
Image-Based
Video Search
Engine
Keyframe Extraction
L. Zheng and R.
Bos
EE3L11 - Bachelor Graduation Project
June 13, 2022

Group H1

Image-Based
Video Search

Engine
Keyframe Extraction

by

L. Zheng and R. Bos

to obtain the degree of Bachelor of Science
at the Delft University of Technology,

to be defended publicly on Friday June 20, 2022, at 9:00 AM.

Student number: 5120225, 4730674
Project duration: April 19, 2022 – June 24, 2022
Thesis committee: Prof. dr. N. Llombart, TU Delft, jury chair

Dr. ir. J. Dauwels, TU Delft, supervisor/ jury member 1
Dr. ir. E.W. Bol, TU Delft, jury member 2

Abstract
In this report, the analysis and design of a system that extracts keyframes from videos is detailed. The
need for such a sub-module stems from the similarity of frames in a video. To aid in reducing the com-
putation time of the content based video search engine, the Keyframe Extraction Module reduces the
amount of frames by discarding frames that are similar in information. Determining what frames can be
considered similar is one of the main challenges, as there are many ways of assigning values to how
much frames differ.

In the past decades, many research has been done on keyframe extraction and video summarization
and many methods are proposed to form keyframe selections, varying in what is considered salient
information and varying in computation time. The most challenging part of the design is that there is a
time constraint present, which called for a proper analysis in what methods are suitable. After all, this
limitation when creating video summaries is often not a large topic in research papers.

This report will cover Shot Detection techniques along with various Keyframe Extraction methods that
can be categorized in clustering, visual content, fixed selection and uniform sampling. Furthermore,
evaluation methods like the Fidelity measure for the performance of particular methods are also ad-
dressed, as determining how well a keyframe selection is is not trivial. It is concluded that out of
the techniques analyzed, a combination of VSUMM clustering and histogram matching along with
histogram-based shot based detection with a CFAR threshold and pre-sampling is most suitable for
the general case under a time constraint. Future work could include looking at hierarchical clustering
methods and optimizing the Shot Boundary Detection module following the most recent papers.

ii

Preface
This thesis was written as part of the Bachelor Graduation Project [EE3L11] to conclude our Bachelor
Electrical Engineering at the Delft University of Technology. This project was proposed by our super-
visor, Justin Dauwels, as part of an ongoing research project for Engineering Historical Memory [26].
Although the original project proposal was named “Image Search Engine for Digital History” and was
later changed to ”Image-Based Video Search Engine”, we were just as eager to develop a working
prototype of a video search engine, especially since the project was now similar to the work of previous
students yet posed an extra challenge. If any future students decide to iterate on this thesis’ topic of
Keyframe Extraction, we would be happy to receive a copy of their results (should they want to share
them).

Furthermore, we would like to thank Justin Dauwels, Ioan Lager and Yuanyuan Yao for their guid-
ance during the project. Lastly, we want to thank the other subgroups [15] [36] for the collaboration in
working towards a functional engine.

L. Zheng an R. Bos
Delft, June 2022

iii

Contents

Abstract ii

Preface iii

1 Introduction 1

2 Requirements 4
2.1 Program of Requirements for Keyframe Extraction submodule 5
2.2 Computation time constraint . 5

2.2.1 Assumption based time constraint . 5

3 Analysis 7
3.1 Determination of keyframes . 7
3.2 Evaluation metrics . 8
3.3 General techniques hierarchy . 8

3.3.1 Shot based detection . 9
3.4 Keyframe Extraction methods . 10

3.4.1 VSUMM . 10
3.4.2 SIFT . 10
3.4.3 Histogram 3x3 block clustering . 11

3.5 Evaluation methods . 11
3.5.1 Fidelity measure . 11
3.5.2 Shot reconstruction degree . 13
3.5.3 SumMe . 13

4 Design 15
4.1 Code development . 15

4.1.1 Random Access Memory management and data allocation 15
4.2 Retrieving (key)frame data from indices. 15
4.3 Selected videos for demonstration of results . 16
4.4 Fidelity implementation. 17
4.5 Shot Based Detection . 17

4.5.1 HBT . 17
4.5.2 PBT . 18
4.5.3 SBD Results . 20

4.6 Keyframe extraction . 21
4.6.1 Uniform sampling baseline . 21
4.6.2 Crude histogram matching . 22
4.6.3 VSUMM . 22
4.6.4 SIFT . 23
4.6.5 Color moments . 24
4.6.6 Histogram 3x3 block clustering . 24

4.7 General performance. 24

5 Prototype 27
5.1 Keyframe Extraction prototype. 27
5.2 Image-Based Video Search Engine . 27

5.2.1 Implementation . 27
5.2.2 Validation . 29

iv

Contents v

6 Conclusion 31
6.1 Discussion of results . 31
6.2 Conclusion . 32
6.3 Image-Based Video Search Engine . 32

6.3.1 Discussion . 33
6.3.2 Future Work. 33

A Performance metrics tables 34
A.1 SBD . 34
A.2 Crude histogram matching . 35
A.3 Histogramblockclustering . 36
A.4 VSUMM . 36
A.5 VSUMM and crude histogram combination . 37
A.6 SIFT . 37

B SumMe Benchmark 38

Bibliography 40
Bibliography . 40

1
Introduction

Image-Based Video Search Engine
This thesis is part of an ongoing research project ”Engineering Historical Memory” [26]. This thesis
builds upon the work of one of the Bachelor Graduation Project [20] groups of the TU Delft from aca-
demic year 2021-2022 on a Search Engine for Digital History [12] [35]. The goal of their research was
to create a search engine that can detect whether an object appears in a database of images. Since
then, the CAS group of the TU Delft has worked on improving the image search engine with a team of
MSc students. The next step in this project is to create a similar search engine that can detect instances
of a desired object in a query video. This Image-Based Video Search Engine is to be designed for a
variety of use cases, transcending the historical use case.

State-of-the-art Analysis
Instance-level image retrieval (IIR) is the problem of detecting an instance of an object that appears
in an image and then retrieving images from a database that contain the same instance of this object.
IIR and its application to video footage are both active fields of research. As video data and surveil-
lance coverage are becoming ever more prevalent, developing information systems that can process
and query this data is becoming increasingly important [5], as it is unfeasible to comb through all this
footage by hand. Thus, there are endless applications for video-based IIR: such as person/vehicle
identification, assistance in copyright claims, querying historical footage, etc.

Several examples exist of using IIR systems for finding images in a database of images [5], and for
finding videos in a database of videos [10]. However, relatively little was found in using IIR systems
for detecting images in a video. This suggests potential for research into the field. One of the rare
implementations of a video-based IIR system is the work of A. Araujo et al. [2]. Their research focuses
on reducing storage requirements when using IIR systems for video databases when using local fea-
ture matching by determining optimal descriptors. A similar existing system is Video Google [30]. The
approach used by Video Google is to perform the search similar to how Google does text document
retrieval. Frames of a video are evaluated based on two types of regions. One based on gradients
and a second one based on how stationary objects are. Vector descriptors can be made based on
these regions and evaluated using text retrieval methods. In this case an inverted file structure is used
that stores the descriptors as visual words. Similar to how commonly occurring words (such as ’the’)
are excluded in a text based scenario, the commonly occurring descriptors are put in a ’stop list’ that
suppresses these occurrences. However, the reported system takes frames from the video as inputs.
Both of these methods make use of local features for comparing the query images to the video dataset.
Using local features leads to accurate results but in both papers time considerations are ignored.

Looking into existing video-based IIR systems for historic systems, only one implementation was found
in the work of Condorelli et al. [9]. Their work focuses on detecting segments of video which contain
lost cultural heritage in historical video footage. This method focuses on the accuracy of the resulting
video segments and the length of these segments as compared to the length of the original footage.

1

2 1. Introduction

However, similar to the existing systems explained above, the research does not take computing time
into consideration.

From this State-of-the-art Analysis it can be concluded that research into video-based IIR systems
has been done, but most research focuses on optimising accuracy of the system and barely any re-
search focuses on the duration of the system. Thus, there is a lot of potential for research into the
field.

Problem scoping and bounding
Utilising IIR for finding images in a database of images is in itself already valuable. However, with the
rapidly growing amount of visual content, not only the amount of images is increasing but the amount
of video material as well. Extending the IIR to videos opens up new possibilities to explore video ma-
terial. From easier access by searching for images in a library of cultural heritage videos [10] to finding
appearances of a companies products in extremist videos.

The main objective is to develop a system that is capable of retrieving occurrences of one or more
desired objects in a set of given videos, based on a set of given images. The second objective is to
document the process of developing this system. The first objective will be completed if it complies
with the requirements as specified in Chapter 2. The second objective will be completed if it complies
with the requirements as described in the BAP manual [20].

The main limitation of the project is the time constraint of 10 weeks. This is the time allocated to
build the entire system and document the process. The system itself is limited to use content based
methods only. This ensures that the content of the image is taken into account and no interpretations
are made of the image. Text-based methods have the limitation of the terms that describe the im-
age [24], which also limits search across cultures when these text-terms are not supported. Further
constraints are placed on which methods to be used. Existing methods should be used to develop the
search engine, in order to ensure the allocated time is put to good use on developing the system, rather
than on improving existing methods. Lastly, the development is restricted to using Python [37] and its
associated libraries and tools.

To create alternative systems to the Image-Based Video Search Engine, one could look into imple-
menting different methods for each of the modules, specifically regarding Feature Extraction. This
module is the slowest of the system, followed by the Keyframe extraction module. By looking into
different methods for these modules, the speed of the system could be improved. Furthermore, the
Feature Extraction module could be trained on different data in order to improve the performance of
the system even further. Finally, further tuning of the module-specific parameters could also be done
to improve the performance. The system-wide performance can be gauged by the Key Performance
Indicators: mean average precision (mAP), recall, and the amount of time saved.

Problem statement
Based on the analysis, the problem scoping and the problem bounding, the following problem state-
ment was derived:

Develop a system that can detect whether an instance of a desired object appears in a given video,
based on a given set of images containing the desired object.

System Overview
Subdivision of the System
According to the thesis guidelines [20], each BAP group has to be split into three subgroups of two
people each. As such, this Image-Based Video Search Engine has to be split into three modules.
These modules were selected to be:

1. Key-Frame Extraction (KFE), which cuts the query video down into frames and removes unnec-
essary frames.

3

2. Feature Extraction (FE) [36], which translates the keyframes and the query image into feature
vectors.

3. Data Compression & Nearest Neighbour Search (DCNNS) [15], which compares the extracted
features of the keyframes to those of the query image.

The three modules will tackle the following subproblems respectively:

1. Develop an algorithm that finds keyframes to reduce the amount of video frames to be evaluated.

2. Develop an algorithm that can extract the features of the keyframes and of the query images.

3. Develop an algorithm that can compare the features of the query image(s) to the features of the
keyframes.

This thesis will describe the Keyframe Extraction submodule.

Figure 1.1: Pipeline of the complete Image-Based Video Search Engine

Keyframe Extraction
The first module is the Keyframe Extraction submodule. It focuses on sub-problem 1 of the problem
statement. In essence, the module consists of an algorithm that decodes the video into frames and
sends a selection of these frames to the Feature Extraction module, along with the corresponding in-
dices and the framerate of the video, to maintain information for determining the timestamps of where
a certain frame appears in the video. The goal is to optimize this comparison by evaluating differ-
ent methods and their strengths and weaknesses under varying conditions. These conditions include
different types of video-content, playback time and resolution.

Document Structure
This thesis describes the Data Compression and Keyframe Extraction submodule. In Chapter 2 the
programme of requirements is explained. In Chapter 3, existingmethods are analysed. In Chapter 4 the
design of the module is explained and some of the results are shown. In Chapter 5 the implementation
and validation of the prototype are explained. In Chapter 6 the results are discussed and the conclusion
is presented.

2
Requirements

Mandatory Requirements Trade-off Requirements

Functional Requirements Functional Requirements

1. The search engine must detect whether an instance
of a desired object appears in a given video, based on
a given set of images containing the desired object.

2. The search engine must return the timestamp(s)
where the object appears in the video.

3. Matching of images to frames must be based on vi-
sual content.

1. The engine should be able to handle multiple input
videos.

2. The engine should be able to handle multiple input
images.

3. Mean Average Precision should be as high as possi-
ble.

4. The codebase should be structured clearly and prop-
erly documented.

5. The supported number of image formats should be as
high as possible.

6. The supported number of video formats should be as
high as possible.

7. The execution time should be as low as possible.
8. The system should be able to process videos with a

large duration.

Non-Functional Requirements Non-Functional Requirements

1. The system must support video files of the type mp4.
2. The full implementation must be completed within 10

weeks by a group of 6 students.
3. The system must be written in Python version 3.9 or

higher.
4. Conda version 4.10 or higher must be used for syn-

chronizing Python environments.
5. The engine must be able to be tested with hardware

that is available to the group.
6. For a single query image, the engine should be able

to process a video shot at 30 frames per second in
half the duration of the video.

