
Methodological
Support for Knowl-
edge Based Engi-
neering Application
Development
Improving Traceability of Knowledge into
Application Code
K. Wheeler

Te
ch

ni
sc
he

U
ni
ve

rs
ite

it
D
el
ft

Methodological Support for
Knowledge Based Engineering

Application Development
Improving Traceability of Knowledge into Application Code

by

K. Wheeler
to obtain the degree of Master of Science

at the Delft University of Technology,
to be defended publicly on Monday March 9, 2020 at 13:30.

Student number: 4280806
Project duration: September 1, 2018 – March 9, 2020
Supervised by: Ir. R. E. C. van Dijk, ParaPy

Dr. Ir. G. la Rocca, TU Delft
Thesis committee: Prof. Dr. Ir. L. L. M. Veldhuis, TU Delft, Chair

Dr. Ir. G. la Rocca, TU Delft, First
Dr. Ir. O. A. Sharpanskykh, TU Delft, Second

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Abstract
Knowledge Based Engineering (KBE) applications reduce the amount of repetitive work and allowmore
time for innovative design as engineering knowledge is translated into application code. The problem is
that these KBE applications are non­transparent and are perceived as a black box as they generate an
output from some input, but it is unclear how they came to their conclusion. One of the well known KBE
development methodologies, MOKA, has proposed solutions to structure knowledge that have proven
to have a positive impact on the development of KBE applications. However, knowledge structured with
MOKA is disconnected from the application code, making it difficult to trace how knowledge has been
implemented which decreases the transparency of KBE applications. Moreover, knowledge seems to
not be modelled at all, enforcing the black box perception. A methodology like MOKA is not being used
due to one of the assumptions that a domain expert, who owns the knowledge, is a different person than
the developer that develops the application. This requires a specialist called a knowledge engineer,
which many companies do not have. This specialist can translate the knowledge from the domain
expert into models that can be understood by developers. A field study showed that in contrast to the
assumption made by MOKA, the domain expert is often also the developer. This opens up possibilities
for a new methodology that bypasses the necessity of these specialists. This in combination with
the original motivation to improve the transparency of KBE application by improving the traceability of
knowledge into application code made it possible to formulate the research question of this thesis: to
what extent can a methodology to structure knowledge improve the traceability of knowledge onto KBE
application code without the need of specialised knowledge engineers?

An ontology called the Traceability Model (TM) has been developed that comprises two ontologies:
a Knowledge Ontology and a ParaPy Ontology. The Knowledge Ontology defines different classes
of Knowledge Forms (KF) that each capture a different aspect of knowledge: e.g. product hierarchy,
design steps, restrictions. A KF has pre­defined fields that must be filled in by a domain expert, and
it can be related to other KFs to create models. The ParaPy Ontology defines the different Code
Objects (CO) that can be found in ParaPy application code, such as Classes and Inputs. The TM
explains how knowledge connects to application code by defining a connection between the Knowledge
Ontology and the ParaPy Ontology. This enables the traceability of knowledge into application code.
Furthermore, a platform called the Knowledge Portal (KP) has been developed that enables the creation
of KFs, automatically parses application code into COs, and allows users to connect KFs to COs. It also
automatically generates several knowledge representations to help a user understand the knowledge
that has been captured. This platform assists domain experts to structure knowledge and helps to
improve the transparency of KBE applications. To test the proposed solutions, two experiments have
been performed. The first experiment tested whether participants were better prepared to develop
application code using the KP, while the second experiment tested whether participants were better able
to verify whether a developed application complies to the requirements. Results of the first experiment
shows that developers are better prepared to develop application code in a collaborative environment
as they developed the application twice as fast and with less errors using the KP compared to without.
The results of the second experiments shows that projects leads are twice as more likely to correctly
assess whether the KBE application complies to requirements using the KP compared to without, as
they have a better understanding of how and where knowledge is implemented in application code.

From this research, it can be concluded that the traceability of knowledge into application code
can be established by defining different classes of KFs and their relation to different types of COs.
Moreover, the KP successfully implements the TM to explain knowledge embedded in application code
and to help participants understand the knowledge captured, this can be concluded based on the results
of the experiments. The experiments further show the importance of modelling knowledge and enabling
a connection between knowledge and code, as the transparency improves greatly. However, another
experiment is needed to test whether knowledge can actually be structured without the necessity of
knowledge engineers.

iii

Contents

Abstract iii

List of Figures ix

List of Tables xiii

1 Introduction 1

2 Problem Identification 3
2.1 Field Study . 3
2.2 Research Aim. 5

3 Theoretical Background 7
3.1 Engineering Knowledge . 7

3.1.1 Concept of Knowledge . 7
3.1.2 Classification of Engineering Knowledge . 8

3.2 Introduction to Knowledge Based Engineering . 9
3.2.1 Advantages of adopting KBE technology . 10
3.2.2 KBE Platforms . 10
3.2.3 Stakeholders in the Development of a KBE Application 12
3.2.4 Roles in a SME environment. 14

3.3 Modelling Knowledge. 15
3.3.1 Unified Modelling Language . 15
3.3.2 Ontologies . 17

3.4 Black Box Perception. 19
3.4.1 Consequences of the Black Box Perception . 19
3.4.2 Effect on different Stakeholders . 20

3.5 MOKA . 21

4 Methodology 25
4.1 The Traceability Model . 25
4.2 The Knowledge Portal . 27
4.3 The Experiments . 28

4.3.1 Developer Experiment . 28
4.3.2 Project Lead Experiment . 28

5 The Traceability Model 29
5.1 The ParaPy Ontology . 30
5.2 The Knowledge Ontology . 31

5.2.1 Entity . 32
5.2.2 Constraint . 35
5.2.3 Activity . 36
5.2.4 Rule . 39

5.3 Connecting KFs to COs . 41

6 The Knowledge Portal 43
6.1 Structuring Knowledge . 44
6.2 Knowledge Perspectives . 45

6.2.1 Data Viewer. 46
6.2.2 Relation Viewer . 47
6.2.3 Activity Diagram . 48
6.2.4 Traceability Viewer . 49

v

vi Contents

7 Experimental Results 51
7.1 Experiment Set­up: Develop Application Code . 51
7.2 Experiment Set­up: Verify Application Code . 54
7.3 Results . 57
7.4 Discussion . 57

7.4.1 Developer Use Case . 57
7.4.2 Project Lead Use Case. 58
7.4.3 Observations . 58

8 Conclusion and Recommendations 61
8.1 Conclusion . 61
8.2 Recommendations . 62

Bibliography 65

A Interview Questions 69

B Knowledge Portal Development 71
B.1 Programming Language & Set­Up. 71
B.2 Application Source Code Parser. 72
B.3 Importing the Traceability Model . 73
B.4 Communication with the database. 74
B.5 Managing Knowledge Forms . 75

B.5.1 Loading Knowledge Forms. 75
B.5.2 Creating Knowledge Forms . 75
B.5.3 Modifying Knowledge Forms. 76

B.6 Loading Knowledge Perspectives . 76
B.6.1 Data Viewer. 76
B.6.2 Traceability Viewer . 76
B.6.3 Relation Viewer . 76
B.6.4 Activity Viewer . 76

Nomenclature
AI Artificial Intelligence

AJAX Asynchronous JavaScript and XML

AST Abstract Syntace Tree

CAD Computer Aided Design

CO Code Object ­ An object found in application, automatically parsed from application code by the
Knowledge Portal

DPM Design Process Model ­ One of MOKA’s formal models to capture knowledge about the design
process steps and the order of execution

ICARE Illustration Constraint Activity Rule Entity

JSON JavaScript Object Notation

KBE Knowledge Based Engineering

KBS Knowledge Based System

KF Knowledge Form ­ A form used to structure knowledge in such an extent it can be used in a
KBE application

KP Knowledge Portal ­ The developed platform that assists the stakeholders to perform their task
in the development of a KBE application

MOKA Methodology and software tools Oriented to Knowledge based engineering Applications

OOP Object Oriented Programming

PM Product Model ­ One of MOKA’s formal models to capture knowledge about the product

RDF Resource Description Framework

SME Small to Medium­sized Enterprises

TM Traceability Model ­ The developed ontology which cconnects the Knowledge Ontology to the
ParaPy Ontology

UI User Interface

UML Unified Modelling Language

UX User eXperience

vii

List of Figures

2.1 The steps in application development that emerged from the interviews, with the per­
centage of participants mentioning to perform that step. 4

3.1 The information pyramid [4]. 8
3.2 Examples of different types of knowledge using a 2­dimensional graph [29] 8
3.3 Influence of KBE usage on time of main design tasks [36]. 10
3.4 How KBE can improve on the design development process [41] 11
3.5 A genealogy of KBE systems [37] . 11
3.6 An engineering rule which generates a cylindrical geometry when fired, using four inputs 12
3.7 Example of the lazy evaluation inference mechanism [31] 12
3.8 The steps to get from raw knowledge to a working application, and which stakeholders

are performing that step. 13
3.9 From raw knowledge to application code, the volume of the knowledge decreases and

it becomes more processable by a computer, adapted from MOKA [8]. However, it be­
comes less understandable by people. 13

3.10 An example of an ICARE form, from [6]. A form has several attributes that have to be
filled in to describe the knowledge being captured. Then, this form can be related to
other forms which allow an informal model to be created showing the relations between
all the forms. 14

3.11 Relative positioning of KBE, Knowledge Engineering and KnowledgeManagement. Lists
of knowledge technologies involved in the various phases of the development process
of a KBE application for engineering design [25] . 15

3.12 Hierarchy of UML diagrams [39] . 16
3.13 Basic relations of the UML Class diagram . 16
3.14 Example of an Object diagram, which is an instance of a Class diagram 17
3.15 Hierarchy of UML models [22] . 17
3.16 Four level modelling framework [22] . 18
3.17 The RDF is an instance of the RDF­S (RDF Schema) [24]. RDF­S defines the context as

the different objects and the possible relations are set, e.g. that a Cellar can be owned
by a Person. RDF uses the RDF­S to determine possible relations, e.g. that theCellar
is ownedBy JudeRasin. 18

3.18 Triples in RDF [24]. Used to define how two objects relate to each other. 19
3.19 The effect of a non­transparent KBE application [16] . 20
3.20 The MOKA life­cycle, from [6]. 21
3.21 An example of an Entity form, adapted from [6]. 22
3.22 Left: Structure view of the Product Model explaining the hierarchy between objects found

in the KBE application domain. Right: The Design Process Model, which explains the
steps in the application design process. from [6]. 23

4.1 The top shows how MOKA defined how to get from raw knowledge to a working KBE
application. It requires knowledge to be structured twice: the first with the ICARE model
which can be understood by experts, while the second is used to structure knowledge
to be developed in a KBE application. The bottom shows that the TM lies in between
the two steps defined by MOKA. It increase the formality of the ICARE model whilst still
being processable by a computer. 25

ix

x List of Figures

4.2 An example of a KF, which helps guide a domain expert to capture what is essential for a
given class of KF. In this example, this KF is a Property, which is the new class added to
what the ICARE model proposed. In the KF, it is also possible to set relations with other
KFs, such as which Entity this KF belongs to, or whether there is a Constraint acting on
this KF. 26

5.1 From KBE application code, different COs can be retrieved. 29
5.2 Once a KF is connected to a CO, the KP is able to show how KFs are implemented in

the KBE application code. 30
5.3 The ParaPy Ontology . 30
5.4 How different Classes relate to one another. The Classes are depicted as the grey

boxes, they have Inputs and Parts; the Attributes have been left out in this exam­
ple. The Parts instantiates a Class, this enables the parent­child relation. There are
three Parts that all instantiate the same Class ’Lifting Surface’. To visualise the effect
of child rules, one relation has been selected (blue line), and the child rule attached to
that relation is shown in the dotted green line. Each relation has its own set of child rules
to specialise the generic Class. 31

5.5 MOKA’s ICAREmodel defines 5 classes of KFs, each is a specialisation of the superclass
Knowledge Form. 32

5.6 An example of a hierarchy of product objects. 32
5.7 An Entity comprises Inputs and Outputs. An expression can be complex or literal. Com­

plex refers to the fact that it is an expression that depend on other Properties. The
expression of a Child is read­only, meaning it cannot be modified manually. The Child
returns one­to­many Entities, allowing to capture a collection. Finally, the back­slash
means that the attribute is computed automatically from other information by using val­
ues of other attributes. 33

5.8 Overview of how Entities and Properties relate to types of COs. The green line repre­
sents the relation. The dotted green line is a relation that can be inferred, and represents
an indirect relation. 34

5.9 An Entity comprises two Inputs, an Outputs, and a Child. The Child ’my_wing’ returns
the Entity ’Lifting Surface’. The Child ’my_wing’ comprises a Child Input that overwrites
an Input. The code counterpart shows what can be captured with these KFs. It is not
possible to capture what the expression is of the ’wing_lift’ as this knowledge is captured
in Activities and Rules, which will be explained later on. 35

5.10 A Constraint now directly constrains a Property. 35
5.11 The first Constraint restricts the possible outcome to an uneven number. The second

Constraint ensures that a Property cannot exceed the value of another Property. 36
5.12 The ICARE models explains that an Activity is used to describe a step in the design

process. 36
5.13 An Assignment has Inputs and Outputs provided, and can set the expression of an Input

or an Output. 37
5.14 A Child Definition sets the expression of a Child. It comprises Assignments, in which

case the Assignments set the expression of Child Inputs. 37
5.15 An Entity ’Wing’ comprises two Inputs and one Output. The two Inputs are provided to

the Activity, which knows that it can use them to set the expression of the Output. It can
now be said that the ’wing_lift’ is a function of the ’safety_factor’ and the ’weight’. 38

5.16 An Entity ’Aircraft’ comprises a Child ’my_wing’ which comprises a Child Input ’lift’ which
overwrites the value of the Input ’lift’ of the Entity ’Lifting Surface’. A Child Definition
’Generate wing’ comprises an Assignment ’Assign lift’ which sets the expression of the
Child Input ’lift’ which is a composition of the Child ’my_wing’. 39

5.17 A Rule governs an Activity. A Rule has inputs and outputs, these are used in the body
to form an expression. When an Activity is being created, the domain expert connects
Properties provided to the inputs of theRule. The domain expert also connects the output
of the Rule to the Property being set. This allows the KP to infer that the expression of
the output Property is the expression given by the Rule. 40

List of Figures xi

5.18 The Rule ’Minimum Lift Equation’ is governing the Assignment ’Calculate lift’. It has
two inputs, weight and safety_factor, and a single out lift. The body explains what the
expression is. The Assignment connects the two Properties provided to the inputs, and
also connect the Property being set to the output of the Rule. Now it is clear how the
Property ’wing_lift’ is going to be evaluated. 41

5.19 An overview of the (in)direct connections between KF classes and COs. 42

6.1 The steps in a KBE application development process with the three different scenarios
described, as defined for this methodology. After KFs are connected to COs, the process
can repeat itself as the development of a KBE application is iterative. Once all iterations
are complete, a project lead can verify that the application fulfils all requirements and
deliver it to the customer so that the end­user can use the application. 43

6.2 User interface of the Knowledge Portal. There are three main windows: one to browse
KFs and COs and to load them into the different windows, one to view the data and
relations a KF or CO has in different perspectives, and one to view the Activity Diagram.
The Activity Diagram helps users understand where in the design steps they are, in this
example they are in the step to generate a wing which consists of 7 sub­steps. 44

6.3 Creating a new KF can be done in three steps. First a new KF should be opened. Sec­
ondly, the domain expert can choose the KF class and fill in the information required for
that class of KF. Finally, the domain expert can relate the created KF with other KFs by
clicking on the ’+’. 45

6.4 An overview of the KF tree which contains all the KFs that were created. One may
note that the Properties are not seen in the KF tree, this is because all the Properties are
grouped under the correctEntity. By right­clicking a KF a context­menu opens up to allow
the user to load the chosen KF in one of the knowledge perspectives. By left­clicking a
KF, the chosen KF opens up in the Data Viewer. 46

6.5 UI of the Data Viewer. It gives an overview of the information captured about the chosen
KF. It is possible to modify fields by clicking on it, as can be seen for the attribute ’written
by’ which is being modified. 46

6.6 UI of the Relation Viewer showing KFs and COs as blocks, where the grey blocks are
COs. It shows the relation a chosen KF or CO has with other KFs and COs. It is used
to get a clear overview of how KFs and COs relate to each other. Left­clicking a block
focusses on its relations, while right­clicking a block opens the Data Viewer of the chosen
KF. 47

6.7 UI of the Activity diagram, showing the Activities as blocks. The dark blue blocks are
Child Definitions while the light blue blocks are Assignments. Double­clicking a Child
Definition loads the Activities of the Entity it is returning indirectly (Child Definition sets
Child returnsEntity). Left­clicking a block loads and focusses it in the Traceability Viewer,
showing where the Activity is taking place. 48

6.8 UI of the Traceability Viewer. The KP separates each CO from a Class and groups the
KFs that are connected to it. This provides the user with an overview of which KFs are
connected to the CO. As can be seen, no Activity is connect to the CO. This choice has
been made as the Activity already has its own Activity Diagram in a separate window. By
clicking on an Activity in the Activity Diagram, the corresponding CO is loaded, focused,
and highlighted. 49

7.1 An isometric view of what the application can currently generate. 51
7.2 A top view of what the application can currently generate. 52
7.3 The scoring sheet used to assess the performance of the participants. The total number

of points is 50. The points were given based on each aspect of a code object: e.g.
an attribute put into a class that has a rule and also a constraint is worth 4 points as it
considers 4 aspects. 53

7.4 A top view of a wing planform. It captures the shape of the wing, it also shows a sweep
angle. 55

xii List of Figures

7.5 The scoring sheet used to assess the performance of the participants. The total number
of points is 63. The points were given based on each correct answer whether a code
object was fulfilled, which code object it was, and what the action plan was. 56

7.6 Both results show the points scored as percentage of the maximum points possible.
Both experiments show that the test group scored higher than the control group. For
both cases there is an error as there were not many participants. However, even with
the error the results show an increase in score. 57

B.1 The various parts of the Knowledge Portal, the languages, and the communication. The
source code is not regarded as part of the KP. 71

B.2 Example of how to use the AST to extract information of a simple code object. Note: a
lot of nodes were taken out of the tree to fit it into a figure. 72

B.3 The final dictionary containing all the COs that could be found in the application source
code. The top object is a container for Classes, and it can be seen in the ’children’
that there is a single Class called ’WingSkin’. This Class comprises several Inputs,
Attributes, and Parts. However, the dictionary is too long to show, so only the first
Input and its information is shown. 73

B.4 In this example there are seven aspects that should be captured in the JSON string: a)
f) Input composes an Entity, b) Input relates to an Input, c) g) Input can relate to a
Constraint, d) Input has an added attribute Default Value, e) Every type of Property, so
also Input, has an added attribute Return Type. This is captured in JSON as can be seen
in the figure, and the corresponding KF that is created by the KP can also be seen in the
figure. 74

B.5 An example of an AJAX statement, that sends a command to a file called ”test.html” with
a certain context. When ’done’, it will carry out the statement in the .done() body. It will
allow for parallel processes and for the KP to work without needing to be refreshed. . . 74

B.6 A Rule and its attributes, with values, captured in a JSON string. 75
B.7 How a triple is built up. 75

List of Tables

2.1 List of problems experienced, and the number of participants mentioning the problem
during which steps. The numbers represent how many times a participant mentioned
the problem regarding that step. 4

3.1 Examples of projects where the lead­time was reduced using KBE technologies, adapted
from Reddy [33]. 10

xiii

1
Introduction

Knowledge Based Engineering (KBE) applications are effective at automating time­consuming and
knowledge intensive activities [33] as product and process knowledge is translated into application
code. These activities are often repetitive and tedious, such as geometric modelling or pre­processing
for analyses. Other advantages that KBE has includes knowledge re­use, no knowledge loss when
employees leave the company, a decrease in human errors, and an increase in design space. Due to
the reduction in routine design time, it also gives engineers more time to spend on innovative designs.
These advantages are achieved by merging Object Oriented Programming (OOP), Artificial Intelligence
(AI), and Computer Aided Design (CAD).

