods.

4.1. INTRODUCTION

L ARGE battery storage systems have been widely used to stabilize energy

systems like the electricity grid and offer various benefits [80]. However,

the costliness and uneconomical nature of batteries pose significant challenges,

necessitating the efficient utilization of their limited resources [81]. Therefore,

enhancing energy density and extending the battery’s lifespan are crucial

objectives. To achieve these goals, accurately predicting battery lifetime through

modeling is essential [82].

Battery cell aging is affected by both the duration of use and various usage

conditions. The aging process is typically divided into three stages: early,

stable, and decline stages [83]. Various approaches in the literature are

available for modeling battery aging, including physics-based, semi-empirical,

and data-driven methods. Generally, physics-based and semi-empirical methods

require a thorough understanding of degradation behavior based on failure

mechanisms, which may limit their applicability [84].

On the other hand, data-driven methods, such as machine learning models,

have gained significant attention in recent years due to their ability to operate

without explicit knowledge of failure mechanisms [85]. However, the machine
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learning methods heavily rely on the assumption that the training and test data

are sampled from the same distribution. It is very common that this assumption

is not satisfied in practice. Consider the task of predicting battery lifetime,

although there is a lot of historical data collected from different batches, the

data from different batches may not follow the same distribution due to factors

such as battery type, operating conditions, and manufacturing variations that

can impact battery performance [85].

Transfer learning (TL) can help overcome this issue by transferring knowledge

from a source problem (training data) to a target problem (test data) with

similar characteristics but different underlying distributions [12]. There are

many papers focusing on using TL to predict batteries’ lifetime in the literature.

For example, [86] presents a new method for state-of-charge (SoC) estimation

by exploiting the temporal dynamics of the measurements and the ability to

transfer consistent estimates across different temperatures. [87] proposes a

transferable multistage state-of-health (SoH) estimation model to perform TL

across batteries in the same degradation stage. More references can be found in

Section 4.2.

However, these existing methods suffer from two common drawbacks. Firstly,

they often rely on data where battery capacity degradation has already occurred,

necessitating a certain number of cycles. As emphasized in [3, 83], accurate

predictions based on early-stage data—referred to as early-cycle data in this

paper—are critical. They provide valuable insights into long-term performance

without the need for extended testing, allowing for the rapid detection of early

failures, manufacturing defects, or deviations from expected performance. This

accelerates battery development and design optimization, lowers production

costs, and enables quick assessments of battery quality and performance.

Regarding the prediction models utilizing early-cycle data, the two primary

categories [83] are models based on long short-term memory (LSTM) [88, 89] or

the convolutional neural network (CNN) [90, 91]. Additional references can be

found in the review paper [83].

An example of early cycle battery data is depicted in Figure 4.1, where

Figure 4.1(a) and Figure 4.1(b) exhibit the capacity curves for the full life cycles

and the corresponding curves for early cycles (the first 100 cycles in this case).
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From Figure 4.1(b), it is apparent that there is a negligible degradation trend for

capacity curves in the early cycles, underscoring the challenge of accurately

predicting battery lifetime using such data. However, as highlighted in [3],

certain features extracted from early cycle data demonstrate strong correlations

with cycle life. An example of this is shown in Figure 4.1(c) and Figure 4.1(d),

where the later stages of degradation are reflected in the discharge voltage

curve and the features extracted from it. More details will be introduced in

Section 4.4.1.

Furthermore, existing work primarily focuses on what part of data should

be transferred and how to utilize the TL methods, but without addressing

the challenge of reducing the impact of negative transfer. Negative transfer

occurs when the knowledge gained in the source domain negatively affects

the performance of a model when applied to the target domain, and this

phenomenon can be attributed to factors such as domain discrepancies, task

misalignment, overfitting to the source domain, etc. To our knowledge, there is

limited literature exploring the utilization of TL for battery lifetime prediction

based on early cycle data and discussing strategies to mitigate the effects of

negative transfer.

Motivated by the aforementioned challenges and the early cycle dataset of

lithium-iron batteries in [3], this chapter presents a novel robust TL framework

for battery lifetime prediction using early cycle data. The new framework

addresses three key issues: determining the relevant information (what) for

effective transfer, devising an appropriate transfer strategy (how) to leverage

knowledge from source to target data, and providing a robust TL framework

by choosing appropriate weights, although we did not explicitly identify the

transferable conditions (when).

The main contributions of this chapter can be summarized as follows:

(1) Introduce a novel robust TL framework for predicting battery lifetime

using early cycle data.

(2) Present a method for determining the weight in the proposed robust TL

framework based on the distributional difference, which can reduce the

effects of negative transfer.
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Figure 4.1: Overview and examples of features in the dataset.
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(3) Validate the performance of the method using a substantial dataset of

lithium-iron batteries.

The remainder of this chapter is organized as follows. Section 4.2 reviews

some related work, including what, how, when to transfer. Section 4.3 provides

a detailed explanation of the methods employed and details of the proposed

robust TL framework. In Section 4.4, a case study based on a substantial

dataset of lithium-iron batteries is conducted to validate the performance of the

proposed method. Finally, Section 4.5 concludes the chapter with a discussion.

4.2. RELATED WORK

T HIS section provides a review of related work concerning the three

fundamental questions in TL: what, how, and when to transfer.

4.2.1. WHAT TO TRANSFER?

W HAT to transfer involves selecting the relevant information or data to

transfer. Generally, most of the TL methods for battery lifetime prediction

are feature-based. According to the way of extracting features, there are two

commonly used methods for transferring information: transferring the physical

significance features or data-driven features [92, 93]. In practice, the selection of

feature type should be determined based on the specific engineering context

and requirements.

PHYSICAL SIGNIFICANCE FEATURES

In the case of physical significance features, the feature extractor remains

fixed, wherein the extracted features possess specific physical significance.

Subsequently, the transferred data can be integrated into a data-driven predictor.

For example, [94] introduces a TL-based method for predicting target SoH

values using degradation data from other batteries by employing transfer

component analysis (TCA) with an extreme learning machine algorithm. [95]

proposes a framework to monitor SoH of batteries by integrating maximum

mean discrepancy (MMD), semi-supervised TCA, and mutual information, and
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validates the effectiveness by using a real dataset containing four batteries

operating under different conditions. [96] proposes a TL-based framework for

battery RUL prediction, which utilizes features generated from electrochemical

theory, capacity-differential voltage curves, and electrochemical impedance

spectroscopy curves.

DATA-DRIVEN FEATURES

Another commonly used method is to transfer the data-driven features

generated from an adaptive feature extractor, where the feature extractor itself is

also a data-driven model. LSTM and neural networks are the most popular

data-driven feature extractors. For example, in the work by [97], a convolutional

neural network-based feature extractor is utilized to extract deep features

from the collected data, which include the current, voltage, and capacity

characteristics of the battery during the charging/discharging cycle. [98] adopts

an LSTM network model to extract deep features from the collected capacity

curves, and proposes a TL-based battery RUL prediction model by integrating a

particle filter model.

4.2.2. HOW TO TRANSFER?

T HE question how to transfer concerns selecting the appropriate TL method

and hyperparameters. There are three main approaches to performing TL,

namely based on the fine-tuning strategy, the discrepancy metric, or the domain

adversarial [92, 93].

FINE-TUNING-BASED

The strategy to transfer through fine-tuning is widely used in the lifetime

prediction of batteries. The basic idea of the fine-tuning strategy is to involve

retraining a pre-trained data-driven model for better performance on specific

tasks, which uses only a small amount of data from the target dataset [92].

Specifically, in battery life prediction, fine-tuning involves first building a

pre-trained data-driven model using source data and then retraining the model

using a small amount of target data, thereby improving accuracy.
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For example, [99] proposes a TL-based framework for battery SoH prediction,

which combines an LSTM network with adjustable fine-tuning-based fully

connected layers. [100] merges degradation pattern recognition with a

fine-tuning-based LSTM approach to present a TL-based SoH prediction model,

which demonstrates superior performance compared to existing methods. [101]

proposes a TL-based framework for SoH prediction of lithium-ion batteries,

which employs a deep neural network architecture that integrates equivalent

circuit simulated layers and a fine-tuning network hierarchy. More references

can be found in review papers [92, 93].

As mentioned earlier, the fine-tuning strategy typically necessitates a

small amount of labeled target data. However, in practical scenarios, such

labeled testing data for training is often unavailable, thereby constraining the

applicability of the fine-tuning strategy.

DISCREPANCY METRIC-BASED

The methods based on discrepancy metrics are widely used in TL. The

literature applying TCA for transfer generally offers advantages in computational

efficiency. Despite these approaches, another common category within

discrepancy metric-based methods involves incorporating the discrepancy metric

into the loss function during model training. For example, [102] presents a

novel deep learning framework that addresses this challenge by combining a

deep LSTM network to model the nonlinear mapping from monitored data (e.g.,

terminal voltage and current) to battery capacity, and a domain adaptation layer

with MMD to align degradation features between source and target batteries.

[103] combines the MMD with a gated recurrent unit recurrent neural network

to reduce the domain discrepancy for battery SoH prediction. [104] integrates

the MMD loss with a convolutional neural network to predict the battery SoH.

DOMAIN ADVERSARIAL-BASED

The domain adversarial-based approach is another effective TL method

aimed at learning a domain-invariant feature space where the domain classifier

cannot distinguish the domain of the input data. Although adversarial

adaptation methods are effective, there are only a limited number of references



4.2. RELATED WORK

4

73

using them as TL strategies at this stage. For example, [105] introduces a

temperature-adaptive transfer network that employs adversarial adaptation and

MMD to minimize domain divergence for estimating the SoC in batteries. In

[106], domain adversarial training and TL methods are integrated into Bayesian

deep learning to propose an innovative RUL prediction framework capable of

handling diverse machines with limited data.

While domain-adversarial-based TL solutions have demonstrated success, a

notable drawback is the resource-intensive nature of the adversarial training

process. This computational demand can somewhat restrict their applicability

in intricate industrial scenarios. Therefore, further research and development

efforts are necessary to align these methods with the practical requirements of

the industry [92, 93].

4.2.3. WHEN TO TRANSFER?

C OMBINING the methods in what (Section 4.2.1) and how (Section 4.2.2),

various TL-based methods can be generated. Despite the effectiveness

of these transfer methods, they can encounter challenges in complex and

demanding environments, potentially resulting in negative transfer, as introduced

in Section 4.1. Hence, there is a need to develop methods for quantifying

transferability or assessing negative transfer, which is essentially a question of

when to transfer.

However, there is limited literature focusing on the when to transfer issue in

battery health management. For example, [107] proposes a Gaussian process

regression model to forecast the capacity of batteries and uses hyperparameters

of the kernel function in the covariance matrix to control the negative transfer.

[108] introduces the product of MMD and a tuning parameter as the penalty

term in their loss function to reduce the likelihood of negative transfer in battery

SoC estimation. Nonetheless, these methods either fail to predict battery lifetime

or require the capacity to exhibit a degradation trend, which is inconsistent

with our task of predicting battery lifetime based on early cycle data shown in

Figure 4.1. Additionally, they require labeled data in the target domain, which is

difficult to obtain in practice.
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4.3. ROBUST TRANSFER LEARNING FRAMEWORK

I N this section, the proposed robust TL framework is introduced, which is

designed to address the three questions outlined in Section 4.2.

Regarding the what to transfer issue, we prioritize the use of features with

physical significance due to their interpretability. Specifically, in battery lifetime

prediction research involving early cycle data, domain knowledge pertaining

to lithium-ion batteries is commonly leveraged. Key features, such as initial

discharge capacity, charge time, and cell temperature are widely employed. For

further details regarding these features, refer to Section 4.4 and [3].