7. Mean Average Precision must be at least 65 %.
8. Mean Average Precision must be at least 65%

1. The extraction time per image should be as low as
possible.

2. The resolution of the images should be as high as
possible (to prevent information loss).

3. The MAP should be as high as possible.
4. The Recall should be as high as possible.

Table 2.1: Program of Requirements (PoR) of the entire engine

The Programme of Requirements lists the restrictions and functionality of the Image-Based Video

4

2.1. Program of Requirements for Keyframe Extraction submodule 5

Search Engine. The requirements are divided in mandatory requirements and trade-off requirements.
The mandatory requirements must be met and specify the core of the system. The trade-off require-
ments lists requirements that improve the system when they are met. Both sections are divided in
functional requirements and non-functional requirements. The complete overview is shown above.

2.1. Program of Requirements for Keyframe Extraction submodule
Apart from the general Program of Requirements for the video search engine, an auxiliary Program of
Requirements of the Keyframe Extraction module was constructed, which is depicted in Table 2.2. The
metrics for the trade-off requirements will be elaborated in Chapter 3.

Mandatory Requirements Trade-off Requirements

Functional Requirements Functional Requirements

1. The submodule must reduce the amount
frames of the video to be analyzed by subse-
quent modules.

2. The submodule must keep as many frames as
possible where the instance of interest appears
if it exists.

1. The Compression Ratio should be as high as
possible.

2. The difference in content between frames that
are selected should be as high as possible.

Non-Functional Requirements Non-Functional Requirements

1. The submodule must support video files of the
type mp4 of variable duration and resolution.

2. The full implementation must be completed
within 9 weeks by a group of 2 students.

3. The submodule must be able to function with up
to 8GB RAM available.

4. The submodule should have as output (which
form the input of the Feature Extraction sub-
module): RGB-data of the selection of frames,
corresponding indices of the input video and the
original framerate of the video.

5. The codebase should be structured clearly and
properly documented

1. The Precision should be as high as possible.
2. The Recall should be as high as possible.
3. The F-measure should be as high as possible.
4. The Fidelity should be as high as possible.
5. The computation time should be as low as pos-

sible

Table 2.2: Keyframe Extraction Program of Requirements (PoR)

2.2. Computation time constraint
In addition to the requirements posed in the previous section, a constraint on the computation time of
the method to be used comes to light when considering the performance of subsequent modules. One
could define the primary function of the Keyframe Extraction module as reducing the overall search time
of the video search engine by reducing the amount of frames for the Comparison Module to process.
Consequently, if the computation time for discarding the redundant frames is comparable to that of
the processing time of feature extraction and nearest neighbour search per frame, the effectiveness
of the module comes into question. This leads to a constraint in computation time depedent on the
performance of the other submodules in the system.

2.2.1. Assumption based time constraint
The main assumption is that if you were to uniformly sample (Section 3.3) a video at 5𝑓𝑝𝑠 (which
requires minimal computation time), the instance of interest always appears in the frames, if it exists.

6 2. Requirements

From this perspective, the objective is to discard as much redundant frames from these 5 as possible.
Equation 2.1 describes the time constraint that is posed on any chosen method in the design. Important
to note is that 𝑇𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛_𝑘𝑒𝑦𝑓𝑟𝑎𝑚𝑒𝑠 and 𝑇𝑢𝑛𝑖𝑓𝑜𝑟𝑚𝑙𝑦_𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 are computation times per second of the
input video. The constraint is based on the following assumptions.

• If one were to uniformly sample a video at 5 frames per second, the instance of interest is always
in the selected frames if it exists.

• The chosen method has a recall of 100%.

• The computation time for the Comparison Module per frame does not depend on the amount of
frames sent.

𝑇𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛_𝑘𝑒𝑦𝑓𝑟𝑎𝑚𝑒𝑠 < (5 − 𝑁𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑) ∗ 𝑇𝑐𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛_𝑝𝑒𝑟_𝑓𝑟𝑎𝑚𝑒 − 𝑇𝑢𝑛𝑖𝑓𝑜𝑟𝑚𝑙𝑦_𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 (2.1)

As an example, if uniformly sampling takes no time, and if the Comparison module uses 0.5 s per
frame to process (𝑇𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛_𝑘𝑒𝑦𝑓𝑟𝑎𝑚𝑒𝑠 = 0.5𝑠), and the chosen method selects on average 3 frames
per second of video, the computation time of the Keyframe Extraction submodule should be less than
(5 − 3) ∗ 0.5 = 1𝑠 per second of video.

3
Analysis

There are several dependencies regarding the input and output that determine the scope of the design
and the analysis of the keyframe extraction methods in this project. First is that there is no prior in-
formation known about the content, class or semantics of the input images. The video search engine
is created for the general case; the instance appearing in the input image(s) is unknown. The system
does not allow pre-training or method adjustment based on the type of instance. For this reason, along
with other reasons that became clear from supervisor discussions, the Optimization module that was
proposed in the early stages of the project (that would only extract frames containing the same class as
the input images(s) and was pre-trained for thousands of object classes) has been omitted. Secondly,
the main point of attention in the selection method such as movement of vehicles, color, logos, or faces
cannot be determined beforehand, leading the design towards a method suitable for a set of keyframes
that differ in general from one another, which will be discussed in this chapter.

3.1. Determination of keyframes

Figure 3.1: Video hierarchy [29]

The extraction of keyframes is closely linked to video
abstraction or video summarization, where the sum-
mary contains the most appropiate information, while
preserving originality of the video[27]. This mecha-
nism is often used to gain perspective of frames with-
out watching the entire video. Video skimming is an-
other form of video abstraction, where short clips of
the video are merged with corresponding audio [29].
For the design described in this report however, this
type of abstract is not applicable. Object-based video
abstraction, which extracts objects for content-based
analysis of videos [27], is also not applicable due to
the lack of semantics involved in this design.
When looking at the general hierarchy of a video in
Figure 3.1 (which is undisputed by any paper adhering to this topic found), most important to note is
that frames can be grouped into shots. Most research focuses determining the boundaries of these
shots (also referred to as segments) before applying the selected method to form a video abstraction
[32][21]. Shots are sequences of frames that are grouped by visual attributes, which are low-level
features [27].
Although shots (or segments) often have abrupt transitions, determining the boundaries is not uncom-
plicated when there are transitions present that span over multiple frames. Part of the objective is to
create a set of keyframes that are low in similarity, which for example means that a still image in a
video would only result in one keyframe taken for the duration it is shown. Some of the approaches
to compare frames are to use histograms, edge detection, (non-deep learning) feature extraction and
clustering. For machine learning techniques, only unsupervised based methods can be made use of,
as prior information about the dataset is unknown [29]. The categorization and analysis of different

7

8 3. Analysis

keyframe extraction methods are shown in Section 3.3.

In some works, a framework for video summarization is used that defines the properties continuity,
priority and repetition [7]. Continuity means that the summary must be as uninterrupted as possible,
priority means that some objects or events are more important than others and repetition means that
is important that events may not be presented over and over again [7]. This shows that video summa-
rization cannot be considered the same as Keyframe Extraction, especially for the design subject to
this report, as creating a comprehensive summary of the video is not as important. Nevertheless, the
approaches for both topics are very similar.

3.2. Evaluation metrics
The four general metrics that assess the performance of a generated set of keyframes are the Com-
pression Ratio (CR), precision, recall and the F-measure, which are given in eq. 3.1 through 3.4. In
these metrics, 𝑁𝑒 is the number of keyframes extracted from the video, 𝑁𝑎 is the number of accu-
rately extracted keyframes, 𝑁𝑓 is the total number of frames in the video and 𝑁𝑘 is the number of ”true”
keyframes in the video. Using the baseline fps of the time constraint assumption in Section 2.2, the CR
should always be higher than (1 − 5/30) ∗ 100% = 83.3% for a video with a framerate of 30 𝑓𝑝𝑠. The
main drawback of these metrics is that one cannot appoint fixed ”true” keyframes in video, which calls
for more creativeness by for example setting ranges in where a keyframe is expected. The F-Measure
is obtained by combining precision and recall using the harmonic mean [29]. A high recall would con-
tribute to a higher accuracy in finding an instance appearing in a video, while a high precision would
be beneficial time-wise, as less frames would need to be sent to the Comparison module.

𝐶𝑅 = 1 − (𝑁𝑒/𝑁𝑓) [∗100%] (3.1)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑁𝑎/𝑁𝑒 (3.2)

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑁𝑎/𝑁𝑘 (3.3)

𝐹_𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙 (3.4)

3.3. General techniques hierarchy
The range of complexity of methods to select frames from a shot is large. The most basic approaches
include simply taking the first (and the last) frame in the shot, taking frames at set location in a shot,
taking frames at intervals depending on the length of the shot, and uniformly sampling regardless of
shot boundaries. In this section, the methods for determining the locations of the shots and the meth-
ods used to compute keyframes within shots are laid out. For further choices in design, the trade off
between the performance and computation time is the main factor in determining the suitability of a
given method, as also pointed out in [21]: ”The most simple techniques compromise extracted quality
but the most sophisticated are computationally expensive”. Although Keyframe Extraction methods
can be categorized in different ways, in this analysis the hierarchy shown in Figure 3.2 is constructed.

3.3. General techniques hierarchy 9

Figure 3.2: Hierarchy of methods discussed in this report

Fixed selection
A traditional approach is to select the first and the last frame (and perhaps middle frame) of every
extracted shot [29][21]. This often results in a very condensed video summarization, yet the amount
of keyframes is dependent on the length of shots. Although this technique is useful for generating an
impression of the video content, it is highly likely that it would miss frames where the instance of interest
occurs.

Uniform sampling
Uniform sampling is a simple technique that selects every kth frame of the original video as a keyframe,
without laying importance on any visual content or dynamics, as with the fixed selection method [21].
This method is computationally cheap and the number of keyframes that is extracted can be fixated
(and thus the Compression Ratio). The drawback of uniform sampling is that too few keyframes may
be taken in a period where the information density is high, and vice versa. As mentioned in Chapter 2,
the uniform sampling rate of 5𝑓𝑝𝑠 (every 6th frame) is assumed to result in a recall of 100% for most
videos (which gives a Compression Ratio of 83.3%). This is considered the baseline method, although
for many videos it would result in a large amount of redundant frames, unnecessarily increasing the
computation time of the entire system.

Visual content
Techniques based on visual information make use of consecutive frame differences in color histograms
or histogram of orients (HOG). A simple consecutive frame difference method is to set a threshold for
the histogram difference while reading through the frames of the video. The Compression Ratio would
not be predetermined in this manner. Another method is the compute the histograms for all frames and
select keyframes making use of the mean and standard deviation.

Clustering
Clustering techniques are based on fragmenting frames into clusters based on visual similarity and
selecting the frames that are closest to the mean of the largest clusters as keyframes [27][21]. This
method provides better performance than uniform sampling, as the amount of keyframes during an
interval is dependent on the information density. An action movie would result in more keyframes than a
romantic movie, for example [27]. Clustering based methods generate even less redundant summaries
compared to consecutive frame difference based techniques [21]. However, a drawback is that one
must determine the amount of clusters beforehand. A more complex method is hierarchical clustering,
which obtains clusters on different levels of abstraction as the position in time of the keyframes is also
taken into account [13].

3.3.1. Shot based detection
The shot-based detection (SBD) technique segments the video frames into a number of smaller shots
by detecting the shot boundaries or transitions. This detection is done by finding dissimilarities of visual
content. A transition is detected when a change above a certain threshold is detected.

10 3. Analysis

Different papers have different SBD categorizations. In [32], 44 papers were reviewed for their ap-
proaches to segmentation and categorized. The four SBD categories in this paper are Cut-based,
Machine learning, Color-based and Entropy-based. In [29], the SBD algorithm consists of three core
elements: Frame representation, Dissimilarity measure and thresholding. In the resulting frames, the
keyframe extraction is performed. Some methods of SBD are:

• pixel-based technique (PBT)

• histogram-based technique (HBT)

• Statistical-based technique (SBT)

• Edge-based technique (EBT)

• Machine learning based technique (MLBT)

For further analysis, the categorization of [29] is taken since this paper provides a more in-depth and
clear explanation of the different methods. In this project, PBT and HBT with partial SBT is used since
EBT is less reliable than histogram based algorithms in terms of computational time and performance
[29]. Additionally, MLBT are also computationally expensive due to the well-trained network model [29]
which makes it inappropriate to implement due to the hardware limitations. Additionally, [22] states:
”The pixel-based methods are highly sensitive to motion of objects.” and ”Histogram-based methods
completely lose the location information of pixels.” which should be taken into account.

Partial SBT is selected for the reason that a fully implemented SBT requires a high computation time
due to the statistical calculations [29]. However, a variable threshold is desirable due to dynamical
nature of videos received as input. Thus, it is decided to partially implement SBT in a optimal balance
of performance and computational time.