During the development of a typical KBE application, five types stakeholders can be determined:
domain experts, knowledge engineers, developers, project leads, and end­users. The domain experts
possess the knowledge that is used in the KBE application. They are not directly involved in the devel­
opment of the KBE application, but their input is essential to build a working KBE application. The goal
of the knowledge engineer is to translate the knowledge of the domain expert into models that can be
understood by developers, who will develop the KBE application. Once a KBE application is developed,
the project lead has to make sure that it complies to the requirements. Only then can it be delivered to
the customer so that the KBE application can be put to use. The end­user is the stakeholder that uses
the KBE application to automate (part of) their design process.

Without the use of a proper knowledge modelling technique during the development of a KBE appli­
cation, it is perceived as a black box. This is due to the fact that a KBE application is non­transparent: it
generates an output from some input, but it is not possible to understand how it came to its conclusion.
This is often due to the fact that the knowledge from the domain expert is directly translated to applica­
tion code, which means that the knowledge is merely represented by context­less data and formulas
[40]. Only a developer experienced in using the coding language can attempt to understand how the
knowledge is implemented, making it inaccessible for all the other stakeholders. However, KBE appli­
cation development is often a collaborative development process causing developers to have difficulties
understand application code of colleagues even though they can understand the coding language.

The other stakeholders are negatively affected as well. Domain experts have difficulties trusting the
KBE application as they cannot understand for themselves how their knowledge is implemented. They
also feel excluded from the development process, which decreases their motivation to participate and
to help with providing knowledge for the KBE application. A project lead is not able to understand the
application code, and has to rely on running the KBE application to test its functionalities. However,
the fact that the KBE application gave a seemingly correct output does not mean it did so by deriving
the correct facts. This makes it difficult to verify whether an application complies to the requirements.
Finally, the end­user has to have blind trust in the KBE application they are using, as they are not able
to understand for themselves how the KBE application is working.

There are several KBE methodologies available to support the application development process to
improve the transparency. One of the well knownmethodologies is MOKA [8]. MOKA describes several
steps to model knowledge, which has proven to be successful. However, the models created with
MOKA are disconnected from application code. This means that it is not possible to understand how
the knowledge is implemented in the application, which enforces the black box perception. Therefore,

1

2 1. Introduction

this thesis focussed on solutions to improve the traceability of knowledge into application code by
extending one of the models of MOKA.

A field study was performed to discover how KBE applications are developed in the industry. One
of the findings was that a KBE methodology such as MOKA was often not used during the application
development process. The main reason seems to be that MOKA assumes that a knowledge engineer
is required that will translate the knowledge from a domain expert into models that can be understood
by developers. However, results from the field study show that most engineers in a KBE project are
both the developer as well as the domain expert. This gives the developer the feeling that the knowl­
edge modelling step is not necessary, as they might as well directly implement their knowledge into
application code. In a way this is possible, but as knowledge is not modelled the KBE application be­
comes non­transparent, causing the negative effects explained above. Moreover, it will not be possible
to establish traceability of knowledge into application code if knowledge is not modelled at all.

Therefore, this thesis proposes a new ontology called the Traceability Model (TM) which aims to
remove the necessity of knowledge engineers. This is possible as it is assumed that the domain expert
is also the developer, meaning that they would understand how to model knowledge for use in a KBE
application. The TM defines several classes of knowledge to help guide the structure of knowledge
by the domain expert. Moreover, the TM aims to establish traceability of knowledge into application
code. This is achieved by defining how classes of knowledge can be connected to pieces of code.
Moreover, a platform called the Knowledge Portal (KP) has been developed to provide an environment
to structure the knowledge. The KP will also be able to parse application code automatically, to allow
a developer to connect the developed code to the knowledge that has been structured.

This thesis report starts off by presenting the reader with the results of the field study which made
it possible to formulate the research aim, as discussed in chapter 2. Then, the necessary theoretical
background is given in chapter 3. This helps the reader understand the methodology of this thesis,
presented in chapter 4. Afterwards, the developed ontology is discussed in chapter 5 as well as the
developed platform in chapter 6. Once the solutions have been presented, the experiments are pre­
sented in chapter 7, as well as the results and the discussion of the experiments. Finally, the report
finished with a conclusion in chapter 8 and presents some recommendations for further work.

2
Problem Identification

KBE applications are perceived as a black box which is mainly caused by neglecting a knowledge
modelling step in the application development process. And when knowledge is modelled, there is still
the problem that the created models are disconnected from the application code. Knowledge seems to
be implemented directly in the application code. This would make it only available for KBE developers
that can understand the coding language. However, even for the developers it would be difficult to
understand how the application is working as application code is not made to be human readable. This
problem is worse for the other stakeholders and hinders adoption of KBE technologies. To assess how
the black box is perceived in the industry, a field study has been performed. From this field study it was
possible to formulate a research question that helped guide the direction of the thesis.

2.1. Field Study
Before working on a solution to improve the traceability of knowledge into application code, interviews
were held with 11 industry members experienced in developing KBE application. The industries were
distinctive: e.g. aerospace, oil & gas, logistics, and academia. The aim of the interview was to pin­
point the roots of the problem concerning the lack of traceability of knowledge into application code. It
was investigated what their KBE application development process was, and which steps were taken to
capture, structure, and formalise knowledge. Knowing which steps are (not) performed could give an
indication of what is required before being able to connect knowledge to code. Moreover, the partici­
pants were asked which roles were defined in the project, and how many roles a single engineer fulfils.
For current KBE methodologies, the assumption is made that the domain expert and the developer are
two separate engineers. However, the hypothesis is that modern engineers fulfil both the roles of the
domain expert as well as the developer. For more information about the roles in the development of a
KBE application, see subsection 3.2.3. The interviews were a combination of structured and unstruc­
tured questions, allowing room for the industry member to tell their narrative in their own way. The full
set of structured questions can be found in Appendix A.

Roles in KBE Development
It became clear that 81% of the participants mentioned that a single engineer fulfils the role of the
domain expert and the developer. This is possible as modern engineers learn basic IT skills as it is
becoming part of curricula in most degrees. Most participants had a technical degree instead of a IT
related degree, meaning they joined the project as a domain expert and learned to be a KBE developer.
This means that an engineer is able to understand how a KBE application must be developed while
possessing the required knowledge. This allows the same engineer to both structure knowledge and
develop application code while possessing the knowledge themselves. However, it was mentioned that
for more complex matters, the assistance of a dedicated domain expert would be needed.

In only two case engineers had a single role during the development. These two cases were also
the only participants to mention that there were knowledge engineers available. These two cases were
at large aerospace companies, while the rest could be classified as a SME (Small to Medium­sizes
Enterprise). This shows that SMEs neither have engineers dedicated to a single role, nor have the re­

3

4 2. Problem Identification

sources for a knowledge engineer. Whereas larger companies are able to dedicate whole departments
for a single role.

Steps in the KBE Application Development Process
The steps in the KBE application development process were investigated as well. Figure 2.1 shows
the steps that became apparent from the interviews, and put into chronological order. The percentage
shows how many participants usually perform that step during the application development process.
Table 2.1 shows the reasoning why certain steps are not performed (any more), or what problems are
experienced during those steps.

Figure 2.1: The steps in application development that emerged from the interviews, with the percentage of participantsmentioning
to perform that step.

Table 2.1: List of problems experienced, and the number of participants mentioning the problem during which steps. The
numbers represent how many times a participant mentioned the problem regarding that step.

Problem Step TotalA B C D E F G
Step requires specialist 7 7 4 0 0 0 0 18
No adequate platform 4 4 5 0 0 0 4 17
Results of step are lost 5 5 2 0 0 2 0 14
Results of step not maintained 5 5 0 0 0 0 0 10
Too complex to perform / implement 1 3 1 1 1 0 2 9
Too time­consuming 2 2 3 1 0 0 0 8
Too difficult to find what is wanted 0 2 1 0 0 3 0 6
Step performed inadequately 1 1 0 2 0 0 0 4
No idea how to perform / implement 1 2 0 0 0 0 0 3
Advantages not clear 1 1 0 0 0 0 0 2
Total 27 32 16 4 1 5 6 91

From the interviews it seems that capturing, structuring, and formalising knowledge are the steps
where most issues are found. The two biggest issues with these steps is that a specialist is required
to perform the step correctly, and there is no platform to support engineers with these steps. This is
reflected in [41] where it is mentioned that there is an improvement necessary in the methodological
support for KBE. Without sufficient support, it will not be possible to model knowldge correctly and it
remains too time­consuming or complex to perform the steps. Furthermore, the participants mentioned
that there is a feeling that the results of steps A, B, and C are often lost, forgotten, or are not in sync
with application code any more. This further enforced the feeling that the steps are useless and thus
are not performed.

2.2. Research Aim 5

The findings further suggest that 36% of the participants have connected knowledge to code. How­
ever, the way this is achieved is primitive and is concluded to provide little to no benefits. An example
is that application code is sometimes documented within the application code itself, but this does not
enable an engineer to find out the source of the knowledge, and it is off limits for someone who cannot
understand the coding language. Another example of ’connecting captured knowledge to code’ was
that a piece of code referred to a certain meeting where it was discussed. However, when looking
up the meeting notes, the discussed knowledge could not be found. This circles back to the fact that
knowledge has not been structured and formalised correctly, making it difficult to connect captured
knowledge to code. It also shows that knowledge is seemingly lost, as the meeting notes could not be
found any more. It seems that a lack of a modelling technique to structure and formalise knowledge is
the root cause of a lack of traceability of knowledge to application code. As knowledge is still in its raw
form, the connection between knowledge and code simply cannot be made.

Usage of KBE Methodologies
The two cases with dedicated departments were the participants that mentioned to have experience
with KBE methodologies such as MOKA. It is interesting, as MOKA currently defines a life­cycle where
the life­cycle steps target each role separately. Moreover, these were the two participants that men­
tioned to have knowledge engineers, meaning that they were not hindered by the fact that a KBE
methodology requires knowledge engineers.

When the other participants were asked for reasons for not using a KBE methodology, such as
MOKA, it was mentioned that the requirement for a knowledge engineer is the main reason. Moreover,
it is the developers that have to structure knowledge first before developing application code. There
seems to be a lack of motivation to go through two extra steps to structure knowledge instead of di­
rectly developing the application code. Skipping the knowledge modelling step seems to work for the
developers though; however, not structuring knowledge hinders many aspects of a KBE application
that provides benefits: traceability of knowledge into application code, re­use of knowledge, applica­
tions become more transparent, and it prevents other problems that will be explained in chapter 3. It is
important to help the stakeholders understand the benefits of modelling knowledge.

As an engineer now fulfils the role of a domain expert as well as the developer, it means that
knowledge can be structured more formally in one step instead of two steps as proposed by MOKA.
This should help remove the extra work load put onto the engineers to model knowledge and should
increase motivation. Moreover, having a platform where modelling knowledge can be performed should
also increase the motivation to model knowledge. Many participants mentioned that having visual
feedback of the structured knowledge would be positive.

2.2. Research Aim
The goal of the thesis is to increase the transparency of KBE applications by focussing on the trace­
ability of knowledge into application code, as there seems to be a disconnectedness between captured
knowledge and the application code. The focus is put on Small to Medium­sized Enterprises (SMEs)
where engineers fulfil multiple roles during the development of an application. This choice has been
made as the adoption of KBE technology at SMEs seems to be the most problematic as the require­
ment for a specialised knowledge engineer is hindering KBE adoption. It also became clear from the
field study that most participants have a similarly structured project as SMEs, where a single engineer
fulfils multiple roles: e.g. as a domain expert and as a developer. From the results from the field study,
it can be concluded that there is a lack of traceability of knowledge into application code due to three
reasons: there is a lack of a knowledge modelling technique, with the consequence that knowledge is
not structured or formalised; there is a lack of a platform to structure, formalise, and connect knowledge
to code, ensuring that the benefits do not outweigh the costs; and there is a necessity of specialised
knowledge engineers, causing the adoption of KBE technologies for SMEs to be too difficult. To tackle
these three points, the following three goals have been set:

1. Develop an ontology that defines a classification of knowledge and how it connects to application
code

2. Develop a platform to structure & model knowledge, and connect knowledge to application code

3. Remove the necessity of specialised knowledge engineers

6 2. Problem Identification

To guide the course of the thesis, the following research question has been formulated.

”To what extent can a methodology to structure knowledge improve the traceability of
knowledge onto KBE application code without the need of specialised knowledge

engineers?”

3
Theoretical Background

This chapter presents the reader with some theoretical background to help understand the choices
made during this thesis. It starts with an explanation of what knowledge is, and what types of knowledge
exist. Afterwards, there is a section explaining what KBE is, how it uses knowledge, and what the
advantages are that it can bring. Next, two modelling techniques are presented, which were used
to understand how knowledge can actually be modelled correctly. Then, the black box perception is
discussed. This is a problem that is common for applications, and this section expands on the effects
it has on the KBE application and its stakeholders. Commonly, the black box perception is the result of
a lack of modelling knowledge. Therefore, the final chapter introduces the MOKA methodology, which
proposes a few models to structure knowledge for use in a KBE application that have proven to be
effective.

3.1. Engineering Knowledge
Knowledge plays an important role in KBE applications, as engineers developing a KBE application
translate engineering knowledge into application code. This engineering knowledge is implemented in
the application code as engineering rules and they control the flow of the application to come to a design.
Therefore it is important to define the concept of knowledge and the different types of knowledge that
exist in general, this is explained in the first section. Knowing what knowledge is, it is possible to classify
the different types of engineering knowledge that can be found specifically in a KBE application.

3.1.1. Concept of Knowledge
According to Milton [29] there are many ways to explain the concept of knowledge: a highly structured
form of information, what is needed to think like an expert, what separates non­experts from experts, or
what is required to perform complex tasks. Milton suggests that ”knowledge is amachine or an engine in
our heads”. Knowledge is often interchangedwith information, however this is not correct as information
is a building block of knowledge as it adds to or changes knowledge by means of a flow of messages
or meanings [32]. According to Boateng [4], knowledge can be seen as ”the processing of information”
and as ”a skill based on previous understanding, procedures, and experience”. Information itself can
be seen as data that is ”in formation”, meaning data that has been processed. This gives three layers
of how information can be perceived, and Figure 3.1 summarises nicely how these layers compare to
each other. The pyramid shows that going from a lower to a higher level shifts the focus from content
to context, and the volume decreases. Human involvement is what makes information shift up a layer,
and not only increases the value of it but makes it harder to manage and to transfer the knowledge
(Davenport, cited in [4]).

7

8 3. Theoretical Background

Figure 3.1: The information pyramid [4].

3.1.2. Classification of Engineering Knowledge
Knowledge itself can be categorised to help understand it better [29]: procedural vs conceptual knowl­
edge, and explicit vs tacit knowledge. The differences between procedural and conceptual is that the
former is knowledge that is about processes, tasks, and activities, while the latter is about how things are
related to each other and about their properties. Shadbolt [35] explains that it is a difference between
’knowing that’ and ’knowing how’. The differences between explicit and tacit is that the former concerns
basic tasks, relations, and properties of concepts which are easy to explain; while tacit knowledge is
rooted deep in the brain and is forged through experience, which can be expressed as gut feelings and
hunches which are hard to explain. Figure 3.2 summarises in a simple way the differences in types of
knowledge.

Figure 3.2: Examples of different types of knowledge using a 2­dimensional graph [29]

3.2. Introduction to Knowledge Based Engineering 9

Understanding the different types of knowledge is important as it helps categorise it and relate it
with one another. It also helps to create understanding of the various types of knowledge existing in
the domain of KBE applications. Furthermore, it helps to develop methods to capture every type of
knowledge. For example, structuring a rule which is a formula, e.g. 𝐸 = 𝑚𝑐2, can be done easily using
the variables of the formula as it is explicit knowledge. However, to structure the rules of how to tie
shoelaces needs a more complex capture procedure, as it is tacit knowledge. Boateng [4] explains
that explicit knowledge can be codified and may exist in forms such as rules, procedures, and theories.
In contrast, tacit knowledge may not be transcribed into a rule, possibly limiting the accuracy of engi­
neering rules. However, explicit and tacit knowledge are not inseparable, as Ibrahim mentions [19]:
”They are not two ends of a continuum, but two sides of the same coin”. This means that every piece
of knowledge has a tacit part to it. This tacit dimension cannot be codified, however, an attempt can
be made to articulate tacit knowledge into explicit knowledge.

It is important to distinguish tacit knowledge from explicit knowledge to be able to model it correctly.
Understanding the difference between procedural and conceptual knowledge should also be taken into
account when modelling knowledge, as one deals with processes while the other deals with relations
and properties. These distinctions should be represented in the ontology that is being developed.

Knowing the four extremes of knowledge, it is possible to take a look at how this applies for KBE
applications and what type of knowledge can be found in KBE applications in the form of engineering
rules. Boley et al. [5] explains that the classification of engineering rules could be done by its form or its
purpose. They also explain that the term rule is an umbrella for a number of related, but quite different
concepts. Rules may specify ”constraints, (implicit) construction of new data, data transformations,
updates on data or, more general, event­driven actions”. Hu et al. [18] show that engineering rules can
be classified as three types: deductive rules (or derivation rules), normative rules (or integrity rules),
and reactive rules (or active rules).

Deductive rules can be used to trigger a forward or backwards reasoning engine to derive implicit
facts, or as Boley et al. [5] describes: they are rules that derive knowledge from other knowledge with
the use of logical inference. Normative rules can be seen as constraints, which pose restrictions on
objects. Deductive and normative rules are both conceptual knowledge, and can both either be explicit
or tacit. Reactive rules are needed to be able to update the KBE application during runtime, as the
others cannot take action. Reactive rules are therefore procedural, as they contain knowledge about
processes and activities.

Lemmens [26] discuss five rule classification schemes found in the business rule management
discipline, and compare them to find similarities and differences. In this discipline, a business rule is
similar to an engineering rule from the KBE discipline. The five different classification schemes all had
different types of business rules; however, they could all fit into three larger categories: constraints,
derivation rules, and process rules. This is similar to what was explained above but with a different
naming, so it seems there are three categories of engineering rules:

• Constraints

• Derivation Rules

• Process Rules

3.2. Introduction to Knowledge Based Engineering
There are a lot of definitions for Knowledge Based Engineering that can be found in literature. La Rocca
[23] mentions that the different definitions found can be explained by the fact that there are different
views on KBE due to different ”KBE customers”, this makes it difficult to fit KBE into a single description.
However, La Rocca describes KBE as:

”Knowledge based engineering (KBE) is a technology based on dedicated software tools called KBE
systems, that are able to capture and reuse product and process engineering knowledge” [23]

According to Stjepandic [38], KBE is one of the most promising research and applications fields in
the context of knowledge capture, structure, and re­use. The main objective of KBE is ”to reduce the
time and cost of product development”, mainly by automating repetitive, non creative design tasks [9].
This is illustrated in Figure 3.3.

10 3. Theoretical Background

Figure 3.3: Influence of KBE usage on time of main design tasks [36].

Table 3.1 shows three examples of KBE projects where there was a significant reduce in lead time,
adapted from [33].

Table 3.1: Examples of projects where the lead­time was reduced using KBE technologies, adapted from Reddy [33].