4.3.1. HOW TO TRANSFER: TRANSFER COMPONENT ANALYSIS AND

THE KERNEL REGRESSION

A S discussed in Section 4.2.2, there are three commonly employed approaches

to tackle the how to transfer issue. In this chapter, we employ discrepancy

metric strategies for information transfer because they do not require labeled

data or substantial computing resources in the target domain, unlike fine-tuning

and domain adversarial approaches.

The procedures of discrepancy metric strategies can be further divided

into three steps: choosing the discrepancy metric, domain adaptation, and

developing the predictor. These steps are discussed in detail as follows.

DISCREPANCY METRIC

Discrepancy metrics play a pivotal role in the discrepancy metric-based

strategy, and among the various metrics available, MMD is particularly popular.

Consider a labeled source domain dataset (XS ,YS ) = (XS,1,YS,1), · · · , (XS,nS ,YS,nS ),

where XS,i , i = 1, · · · ,nS , represents the i -th input of the source domain dataset,

and YS,i denotes its corresponding output. Additionally, there exists an unlabeled

target domain dataset XT = XT,1, . . . , XT,nT , where XT, j , j = 1, . . . ,nT , signifies

the j -th input of the target dataset. The total size of the source and target

datasets is represented by n = nS +nT . Let P (XS ) and Q(XT ) (or P and Q in

short) denote the marginal distributions of inputs from the source and target

datasets, respectively. The task is to predict the output of the target domain,
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YT, j , j = 1, · · · ,nT . We assume that P ̸=Q while there exists a mapping function

φ(·) such that P (φ(XS )) ≈ P (φ(XT )) and P (YS |φ(XS )) ≈ P (YT |φ(XT )).

The key issue in discrepancy metric-based TL is mapping different domain

instances onto a common space. Specifically, MMD employs a function φ(·)
to map each instance to the reproduced Hilbert space H associated with the

kernel k : χ×χ→R, where k(XS,i , XT, j ) =φ(XS,i )⊤φ(XT, j ), and χ is the feature

space of the source and target domains.

The MMD can be defined as the distance between two different projections

of the means. By using a kernel trick, the squared MMD distance can be

re-formulated as

MMD2(XS , XT ) = ∥ 1

nS

nS∑
i=1

φ(XS,i )− 1

nT

nT∑
j=1

φ(XT, j )∥2
H

= Tr (K L),

(4.1)

where K =
[

KXS ,XS KXS ,XT

KXT ,XS KXT ,XT

]
∈ Rn×n is a composite kernel matrix, with

KXS ,XS , KXS ,XT , KXT ,XS , and KXT ,XT being the kernel matrices defined by k

based on the data in the source domain, the target domain, and across

domains, respectively. L is a matrix with the (i , j )-th entry Li j defined as

Li j =


1/n2

S xS,i , xS, j ∈ XS

1/n2
T xT,i , xT, j ∈ XT

−1/nS nT other.

MMD is a kernel-based distance metric that plays a crucial role in identifying

underlying patterns in data and recognizing distribution differences. The choice

of an appropriate kernel is essential for the effective utilization of the metric.

However, the task of determining the most suitable kernel for MMD can be

intricate and remains an ongoing research area.

DOMAIN ADAPTION

Once the discrepancy metric is selected, the subsequent step focuses on

minimizing the chosen metric using the data from the source and target

domains. In this chapter, we employ a widely used domain adaptation method
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known as TCA. As stated in [12], TCA aims to minimize the distance between

the marginal distributions by utilizing a kernel feature extraction framework.

Using MMD, TCA can be achieved by solving the following kernel learning

problem [12],

min
W

Tr (W ⊤K LK W )+λTr (W ⊤W )

s.t. W ⊤K HK W = Im ,
(4.2)

where W is a matrix that transforms the kernel map features to a m-dimensional

space, H = In − 1
n 1n1T

n is the centering matrix, with In ∈ Rn×n , Im ∈ Rm×m

being identity matrices and 1n ∈Rn×1 being the column vector with all ones.

Subsequently, the matrix W is obtained by identifying the first m smallest

eigenvalues of (Im +λK LK )−1K HK , where λ is a hyperparameter determined

through cross-validation. More details and explanations of TCA can be found in

[12].

THE PREDICTOR

Following the acquisition of the most closely matched transferred data, the

subsequent phase involves constructing a predictor. This is achieved by training

a model using the transferred source data. In practical applications, the choice

of a specific predictor depends on the context. For example, in the case

of the motivated battery dataset described in [3], the authors employed a

regularization model known as the elastic net, which combines the Lasso and

Ridge regression methods for making predictions. The underlying assumption

of the elastic net is a linear relationship between the input variables and the

corresponding response. However, such a parametric assumption may not be

maintained in the transferred data after TCA. Therefore, we adopt the widely

used nonparametric approach, the kernel regression [109], as our predictor.

Let (XS,1,YS,1), · · · , (XS,nS ,YS,nS ) be the given source data set, the estimated

result of the i -th sample based on the kernel regression can be expressed as,

ŶS,i =
∑

j ̸=i YS, j ×k(XS,i , XS, j )∑
j ̸=i k(XS,i , XS, j )

. (4.3)

For the target data set {XT,1, · · · , XT,nT }, the prediction for the i -th sample can
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be derived as,

ŶT,i =
∑nS

j=1 YS, j ×k(XT,i , XS, j )∑nS
j=1 k(XT,i , XS, j )

, (4.4)

More details and explanations of kernel regression can be found in [109].

4.3.2. WHEN TO TRANSFER: A ROBUST TRANSFER LEARNING METHOD

T HE problem about when to transfer is important because inappropriate TL

may lead to negative transfer. It is also difficult to verify performance since

there is no labeled data in the target domain [92].

THE RELATIVE CHANGE IN MMD IS NOT RELIABLE

A straightforward idea to solve this issue is using the relative change in MMD

to assess the success of TL since they are specifically designed to measure the

difference between the source and target domains. However, the subsequent

simulation study reveals that the reduction in MMD values does not consistently

correspond to increased similarities. Additionally, the effectiveness of TCA is

observed to be contingent on the initial MMD value.

Note that the transferred knowledge in this paper refers to the data from the

source and target domains that have been transformed using the transformation

matrix W . Successful transfer indicates that the distributions of the transferred

source and target domain data are significantly closer to each other compared

to the distributions of the original source and target domains. To illustrate

the behavior of traditional TCA, we present three simulated examples in

Figure 4.2. The first scenario involves two samples with a small initial

MMD value, the second involves two samples with an initial MMD within an

appropriate range, and the third involves two samples with a large initial MMD

value. We utilize the widely used t-SNE [110] for visualizing the distributional

changes in the high-dimensional feature space resulting from TCA, providing an

intuitive representation essential for assessing domain adaptation success and

understanding the alignment between source and target domains.

Specifically, in Figure 4.2(a), we observe that when the initial MMD value

is relatively small, applying TCA, while successful in reducing MMD (from
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0.1022 to 0.0576), may introduce alterations to the distribution shape. In such

cases, the prediction without TL, denoted as NoTL, could be preferred, as the

distribution shapes of the raw source and target domains are more similar than

those after TCA. Turning to Figure 4.2(b), we focus on scenarios where the

initial MMD falls within a suitable range. Here, TCA significantly enhances

the similarity between the source and target distributions, demonstrating its

effectiveness (reducing the MMD value from 0.5177 to 0.0002). In Figure 4.2(c),

we explore the case with a large initial MMD value. Despite TCA’s ability to

reduce the MMD metric (from 1.2345 to 0.2711), the transferred data still

exhibits considerable dissimilarity, emphasizing the limitations of TCA when

faced with large MMD values. Simultaneously, the smaller MMD values may still

offer valuable insights, given the distinct dissimilarities in distribution shapes

observed in both the raw source and target domains, as well as the transferred

source and target domains. Figure 4.2(a) and Figure 4.2(c) illustrate that

although the MMD values decreased after applying TCA, indicating improved

global alignment, the increased divergence observed in the t-SNE visualization

suggests that local differences may have become larger. This highlights that, in

some cases, the relative change in MMD may be less reliable.

The insights from Figure 4.2 suggest that the initial value of MMD, indicating

the similarity between the original source and target domain, highly influences

the performance of TCA. Thus, a robust transfer learning framework is essential

to strike a balance between NoTL and those with TL.

A ROBUST TRANSFER LEARNING METHOD BASED ON MODEL AVERAGING

To mitigate the impact of negative TL, this chapter adopts the idea of model

averaging [111] to propose a more robust TL method.

Let ŶT,1 be the predicted result using NoTL, and ŶT,2 be the predicted result

using TL. Then, the final result ŶT = (1−w)× ŶT,1 +w × ŶT,2, where w ∈ [0,1] is

the weight to balance NoTL and TL. Thus, the issue turns to finding a suitable

form of w .

Considering the similarity between the raw source data P and target data Q,

if P and Q yield a small initial MMD value, indicating their similarity in this

case, then w should be set to 0. This concern is affirmed by the results shown
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(a) Example 1: The impact of a small initial MMD value on distribution shape.
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Figure 4.2: Illustrative examples of TCA and distribution preservation with
varying initial MMD values.
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in Figure 4.2(a), where TCA increased the dissimilarity of the distribution shapes

when P and Q yielded a small initial MMD value. Additionally, w should also

be smaller when there is no similarity between the transferred source data

Pnew and target data Qnew as this case indicates that after TL, the source and

target domain are still very different, as shown in Figure 4.2(c). As significant

distributional differences persist after transfer in such cases, the effectiveness of

TCA becomes uncertain. Choosing traditional machine learning algorithms is

preferable in these instances, as they do not rely on the assumptions associated

with transfer learning.

To quantify the degree of similarity, a threshold is necessary. In this chapter,

we utilize the empirical distribution of the MMD metric to determine such

a threshold, which can be obtained through a permutation approach [112].

Specifically, the empirical distribution function of the MMD is derived by

repeatedly shuffling the datasets and recalculating the MMD value. Subsequently,

the 1−α quantile of the derived empirical distribution is employed as the

threshold, denoted as T . If the original MMD value, denoted as MMD0, exceeds

T , we conclude that the two distributions are different; otherwise, we state that

the two distributions are similar enough. Naturally, the probability of obtaining

results at least as extreme as the result actually observed, denoted as p, can be

chosen as a weight. Thus, the final form of the weight term w can be expressed

as,

w = p × I{MMD0>T }, (4.5)

where I{MMD0>T } is the indicator function, whose value is equal to 1 when the

MMD0 calculated by P and Q exceeds T , and 0 otherwise.

The weight form in Eq. (4.5) satisfies the aforementioned properties we

desired. When the raw source and target distributions P and Q are similar

enough, the calculated MMD0 should be located within the threshold T ,

resulting in the value of w being equal to 0. Otherwise, TL should be performed,

and the corresponding value of w is equal to p, which is derived from the

transferred distributions Pnew and Qnew .
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4.3.3. ROBUST TRANSFER LEARNING FRAMEWORK

T HE proposed robust TL framework is presented in Algorithm 4.1, and

the fundamental structure of the approach is illustrated in Figure 4.3.

Following data pre-processing, we extract selected features from both the source

and target domains. Subsequently, the weight term w in Eq. (4.5) and the

hyperparameter λ in Eq. (4.2) can be determined following the procedure

introduced in Section 4.3.2. The weight term w is then utilized to balance the

predictions ŶT,1 and ŶT,2.

Algorithm 4.1: The proposed robust transfer learning framework.