3.4. Keyframe Extraction methods
3.4.1. VSUMM
Video summarization (VSUMM) is a algorithm which generates summaries based on visual features
which has been one of the fundamental unsupervised techniques for video summarization [18]. The
visual features of each frame are extracted with the use of color histograms and clustered afterwards
using the K-means [25] algorithm as proposed in [11]. In the clusters, one frame is selected and that
is identified as the keyframe. Optionally, one can also eliminate the keyframes that are too similar, to
refine the summary. the K-means algorithm is chosen because it is one of the most simple unsuper-
vised learning algorithms to solve clustering problems [28].

There are two approaches to select the keyframes of the clusters. With (VSUMM2) and without key-
cluster selection (VSUMM1) [18]. The approach with keycluster selection (VSUMM2) only selects a
frame from a cluster when it is a keycluster [40]. A cluster is a keycluster when the size of a cluster is
greater than a certain cut-off point, in [40], half of the average cluster size is used as cut-off point. The
selection of the keyframe itself is identical in both approaches, the frame at the smallest distance of the
cluster centroid measured in Euclidean distance is selected.

To avoid too similar keyframes, elimination of similar keyframes is done. This is done by compar-
ing the keyframes among themselves with the use of color histograms. If the similarity is lower then
a certain threshold, the keyframe is removed from the summary [11]. Additionally, [11] also points out
that two frames does not need to be identical in order to be considered too similar.

3.4.2. SIFT
”Scale Invariant Feature Transform (SIFT) has been one of the most prominent local features in com-
puter vision.” [18] The descriptors of SIFT are robust to be used as local features since they are partially
invariant to illumination and fully invariant to small deformations, rotations, translations and scaling.
There are several variations of SIFT used for keyframe extraction as proposed in [38] and [3] which
are also considered. However, the basic/general method as proposed in [18] is chosen because of the

3.5. Evaluation methods 11

room of tailoring it offers and discussing every variation would be outside the scope for this thesis.

The proposed SIFT in [18] first defines important localizations with the use of smoothed and resized
images in scale space and applying difference of Gaussian function to determine the maximum and
minimum responses. To ensure a collection of interesting and distinct keypoints, non maxima sup-
pression is done and the putative matches are discarded. The dominant orientation of the localized
keypoints are found by dividing the image into patches and performing histogram of oriented gradients
(HOG).The keypoints extracted are the local features and a threshold is taken which takes a certain
percentage of the total video frames as keyframes.

3.4.3. Histogram 3x3 block clustering
A different method using clustering is apply a dynamic clustering method making use of singular value
decomposition (SVD) [19]. The algorithm separates every video frame into blocks (Figure 3.3) and con-
catenates their flattened 6-bin color histograms (creating a feature vector of 216 ∗ 9 = 1944 elements
each). These are then stacked into a matrix and then transposed (creating a 1944𝑥𝑓𝑟𝑎𝑚𝑒_𝑐𝑜𝑢𝑛𝑡 ma-
trix). After performing SVD (with 63 singular values) to reduce the matrix dimension, the first two frames
are added to a cluster and the mean is taken as the centre. For the remaining frames, a frame is added
to the last created cluster (and the centre is updated) if it is above a preset Cosine Similarity threshold.
If this is not the case, a new cluster is formed. If there are 25 frames or more frames in a cluster, the
last frame in the cluster is taken as a keyframe. The advantages of this type of dynamic clustering is
that the amount of clusters does not need to be determined beforehand and not all clusters will result
in a corresponding keyframe. The drawback is that the clusters are formed chronologically, if frames
are very similar but far apart, they will be added to different clusters.

Figure 3.3: 3x3 frame separation into 9 different histogram vectors.

3.5. Evaluation methods
3.5.1. Fidelity measure
Although the Fidelity measure as introduced in [7] (and utilized in [21], [33] and [22]) does not directly
compute the evaluation metrics (Section 3.2), it does provide an algorithm with the ability to compare
sets of keyframes extracted based on visual frame descriptors. The Fidelity measure can be consid-
ered an objective general purpose summary evaluation, which can be applied to all video sequences
regardless of genre and does require human summaries [7]. It makes use of color histograms, wavelet
statistics and edge direction histograms to form a frame differencemeasure. Taking 𝑉𝑠𝑒𝑞 = [𝐹1, 𝐹2, ..., 𝐹𝑁]
as the set of all frames in the input video and 𝐾𝐹 = [𝐾𝐹1, 𝐾𝐹2, ..., 𝐾𝐹𝑀] as the set of extracted keyframes,
the Fidelity measure is computed using the following equations.

𝐹𝑖𝑑𝑒𝑙𝑖𝑡𝑦(𝑉𝑠𝑒𝑞 , 𝐾𝐹) = 𝑀𝑎𝑥𝐷𝑖𝑓𝑓 − 𝐷𝐼𝑆𝑇(𝑉𝑠𝑒𝑞 , 𝐾𝐹) (3.5)

𝐷𝐼𝑆𝑇(𝐹, 𝐾𝐹) = 𝑀𝑖𝑛{ 𝐷𝑖𝑓𝑓(𝐹, 𝐾𝐹𝑗) }, 𝑗 = 1 𝑡𝑜 𝑀 (3.6)

𝐷𝐼𝑆𝑇(𝑉𝑠𝑒𝑞 , 𝐾𝐹) = 𝑀𝑎𝑥{ 𝐷𝐼𝑆𝑇(𝐹𝑖 , 𝐾𝐹) }, 𝑖 = 1 𝑡𝑜 𝑁 (3.7)
The frame difference measure is computed using eq. 3.8, from which it becomes apparent that a high
increase in Diff is only achieved when two ore more feature descriptors have high difference values [6].
This means that with the use of three descriptors, only if the changes in the sequence are significant
in terms of color, texture and edges 𝑑𝐻𝑊𝐷 will result in high values [6]. Generally, a single descriptor
does not capture all pictorial details needed to estimate the changes in frames [7] Although high Fidelity
values indicate a good representation of the visual content of a video, it does not focus on local details
[23].

12 3. Analysis

𝐷𝑖𝑓𝑓(⋅) = 𝐷𝐻𝑊𝐷 = 𝑑𝐻𝑑𝑤 + 𝑑𝑊𝑑𝐷 + 𝑑𝐷𝑑𝐻 (3.8)

For the difference measure of histograms (𝑑𝐻), 64 bin HSV (Hue, Saturation and intensity Value) color
space histograms are used [7]. The intersection measure of the two histograms of the frames to be
compared form 𝑑𝐻.

(a) boxes.png (b) HSV color histogram

Figure 3.4: boxes.png and corresponding HSV histogram with 64 bins

The edge direction histogram based difference (𝑑𝐷) uses 72 bins with intervals of 2.5∘. This type of
histogram is used to detect the gradients of pixels, and in particular horizontal and vertical edges. If
the Sobel filters [31] as shown in eq. 3.9 and 3.10 exhibit a gradient above a threshold, they are added
in the bins (after computing the gradient angle using eq. 3.12). This threshold is heuristically set at 4%
of the maximum gradient value to remove background noise [7].

𝐺𝑥 = [
1 0 −1
2 0 −2
1 0 −1

] (3.9)

𝐺𝑦 = [
1 2 1
0 0 0
−1 −2 −1

] (3.10)

𝜃 = √arctan
𝐺𝑦
𝐺𝑥

(3.11)

|𝐺| = √𝐺2𝑥 + 𝐺2𝑦 (3.12)

In computer vision, the magnitude |𝐺| is often computed using 0.5(|𝐺𝑥| + |𝐺𝑦|) in order to save com-
putation time. The results of applying the Sobel filters can be seen in Figure 3.5 and Figure 3.6. As
opposed to the HSV histograms, the difference measure 𝑑𝐷 of two Sobel histograms is computed using
the Euclidean distance [7] after normalizing for the amount of pixels.

3.5. Evaluation methods 13

Figure 3.5: Built-in OpenCV Sobel filters applied to boxes.png and plotted for magnitude

Figure 3.6: Corresponding 72-bin (180 degrees) Sobel histogram

The third descripor difference 𝑑𝑊 is computed by multiresolution wavelet analysis [7]. This provides
information about the overall texture of the image at different levels [6].

3.5.2. Shot reconstruction degree
In [23], a criterion to evaluate keyframes called the shot reconstruction degree (SRD) is proposed.
This criterion focuses more on local details and the evolution trend of a video shot, as compared to the
Fidelity. The better the shot cane reconstructed through the interpolation of the keyframes, the higher
the shot reduction degree. According to [23], a high SRD will guarantee good information maintenance
and retainment of motion dynamics of the original video. For this project however, the importance of
capturing motion dynamics and local details in the selected keyframes is considered less than capturing
as much instances as possible that appear in a video. Although it is therefore questionable if SRD is
the most valuable evaluation method, it is stated that a high SRD will also lead to a high fidelity. The
SRD has local evaluation and the Fidelity employs a global strategy [7].

3.5.3. SumMe
A popular benchmark for video summaries is SumMe [14]. This benchmark makes use of 25 videos
varying in content consisting of one shot, annotated by 15 users each for ”interestingness”. Users
were instructed to select ranges of the video of around 5 seconds to form a summary within 5-15%

14 3. Analysis

of the entire video/shot. This data is inserted into a matrix of 𝑓𝑟𝑎𝑚𝑒_𝑐𝑜𝑢𝑛𝑡 ∗ 𝑢𝑠𝑒𝑟_𝑎𝑚𝑜𝑢𝑛𝑡 of which
the columns can be averaged to form an array that displays the likely-hood for all frames in the shot of
being a keyframe (𝑔𝑡_𝑠𝑐𝑜𝑟𝑒). This provides a method for determining the Precision and Recall, and
consequently the F-measure. An example of this is shown in Figure 3.7.

Figure 3.7: F-measure for Playing_On_Wateslide.mp4

Although the SumMe benchmark is a valuable tool in video summarization, it was not considered suit-
able for this reports applications. The reasons for this are that the evaluation is done for summary
lengths within 5-15%, while the desired summary length is much lower than 5% and that the users that
annotated the videos selected segments based on ”interestingess”, which is a vague determination of
salient content. Appendix B shows more details of this benchmark.

4
Design

In this chapter, the design of various methods and techniques discussed in Chapter 3 are laid out. The
performance metrics will be evaluated for all methods and compared in the last section for a general
comparison. Most tables with results are compacted to show the most interesting data in order to
sustain readability. The complete tables can be found in Appendix A. All results were performed on a
Intel Core i7-7700HQ CPU @ 2.80GHz in combination with a NVIDIA Quadro M1200 GPU. Although
the extracted keyframes indices are deterministic, the execution time will be lower for a better GPU.

4.1. Code development
To read and process frames from videos the OpenCV Python library [1] is often used throughout the
code for this design. This library is very prominent in the Computer Vision field.

4.1.1. Random Access Memory management and data allocation
When striving for a low computation time, one should want to read in a frames from a video only once
for further processing and give as output to the Feature Extraction module to prevent unnecessary
repetition and thus computational delay. However, storing RGB-data of frames into an array would
quickly scale the amount of RAM needed with increased video duration. For a video with a resolution
of 1280𝑥720 pixels, each frame would require roughly 2.8 𝑚𝑒𝑔𝑎𝑏𝑦𝑡𝑒𝑠. The requirement given in the
PoR (Table 2.2) that only 8𝐺𝐵 RAM is available would mean that only 2850 frames can be stored at a
time. This can be problematic for videos of large duration and resolution. As the array with the RGB-
data is the main output of the module, it determines the size of the input video. 2850 keyframes with the
assumption of a minimum compression of 85% and a video with a resolution of 1280𝑥720 and frame-
rate of 30𝑓𝑝𝑠 would mean that the duration of the video is restricted to 10.55 minutes. Furthermore,
the intermediate steps for determining the keyframes can also not make use of more than 2850 frames
in an array at a time, meaning that frame descriptors must be generated in parallel with Shot Based
detection, if is shot detection is used. If a video would exceed this limit, the choice could be made to
process videos into parts for the entire video search engine.

4.2. Retrieving (key)frame data from indices
In this design, it has been chosen to decode the the data from the keyframe indices once more from
the input video, for the reasons mentioned in 4.1.1. This means there is some repeatability involved
which could increase the computation time of the sub-module, but at the benefit of reduced complexity
and increased video duration capacity. When retrieving RGB-data from indices of keyframes (or by
sampling), one can choose to read decode RGB-data from indices using the built-in OpenCV function
𝐶𝑉2.𝐶𝐴𝑃_𝑃𝑅𝑂𝑃_𝑃𝑂𝑆 or by using 𝑔𝑟𝑎𝑏() and 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒(). The plot of the computational time for both
ways is plotted in Figure 4.1. For rates higher than 0.7 𝑓𝑝𝑠, or on average every 43tĥ frame, or a
CR of 97.6 %, it is faster to read all frames and discard the frames that are not desired. This switch-
case has been implemented in the code. This plot also shows that for keyframe selections with a
Compression Ratio above this threshold, the overall computation time of the system decreases with

15

16 4. Design

increased Compression Ratio (aside from the decreased computation time for the entire video search
engine).

