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Abstract
Urban drainage modelling typically requires development of highly detailed simulators due to
the nature of various underlying surface and drainage processes, which makes them compu-
tationally too expensive. Application of such simulators is still challenging in activities such as
real-time control (RTC), uncertainty quantification analysis or model calibration in which
numerous simulations are required. The focus of this paper is to present a rather simple hybrid
surrogate modelling (or emulation) strategy to simplify and accelerate a detailed urban
drainage simulator (UDS). The proposed surrogate modelling strategy includes: a) identifica-
tion of the variables to be emulated; b) development of a simplified conceptual model in which
every component contributing to the variables identified in step (a) is replaced by a function; c)
definition of these functions, either based on knowledge about the mechanisms of the
simulator, or based on the data produced by the simulator; and finally, d) validation of the
results produced by the surrogate model in comparison with the original detailed simulator.
Herein, a detailed InfoWorks ICM simulator was selected for surrogate modelling. The case
study area was a small urban drainage network in Luxembourg. An emulator was developed to
map the rainfall time series, as input, to a storage tank volume and combined sewer overflow
(CSO) in the case study network. The results showed that the introduced strategy provides a
reliable method to simplify the simulator and reduce its run time significantly. For the specific
case study, the emulator was approximately 1300 times faster than the original detailed
simulator. For quantification of the emulation error, an ensemble of 500 rainfall scenarios
with 1 month duration was generated by application of a multivariate autoregressive model for
conditional simulation of rainfall time series. The results produced by the emulator were
compared to the ones produced by the simulator. Finally, as an indicator of the emulation error,
distributions of Nash-Sutcliffe efficiency (NSE) between the emulator and simulator results for
prediction of storage tank volume and CSO flow time series were presented.

Keywords Surrogatemodel .Model simplification .Emulator.Urbandrainage .Combinedsewer
overflow (CSO)

1 Introduction

During a Combined Sewer Overflow (CSO) event, untreated wastewater spills into natural
water bodies, which may cause serious negative impacts to the receiving waters and its
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ecosystems (see e.g. De Toffol 2006). Most of the urban drainage systems which were built
during the 19th and 20th centuries are combined systems and cause CSOs during intense or
long rainfall events (Burian et al. 1999). Prevention and limitation of pollution of receiving
waters due to CSO events was one of the main objectives of the Urban Wastewater Treatment
Directive (EEC Council 1991). In 2000, the same issue was highlighted in the article 16 of the
European Union’s Water Framework Directive (WFD) (EEC Council 2000).

One way of reducing the frequency and volume of CSO events is to manage the urban
drainage system in a dynamic way using Real-Time Control (RTC) (Schilling 1989) with
application of model-based RTC (e.g. Fiorelli et al. 2013; Joseph-Duran et al. 2014a, b). In a
model-based RTC, the simulator is run frequently to produce predictions of the outcomes of an
extensive set of reasonable actions. Therefore, computationally expensive simulators limit the
application of RTC making it unavoidable to replace them with alternative fast simulators.

Fast simulators can be achieved via three different general approaches: a) parallel comput-
ing and/or supercomputers (High Performance Computing, known as HPC); b) developing a
simple and fast simulator according to the specific simulation requirements (e.g. Joseph-Duran
et al. 2014b); or c) building a “surrogate model” based on the already existing detailed
simulators. The latter approach is the focus of this study. In the literature, surrogate models
are also known as emulators (O’Hagan 2006), meta-models (Blanning 1975), reduced models
(Willcox and Peraire 2002), proxy models (Bieker et al. 2007), low fidelity models (Robinson
et al. 2008), response surfaces (Regis and Shoemaker 2005) and so forth. So far, two
comprehensive reviews about surrogate modelling approaches have been done in the field of
water resources in general (Razavi et al. 2012) and groundwater modelling in specific (Asher
et al. 2015). Based on these articles, four main categories of surrogate modelling approaches
can be identified in the water sciences and engineering domain:

& Data-driven approach, in which the detailed or complex simulator is approximated
through an empirical (or statistical) model which captures the input-output mapping of
the original simulator. This category covers rather a broad range of methods. Some of
common methods in this regard with their example application in the field of water
engineering and management are: Artificial Neural Networks (ANN) (Sreekanth and
Datta 2011) and Deep Learning (DL) (Li et al. 2016); Radial Basis Functions (RBF)
(Christelis and Mantoglou 2016); Kriging (Zhao et al. 2016); and Gaussian Processes
Emulators (GPE) (Carbajal et al. 2016). The main advantage of the data-driven methods is
their generic and non-mechanistic nature. It means, one would only need to deal with the
data generated by the simulator, rather than dealing with the mathematical descriptions
behind the simulator. Besides, they result in considerably lower run time, in comparison
with other surrogate modelling approaches. However, these methods are normally pre-
ferred when small number of parameters, varying in limited ranges, are involved in
surrogate modelling process. Apart from popularity, data-driven methods have a main
disadvantage which is their subjective (researcher dependent) structure. Besides, their
applicability is normally limited to the ranges of the training dataset used.

& Projection-based approach, in which the dimensionality of the parameter space is reduced
by projecting the governing equations of the simulator onto a basis of orthonormal vectors.
For application in the field of water engineering and management, Balanced Truncation
(BT) (e.g. Sahlan et al. 2013) and Proper Orthogonal Decomposition (POD) (e.g.
Volkwein 2013; Xu et al. 2013) are among the most popular methods in this category.
The main advantages of projection-based approaches are: their computational efficiency
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once constructed, as well as producing an error bound after Model Order Reduction
(MOR) in most of these techniques (Willcox and Megretski 2005). The major disadvan-
tage is that they are highly mechanistic; meaning that one should initially define a clear
mathematical description (e.g. a state-space model) for the given simulator which is subject
to MOR. These approaches are rather difficult to be implemented in practice, especially if
the commercial modelling software does not provide access to the source code or
description of the implemented algorithms (which is normally the case, except for open-
source software).

& Hierarchical or multi-fidelity approach, where the surrogate is developed, for instance, by
ignoring some of the processes which are less relevant in a given case, or by reducing the
numerical resolution of the model, (e.g. Meirlaen and Vanrolleghem 2002; Leitão et al.
2010). Here, the principal advantage is that sometimes these methods are able to maintain
the detail and accuracy of the original detailed or complex simulator. The dominant
disadvantage is that, these methods are also highly mechanistic and difficult to implement
in practice. Besides, they are case-specific and it is more challenging to generalise and
automate them to be applied for other given simulators of interest.

& Hybrid approach, in which different combinations of any of the above-mentioned ap-
proaches can be applied to develop the surrogate model. For instance, a data-driven
approach can be mixed with a projection-based or multi-fidelity approach.

The purpose of surrogate modelling in this study is to reduce the computational cost of a
detailed urban drainage simulator (UDS) and make it available for future applications such
as RTC. Even though importance of surrogate modelling based on already existing, well-
established, detailed UDSs (Bach et al. 2014) has been emphasised repeatedly (Meirlaen
et al. 2002 and Schütze et al. 2004) still developing new simple and fast simulators for
specific applications, such as RTC, is common (e.g. Joseph-Duran et al. 2014b;
Mahmoodian et al. 2016). Nevertheless, in urban drainage modelling domain, there are
few studies in which the potential of developing surrogate models based on existing detailed
simulators have been shown.