Input: Source domain XS and corresponding response YS , target domain XT ,
kernel function type, λ;

Output: Predicted response for target domain ŶT .
1: Data preprocessing, encompassing techniques such as smoothing and outlier

handling;
2: Generate features according to the preprocessed data;
3: Calculate the weight term w following the procedure introduced in

Section 4.3.2;
4: Derive the prediction ŶT,1 using NoTL method;
5: If w ̸= 0, derive the prediction ŶT,2 using TL method, otherwise, set ŶT,2 = 0;
6: Derive the final prediction ŶT = (1−w)× ŶT,1 +w × ŶT,2.

4.4. CASE STUDY

I N this section, a case study on the lifetime data of 124 lithium-ion batteries

is presented to demonstrate the implementation of the proposed framework.

4.4.1. DATA OVERVIEW

T HE dataset used for the case study is taken from Severson et al. [3],

which comprises 3 batches consisting of a total of 124 lithium-ion

phosphate/graphite batteries (41/43/40 in batch 1/2/3 respectively). The batches

can be considered as separate experiments, with batch 3 conducted nearly a

year after batches 1 and 2. For each battery, the following data is attached,
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Figure 4.3: The basic structure of the proposed robust transfer learning
approach.

(1) Cycle Life: The number of cycles until the battery’s capacity has decreased

below 80% (and for batch 2, 75%) of its nominal capacity.

(2) Charge Policy: All batteries are charged according to different fast-charging

conditions in a temperature-controlled environment, see [3] for more

details.

(3) Summary Data: The summary data contains information for each

cycle, including the cycle number, discharge capacity, charge capacity,

internal resistance, maximum temperature, average temperature, minimum

temperature, and charging time.

(4) Cycle Data: The information contained within a cycle includes the time,

charge capacity, current, voltage, temperature, and discharge capacity.

Additionally, calculated variables such as the discharge rate, the discharge

capacity interpolated linearly, and temperature interpolated linearly are

also included.

Note that the dataset is the largest publicly available for nominally identical

commercial lithium-ion batteries cycled under controlled conditions.
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4.4.2. PREDICTION MODELS AND ANALYTICAL SCENARIOS

F OR the prediction model, the original paper [3] uses a feature-based method.

After pre-processing the curves and fitting a polynomial to the discharge

capacity as a function of voltage in the 10th and 100th cycle ∆Q100−10(V ),

several features can be extracted from these values, such as mean, variance,

minimum, skewness, and kurtosis. The logarithmic values of the summary

statistics exhibit a strong correlation with the logarithmic cycle life, while the

discharge capacities of only the first 100 cycles are weakly correlated with the

cycle life. The capacity curves and an example of the discharge voltage curves

are shown in Figure 4.1. The battery cell ’b2c1’, which has a relatively low

lifetime, will be excluded from the dataset to prevent its negative impact on the

results.

Since the features based on ∆Q100−10(V ) have high predictive power, three

different models proposed by the paper are summarized in Table 4.1.

Table 4.1: Various models containing different feature sets which are included in
the case study results

Model Description

Variance A univariate model, which uses log(Var(|∆Q100−10(V )|)) to
predict log cycle lives.

Discharge Includes summary statistics of ∆Q100−10(V ) such as minimum,
mean, variance, skewness, kurtosis and ∆Q(V = 2), in addition
to other candidate features obtained during discharge, such as
the slope and intercept of the linear fit for the capacity fade
curve cycle 2 to 100 and cycle 91 to 100, discharge capacity
at cycle 2 (Q(n = 2)) and 100 (Q(n = 100)), and the difference
between the maximal discharge capacity for a cell and cycle 2
(maxn(Q(n))−Q(n = 2)).

Full Next to the features included in the variance and discharge
model, additional features are included from different data
streams, such as temperature and internal resistance.

To fully utilize the dataset, we consider seven different scenarios for both the

source and target data, allowing for comprehensive comparisons. A summary
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of these scenarios is presented in Table 4.2, providing a clear overview of the

variations studied. Both the RMSE and the mean absolute percentage error

(MAPE) are used as prediction performance metrics.

Table 4.2: Different scenarios for source and target data

Scenario Source data Target data
1 Batch 1 Batch 2
2 Batch 1 Batch 3
3 Batch 2 Batch 3
4 Batch 1&2 Batch 3
5 Original train set (from [3]) Original test set (from [3])
6 Original train set (from [3]) Batch 3
7 Original test set (from [3]) Batch 3

4.4.3. PREDICTION PERFORMANCE

T HE performance of kernel regression and TL is affected by the

hyperparameter λ in Eq. (4.2) and the choice of the kernel type. In

this chapter, we adopt four widely used kernel types: linear, polynomial,

Rbf, and Laplace kernel. To ensure fair comparisons across different

scenarios, the hyperparameter λ is determined through cross-validation, and the

hyperparameters of the kernel functions remain consistent across all scenarios.

Taking scenario 2 as an example, RMSEs for different models across various

kernel types are displayed in Figure 4.4, where the red, green, and blue boxes

represent the results derived from NoTL, TL, and the proposed robust TL

methods, respectively. Figure 4.4 indicates that the proposed TL framework does

indeed possess the desired ability to balance NoTL and TL methods for different

models. Similar results for MAPEs are observed but not displayed to conserve

space.

Taking the linear kernel as an example, in the variance model case, the NoTL

approach outperforms TL, indicating that TL introduces a negative effect. In

this scenario, the proposed method favors NoTL, resulting in predictions that

align closely with NoTL, thereby minimizing the negative impact caused by TL.
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Figure 4.4: An example of RMSEs for different methods via the tuning parameter
λ and kernel types.

Conversely, for the discharge and full models, TL significantly outperforms NoTL.

In these cases, the proposed approach prioritizes TL, with final predictions

derived from a weighted combination of TL and NoTL using weight w , thereby

leveraging the benefits of TL.

Regarding the RMSEs of lifetime predictions under all scenarios, kernel types,

and models, the results are reported in Table 4.3. Cases where the proposed

robust TL framework successfully mitigates the impact of negative TL in direct

TL are highlighted in bold for enhanced visibility.

In terms of computational cost, the TCA-based approach took 0.02 seconds

for data transformation. The experiments were conducted on the following

system specifications:

Operating System: Windows 10 (Version 10.0.22621)
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CPU: Intel 16-core processor (Intel64 Family 6 Model 141)

Memory: 32 GB.

The results presented in Figure 4.4 and Table 4.3 demonstrate that the

proposed robust TL framework effectively balances NoTL and TL in general.

Specifically, the proposed method performs well in extracting positive outcomes

from TL when it significantly improves prediction results. Conversely, when

TL yields unfavorable results, the proposed method favors the NoTL approach,

aligning the results with NoTL for comparability. These observations are

particularly noticeable in scenarios 2, 3, 4, 6, and 7.

However, exceptions exist, particularly in scenarios 1 and 5. The performance

in scenario 1 exhibits instability. Upon investigating the root cause of this

instability, we identify a potential factor: a violation of the fundamental

assumption of TL, namely, the sharing of the same distribution between the

responses of the source and target domains. As the performance of the proposed

framework is influenced by kernel types, a kernel two-sample test introduced

in [112] is employed. The p-values resulting from hypothesis tests across

scenarios and kernel types, assessing whether the responses of the source and

target domains share the same distribution, are presented in Table 4.4. Taking

scenario 2 as an example, the p-values across different kernel types are all larger

than 0.01, indicating that we cannot reject the null hypothesis. This suggests

that, in scenario 2, the response distribution in scenario 2 is not statistically

different and likely shares the same distribution. Notably, for various kernel

types, scenario 1 consistently rejects the null hypothesis that the responses of

source and target domains share the same distribution.

For scenario 5, where the initial MMD value of the raw source and target data

is already smaller enough, the results should align with the NoTL method, as

w = 0 in this case. The results presented in Table 4.3 reflect the performance

without considering this setting, confirming the necessity of the indicator

function in Eq. (4.5). Moreover, results for scenario 5 indicate that when the

raw source and target data derive a small initial MMD value, TL may provide

unstable results, potentially worsening overall predictions.

To further demonstrate the robustness of the proposed approach, we

conducted additional experiments based on the full model, integrating the
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framework with LSTM and CNN-based techniques. The results, presented

in Table 4.5, further highlight the robustness of the proposed framework.

Specifically, ‘-KR’, ‘-LSTM’, and ‘-CNN’ represent the corresponding results based

on kernel regression, LSTM, and CNN, respectively. Regardless of the method

used, the results in Table 4.5 indicate that when TL is significantly impacted by

negative transfer, our method tends to favor the NoTL approach, effectively

minimizing the negative effects.

In terms of computational cost, the approach based on kernel regression took

approximately 0.89 seconds per scenario, while the LSTM-based approach took

around 5.59 seconds and the CNN-based approach around 4.05 seconds. This

level of computational efficiency suggests that the proposed method is feasible

for use in real-world battery management systems.

4.4.4. SENSITIVITY ANALYSIS

A CCORDING to the results, both the hyperparameter λ in Eq. (4.2) and

the choice of kernel type significantly impact the performance. Given that

selecting suitable kernel function types remains an ongoing area of research, we

specifically focus on exploring the sensitivity associated with the hyperparameter

λ. This uncertainty can influence the performance of both the TL and the

proposed robust TL framework.

Taking the full model in scenario 1 as an example, we find that the optimal λs

for four commonly used kernel types in the proposed robust TL framework fall

within the range [0.001,0.01]. Consequently, we present the RMSEs for different

methods across various kernel types, with lambda values set to 0.001, 0.003,

0.005, 0.007, and 0.01, in Figure 4.5.

The results presented in Figure 4.5 demonstrate that the proposed robust TL

framework consistently achieves a balance between the NoTL and TL methods,

irrespective of the kernel types. Notably, this balancing function remains

unaffected by specific values of λ.
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Figure 4.5: An example of RMSEs for different methods via the tuning parameter
λ and kernel types

4.5. CONCLUSIONS

T HIS study introduces a robust TL framework that balances the outcomes of

NoTL and TL through a weight form associated with the MMD metric. The

strength of the proposed framework lies in its flexibility, enabling the integration

of various traditional machine learning algorithms within the transfer learning

process. The case analysis results, conducted on early cycle battery data for

predicting lifespan, demonstrate that the proposed method tends to favor

TL results when TL performs well and leans towards NoTL results when TL

performance is suboptimal. This robustness is crucial in practical applications

as TL can not guarantee consistently better performance.
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Table 4.3: RMSEs via different scenarios, kernel types, and models.