Figure 4.1: Comparison in speed for the amount of indices selected (video: postbus.mp4)

4.3. Selected videos for demonstration of results
For evaluating methods for performance while maintaining a good overview of the characteristics for
different types of videos, 4 videos where created, varying in content, duration, and amount of shots.
The content overview of them can be seen in the following figures. These video can be found in the
GitHub video folder [4].

Figure 4.2: Video content overview of ewi-tudelft.mp4 (14.44s, 30fps, 1280x720p), which consists of one continuous segment
(shot).

Figure 4.3: Video content overview ofmailbox-street.mp4 (14.44s, 30fps, 1280x720p), which consists of one continuous segment
(shot).

4.4. Fidelity implementation 17

Figure 4.4: Video content overview of multishot.mp4 (14.44s, 30fps, 1280x720p), consisting of 8 different shots with 7 different
transitions: 5 abrupt transitions, 1 star-swipe transition and 1 smooth fade transition.

Figure 4.5: Video content overview of zheng-he.mp4 (14.44s, 30fps, 1280x720p), a clipped video taken from the Engineering
Historical Memory video database [26] consisting of 10 different shots with 9 different transitions: 5 abrupt transitions and 4
smooth fade transitions.

4.4. Fidelity implementation
The implementation for computing the Fidelity measure is highly comparable to the proposition in Sec-
tion 3.5.1. While the histogram difference 𝑑𝐻 does not differ from the analysis in any way, the difference
descriptor 𝑑𝐷 using Sobel filters makes use of a Gaussian blur filter proceeding the histogram to reduce
the noise (instead of a 4% magnitude threshold). This is not considered to influence the output of the
Fidelity measure. Both descriptors were normalize to have their values mapped between [0, 1]. Unfor-
tunately, the wavelet descriptor 𝑑𝑤 required extensive analysis to implement, which the time constraint
for this project did not allow. The resulting 𝑑𝐻𝑊𝐷 was thus calculated using eq. 4.1.

𝐷𝑖𝑓𝑓(⋅) = 𝐷𝐻𝑊𝐷 = 𝑑𝐷𝑑𝐻 (4.1)

4.5. Shot Based Detection
Because of the dynamic nature of videos, different shots could have different amount of ’action’. This
means that if a variable threshold and a video with very active and inactive shots are used. There
is a chance that the action of the relative active shot will overwhelm the inactive ones, leaving some
whole shots extracted. In order to prevent this, shot based detection (SBD) is done before the keyframe
extraction. This will separate each shot from one another so that the keyframe extraction can extract the
keyframes of each shot individually. This section discusses the methods of SBD used and implemented
which is, as mentioned in 3.3.1, PBT and HBT with partial SBT.

4.5.1. HBT
The HBT as proposed in [18] starts with reading the RBG values of the frames. The histogram will
be computed with the use of the function 𝑐𝑣2.𝑐𝑎𝑙𝑐𝐻𝑖𝑠𝑡() and with the histogram values extracted, the
following equation is used:

∑𝑐∈{𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠} ∑
𝑏𝑖𝑛𝑠
𝑏=0 |𝐻(𝑛, 𝑐, 𝑏) − 𝐻(𝑛 − 1, 𝑐, 𝑏)|

2 ∗ |𝑝𝑖𝑥𝑒𝑙𝑠| ∗ |𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠| > 𝜏 (4.2)

Where 𝐻(𝑛, 𝑐, 𝑏) and 𝐻(𝑛 −1, 𝑐, 𝑏) are the values of bin 𝑏 of the color channel 𝑐 in the histogram of the
current and previous frame, 𝑝𝑖𝑥𝑒𝑙𝑠 the total number of pixels, 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 the number of channels (3 in
this case) and 𝜏 the threshold.

18 4. Design

HBT threshold
To make the algorithm viable for a wider range of action in the videos, a variable threshold is required.
However, a total SBT implementation has a high computational time [16]. Hence, a simplified approach
is taken as a middle ground to minimize the computational time while maximizing the robustness for
different videos. The threshold 𝜏 is taken as:

𝜏 = 𝑓𝑎𝑐𝑡𝑜𝑟 ∗ 𝑎𝑣𝑒𝑟𝑎𝑔𝑒ℎ𝑖𝑠𝑡−𝑑𝑖𝑓𝑓 (4.3)

Where 𝑓𝑎𝑐𝑡𝑜𝑟 is a multiplication factor and 𝑎𝑣𝑒𝑟𝑎𝑔𝑒ℎ𝑖𝑠𝑡−𝑑𝑖𝑓𝑓 the average histogram difference. After
some testing, a factor of 6 is taken since it returns the best results in a wide range of non-dynamic and
dynamic videos. The resulting comparison will be done to determine the shot boundaries:

𝐻𝑑𝑖𝑓𝑓(𝑛) > 𝜏 = 𝑓𝑎𝑐𝑡𝑜𝑟 ∗ 𝑎𝑣𝑒𝑟𝑎𝑔𝑒ℎ𝑖𝑠𝑡−𝑑𝑖𝑓𝑓 (4.4)

Thus, a frame is classified as a shot boundary if the histogram difference is higher than a multiplication
factor multiplied by the average histogram difference. However, after testing this algorithm in a wide
variety of videos, it became apparent that this threshold lacks in performance in longer videos. The
threshold performed well at the start since it was firstly tested on shorter videos (duration of the video
was less than one minute). Hence, the addition of the CFAR threshold is also added in HBT which is
discussed in 4.5.2 threshold section which explains this threshold in detail.

4.5.2. PBT
The PBT proposed by [29] first converts the image to a gray-image. After the conversion, the intensity
of each pixel is summed together and subtracted by the summation of the previous frame. Lastly, the
value is normalized and compared to a certain threshold, if the value is higher, that frame will be labeled
as a shot boundary. The equation is shown below:

|∑𝑟𝑜𝑤𝑥=1 ∑
𝑐𝑜𝑙
𝑦=1 𝑘(𝑚, 𝑥, 𝑦) − ∑

𝑟𝑜𝑤
𝑥=1 ∑

𝑐𝑜𝑙
𝑦=1 𝑘(𝑚 − 1, 𝑥, 𝑦)|

256 ∗ 𝑟𝑜𝑤 ∗ 𝑐𝑜𝑙 > 𝜏 (4.5)

Where 𝑘(𝑚, 𝑥, 𝑦) and 𝑘(𝑚 − 1, 𝑥, 𝑦) are the intensity values of each pixel of the current and previous
frame, 𝑟𝑜𝑤 the number of pixel rows in the frame, 𝑐𝑜𝑙 the number of pixel columns in the frame and
𝜏 the threshold. However, this method is very inaccurate since it only uses the intensity difference of
the whole frame instead of pixel by pixel. So if the intensity in the frame itself shifts while the overall
intensity stays the same, a boundary will not be detected. This is why it is chosen for this implementation
instead:

∑𝑟𝑜𝑤𝑥=1 ∑
𝑐𝑜𝑙
𝑦=1 |𝑘(𝑚, 𝑥, 𝑦) − 𝑘(𝑚 − 1, 𝑥, 𝑦)|

256 ∗ 𝑟𝑜𝑤 ∗ 𝑐𝑜𝑙 > 𝜏 (4.6)

This computed the intensity differences pixel-by-pixel and thus, will also detect shots when the intensity
changes in certain regions while the overall intensity stays the same.

PBT threshold
To increase the robustness of the algorithm, a variable threshold is needed. There are two versions
made for variable threshold. The first one is based on the threshold of HBT as discussed in 4.5.1, using
the same approach. For the PBT proposed by [29], the same factor of 6 is taken. But for the modified
method a multiplication factor of 2 is taken instead since the peaks are more defined. Part of the frame
differences and its threshold of 𝑧ℎ𝑒𝑛𝑔-ℎ𝑒.mp4 is plotted and shown below in figure 4.6 and 4.7. The
blue line represents the frame difference and the green line is the threshold taken.

As it can be seen from figure 4.6 and 4.7, due to the fade transition around the 450th frame, the
proposed algorithm will return false boundaries. Additionally, the differences in the region around the
200th and 300th frame, which is a relatively high dynamical shot compared to the rest of the video,
comes very close to the threshold. Furthermore, in the modified method, not only will the algorithm
return false boundaries at around the 450th frame, it would also return false boundaries at the region
between around the 200th and 300th frame. However, setting the threshold lower will result in com-
pletely not detecting the fade transition at around the 450th frame. The second variable threshold is
implemented in order to prevent this.

4.5. Shot Based Detection 19

The second variable threshold approach is based on a Continuous False Alarm Rate (CFAR) threshold
as proposed in [39]. This threshold is designed to find the correct peaks in noisy circumstances. The
noise in this case is the fact that some shots could be significantly more dynamical compared to other
shots, which means that the algorithm could label multiple false shot boundaries within the dynamic
shots if only an average threshold (as discussed above) is used, which was not the case with HBT.

The CFAR threshold averages out a region of the differences by convolving the frame differences
with an array of 𝑛 ones. The frame differences is defined as:

𝐷𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑 |
𝑟𝑜𝑤

∑
𝑥=1

𝑐𝑜𝑙

∑
𝑦=1

𝑘(𝑚, 𝑥, 𝑦) −
𝑟𝑜𝑤

∑
𝑥=1

𝑐𝑜𝑙

∑
𝑦=1

𝑘(𝑚 − 1, 𝑥, 𝑦)| (4.7)

𝐷𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑 =
𝑟𝑜𝑤

∑
𝑥=1

𝑐𝑜𝑙

∑
𝑦=1

|𝑘(𝑚, 𝑥, 𝑦) − 𝑘(𝑚 − 1, 𝑥, 𝑦)| (4.8)

Where 𝐷𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑 is used for the method proposed by [29] (see eq. 4.5) and 𝐷𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑 for the modified
method (see eq. 4.6). It is chosen to convolute the frame differences with:

ℎ = [0.5, 0.5, 0.5, 0.5, 0.5] (4.9)

Which is equal to an array of 5 elements all consisting ones and the result divided by 2. This results in
a ’multiplication’ factor of 2.5 which is chosen based on the results of multiple tests. A higher value will
result in not detecting a shot since the threshold is too high and a lower value will result in detection
of false boundaries in shot transitions. Additionally, the array size of 5 is chosen since it is a balance
of averaging while remaining the required steepness in the threshold. This second threshold is also
plotted and shown below in figure 4.6 and 4.7.

Figure 4.6: The frame differences and the thresholds of zheng-he.mp4 between the 175th and 475th frame of the proposed
method and 𝑓𝑎𝑐𝑡𝑜𝑟 = 6

20 4. Design

Figure 4.7: The frame differences and the thresholds of zheng-he.mp4 between the 175th and 475th frame of the modified
method and 𝑓𝑎𝑐𝑡𝑜𝑟 = 2

As it can be seen from figure 4.6 and 4.7, the second threshold takes care of the ’noisy’ peaks and
the first threshold eliminates the ’white noise’. Thus, in order for a frame to be considered as a shot
boundary, the frame difference has to be greater than the first and second threshold, or:

𝐷𝑚𝑒𝑡ℎ𝑜𝑑 > 𝜏 = 𝑚𝑎𝑥(𝜏𝑣𝑒𝑟𝑠𝑖𝑜𝑛1, 𝜏𝑣𝑒𝑟𝑠𝑖𝑜𝑛2) (4.10)

Where 𝐷𝑚𝑒𝑡ℎ𝑜𝑑 is the frame difference of the method, 𝜏𝑣𝑒𝑟𝑠𝑖𝑜𝑛1 is the threshold based on averaging
and 𝜏𝑣𝑒𝑟𝑠𝑖𝑜𝑛2 the threshold resulted by convoluting.

4.5.3. SBD Results
The algorithm is tested with the use of videos of the TRECVID 2001 dataset. In the data-set the videos
and truth tables are provided. The videos are described and shown below in table 4.1.

File Video Title Number of Cut
Name Frames transitions
anni005 ‘‘NASA_25th_Anniversary- 11,363 38

Show_Segment_5”
anni009 ‘‘NASA_25th-Anniversary- 16,587 38

Show_Segment_9”
nad31 ‘‘Spaceworks - Episode 6” 52,405 187
nad33 ‘‘Spaceworks - Episode 8” 49,768 189
nad53 ‘‘A&S_Reports_Tape_#4_-_Report_#260” 26,115 83
nad57 ‘‘A&S_Reports_Tape_#4_-_Report_#264” 12,781 44

Table 4.1: Videos of the TRECVID 2001 data-set used

It has to be noted that the videos of the data-set does not only consist of ’cut’-transitions but also other
different kinds of transitions. However, since the designed SBD is not optimized for a ’fading’ transition,
only ’cut’-transitions or abrupt transitions are considered. A few of the results are shown below in table
4.2, a complete overview can be found in Appendix A.1.