Focusing on RTC application, (Meirlaen and Vanrolleghem 2002; Langeveld et al.
2013; van Daal-Rombouts et al. 2016) preferred the multi-fidelity approach. For exam-
ple, (Langeveld et al. 2013) simplified parts of a detailed integrated UDS and
successfully applied the surrogate model in RTC with focus on receiving water quality
control. Few other researchers found the hybrid surrogate modelling approaches more
practical for acceleration of computationally expensive UDSs. With focus on urban
pluvial flood simulation, Bermúdez et al. (2018) developed a hybrid surrogate model,
which applies ANN as the data-driven part, for acceleration of a 1D-2D detailed UDS.
For the specific case study in this research, a simulation speed up factor of more than 104

with a low accuracy cost was achieved. Keupers et al. (2015) developed a hybrid
surrogate model for a computationally demanding integrated river-sewer simulator in
order to quantify the impact of CSO events on quality of the receiving water. In this
study, the highly detailed quantity and quality modelling components of the integrated
simulator were substituted by surrogate models which mostly had data-driven nature. A
speed up factor of 1.104 was achieved for the specific case study.

Application of data-driven approaches in various aspects of urban water management
domain has been growing rapidly during the past decade (Eggimann et al. 2017). Due to the
advantages addressed above, data-driven surrogate modelling approaches are not exempt in
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this regard (Fu et al. 2010; Gradano and Le Roux 2012; Nadiri et al. 2018). However, in most
of data-driven approaches the input-output mapping is performed in a black (or grey) box
manner, neglecting most of the mechanisms inside the simulator and solely focusing on the
input-output data.

In the current study, we argue that, if it is possible to identify some of the modelling
components directly from studying the mechanisms of the case study simulator, these com-
ponents can be excluded from the data-driven analysis. Hence, in this article, we propose a
novel hybrid surrogate modelling strategy, which is partly based on the ad-hoc information
obtained from the detailed simulator under study and partly data-driven. The focus in this
study is on wastewater quantity modelling. Based on the introduced hybrid surrogate model-
ling strategy, we developed an emulator for storage tank volume and CSO flow time series
prediction based on upcoming rainfall time series in the case study catchment.

In the following sections of this document, first, a case study detailed UDS subject to
surrogate modelling and a small urban drainage network are introduced; second, the surrogate
modelling strategy is explained briefly together with step-by-step application for the specific
case study in hand; third, the surrogate model is validated in comparison with the original UDS
and the emulation error is quantified; and finally, a conclusion is made based on the achieved
results and future potential studies are highlighted. Throughout the paper, the detailed or
complex UDS will be addressed simply as “simulator” and accordingly the surrogate model
will be also called the “emulator”.

2 Case Study

2.1 Case Study Simulator

The case study simulator, InfoWorks ICM (Innovyze 2017), is an example of highly
detailed commercial software which is commonly used for modelling urban drainage
systems. Around two hundred different parameters and numerous processes are involved
in this simulator which might make it computationally too expensive to be applied in
applications such as model-based RTC. Figure 1 shows only the main elements of
InfoWorks ICM and the involved modules. InfoWorks ICM was solely selected as a
detailed case study simulator in this research. The advantages or disadvantages of this
specific commercial software was not the focus of the research.

For the runoff modelling in this simulator it is possible to select among 15 types of
runoff volume models and 13 types of runoff routing models (Wallingford procedure
fixed percentage runoff model and Wallingford model were selected for the case study of
this research respectively). Each of these models require their own specific parameters
and inputs. The hydraulic model is based on the De Saint-Venant equations for conser-
vation of mass and momentum (Innovyze 2017). The rainfall, which is the main input of
the runoff sub-model, can be in forms of observed (recorded) or design rainfall. It should
be noted that, the focus in this research is only on wastewater quantity modelling and
wastewater quality modelling is neglected. In this study, it is assumed that the simulator
represents the reality through “virtual reality” and the goal is to emulate it by focusing on
inputs and outputs of interest. This assumption is the common practice in surrogate
modelling (Kroll et al. 2017). It is assumed that a detailed simulator is in hand which is
already calibrated with the observed measurements. However, this simulator is
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computationally expensive to be applied directly in applications such as model-based
RTC or uncertainty propagation analysis. Hence, the focus is on developing a surrogate
model based on this simulator to facilitate those applications.