Scenarios 1 2 3 4 5 6 7

Variance

Linear

NoTL 7525 1025 1037 1018 1050 1026 1019
TL 17247 1129 1030 1015 1512 1017 1014
Weight 0 0.0034 0 0 0.3368 0 0
Proposal 7526 1025 1037 1018 1171 1026 1019

Polynomial

NoTL 270 437 895 459 484 641 568
TL 250 404 779 458 483 527 462
Weight 0 0.0209 0 0 0.3997 0 0
Proposal 270 436 895 459 483 641 568

Rbf

NoTL 138 283 814 333 439 491 399
TL 238 405 703 502 434 565 537
Weight 0 0.0003 0 0 0.7194 0 0
Proposal 138 283 814 333 435 491 400

Laplace

NoTL 139 350 895 362 459 551 476
TL 256 428 694 534 436 586 560
Weight 0.1067 0.0041 0.0018 0.0004 0.8797 0.0005 0.0004
Proposal 139 350 894 362 439 551 476

Discharge

Linear

NoTL 545 760 918 725 560 792 759
TL 924 448 809 517 586 606 524
Weight 0.9623 0.5315 0.2098 0.4951 0.9880 0.3529 0.4458
Proposal 905 588 899 630 585 736 666

Polynomial

NoTL 372 671 845 598 427 711 691
TL 428 397 662 507 494 548 517
Weight 0.8974 0.6159 0.5358 0.4432 0.9854 0.2546 0.4704
Proposal 414 506 761 559 493 675 616

Rbf

NoTL 197 449 721 458 427 561 533
TL 254 425 687 531 429 581 557
Weight 0.6902 0.2069 0.1471 0.5403 0.9272 0.0964 0.4891
Proposal 219 442 716 498 429 563 544

Laplace

NoTL 187 518 771 483 436 605 571
TL 249 424 689 530 428 580 556
Weight 0.0514 0.0318 0.0583 0.0205 0.9965 0.1143 0.0658
Proposal 186 515 767 484 428 602 570

Full

Linear

NoTL 1144 520 846 497 496 583 580
TL 945 365 660 431 484 486 461
Weight 0.9892 0.9847 0.9806 0.6028 1.0000 0.9781 0.9635
Proposal 947 366 665 455 484 488 466

Polynomial

NoTL 650 514 815 526 428 634 617
TL 467 327 651 491 466 509 489
Weight 0.7882 0.8852 0.4078 0.5665 0.9958 0.6382 0.8614
Proposal 494 347 757 506 466 557 508

Rbf

NoTL 190 474 741 516 417 596 572
TL 256 425 688 533 429 582 557
Weight 0.1624 0.3549 0.0310 0.5318 0.9234 0.1696 0.2266
Proposal 195 454 740 524 428 594 569

Laplace

NoTL 149 568 804 565 419 649 631
TL 251 424 690 531 426 582 557
Weight 0.0190 0.0073 0 0 0.9993 0 0
Proposal 149 567 804 565 426 649 631
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Table 4.4: P-values for hypothesis test on responses distribution homogeneity
across scenarios and kernel types

Scenario Linear Polynomial Rbf Laplace
1 0.0001 0.0001 0.0001 0.0001
2 0.1751 0.8388 0.1192 0.0967
3 0.0001 0.0001 0.0001 0.0001
4 0.0001 0.0308 0.0094 0.0028
5 0.5480 0.5828 0.1637 0.2371
6 0.0001 0.0153 0.0158 0.0067
7 0.0002 0.1548 0.0229 0.0107
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Table 4.5: RMSEs via different scenarios using different approaches under the
full model.

Scenarios 1 2 3 4 5 6 7

Linear

NoTL-KR 1144 520 846 497 496 583 580
TL-KR 945 365 660 431 484 486 461
Weight-KR 0.9892 0.9847 0.9806 0.6028 1.0000 0.9781 0.9635
Proposal-KR 947 366 665 455 484 488 466
NoTL-LSTM 331 202 646 216 124 227 236
TL-LSTM 276 197 574 187 103 365 210
Weight-LSTM 0.7174 0.8332 0.8297 0.3681 1.0000 0.0776 0.4477
Proposal-LSTM 290 195 587 185 103 234 213
NoTL-CNN 415 366 675 342 396 532 426
TL-CNN 517 329 609 440 399 443 498
Weight-CNN 0.3667 0.9824 0.9816 0.0754 0.9999 0.9757 0.1655
Proposal-CNN 439 328 610 342 399 445 431

Polynomial

NoTL-KR 650 514 815 526 428 634 617
TL-KR 467 327 651 491 466 509 489
Weight-KR 0.7882 0.8852 0.4078 0.5665 0.9958 0.6382 0.8614
Proposal-KR 494 347 757 506 466 557 508
NoTL-LSTM 331 202 646 216 124 227 236
TL-LSTM 459 256 634 388 99 333 336
Weight-LSTM 0.1945 0.0062 0.2361 0.0035 0.6787 0.0279 0.0042
Proposal-LSTM 344 202 643 217 98 229 237
NoTL-CNN 415 366 675 342 396 532 426
TL-CNN 321 404 639 468 399 506 546
Weight-CNN 0.4718 0.0395 0.4130 0.0138 0.5025 0.6614 0.0193
Proposal-CNN 362 367 660 342 402 514 427

Rbf

NoTL-KR 190 474 741 516 417 596 572
TL-KR 256 425 688 533 429 582 557
Weight-KR 0.1624 0.3549 0.0310 0.5318 0.9234 0.1696 0.2266
Proposal-KR 195 454 740 524 428 594 569
NoTL-LSTM 331 202 646 216 124 227 236
TL-LSTM 402 374 617 502 191 394 566
Weight-LSTM 0.0242 0.0220 0.0335 0 0.9205 0.0022 0
Proposal-LSTM 331 203 645 216 185 227 237
NoTL-CNN 415 366 675 342 396 532 426
TL-CNN 304 411 623 477 394 577 533
Weight-CNN 0.1584 0.3509 0.0076 0.0949 0.7795 0.0142 0.0746
Proposal-CNN 393 379 674 344 393 532 429

Laplace

NoTL-KR 149 568 804 565 419 649 631
TL-KR 251 424 690 531 426 582 557
Weight-KR 0.0190 0.0073 0 0 0.9993 0 0
Proposal-KR 149 567 804 565 426 649 631
NoTL-LSTM 331 202 646 216 124 227 236
TL-LSTM 477 400 643 573 193 547 499
Weight-LSTM 0.0172 0.0085 0 0 0.9993 0 0
Proposal-LSTM 331 203 646 216 193 227 237
NoTL-CNN 415 366 675 342 396 532 426
TL-CNN 308 405 649 514 398 516 530
Weight-CNN 0.0168 0.0091 0 0 0.9938 0 0.0002
Proposal-CNN 412 367 675 342 398 532 426
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PLAIN SUMMARY

Wax is a prevalent lubrication material extensively employed in various

engineering applications. Understanding the degradation characteristics of the

waxy lubrication layer under diverse stress variables and levels is crucial for

ensuring system security and reliability. Due to the unclear mechanism governing

the degradation of the waxy lubrication layer under different stress variables,

existing degradation models are unsuitable for modeling waxy lubrication layer

degradation data. To address this challenge, we propose a functional data-driven

method leveraging dense observations of waxy degradation. Through extensive

simulations and a case study, we demonstrate the superior performance and

effectiveness of the proposed approach.

5.1. INTRODUCTION

T HE safe storage and transportation of explosives has always been a major

concern, with significant implications for public safety and environmental

protection. In this context, wax serves as an effective lubrication layer that

helps reduce the sensitivity of explosives to external factors [113–116]. Besides

its economical and practical benefits, wax stands out from other desensitizing

materials due to its ability to spread easily across crystal surfaces. This property

ensures that energetic crystals are thoroughly coated, enhancing their safety and

stability [117, 118]. However, the challenges posed during the transportation

and storage of explosives arise from the inherent characteristics of wax. High

temperature and pressure can induce the migration of the wax layer, thereby

reducing the thickness of the lubrication interface. This migration not only

compromises the effectiveness of desensitization but also amplifies the safety

risks associated with explosives [119]. This migration highlights the necessity

of understanding how temperature and pressure affect the reduction in the

thickness of the waxy lubrication layer. In this work, this reduction is referred

to as degradation behavior or creep behavior, and its measurements can be

utilized as a degradation or creep index.

Moreover, the relatively low softening point of wax makes it prone to plastic

deformation when exposed to both temperature and pressure. Compared
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to isolated stressors, the combined effects of thermal and mechanical stress

significantly worsen the degradation of the waxy lubrication layer surrounding

explosive crystals. In Figure 5.1, we present four examples illustrating the

degradation curves of the waxy lubrication layer under various temperatures

and pressures. The shear strain exhibits distinct variations across different

stress levels in these examples. Thus, it is essential to examine the degradation

behavior of the waxy layer in terms of thickness across a range of temperature

and stress conditions.
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Figure 5.1: Examples of wax degradation data at various stress levels.

The distinctive degradation trends under varying stress variables and levels,

as shown in Figure 5.1, make fitting the degradation data with parametric

models quite challenging. Furthermore, this complexity poses a challenge in the

extrapolation of degradation curves from high-stress levels to lower-stress levels,

which is critical in engineering applications.

When subjected to deformation, the wax lubrication layer exhibits a
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viscoelastic creep, followed by structural fracture and breakdown [120]. A

comprehensive understanding of the waxy lubrication layer’s behavior requires

consideration of both creep and yield processes[121–123].

Recent research focuses on exploring the complexities of the creep and yield

behavior of the waxy lubrication layer. It is worth noting that conventional

models, such as the Burger mechanical-analogy model, which combines a

Maxwell model with a Kelvin-Voigt model in series, have certain limitations when

applied to describe the nonlinear creep phenomena in the waxy lubrication

layer. While effective in certain contexts, these models may fall short of

representing the entirety of the creep and yield processes [124].

Considering modeling the creep process of the wax, [125] conducts

experimental investigations to analyze the creep behavior of the wax and

proposes a mechanical-analogical creep equation based on their findings. As

this model does not fully capture the accelerated creep phase that occurs

following the yielding process, a more comprehensive nonlinear creep damage

model has been proposed by [126], which is capable of representing the entire

creep and yield process.

However, these models primarily focused on fitting wax creep at specific

stress levels, overlooking the interaction of various experimental stress

variables and neglecting the extrapolation of the fitted model to normal stress

levels. To the best of our knowledge, there is limited research emphasizing

stress-based extrapolation methods for wax creep models, especially in the

context of simultaneously considering temperature and pressure stress variables.

Extrapolation is crucial in practical applications, enabling the use of wax creep

data collected under high-stress conditions to predict and extrapolate creep

behavior at normal working stress levels. The necessity for this extrapolation

is common in accelerated degradation experiments; for additional details, we

refer to [49]. Such extrapolation not only holds the potential to enhance our

comprehension of how the waxy lubrication layer responds to diverse stress

variables and levels but also carries significant practical implications. This is

especially relevant in industries where precise predictions of creep behavior are

crucial for upholding the safety of equipment.

Additionally, existing approaches for fitting wax creep require a comprehensive
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understanding of the physical mechanisms involved, thereby limiting their

practical applications. For instance, when considering the creep behavior

illustrated in Figure 5.1, our understanding of the mechanisms governing this

particular type of waxy lubrication layer under both temperature and pressure

stress variables is inadequate. However, the densely collected data provides an

opportunity for the application of effective nonparametric approaches.

The aforementioned concerns have motivated this work. Specifically, it is

crucial to investigate the relationship between the creep characteristics of the

waxy lubrication layer and two experimental stresses: temperature and pressure.

However, there are certain challenges to resolving this task due to uncertainty

regarding the physical mechanism of wax lubrication layer degradation and the

potential interaction between experimental stresses. Additionally, the shape

and value range of the data under different stress levels show substantial

inconsistencies, as depicted in Figure 5.1. Furthermore, while there is only

one sample per stress level, advancements in modern sensor technology have

enabled the collection of dense data for each sample. This suggests that

nonparametric methods as developed in the field of functional data analysis

(FDA), would offer better fitting performance. Therefore, this work introduces

an innovative functional data-driven method for modeling the degradation

data characterized by both the absence of a clear physical mechanism and the

densely collected, highly flexible nature of the degradation curves.

In contrast to traditional approaches in the literature, the proposed method

is entirely model-free and does not rely heavily on the choice of a physical

mechanism. To extrapolate the degradation behavior to normal stress levels, a

critical aspect in accelerated degradation tests, a quadratic model derived from

features extracted based on functional data is proposed. The basic principles

of this chapter are shown in Figure 5.2, underscoring the significance of

nonparametric modeling in accelerated degradation data analysis. The main

contributions of this work can be summarized as follows:

(1) Addressing the challenge of modeling wax creep behavior under the

combined influence of temperature and pressure stress variables, this

study provides a comprehensive analysis of this complex phenomenon.
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(2) Utilizing a nonparametric approach based on FDA, this study offers a

fresh perspective to fitting degradation data, diverging from traditional

parametric methods.