4.6. Keyframe extraction 21

Video HBT HBT +
CFAR

PBT
proposed

PBT
modified

Name R P F R P F R P F R P F
anni005 66.7 42.6 52 86.8 49.3 62.9 84.2 10.3 18.4 100 19.5 32.6
anni009 50 47.5 48.7 81.6 59.6 68.9 94.7 12.2 21.6 100 82.6 90.5
nad31 89.3 70.2 78.6 94.7 71.1 81.2 94.1 21.2 34.6 95.7 83.3 89.1
nad33 95.8 79 86.6 100 82.5 90.4 95.8 32.8 48.9 95.8 91 93.3
nad53 87 60.8 71.6 97.6 72.3 83.1 94 32.6 48.4 97.6 89 93.1
nad57 93.2 95.1 76.7 100 74.6 85.5 95.5 30 45.7 100 69.8 82.2
average 80.3 65.9 69 93.45 68.2 78.7 93.1 23.2 36.3 98.2 72.5 80.1

Table 4.2: Performance of SBD methods. Both PBT methods use the CFAR threshold as standard. ”R” is recall, ”P” precision
and ”F” the F-measure

Note that the precision for all the methods are generally low, this is because in the videos itself, there
are also other shots transitions, however, those are not counted as shot boundaries for the simplicity
of testing and the fact that the algorithm is not yet optimized for fading transitions since it is focused on
’cut’-transitions. Additionally, in the later part of ”anni005” the frames begin to stutter, which explains the
high amount of false detected shot boundaries detected by the modified PBT. However, even though
the modified PBT had a video with bad results, the F-measure is still the highest of all the four methods.
Furthermore, it is also noticeable that adding the CFAR threshold greatly improves the performance of
HBT. Lastly, the speed performance per frame is shown below in table 4.3, a complete overview can
be found in Appendix A.1.

File Video Title HBT HBT + PBT PBT
Name CFAR proposed modified
anni005 ‘‘NASA_25th_Anniversary- 0.388 0.429 0.351 0.463

Show_Segment_5”
anni009 ‘‘NASA_25th-Anniversary- 0.265 0.266 0.252 0.341

Show_Segment_9”
nad31 ‘‘Spaceworks - Episode 6” 0.371 0.373 0.351 0.526
nad33 ‘‘Spaceworks - Episode 8” 0.347 0.35 0.428 0.546
nad53 ‘‘A&S_Reports_Tape_#4_-_Report_#260” 0.354 0.361 0.406 0.51
nad57 ‘‘A&S_Reports_Tape_#4_-_Report_#264” 0.333 0.352 0.369 0.495

Table 4.3: Average computational time of different SBD methods per frame in milliseconds

It is noticeable that HBT with the implementation of the CFAR threshold only takes slightly more time per
frame (except for ”anni005”). The modified PDT takes longer compared to the proposed PBT since it
compared every single pixel with each other and thus, this difference is expected. Lastly, even though
the modified PDT returns the most accurate results as seen in table 4.2, HBT with CFAR threshold
serves as an alternative when a faster SBD is preferred.

4.6. Keyframe extraction
4.6.1. Uniform sampling baseline
Uniform sampling with 5𝑓𝑝𝑠 is used as a baseline to compare all other methods to (corresponding to
a Compression Ratio of 83.3%, as mentioned in the elaboration of the time constraint in Section 2.2.
Table 4.4 shows the performance for the four selected videos. The third column shows the average
computation time per second of input video.

22 4. Design

Video Avg. Comp.
time [s]

Avg. Comp.
time / dur. #KF CR [%] Fidelity

ewi-tudelft-2 0.98 0.068 72 83.13 0.982
mailbox-street 3.22 0.054 301 83.18 0.992

multishot 1.06 0.035 150 83.35 0.885
zheng-he 0.97 0.032 150 83.33 0.8275

Table 4.4: Uniform sampling at 5𝑓𝑝𝑠. The times are calculated using the average of 10 runs (n = 10).

Table 4.5 shows the results for a sampling rate corresponding to a CR of 98%, which is estimated to
be close to the CR of other methods. It is immediately apparent that this reduces the computation time
for all videos, but the Fidelity value as well.

Video Avg. Comp.
time [s]

Avg. Comp.
time / dur. #KF CR [%] Fidelity

ewi-tudelft-2 0.63 0.044 9 97.89 0.842
mailbox-street 2.52 0.042 37 98.93 0.947

multishot 0.53 0.018 18 98.00 0.695
zheng-he 0.5 0.017 18 98.00 0.634

Table 4.5: Uniform sampling for a Compression Ratio of 98%. The times are calculated using the average of 10 runs (n = 10).

4.6.2. Crude histogram matching
A simple histogram matching algorithm was implemented that compares each frames’ histogram to the
previously selected keyframe. The histogram similarity value was computed using the Bhattacharyya
distance (eq. 4.11) and the threshold was heuristically set at 0.30. Shot detection does not add any
value to this type of keyframe extraction, thus it has been omitted in Table 4.6 as it only increases the
computation time.

𝑑(𝐻1, 𝐻2) = √1 −
1

√𝐻1𝐻2𝑁2
∑
𝐼
√𝐻1(𝐼) ∗ 𝐻2(𝐼) (4.11)

Video Presampling Avg. Comp.
time [s]

Avg. Comp.
time / dur. #KF CR [%] Fidelity

ewi-tudelft-2 No 3.47 0.241 13 96.96 0.932
Yes 2.03 0.141 12 97.19 0.932

mailbox-street No 11.7 0.195 10 99.44 0.929
Yes 5.59 0.093 11 99.05 0.916

multi-shot No 6.55 0.218 33 96.34 0.756
Yes 2.97 0.099 32 96.45 0.715

zheng-he No 6.34 0.211 37 95.89 0.837
Yes 2.81 0.094 28 96.89 0.778

Table 4.6: Performance results of crude histogram matching. The times are calculated using the average of 10 runs (n = 10).
The presampling rate, if applied, is 10𝑓𝑝𝑠.

4.6.3. VSUMM
The code that was appended to [18] on GitHub [17] is used as the base for the video summarization
(VSUMM). The provided code was user-friendly but not optimized for speed, fast performance and re-
quired a manual input for every single shot. Optimizations are made in automation, speed and RAM
use. The resulting program reads and computes the descriptors for every frame. The descriptors of
VSUMM are generated using 𝑐𝑣2.𝑐𝑎𝑙𝑐𝐻𝑖𝑠𝑡 and the resulting array is a matrix of 𝑛𝑓𝑟𝑎𝑚𝑒𝑠 x 𝑛𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 *
𝑛𝑏𝑖𝑛𝑠, where 𝑛𝑓𝑟𝑎𝑚𝑒𝑠 is the number of frames of the video, 𝑛𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 the number of channels and 𝑛𝑏𝑖𝑛𝑠
the number of bins. Usually, 16 bins are taken for each channel [18] and for 𝑛𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 the value of 3 is
taken since the channels used are: ’r’, ’g’ and ’b’. The resulting descriptors are clustered in a variable

4.6. Keyframe extraction 23

number of clusters and transformed into cluster-space using the K-means algorithm. The number of
clusters is taken as a percentage of the total frame count.

It is decided to not use key-cluster selection (VSUMM2) and to use VSUMM1 instead since it saves
computational time and while VSUMM2 does give a higher precision compared to VSUMM1, it lacks
in recall compared to VSUMM1 [34] which is more important for a implementation in a search engine.
Furthermore, in the code provided, there was a option to create 3-D Tensor histograms but that has
been discarded since it required too much computation time (due to hardware limitations).

Additionally, to potentially save computational power and time, two versions are made: one which do
not compare the extracted keyframes and eliminating those which looks similar and one which does.
This last step is done with the crude histogram, hence, it is a ’combination’ of two keyframe extraction
techniques. The version without comparison extract a maximum of 2% of the total keyframes and the
version with a maximum of 5%. This is done since this version eliminates similar frames and otherwise
the first version would return too much similar frames. A short summary of the results are shown below
in table 4.7 and 4.8. A complete overview of the results can be found in appendix A table A.6 and A.7.

Video SBD Presampling Avg. Comp.
time [s]

Avg. Comp.
time / dur. #KF CR [%] Fidelity

ewi-tudelft-2 No Yes 1.29 0.089 2 99.53 0.773
Yes Yes 1.45 0.100 2 99.53 0.773

mailbox-street No Yes 5.29 0.088 12 99.33 0.928
Yes Yes 5.65 0.094 10 99.44 0.929

multi-shot No Yes 2.19 0.073 5 99.45 0.389
Yes Yes 2.91 0.097 7 99.22 0.632

zheng-he No Yes 2.32 0.077 5 99.44 0.477
Yes Yes 3.20 0.106 8 99.11 0.570

Table 4.7: Performance results of VSUMM. The times are calculated using the average of 10 runs (n = 10). The presampling
rate, if applied, is 10𝑓𝑝𝑠 and maximum of 2% of the frames are extracted as keyframes

Video SBD Presampling Avg. Comp.
time [s]

Avg. Comp.
time / dur. #KF CR [%] Fidelity

ewi-tudelft-2 No Yes 1.79 0.124 8 98.13 0.871
Yes Yes 1.95 0.135 8 98.12 0.908

mailbox-street No Yes 5.26 0.088 11 99.39 0.932
Yes Yes 6.27 0.104 12 99.33 0.932

multi-shot No Yes 2.92 0.097 21 97.67 0.709
Yes Yes 3.55 0.118 23 97.45 0.761

zheng-he No Yes 2.96 0.099 25 97.22 0.806
Yes Yes 3.83 0.127 22 97.56 0.714

Table 4.8: Performance results of VSUMM in combination with crude histogram matching. The times are calculated using the
average of 10 runs (n = 10). The presampling rate, if applied, is 10𝑓𝑝𝑠 and a maximum of 5% of the frames are extracted as
keyframes

4.6.4. SIFT
Originally, the code was based on the code provided from Github [17], however, after several tests,
it was determined that this implementation is far too slow to be used in this application (even after
optimization, the run time was several times longer than the video itself). Hence, it is decided to not
continue with this method. However, in the same method, the usage of color moments are used to
extract the keyframes which is computationally less draining and significantly faster compared to the
original SIFT. The method using color moments is discussed below in section Color moments.

24 4. Design

4.6.5. Color moments
This method is found and implemented because the initial SIFT method was too computationally ex-
pensive to extract keyframes. This method also computes the descriptors with the use of 𝑐𝑣2.𝑐𝑎𝑙𝑐𝐻𝑖𝑠𝑡,
however, instead in rgb, this is done in gray gray-scale. From the descriptors, the color moments are
computed. The color moments computed are: mean, standard deviation and the skewness. Originally,
the Euclidean distance of the color moments are calculated and the differences are ranked from the
greatest to lowest and the top number of frames are taken as keyframes, where the number of frames
taken depends on the percentage of the total frames to be extracted. However, this approach resulted
in many redundant keyframes. Hence, it is implemented that it will compare the euclidean distance
with a threshold 𝜏 where:

𝜏 = 𝑓𝑎𝑐𝑡𝑜𝑟 ∗ 𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑒𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 (4.12)
Where factor is a factor of multiplication and 𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑒𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 the average euclidean difference. Frames
with a higher euclidean distance compared to the threshold will be taken as keyframes. Lastly, to make
it more robust, it compares the number of keyframes taken with the percentage of the total frames to
be extracted and if it higher, the original approach is used. Thus, it will never return more keyframes,
but it can reduce the keyframes taken.

Video SBD Presampling Avg. Comp.
time [s]

Avg. Comp.
time / dur. #KF CR [%] Fidelity

ewi-tudelft-2 No No 3.41 0.237 8 98.13 0.539
Yes No 3.91 0.271 8 98.13 0.539

mailbox-street No No 13.4 0.223 35 98.04 0.903
Yes No 15.8 0.263 31 98.27 0.903

multi-shot No No 5.65 0.188 17 98.11 0.356
Yes No 7.51 0.25 16 98.22 0.622

zheng-he No No 5.59 0.186 10 98.89 0.565
Yes No 7.86 0.262 12 98.67 0.647

Table 4.9: Performance results of color moments. The times are calculated using the average of 10 runs (n = 10). The presam-
pling rate, if applied, is 10𝑓𝑝𝑠 and factor is set at 6

4.6.6. Histogram 3x3 block clustering
In [19], the 𝑀𝑥𝑁 = 1944 ∗ 𝑓𝑟𝑎𝑚𝑒_𝑐𝑜𝑢𝑛𝑡 matrix that is generated for a video is decomposed using
Singular Value Decomposition with a default number of 63 singular values to compute (k = 63). How-
ever, for some short shots in a video, the frame count is lower than 63, making this not possible as
the maximum value of k is 𝑀𝑖𝑛(𝑀,𝑁). The algorithm is adjusted to set 𝑘 = 𝑓𝑟𝑎𝑚𝑒_𝑐𝑜𝑢𝑛𝑡 if the frame
count is lower than 63.