2.2 Case Study Area

The case study area is the Nocher-Route-Dahl region, a small sub-catchment of an urban
drainage network in the north of Grand Duchy of Luxembourg. The total area of this
sub-catchment is equal to 54.125 ha with a contributing area (runoff surface) of 15.47 ha
and a total population count of 1142. There are 220 pipes (with a total length of
10,724 m), 209 manholes and 3 CSO locations in this small case study area. Figure 2a
which is drawn by InfoWorks ICM user interface, shows the modelled area. Here, the
focus is on surrogate modelling for the CSO location 1 which has a retention tank
together with a CSO structure. A similar procedure can be applied for other CSO
locations in the catchment, since they have the same structure and similar components.

The structure of CSO location 1 in the case study is described next (see Fig. 2b). The inflow
from the upstream sub-catchment flows into the main storage tank through a conduit which is
connected to a rectangular weir structure for depleting the excess water in case of CSO events.

Fig. 1 Main components of the case study simulator (adapted from InfoWorks ICM documentation)

(a) (b)

CSO Location 1

CSO Location 2

CSO Location 3

Main Outlet

380 m

Rain Gauge

Inflow from 

upstream

CSO 

WeirCSO Tank

Conduit

CSO 

Flow

Main Storage Tank 

Pump

Fig. 2 a Nocher-Route-Dahl Case Study area; b Schematic view of the CSO location 1
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The wastewater level in the main storage tank is controlled automatically by a fixed pump with
maximum capacity of 6 × 10−3 m3/s. The pump operates based on user-defined switch on/off
water levels inside the tank.

3 Method

The introduced hybrid surrogatemodelling strategy in this study has four steps (see Fig. 3) and the
description of this article follows the same steps in order to explain the strategy in detail. Steps A,
B and C are described in the Section 3. Step D is included in Sections 4 and 5 of this article.

3.1 Identification of Variables of Interest to be Emulated

The first step to develop an emulator is to define the variables or inputs and outputs of interest
based on desired application. Figure 4 presents our inputs and outputs of interest in the case
study. The developed emulator should map the inputs to the outputs with an acceptable
accuracy in comparison with the original simulator. The acceptable accuracy has to be defined
based on the specific application of the emulator.

3.2 Development of a Simplified Conceptual Model

This step requires development of a simplified model. For case of the CSO location 1, the
model can be given by the mass balance equation, as follows:

dV
dt

¼ D t; dcð Þ þ R t;α; τð Þ−P t; pcð Þ−C t;Vmax;α; τð Þ ð1Þ

where V is the storage tank volume and is driven by inflow and outflow elements. The
inflow is composed of the dry weather flow (D) and the inflow generated by rainfall (R).
The outflow is composed of the outflow generated by the pump (P) installed in the
storage tank and the CSO flow which overflows through the weir (C). In the next step,

Fig. 3 Steps of the proposed hybrid surrogate modelling strategy
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the explicit expression of each component, including explanation of all the symbols in
parentheses in Eq. (1), are introduced.

3.3 Identification of Simplified Model Components

In this step, components of the Eq. (1) should be identified either based on the knowledge from
studying the mechanisms of the simulator at hand (simulator-based components) or based on
the data generated by the simulator (data-based components). For the case study at hand, the
flow components D, P and C of Eq. (1) are considered simulator-based components. While, R
is a data-based component and it is identified (learned) based on synthetic data generated by
the simulator.

3.3.1 Simulator-Based Components

The inflow generated by dry weather flow (D), which depends on demographic and hydraulic
properties of the catchment, is characterized by a daily pattern. Since this pattern is well
identified, it can be described by:

D t; dcð Þ ¼ dcd tð Þ ð2Þ
where d(t) is the daily pattern of wastewater flow and dc is a scaling constant (equal to 6.6 ×
10−4 m3/s in the specific case study). This information can be extracted from running the
simulator for dry weather flow situation (no rain).

Accordingly, the P component is the pump flow, which depletes water from the tank at an
assumed constant discharge determined by the manufacturer. Therefore, P takes the value 0 (if
the pump is off) or pc (if the pump is on). pc is the pump flow rate. In this study, pc has a value
of 6 × 10−3 m3/s. A similar approach can be considered for other types of system actuators such
as orifices or controllable valves.