(3) Proposing a pioneering data-driven framework, this research aims to model

the intricate relationships between degradation patterns, various stress

variables, and stress levels, introducing a novel model-free methodology

for understanding such relationships in accelerated degradation tests.

Accelerated degradation
data

Accelerated degradation
data

Data fitting:
Parametric model
i.e. Logarithmic  

Parametric model does not
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Extrapolation of
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Accelerated test model
i.e. General Eyring
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Figure 5.2: The basic principles for the proposed functional data-driven
framework for modeling degradation of waxy lubrication layer.

The remainder of this chapter is structured as follows. In Section 5.2, we

briefly review the details of traditional accelerated degradation data analysis

methods and the fundamentals of FDA. The proposed functional data-driven

framework is presented in Section 5.3. Section 5.4 presents simulation studies

illustrating the performance of the proposed framework. Subsequently, detailed

comparisons are conducted by using the waxy lubrication layer dataset in

Section 5.5, where the limitations of the traditional data analysis framework are

also underscored. Finally, concluding remarks are given in Section 5.6.
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5.2. RELATED WORKS

T O describe the innovation of the proposed method, here we briefly review

the traditional models for degradation data in the reliability field and the

methods for fitting the functional data in the literature.

5.2.1. TRADITIONAL METHODS FOR DEGRADATION DATA ANALYSIS

I N the context of the accelerated degradation data, the data analysis process

can be divided into two phases: data fitting and stress extrapolation, both

of which are essential for practical application [34, 127]. The fundamental

goal of data fitting is to construct a mathematical model that accurately

describes the observed behavior of the system under accelerated degradation

conditions. On the other hand, extrapolation becomes indispensable to extend

our comprehension beyond the tested stress conditions, enabling predictions of

the system’s performance under normal or diverse stress levels.

When the physical mechanism is unknown, some approaches are available,

which can be broadly divided into two categories: stochastic processes or the

general path. The widely used stochastic processes, such as the Wiener[2,

39, 128, 129], gamma[72, 130], inverse Gaussian processes[69, 131], and their

various variations [35, 40, 46, 132–136], have been extensively applied in various

studies. However, stochastic process methods are often susceptible to issues

of model misspecification, thereby limiting their application in engineering.

For the general path models, which are widely used due to their flexibility in

modeling the unit-to-unit variation, more references can be found in the recent

representative work [137] and references therein. The configuration of the

general path is usually shaped by the requirements of the specific application

problem, taking into account the unique characteristics of the degradation paths

to ensure a tailored and effective solution [138]. However, the assumption that

all units share the same regular functional form for degradation paths [139] may

not be met in practice, thus limiting their practical applications.

After data fitting, the subsequent step, as previously mentioned, involves

extrapolating the degradation model to the normal stress levels. Regarding the

extrapolation model, commonly utilized ones include the Arrhenius model, the

inverse power law model, and the exponential model [140].
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Most studies focus on integrating the aforementioned fitting approaches with

these extrapolation models. However, these works primarily concentrate on

cases involving a single stress variable, which does not align with the wax creep

described in Section 5.1. There are few works dedicated to considering the

problem with two stress variables. For example, [4] examines positive increments

for a degradation process and employs the gamma process and the generalized

Eyring model (GEM) to analyze data collected from a two-type constant stress

accelerated degradation test. [141] introduces an analytical approach to design

the experiment and describes the accelerated degradation process using a linear

mixed-effects model. However, these methods are not available for modeling

degradation data of the waxy lubrication layer, particularly given the unclear

understanding of its underlying physical mechanisms.

In the case of wax creep, as elaborated in Section 5.1, there exist established

physical models for describing creep behavior. Therefore, in this chapter, we opt

for the utilization of a commonly employed model in the analysis of wax creep.

This model primarily focuses on characterizing the instantaneous elastic strain,

deceleration creep stage, and steady-state creep stage at a fixed temperature,

while not explicitly accounting for yield stage considerations, as described in

[126]. This model is based on the Riemann Liouville theory [126] and can be

formulated as Eq. (5.1) when the temperature stress is fixed and only pressure

stress is considered.

yT (t ,P ) = P

η

tβ

Γ(1+β)
, (5.1)

where yT (t ,P ) represents the reduction in the thickness of the wax at a specific

temperature stress level T concerning time t and pressure stress level P , Γ(·)
represents the gamma function, β ∈ [0,1] is a tuning parameter, and η is the

viscosity coefficient. Both β and η are chosen through cross-validation. For

a detailed explanation of the physical meaning of Eq. (5.1) and its internal

parameters, we refer to [126].

The conventional model outlined in Eq. (5.1) effectively serves its purpose

in data fitting but comes with inherent limitations. It is restricted to fitting

data at specific temperatures and falls short of comprehensively accounting for

the interactions between temperature and pressure stress. Furthermore, this
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model is inherently confined to data fitting and lacks the capability for stress

extrapolation.

Considering the aforementioned issues in existing works, there is a crucial

demand for a more robust and model-free degradation data analysis framework

for wax creep. Fortunately, advancements in data collection and storage

technologies have provided access to substantial real-time datasets, exemplified

by the wax creep data depicted in Figure 5.1, collected through sensor technology.

Such datasets, characterized by dense sampling or continuous monitoring,

enable the application of nonparametric methods for data fitting, with FDA

emerging as a representative and comprehensive nonparametric approach. A

brief review of the FDA will be presented in the following subsection.

5.2.2. FUNCTIONAL DATA ANALYSIS

F UNCTIONAL data, as introduced by [142], refers to data where the

observations are entire functions or curves rather than individual data

points. Traditional statistical methods struggle when dealing with the

complexities of these intricate data structures. Functional data often involve

large amounts of high-frequency, real-time, and streaming data, which can

be represented as curves [143] or images [144]. The densely sampled or

observed characteristics of such data align with the wax creep behavior shown

in Figure 5.1. The high dimension of this data presents significant challenges

both in theory and computational capability. Recognizing this challenge, [145]

developed specialized analytical methods tailored to functional data. After

its initiation, FDA has found applications in various scientific fields, such as

econometrics [146] and automated plant phenotyping [147]. For additional

references, please see [148].

Denote functional data as y(·), which is defined over a domain T . Furthermore,

they can also be conceptualized as realizations of a square-integrable stochastic

process, which is characterized by a mean function µ(t) = E(
y(t )

)
, and a

covariance function Σ(s, t) = Cov
(
y(s), y(t )

)
. In this chapter, observed data are

represented as yi (·), with the sample population assumed to consist of N

independent subjects. Let T = [0,T0] represent the range of values for the time

index, where 0 and T0 denote the start and end of the data collection period,
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respectively. To simplify the analysis, we assume uniform sampling schedules,

designated as 0 = t1 < t2 < ·· · < tM−1 < tM = T0 for every subject. Consequently,

the corresponding observations are structured as yi = [yi ,1, yi ,2, · · · , yi ,M ], where

yi , j = yi (t j )+ei , j , i = 1,2, · · · , N , j = 1,2, · · · , M , yi (t j ) is the true value of the i -th

subject at the j -th time point, and random noise terms ei , j satisfying the

conditions E(ei , j ) = 0, Var(ei , j ) =σ2
e . These random errors are assumed to be

independent across subjects i and time points j , which are often interpreted as

measurement errors.

The mean and the combination of Σ(s, t), the covariance function, and

σ2
e , the variance of the noise term, can then be empirically estimated at

the measurement times using the sample mean and sample covariance.

Note that these two estimated functions are point-wise, which are given by

µ̂(t j ) = 1
N

∑N
i=1 yi , j and 1

N

∑N
i=1(yi ,k −µ̂(tk ))(yi ,l −µ̂(tl )) for k ̸= l . Then, continuous

estimates of the mean and covariance functions over T can be approximated

by smooth interpolation.

Smoothing is the first step in FDA, and its purpose is to convert raw discrete

data points into a smoothly varying function. This emphasizes patterns in the

data by minimizing short-term deviations due to observational errors, such as

measurement errors or inherent system noise. There are various smoothing

methods that are useful for the FDA, including local least squares and spline

smoothing, for which many excellent references exist [149–151]. As mentioned

by [152], it is essential to explicitly mention the chosen smoothing approach. In

this chapter, we utilize B-spline smoothing, a widely adopted method known

for its simplicity and widespread application. Specifically, to fit the discrete

observations, a basis function expansion for yi (t j ) is used as

yi (t j ) ≈
L∑

l=1
ci ,lφl (t j ). (5.2)

where L is the total number of B-splines, ci ,l ,φl (·), l = 1, · · · ,L are the

corresponding unknown coefficients and B-splines, respectively.

B-splines can be defined by dividing the interval over which y(·) is

approximated into m +1 sub-intervals with a sequence of knots. On each

interval, polynomial functions of a specified order k (with a degree of k −1) are
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used to fit the data.

5.3. THE FUNCTIONAL DATA-DRIVEN APPROACH

I N this section, we will introduce the details of the proposed functional

data-driven framework. This encompasses aspects such as data fitting,

extrapolation of model parameters, predictions, and an overview providing

insights into the structure of the proposed framework.

5.3.1. DATA FITTING AND EXTRAPOLATION

I T is worth noting that observations of wax creep can not be negative. Thus,

we directly approximate the logarithm of the original observed data X (t),

which is denoted as y(t ). Then we have

yi , j = yi (t j )+ei , j =
L∑

l=1
ci ,lφl (t j )+ei , j = c⊤

i φ(t )+ei , j , (5.3)

where ci = (ci ,1, · · · ,ci ,L)⊤, φ(t) = [φ1(t), · · · ,φL(t)]⊤. ci can be estimated from

the data via the unconstrained least squares method.

Specifically,

ĉi = (b⊤b)−1b⊤yi ,M , (5.4)

where b = [b1, · · · ,bL], bl = [φl (t1), · · · ,φl (tM )]⊤, and yi ,M = [yi ,1, · · · , yi ,M ]⊤.

Thus, the estimator X̂i (·) is given by

X̂i (t ) = exp(ŷi (t )) = exp(
L∑

l=1
ĉi ,lφl (t )). (5.5)

Additionally, defining ||φ||2 = E[φ(x)2], the rate convergence, as well as the

corresponding asymptotic distribution of our estimator, are shown in the

following theorem. Assumptions and proofs are presented in the APPENDIX B.

Theorem 5.1. Under the assumptions stated in APPENDIX B, it follows that

ŷi (t )− yi (t )

σ(t )
⇝N (0,1), with M →+∞, (5.6)
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||ŷi − yi || =Op (m−k +
p

m/M), (5.7)

for i = 1, · · · , N , where

σ2(t ) =σ2
eφ(t )⊤(b⊤b)−1φ(t ), (5.8)

φ(t) = [φ1(t), · · · ,φL(t)]⊤, b = [b1, · · · ,bL], bl = [φl (t1), · · · ,φl (tM )]⊤, σ2
e is the

variance of measurement error, and ⇝ denotes converge in distribution.

Obviously, the fitting performance of Eq. (5.3) relies on the number of

B-splines, L, and a larger value of L is necessary for better fitting quality.

Consequently, this leads to challenges in interpreting the degradation behavior

based on these coefficients, especially in the case of accelerated degradation.

For better interpretability, functional principal component analysis (FPCA) could

be utilized to extract the degradation trend. FPCA stands out as a prominent

technique for extracting valuable insights from functional data. The objective

of FPCA is to discern the primary sources of variation within a collection of

realizations stemming from a stochastic process, preserving the maximum

amount of total variation possible. FPCA leverages a linear combination

of functional principal components (FPCs), which are both uncorrelated

and systematically ordered, to provide an accurate approximation of an

infinite-dimensional function or curve. Meanwhile, it selects the top-performing

FPCs for dimensionality reduction, which captures and retains the majority of

the inherent variation. FPCA has taken off to become the most prevalent tool in

the FDA, some applications include neuroimaging study [153], acceleration rate

curves [154], and so on.