Video SBD Presampling Avg. Comp.
time [s]

Avg. Comp.
time / dur. #KF CR [%] Fidelity

ewi-tudelft-2 No Yes 1.60 0.111 6 98.60 0.802
Yes Yes 1.78 0.123 6 98.60 0.802

mailbox-street No Yes 6.42 0.107 16 99.11 0.931
Yes Yes 6.62 0.110 16 99.11 0.931

multi-shot No Yes 2.66 0.088 19 97.89 0.670
Yes Yes 3.13 0.104 19 97.89 0.670

zheng-he No Yes 2.32 0.077 9 99.00 0.440
Yes Yes 3.01 0.100 12 98.67 0.677

Table 4.10: Performance results of Histogram 3x3 block clustering. The times are calculated using the average of 10 runs (n =
10). The presampling rate, if applied, is 10𝑓𝑝𝑠.

4.7. General performance
To put the performance of different methods into perspective, the results of the previous sections can
be seen side by side in Figure 4.8 to 4.10. The three performance metrics, Fidelity, Compression

4.7. General performance 25

Ratio and computation time show to form a triangle of trade-offs. For uniform sampling at 5𝑓𝑝𝑠, the
execution time is small and the Fidelity measure is high due to the large amount of frames, but the
Compression Ratio is very low. A property of the Fidelity measure is that its value for a set of keyframes
𝐾𝐹 = [𝐾𝐹1, 𝐾𝐹2, ..., 𝐾𝐹𝑀] with any extra frame added (that is not already in the set) will always be higher
than the original set. This means that a just comparison requires the amount of keyframes and thus
the Compression Ratio to be equal.

Figure 4.8: Computation time for tested methods.

Figure 4.9: Compression Ratio for tested methods (the baseline uniform sampling at 5𝑓𝑝𝑠 (corresponding to a CR of 83.3%) is
omitted to magnify the differences

26 4. Design

Figure 4.10: Fidelity measure for tested methods.

For uniform sampling at 98% compression, the amount of keyframes is in the neighborhood of the
analyzed methods and has the lowest computation time of all, partly due to the reason mentioned in
4.2. Although the Fidelity appears to also be close to the other methods, it can also be attributed to the
type of video. mailbox-street.mp4 consists of one shot with slow panning of the camera at a constant
speed. One would expect the desired keyframe indices to then be equidistant, which translates itself
in the results. For more dynamic videos with multiple shots that vary in information density (which
corresponds more to zheng-he.mp4), the Fidelity decreases.

5
Prototype

5.1. Keyframe Extraction prototype
For creating a submodule that is able to apply various methods and options to extract keyframes, a
prototype was created that functions for all implemented methods, which can be seen in Figure 5.1.
Some parts of the general overview have been omitted, such as the ability to extract the first or last
frame from a shot or to print the statistics of the selection of keyframes or execution time of the extraction
process. For further work on this code, new methods with corresponding descriptors and settings for
presampling and shot based detection can easily be adjusted. The code can be found on the GitHub
[4] repository.

5.2. Image-Based Video Search Engine
5.2.1. Implementation
For the prototype of the entire system it is important that it is both easy to use and fast in execution.
Otherwise, it is not attractive for other people to use or improve on. To that end the following constraints
for the prototype are chosen:

• The three modules will each reside in their own Python sub package, making them easy to de-
velop/maintain individually.

• The final prototype will run as a Python application on a host machine. The end-user will be able
to upload the video

• The input to the complete system consists of: a single query video (in mp4 format), and one or
more query images (in jpg format).

• The output of the complete system contains the timestamps in which the object of the query
image(s) appears.

In- and Outputs
In order to ensure smooth development between the different modules, the in- and outputs of each
module will be defined. The scheme can be found in Figure 5.2.

Timings
One of the most important performance metrics of the system is the execution time. In order to optimise
the total execution time, the running time of all three modules will be measured so that the modules
can be fine-tuned. The most time consuming module will most likely be the Feature Extraction module
(FE) (if all frames of the query video will be used). For each of the images received by FE it will run
a lot of calculations. A way to reduce this execution time is to reduce the number of images it has to
process. This reduction is performed by the Keyframe Extraction module (KFE). The goal of KFE is
to reduce the execution time of FE without increasing the total execution time or losing visual content.
This is equivalent to minimising Equation 5.1:

27

28 5. Prototype

Figure 5.1: Overview of the flow of data in the Keyframe Extraction submodule

5.2. Image-Based Video Search Engine 29

Figure 5.2: The in- and outputs of all the modules.

𝑡𝑠𝑢𝑚 = 𝑡𝐾𝐹𝐸 + 𝑡𝐹𝐸 + 𝑡𝑁𝑁 (5.1)

where 𝑡[⋅] corresponds to the execution time of module [⋅].
For the measurement of the system the overhead of the Python application will not be considered, so
only the time measurement of the individual modules will be performed. For each of the modules the
time will be measured individually and the total time 𝑡𝑡𝑜𝑡𝑎𝑙 (from the start to the end of the script) of the
prototype will be measured. The total execution time is equal to:

𝑡𝑡𝑜𝑡𝑎𝑙 = 𝑡𝑠𝑢𝑚 + 𝑡𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑 (5.2)

where 𝑡𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑 is the extra time (overhead) of loading in the query images and other calculations
performed outside of the modules 𝑡𝐾𝐹𝐸, 𝑡𝐹𝐸 and 𝑡𝑁𝑁.
To fulfill system requirement 6, the total time should be converted to a ratio. This can be done using
Equation 5.3.

𝑡𝑡𝑜𝑡𝑎𝑙
𝑡𝑣𝑖𝑑𝑒𝑜

≤ 0.5 (5.3)

where 𝑡𝑣𝑖𝑑𝑒𝑜 is the length of the video.

Precision
The precision is just as important as the execution time. The system could execute really fast, but if the
results do not show the correct timestamps of the video then the small execution time has no value. For
that reason the mean Average Precision (mAP) will be used to evaluate the precision of the complete
system. The mAP will be calculated as explained in the Feature Extraction thesis [36].
The average precision 𝐴𝑃𝑖 that is used for the mAP calculation is obtained using the following formula:

𝐴𝑃@𝑘 = 1
𝑘

𝑘

∑
𝑛
𝑃@𝑛 × 𝑟𝑒𝑙@𝑛 (5.4)

where 𝑘 refers to the total number of timestamps at the output of the system (which is 7% of the
keyframes according to the DCNNS module [15]), 𝑛 refers to the rank of the timestamp at the output,
𝑃@𝑛 refers to the precision@n and 𝑟𝑒𝑙@𝑛 is the relevance function at 𝑛. The relevance function equals
either one or zero: 𝑟𝑒𝑙@𝑛 = 1 if the timestamp at rank 𝑛 is relevant and 𝑟𝑒𝑙@𝑘 = 0 otherwise. The
precision@n can be calculated as explained in the Feature Extraction thesis [36].

5.2.2. Validation
Timings
In Table 5.1 the timing results can be found for the ‘easy’ dataset. For all of the test scenarios, system
requirement 6 is satisfied, as can be seen in column ‘Ratio’. The column ‘Video’ shows the name of the

30 5. Prototype

query video in combination with the query image, so Battuta1_1 corresponds to the first query video of
Battuta and the first query image. The dataset of videos as explained in [36] also shows the different
query videos with the amount of available query images. Due to time constraints, not all videos and
query images were evaluated.

Precision
The performance of the system will not only be described using the ratio between the execution time of
the system and the duration of the query video, but also with the help of the mean Average Precision.
The mAP was calculated following Subsection 5.2.1. The mAP calculations can be found in Tables 5.2
and 5.3. The tables show the mAP with and without applying the distance filter. The filter reduces the
amount of results by discarding all matches above a certain distance threshold and retaining only those
above that threshold. By using the filter, the mAP of the system increases significantly.

Table 5.2: mAP results of the prototype for the ’easy’ dataset.

mAP
Without Filter With Filter

Battuta1 0.74 1
Battuta2 0.59 1
Battuta3 0.31 1
Battuta4 0.16 0.67

Table 5.3: mAP results of the prototype for the ’hard’ dataset.

mAP
Without Filter With Filter

Ewi1 0.125 No matches
Ewi2 0.25 1
Dutch mailbox 0.29 1

Table 5.1: Time measurements of the prototype for various query videos and images from the ‘easy’ dataset. The Ratio is defined
as in Eq. 5.3. A resize of 1024 × 576𝑝 was used [36].

Video 𝑡video [s] 𝑡KFE [s] 𝑡FE [s] 𝑡NN [s] 𝑡total [s] Ratio
Battuta1_1 261 28.25 75.50 0.0023 103.80 0.40
Battuta1_2 261 27.73 76.84 0.0018 104.63 0.40
Batutta1_3 261 28.17 76.29 0.0019 104.55 0.40
Battuta1_4 261 28.57 75.98 0.0016 104.57 0.40
Battuta2_1 188 39.61 56.97 0.0018 96.68 0.51

He1_1 274 26.66 56.31 0.0047 83.06 0.30
He1_2 274 27.04 57.35 0.0019 84.43 0.31
He1_3 274 26.68 58.41 0.0022 85.18 0.31
He2_1 113 1.56 30.84 0.0049 32.43 0.29
He3_1 187 13.33 23.53 0.0070 36.89 0.20
He3_2 187 13.48 24.44 0.0018 37.92 0.20
He3_3 187 13.98 23.70 0.0050 37.70 0.20

Polo1_1 323 32.55 71.37 0.0022 103.95 0.32

6
Conclusion

6.1. Discussion of results
Reconsidering the time constraint posed in Section 2.2, the computation time requirement can be as-
sessed for all extraction methods. In [36], it was concluded that frames are processed by the Feature
Extraction module at 0.73𝑠/𝑓𝑟𝑎𝑚𝑒. Using the minimum value for the computation time per second of
video for uniform sampling, 𝑇𝑢𝑛𝑖𝑓𝑜𝑟𝑚𝑙𝑦_𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 = 0.032, eq. 6.2 is obtained. For a 30𝑓𝑝𝑠 video, this
corresponds to eq.6.3. All methods satisfy this requirement with and without pre-sampling and shot
based detection.

𝑇𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛_𝑘𝑒𝑦𝑓𝑟𝑎𝑚𝑒𝑠 < (5 − 𝑁𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑) ∗ 𝑇𝑐𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛_𝑝𝑒𝑟_𝑓𝑟𝑎𝑚𝑒 − 𝑇𝑢𝑛𝑖𝑓𝑜𝑟𝑚_𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 (6.1)

𝑇𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛_𝑘𝑒𝑦𝑓𝑟𝑎𝑚𝑒𝑠 < 3.618 − 0.73 ∗ 𝑁𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑 (6.2)

𝑇𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛_𝑘𝑒𝑦𝑓𝑟𝑎𝑚𝑒𝑠 < 21.9 ∗ 𝐶𝑅 − 18.28 (6.3)

Mandatory non-functional requirement 1 has been met since the algorithm accepts mp4 files in any
(reasonable) resolution, mandatory non-functional requirement 3 and 4 have been met since the algo-
rithm reads, extracts and stores data as efficiently as possible and gives the required RGB-data output.
Mandatory non-functional requirement 2 and 5 are to be fulfilled in the following week.

Usage of HPT SBD with CFAR threshold and VSUMM in combination with crude histogram is rec-
ommended. While the modified PBT returns slightly better results, the increase in computational time
makes it less preferable (Trade-off non-functional requirement 5).

The non-functional trade-off requirements could not be directly evaluated for the entire sub-module,
as the analysis proved that appointing keyframes is ambiguous. These metrics could however be as-
sessed for the shot detection part, as shot boundaries are fixated. The functional requirements are
not applicable for the SBD as it only returns shot boundaries, however, it meets all the non-functional
requirements as shown in the results.

There are several shortcomings that have become apparent in this report, which are mostly caused
by the constraint of time or by exploring branches of research that could not be applied to this project.
These are:

• The tested database of videos is small, consists of videos that are too similar in content and
duration, and does not account for the general case.

• The Fidelity measure consists of 2 out of 3 descriptors that are used for its computation. The
addition of wavelet descriptor 𝑑𝑊 (which corresponds to texture) would benefit the validity of this
evaluation method.

31

32 6. Conclusion

• The Shot Reduction Degree measure has not been implemented.

• The amount of consecutive frame difference keyframe extraction methods that has been explored
is too small.

• For evaluation, the parameters of different methods could have been adjusted to have the same
Compression Ratio in order to compare the Fidelity.