Reference Focus Area Achievement
Emberey et al. [15] Engineering Design Application De­

velopment in Aerospace
With respect to traditional design
process lead­time reduction of 75%

Jodin et al. [21] British Aerospace Wingbox design 8000 hours to 10 hours
Jodin et al. [21] Jaguar car inner bonnet design 8 weeks to 20 minutes

3.2.1. Advantages of adopting KBE technology
As the lead time of a project is reduced, there is more time to explore a larger part of the design envelope
[41] [10] [28]. Moreover, it gives the companies using KBE systems the chance of mass customisation
needed as the market may shift rapidly [33]. After the design development process, the knowledge
may be re­used for the next project [41] [10], this is partly due to the fact that the code is built modularly
which allows the programmers to re­use modules of codes for the new application. Figure 3.4 shows
how KBE can improve on the design development process, affecting the design freedom, committed
costs, available knowledge, and incurred costs.

The benefits of KBE is achieved by merging of Object Oriented Programming (OOP), Artificial Intel­
ligence (AI), and Computer Aided Design (CAD) technologies [7]. KBE is an extension of Knowledge
Based Systems (KBS) into the design engineering domain /citeMa2008, where a KBS is ”any system
which performs a task by applying rules of thumb to a symbolic representation of knowledge, instead
of employing more algorithmic or statistical methods” [20]. KBE mainly adds facilities for geometry
manipulation [38] to the existing KBSs [38]. An often brought up misunderstanding is that KBE is an
alternative for CAD; however, it does not remove the need for CAD but reduces the number of CAD
stations needed for a particular task [10].

3.2.2. KBE Platforms
There have been several KBE platforms throughout the years, and Figure 3.5 shows which platforms
appeared, merged, and disappeared. Each platform uses different programming languages, but what

3.2. Introduction to Knowledge Based Engineering 11

Figure 3.4: How KBE can improve on the design development process [41]

they have in common is that they are built using an Object Oriented Programming (OOP) language,
which allows the application to be built modularly [10]. However, the language used is either a difficult
language to learn or unique for that platform; this is one of the drawbacks of KBE. A breakthrough for
KBE applications is brought by ParaPy which uses Python as the programming language which makes
the platform more attractive 1.

Figure 3.5: A genealogy of KBE systems [37]

AKBE platform uses the code that has been programmed to automatically generate geometry, which
is different than generally done with CAD systems, where the geometry is generated by hand. This is
done by the use of engineering rules [10] which helps to reduce the amount of human involvement, one
of the objectives of KBE systems [28]. As KBE applications use rules for design and reasoning, it can
be classified as a rule­based system. The following figure shows how a column is generated using the
KBE platform ParaPy by defining the radius, height, and width in the code.

Another advantage of KBE platforms is that it works with lazy evaluation. By utilising backward
chaining, only the necessary rules are fired to get to the solution that is desired. Most coding languages
1www.parapy.nl

12 3. Theoretical Background

Figure 3.6: An engineering rule which generates a cylindrical geometry when fired, using four inputs

make use of forward chaining, which fires the rules depending on which one is first. For a complex
KBE application this would take a long time and it is inefficient, especially if only one functionality of the
application is wanted. This can be, for example, if a user would like to do a FEM analysis of a model.
Instead of running the whole model and all other functionalities (e.g. CFD), lazy evaluation only fires
the rules necessary for a FEM analysis. Lazy evaluation is illustrated in Figure 3.7.

Figure 3.7: Example of the lazy evaluation inference mechanism [31]

3.2.3. Stakeholders in the Development of a KBE Application
There are several stakeholders in the development of a KBE application, these can be stakeholders
that: help to develop an application, use the application itself, or oversee the development of the ap­
plication. The stakeholders in a KBE development process can be seen in Figure 3.8.

3.2. Introduction to Knowledge Based Engineering 13

Figure 3.8: The steps to get from raw knowledge to a working application, and which stakeholders are performing that step.

The differences between raw knowledge, informal models, formal models, and the application can
be seen in Figure 3.9. In this figure, raw knowledge is shown as plain text which could be a report
given by a domain expert. The knowledge engineer first structures this into several objects that capture
essential details about the application domain. An example is an ICARE form from MOKA as seen in
Figure 3.21, which is discussed in section 3.5. By relating these forms with each other, an informal
model can be created as seen in Figure 3.9. The informal model must still be understandable by a
domain expert, so that the knowledge engineer can review the informal model together with the domain
expert. Afterwards, the informal model is used as a starting point to create a formal model that better
structures knowledge to be used in a KBE application. In this example, this is represented by a UML
Class diagram, which is explained in subsection 3.3.1. This is understandable by developers, who then
are able to develop application code, which is the final step that knowledge takes to be implemented
in the application code.

Figure 3.9: From raw knowledge to application code, the volume of the knowledge decreases and it becomes more processable
by a computer, adapted from MOKA [8]. However, it becomes less understandable by people.

Domain expert is the role of an engineer specialised in a certain domain. These are typically
engineers from an engineering background that are involved in design. Their input is vital for KBE
applications, as they possess the knowledge required to develop a KBE application. Often, the time of
a domain expert is valuable, so it is important that a domain expert wants to participate in the devel­
opment of a KBE application by giving their knowledge. A domain expert does not understand how a
KBE application works as they have no experience in the development of a KBE application.

Knowledge engineer is the role of an engineer that acquires knowledge and structures it so that it
can be used for a KBE application. These are usually engineers with a computer science or engi­
neering background. Often, the knowledge engineer works together with a domain expert to transfer
their knowledge in a consistent and unambiguous format. This is done in two steps. The first is to
process the knowledge informally using forms as seen in Figure 3.21. This form is an ICARE form
from the MOKA methodology which is explained in section 3.5. By filling these forms and relating them

14 3. Theoretical Background

with each other, an informal model can be created. This informal model is understandable by domain
experts, so that it can be reviewed by them.

Figure 3.10: An example of an ICARE form, from [6]. A form has several attributes that have to be filled in to describe the
knowledge being captured. Then, this form can be related to other forms which allow an informal model to be created showing
the relations between all the forms.

Once the informal model is complete, the knowledge engineer starts working on more formal mod­
els. These models are representations of the captured knowledge that is understandable by develop­
ers, to allow them to develop the application code directly. Examples of formal models are presented
in section 3.5.

Developer is the role of an engineer that can read formal representations of knowledge and use that
to develop a KBE application. UML diagrams are powerful tools that can be read by a developer to
help him understand the structure of a KBE application, but also the connection between elements, the
order of execution, and how different objects relate to one another.

Project lead is the role of an engineer that oversees the development of the KBE application. The
project lead is responsible for the correct development of the KBE application and makes sure that it
complies to requirements.

End­user is the engineer that uses the KBE application once it has been developed. These are often
engineers with a technical background that work on engineering designs. The KBE application will
automate (part of) their design tasks.

3.2.4. Roles in a SME environment
Large corporations that have been using KBE for some time have engineers play a single role. From the
field study (discussed in section 2.1), it was found that at one of the leading aerospace companies, there
are large departments for a single role. For the role of domain experts, there are four departments with
each a different ’level’ of domain experts where the highest level has the most experience. However,
Small and Medium­sized Enterprises (SME) are starting to adopt KBE technologies and they do not
have the resources of dedicating whole departments for a single role. In fact, a single engineer is
assigned to several roles. In this case, an engineer could be the one structuring the knowledge and
also developing the KBE application code. This new development is also made possible due to the fact
that programming is now a basis skill taught in most curricula. This means that a modern engineer that

3.3. Modelling Knowledge 15

has a technical background has some IT experience, and will be able to understand the OOP approach
used in KBE applications. What is seen, is that a domain expert is also the developer in these SMEs.

3.3. Modelling Knowledge
Knowledge plays a big role in KBE applications, and KBE has a tight interaction with Knowledge En­
gineering and Knowledge Management as it can be said they intersect, complement, and specialise
each other [25], as can be seen in Figure 3.11.

Figure 3.11: Relative positioning of KBE, Knowledge Engineering and Knowledge Management. Lists of knowledge technologies
involved in the various phases of the development process of a KBE application for engineering design [25]

It shows that being able to manage knowledge is important for KBE applications, and being able
to model it correctly plays a just as important role. Modelling knowledge is an aspect that is tied to
the transparency of applications and also to the traceability of knowledge into application code. This is
because the knowledge first has to be modelled before it can be codified into a KBE application. This
is a part of Knowledge Engineering where knowledge is acquired using ontologies, just as MOKA uses
the MOKA Modelling Language (MML). MML which is an extension of the Unified Modelling Language
(UML) and enables to model formal representations of knowledge.

3.3.1. Unified Modelling Language
One of the well known modelling languages is the Unified Modelling Language (UML) 2. This language
aims at helping stakeholders raise the level of abstraction of their application. This can be done as
UML has thirteen types of diagrams, see Figure 3.12, which can either represent the static application
structure, the general behaviour, or different aspects of interactions.

2www.uml.org

16 3. Theoretical Background

Figure 3.12: Hierarchy of UML diagrams [39]

The power of UML is that it can provide different perspectives of the domain in a human­readable
way, while allowing to store the perspectives in a machine­readable way. It is also possible to automate
the generation of diagrams from the source code. DeWitte [13] has developed a tool where a user can
create a UML Class diagram and check for inconsistencies between the diagram and the application
code. From this UML Class diagram it was also possible to generate code skeleton.

The Class diagram of UML can be used to capture how different classes (or types) of objects relate to
one another. TheClass diagram can be used to provide a clear overview of different types of knowledge,
and how they relate to each other. To fully appreciate the Class diagram, it is important to understand
what each arrow means, Figure 3.13 shows the basic relations of the UML Class diagram.

Figure 3.13: Basic relations of the UML Class diagram

Another important diagram is the Object diagram, which is an instantiation of a Class diagram. The
Class diagram gives a blueprint to generate an Object diagram as seen in Figure 3.14. Both the Class
diagram andObject diagram can be used tomodel knowledge for a KBE application. TheClass diagram
defines the possible type of objects and the relations between these types. The Object diagram is an
instantiation of that Class diagram and explains how knowledge has been modelled.

3.3. Modelling Knowledge 17

Figure 3.14: Example of an Object diagram, which is an instance of a Class diagram

Extending UML
UML is embedded within the four­layer modelling framework, as can be seen in Figure 3.15. UML itself
(the definition of the UML language) can be said to be an instance of the Meta Object Family (MOF),
and is referred to as the meta­model [22]. Knowing the meta­model, it is possible to create instances
which become UML models. The models themselves are a structured representation of user data.
Knowing these four layers, it is possible to add new graphical elements and terms to create domain
specific profiles [39]. There are two mechanisms to expanding UML: lightweight (profile extensions)
and heavyweight (meta­model extensions) [1]. The profile extension makes it easier to introduce new
concepts and allows more to be created using UML for a specific domain. The meta­model extension
can add new meta­classes and meta­constructors to the meta­model through the MOF.

Figure 3.15: Hierarchy of UML models [22]

MOKA has expanded on UML on the profile level, meaning it was a lightweight extension. MOKA
added new classes to be able to capture domain specific Product Model and the Design Process Mod­
els, by adding stereotypes such as ’Parts’, ’Assemblies’ for the Product Model, or ’Compound Activity’
and ’Elementary Activity’ for the Design Process Model. It shows that UML is a versatile language to
be able to create a custom profile suitable for ones needs.

3.3.2. Ontologies
An ontology is an explicit specification of a conceptualization [17]. Ontologies are often used to repre­
sent hierarchy and dependencies within a context space [30], this is done because ontologies support
a set of modelling primitives which define individuals, classes, and their relations. According to Dillon
et al. [14], ontologies form a more complete representation of concepts and relationships than models,
and are state in the art in capturing semantics and formal knowledge [27]. It has also terminology and
conceptualisations that is agreed to by the community and has to be used consistently through­out the
community. The flagship language for ontologies is OWL (Web Ontology Language) [22].

The standardised language OWL is embedded within the four­layer modelling framework, as shown
in Figure 3.16. The figure shows that OWL is built on top of the RDF (Resource Description Framework)
Schema which in turn is built on top of RDF. The relationship between the languages is a usage and a

18 3. Theoretical Background

specialisation relationship, it can be called a ”functional hierarchy” [22] as each language has a certain
function.

Figure 3.16: Four level modelling framework [22]

The RDF Schema can be seen as the meta­model of the RDF, defining the classes and relations that
are available. RDF itself is the collections of triples in the dataset, the two are visualised in Figure 3.17.

Figure 3.17: The RDF is an instance of the RDF­S (RDF Schema) [24]. RDF­S defines the context as the different objects and
the possible relations are set, e.g. that a Cellar can be owned by a Person. RDF uses the RDF­S to determine possible relations,
e.g. that theCellar is ownedBy JudeRasin.

In RDF, triples are used to model the knowledge. It defines a binary relation between two objects
as can be seen in the Figure 3.18 [24]. Each element in the RDF is identified by an URI (Universal
Resource Identifier) which allows to link triples with each other.

3.4. Black Box Perception 19

Figure 3.18: Triples in RDF [24]. Used to define how two objects relate to each other.

Having triples makes it easier than models to understand how knowledge is interlinked, while being
readable by the computer. OWL is built on top of the RDF Schema as it can use its vocabulary and
defined triples to infer connections and relationships that have not been defined manually. This makes
it possible to infer new information automatically based on the relations set manually.

With the combination of standardised languages such as OWL it has become rather easy to re­
use ontologies, there are also frameworks that provide ready­to­use ontological models. Ontologies
are successful due to the formalisation and hierarchisation of the knowledge they provide, however
ontologies are far more difficult and time consuming to design and to implement compared to models
[30].

3.4. Black Box Perception
KBE is a promising technology to automate engineering design; however, there is still no convincing
breakthrough to date apart from major aerospace and automotive companies, as methodologies and
technological considerations are still evolving [41]. Verhagen [41] lists several reasons why companies
are not adopting KBE technologies, and this thesis focuses on one of the main problems concerning
KBE applications: the fact that a KBE application is non­transparent and is perceived as a black box.
This is due to the fact that most applications are represented by context­less data and formulas [40].
The black box perception can thus be described as the feeling of unawareness of what is happening
within the application. As Reddy [33] describes it: ”it [a KBE application] produces some output with
some input, but nobody knows what happens in between”. The main reason for this is that knowledge
is not modelled correctly, or not even modelled at all.

3.4.1. Consequences of the Black Box Perception
The lack of transparency has an effect on the whole company, as illustrated in Figure 3.19 [16]. The
black box perception decreases the trust in the application [16] as there are groups that have limited to
no access inside the KBE application and cannot see for themselves how knowledge is implemented.
By not being able to look inside the KBE application, the participation and engagement of domain
experts is limited [11], making it difficult to convince these experts to adopt KBE technologies.

20 3. Theoretical Background

Figure 3.19: The effect of a non­transparent KBE application [16]

Bermell­Garcia recognises that there is a lack of transparency in KBE applications [2], and mentions
that it is necessary to improve the traceability of knowledge into application code [3]. With traceability, it
is meant the direct connection between captured knowledge and the application code. One of the prob­
lems hindering the traceability of knowledge into application is that there is no simple knowledge mod­
elling technique to capture knowledge and structure it accordingly [25]. Verhagen also mentions that
there is no appropriate methodology or design process which can be seen as a standard, which means
that a KBE application development life­cycle is case based and ad­hoc [41]. This was concluded
based on the fact that it was found that 87% of 37 papers did not adhere to a specific methodology. A
major reason for not adopting KBE methodologies, is that it requires an engineer to be specialised as
a knowledge engineer.

A lack of traceability has more negative effects for KBE applications, one of these is the fact that it
hinders systematic re­use of the knowledge embedded in the KBE application as it is not known where
and how the knowledge is used in the application [40]. By enabling traceability of knowledge into
application code it also solves the problem that users fear that they are not in control [23], as experts
and users can understand themselves how knowledge is implemented.

3.4.2. Effect on different Stakeholders
The domain expert is expected to populate a knowledge base to develop an application; however,
the domain expert is not able to see or understand how knowledge has been implemented in the KBE
application. This means that there is a lack of trust in the KBE application [16]. Moreover, the non­
transparency of a KBE application gives the domain expert a feel of exclusion, causing them to lack
participation in the development of a KBE application which could hinder adoption of KBE technology.
This lack of engagement makes it difficult to capture knowledge from domain experts [11].

Moreover, when a domain expert leaves the company the knowledge contained in the expert is lost
[4]. If the knowledge that the domain expert had was used in a KBE application, it is of little use if there
is a black box perception. This is due to the fact that other domain experts are not able to understand
the knowledge that is structured as application code. It is also hard to find out where the knowledge is
in the vast amount of application source code.

3.5. MOKA 21

The developer is not able to work efficiently as they will not be able to understand the application
code of other developers. This is especially the case in a collaborative environment that is becoming
ever more common. A developer will have difficulties understanding the application code of a colleague
as most knowledge embedded in application code is represented by context­less data and formulas
[40], making it difficult to process. Moreover, the black box perception is often the effect of not mod­
elling knowledge. Without any models, the developer will have difficulties developing the application
code. This makes the developer more prone to making errors.

The project lead has to verify that the developed application complies to the requirements. Due to
the black box perception, the project lead is not able to understand whether knowledge has been im­
plemented correctly or whether the application is computing an output as required. The only way a
project lead could verify if the application is doing what is required is by running the application and
trying out some values. However, the fact that the application came to the correct conclusion does not
mean it did so by deriving the correct facts. It is very hard to validate the application, and that makes it
difficult to convince the customer that it does what it should.

The end­user is the stakeholder that uses the KBE application to automate (part of) the design process.
Due to the black box perception, an end­user might have a lack of trust in the application as they are
not able to understand what the application is doing. For the end­user, the application just ’magically’
computes an output from some inputs.

3.5. MOKA
There are several KBE methodologies attempting to increase the effectiveness of the application de­
velopment process, such as CommonKADS [34], KNOMAD [12], and MOKA [8]. KNOMAD extends
on MOKA to account for life cycle management issues, and focusses on the multi­disciplinary aspect
of KBE applications, thus is not adopted for this research and is not discussed further. CommonKADS
focusses on the organisational aspect of KBS application development and how various agents com­
municate and relate, and its results are not directly used but its influence can be found back in MOKA.
MOKA is one of the well­known KBE methodologies which define a life­cycle consisting of six steps as
seen in Figure 3.20: identify, justify, capture, formalise, package, and activate.

Figure 3.20: The MOKA life­cycle, from [6].

Even though MOKA has defined these six steps, it focuses its efforts on the capture and formalise
steps. This is what makes MOKA an interesting methodology to adopt during this thesis. For the
capture step, MOKA developed the ICARE model (Illustration, Constraint, Activity, Rule, Entity). With
the ICARE model, a knowledge engineer can develop an informal model by producing a set of linked
ICARE forms. Illustration forms are used to describe any case studies or relevant examples, Constraint
forms are used to describe limitations on Entities, Activity forms are used to describe the elements in
the design process, Rule forms are used to regulate Activities and provide the ’know­how’, and Entity
forms are used to capture the objects that describe the product. The ICAREmodel has been developed
to be the first of two steps to structure knowledge for a KBE application. It was meant to be understood
by domain experts, so that they could review the knowledge that has been structured.

22 3. Theoretical Background

Figure 3.21: An example of an Entity form, adapted from [6].

An example of an Entity form can be seen in Figure 3.21. It can be seen that knowledge can be
structured textually to describe its purpose, function, and composition. It can also relate to other ICARE
forms, that help describe where it fits in the design flow, how it is affected by rules, and which constraints
are acting on it.