The CSO flow (C) runs over the weir if the storage tank volume reaches its maximum
capacity (Vmax). This component is given by the equation:

C t;CD;Vmaxð Þ ¼ CD V tð Þ−Vmaxð Þ32 ifV ≥Vmax

0 otherwise

�
ð3Þ

where CD is the effective discharge coefficient of the weir, which can be obtained only by using
values available from the design of the CSO structure (no learning involved). This component
function can also be altered according to the CSO structure at hand (i.e. other types of weirs).

3.3.2 Data-Based Components

The inflow to the storage tank due to rainfall (R) implements a short-cut for all the
transformations that the upstream network applies on the runoff flowing through the

Fig. 4 Desired inputs and outputs to develop the case study emulator
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sewer network. Two major transformations are the delay introduced by physical proper-
ties of the upstream network (e.g. lengths, slopes, etc.) and the scaling of the rainfall-
runoff process. These processes are simulated via detailed rainfall-runoff and routing
models in the original simulator and have the largest contribution to simulation compu-
tational cost.

To learn this function, the simulator was used to obtain the inflow to the storage tank
when the rainfall events have a constant intensity and a predefined duration. The training
data consists of 44 different constant rainfall intensities (from 2.6 to 100 mm/h) with a
4 h duration. This dataset was used since it was observed that: a) the R function is
independent from the rainfall event duration, i.e. tank filling behavior is always the same
for different rainfall durations; b) the inflow to the storage tank volume depends only on
the rainfall intensity r and a lag τ (Figs. 5 and 6).

Therefore, for the R component, the following model was proposed:

R t; rð Þ ¼ α r t−τ rð Þð Þð Þ
α rð Þ ¼ exp aα þ bαln r=rminð Þ þ cαln2 r=rminð Þ þ dαln3 r=rminð Þ� �

τ rð Þ ¼ aτ þ bτ r þ cτ r−dτ ifr≥rmin
0 otherwise

� ð4Þ

where rmin is the minimum value of rainfall intensity in the training set. The structure of α is
given by a cubic polynomial fit on the logarithm of the training data, i.e. (rainfall intensity,
filling slopes) pairs.

The lag model could be defined as a constant delay using the traditional techniques
such as cross-correlation between the input (rainfall intensity) and output (tank volume)
signals. However, in this article, we recommend the application of time warping tech-
nique for the input rainfall intensity (Dürrenmatt et al. 2013). Time warping technique
helps accounting for the deformation of the signal in time as well as its delay. Figure 7
shows time warping effect on a Gaussian rainfall signal, and compares it with a constant
lag (delay).

Fig. 5 Storage tank volume for various rainfall scenarios with different intensities and constant duration of 4 h
(pump is off)
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4 Validation

The last step of surrogate modelling strategy is to validate the results produced by the emulator
in comparison with the ones generated by the original simulator. Hence, in this section, the
emulator is applied to predict the storage tank volume and CSO flow rate time series using a
real observed rainfall time series recorded by a rain gauge located in the catchment (Fig. 2a).
The prediction results are compared to the corresponding results derived by the simulator.

Figure 8 depicts the comparison between the emulated and simulated tank volume time
series for an entire year (2008). The emulator is able to capture the dynamics of storage
tank volume with a considerably high Nash-Sutcliffe efficiency of 0.96 (NSE equal to
one is the perfect match). The emulator is approximately 1300 times faster than the
simulator in this specific case. It should be noted that, for this runtime comparison, only
the hydrodynamic modelling by the simulator is taken into account (i.e. wastewater
quality modelling is excluded).

Fig. 6 Training data and model fitting results. Tank filling slope (left) and lag (right) as function of rainfall
intensity. Circles show the training data, lines the fitted model

Fig. 7 Effect of the lag models on a Gaussian rainfall signal. The input signal is shown in continuous line,
warped signal in dot-dashed line, and a signal with constant lag in dashed line
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The black horizontal line in Fig. 8 locates the maximum capacity of the storage tank
volume (282 m3) which has been overpassed three times during the simulation period,
indicating the occurrence of three CSO events. Figure 9 shows a detailed view of these events.