The part of the computation time that is reserved for reading frames could be improved by sampling
video frames with multi-threads. Reading frames in parallel by having each worker thread read a
continuous segment of a video would decrease the computation time and thus improve the general
sub-module.
Furthermore, although the four videos that were subject to the application of the keyframe extraction
methods are small in number, the results show that performance is very dependent on the type of video.
For example, slow moving long shots would not benefit from Shot Based Detection a large amount.

6.2. Conclusion
After analyzing the keyframe extraction methods subject to this report, the most suitable method could
be chosen. For the general case that the input video may vary to extremes in content and visual
dynamics, VSUMM combined with histogram matching is considered to be the most suitable method.
This clustering method performs well in the triangle of trade-offs: the computation time may be on the
high side, but the Fidelity remains high for different types of videos. Furthermore, the implementation
of detecting fade transitions also has great potential to improve the performance of the shot detection.
Lastly, it is also recommended to look at the SURF algorithm, as it requires less computation time than
SIFT and the literature shows great performance potential.
Further work could include optimizing the parameters of methods to give the lowest computation time
of the system. When 𝑇𝑐𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛_𝑝𝑒𝑟_𝑓𝑟𝑎𝑚𝑒 (= 0.73), the time saved with the reduction of frames
(which translates to the Compression Ratio) can be calculated and combined in calculation with the
time required for the module to extract the keyframes (𝑇𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛_𝑘𝑒𝑦𝑓𝑟𝑎𝑚𝑒𝑠). One could optimize
these parameters to give the minimum overall execution time of the entire system (taking Fidelity into
account as well).

6.3. Image-Based Video Search Engine
The requirements from Chapter 2 have been fulfilled and will be discussed in this section. To reiterate
the problem statement from Chapter 1:

• Develop a system that can detect whether an instance of a desired object appears in a given
video, based on a given set of images containing the desired object.

The core functional requirements 1, 2 and 3 are met as explained in section 5.2. Requirements 1, 3
and 4 have been fulfilled and the results can be found on the GitHub [4]. Requirements 2 and 5 have
both been fulfilled, because a prototype has been developed that can run on a laptop with requirements
specified in the Program of Requirements as described in [36]. Requirement 6 and by extension re-
quirement 7 have been met as described in section 5.2. Requirement 8 and by extension requirement
3 have not yet been fulfilled. The mAP will be calculated for the final prototype and included for the
final version of the thesis.

The trade-off requirements specify requirements that lead to increasing customer satisfaction as they
are fulfilled. Requirements 1 and 2 are met as the prototype is able to deal with multiple query videos
and images. This can be seen in the GitHub [4]. Requirement 4 has not yet been fulfilled but will be
fulfilled during the final weeks of the project. Requirements 5 and 6 are based on the video and image
reading libraries used, which support a variety of formats. These are OpenCV [1] and Pillow (PIL) [8]
respectively and the supported formats can be found in their respective documentations. Requirement
8 has been tested but is not fully met yet. The system works for videos of duration’s up to 15 minutes
and support for larger video duration’s will be implemented before the thesis defence.

6.3. Image-Based Video Search Engine 33

6.3.1. Discussion
The system meets almost all of the stated requirements, but it can not handle longer videos. This
is caused by the Keyframe Extraction Module requiring large amounts of working memory, that the
specified hardware rig does not possess.

6.3.2. Future Work
For future research and future BAP groups working on this project, investigating faster Keyframe Extrac-
tion and Feature Extraction implementations could significantly speed up the system. For a 6-person
group working on the next generation of the project, the team could be split into three students work-
ing on the Keyframe Extraction module and three students working on the Feature Extraction module,
while re-using the Data Compression and Nearest Neighbour Search implementation explained in this
thesis. Additionally, this Image-Based Video Search Engine was designed for the general use case
and performance can be improved by focusing on a specific use case. For such a situation, selecting
a Feature Extraction network that was trained for that use case will yield even better results.

A
Performance metrics tables

The complete results of some methods are given in this chapter. All computation times were calculated
using the average of 10 runs.

A.1. SBD

Video HBT HBT +
CFAR

PBT
proposed

PBT
modified

Name Total shots Correct Total Correct Total Correct Total Correct Total
anni005 38 20 47 33 67 32 310 38 195
anni009 38 19 40 31 52 36 294 38 46
nad31 187 167 238 177 249 176 830 179 215
nad33 189 181 229 189 229 181 551 181 199
nad53 83 73 120 81 112 78 239 81 94
nad57 44 41 63 44 59 42 140 44 63

Table A.1: Performance of SBD methods, both PBT methods use the CFAR threshold as standard.

Video HBT HBT +
CFAR

PBT
proposed

PBT
modified

Name R P F R P F R P F R P F
anni005 66.7 42.6 52 86.8 49.3 62.9 84.2 10.3 18.4 100 19.5 32.6
anni009 50 47.5 48.7 81.6 59.6 68.9 94.7 12.2 21.6 100 82.6 90.5
nad31 89.3 70.2 78.6 94.7 71.1 81.2 94.1 21.2 34.6 95.7 83.3 89.1
nad33 95.8 79 86.6 100 82.5 90.4 95.8 32.8 48.9 95.8 91 93.3
nad53 87 60.8 71.6 97.6 72.3 83.1 94 32.6 48.4 97.6 89 93.1
nad57 93.2 95.1 76.7 100 74.6 85.5 95.5 30 45.7 100 69.8 82.2
average 80.3 65.9 69 93.45 68.2 78.7 93.1 23.2 36.3 98.2 72.5 80.1

Table A.2: Performance of SBD methods, both PBT methods use the CFAR threshold as standard. ”R” is recall, ”P” precision
and ”F” the F-measure

34

A.2. Crude histogram matching 35

File Video Title HBT HBT + PBT PBT
Name CFAR proposed modified
anni005 ‘‘NASA_25th_Anniversary- 4.41 4.874 3.993 5.265

Show_Segment_5”
anni009 ‘‘NASA_25th-Anniversary- 4.401 4.411 4.18 5.656

Show_Segment_9”
nad31 ‘‘Spaceworks - Episode 6” 19.47 18.98 18.38 27.559
nad33 ‘‘Spaceworks - Episode 8” 17.29 17.42 21.28 27.195
nad53 ‘‘A&S_Reports_Tape_#4_-_Report_#260” 9.25 9.44 10.59 13.311
nad57 ‘‘A&S_Reports_Tape_#4_-_Report_#264” 4.26 4.51 4.72 6.327

Table A.3: Total computational time of different SBD methods in seconds

File Video Title HBT HBT + PBT PBT
Name CFAR proposed modified
anni005 ‘‘NASA_25th_Anniversary- 0.388 0.429 0.351 0.463

Show_Segment_5”
anni009 ‘‘NASA_25th-Anniversary- 0.265 0.266 0.252 0.341

Show_Segment_9”
nad31 ‘‘Spaceworks - Episode 6” 0.371 0.373 0.351 0.526
nad33 ‘‘Spaceworks - Episode 8” 0.347 0.35 0.428 0.546
nad53 ‘‘A&S_Reports_Tape_#4_-_Report_#260” 0.354 0.361 0.406 0.51
nad57 ‘‘A&S_Reports_Tape_#4_-_Report_#264” 0.333 0.352 0.369 0.495

Table A.4: Total computational time of different SBD methods for whole video in seconds

A.2. Crude histogram matching

Video SBD Presampling Avg. Comp.
time [s]

Avg. Comp.
time / dur. #KF CR [%] Fidelity

ewi-tudelft-2

No No 3.47 0.241 13 96.96 0.932
No Yes 2.03 0.141 12 97.19 0.932
Yes No 4.20 0.291 13 96.96 0.932
Yes Yes 2.22 0.154 12 97.19 0.932

mailbox-street

No No 11.7 0.195 10 99.44 0.929
No Yes 5.59 0.093 11 99.05 0.916
Yes No 15.0 0.250 17 99.05 0.916
Yes Yes 6.82 0.113 12 99.33 0.931

multi-shot

No No 6.55 0.218 33 96.34 0.756
No Yes 2.97 0.099 32 96.45 0.715
Yes No 8.38 0.297 33 96.34 0.756
Yes Yes 3.63 0.121 32 96.45 0.715

zheng-he

No No 6.34 0.211 37 95.89 0.837
No Yes 2.81 0.094 28 96.89 0.778
Yes No 8.62 0.287 35 96.11 0.844
Yes Yes 3.67 0.122 27 97.00 0.778

Table A.5: Average computational time of different SBD methods per frame in milliseconds

36 A. Performance metrics tables

A.3. Histogramblockclustering

Video SBD Presampling Avg. Comp.
time [s]

Avg. Comp.
time / dur. #KF CR [%] Fidelity

ewi-tudelft-2

No No 3.57 0.247 13 96.97 0.889
No Yes 1.60 0.111 6 98.60 0.802
Yes No 4.36 0.302 13 96.96 0.889
Yes Yes 1.78 0.123 6 98.60 0.802

mailbox-street

No No 22.9 0.382 18 98.99 0.927
No Yes 6.42 0.107 16 99.11 0.931
Yes No 15.1 0.250 20 98.88 0.927
Yes Yes 6.62 0.110 16 99.11 0.931

multi-shot

No No 7.76 0.258 32 96.45 0.750
No Yes 2.66 0.088 19 97.89 0.670
Yes No 7.79 0.259 32 96.45 0.750
Yes Yes 3.13 0.104 19 97.89 0.670

zheng-he

No No 7.04 0.234 9 99.00 0.461
No Yes 2.32 0.077 9 99.00 0.440
Yes No 7.48 0.249 14 98.44 0.765
Yes Yes 3.01 0.100 12 98.67 0.677

A.4. VSUMM

Video SBD Presampling Avg. Comp.
time [s]

Avg. Comp.
time / dur. #KF CR [%] Fidelity

ewi-tudelft-2

No No 2.81 0.195 8 98.13 0.803
No Yes 1.29 0.089 2 99.53 0.773
Yes No 3.48 0.241 8 98.13 0.803
Yes Yes 1.45 0.100 2 99.53 0.773

mailbox-street

No No 11.4 0.190 35 98.05 0.971
No Yes 5.29 0.088 12 99.33 0.928
Yes No 13.8 0.230 33 98.16 0.972
Yes Yes 5.65 0.094 10 99.44 0.929

multi-shot

No No 5.68 0.189 17 98.11 0.662
No Yes 2.19 0.073 5 99.45 0.389
Yes No 7.66 0.255 16 98.22 0.662
Yes Yes 2.91 0.097 7 99.22 0.632

zheng-he

No No 5.97 0.199 17 98.11 0.731
No Yes 2.32 0.077 5 99.44 0.477
Yes No 8.25 0.275 15 98.33 0.680
Yes Yes 3.20 0.106 8 99.11 0.570

Table A.6: Performance results of VSUMM. The times are calculated using the average of 10 runs (n = 10). The presampling
rate, if applied, is 10𝑓𝑝𝑠 and maximum of 2% of the frames are extracted as keyframes

A.5. VSUMM and crude histogram combination 37

A.5. VSUMM and crude histogram combination

Video SBD Presampling Avg. Comp.
time [s]

Avg. Comp.
time / dur. #KF CR [%] Fidelity

ewi-tudelft-2

No No 3.19 0.221 10 97.66 0.916
No Yes 1.79 0.124 8 98.13 0.871
Yes No 3.84 0.266 10 97.66 0.926
Yes Yes 1.95 0.135 8 98.12 0.908

mailbox-street

No No 11.42 0.190 12 99.33 0.930
No Yes 5.26 0.088 11 99.39 0.932
Yes No 15.21 0.253 16 98.11 0.916
Yes Yes 6.27 0.104 12 99.33 0.932

multi-shot

No No 6.44 0.021 29 96.78 0.705
No Yes 2.92 0.097 21 97.67 0.709
Yes No 8.15 0.271 28 96.89 0.722
Yes Yes 3.55 0.118 23 97.45 0.761

zheng-he

No No 6.75 0.225 38 95.78 0.818
No Yes 2.96 0.099 25 97.22 0.806
Yes No 8.84 0.294 39 95.67 0.818
Yes Yes 3.83 0.127 22 97.56 0.714

Table A.7: Performance results of VSUMM in combination with crude histogram matching. The times are calculated using the
average of 10 runs (n = 10). The presampling rate, if applied, is 10𝑓𝑝𝑠 and a maximum of 5% of the frames are extracted as
keyframes

A.6. SIFT

Video SBD Presampling Avg. Comp.
time [s]

Avg. Comp.
time / dur. #KF CR [%] Fidelity

ewi-tudelft-2

No No 3.41 0.237 8 98.13 0.539
No Yes 1.57 0.109 2 99.53 0.455
Yes No 3.91 0.271 8 98.13 0.539
Yes Yes 1.70 0.118 2 99.53 0.455

mailbox-street

No No 13.4 0.223 35 98.04 0.903
No Yes 5.86 0.098 11 99.39 0.884
Yes No 15.8 0.263 31 98.27 0.903
Yes Yes 6.40 0.107 10 99.44 0.888

multi-shot

No No 5.65 0.188 17 98.11 0.356
No Yes 2.25 0.075 5 99.44 0.356
Yes No 7.51 0.25 16 98.22 0.622
Yes Yes 2.83 0.094 5 99.45 0.365

zheng-he

No No 5.59 0.186 10 98.89 0.565
No Yes 2.21 0.074 5 99.44 0.422
Yes No 7.86 0.262 12 98.67 0.647
Yes Yes 3.07 0.102 5 99.44 0.607

B
SumMe Benchmark

Figure B.1: The videos in the SumMe dataset [14].