The knowledge captured with the ICARE model is not detailed enough to be used in a KBE applica­
tion, that is why the structure step is followed by a formalise step. Using the ICARE forms, a knowledge
engineer can develop two formal models: a Product Model (PM) and a Design Process Model (DPM).
These formal models use the informal model which consists of ICARE forms to capture more detail
about the knowledge, they can be seen in Figure 3.22. The product model describes how the engi­
neering product is built up from assemblies and parts, the materials used, the way it must behave, and
the function is fulfils. It is also possible to capture how it is manufactured and its shape and size. The
design process model captures how a design process is taking place, it covers the design flow: the
order of activities, iterations, and paths to take. With both these formal models, the knowledge should
be detailed enough for the next step called package, where a KBE developer codifies knowledge.

While MOKA has developed three models which can capture knowledge in enough detail to be used
in a KBE applications, it still has it drawbacks. One of the drawbacks is that it requires an engineer to be
specialised as a knowledge engineer, something not many companies have available. It also takes too
much time to first model knowledge informally with the ICARE model, and then further modelling it into
the two formal models. As detailed as it is, MOKA does not solve the problem mentioned before of not
being a simple knowledge modelling technique [25]. Verhagen [41] further mentions that MOKA does
not focus its methodology on the end user. This means that the end­user does not have a clear benefit
of using KBE applications, which decreases acceptance, use, and maintenance of a KBE application.

What seems to further lack when looking at MOKA, is that there is no connection between the
models and the application code. In other words, there is no traceability of knowledge into application
code. As mentioned before, this is an aspect that must be tackled to improve the transparency of KBE
application [3].

3.5. MOKA 23

Figure 3.22: Left: Structure view of the Product Model explaining the hierarchy between objects found in the KBE application
domain. Right: The Design Process Model, which explains the steps in the application design process. from [6].

4
Methodology

This chapter discusses the steps taken to answer the research question and to meet the goals. First,
the Traceability Model (TM) was developed, discussed in section 4.1. Then, the Knowledge Portal
(KP) was developed which provided a platform where domain experts can use the TM to structure
knowledge, as well as more functionalities as discussed in section 4.2. Afterwards, the reasoning for
the experiments are discussed in section 4.3.

4.1. The Traceability Model
The TM is an ontology that provides amiddle ground betweenMOKA’s ICAREmodel and the two formal
models (Product Model & Design Process Model), as seen in Figure 4.1. It aims to be simple enough
to enable the structure of knowledge without the necessity of knowledge engineers, while being formal
enough to be processed by a computer to automate part of creating models.

Figure 4.1: The top shows howMOKA defined how to get from raw knowledge to a working KBE application. It requires knowledge
to be structured twice: the first with the ICARE model which can be understood by experts, while the second is used to structure
knowledge to be developed in a KBE application. The bottom shows that the TM lies in between the two steps defined by MOKA.
It increase the formality of the ICARE model whilst still being processable by a computer.

When looking at MOKA, the ICARE model does not structure knowledge detailed enough to allow
a connection between knowledge and application code, while the formal models are too detailed and
require a specialist. Therefore it has been chosen to increase the formality and expressiveness of the
ICARE model by developing the TM. MOKA has defined two steps to structure knowledge as it was
assumed that domain experts do not understand how a KBE application should be structured at all. In
a SME environment, where engineers fulfil multiple roles, it can be assumed that domain experts do
understand the Object Oriented Programming (OOP) approach used for KBE applications.

The TM defines different classes of Knowledge Forms (KF) to be able to capture different aspects
of knowledge required for a KBE application: e.g. product hierarchy, processes. An example of a KF

25

26 4. Methodology

can be seen inFigure 4.2. It adopts the ICARE model from MOKA, as the ICARE model has already
classified knowledge into five useful classes: Illustrations, Constraints, Activities, Rules, and Entities.
However, the ICARE model has two main deficiencies: it does not capture knowledge detailed enough,
and it does not explain how knowledge is related to application code. This was chosen as MOKA has
decided to keep the ICARE model informal as it would allow domain experts to understand what has
been captured. However, there is a new generation of engineers who can develop some application
code and are most likely to fulfil the role of a domain expert as well as a developer. Therefore, the TM
added a new class of knowledge called Property to the ICAREmodel and requires the domain expert to
capture knowledge about object properties, which is typical for an OO modelling approach. Moreover,
the TM revises how the other classes are used to model knowledge and adds the necessary formality.

Figure 4.2: An example of a KF, which helps guide a domain expert to capture what is essential for a given class of KF. In this
example, this KF is a Property, which is the new class added to what the ICARE model proposed. In the KF, it is also possible
to set relations with other KFs, such as which Entity this KF belongs to, or whether there is a Constraint acting on this KF.

Another issue is that there might be a lack of motivation to model knowledge, as the engineer
who develops the KBE application is also the one that possesses the knowledge. Therefore, it might
seem easier to skip the knowledge modelling and directly implement the knowledge in application
code. However, modelling knowledge has more benefits than merely helping the developer develop
application code:

• Knowledge that is modelled is not lost when an employee leaves

• Knowledge is more accessible and easier to re­use

• Knowledge becomes a shared resource among the employees

• It enables the ability to directly connect the structured knowledge to application code

• It improves the transparency of the application

4.2. The Knowledge Portal 27

And as discussed previously, improving the transparency of the application has a positive effect for
all the stakeholders. Furthermore, the TM enables the KP to generate representations of knowledge
automatically. These representations focus on a different perspective of the structured knowledge to
help understand the knowledge better: e.g. an activity diagram to help understand the design process
steps of the application. By having these representations generated automatically, an engineer does
not spend time creating them manually. This should decrease the feeling that the extra step required
is too time­consuming.

The TM provides the basis to remove the necessity of specialised knowledge engineers and pro­
vides domain experts with a knowledge modelling technique. It has been developed with three goals
in mind:

• Increase the formality of the ICARE model

• Define how knowledge relates to KBE application code

• Remain simple enough such that specialised knowledge engineers are not required

4.2. The Knowledge Portal
The KP provides the stakeholders with a platform to perform tasks, and it solves the problem experi­
enced that there is a lack of a platform. It is possible to do the following with the KP:

• Capture and structure knowledge by creating Knowledge Forms (KFs)

• Relate KFs with each other

• Automatically generate models based on the created KFs

• Parse newly developed KBE application code automatically into separate code bits, called Code
Objects (CO)

• Connect KFs to COs

The KP is developed to help the stakeholders during the development of a KBE application. Each
role uses the KP differently, and they have different advantages by using the KP. It is important to note
that an engineer may have several of these roles, meaning that they may be assisted in several ways.
During the development of the KP, it was assumed that an engineer is both a domain experts as well
as a developer. How each role is assisted is described shortly.

Domain Experts are able to use the KP to structure knowledge into KFs. The KP makes use of the TM
to help domain experts perform this task. The KP saves all the KFs on the database and it allows the
domain expert to easily browse through KFs. This ensures that knowledge is not lost any more, as it is
saved in the database. This helps to counter the fact that knowledge is lost when an employee leaves
the company. Knowledge is also more accessible, and it is possible to find out where the knowledge
comes from, who wrote the KF, and how actual the knowledge is.

Moreover, the expert can find out how the knowledge has been implemented in a KBE application.
This makes it possible for an expert to understand how his knowledge is being put to use, and whether
the application is doing so correctly. This should help increase the trust in the KBE application and
increase the participation of domain experts in the KBE application development process.

Developers that are developing a KBE application can browse all the KFs. Moreover, as the KP gen­
erates knowledge representations to help understand the vast amount of KFs, the developer is better
prepared to develop a new KBE application as they would have a better understanding of the domain.

A developer might also join a project that is already in progress, or as is seen often an application
development process is collaborative. This means that that the developers will have to understand the
code developed by their colleagues. The KP helps understand how application code from colleagues
was developed as the KP helps users find out what KFs were implemented into which parts of the code.
Especially the Activity Diagram should give the developer an idea of how the application works and how
it is implemented in the application code. This better prepares the developer to join the development
team, and helps developers to collaborate.

28 4. Methodology

Another scenario is when the developer is re­using code for a new project. Now it is possible to un­
derstand application code from a previous project better, as it is better documented. Moreover, knowing
that certain KFs have been codified already, the developer can directly see how those KFs translate to
application code, and it should help to better prepare the developer to develop the new application.

Project Leads has a better overview of the developed application. The project lead verifies whether
the application complies to the requirements. Besides being able to run the application to see if it is
working, the project lead can now use the KP to figure out what knowledge has been implemented
where and whether it has been implemented correctly.

End Users are the customers who use the developed KBE application to automate (part of) their design
process. With the KP, the end user is able to understand how the application is generating an output.
This increases the trust in the KBE application and helps customers adopt KBE technology. The end
user uses the various knowledge representations to get an understanding of what the KBE application
is doing.

4.3. The Experiments
Experiments need to be performed to test whether the stakeholders do in fact see a benefit to using the
KP. Due to time constraints, a test could be performed for two of the four stakeholders. It was chosen
to test developers and project leads during the development of a KBE application.

4.3.1. Developer Experiment
The developer experiment tested whether a developer is better prepared to join a collaborative devel­
opment process, as the participants were tested whether they could continue on the development of a
KBE application which is missing a final module. This is a common scenario when developing a KBE
application, hence this case was chosen to be tested. This experiment tested whether the KP helps
a developer understand the already developed application code of colleagues better, and whether it
helped a developer better prepare for the development of the KBE application. The following question
should be answered by the experiment:

”To what extent does the KP better prepare developers to work in a collaborative development process
by helping them understand what has been implemented in application code already, and how?”

4.3.2. Project Lead Experiment
The project lead experiment tested whether a project lead is better able to find where knowledge has
been implemented in application code, and whether it has been implemented correctly. If it was not
implemented correctly, the participant had to mention what needs to be done to ensure that the appli­
cation code is fixed correctly. This experiment directly tested whether the traceability of knowledge into
application code has been established, and whether the transparency of a KBE application has been
improved. The following question should be answered by the experiment:

”To what extent does the KP help a project lead verify whether the KBE application complies to
requirements, by having an improved transparency due to the fact that knowledge has a direct

connection to the KBE application code?”

5
The Traceability Model

The Traceability Model (TM) enables the traceability of knowledge into application code, as it defines
how different types of Knowledge Forms (KF) can connect to different types of Code Objects (CO).
The TM consists of two parts: the ParaPy Ontology and the Knowledge Ontology. The ParaPy Ontol­
ogy defines different types of COs, such that the Knowledge Portal (KP) is able to parse them out of
application code. Figure 5.1 shows how application code can be parsed into COs. It is important to
differentiate between the types of COs as they all have a distinct purpose in a KBE application. Fur­
thermore, the KP allows the domain experts to create KFs and it also allows the developers to connect
KFs to COs. How the KP helps the stakeholders is further explained in chapter 6.

Figure 5.1: From KBE application code, different COs can be retrieved.

The Knowledge Ontology defines types of KFs to assist the domain expert to structure knowledge
correctly such that it can be used to develop a KBE application. The TM defines connections between
these two ontologies such that it becomes clear how classes of KFs connect to types of COs. This
allows a developer to use the KP to make direct connections between the created KFs and the parsed
COs. Once KFs and COs are connected, the KP can generate an overview of how the KFs are imple­
mented in application code, as seen in Figure 5.2. How the stakeholders can use the KP to perform
their tasks and how they can use it to their benefit is explained in chapter 6.

29

30 5. The Traceability Model

Figure 5.2: Once a KF is connected to a CO, the KP is able to show how KFs are implemented in the KBE application code.

5.1. The ParaPy Ontology
Figure 5.3 shows the ParaPy Ontology. A ParaPy application consists of Code Objects (CO), bits of
code with distinct purposes. The highest level CO is the Application itself. An Application comprises
several Packages and / or Modules, where a Package is a collection of Modules. These COs explain
how a KBE application is built up. A Module comprises Classes, these are ParaPy objects (ParaPy
objects are referred in teletypefont). A Class comprises Slots. A Slot in the ParaPy language
is a special type of slot that can be found in Python that enables the KBE technology: e.g. lazy eval­
uation. A Slot can specialise into an Input, an Attribute, or a Part. These give the slot extra
functionalities.

Figure 5.3: The ParaPy Ontology

Attributes have the default setting of having their value derived and they are not settable, this means
that it cannot be overwritten manually by a user. This type of CO is mainly used to capture engineering
rules, and it depends on other COs.

5.2. The Knowledge Ontology 31

Inputs have a unique mechanism to retrieve its value as it might come from a parent object. They
are also able to capture a default value, which can be overwritten by either a parent object or manually
by a user.

Parts returns an instance of a Class, and they act as a container for child rules, which are used to
overwrite Inputs from the Class being instantiated. Child rules are used to transform a Class into
a special version of itself when being instantiated by a Part. This allows for a generic Class to be
re­used often in different contexts. This is depicted in Figure 5.4. In this figure, it can be seen that a
generic Class called ’Lifting Surface’ is specialised three times. When one relation is selected (the
blue line between the Part ’horizontal tail’ and the Class ’Lifting Surface’) it becomes clear that there
is a child rule specialising the Lifting Surface: the span is defined by the parent Class Empennage. In
the ParaPy language this is done by adding a keyword argument to the Part, but this report does not
dive too deep into how to develop an application with ParaPy.

In a complex KBE application, there are more child rules than shown in this simple case. Moreover,
the child rule might be more complex than a simple equality, e.g. an equation. However, this figure
shows the advantage as three Parts (’wing’, ’horizontal tail’, ’vertical tail’) all instantiate a single Class
’Lifting Surface’ and put it into different contexts with the help of these child rules.

Figure 5.4: How different Classes relate to one another. The Classes are depicted as the grey boxes, they have Inputs and
Parts; the Attributes have been left out in this example. The Parts instantiates a Class, this enables the parent­child
relation. There are three Parts that all instantiate the same Class ’Lifting Surface’. To visualise the effect of child rules, one
relation has been selected (blue line), and the child rule attached to that relation is shown in the dotted green line. Each relation
has its own set of child rules to specialise the generic Class.

5.2. The Knowledge Ontology
The Knowledge Ontology defines different classes of Knowledge Forms (KF). The idea is that each
class of KF enables a domain expert to capture a different perspective of knowledge: e.g. the de­
sign process, the hierarchy of the product, the engineers rules. The Knowledge Ontology builds upon
the MOKA ICARE (Illustration Constraint Activity Rule Entity) model, which has defined five different
classes of KF as can be seen in Figure 5.5. This figure also shows the superclass Knowledge Form
which is inherited by all other classes.

32 5. The Traceability Model

Figure 5.5: MOKA’s ICARE model defines 5 classes of KFs, each is a specialisation of the superclass Knowledge Form.

The Knowledge Ontology revises the different classes defined by the ICAREmodel and the relations
between them. The aim of the Knowledge Ontology is to increase the formality of the ICARE model
such that a KBE application can directly be codified from it. Currently, the ICARE model is one of
two steps to formalise knowledge correctly for use in KBE applications. How the Knowledge Ontology
relates to the ICARE model and the formal models of MOKA was shown in Figure 4.1.

The next few sections discuss three things: how MOKA defines each class, the differences made to
it for the Knowledge Ontology, and then a practical example of how it can be used to model knowledge
in a KBE application. For clarity, a KF is referred to capitalised and in italic: e.g. Entity.

5.2.1. Entity
MOKA
MOKA explains that an Entity is used to describe the ’product objects’. With the Entity it is possible
to describe a hierarchy of objects, as can be seen in Figure 5.6. The Entity describes the object in a
generic fashion, and it is possible to capture the relation with another Entity.

Figure 5.6: An example of a hierarchy of product objects.

With the Entity, ICARE allows users to capture the properties of an Entity and other related infor­

5.2. The Knowledge Ontology 33

mation in a textual description field.

Knowledge Ontology
In the Knowledge Ontology, the Entity is still used to describe product objects. However, the properties
have been taken out of the Entity and given its own class: Property. The reason for this is the fact
that the ICARE model did not allow a detailed enough capture of the Properties of an Entity. One of
the reasons why MOKA did not add this to the ICARE model, is because domain experts usually did
not have any application coding experience. However, as mentioned throughout the report, engineers
today do have application coding experience. Moreover, in SMEs, a single engineer has multiple roles
e.g. developer and domain expert. It is therefore assumed that a domain expert structuring knowledge
with the Knowledge Ontology understands how to structure Properties detailed enough. That means
that it is possible to capture the structure of a KBE application in more detail with the Knowledge
Ontology than compared to the ICARE model.

An Entity can now comprise two types of Property: an Input and an Output as can be seen in
Figure 5.7. An Input is a type of Property that may have a default value, and it can have its value
overwritten. An Output has its value determined by an expression, which is evaluated during run­time
of the KBE application. An expression can be complex or literal. Complex refers to the fact that it is an
expression that depend on other Properties. A literal expression refers to the fact that the expression
is of a single data type (e.g. numeric).

Figure 5.7: An Entity comprises Inputs and Outputs. An expression can be complex or literal. Complex refers to the fact that it is
an expression that depend on other Properties. The expression of a Child is read­only, meaning it cannot be modified manually.
The Child returns one­to­many Entities, allowing to capture a collection. Finally, the back­slash means that the attribute is
computed automatically from other information by using values of other attributes.

Furthermore, the relation between two different Entities is more complex then what can be captured
by the ICARE model. When an Entity becomes a child of another Entity, it does not remain the same
but becomes a specialised version of itself. This is because a parent Entity can overwrite Properties
of the child Entity, by using child rules. To capture this complex relation between two Entities, there
are two more types of Properties: Child and Child Input. A Child is a special type of Output that always
returns another Entity, this enables the relation between two Entities. This is different than the ICARE
model where it was possible to relate Entities directly. The reason to add a layer in between Entities
is thus to enable the capture of child rules. This is possible as a Child comprises Child Inputs. Child
Inputs overwrite Inputs from a child Entity, specialising the child Entity to put it into context of the parent
Entity. This means that the Child acts as a container to gather all the Child Inputs containing the child
rules for the child Entity.

By having the Property separated from the Entity it is possible to define clearly how different types of
Properties are connected to different types of CodeObjects (COs). Figure 5.8 shows how the discussed
KFs connect to types of COs. An Entity always connect to a Class, which can be explained as they

34 5. The Traceability Model

have a similar role: Entities are a collection of Properties, and a Class is a collection of Slots. An
Output connects to an Attribute, as both have their value evaluated during run­time. An Input
connects to an Input, as both can have their values overwritten and may have a default value. A
Child connects to a Part, as they both return another Class / Entity and they both fulfil the function
of being a container for child rules. The Child Input connects indirectly twice: onto the Input that is
overwritten, and onto the Part that is overwriting the Input.

Figure 5.8: Overview of how Entities and Properties relate to types of COs. The green line represents the relation. The dotted
green line is a relation that can be inferred, and represents an indirect relation.

By defining a direct connection between the different types of Properties and COs, it is no longer
necessary to directly connect other types of KFs to COs as these relations can be inferred. This is
because each other type of KF is (in)directly related to a Property.

Practical Example
An example instance of an Entity and the different type of Properties can be seen in Figure 5.9. In the
right half of this figure, the application code counterpart of the model can be found to help understand
what knowledge the model is capturing. For example, Properties cannot explain what the expression
is when it is complex, this is explained by Activities and Rules; therefore the Attribute returns a
blank as it cannot be captured with just these types of KFs. It also shows to which pieces of code the
different KFs are related to. With the currently discussed forms, it is possible to capture the fact that
an Entity ’Aircraft’ comprises multiple Properties. The two Inputs can capture the fact that there are
default values. It is known that the expression of the Output is complex; however, it is not possible to
capture the exact expression with a Property. This is possible with other forms as will become clear
later on.