As it can be observed from Fig. 9, the quality of the emulator regarding CSO flow
prediction is not as high as storage tank volume prediction. However, in Fig. 9 we are only
focusing on three CSO events, which is not enough data to evaluate the accuracy of the
emulator. Hence, in the next step, the emulator is validated using an ensemble of rainfall
scenarios, which triggered more CSO events.

Fig. 8 Comparison between emulated and simulated tank volume time series (entire year 2008). Nash-Sutcliffe
model efficiency 0.96. Root mean squared error 5.3 m3. Maximum absolute error (sign) 87 m3 (+)

Fig. 9 Comparison between emulator (red) and simulator (blue) during CSO events: (top) storage tank volume
(NSEs: 0.83, 0.33, 0.46); (bottom) CSO flow (NSEs: 0.70, −51, 0.51)
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5 Emulation Error

In this section, a quantification of emulation error is performed in order to analyse the
performance of the emulator with different rainfall scenarios. Based on the observed rainfall
time series in the case study area, and application of a multivariate autoregressive time series
model for conditional simulation of rainfall time series (Torres-Matallana et al. 2017), an
ensemble of 500 rainfall scenarios of 1 year duration was generated. Since, normally, the most
severe CSO events were observed during the month of August in the case study area, only the
ensemble data of this month was considered for validation purpose in this section. The
ensemble rainfall scenarios were used as input to the simulator, as well as the emulator. As
a quantification of the emulation error, the Nash-Sutcliffe efficiency (NSE) values were
calculated comparing the results produced by the simulator against the corresponding
results of the emulator. The distribution of NSE for the ensemble runs is presented in the
violin plots form in Fig. 10 in order to visualise the kernel probability density of the data
at different values.

The results shown in Fig. 10 indicate the high accuracy of the emulator compared to the
simulator. The predictions of CSO flows are not as precise as the ones for storage tank volume.
The main reason for this is that, the emulator was developed only based on the storage tank
filling data. In fact, the CSO flow is a side-product of the storage tank volume emulator, since
it is calculated after surpassing the maximum capacity of the storage tank. This fact led to a
delay of the CSO events by about 20 min forward (time resolution of simulations input and
outputs was 10 min). The right panel of Fig. 10, shows the improvement on the NSE
distribution obtained when the emulated CSO signals were shifted by this amount (20 min).

Fig. 10 Distribution of Nash-Sutcliffe efficiency (NSE) between emulator and simulator: (left) for the storage
tank volume; (right) for the CSO flow without and with time shift correction
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6 Discussion and Conclusions

The aim of the present research was to introduce a hybrid surrogate modelling strategy for
acceleration of a computationally expensive UDS. A “hybrid” strategy was followed, since the
component functions of the emulator were learned partly based on studying the mechanisms of
the case study simulator at hand (simulator-based) and partly via synthetic input-output data
generated by the simulator (data-based). Based on this strategy, an emulator was developed
and validated for wastewater volume and CSO flow time series prediction for a small case
study in Luxembourg. The novelty and added value of this research can be addressed in two
main aspects. The first and the most important aspect is the simplicity of the introduced
method and its hybrid nature. It means, most of the component functions of the emulator are
quantified directly, and rather simply, using the knowledge obtained from studying the
mechanisms of the simulator at hand. If one can quantify these components, with high
certainty, directly from the simulator, there is no need to consider them as data-driven
components. This is not the case in pure data-driven (black-box) surrogate modelling ap-
proaches. The second novelty of this research is regarding the lag or delay model for the R
component of the emulator. In this research, time warping was applied instead of traditional
cross-correlation technique. Time warping was useful to account for deformation of the
emulator’s output signal in time as well as its delay.