Figure B.2: Examp.le user annotation of Fire]𝐷𝑜𝑚𝑖𝑛𝑜.𝑚𝑝4[14]

38

39

Figure B.3: Example user annotation of Jumps.mp4, which shows that the ”interestingness” by human interpretation is not
necessary at a range where large visual changes occur [14].

Bibliography

Bibliography
[1] Opencv: Image file reading and writing. URL https://docs.opencv.org/4.x/d4/da8/

group__imgcodecs.html%7D.

[2] A. Araujo, M. Makar, V Chandrasekhar, D. Chen, S. Tsai, H. Chen, R. Angst, and B. Girod. Efficient
video search using image queries. In 2014 IEEE International Conference on Image Processing
(ICIP), pages 3082–3086, 2014. doi: 10.1109/ICIP.2014.7025623.

[3] Tamires Barbieri and Rudinei Goularte. Ks-sift: A keyframe extraction method based on local
features. Proceedings - 2014 IEEE International Symposium on Multimedia, ISM 2014, pages
13–17, 02 2015. doi: 10.1109/ISM.2014.52.

[4] Robert Bos, Leo Zheng, Aron Hoogeveen, Max van Oort, Lars Hoogland, and Matthijs Korevaar.
Image-based video search engine. Available at https://github.com/aron-hoogeveen/
ibvse (2022/06/13).

[5] Wei Chen, Yang Liu, Weiping Wang, Erwin M Bakker, TK Georgiou, Paul Fieguth, Li Liu, and MSK
Lew. Deep image retrieval: A survey. ArXiv, 2021.

[6] Gianluigi Ciocca and Raimondo Schettini. Dynamic key-frame extraction for video summarization.
pages 137–142, 01 2005. doi: 10.1117/12.586777.

[7] Gianluigi Ciocca and Raimondo Schettini. Erratum to: An innovative algorithm for key frame
extraction in video summarization. J. Real-Time Image Processing, 1:69–88, 03 2006. doi: 10.
1007/s11554-006-0001-1.

[8] Alex Clark. Pillow: Image file formats. URL https://pillow.readthedocs.io/en/stable/
handbook/image-file-formats.html.

[9] Francesca Condorelli, Fulvio Rinaudo, Francesco Salvadore, and Stefano Tagliaventi. A neural
networks approach to detecting lost heritage in historical video. ISPRS International Journal of
Geo-Information, 9(5):297, 2020.

[10] Francesca Condorelli, Fulvio Rinaudo, Francesco Salvadore, and Stefano Tagliaventi. A neural
networks approach to detecting lost heritage in historical video. ISPRS International Journal of
Geo-Information, 9(5), 2020. ISSN 2220-9964. doi: 10.3390/ijgi9050297. URL https://
www.mdpi.com/2220-9964/9/5/297.

[11] Sandra Eliza Fontes de Avila, Ana Paula Brandão Lopes, Antonio da Luz, and Arnaldo de Al-
buquerque Araújo. Vsumm: A mechanism designed to produce static video summaries and a
novel evaluation method. Pattern Recognition Letters, 32(1):56–68, 2011. ISSN 0167-8655. doi:
https://doi.org/10.1016/j.patrec.2010.08.004. URL https://www.sciencedirect.
com/science/article/pii/S0167865510002783. Image Processing, Computer Vision and
Pattern Recognition in Latin America.

[12] Max Deutman, Philip Groet, and Owen van Hooff. Image search engine for dig-
ital history, a standard approach. URL http://resolver.tudelft.nl/uuid:
d0b96e9b-d383-448e-9342-db0b2560b560.

[13] A. Girgensohn and J. Boreczky. Time-constrained keyframe selection technique. In Proceedings
IEEE International Conference on Multimedia Computing and Systems, volume 1, pages 756–761
vol.1, 1999. doi: 10.1109/MMCS.1999.779294.

40

https://docs.opencv.org/4.x/d4/da8/group__imgcodecs.html%7D
https://docs.opencv.org/4.x/d4/da8/group__imgcodecs.html%7D
https://github.com/aron-hoogeveen/ibvse
https://github.com/aron-hoogeveen/ibvse
https://pillow.readthedocs.io/en/stable/handbook/image-file-formats.html
https://pillow.readthedocs.io/en/stable/handbook/image-file-formats.html
https://www.mdpi.com/2220-9964/9/5/297
https://www.mdpi.com/2220-9964/9/5/297
https://www.sciencedirect.com/science/article/pii/S0167865510002783
https://www.sciencedirect.com/science/article/pii/S0167865510002783
http://resolver.tudelft.nl/uuid:d0b96e9b-d383-448e-9342-db0b2560b560
http://resolver.tudelft.nl/uuid:d0b96e9b-d383-448e-9342-db0b2560b560

Bibliography 41

[14] Michael Gygli, Helmut Grabner, Hayko Riemenschneider, and Luc Van Gool. Creating summaries
from user videos. In David Fleet, Tomas Pajdla, Bernt Schiele, and Tinne Tuytelaars, editors,
Computer Vision – ECCV 2014, pages 505–520, Cham, 2014. Springer International Publishing.
ISBN 978-3-319-10584-0.

[15] Lars Hoogland and Matthijs Korevaar. Image-based video search engine: Data compression and
nearest neighbour search.

[16] H. Y. Wang J. H. Yuan and B. Zhang. A formal study of shot boundary detection. Journal of
Transactions on Circuits and Systems for Video Technology, 17, 02 2007.

[17] Shruti Jadon and Mahmood Jasim. Video summarization using keyframe extraction and video
skimming. arXiv preprint arXiv:1910.04792, 2019.

[18] Shruti Jadon andMahmood Jasim. Unsupervised video summarization framework using keyframe
extraction and video skimming. pages 140–145, 10 2020. doi: 10.1109/ICCCA49541.2020.
9250764.

[19] Sawan Kumar. Key-frames-extraction-from-video. GitHub, 2020. URL https://github.com/
sawankumar94/Key-Frames-Extraction-from-Video.

[20] Ioan E. Lager, Victor Scholten, Egbert Bol, Cristina Richie, and Seyedmahdi Izadkhast with special
thanks to Koen Bertels. Bachelor graduation project manual, 2022.

[21] Shaoshuai Lei, Gang Xie, and Gaowei Yan. A novel key-frame extraction approach for both video
summary and video index. TheScientificWorldJournal, 2014:695168, 03 2014. doi: 10.1155/
2014/695168.

[22] Guozhu Liu and Junming Zhao. Key frame extraction from mpeg video stream. In Proceed-
ings of the Second Symposium International Computer Science and Computational Technol-
ogy(ISCSCT), pages 007–011, 2009.

[23] Tie-Yan Liu, Xu Zhang, Jian Feng, and Kwok-Tung Lo. Shot reconstruction degree: A novel
criterion for key frame selection. Pattern Recognition Letters, 25:1451–1457, 09 2004. doi: 10.
1016/j.patrec.2004.05.020.

[24] Bo Luo, Xiaogang Wang, and Xiaoou Tang. World-Wide-Web-based image search engine using
text and image content features. In Simone Santini and Raimondo Schettini, editors, Internet
Imaging IV, volume 5018, pages 123 – 130. International Society for Optics and Photonics, SPIE,
2003. doi: 10.1117/12.476329. URL https://doi.org/10.1117/12.476329.

[25] J. MACQUEEN. Some methods for classification and analysis of multivariate observations.
page 17, 1967.

[26] A. Nanetti. Engineering historical memory. URL http://engineeringhistoricalmemory.
com.

[27] Milan Kumar Asha Paul, J. C. Kavitha, and P. Arockia Jansi Rani. Key-frame extraction techniques:
A review. Recent Patents on Computer Science, 2018.

[28] Peter E. Hart Richard O. Duda and David G. Stork. Pattern Classification. Wiley-Interscience,
1973. ISBN 0471056693.

[29] Bashir Sadiq, Bilyamin Muhammad, Muhammad Abdullahi, Gabriel Onuh, Abdulhakeem Ali, and
Adeogun Babatunde. Keyframe extraction techniques: A review. ELEKTRIKA- Journal of Electri-
cal Engineering, 19:54–60, 01 2020.

[30] Sivic and Zisserman. Video google: a text retrieval approach to object matching in videos. In
Proceedings Ninth IEEE International Conference on Computer Vision, pages 1470–1477 vol.2,
2003. doi: 10.1109/ICCV.2003.1238663.

[31] Irwin Sobel. An isotropic 3x3 image gradient operator. Presentation at Stanford A.I. Project 1968,
02 2014.

https://github.com/sawankumar94/Key-Frames-Extraction-from-Video
https://github.com/sawankumar94/Key-Frames-Extraction-from-Video
https://doi.org/10.1117/12.476329
http://engineeringhistoricalmemory.com
http://engineeringhistoricalmemory.com

42 Bibliography

[32] Newton Spolaôr, Huei Lee, Weber Takaki, Leandro Ensina, Claudio Coy, and Feng Wu. A sys-
tematic review on content-based video retrieval. Engineering Applications of Artificial Intelligence,
90:103557, 04 2020. doi: 10.1016/j.engappai.2020.103557.

[33] C. Sujatha and Uma Mudenagudi. A study on keyframe extraction methods for video summary.
In 2011 International Conference on Computational Intelligence and Communication Networks,
pages 73–77, 2011. doi: 10.1109/CICN.2011.15.

[34] Ningli Tang, Fang Dai, and Wenyan Guo. Video summary generation based on density peaks
clustering with temporal characteristics. In 2021 IEEE 16th Conference on Industrial Electronics
and Applications (ICIEA), pages 1421–1425, 2021. doi: 10.1109/ICIEA51954.2021.9516340.

[35] Mathijs van Geerenstein, Philippe van Mastrigt, and Laurens Vergroesen. Image search engine
for digital history, a deep-learning approach. URL http://resolver.tudelft.nl/uuid:
f1a2902b-14be-416c-ae1a-ce4f179a0425.

[36] Max van Oort and K.A. Hoogeveen. Image-based video search engine: Feature extraction.

[37] Guido Van Rossum and Fred L. Drake. Python 3 Reference Manual. CreateSpace, Scotts Valley,
CA, 2009. ISBN 1441412697.

[38] Zhenyu Wu, Ruiqing Wu, Hong Yu, and Bin Tang. Key frame extraction towards kernel-sift identi-
fication. 08 2013. doi: 10.2991/icacsei.2013.40.

[39] Leo Zheng. Mimo radar for multiple moving targets and position estimation. pages 0–6, Unpub-
lished.

[40] Yueting Zhuang, Yong Rui, T.S. Huang, and S. Mehrotra. Adaptive key frame extraction using
unsupervised clustering. In Proceedings 1998 International Conference on Image Processing.
ICIP98 (Cat. No.98CB36269), volume 1, pages 866–870 vol.1, 1998. doi: 10.1109/ICIP.1998.
723655.

http://resolver.tudelft.nl/uuid:f1a2902b-14be-416c-ae1a-ce4f179a0425
http://resolver.tudelft.nl/uuid:f1a2902b-14be-416c-ae1a-ce4f179a0425

	Abstract
	Preface
	Introduction
	Requirements
	Program of Requirements for Keyframe Extraction submodule
	Computation time constraint
	Assumption based time constraint

	Analysis
	Determination of keyframes
	Evaluation metrics
	General techniques hierarchy
	Shot based detection

	Keyframe Extraction methods
	VSUMM
	SIFT
	Histogram 3x3 block clustering

	Evaluation methods
	Fidelity measure
	Shot reconstruction degree
	SumMe

	Design
	Code development
	Random Access Memory management and data allocation

	Retrieving (key)frame data from indices
	Selected videos for demonstration of results
	Fidelity implementation
	Shot Based Detection
	HBT
	PBT
	SBD Results

	Keyframe extraction
	Uniform sampling baseline
	Crude histogram matching
	VSUMM
	SIFT
	Color moments
	Histogram 3x3 block clustering

	General performance

	Prototype
	Keyframe Extraction prototype
	Image-Based Video Search Engine
	Implementation
	Validation

	Conclusion
	Discussion of results
	Conclusion
	Image-Based Video Search Engine
	Discussion
	Future Work

	Performance metrics tables
	SBD
	Crude histogram matching
	Histogramblockclustering
	VSUMM
	VSUMM and crude histogram combination
	SIFT

	SumMe Benchmark
	Bibliography
	Bibliography