Finally, the Entity ’Aircraft’ comprises a Child ’my_wing’ which returns an Entity ’Lifting Surface’.
The Child ’my_wing’ enables the part­assembly relation between the Aircraft and the Lifting Surface.
As explained by the name of the Child ’my_wing’, the Entity ’Lifting Surface’ is returned by it and the
corresponding Child Input ’lift’ will specialise it into a wing. This is because Child Inputs capture child
rules that overwrite Inputs of another Entity, as explained in section 5.1. Therefore, the Child ’my_wing’
comprises a Child Input ’lift’ which overwrites the Input ’lift’ of the Entity ’Lifting Surface’.

5.2. The Knowledge Ontology 35

Figure 5.9: An Entity comprises two Inputs, an Outputs, and a Child. The Child ’my_wing’ returns the Entity ’Lifting Surface’.
The Child ’my_wing’ comprises a Child Input that overwrites an Input. The code counterpart shows what can be captured with
these KFs. It is not possible to capture what the expression is of the ’wing_lift’ as this knowledge is captured in Activities and
Rules, which will be explained later on.

As can be seen from the example, the Entity and the different types of Properties allow to capture
hierarchy just as in the ICAREmodel. It also allows amore detailed capture of the knowledge behind the
part­assembly relation between Entities. Moreover, it allows the capture of child rules which specialise
an Entity when being a child Entity.

5.2.2. Constraint
MOKA
MOKA explains that a Constraint can be used to describe limitations on the product, such as: the
number of struts must be 2, 3, 4; pay load must lie between limits; or there must be 1 or 2 nose gear
struts. Therefore, it allows a Constraint to be related to an Entity. The attribute ’objective’ is used to
describe the Constraint that is affecting the Entity.

Knowledge Ontology
The problem with the Constraint from the ICARE model is that it does not relate to the Property that is
being constrained but only to the Entity. This makes it difficult for a computer to process the knowledge
and find out which Property is actually being constrained. Therefore, a change has been made: the
Constraint now constrains a Property directly as seen in Figure 5.10. There is also a new attribute
called ’consequence’ which can be used to explain what happen when the Constraint is violated, e.g.
a lethal error or a warning.

Figure 5.10: A Constraint now directly constrains a Property.

Practical Example
Two examples of a Constraint can be seen in Figure 5.11. The first one constrains the possible value
of an Input, making sure that the number of blades is uneven. The second one constrains two values,
making sure that the root chord is always larger that the tip chord.

36 5. The Traceability Model

Figure 5.11: The first Constraint restricts the possible outcome to an uneven number. The second Constraint ensures that a
Property cannot exceed the value of another Property.

5.2.3. Activity
MOKA
In the ICARE model, an Activity is used to describe a step in the design process. It can be used to
explain what needs to be done to come to an output, and it is possible to model several layers of
Activities. Figure 5.12 shows how different layers of the design steps can be captured with Activities.
An Activity relates to an Entity, this is the Entity that is involved in the design step.

Figure 5.12: The ICARE models explains that an Activity is used to describe a step in the design process.

Knowledge Ontology
The problem of how the ICARE model describes an Activity is mainly that it is unclear how an Entity is
affected. This is because the ICARE model only allows an Activity to relate to an Entity and not directly
with the properties of an Entity. As the Knowledge Ontology has the new Property class, the Activity
can now directly relate to a Property.

There are two relations possible between an Activity and a Property: Properties can be provided
to the Activity, and the Activity can set the expression of a Property. This means that an Activity can
capture knowledge about what Properties are used in the expression of another Property. Exactly how

5.2. The Knowledge Ontology 37

these Properties are used in the expression cannot be captured in an Activity but in aRule, as explained
later in subsection 5.2.4

To help a domain expert to structure knowledge correctly, there are two types of Activities: Assign­
ment and Child Definition. The Assignment can be seen in Figure 5.13. It can have Inputs andOutputs
provided, and it sets the expression of an Output. In the special case that an Input has an expression
for its default value, the Assignment can also set its expression.

Figure 5.13: An Assignment has Inputs and Outputs provided, and can set the expression of an Input or an Output.

The Child Definition is used to set the expression of a Child. In other words, it is used to explain
how a child Entity is brought into context of a parent Entity. As explained in subsection 5.2.1, there are
Child Inputs which overwrite the Inputs of the child Entity. Just as the Child is a container for all the
Child Inputs, the Child Definition is a container for all the Assignments that set the value of the Child
Inputs as shown in Figure 5.14. As can be seen, when a Child Definition comprises an Assignment,
that Assignment can only set the value of a Child Input instead of either an Input or an Output.

Figure 5.14: A Child Definition sets the expression of a Child. It comprises Assignments, in which case the Assignments set the
expression of Child Inputs.

Practical Example
To help understand how an Assignment and a Child Definition can be used, two examples are pre­
sented. These examples continue on the example shown in Figure 5.2.1 for the Entity and Property.

Figure 5.15 shows the Entity ’Aircraft’ which comprises the same Properties as before: two Inputs,
one Output, and a Child. The Output ’wing_lift’ has a complex expression which is set by an Assign­
ment, as seen in the figure. To do this, two Inputs are provided to the Assignment. Now it is possible to
capture the fact that theOutput ’wing_lift’ is a function of the Input ’safety_factor’ and the Input ’weight’.
This is shown in the code as 𝑓(𝑤𝑒𝑖𝑔ℎ𝑡, 𝑠𝑎𝑓𝑒𝑡𝑦_𝑓𝑎𝑐𝑡𝑜𝑟). However, it is still not possible to capture ex­
actly how these two Inputs are used to form an expression. This knowledge is captured later on in a
Rule, as explained later in subsection 5.2.4. What can be captured by the Assignment is the order of
execution (in this case it is the first), and the fact that it is using two Inputs to set the value of a single
Output.

38 5. The Traceability Model

Figure 5.15: An Entity ’Wing’ comprises two Inputs and one Output. The two Inputs are provided to the Activity, which knows
that it can use them to set the expression of the Output. It can now be said that the ’wing_lift’ is a function of the ’safety_factor’
and the ’weight’.

Figure 5.16 shows the same Entity ’Aircraft’. The Child ’my_wing’ returns the Entity ’Lifting Surface’
and it comprises the Child Input ’lift’ which overwrites the Input ’lift’ from the Entity ’Lifting Surface’. For
every Child Input, there must be an Assignment that sets its expression. This Assignment is part of the
Child Definition, as can be seen in the figure where a Child Definition comprises an Assignment. The
Child Definition can be seen as a container that collects all the Assignments that set the expression of
the Child Inputs, similarly to how a Child is a container for all the Child Inputs. In this case, there is
only one Child Input. What can be noted is that in the application code, the expression is not a function
of several properties; but it is a direct assignment. This is a possibility of an Assignment when setting
the expression of a Child Input. The Child Definition has now captured how a child Entity is defined
to be the child of the parent Entity, and it can also capture the order of the design steps like any other
Activity. In this case, the Child Definition ’Generate wing’ succeeds the Assignment ’Calculate lift’.

5.2. The Knowledge Ontology 39

Figure 5.16: An Entity ’Aircraft’ comprises a Child ’my_wing’ which comprises a Child Input ’lift’ which overwrites the value of
the Input ’lift’ of the Entity ’Lifting Surface’. A Child Definition ’Generate wing’ comprises an Assignment ’Assign lift’ which sets
the expression of the Child Input ’lift’ which is a composition of the Child ’my_wing’.

As can be seen from the examples, there is one aspect of knowledge that still cannot be captured
with the other classes of KFs: how Properties are used in the expression of another Property. This
aspect can be captured in a Rule, as is explained in the next section.

5.2.4. Rule
MOKA
According to the ICARE model, a Rule explains how to move from an input to an output: it provides
the know­how of an Activity. Rules and Activities often share the same name when modelling with the
ICARE model, as they describe the same process step. MOKA acknowledges that there is an overlap
between Activities and Rules. However, the difference is that the Activity describes the ’WHAT’ as
to position it in the overall design process, identify objectives, and link it to Entities; while the Rules
describe the ’HOW’.

40 5. The Traceability Model

Knowledge Ontology
A Rule governs Activities. As in MOKA, it provides the know­how and explains how to move from
an input to an output. However, in the Knowledge Ontology the Rule is captured a bit more formally.
Moreover, there is a clear distinction set between Activities and Rules, as an ontology should remove
ambiguities. In the Knowledge Ontologies, Activities capture the position in the overall design process
and which Properties are provided and set. Rules explain how the provided Properties are used to set
the expression of an output Property.

The Rule has two attributes: inputs and outputs. They help understand how Properties given as
an input are used to define the expression of the output. These can be seen in Figure 5.17. The Rule
has a third attribute ’body’ which explains how an output is defined using the inputs. The Rule is in a
generic context while the Activity it is governing is in a specific context. This means that the Rule can
capture engineering knowledge regardless of the Activities that it governs.

Figure 5.17: A Rule governs an Activity. A Rule has inputs and outputs, these are used in the body to form an expression. When
an Activity is being created, the domain expert connects Properties provided to the inputs of the Rule. The domain expert also
connects the output of the Rule to the Property being set. This allows the KP to infer that the expression of the output Property
is the expression given by the Rule.

The domain expert needs to define variables in the inputs and outputs which are used in the body.
A variable contains a name, a reference that is used in the body, and a data type. Once variables are
defined as inputs and outputs, and the body is finished, the Rule is ready to govern an Activity. This is
done by having the Activity connect the Properties provided to the correct variables in the inputs of the
Rule. The output of the Rule is connected to the Property that is being set by the Activity. From here
on, the KP can infer that the expression of the output Property is equal to the body of the Rule.

Practical Example
The example for the Rule also continues upon the previous examples of the other classes of KFs. The
last piece of knowledge missing from those example was how Properties are used in the expression
of another Property. As can be seen in Figure 5.18, there is now a Rule governing the Assignment
’Calculate lift’. The Rule has two inputs: weight and safety_factor, and a single out lift. The body of the
Rule explains that it is a simple equation that multiplies the two inputs.

When creating the Activity, it is possible to connect the Properties to the correct inputs of the Rule.
The same applies for the output of the Rule. By doing this, it is possible to infer what the expression
is of the output Property. As can be seen in the figure, all knowledge about this piece of application
code was able to be captured. No Rule was necessary for the Assignment of the Child Input, as it was
directly assigning a Property to the Child Input (𝑙𝑖𝑓𝑡 = 𝑤𝑖𝑛𝑔_𝑙𝑖𝑓𝑡).

5.3. Connecting KFs to COs 41

Figure 5.18: The Rule ’Minimum Lift Equation’ is governing the Assignment ’Calculate lift’. It has two inputs, weight and
safety_factor, and a single out lift. The body explains what the expression is. The Assignment connects the two Properties
provided to the inputs, and also connect the Property being set to the output of the Rule. Now it is clear how the Property
’wing_lift’ is going to be evaluated.

5.3. Connecting KFs to COs
In subsection 5.2.1 it was shortly discussed how Entities and the different types of Properties are con­
nected to different types of COs. From these connections, all the other types of KFs can connect to
COs indirectly. This can be inferred by the KP automatically, so that the domain expert does not need
to define each relation separately. The novelty is in the fact that the different types of Properties serve
different purposes which are similar to those found in the types of COs found in ParaPy application
code. Figure 5.19 shows how all the types of KFs connect to code (in)directly.

There are a few notable connections. It can be seen that a Constraint can connect to any type of
Slot indirectly, as it can affect any type of Property. Also notable is that a Rule is always connected to
an Activity, and based on what type of Property that Activity is connected to determines how it connects

42 5. The Traceability Model

to application code. Furthermore, a Child Input connects indirectly to a Part and an Input. Finally,
only an Assignment that is in a composition relation with a Child Definition can connect to a Child Input.

Figure 5.19: An overview of the (in)direct connections between KF classes and COs.

6
The Knowledge Portal

The Knowledge Portal (KP) has been developed to provide a software platform that assists the stake­
holders to perform their tasks. There are three scenarios that are described for the type of KBE ap­
plication development processes, the steps taken for each scenario is shown in Figure 6.1. The three
scenarios are described as follows:

1. From Scratch: A new KBE application is being developed while there is no knowledge structured
yet and there is no application code to re­use. This scenario is the only scenario to incorporate
all the steps to develop a KBE application.

2. Application Re­use: There is already a KBE application, it will be parsed by the KP into COs.
However, knowledge has not been modelled yet. Therefore, knowledge will be structured by
creating KFs and connecting them to the already existing COs.

3. KnowledgeRe­use: Knowledge has already been structured for another application, hence there
are already KFs. However, the new application still has to be developed. Once developed, it will
be parsed by the KP into COs, and then the developers can connect the KFs to the corresponding
COs.

Figure 6.1: The steps in a KBE application development process with the three different scenarios described, as defined for this
methodology. After KFs are connected to COs, the process can repeat itself as the development of a KBE application is iterative.
Once all iterations are complete, a project lead can verify that the application fulfils all requirements and deliver it to the customer
so that the end­user can use the application.

43

44 6. The Knowledge Portal

These three scenarios are all extremes, as it is possible that a single project follows all three sce­
narios, as some parts of application code may be re­used, some knowledge that has been captured
already might be re­used, and some parts might need to be developed from scratch. However, the
scenarios should help the reader have a clear picture of how the KP can be used.

As can be seen in Figure 6.1 there are seven steps in total, from which four are performed by the
stakeholders: structure knowledge into KFs, codify knowledge that can be parsed into COs, connect
KFs to COs, and verifying the application to deliver it to the customer. Once delivered, the end­user
can make use of the application. These steps can all be performed using the KP. As can also be seen
in the figure, the KP ensures that KFs and relations are saved to the database.

The KP uses the Traceability Model to restrict possible relations between different KF classes, this
is how domain experts are guided to structure knowledge correctly. The TM can be imported into the
KP as a JSON file, an open­standard file format, which allows an updated model to be swapped in
easily when changes are made, or to use the model in various applications. To help understand the
KFs and how they relate to each other and COs, there are several knowledge perspectives that are
generated automatically by the KP. These knowledge perspectives are explained in section 6.2. The
user interface of the KP can be seen in Figure 6.2.

Figure 6.2: User interface of the Knowledge Portal. There are three main windows: one to browse KFs and COs and to load
them into the different windows, one to view the data and relations a KF or CO has in different perspectives, and one to view the
Activity Diagram. The Activity Diagram helps users understand where in the design steps they are, in this example they are in
the step to generate a wing which consists of 7 sub­steps.

There are three main windows in the user interface of the KP: the browser, the viewer, and the
activity diagram. The browser loads all the KFs into a KF tree and also all the COs that have been
parsed into a CO tree. The user can load a KF into the various knowledge perspectives from here. It
is also possible to navigate through the code using the CO tree. The other two windows contain the
four different knowledge perspectives. The bottom window contains the knowledge perspective which
is thought to be the most important for all users. Currently this is the Activity Diagram as that gives
the user an idea where in the application design process they currently are. This can be changed to
comply to the wishes of the customer.

This chapter discusses how a user will be using the KP, and what can be done with it. How the KP
is developed, and how it generates knowledge perspectives automatically, can be read in Appendix B.

6.1. Structuring Knowledge
A domain expert can structure knowledge by creating new Knowledge Forms (KF), Figure 6.3 step 1.
This opens up a window asking for the class of the new KF, step 2 in the figure. Once a class has
been selected, the attributes of that class are listed. The KP does this by looking up the attributes that

6.2. Knowledge Perspectives 45

correspond to the chosen class in the TM. The domain expert can now fill in every attribute that is listed.
It is possible that the type has to be chosen as well, in the figure that would correspond to the Input, a
type of Property. Finally, the domain expert can capture how the new KF relates to other KFs. This can
be done by clicking on the + sign, step 3 in the figure. When this button is clicked, the KP scans the
TM and only allows the domain expert to relate the KF with another viable KF. For example, a Rule is
only allowed to relate to an Activity. This is done by disabling the other types of KFs ensuring no wrong
relation can be made.

Figure 6.3: Creating a new KF can be done in three steps. First a new KF should be opened. Secondly, the domain expert can
choose the KF class and fill in the information required for that class of KF. Finally, the domain expert can relate the created KF
with other KFs by clicking on the ’+’.

6.2. Knowledge Perspectives
When the domain expert has populated the KP with KFs, some knowledge perspectives can be gen­
erated. Knowledge perspectives are different representations of the capture knowledge which each
give a different perspective. This is done by the KP automatically, using the relations that were defined
when creating KFs. Moreover, the KP infers relations that were not set manually by the domain expert:
e.g. a Rule can explain the expression of Property directly without the Activity in between. Having
to restrict the domain expert to only allow a Rule to relate to an Activity is useful to ensure that the
domain expert is guided to structure knowledge correclty. However, in some cases it is better to show
the directly how a Rule relates to a Property without the steps in between.

The developed knowledge perspectives all serve a different purpose and are targeted to a specific
stakeholder: e.g. the Traceability Viewer is designed for a project lead to understand whether knowl­
edge is correctly implemented in application code. However, knowledge perspectives are accessible
and usable for every stakeholder! Using the relations defined in the TM, it is possible to develop new
knowledge perspectives to comply to the wishes of the customer. The knowledge perspectives can be
accessed via the KF tree, as seen in Figure 6.4. When left­clicking a KF, the KP loads the chosen KF
in the Data Viewer. Right­clicking a KF opens up a context­menu, giving the user the choice to load
the other knowledge perspectives.

46 6. The Knowledge Portal

Figure 6.4: An overview of the KF tree which contains all the KFs that were created. One may note that the Properties are not
seen in the KF tree, this is because all the Properties are grouped under the correct Entity. By right­clicking a KF a context­menu
opens up to allow the user to load the chosen KF in one of the knowledge perspectives. By left­clicking a KF, the chosen KF
opens up in the Data Viewer.

The next sections discusses each developed knowledge perspective and explains a few aspects:the
navigability, the targeted stakeholders, and the benefit of using it. This should help understand how
the KP can be used in a way that helps the stakeholders to develop a KBE application.

6.2.1. Data Viewer
The Data Viewer is the only knowledge perspective that can be accessed by left clicking on a KF. This
is the default knowledge perspective and shows what has been filled in by a domain expert: a user can
view the data. From this viewer, it is also possible to modify entries. When a KF that has already been
connected to application code is being modified, a warning is issued. This is because a change in the
KF might require a change in the application code. This is required to ensure that both the KF and the
CO contain the same knowledge. The Data Viewer can be seen in Figure 6.5.

Figure 6.5: UI of the Data Viewer. It gives an overview of the information captured about the chosen KF. It is possible to modify
fields by clicking on it, as can be seen for the attribute ’written by’ which is being modified.

Navigability
By left­clicking on a KF in the KF­tree, the KP loads the chosen KF in the Data Viewer. This is the
easiest way to get to the Data Viewer. Another way to get here is to click on a KF when looking at the

6.2. Knowledge Perspectives 47

Traceability Viewer or Relation Viewer. This is possible to allow the user to dive deeper into what the
KF exactly is when investigating the other knowledge perspectives.

Targeted Stakeholder
The domain expert uses the Data Viewer to understand KFs and to make modifications to it. It provides
the domain expert with a compact view of the KF and the knowledge that has been captured. Accessing
this viewer is as simple as clicking on the KF in the KF tree. The domain expert also uses the Data
Viewer to find out where the knowledge comes from, whether it is up­to­date, and to verify that it is
correct. Any mistakes found can be redirected to the author, which can be found from the ’written by’
field.

The developer also uses this viewer to understand the KF when they have to codify it. It also gives
them the possibility to find which domain expert wrote it in case it is not clear. In the case that the KF is
a Property, the developer can connect it to COs to enable the traceability of knowledge into application
code. This can be done by scrolling down to ’Related Code Object’ and clicking on the ’+’. This opens
up a similar window as seen in step 3 of Figure 6.3.

Benefit
From this view it is possible to understand the KF in detail, but also find out information about where
the knowledge comes from, who has created it, whether it is up to date, and other managerial aspects.
It is also possible to modify the KF if required, or relate it to COs. The main goal is to be a simple and
accessible way to understand and modify KFs.