In compliance with the previous studies in application of hybrid surrogate modelling
approaches which are partly data-driven (e.g. Bermúdez et al. 2018; Keupers et al. 2015),
the introduced emulator in this research also provides satisfactory results in terms of
speeding up the simulations with low accuracy cost (Fig. 10). It should be noted that the
speed up factor depends on the case study at hand. As an example, for a 1-years-long time
series simulation of observed values, the emulator herein provided a speed up factor of
approximately 1300 (i.e. the emulator was 1300 times faster than the simulator). This
speed up was achieved mainly because of: 1) making a shortcut for replacement of rainfall-
runoff and routing models inside the original simulator, via R component of the emulator;
and 2) by avoiding computation of unnecessary details (e.g. volumes and flows in all
intermediate nodes and links of the network. This considerable speed up would be an
outstanding aspect regarding applications such as RTC, uncertainty analysis or calibration
in which numerous simulations are required.

In contrast with some previous research, in which the simulation input was the inflow to the
storage tank or WWTP (e.g. Mahmoodian et al. 2016; Vanrolleghem et al. 2005), the emulator
herein uses rainfall measurements (or forecasts) as inputs, and predicts the storage tank volume
and CSO flow in advance. Hence, considering such an emulator in applications such as model-
based RTC would provide a longer reaction time (e.g. to avoid potential upcoming CSO events).

Another advantage of the hybrid emulator introduced in this article can be highlighted in
comparison with the previous works in which the rainfall event characteristics (e.g. volume,
depth, duration, maximum intensity) were mapped directly to CSO events detection; either in
form of binary detection of the CSO occurrence and duration (Schroeder et al. 2011;
Thorndahl and Willems 2008) or in form of analog/digital detection of the CSO volume (Yu
et al. 2013). Since, the introduced hybrid emulator in this article, was able to predict the storage
tank volume as well as CSO flow time series and can be used for dry weather situation as well.

Finally, it should be emphasized that, the emulators or surrogate models are mainly tailored
to specific cases and applications at hand. In surrogate modelling it is not intended to
completely substitute a detailed simulator by an emulator. Besides, there is no universal and
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unique technique which can deal with all surrogate modelling challenges (Asher et al. 2015).
Hence, in this study, we tried to introduce a simple and generic surrogate modelling strategy
(see Fig. 3) which can be adapted according to the specific case studies or emulation purposes.
For example, the hybrid emulator here was developed to predict the storage tank volume and
CSO flow at a CSO location. Such an emulator can be useful for application in CSO
management or model-based RTC. Development of the emulator would get more complex
for more detailed case studies with several inputs and outputs of interest or by taking into
account the spatial variability of rain within the urban drainage network. In such cases, one
would require to estimate the data-based component functions (R) via other techniques such
as non-linear regression, Artificial Neural Networks (ANNs) or Gaussian Process Emula-
tors (GPEs).

The future steps of this research can be improvement of the emulator regarding aforemen-
tioned aspects as well as considering wastewater quality emulation to be applied in RTC
practice in an integrated way. Another significant aspect to consider in future studies is
uncertainty quantification and propagation for the emulator inputs and outputs.

6.1 Parameter Summary

To ease readability, Table 1 summarises the values of all parameters used for developing the
case study emulator for CSO location 1.
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Table 1 Summary of parameters values used to develop the emulator for CSO location 1

Symbol Description Value/range and unit

a Effective inflow rain gain 2.94 e−1 m3/(s mm)
aα, bα, cα, dα Rain gain model 4.364, 0.9880, 0.02118, −0.0090822
aτ, bτ, cτ, dτ Lag model 228.13, −0.5687, 4904.5, −0.7947
CD Discharge coefficient of the weir 0.04612 [(m3)^{−1/2}/s]
dc Dry weather flow scaling 6.6 e-4 m3/s
pc Pump rate 6.0 e−3 m3/s
r Rainfall intensity (2.6–100) mm/h
rmin Minimum rainfall intensity [mm/h] 2.6 mm/h
Vmax Maximum tank volume at weir

height (CSO threshold volume)
282 m3

τ Rainfall inflow lag time 10 min
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