For FPCA, we aim to find the first FPC β1(t ) to maximize

1

N

N∑
i=1

ξ2
i ,1 =

1

N

N∑
i=1

[∫
T
β1(t )yi (t )d t

]2

s.t. ∥β1(t )∥2 =
∫
T

(
β1(t )

)2 d t = 1,

(5.9)

where ξi ,1, i = 1, · · · , N is the score of the i -th subject on the first principal

component. Sequentially, j -th FPCs can be obtained by solving the following
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constrained optimization problem

max
1

N

N∑
i=1

ξ2
i , j =

1

N

N∑
i=1

[∫
T
β j (t )yi (t )d t

]2

s.t.
∫
T

(
β j (t )

)2 d t = 1∫
T
β j (t )βk (t )d t = 0,k = 1, · · · , j −1.

(5.10)

There is another characterization of FPCA introduced in [155], which is in

terms of the eigenanalysis of the variance-covariance function or operator. Take

the first FPC as an example, denote it as β(t) for simplification. Define the

estimated covariance function as

v(s, t ) = 1

N

N∑
i=1

(yi (s)− ȳ(s))(yi (t )− ȳ(t )), (5.11)

where ȳ(s) and ȳ(t ) denote the subject averages of the signals at times s and t .

Then define

Vβ(s) =
∫
T

v(s, t )β(t )d t =λβ(s), (5.12)

where V is the covariance operator.

The cumulative variance contribution rate
∑K

i=1λi /
∑N−1

i=1 λi can be applied to

indicate the amount of total variance accounted for by K FPCs.

Then, via smoothing mentioned in the previous section, we have some fitted

curves as ŷi (t ) =∑L
l=1 ĉi ,lφl (t ), i = 1, · · · , N , where φl (t ) are B-spline functions for

l = 1, · · · ,L. Denote the parameter matrix as C = (ĉi ,l )N×L Furthermore, without

loss of generality, assume µ(t ) = 0. Thus, the covariance function is

v(s, t ) = 1

N
φ(s)C⊤Cφ(t )⊤. (5.13)

A common way to estimate FPCs is basis function expansion [155], suppose that

β(t ) has an expansion via the same B-spline functions

β(t ) =
L∑

l=1
alφl (t ) =φ(t )⊤a. (5.14)
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Then, we have
1

N
φ(t )C⊤CWa =λφ(t )⊤a, (5.15)

where W = ∫
φφ⊤. It then implies a purely matrix equation

1

N
C⊤CWa =λa,

s.t. a⊤Wa = 1, a⊤
j Wak = 0, k ̸= j .

(5.16)

To get the required FPCs, we introduce the Cholesky decomposition W = L⊤L,

define u = La, solve the equivalent eigenvalue problem

1

N
LC⊤CL⊤u =λu, (5.17)

and compute a = L−1u for each eigenvector. It is worth noting that if basis

functions are orthonormal, FPCA will reduce to traditional multivariate PCA of

C.

After the FPCA, we have fitted curves as

Xi (t ) = exp

(
K∑

j=1
ξi , jβ j (t )

)
, (5.18)

where β j (t) are FPCs for j = 1, · · · ,K , obtained by a linear combination of

B-spline functions. Note that K could be much smaller than L in Eq. (5.5),

extracting the main information among these curves.

In the extrapolation of degradation curves from high-stress levels to

lower-stress levels, it is reasonable to assume that the coefficients ξi , j in Eq.

(5.18) depend on the stress variables and levels, as their values correspondingly

vary with different combinations of these variables and levels. Regression

models can then be employed to model the relationship between the coefficients

and combinations of these variables and levels, particularly in cases where a

clear understanding of the physical mechanism is lacking. As mentioned in

Section 5.2.1, we consider temperature T and pressure P as the experimental

stress variables. To accurately capture the variations of ξi , j concerning T

and P , we employ the full quadratic model, incorporating T , P , P 2, T 2, T P ,
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1/T , 1/P ,1/T 2, 1/P 2, T /P , and P/T as independent variables. This approach

allows us to account for both main effects and interactions. Subsequently,

stepwise regression, which is an easily calculated and widely utilized method, is

employed to select the significant variables in the regression model and estimate

the corresponding coefficients. Take ξi ,1 as an example, the estimate based on

stepwise regression is the solution to

min
n∑

i=1

(
ξi ,1 −

(
η1T +η2T 2 +η3P +η4P 2 +η5T P+

η6

T
+ η7

P
+ η8

T 2 + η9

P 2 +η10
T

P
+η11

P

T

))2
.

(5.19)

The aforementioned process encompasses the entire data fitting procedure,

establishing the relationship between the estimated coefficients and the

experimental stress levels on the training curves.

5.3.2. PREDICTION

A FTER solving Eq. (5.19), the predicted curve under normal stress T ∗ and

P∗ is as follows,

X̂ ∗(t ,T ∗,P∗) = exp

(
K∑

j=1
ξ̂ j (T ∗,P∗)β j (t )

)
, (5.20)

where ξ̂ j can be obtained by substituting T ∗ and P∗ into the results of the

fitted regression model.

However, unlike the training phase, it is not guaranteed that the predicted

curve meets the non-decreasing trend of wax creep. To address that, we apply

the FDA again to acquire a monotonic curve. We first derive a data set{
(t0, X̂ ∗(t0)), · · · , (tM , X̂ ∗(tM ))

}
. And the FDA is used here to smooth these points.

As introduced previously, we assume a basis function expansion Eq. (5.2) and

estimate coefficients via the data set. Meanwhile, a constraint is imposed to

ensure a non-decreasing prediction. According to [156], a sufficient condition

for
∑L

l=1 clφl (t) to be non-decreasing is cl−1 ≤ cl for l = 2, · · · ,L. Denote C L as

the set of all (c1, · · · ,cL) ∈RL satisfying cl−1 ≤ cl , the estimated coefficients can
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then be obtained by

c̃ = argmin
c∈C L

1

M

M∑
i=1

(
ln X̂ ∗(ti ,T ∗,P∗)−

L∑
l=1

clφl (ti )

)2

. (5.21)

Finally, the non-negative and non-decreasing prediction X̃ ∗(·) under temperature

T ∗ and pressure P∗ is given by

X̃ ∗(t ,T ∗,P∗) = exp

(
L∑

l=1
c̃lφl (t )

)
. (5.22)

Consequently, the proposed functional data-driven framework for degradation

analysis is established. Regarding degradation paths as curves, FDA is employed

to represent them via some preset B-spline functions. Further, we apply

FPCA to extract the main variation and use stepwise regression to model the

corresponding principle component scores. The complete method is outlined in

Algorithm 5.1.

Algorithm 5.1: The proposed functional data-driven framework for
degradation data analysis.

Input: X1, · · · , XN : training data set; (T ∗,P∗): testing conditions;
Output: X̃ ∗(t ): predicted degradation curve.

yi (t ) = ln(Xi ), i = 1, · · · , N ← Logarithmic transformation;
φl (t ), l = 1, · · · ,L ← B-spline functions with the preset L;
ĉi ← estimated expansion coefficients via Eq. (5.4);
K ← minimal number of FPC to capture 99.99% of the total variation;
β1(t ), · · · ,βK (t ) ← K functional principal components based on Eq. (5.10);
ξi , j for j = 1, · · · ,K and i = 1, · · · , N ← corresponding FPC scores;
yi (t ) =∑K

j=1 ξi , jβ j (t ), i = 1, · · · , N ;
for j ← 1 : K do
ξ j ← [ξ1, j , · · · ,ξi , j ];

ξ̂ j (·) ← create a stepwise regression model with training conditions;
end for
ξ̂ j (T ∗,P∗) ← predictions at new condition T ∗ and P∗ for j = 1, · · · ,K ;

X̂ ∗(t ,T ∗,P∗) = exp
(∑K

j=1 ξ̂ j (T ∗,P∗)β j (t )
)
;

X̃ ∗(t ,T ∗,P∗) ← monotonic estimator based on X̂ ∗(t ,T ∗,P∗).
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5.4. SIMULATION STUDY

I N this section, two simulation studies are conducted to demonstrate the

effectiveness of the proposed functional data-driven framework. Given that

the physical model shown in Eq. (5.1) is not suitable for extrapolation, we

exclude it from consideration in this section. For performance metrics, the

goodness of fit (R2) and root mean square error (RMSE) are employed.

The first simulation aims to demonstrate that when both the data fitting

and extrapolation models are accurate, the proposed functional data-driven

framework can still accomplish comparable results. To achieve this, an

extrapolable parametric model is needed. Without loss of generality, two stress

variables, denoted as S1 and S2, are considered in this simulation. Based on

engineers’ advice and the statistical characteristics of wax creep, as illustrated in

Figure 5.1, we employ a logarithmic model, which can be formulated as

y(t ,S1,S2) =ψ(S1,S2)ln(t )+ε, (5.23)

where y(t ,S1,S2) represents the value of creep with respect to time t , the

first stress variable S1, and second stress variable S2, ψ(S1,S2) represents the

degradation rate under S1,S2, and ε represents the noise term.

Considering the temperature and pressure stress variables in wax creep, the

well-established GEM is then employed in the stress extrapolation phase to

describe the relationship between degradation rates and the experimental stress

variables in wax creep. Let {(S1,k1 ,S2,k2 ),k1 = 1,2, · · · ,K1,k2 = 1,2, · · · ,K2} be the

combinations of two stress variables, where K1 and K2 denote the number

of the first and second stress variable levels respectively. Then, the GEM is

expressed as [4]

ψ(S1,k1 ,S2,k2 ) = exp(α0 +α1S1,k1 +α2S2,k2 +α3S1,k1 S2,k2 ), (5.24)

where k1 = 1,2, · · · ,K1,k2 = 1,2, · · · ,K2,ψ(S1,k1 ,S2,k2 ) is the degradation rate at

(S1,k1 ,S2,k2 ). Subsequently, the logarithm of Eq. (5.24), which can be solved by

the least squares estimation method, is derived as

lnψ(S1,k1 ,S2,k2 ) =α0 +α1S1,k1 +α2S2,k2 +α3S1,k1 S2,k2 . (5.25)
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Specifically, in the first simulation, we employ the following model to generate

the simulated data

y(t ) = (ψ(S1,S2)+ε1) ln(t )+ε2, (5.26)

where εi , i = 1,2 are independent white noise terms following normal

distributions. The following GEM is employed as the underlying extrapolation

model

ψ(S1,S2) = exp(α0 +α1S1 +α2S2 +α3S1S2), (5.27)

where α j , j = 0,1,2,3, represents the fitting parameters. In this simulation,

S1 = S2 = {1,2,3,4},α0 =−1,α1 =α2 = 0.5,α3 = 0.2,ε1 ∼ N (0,0.1),ε2 ∼ N (0,0.1).

The results of this simulation are visually presented in Figure 5.3. Figure 5.3(a)

and Figure 5.3(b) show the performance in the data fitting stage, from which

we can find that the proposed functional data-driven framework provides

comparable R2 and smaller RMSE to the traditional approach. Note that the

vertical axis has been separated in Figure 5.3(a) and Figure 5.3(b) for better

visualization. Negligible differences in terms of R2 and RMSE in the extrapolation

stage are observed between the traditional and proposed functional data-driven

methods, as shown in Figure 5.3(c) and Figure 5.3(d). Our findings indicate that

when the underlying fitting model is logarithmic and the extrapolation model is

GEM, our proposed functional data-driven framework performs comparably to

the traditional approach in both the fitting and extrapolation stages.