6.2.2. Relation Viewer
The relation viewer shows the relations of a chosen knowledge form to other knowledge forms (in
colour) and code objects (in gray). It provides a birds eye overview of how it is used by other elements.
It is possible to navigate through the web of relations, and also allows to navigate to the data viewer
or to the traceability viewer. This knowledge perspective is used by users that want to understand how
knowledge is related. The relation viewer can be seen in Figure 6.6. Take note that no Activities are
shown in this viewer; this is because it was thought unnecessary to show the Activities here as they
are already shown in the Activity Diagram. The relation between the Rule and the Property is inferred
by the KP, as it is not define manually by the domain expert.

Figure 6.6: UI of the Relation Viewer showing KFs and COs as blocks, where the grey blocks are COs. It shows the relation
a chosen KF or CO has with other KFs and COs. It is used to get a clear overview of how KFs and COs relate to each other.
Left­clicking a block focusses on its relations, while right­clicking a block opens the Data Viewer of the chosen KF.

48 6. The Knowledge Portal

Navigability
The Relation Viewer can be accessed by opening the context menu of a KF in the KF tree and clicking
on ’Open Relation Viewer’. The user is also able to navigate through the KFs by double clicking one of
the KFs or COs shown. This makes it possible to navigate through the vast amount of KFs. By single
clicking on a KF or CO, it opens and focusses in the Traceability Viewer (focused means it scrolls
automatically to the correct CO, centres it, and highlights it).

Targeted Stakeholder
The Relation Viewer is targeted to any stakeholder. All the stakeholders can use this knowledge per­
spective to understand how a certain KF is related to other KFs. It is also possible to find out to which
COs it is related, giving insights into where it has been implemented.

Benefit
The benefit of the Relation Viewer is that it gives a vast overview of the relations a KF has. An example
is when developing a Property in application code this viewer helps understand whether there is a
constraint affecting it and which rule provides the expression. It is also possible to see in one overview
which Properties an Entity has.

6.2.3. Activity Diagram
The activity diagram is a visualisation of the Activity forms put into order of execution. The order is
determined by the domain expert when creating a KF. Figure 6.7 shows the activity diagram.

Figure 6.7: UI of the Activity diagram, showing the Activities as blocks. The dark blue blocks are Child Definitions while the light
blue blocks are Assignments. Double­clicking a Child Definition loads the Activities of the Entity it is returning indirectly (Child
Definition sets Child returns Entity). Left­clicking a block loads and focusses it in the Traceability Viewer, showing where the
Activity is taking place.

Navigability
The user can load the Activity Diagram by opening up the context menu of a KF in the KF tree and
selecting ’view activity diagram’. It loads the Activity tied to that KF. If the chosen KF is not an Activity,
the correct Activity is inferred: e.g. if a Property is chosen, the KP will determine with which Activity it
is related.

Double­clicking a Child Definition navigates the user to a deeper level, as this Activity relates to
another Entity with its own activity flow. This is useful for users that want to understand the design flow.

Once application code has been developed, parsed, and connected to KFs, it is possible to click
on the Activity in the Activity Diagram to show where it is in the Traceability Viewer. This is useful for
users that want to see how the Activity is implemented in code.

Targeted Stakeholders
The developer uses the Activity Diagram when developing new code or trying to understand how a
previous project has been developed. The Activity Diagram helps understand what the steps are in
the application design process, and it helps the developer understand where in the design process the
chosen KFs are located.

A project lead uses the Activity Diagram to verify whether the steps in the design process has been
implemented correctly. Using the Activity Diagram, the project lead can browse through the different
layers in the design process. This is possible as a Child Definition returns an Entity; so when a Child
Definition is double clicked, all the Activities that are related to the Properties of that Entity are loaded

6.2. Knowledge Perspectives 49

and put into order. This gives an idea how the Activities are taking place in that Entity. Furthermore,
they are able to locate where the steps have been implemented in the application code by left­clicking.

The end­user uses the Activity Diagram to better understand the steps the finished KBE application
is taking to derive an output. This should help an end­user gain trust in the application.

Benefit
In the scenario that the KFs still need to be codified, the developer uses the Activity Diagram to under­
stand the steps in the design process. This helps better prepare the developer to develop a module as
they have a greater understanding of the steps necessary to get to the output. In the scenario that there
is already code developed, the developer can use the Activity Diagram to understand which Activities
relate to which COs. This helps create a better understanding of how the developed code fits with the
knowledge.

The project lead uses the Activity Diagram to take a look at each step in the design process. By
clicking on an Activity it load in the Traceability Viewer, allowing the project lead to directly see how the
design step is implemented in the code. This direct connection should help the project lead navigate
the vast amount of code and help him verify the correctness of the KBE application.

6.2.4. Traceability Viewer
The traceability viewer shows each CO separated and groups the KFs that are connected to it. This
separating and grouping is done by the KP. It provides the best overview to show what knowledge
is implemented in a CO. Moreover, it allows the user to print a document summarising all the KFs
connected to the COs, essentially generating documentation. The Traceability Viewer can be seen in
Figure 6.8.

Figure 6.8: UI of the Traceability Viewer. The KP separates each CO from a Class and groups the KFs that are connected to
it. This provides the user with an overview of which KFs are connected to the CO. As can be seen, no Activity is connect to the
CO. This choice has been made as the Activity already has its own Activity Diagram in a separate window. By clicking on an
Activity in the Activity Diagram, the corresponding CO is loaded, focused, and highlighted.

Navigability
The Traceability Viewer can be accessed from almost all other knowledge perspectives. This was
chosen as it provides the user with the best overview to understand how and where knowledge is
implemented in application code. From the KF tree or the CO tree the user can open a context menu
and click on ’Open Traceability viewer’. From the Activity Diagram the user can click on an Activity to
load and focus it in the Traceability Viewer. From the Relation Viewer, the user can click on any KF or
CO to load and focus it in the Traceability Viewer.

From the Traceability Viewer, users can also click on a KF or CO to open it up in the other knowledge
perspectives.

50 6. The Knowledge Portal

Targeted Stakeholder
In the scenario that application code is being re­used for a new application, the developer uses the
Traceability Viewer to understand how the application has implemented the knowledge.

The project lead uses the Traceability Viewer to determine whether knowledge has been imple­
mented correctly in the application code. An example of a scenario is when a project lead would like to
find out whether a constraint is implemented correctly. This can be done by searching the constraint
in the KF tree, opening its context menu and clicking on ’Open Traceability viewer’. The project lead
directly sees whether it is implemented, and if so, whether it is correctly done.

Benefit
This knowledge perspective takes advantage of the fact that knowledge is now connected to code. It
presents a great overview of how all the knowledge captured is implemented in the code. Moreover,
the Traceability Viewer is navigable from all the other knowledge perspectives. This ensures that users
are able to pinpoint exactly what knowledge is implemented where, and how it is implemented.

Where the Activity Diagram gives the user an overview of the design steps, the Traceability Viewer
gives the user an overview of how KFs are implemented. Together, they provide the user with a clear
understanding of the knowledge and the application code.

7
Experimental Results

To test the effect the KP and the TM has on the development process of a KBE application, two exper­
iments have been set­up. Ideally, each stakeholder would be tested, but this was not possible due to
time constraints. The two stakeholders being tested are the developer and the project lead. The de­
veloper was chosen to be tested as it was deemed important test whether the KP would better prepare
developers to develop application code, and to see whether the KP helps in a collaborative environ­
ment. The project lead was chosen as it gave a perfect opportunity to test the transparency of KBE
application when using the KP compared to without. The experiment tests whether a project lead is
more able to find how knowledge is implemented and whether it is implemented correctly.

7.1. Experiment Set­up: Develop Application Code
Purpose
This experiment tested whether the KP helps to better prepare a developer to develop a KBE appli­
cation. It also tested whether the KP helps a developer in a collaborative environment, as they would
need to understand application code that has been developed by another developer.

Participants
A good fit for this experiment is an engineer who is experienced in developing KBE applications with
ParaPy. This narrowed down the search to customers of ParaPy, ParaPy developers themselves, and
MSc Aerospace students from the TU Delft who have experience with the KBE course (which uses
ParaPy). 10 participants were found.

Scenario
The following scenario has been given to the participants:

”You have joined the development team of the Wing Design project. There are four existing mod­
ules of code already, the main module is Wing.py. There are three other modules already imple­
mented, one to generate ribs (Ribs.py), one to generate spars (Spars.py), and one to generate Wing
Skin (WingSkin.py). The following image shows what the application is capable of already:

Figure 7.1: An isometric view of what the application can currently generate.

51

52 7. Experimental Results

Figure 7.2: A top view of what the application can currently generate.

Currently, a basic wing planform can be generated from two Inputs: section boundaries (e.g. the
root and the tip, if the list is more than two there is a kink), and the chord sizes that belong on each
section boundary.

A wing planform is a 2D outline top­view of a wing; however, in the application no wing planform
outline is generated, merely the locations of the section boundaries are calculated; which, together with
chord sizes, is enough to infer what the shape of the wing will be. This makes it possible to generate
a wing geometry.

Your task would be to replace these two inputs with a new feature that will generate a (more complex)
wing planform that complies to the rules and constraints given to you. After you have implemented these
new features, you need to investigate whether other classes are affected by the changes and which
action steps are necessary to make the correct changes.”

Task
The participants were tasked to develop a new module. Moreover, the new module would be replacing
existing COs, so the participants were asked to figure out whether the existing code would be influenced
by the new module, and if so, how.

It was not possible to ask the participants to develop the whole application code as this would take
too much time. Therefore, the participants were merely asked to write down which steps are necessary
to develop the new module as actions steps. Examples of action steps are:

• Create a new class ’Wing Planform’

• Add a@Part called ’wing_planform’ into classWing and pass the three inputs ’span’, ’chord_sizes’,
and ’boundary_locations ’

• Add an @Attribute called ’kink_location’ to calculate the kink location, minimum location from the
root

It was important that the participants to write down the following about a code object: its type (nu­
meric, a list, a dict), in which class it should be located, which other code objects it is using, whether it
uses a rule (e.g. equation), and whether it is constrained. By writing down all these aspects, it could be
determined whether the participants understood correctly how the knowledge should be implemented.

Groups
There were two groups during this experiment. The test group made use of the KP, where all knowledge
had already been structured into KFs. All the relations between KFs had been defined as well, this
means that the participants could use the Data Viewer, Relation Viewer, and Activity Diagram. The
test group participants were also asked to take time to understand the TM, as this would help them
understand how classes of KFs should be developed into certain types of COs: e.g. an Output should
be coded into an Attribute as defined by the relation between the Knowledge Ontology and the
ParaPy Ontology.

The control group would not be allowed to use the KP. Instead, all the knowledge had been struc­
tured into a single Word document. This Word document was made to resemble a summary of an
interview with a domain expert. It is important to note, that both the Word document and the KP con­
tained all the same knowledge and images, as to make it fair.

7.1. Experiment Set­up: Develop Application Code 53

Assessment
The experiment tested how well prepared the participants were to develop a piece of application code.
The hypothesis was that the KP better prepared the participants. The idea is that if a participant scores
high, they know the knowledge of the application domain better, they understand what needs to be
implemented better, and they make less mistakes. To correctly assess the performance of a participant,
a scoring sheet was prepared. This was done so that after the experiment it was possible to tick off
the correct steps decided by the participants and award points. The total number of points for this
experiment was 50 points. The scoring sheet can be seen in Figure 7.3.

Figure 7.3: The scoring sheet used to assess the performance of the participants. The total number of points is 50. The points
were given based on each aspect of a code object: e.g. an attribute put into a class that has a rule and also a constraint is worth
4 points as it considers 4 aspects.

A participant scores good if they are able to understand what the structure of the new module needs
to be. They also write down clearly what the name of the code objects are, what their type is, whether
there is a rule defining what the expression is, and whether there is a constraint. An example of a good

54 7. Experimental Results

action step that has been seen:

”Create a new attribute called ’lift’ in the class ’WingPlanform’ that will return a numeric value, it takes
’weight and ’safety factor’ as inputs and the expression is equal to lift = weight x safety factor. There is
a constraint posing a minimum value for the lift of 1000N.”

A participant scores low if there are holes and gaps in the code: when not everything is implemented.
A participant also scores bad if the action plan is missing details and if it missing constraints or rules
explain the rule. An example of an incomplete action step that was seen is:

”The lift is calculated in the Wing Planform class”

7.2. Experiment Set­up: Verify Application Code
Purpose
The experiment tested whether the participants are better able to understand how the knowledge is
implemented in the application code using the KP compared to without. It also tested whether the
participants using the KP are able to find the pieces of code necessary more efficiently compared to
without the KP. These two aspects should show whether the KP helps increase the transparency of
KBE application by enabling a direct connection between knowledge and application code. This is
due to the fact that a transparent application is an application that is easy to understand, and one that
makes it clear what it is doing, and how.

Participants
A good fit for this experiment is an engineer who is experienced in overseeing projects using the ParaPy
software. The only available participants were the project leads of customers of ParaPy. This made the
search difficult to find suitable participants. Moreover, many of the participants had limited availability
as they were very busy. Nonetheless, it was possible to perform the experiment with 6 participants, all
from the industry.

Scenario
The following scenario has been given to the participants:

”You are the project lead of the Wing Design project. The project has been through all the develop­
ment phases: knowledge acquisition, knowledge structuring, and application development. The project
is now nearing its delivery, but before that can happen you have to ensure that the application has been
developed correctly: you will have to verify it. It will not be possible to test the whole application, so you
will only be asked to check whether constrains have been implemented correctly and whether some
functional requirements are met.

The application generates a wing with ribs and spars. The wing planform is an important part of this
project, as the wing planform is a 2D top view which determines the shape of the wing. The following
image shows an example of a wing planform.

7.2. Experiment Set­up: Verify Application Code 55

Figure 7.4: A top view of a wing planform. It captures the shape of the wing, it also shows a sweep angle.

You will receive an excel file containing the functional requirements and the constraints. You have
to find out whether they have been implemented correctly in the application code. You must also note
which code object the requirement or constraint is applied to. If something is implemented incorrectly,
you need to come up with a plan to ensure that it will be fixed as soon as possible, as the delivery
deadline is coming up soon! ”

Task
The participants browse through the application code and test whether the functional requirements and
the constraints have been implemented correctly. Three fields have to be answered per requirement or
constraint: whether it has been implemented correctly, what the name is of the CO that implements it,
and what has to be done to ensure it can be fixed as soon as possible if it is not implemented correctly.

Groups
Similarly to the developer experiment, there are two groups. The test group made use of the KP, where
all knowledge has already been structured into KFs, all the application code is already parsed into COs,
and all the KFs are connected to the correct COs. The participants can use all the functionalities of the
KP to perform the experiment, but especially the Traceability Viewer in combination with the KF tree
isthe main point of interest. This is because the user can search for Constraints in the KF tree, and
click on ’Open Traceability Viewer’ to directly see how the Constraint has been implemented.

The control group are handed the raw application code and the same Word document as the pre­
vious experiment which contains all the knowledge necessary.

Assessment
The experiment tested how well a project lead can navigate the code and understand how constraints
and functional requirements are implemented. To test this, the participants received an Excel file with
constraints and functional requirements that should be implemented in the application code. They can
be seen in Figure 7.5. In total, 63 points can be scored, one for each correct answer.

56 7. Experimental Results

Figure 7.5: The scoring sheet used to assess the performance of the participants. The total number of points is 63. The points
were given based on each correct answer whether a code object was fulfilled, which code object it was, and what the action plan
was.

A participant scores well if they are able to locate the code object that is implemented the constraint
or requirement. If it is implemented incorrectly, they are able to assess that and come up with a plan
to fix it as soon as possible. An example of a good answer for a constraint is:

”Constraint not fulfilled. Code object name: section_boundary. Code developed by Arthur while the
knowledge comes from Kelbey: plan of attack is to contact Arthur why section boundary is not at least
a list of 3 entries, and contact Kelbey whether this is a mistake in the knowledge form.”

A participant scores bad if they are not able to find the code object.They also score worse if they
wrongly identify whether the knowledge is implemented correctly. Moreover, participants often lacked
to give a plan of action to fix the mistake. An example of an incomplete answer that was found is:

”Constraint not fulfilled. Code object name: section_boundary. There is no minimum.”

7.3. Results 57

7.3. Results
The results of the experiments can be seen in Figure 7.6, as percentage scored of the total points
possible. As there were not many participants available for the experiments, there is a large margin
of error: for the ’develop application code’ experiment 27%, while for the ’verify application code’ ex­
periment 31%. These margin of errors are both for a confidence of 90%. This means that it can be
concluded that there is a 90% certainty that the average results are in the range of the errors.

Figure 7.6: Both results show the points scored as percentage of the maximum points possible. Both experiments show that the
test group scored higher than the control group. For both cases there is an error as there were not many participants. However,
even with the error the results show an increase in score.

7.4. Discussion
This section will discuss the results of the experiments, starting with the developer use case. Then, the
project lead use case will be discussed. Finally, some general observations that was noticed during
both experiments will be discussed.

7.4.1. Developer Use Case
The left diagram of Figure 7.6 shows that the test group scored on average 2.8 times better than the
control group. In reality this value is somewhere between 1.6 and 4.8 due to the margin of error.
Interesting to note, is that a participant in the test group scored 48/50 points, which was almost perfect.

The results show that participants using the KP were better able to understand how the existing
application code worked, and how the knowledge was implemented. To understand the existing code
they mainly used the Activity Diagram to understand the steps in the design process to generate a
wing. Clicking on an Activity brought them to the Traceability Viewer where they could directly see what
knowledge was implemented into which COs, and how it was implemented. With a good understanding
of how the application was already built up, they proceeded to think about how the new module had to
be implemented.

As the test group was using the TM, they knew that the newmodule, which was captured in an Entity,
had to be implemented in a Class. The Relation Viewer was then used as it showed exactly which
Properties the Entity ’WingPlanform’ had. This meant that the participants knew which Inputs and
Attributes were necessary. Furthermore, the Relation Viewer helped the participants understand
whether there were Constraints acting on the Properties, as this could directly be seen in the Relation
Viewer. Constraints played a large role in this experiment, so the Relation Viewer proved to be very
helpful. Finally, they were able to understand how Properties were used for the expression of other

58 7. Experimental Results

Properties, as the Relation Viewer also shows which Activities and Rules applied on the Property.
The control group had to use the Word document to develop a new module. The first difference

was already seen when they tried to understand the knowledge, which was more difficult as it was not
structured yet. It was also difficult to understand exactly how the wing planform had to be developed,
as it was not clear exactly how everything related to each other. In some cases, probably also due
to the limited time available, they provided the completely wrong expression. It also depended on the
participant whether they were able to effectively distil the important parts of the story for the module. A
few participants had a clear tactic and noted down each possible CO they encountered, while others
had difficulties getting through the text and had to read it over and over. It was also difficult for the
control group to understand how the existing application code was developed, as there was limited
documentation in the application code. This made it especially difficult to correctly come up with action
steps that were targeted to pre existing application code.

Moreover, participants from the control group mentioned that the Word document that was provided
was more structured than what they are usually handed when they have to develop a KBE application.
They mentioned that sometimes they were not even handed a Word document, but given folders of
documents and they had to find their own way through all that knowledge. This means that the quality
of the Word document was high, and this further enforces the meaning of the results.

7.4.2. Project Lead Use Case
The right diagram of Figure 7.6 shows that the test group scored on average 1.9 times more than the
control group. Due to the margin of error, the actual improvement is between 1.0 and 3.5 times.

The participants that were using the KP had some troubles at the start of the experiment with un­
derstanding exactly how the KP works and what the functionalities are. Therefore, it seemed that a
large portion of the time was needed to get used to the KP. It took a while for the participants to find
the search button, which would allow them to search the required KF in the KF tree. Some partici­
pants knew of the search button, but still preferred to scroll through the KF tree rather than searching
for it. Once the participants understood that you can directly load a KF in the Traceability Viewer, the
requirements and constraints were verified very efficiently.

When coming up with an action plan for the requirements that were not met, the participants were
able to determine easily what that piece of code should have done and what is still lacking. They were
also able to find who wrote the piece of code, and who created the KFs concerning that piece of code.
This made it possible to come up with a concrete plan to fix the problem.

The results of the control group was interesting as the participants all showed different behaviours.
One participant was pretty comfortable in the coding language and could find the required code pretty
easily. However, this participant still did not manage to score higher than any participant of the test
group. It was also mentioned that they would probably appreciate the KP more if the experiment was
performed for a larger application. As the application only consisted of five modules, it was rather easy
to find what you were looking for if you know how to navigate through application code. However, there
was one participant who was less skilled in programming who was not able to navigate rather easily
through the code. This participant only managed to find their way to 3/21 requirements, and when a
requirement was found they would wrongly assume that it was implemented correctly.

7.4.3. Observations
The different knowledge perspectives helped the participants understand the knowledge embedded in
the KBE application better, and it helps understand how knowledge is implemented due to the direct
connection with application code. However, the participants did mention that there was one important
knowledge perspective missing: a UML Class diagram. Such a diagram would show the hierarchy of
the various objects and would give them a sense of how the product was built up.

It took the participants 10 minutes of getting used to the KP before they could use the KP to their
advantage. Moreover, the User Interface (UI) of the KP was still very primitive and did not help to give
the best overview possible. The User eXperience (UX) of the KP was also not the best. This was the
case as the KP was designed to allow a user to move fast from one view to another using short cuts and
clicking with either the left, middle, or right mouse button. However, all these short cuts and different
types of clicks made it too difficult to navigate the KP effectively. It seems that having simple buttons
and a single type of click to navigate is better than having too many different possibilities.

The set­up of both experiments could have been better to gather better results. A single participants

7.4. Discussion 59

should have both participated in the test group as well as the control group. This would eliminate bias
of some participants being more skilled than others. For example the participant that scored 48/50
points in the first experiment might have scored high as well if he was in the control group. This was
also seen in the second experiment, where a participant who knew how to develop code could easily
navigate the application code while others could not. However, having a more elaborate experiment
set­up was not possible due to time­constraints of the thesis, and due to the fact that the participants
were available for a limited amount of time.

8
Conclusion and Recommendations

The aim of this research was to develop a methodology that enables the traceability of knowledge onto
Knowledge Based Engineering (KBE) application code without the need of specialized knowledge engi­
neers. The necessity became clear as KBE applications are perceived as a black box, which decreases
the trust in KBE applications, hinders systematic knowledge re­use, and lowers the participation of do­
main experts. Having a direct connection between knowledge structured in models and the application
code would improve the transparency. However, there was also the problem that knowledge is not
modelled correctly, hindering the ability to connect knowledge to application code.

8.1. Conclusion
MOKA is one of the well­known KBEmethodologies, and it proposes to structure knowledge into several
models that are proven to be very effective to model knowledge. However, they require specialist
knowledge engineers which are not available at many companies. MOKA has also been developed
with the assumption that the engineer who owns the knowledge, the domain expert, is a different person
than the engineer who develops the application, the developer. These knowledge engineers structure
knowledge in two steps. The results of the first step is an informal model that can be reviewed by the
domain expert. Only when the first step is reviewed, the knowledge engineer proceeds to the second
step to structure knowledge into a formal model that is understood by a developer.

However, a field study performed during this research showed that a single engineer fulfils multiple
roles. These engineers are often engineers with a technical background, but also have basic IT skills
that were taught during their studies. This meant that the person developing a KBE application is often
the domain expert as well as the developer. However, this contradicts MOKA’s assumption, where
a knowledge engineer was required to help bridge the gap in understanding knowledge between the
domain expert and the developer. Now that the domain expert is also the developer, the knowledge
engineer is not required any more.

What is seen, is that this gives developers the feeling that knowledge modelling is not necessary
as they feel they might as well directly implement their knowledge into application code. This is possi­
ble, but without correctly modelling knowledge the black box perception still remains a problem which
causes many side effects that affect the overall quality of the developed KBE application. Therefore,
it is important that knowledge modelling is still performed. Therefore, a new ontology was developed
which would motivate knowledge modelling and define a connection between knowledge and applica­
tion code.

The new ontology is called the Traceability Model (TM). The hypothesis that domain experts are
able to structure knowledge themselves in a formal matter made it possible to develop the TM more
formally than the informal model proposed by MOKA. The formal model is removed as to remove
the necessity of knowledge engineers. The main change made to the informal model is the addition of
Propertieswhich enables a domain expert to capture the essence of an Object Oriented (OO) modelling
approach. This allowed the knowledge to be directly connected to application code. This is possible
as the TM defines two ontologies: a Knowledge Ontology and a ParaPy Ontology. The Knowledge
Ontology defines different classes of Knowledge Forms (KF) and are related to each other. A KF is a

61

62 8. Conclusion and Recommendations

form that must be filled in by a domain expert, which guides them to structure knowledge correctly. The
ParaPy Ontology defines different types of Code Objects (CO) that can be found in the ParaPy coding
language. The TM defines a connection between the Knowledge Ontology and the ParaPy Ontology,
which defines how knowledge can be connected to application code.

Once the TM was developed, the Knowledge Portal (KP) had been developed to provide a plat­
form to structure knowledge and directly connect knowledge to code. Moreover, the KP automatically
generates knowledge representations, to help understand the knowledge that is captured in KFs. The
goal of the KP was to assist the various stakeholders with their tasks, the following should be possi­
ble: domain experts can create KFs to structure knowledge, developers can directly understand how
knowledge has to be develop into code, project leads can directly see how knowledge is implemented
in the code to see whether it complies to requirements, and the end­user can use the KP to understand
how the developed KBE application generates an output from some input.

Three goals and a research question were formulated at the start of this thesis. To test whether
the goals are met, and to answer the research question, two experiments had been performed. The
experiments focussed on the development of a KBE application and checking whether it complies
to requirements. The experiments tested two groups, where one would be able to use the KP. The
participants were assessed based on a scoring sheet, which allowed them to score points based on
their performance.

The first experiment focussed on whether developers using the KP are better prepared to develop
application code in a collaborative environment. The results show that using the KP increases the
average points scored by 2.8 times. It can be concluded that the participants understood the knowledge
of the application domain better, and they are more able to understand how existing application code
is written and how it implements knowledge.

The second experiment focusses onwhether project leads using the KP can better verify whether the
developed KBE application complies to requirements. The results show that using the KP increases
the average points scored by 1.9 times. It can be concluded that the KP improves the traceability
of knowledge into application code, as the participants using the KP were able to pinpoint precisely
where the requirements were location. They were also better able to understand the application. It
can be concluded that improving the traceability of knowledge into application code has improved the
transparency of the KBE application.

From this research, it was concluded that KBE applications are perceived as a black box. Adoption
of KBE methodologies is hindered by the fact that it requires a knowledge engineer. The hypothesis
is that the TM removes the necessity for knowledge engineers; however, this still has to be tested
with an experiment. Once knowledge is modelled, it is possible to directly connect it to application
code. This was achieved by the TM and made possible with the KP. The KP further helped to improve
the transparency of the application by generating knowledge representations that helped understand
the knowledge embedded in the application. The two experiments validated that both the developers
and the projects leads scored higher using the KP compared to without, proving that it increased the
transparency of the KBE application.

8.2. Recommendations
It still remains unclear whether the TM remained simple enough to allow the structuring of knowledge
without the necessity of knowledge engineers. The hypothesis is that it does remove the necessity for
two reasons: it is assumed that domain experts also fulfil the role of the developer so they understand
the Object Oriented modelling approach and are capable to structure knowledge correctly, and the KP
guides the domain expert to capture what is necessary and restricts any impossible relations ensuring
that the structured knowledge is correct. However, this hypothesis should still be tested by having
domain experts from the industry model knowledge using the KP.

Furthermore, the TM currently only allows to capture rather generic types of knowledge, with the
exception of Properties. When looking at Rules, there are many types of Rules that could be define.
The same is true for Constraints and Activities. By having a more complete typology of these classes
it will be possible to better guide domain experts to structure knowledge properly.

Moreover, the ParaPy Ontology assumes that a Module only comprises Classes. In reality, a
Module can consist of other types of Code Objects such as functions. However, these have been
neglected as the choice is made to focus the ParaPy Ontology on the Class as it contains most

8.2. Recommendations 63

knowledge in a ParaPy application.
Moreover, attempts can be made to broaden the functionalities of the KP to further aid in the devel­

opment of KBE applications. An example is to automatically generate skeleton code, which will save
a lot of time of the developers as it is pieces of code that is recurring a lot. Another functionality would
be to automatically check for inconsistencies between the application code and the created KFs. This
should further increase the trust in the developed application, as there still is a problem of knowledge
being out­of­sync with what is implemented in the application code.

Bibliography
[1] M. S. Abdullah, A. Evans, I. Benest, R. Paige, and C. Kimble. Modelling knowledge based systems

using the eXecutable Modelling Framework (XMF). 2004 Ieee Conference on Cybernetics and In­
telligent Systems, Vols 1 and 2, pages 1055–1060, 2004. doi: 10.1109/ICCIS.2004.1460735.

[2] P. Bermell­García. A Metamodel to annotate Knowledge Based Engineering codes as enter­
prise knowledge resources. PhD thesis, Cranfield University, 2007. URL http://medcontent.
metapress.com/index/A65RM03P4874243N.pdf.

[3] P. Bermell­Garcia, W.J.C. Verhagen, S. Astwood, K. Krishnamurthy, J.L. Johnson, D. Ruiz,
G. Scott, and R. Curran. A framework for management of Knowledge­Based Engineering ap­
plications as software services: Enabling personalization and codification. Advanced Engineering
Informatics, 26(2):219–230, 2012. ISSN 14740346. doi: 10.1016/j.aei.2012.01.006. URL
http://dx.doi.org/10.1016/j.aei.2012.01.006.

[4] R. Boateng. KnowledgeManagement and HR Learning. Knowledge Management and HR, pages
1–29, 2011.

[5] H. Boley, M. Kifer, P. Patranjan, and A. Polleres. Rule Interchange on the Web. Reasoning Web
­ RWEB, pages 269–309, 2007. ISSN 03029743. doi: 10.1007/978­3­540­74615­7_5.

[6] C. Chapman and S. Preston. Utilising enterprise knowledge with knowledge­based engineering.
International journal of computer appliactions in technology, 28(2/3):169, 2007. ISSN 0952­8091.
doi: 10.1504/IJCAT.2007.013354. URL http://www.inderscience.com/link.php?
id=13354{%}5Cnhttp://inderscience.metapress.com/index/Q683254N2L653431.
pdf.

[7] C.B. Chapman and M. Pinfold. The application of a knowledge based engineering approach to
the rapid design and analysis of an automotive structure. Advances in Engineering Software, 32
(12):903–912, 2001. ISSN 09659978. doi: 10.1016/S0965­9978(01)00041­2.

[8] The MOKA Consortium. Managing Engineering Knowledge. Professional Engineering Publishing,
2001.

[9] D. Cooper and G. LaRocca. Knowledge­based techniques for developing engineering applications
in the 21st century. Collection of Technical Papers ­ 7th AIAA Aviation Technology, Integration,
and Operations Conference, 1:146–167, 2007. doi: 10.2514/6.2007­7711.

[10] S. Cooper, I. Fan, and G. Li. Achieving Competitive Advantage Through Knowledge­Based Engi­
neering A Best Practice Guide. Department of Trade and Industry, 2001.

[11] R. Curran, W. Verhagen, and M. van Tooren. The KNOMAD Methodology for Integration of Multi­
disciplinary Engineering KnowledgeWithin Aerospace Production. 48th AIAAAerospace Sciences
Meeting Including the New Horizons Forum and Aerospace Exposition, 48(January):1–16, 2010.
doi: 10.2514/6.2010­1315. URL http://arc.aiaa.org/doi/10.2514/6.2010­1315.

[12] R. Curran, W.J.C. Verhagen, M.J.L. Van Tooren, and T.H. Van Der Laan. A multidisciplinary im­
plementation methodology for knowledge based engineering: KNOMAD. Expert Systems with
Applications, 37(11):7336–7350, 2010. ISSN 09574174. doi: 10.1016/j.eswa.2010.04.027.
URL http://dx.doi.org/10.1016/j.eswa.2010.04.027.

[13] P.J. DeWitte. Development and Reuse of Engineering Automation ­ Incremental Code and Design
Documentation Generation. PhD thesis, TU Delft, 2014.

65

http://medcontent.metapress.com/index/A65RM03P4874243N.pdf
http://medcontent.metapress.com/index/A65RM03P4874243N.pdf
http://dx.doi.org/10.1016/j.aei.2012.01.006
http://www.inderscience.com/link.php?id=13354{%}5Cnhttp://inderscience.metapress.com/index/Q683254N2L653431.pdf
http://www.inderscience.com/link.php?id=13354{%}5Cnhttp://inderscience.metapress.com/index/Q683254N2L653431.pdf
http://www.inderscience.com/link.php?id=13354{%}5Cnhttp://inderscience.metapress.com/index/Q683254N2L653431.pdf
http://arc.aiaa.org/doi/10.2514/6.2010-1315
http://dx.doi.org/10.1016/j.eswa.2010.04.027

66 Bibliography

[14] T. Dillon, E. Chang, M. Hadzic, and P. Wongthongtham. Differentiating conceptual modelling
from data modelling, knowledge modelling and ontology modelling and a notation for ontology
modelling. Conferences in Research and Practice in Information Technology Series, 79, 2008.
ISSN 14451336.

[15] C. L. Emberey, N. R. Milton, J. P.T.J. Berends, M. J.L. Van Tooren, S. W.G. Van Der Elst,
and B. Vermeulen. Application of Knowledge Engineering Methodologies to Support Engineer­
ing Design Application Development in Aerospace. Collection of Technical Papers ­ 7th AIAA
Aviation Technology, Integration, and Operations Conference, 1(September):83–95, 2007. doi:
10.2514/6.2007­7708.

[16] I. Fan and P. Bermell­Garcia. International Standard Development for Knowledge Based Engi­
neering Services for Product Lifecycle Management. Concurrent Engineering, 16(4):271–277,
2008. ISSN 1063­293X. doi: 10.1177/1063293X08100027. URL http://journals.
sagepub.com/doi/10.1177/1063293X08100027.

[17] T.R. Gruber. Towards Principles for the Design of Ontologies Used for Knowledge Sharing. Formal
Ontology in Conceptual Analysis and Knowledge Representation, 1993.

[18] Y.J. Hu. Challenges for Rule Systems on the Web Rule Interchange and Applications. Challenges
for Rule Systems on the Web Rule Interchange and Applications, pages 1–12, 2009.

[19] F. Ibrahim. Knowledge Management Methodology: Developing a Phenomenalogical Middle­
range Thinking Approach for Knowledge Management Research. Journal of Management Re­
search, 9(4):110, 2017. ISSN 1941­899X. doi: 10.5296/jmr.v9i4.10790. URL http:
//www.macrothink.org/journal/index.php/jmr/article/view/10790.

[20] P. Jackson. Introduction to expert systems. Addison­Wesley, Wokingham, England Reading,
Mass, 1990. ISBN 978­0­201­17578­3.

[21] D. Jodin and C. Landschützer. Knowledge­Based Methods for Efficient Material Handling Equip­
ment Development. Progress in Material Handling Research, 12th IMHRC, 2012. URL http:
//www.mhi.org/downloads/learning/cicmhe/colloquium/2012/jodin.pdf.

[22] K. Kiko and C. Atkinson. A detailed comparison of UML and OWL. Technical Report 4, Department
of Mathematics and Computer Science, University of Mannheim, pages 1–58, 2005. URL https:
//ub­madoc.bib.uni­mannheim.de/1898/1/TR2008{_}004.pdf.

[23] G. La Rocca. Knowledge Based Engineering Techniques to Support Aircraft Design and Opti­
mization. PhD thesis, Delft University of Technology, Delft, 2011. URL https://repository.
tudelft.nl/islandora/object/uuid:45ed17b3­4743­4adc­bd65­65dd203e4a09.

[24] G. Lapalme. Xml: Looking at the forest instead of the trees, Apr 2019. URL https://www.iro.
umontreal.ca/~lapalme/ForestInsteadOfTheTrees/HTML/ch07.html.

[25] G. LaRocca. Knowledge based engineering: Between AI and CAD. Review of a language based
technology to support engineering design. Advanced Engineering Informatics, 26(2):159–179,
2012. ISSN 14740346. doi: 10.1016/j.aei.2012.02.002. URL http://dx.doi.org/10.
1016/j.aei.2012.02.002.

[26] I. Lemmens, J. Bulles, and P. R. Munniksma. Business Rules Management – an introduction.
CogNIAM Finance, pages 1–32, 2013.

[27] J. Lutzenberger, I. Marthinusen, K. Kristensen, G. Iversen, P. Klein, O.I. Sievertsen, and
G. Rutkowska. Methods for KBE related knowledge acquisition and codification. LinkedDesign­
Consortium 2011­2015, pages 1–73, 2012. URL http://www.linkeddesign.eu/files/
LinkedDesign{_}Deliverable{_}6.1.pdf.

[28] Q.C. Ma and X.W. Liu. Review of Knowledge Based Engineering with PLM. Applied Mechanics
and Materials, 10­12:127–131, 2008. ISSN 1662­7482. doi: 10.4028/www.scientific.net/
AMM.10­12.127. URL http://www.scientific.net/AMM.10­12.127.

http://journals.sagepub.com/doi/10.1177/1063293X08100027
http://journals.sagepub.com/doi/10.1177/1063293X08100027
http://www.macrothink.org/journal/index.php/jmr/article/view/10790
http://www.macrothink.org/journal/index.php/jmr/article/view/10790
http://www.mhi.org/downloads/learning/cicmhe/colloquium/2012/jodin.pdf
http://www.mhi.org/downloads/learning/cicmhe/colloquium/2012/jodin.pdf
https://ub-madoc.bib.uni-mannheim.de/1898/1/TR2008{_}004.pdf
https://ub-madoc.bib.uni-mannheim.de/1898/1/TR2008{_}004.pdf
https://repository.tudelft.nl/islandora/object/uuid:45ed17b3-4743-4adc-bd65-65dd203e4a09
https://repository.tudelft.nl/islandora/object/uuid:45ed17b3-4743-4adc-bd65-65dd203e4a09
https://www.iro.umontreal.ca/~lapalme/ForestInsteadOfTheTrees/HTML/ch07.html
https://www.iro.umontreal.ca/~lapalme/ForestInsteadOfTheTrees/HTML/ch07.html
http://dx.doi.org/10.1016/j.aei.2012.02.002
http://dx.doi.org/10.1016/j.aei.2012.02.002
http://www.linkeddesign.eu/files/LinkedDesign{_}Deliverable{_}6.1.pdf
http://www.linkeddesign.eu/files/LinkedDesign{_}Deliverable{_}6.1.pdf
http://www.scientific.net/AMM.10-12.127

Bibliography 67

[29] N.R. Milton. Knowledge Acquisition in Practice: A Step­by­step Guide (Decision En­
gineering). Springer, 2007. ISBN 1846288606. URL http://www.amazon.com/
Knowledge­Acquisition­Practice­Step­step/dp/1846288606.

[30] G.J. Nalepa and S. Bobek. Rule­based solution for context­aware reasoning on mobile devices.
Computer Science and Information Systems, 11(1):171–193, 2014. ISSN 18200214. doi: 10.
2298/CSIS130209002N.