However, the accuracy of the model presented in Eq. (5.26) relies heavily on a

thorough understanding of physical mechanisms, which is challenging to obtain

in practice. A misspecified data-generating mechanism could lead to substantial

inaccuracies, emphasizing the need for a model-free fitting method in such

cases. To underscore the effectiveness of the proposed functional data-driven

framework in the absence of clear physical mechanisms, the second simulation

employs a data-generating mechanism based on B-spline functions. The model

can be formulated as

y(t ) =
4∑

i=1
(ψi (S1,S2)+εi )φi (t )+ε5, (5.28)

where ci and φi (t) denote the coefficients and B-spline of the i -th term,
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Figure 5.3: Performance evaluation for simulation 1.

i = 1, · · · ,4, ε j , j = 1, · · · ,5, are white noise terms that follow normal distributions.

In this setting, we still use the GEM as the underlying extrapolation model, as

shown in Eq. (5.29):

ψi (S1,S2) = exp(α0i +α1i S1 +α2i S2 +α3i S1S2), i = 1, · · · ,4, (5.29)
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where (α j 1, · · · ,α j 4) = (0.1,0.2,0.3,0.3), j = 0,1,2,3, to maintain the increasing

degradation trend.

After conducting 100 repetitions, the results of this simulation are visually

presented in Figure 5.4. Notably, Figure 5.4 suggests that in both fitting and

extrapolation stages, when the underlying degradation model is unknown, even

if the extrapolation model remains GEM, our proposed functional data-driven

framework consistently outperforms the traditional method, as our approach

provides larger R2 and smaller RMSE. Similar to the first simulation, the vertical

axis has also been separated in Figure 5.4(a) and Figure 5.4(b) for better

visualization.

To enhance the comparison between the proposed functional data-driven

framework and the traditional approach, the mean values of R2 and RMSE

based on 100 repetitions in both the fitting and extrapolation stages of the above

two simulations are also reported. These results are summarized in Table 5.1.

Table 5.1: Mean values based on 100 repetitions.

Simulation 1 Simulation 2
Logarithmic FDA Logarithmic FDA

Fitting
RMSE 0.1010506 0.0275388 53.31943 0.2484148
R2 0.999991 0.9835755 0.8552554 0.9256569

Extrapolation
RMSE 0.5415627 0.550598 0.4408871 0.2584508
R2 0.688867 0.6659219 0.4172232 0.7655868

Based on the results from the two simulation studies presented in Figure 5.3,

Figure 5.4, and Table 5.1, several key conclusions can be drawn. Firstly, when the

underlying degradation model is from a known model, our proposed functional

data-driven framework demonstrates performance comparable to that of the

traditional approach in both the fitting and extrapolation stages. It is important

to note that in our proposed framework, there is no assumption for the

extrapolation model, and the comparable results confirm the feasibility of our

approach in exploring the relationship between experimental stress levels and

the fitted degradation model. Moreover, as expected, our proposed framework

outperforms the traditional approach in both the fitting and extrapolation
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Figure 5.4: Performance evaluation for simulation 2.

stages when the underlying degradation model is unknown. These findings

underscore the robustness of our proposed functional data-driven framework

in accommodating different types of degradation and extrapolation models,

showcasing its versatility and effectiveness in data analysis.
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5.5. CASE STUDY

I N this section, a case study based on real accelerated degradation data for

wax lubrication layers is conducted to show the advantages of the proposed

functional data-driven framework.

5.5.1. DATA OVERVIEW

A comprehensive set of 20 different scenarios (as outlined in Table 5.2) were

meticulously executed. To capture the nuanced creep patterns exhibited by

the lubrication layer under diverse accelerated aging tests, specialized sensors

were employed, continuously monitoring and transmitting data throughout the

experimentation, culminating in an overall recording duration of approximately

1,000 minutes. It is important to note that the sensor system used herein

offers real-time and efficient tracking of the lubrication layer’s creep behavior.

Nevertheless, it is imperative to acknowledge that the frequency of sensor

transmissions was not uniform across various test sets, resulting in disparities in

time intervals and observation periods among the 20 datasets. Specifically, the

data points ranged from a minimum of nearly 30,000 to a maximum of 230,000,

aggregating to a dense data set.

Table 5.2: 20 different groups of all combinations of temperature and pressure
where data are collected.

Scenario (NO.) Temperature (◦C ) Pressure (MPa) Scenario (NO.) Temperature (◦C ) Pressure (MPa)

1 17 0.3 9 21 0.3
2 17 0.5 10 21 0.5
3 17 1 11 21 1
4 17 1.5 12 21 1.5
5 17 2 13 21 2
\ 19 0.3 14 25 0.3
\ 19 0.5 15 25 0.5
6 19 1 16 25 1
7 19 1.5 17 25 1.5
8 19 2 18 25 2

The experiments were conducted through a type of multi-axis automated

thermal aging test system which functions as an aging box that can load

temperature and pressure stress variables while monitoring the corresponding
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creep. The schematic diagram of the experimental setup is shown in Figure 5.5.
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Figure 5.5: Schematic diagram of the wax degradation experimental setup.

Both the traditional and the proposed functional data-driven framework are

individually used to analyze and extrapolate the observed degradation curves

under accelerated stress conditions. During the preprocessing, the data collected

at 19 ◦C , 0.3 Mpa, as well as at 19 ◦C , 0.5 Mpa, are removed based on the

engineers’ assessment, as the samples under these two operating conditions

experienced abnormal faults during the experiment. Additionally, the data with

T ∗ = 17◦C and P∗ = 0.3 Mpa are viewed as testing data, and others are training

data. Note that the data is initialized by subtracting the initial value at t = 0 and

for temperature, the absolute temperature is used.

5.5.2. FITTING THE ACCELERATED DEGRADATION DATA

W E begin by evaluating the effectiveness of three distinct data fitting

methods: the physical model described in Eq. (5.1), the logarithmic

model defined in Eq. (5.23), and our proposed FDA model as presented in Eq.

(5.3). The results of these fitting procedures are illustrated in Figure 5.6.
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Figure 5.6: 18 true and fitted curves via different models.
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Upon closer examination of Figure 5.6, it becomes evident that the functional

data-driven framework consistently outperforms the other two methods, with

the physical model coming in as the second-best performer. However, it is

essential to note that, as discussed in Section 5.2.1, the physical model Eq. (5.1)

lacks the ability to extrapolate degradation rates under working stress conditions,

which diminishes its overall utility. Therefore, it becomes apparent that the FDA

method stands as the optimal choice.

The logarithmic model, while demonstrating respectable performance under

certain circumstances where the underlying creep trend closely aligns with a

logarithmic pattern, falls short in other scenarios. This underscores the necessity

and effectiveness of our proposed functional data-driven framework in data

fitting, as it consistently outperforms both the physical and logarithmic models,

making it the superior choice for this application.

Furthermore, an observation from the logarithmic model indicates that the

current wax degradation data exhibits deviations from the assumptions of a

purely logarithmic model in certain cases. Therefore, it becomes essential to

categorize the data based on their specific characteristics. In this regard, the

use of FDA, as demonstrated in our framework, offers an effective clustering

approach, allowing us to account for variations in the underlying creep behavior

and enabling more accurate and reliable data analysis. The approach is detailed

as follows.

The cluster analysis plays a pivotal role in statistical research, automatically

grouping observational data samples based on their inherent characteristics and

proximity, all without prior knowledge. This process enhances our understanding

of the structural characteristics within groups, where strong similarity exists

among individuals, while weaker similarity characterizes individuals between

groups. Such a method can examine if there are different degradation

paths during all testing data. However, unlike traditional data, what we are

studying here are curves. Therefore, functional data cluster analysis serves

as an important tool for clustering degradation paths. Some attempts at

functional data clustering methods include clustering time series [157], analyzing

trajectory data [158], model-based clustering techniques [159] and categorizing

by amplitude variation or phase variation [160], and so on. For an extensive
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exploration of functional cluster methods, refer to the review paper [161].

The key point of the cluster approach is how to measure the distance between

curves. From two different curves, Xi =
(
Xi ,1, · · · , Xi ,M

)
and X j =

(
X j ,1, · · · , X j ,M

)
,

the difference can be defined directly as the Lp norm. Although such distance is

easy to understand and can be directly connected with the classic clustering

algorithm, it has two obvious flaws. One is that the observed data must be

a noise-free realization at the same time point, which lacks universality in

practical applications; the other is that dynamic features are not involved. Begin

with the expansion Eq. (5.2), there are two common distances for the cluster,

which are

d(Xi , X j ) = ( L∑
l=1

(ci ,l − c j ,l )p)1/p ,

dθ(Xi , X j ) = (
∫
T

(X (θ)
i (t )−X (θ)

j (t ))p d t )1/p ,

(5.30)

with p ∈R and θ ∈Z. These nonparametric clustering methods are based on

the shape of the curve and its derivative function, providing multi-perspective

clustering information. However, the cluster is sensitive to the choice of p and

θ, which still needs further study. Then, adaptive model-based clustering is

proposed by assuming that coefficients follow some specific distributions. In this

chapter, we use such a procedure called funHDDC [162]. The foundation of this

approach lies in a functional latent mixture model designed to accommodate

functional data within group-specific functional subspaces. Through the

imposition of constraints on model parameters both within and across groups, a

versatile family of parsimonious models emerges, enabling their application to

diverse scenarios. More specifically, a latent variable Z = (Z1, · · · , ZK ) ∈ {0,1}K is

introduced to indicate if X belongs to the k-th group (Zk = 1) or not (Zk = 0).

Then, the aim is to predict the value zi for each curve Xi (t ) with coefficients ci

that follow the Gaussian mixture distributions,

π(c) =
K∑

k=1
πkφg (c ;µk ,Σk ), (5.31)

where φg (·) is the standard Gaussian density function. All parameters can be

estimated given coefficients by traditionally maximizing the likelihood through
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the EM algorithm, for more details see [162].

5.5.3. EXTRAPOLATION TO NORMAL STRESS

T HE benchmark model used in the traditional approach is the logarithmic

model shown in Eq. (5.23). This choice is made because the physical model

in Eq. (5.1) is not suitable for extrapolation when changes in temperature and

pressure are considered simultaneously. To establish the GEM for extrapolation

after fitting the data with the traditional approach, stress analysis is conducted

through analysis of variance (ANOVA) utilizing the estimated coefficients from

Eq. (5.23). The results are detailed in Table 5.3, with a significance level set

at 0.1. From the findings in Table 5.3, it is evident that the interaction effect

between temperature and pressure is not statistically significant. This implies

that the coefficient of the interaction term in the GEM Eq. (5.25), denoted as

α3, can be set to 0. The GEM demonstrates a well-fitted result with an R2 of

0.8156, supported by a corresponding p-value of 0.006269, which is less than the

significance level of 0.1. This statistical significance indicates that the GEM

effectively captures the degradation rates of wax. Subsequently, we proceed

to forecast wax creep under normal stress levels (T ∗,P∗) by integrating these

values into the fitted GEM.

Table 5.3: ANOVA results.

Df Sum Sq Mean Sq F value Pr(>F)

Temperature 1 0.2135 0.2135 5.547 0.06514
Pressure 1 0.8705 0.8705 22.617 0.00508
Temperature : Pressure 1 0.0526 0.0526 1.367 0.29502
Residuals 5 0.1924 0.0385

For the proposed functional data-driven framework, as discussed in

Section 5.5.2, cluster analysis using FDA is needed before extrapolation. In

this chapter, we use a general procedure for clustering, which is proposed by

[162]. It employs a functional latent mixture model with some constraints on

model parameters within and between groups. As seen from Figure 5.7(a) and

Figure 5.7(b), there are three classes of curves, suggesting that training data
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involve three different degradation patterns. Such three kinds of curves are

different in location while red ones also have different fluctuations. According to

three classes in Figure 5.7(a) and Figure 5.7(b), it seems that conditions with

similar levels share similar creep curves, which coincides with the real case.