[31] Negnevitsky. Artificial Intelligence. Pearson Education, 2005. ISBN 9788131720493. URL
https://books.google.nl/books?id=8TD8RN­WXFAC.

[32] I. Nonaka. A Dynamic Theory of Organizational Knowledge Creation. Organization Science, 5
(1):14–37, 1994. ISSN 1047­7039. doi: 10.1287/orsc.5.1.14. URL http://pubsonline.
informs.org/doi/abs/10.1287/orsc.5.1.14.

[33] E.J. Reddy, C.N.V. Sridhar, and V.P. Rangadu. Knowledge Based Engineering: Notion, Ap­
proaches and Future Trends. American Journal of Intelligent Systems, 5(1):1–17, 2015. ISSN
2165­8994. doi: 10.5923/j.ajis.20150501.01.

[34] G. Schreiber, B. Welinga, and R. de Hoog. CommonKADS: A Comprehensive Methodology br
KBS Development. IEEE, 1994.

[35] N. Shadbolt and N. Milton. From Knowledge Engineering to Knowledge Management. British
Journal of Management, 10:309–322, 1999.

[36] W. Skarka. Application of MOKA methodology in generative model creation using CATIA. En­
gineering Applications of Artificial Intelligence, 20(5):677–690, 2007. ISSN 09521976. doi:
10.1016/j.engappai.2006.11.019.

[37] J. Sobieszczanski­Sboieski, A. Morris, M. van Tooren, G. La Rocca, and W. Yao. Multidisciplinary
Design Optimization. Wiley, 2015.

[38] J. Stjepandic, S. Rulhoff, W. J. C. Verhagen, H. Liese, and P. Bermell­Garcia. Design Process Ac­
celeration By Knowledge Based Engineering in Automotive and Aerospace Industry. Proceedings
of the 13th International Design Conference DESIGN 2014, pages 1915–1924, 2014.

[39] A. Teilans, A. Kleins, U. Sukovskis, Y. Merkuryev, and I. Meirans. A meta­model based approach
to UML modelling. Proceedings ­ UKSim 10th International Conference on Computer Modelling
and Simulation, EUROSIM/UKSim2008, pages 667–672, 2008. doi: 10.1109/UKSIM.2008.60.

[40] W.J.C. Verhagen and R. Curran. Knowledge­Based Engineering review: Conceptual founda­
tions and research issues. Advanced Concurrent Engineering, 31(0):239–248, 2010. ISSN 0717­
6163. doi: 10.1007/978­0­85729­024­3. URL http://link.springer.com/10.1007/
978­0­85729­024­3.

[41] W.J.C. Verhagen, P Bermell­Garcia, R.E.C. Van Dijk, and R. Curran. A critical review of
Knowledge­Based Engineering: An identification of research challenges. Advanced Engineer­
ing Informatics, 26(1):5–15, 2012. ISSN 14740346. doi: 10.1016/j.aei.2011.06.004. URL
http://dx.doi.org/10.1016/j.aei.2011.06.004.

http://www.amazon.com/Knowledge-Acquisition-Practice-Step-step/dp/1846288606
http://www.amazon.com/Knowledge-Acquisition-Practice-Step-step/dp/1846288606
https://books.google.nl/books?id=8TD8RN-WXFAC
http://pubsonline.informs.org/doi/abs/10.1287/orsc.5.1.14
http://pubsonline.informs.org/doi/abs/10.1287/orsc.5.1.14
http://link.springer.com/10.1007/978-0-85729-024-3
http://link.springer.com/10.1007/978-0-85729-024-3
http://dx.doi.org/10.1016/j.aei.2011.06.004

A
Interview Questions

• Knowledge Capture

– Where does the knowledge come from?
– What techniques are used to capture knowledge?
– Where is the captured knowledge stored?
– What is the role of the person capturing knowledge?
– Does he need special training, such as in knowledge engineering?
– Do you use a methodology? If yes, which? If no, why not?
– Are there any tools used to help capture knowledge?
– How many iterations are necessary to capture knowledge in a sufficient amount of detail?
– How do you verify that the captured knowledge is correct?
– Can anyone capture knowledge?
– What could be improved in this step?

• Knowledge Re­use

– Is knowledge re­used?
– How do you approach re­using knowledge from previous projects?
– How do you approach re­using knowledge embedded in a legacy application?
– Is it possible to re­use complete KBE modules for a new project?

• Knowledge Structure

– Are there guidelines how to structure knowledge? If yes, which guidelines? If no, why not?
– Are there any tools that support the structuring of knowledge?
– What is the role of the person structuring knowledge?
– Does he need special training, such as knowledge engineering?

• Codification

– How do you approach codifying knowledge?
– How is the quality of the knowledge used for codification?
– Is there anything that could be improved to help you codify knowledge?

• Directly Connecting Knowledge to Code

– Is there any connection between the application code, the run­time application, and / or the
knowledge?

69

70 A. Interview Questions

– If yes, how do you establish this connection?
– Is it possible to trace how knowledge is embedded in application code?
– If yes, how do you approach this? If no, why not?
– Is it possible to find the rationale of a design choice? How would you do this?
– Is it possible to view relations knowledge has with other knowledge?
– What would you like to see improved on the traceability of knowledge in application code?
– What is limiting the projects from having this traceability?

• Application & Knowledge Quality

– Are the developed applications transparent? Please explain.
– Are applications and / or knowledge maintained? Please explain.
– Is there a lack of trust in the application? Please explain.
– Is knowledge often lost, duplicated, vague, or ambiguous? Please explain.
– Is the knowledge stored the same version as the knowledge in the application? Please

explain.

B
Knowledge Portal Development

This chapter will shortly discuss how the KP has been developed. It will start off by discussing the
programming languages used, and the set­up of the KP. Then, the part of the KP that parses application
code into separate COs is discussed. Afterwards, it will be explained how the developed ontology, the
TM, has been embedded in the KP. This is followed by an explanation of how new KFs are created,
modified, and saved to the database. Finally, a short explanation of the steps taken to generate the
knowledge perspectives is given. This chapter should give the reader an idea of how the KP works.

B.1. Programming Language & Set­Up
Before the development of the KP could start, a programming language needed to be chosen and the
different parts of the KP determined. The KP consists of five parts, as can be seen in Figure B.1. The
Python source code is not regarded as part of the KP, it is only passed to the KP to parse the KBE
application into COs.

Figure B.1: The various parts of the Knowledge Portal, the languages, and the communication. The source code is not regarded
as part of the KP.

It was important to consider what the KP should be able to do beforehand and which components
were important. First, there was a choice whether it would be a web­based platform or an application;
the former was chosen as it would be easier accessible for stakeholders and requires less up­front
effort to get it up and running for the stakeholder during experiments. The downside was that I had
no prior experience developing web­based applications. To develop a web­based application, it would
require a front­end, a back­end, and a server.

For the front­end, the three standard languages were used: HTML, CSS, and JavaScript. For the
back­end, it was possible to use Python, which is a language I am experienced in. However, PHP was
chosen as it is one of the default programming languages for back­end and it did not seem hard to
learn. Moreover, there is a lot of documentation on­line and a large community which could help with
the development. For the server, MySQL has been chosen for similar reasons as PHP. Furthermore,
MySQL is a language that is often used by server providers, so no extra effort would be necessary
when migrating the Knowledge Portal to a service provider.

71

72 B. Knowledge Portal Development

The last thing to consider was how to load the KBE application code in the Knowledge Portal. This
could be done manually by entering forms, but it seemed tedious and unnecessary. Therefore, a parser
was written that could automatically parse a python file into COs. As the KBE applications are written
in Python, this language is also used to parse the application code.

B.2. Application Source Code Parser
The KP should be able to parse the KBE application into COs, to allow the user to connect the created
KFs to the COs. A first attempt was done trying to develop a parser from scratch; however, the method
used to parse seemed illogical and inefficient. Some research was done as to how Python compiles
the code, and whether that could be used to parse it. When compiling code, Python will first parse it
into a parse tree. Afterwards, this will be transformed into an Abstract Syntax Tree (AST) which is a
high­level abstraction of the source code. This AST is transformed into a Control Flow Graph (CFG),
and eventually converted into bytecode which can be read by the Central Processing Unit (CPU) to
execute commands.

The AST that is generated turns out to be useful to parse code objects. Figure B.2 shows how the
AST is used to extract information about a ParaPy Input. More complex COs such as ParaPy Attributes
and ParaPy Parts will have a larger tree with more layers and information.

Figure B.2: Example of how to use the AST to extract information of a simple code object. Note: a lot of nodes were taken out
of the tree to fit it into a figure.

Knowing which nodes an AST has made it possible to parse COs from application code. To deter­
mine the classes in the application code, the parser looks for the ’ClassDef’. Once found, it will iterate
over its ’body’, which contains all the COs that are being looked for. For example, in Figure B.2, there
is an assignment operation object. This object consists of several attributes that can be iterated over
to find out information about its line in the code, the value that is being assigned, and the type of CO
(in this case an Input). It is also possible to find the ID of the CO: ’span’. Each bit of information is
then saved in a dictionary format. This process is repeated for every object that is found in the class
definition (ClassDef). Once this process is finished, all the COs have been extracted from the class,
and it is possible to repeat the process for the next class in the application code.

After all classes have been iterated, there will be a final dictionary containing all the parsed COs and

B.3. Importing the Traceability Model 73

their information. Figure B.3 shows the final dictionary with all the parsed information, the dictionary is
built up in a way that it can be used to create a tree in JavaScript later on. There are several pieces of
information captured for each code object: its id (text), its type, the icon corresponding to the type, its
state which is used later on in JavaScript, and the children it has for the tree. This dictionary can easily
be converted to a JSON string, which is an open data standard.

Figure B.3: The final dictionary containing all the COs that could be found in the application source code. The top object
is a container for Classes, and it can be seen in the ’children’ that there is a single Class called ’WingSkin’. This Class
comprises several Inputs, Attributes, and Parts. However, the dictionary is too long to show, so only the first Input and
its information is shown.

B.3. Importing the Traceability Model
The TM defines the classes of KFs, what knowledge needs to be captured for each class of KF, and
the possible relations that can be defined with other KFs or COs. To make the TM usable in the KP, it
has been captured in a JSON string. Figure B.4 shows part of the model used in the example, how it
looks like in the JSON string, and how it looks like when creating a KF in the KP. Each type of CO has
a certain type of KF it can be related. Another example is a Part, which can only relate to a Child.
Each class of KF has certain relations it can set with only certain classes of KFs.

74 B. Knowledge Portal Development

Figure B.4: In this example there are seven aspects that should be captured in the JSON string: a) f) Input composes an Entity,
b) Input relates to an Input, c) g) Input can relate to a Constraint, d) Input has an added attribute Default Value, e) Every type
of Property, so also Input, has an added attribute Return Type. This is captured in JSON as can be seen in the figure, and the
corresponding KF that is created by the KP can also be seen in the figure.

B.4. Communication with the database
Whenever a user interacts with the KP, there is a great chance that their command is being sent to the
back­end, and then to the database to retrieve information about a certain KF or the relations that are
saved. This is done using the JQuery AJAX (Asynchronous JavaScript and XML) technology. The fact
that AJAX is asynchronous means that data can be loaded into the KP without having to refresh the
KP, this makes the application more intuitive and easier to use. Figure B.5 shows a simple example of
an AJAX statement that sends a command to a ’test.html’ with a context called ’document.body’. This
command is carried out in parallel to other commands on the application, and once it is done it will carry
out the commands that are given in the .done() body.

Figure B.5: An example of an AJAX statement, that sends a command to a file called ”test.html” with a certain context. When
’done’, it will carry out the statement in the .done() body. It will allow for parallel processes and for the KP to work without needing
to be refreshed.

AJAX is used throughout the KP: to save a KF to the database, to retrieve a KF from the database,
and to retrieve relations from the database. This is done by communication with PHP files to execute
commands in the PHP file. The PHP file will then communicate with the database by send MySQL
statements: e.g. ”INSERT INTO Rule_table(’kf_json’) VALUE json”. The next sections discuss how
KFs are saved and retrieved in the database, whenever it is said that something is loaded or saved to
the database, it will go through the process as explained in this section.

B.5. Managing Knowledge Forms 75

B.5. Managing Knowledge Forms
B.5.1. Loading Knowledge Forms
Once the KP is opened in the browser, one of the first things done is that existing KFs are loaded into the
KF tree. The KF tree is built using an existing JavaScript module called JSTree. There are five nodes
in this tree, one for each KF class, except for Properties which are grouped under the corresponding
Entity. This was done as it seemed logical to group the Properties with their corresponding Entity.
When the browser is loading, a function runs that retrieves each KF from the database and translates
it into a format usable for the JSTree.

B.5.2. Creating Knowledge Forms
Creating KFs can be done by clicking on the Create Form button. This runs a function that opens a
new window asking for a form type. Once a type has been selected, it will retrieve the attributes of the
chosen type automatically from the JSON string containing the TM. When the attributes are loaded, a
user can fill in information as required; if a sub­type is required it will be shown. The relations that can
be set from the chosen type will appear on the bottom of the form. Each relation will have a ’+’ button
to add a knowledge form to that specific relation. When the button is activated, a new window opens
to select which KFs or COs are to be related. Meanwhile, each KF and CO has been disabled except
for the type that may be related to. This is how a user is guided to make correct relations. When the
user clicks on the ’Save Connection’ button, the related KF or CO is shown in the correct attribute field.
Once all information is captured, and all relations are set, the user can press on the save button. This
will do 2 things:

Saving the KF as JSON string
The first is that it will translate the attributes (with field values) into a JSON string and be sent to the
server to be saved, along with a new ID. The ID is chosen by concatenating the type of form and the ID
on the database (e.g. Rule_7). An example JSON string can be seen in Figure B.6, this JSON string
is sent to the database.

Figure B.6: A Rule and its attributes, with values, captured in a JSON string.

Saving Relations as Triples
The second thing is that the chosen relations are to be saved. The first thing to do is to retrieve the KF’s
own ID, which has just been saved to the database. This can be done in MySQL with the command
”SELECT LAST_INSERT_ID();”. The ID of the KF or CO that is to be related is passed when clicked on
the save button, as it was chosen by the user which two KFs or COs relate to one another. Now there
are two options, either the KF relates to another KF, or it relates to a CO. The KP knows that when a
KF and an CO is related, that it will have the same relation: ’Mapped onto’. This refers to the fact that
the KF is connected to a CO. The relation will be saved in the relation table in the database as a triple,
by passing a subject ­ predicate ­ and an object. An example of a triple can be seen in Figure B.7

Figure B.7: How a triple is built up.

76 B. Knowledge Portal Development

In the case of a KF and a CO: KF ­ Maps onto ­ CO. To ensure that all the relations from a CO can
be achieved, the KP automatically knows that when KF ­ Maps onto ­ CO, a CO ­ Maps onto ­ KF. For
2 KFs this is more complex. Before saving it into the relation database, a predicate is necessary. This
will be retrieved from the JSON string containing the TM. An example could be Entity ­ Composes ­
Property. The relation the other way around is known by the KP as every relation, and its counter­part,
is also saved in the JSON string containing the TM. Therefore the KP can automatically deduce that
Property ­ is Property ­ Entity.

B.5.3. Modifying Knowledge Forms
A KF can be modified by selecting it in the KF tree. When selected, it will be opened in the Data Viewer.
From the Data Viewer, the attributes of the KF can be modified simply by overwriting the attribute.
Relations can be modified by overwriting the existing relation. When an attribute is overwritten, a
whole new JSON string is generated and it will replace the current JSON string in the database.

B.6. Loading Knowledge Perspectives
B.6.1. Data Viewer
The Data Viewer can be loaded from the KF tree, or by choosing a KF in the Relation Viewer. When
a KF is clicked, the Data Viewer is loaded and the KF ID is passed to the database to retrieve the
JSON string of the corresponding KF. The JSON is then looped through, retrieving the attribute and
the corresponding value, which are added to a table one by one. After all attributes are added to the
table, the whole KF with its information is shown in the Data Viewer. The Data Viewer allows the user
to modify attributes or relations., how this is done is explained in section B.5.

B.6.2. Traceability Viewer
The KP uses the parsed application code to find out which Classes are available. Each Class will
have its own tab in the Traceability Viewer. When a Class is selected, the corresponding code from
that Class is loaded into the right­hand pane of the Traceability Viewer. After the code is loaded, each
CO is run through the relation database table to find out which KFs are connected to it. Each connected
KF is loaded next to the CO in the left­hand pane.

B.6.3. Relation Viewer
To get to the Relation Viewer, the user will have to right click a KF and click on ’Relation Viewer’. When
that button is clicked, the ID of the KF is sent to the relation database, and each related KF or CO is put
into a dictionary. The KP will loop through each entry in the dictionary to find how each entry is related
to other KFs and COs. This is repeated twice to retrieve all the KFs and COs that need to be shown in
the Relation Viewer. Then, the KP will determine the position of each element. This is done using the
polar coordinate system, where the position of an element is determined from a pre­determined radius
and calculated angle of the parent element. Knowing that a circle has 360 degrees, each element is
spaced out 360𝑛 degrees from one another, with ’n’ being the number of KFs and COs that is related to
the chosen KF. This process of positioning is repeated for each level of depth; however, the available
degrees is limited to the boundaries of its location. For example, if an element is placed every 120
degrees, that element will have its sub­elements equispaced within a cone of 60 to 180 degrees.

B.6.4. Activity Viewer
The Activity Viewer is loaded by right­clicking a KF and choosing ’Open Activity Viewer’. When an
Activity is chosen, the KP will retrieve the Activities that precede or succeed it from the database and
put it into correct order. When another class of KF is chosen, the KP will infer which Activity is related
to it (if there is one, which there should be if structured correctly). For example, if a Property is chosen,
the correct Activity will be found by search in the relation table which Activity is related to the chosen
Property. Once the corresponding Activity is found, the preceding and succeeding Activities will be
retrieved from the database and put into order.

	Abstract
	List of Figures
	List of Tables
	Introduction
	Problem Identification
	Field Study
	Research Aim

	Theoretical Background
	Engineering Knowledge
	Concept of Knowledge
	Classification of Engineering Knowledge

	Introduction to Knowledge Based Engineering
	Advantages of adopting KBE technology
	KBE Platforms
	Stakeholders in the Development of a KBE Application
	Roles in a SME environment

	Modelling Knowledge
	Unified Modelling Language
	Ontologies

	Black Box Perception
	Consequences of the Black Box Perception
	Effect on different Stakeholders

	MOKA

	Methodology
	The Traceability Model
	The Knowledge Portal
	The Experiments
	Developer Experiment
	Project Lead Experiment

	The Traceability Model
	The ParaPy Ontology
	The Knowledge Ontology
	Entity
	Constraint
	Activity
	Rule

	Connecting KFs to COs

	The Knowledge Portal
	Structuring Knowledge
	Knowledge Perspectives
	Data Viewer
	Relation Viewer
	Activity Diagram
	Traceability Viewer

	Experimental Results
	Experiment Set-up: Develop Application Code
	Experiment Set-up: Verify Application Code
	Results
	Discussion
	Developer Use Case
	Project Lead Use Case
	Observations

	Conclusion and Recommendations
	Conclusion
	Recommendations

	Bibliography
	Interview Questions
	Knowledge Portal Development
	Programming Language & Set-Up
	Application Source Code Parser
	Importing the Traceability Model
	Communication with the database
	Managing Knowledge Forms
	Loading Knowledge Forms
	Creating Knowledge Forms
	Modifying Knowledge Forms

	Loading Knowledge Perspectives
	Data Viewer
	Traceability Viewer
	Relation Viewer
	Activity Viewer