Thus, we choose curves with lower stress levels (green dashed lines and triangles

in Figure 5.7(a) and Figure 5.7(b)) as training data.
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Figure 5.7: Results for cluster analysis via FDA.

Via FPCA, the mean and variance functions can be calculated. As seen in

Figure 5.8, the trend of degradation is increasing, coinciding with the real case.

Additionally, the variance function, involving variances of Xi (t) and the error

term, also grows. Since the variance of ei j is a constant, the trend shown in the

variance function suggests that curves are similar at the beginning and differ

from each other as time goes on. After the FPCA, four FPCs are obtained, as

illustrated in Figure 5.9, from which we can find that the first three FPCs are

representative enough to maintain the information as the total percentage of

variability is more than 98.1%.

In the extrapolation phase, the stepwise regression results reveal that for the

first FPC, the significant coefficients correspond to elements T 2, T P , and P
T . For

the second FPC, the significant coefficients relate to elements T 2, T P , P 2, 1
T 2 , P

T ,

and 1
P 2 .These results suggest that temperature, pressure, and their interaction

significantly influence the creep behavior of the waxy lubrication layer. This
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Figure 5.9: Four FPCs obtained via FPCA.
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finding differs from the results in Table 5.3 based on the traditional approach.

The outcomes from the proposed functional data-driven framework indicate

that the interaction of temperature and pressure does influence creep behavior,

offering valuable insights for practical applications. For example, it can provide

engineers with guidelines to understand the physical mechanisms of the waxy

lubrication layer under temperature and pressure stress variables. Engineers

can conduct corresponding experiments to explore the exact influence of the

interaction of temperature and pressure on the creep behavior.

To enhance visualization, Figure 5.10(a) displays various predictive outcomes.

The solid black line represents the true values, the red dashed line corresponds

to the predictions made by the logarithmic model, the green dashed line

illustrates predictions without clustering in the FDA, the light-blue dotted line

represents smoothed values (closely aligned with the non-smoothed ones in

this case), the blue dashed line shows the results of the FDA considering

clustering, and the purple dot-dashed line corresponds to the smoothed values,

contributing significantly to their smoothness.

Notably, Figure 5.10(a) emphasizes the results of the FDA considering

clustering as the closest match to the true values. However, it is essential

to recognize that the trend of this prediction in the tail phase deviates from

the expected increasing trend. Therefore, we also provide an alternative in

the form of a fitted value based on the physical model in Eq. (5.1) and the

prediction based on FDA, denoted by the yellow dashed line in Figure 5.10(a).

This alternative not only demonstrates the effective prediction of creep but

also offers a means for time extrapolation. Additionally, we also provide a

quantitative assessment of the associated uncertainty by computing the 95%

confidence interval, as depicted in Figure 5.10(b).

5.6. CONCLUSIONS

I N this study, we presented a novel dataset of accelerated creep behavior for

waxy lubrication layers subjected to both temperature and pressure stress

variables. Moreover, we introduced a functional data-driven framework for

modeling the degradation data. This approach offers a novel perspective
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Figure 5.10: Prediction performance for the case study.

on fitting degradation data, departing from traditional modeling approaches.

Through extensive simulations and a practical case study on waxy lubrication

layers, our results have demonstrated the superior performance of the proposed

functional data-driven approach in comparison to traditional models in terms

of data fitting. Additionally, our framework exhibited remarkable capabilities

in the extrapolation of degradation parameters. In a broader context, the

functional data-driven method showcases enhanced robustness and broader

applicability than existing methodologies, indicating its potential to address

more complex real-world scenarios. Overall, this research offers valuable insights

into the characterization and analysis of degradation data under diverse stress

variables, opening avenues for more comprehensive and accurate assessments

in engineering applications.
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APPENDIX B

APPENDIX B.1 NOTATIONS

We assume that T is a compact subset of some Euclidean space. In what

follows, via the sequence of knots τm , B-splines with degree k −1 forms a

linear space with dimension L = m +k, denoted as G k
m = G (k,τm). For any

g1, g2 ∈ G k
m , set 〈g1, g2〉 = E[g1(x)g2(x)] and 〈g1, g2〉M = (1/M)

∑M
i=1[g1(ti )g2(ti )].

For simplification, we use y instead of yi during the proof.

APPENDIX B.2 ASSUMPTIONS

We need the following technical assumptions for our results.

(1) The function y is k times continuously differentiable for some k ≥ 2, and

has bounded k −1-th derivative.

(2) The density of t is bounded away from zero and infinity on T .

(3) The knot sequence τm = {s0 < s1 · · · < sm+1} has a bounded mesh ratio.

That is, there exists a constant c such that

max
0≤i≤m

si+1 − si

min
0≤i≤m

si+1 − si
≤ c. (5.32)

And m ≥C M 1/(2k+1) for some constant C > 0.

(4) m →∞ and as M →∞, m/M → 0, M 1/(2k+1)/L → 0, and L log M/M → 0.

APPENDIX B.3 PROOF

Proof of Theorem 5.1. As noted by [163], asymptotic properties are the same

whether the constraints of monotone non-decreasing are applied or not.

Therefore, we consider an unconstrained estimator here, which is also denoted

as ŷ . Then, we have

ĉ = (b⊤b)−1b⊤yM , (5.33)
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where b = [b1, · · · ,bL], bl = [φl (t1), · · · ,φl (tM )]⊤, and yM = [y1, · · · , yM ]⊤.

First we consider the asymptotic distributions, the estimator ŷ(·) is given by

ŷ(t ) =
L∑

l=1
ĉlφl (t ) = ĉ⊤φ(t ). (5.34)

Denote the true coefficients as c = [c1, · · · ,cL]⊤, we have

E[ŷ(t )− y(t )] = E[ĉ⊤φ(t )−c⊤φ(t )]

= E[(ĉ −c)⊤φ(t )]

= ((b⊤b)−1b⊤E[yM ]−c)⊤φ(t )

= ((b⊤b)−1b⊤bc −c)⊤φ(t )

= 0.

(5.35)

Thus, ŷ(·) is an unbiased estimator. It then follows that

Var[ŷ(t )− y(t )] = Var[ŷ(t )]

=φ(t )⊤Var[(b⊤b)−1b⊤yM ]φ(t )

=φ(t )⊤(b⊤b)−1b⊤Var[yM ]b(b⊤b)−1φ(t )

=σ2
eφ(t )⊤(b⊤b)−1b⊤b(b⊤b)−1φ(t )

=σ2
eφ(t )⊤(b⊤b)−1φ(t ),

(5.36)

where σ2
e is the variance of measurement error. Under some assumptions

mentioned before, Theorem 3 and 4 in [164] indicate that the first conclusion

follows.

Secondly, consider the linear space G k
m and define ỹ = E(ŷ |t), we have the

decomposition

ŷ − y = [ŷ − ỹ]+ [ỹ − y] (5.37)

where ŷ − ỹ and ỹ − y are referred to as the approximation and estimation errors,

respectively. For F ∈C k (T ), [149] indicates that there exists a g ∈G k
m and a

constant c such that

||g − y ||∞ ≤ cm−k . (5.38)
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According to Lemma 5.1 and Theorem 5.1 in [165], it then follows that

||ỹ − y ||∞ ≤ inf
g∈G k

m

||g − y ||∞ ≤ cm−k . (5.39)

Therefore, ||ỹ − y ||∞ = Op (m−k ). Based on Corollary 3.1 in [165], we have

ŷ(t )− ỹ(t ) =Op (
p

m/M) uniformly in t ∈T . Therefore, ŷ− y =Op (m−k +p
m/M).

The result on the L2 norm follows directly from the one on the supremum

norm.
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6.1. CONCLUSIONS

T HE overall research objective of this thesis is to explore data fusion

methods in the reliability analysis of industrial devices, particularly focusing

on fusing data from different sources. The proposed methods demonstrate

effectiveness and performance in the context of different types of industrial

devices, and their applicability is not limited to the presented case studies but

can also be extended to the reliability analysis of other industrial devices with

similar data sources. As mentioned in Chapter 1, the overall research objective is

divided into three specific research objectives addressed through four published

or submitted journal papers. The main conclusions corresponding to each

research objective are summarized as follows:

Research Objective 1: Propose a data fusion-based framework for RUL

prediction of industrial devices that collect multi-channel sensor data.

Chapter 2 presents novel DI-based prognostic frameworks for predicting RUL

in industrial devices collecting multivariate sensor data. The frameworks utilize

a feature-based DI that performs automatic feature selection and captures the

nonlinear nature of degradation. Validation through simulation studies and a

case study on industrial induction motors shows that the proposed frameworks

significantly outperform existing methods in predictive accuracy.

Research Objective 2: Develop data fusion-based reliability analysis methods

for degradation data from different batches of industrial devices.

Chapter 3 addresses the reliability evaluation for high-reliability, long-life

devices with limited current experimental data and abundant historical data. By

integrating current and historical degradation data using a Wiener process-based

model, the study provides accurate and stable reliability estimates. The

consistency of failure mechanisms across different batches is verified using

a likelihood ratio test, with practical applications demonstrated on MOSFET

degradation data.

Chapter 4 introduces a robust TL framework that balances NoTL and TL

outcomes using the MMD metric. The case study on early cycle battery data

shows the framework’s robustness in favoring TL results when TL is effective

and favoring NoTL when the negative transfer exists, enhancing practical

applicability.
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Research Objective 3: Establish a data fusion-based framework for analyzing

accelerated degradation data under different experimental stresses and stress

levels.

Chapter 5 presents a novel dataset on the accelerated creep behavior of

waxy lubrication layers under temperature and pressure stress. A functional

data-driven framework is proposed for modeling degradation data, demonstrating

superior performance in data fitting and parameter extrapolation compared

to traditional methods. The framework’s robustness and broader applicability

suggest potential for addressing complex real-world scenarios.

In summary, this thesis provides several data fusion-based methods for

reliability analysis across various industrial applications. However, certain

challenges remain unaddressed and require further research, which are stated in

the following section.

6.2. FUTURE WORK

B UILDING on the findings of this research, several avenues for future work

related to the proposed three research objectives have been identified:

• Research Objective 1 (Related to the work presented in Chapter 2.)

– Enhancing Optimization Algorithms: The computational efficiency

of the proposed prognostic frameworks can be further improved

by exploring more efficient optimization algorithms or parallel

computation techniques. This is particularly important for large

datasets involving numerous reference units or experimental cycles.

– Leveraging Additional Data Sources: Future research could develop

methods to incorporate information from additional sources, such as

data from different experimental settings. Advanced techniques like

TL could be explored to enhance the accuracy and applicability of

the proposed frameworks.

• Research Objective 2 (Related to the work presented in Chapter 3 and

Chapter 4.)
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– Expanding Data Integration Methods: Applying more historical data

from various batches can improve the reliability estimation for newly

developed devices. Constructing corresponding hypothesis testing

problems will further validate the consistency of failure mechanisms

across different batches. (Chapter 3.)

– Exploring Alternative Weights and Algorithms: Investigating

alternative forms of weights and TL algorithms could optimize the

balance between NoTL and TL outcomes. Future research should

also consider different kernel function types to tailor methods for

specific problems. (Chapter 4.)

• Research Objective 3 (Related to the work presented in Chapter 5.)

– Incorporating Monotonic Constraints: Integrating monotonic

constraints into principal components could improve the framework’s

applicability to degradation data exhibiting monotonic trends.

– Alternative Time Extrapolation Methods: Exploring different time

extrapolation methods can extend the versatility of the proposed

framework. Integrating these methods with the FDA approach may

offer more comprehensive and accurate assessments of degradation

data under diverse stress variables.
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