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Abstract—Network-as-a-Service (NaaS) is a cloud-based ser-
vice model that offers on-demand network connectivity and the
provisioning and management of network services. However,
the actual orchestration of dynamically allocating underlying
resources to customer requirements is not trivial.

In this paper, we propose an SDN-based approach to support
the NaaS model. We implement a proof-of-concept (PoC) on a
physical testbed and validate it through experimental perfor-
mance evaluation.

I. INTRODUCTION

Network-as-a-Service (NaaS) is a cloud-based service
model that offers on-demand network connectivity and the
provisioning and management of network services. However,
the actual orchestration of dynamically allocating underlying
resources to customer requirements is not trivial. Currently,
several service providers and network operators implement
virtual overlay networks by using tunneling, tagging and la-
beling protocols such as GRE, IP-in-IP, V(X)LAN and MPLS.
Although this type of network virtualization may enable NaaS
by provisioning customizable network services, it does not
change the main characteristics of the network. Although it
realizes the short-term benefits of network virtualization, it
adds new layers of complexity to the already complex network.

In this paper, we propose an architecture for service provider
networks using SDN as its key virtualization enabling technol-
ogy to enable NaaS. Moreover, the proposed architecture uses
network monitoring technologies for more scalable, reliable
and granular closed-loop network control and management.
Our approach involves an implementation that facilitates in-
cremental deployment by using SDN capable edge switches,
while maintaining an existing MPLS-based core network.

We first discuss related work in section II. In section III,
we introduce and discuss our architecture. In section IV, we
demonstrate a Proof-of-Concept implementation on a physical
testbed. Section V presents the performance evaluation of the
PoC physical network testbed and an analysis and discussion
of results. Finally, section VI concludes this paper.

II. RELATED WORK

Duan et al. [1] present a comprehensive survey on how
service-oriented architecture (SOA) principles can be applied
to network virtualization. As a development in this direction,

the authors in [2] present a framework that integrates the NaaS
paradigm by abstracting the SDN control plane to implement
a high-level network service orchestration model based on
SOA principles. Similarly, Bueno et al. [3] propose a software
framework based on NaaS and OpenFlow along with dynamic
network configuration and status monitoring to enable on-
demand, customizable and application-aware network services
with end-to-end QoS guarantees. However, none of these
approaches have been validated by a proof of concept im-
plementation on a physical network testbed.

On the other hand, Gouveia et al. [4] propose a framework
that realizes the full-stack implementation of OpenFlow based
SDN, which is validated by a network testbed implementation
and performance evaluation. However, this framework is dif-
ficult to implement on already existing network architectures,
as it does not consider a gradual implementation strategy.

Casado et al. [5] present the major drawbacks of an
OpenFlow based SDN architecture in terms of complexity in
network address mapping and evolutionary inflexibility of the
network. They propose a hybrid approach that retrospectively
applies the insights of MPLS and distinction between network
core and edge to overcome those major drawbacks. However,
this hybrid approach does not explicitly consider a deployment
scenario in existing networks and lacks closed-loop monitor-
ing.

III. SDN-BASED ARCHITECTURE

We take an evolutionary approach that, instead of upgrading
the whole network at once, facilitates an incremental deploy-
ment scenario. We first present and discuss the data plane
considerations in subsection III-A, followed by the control and
management plane considerations in subsection III-B.

A. Data Plane Considerations

In Figure 1, a typical single domain service provider net-
work is shown. In the figure, provider and provider edge
routers are labeled as P and PE respectively. Similarly, cus-
tomer edge routers are labeled in the figure as CE. In general,
provider routers are MPLS switch routers and provider edge
routers are MPLS edge routers, which are labeled in the figure
as LSR and LER respectively.
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Fig. 1: A typical single domain service provider network.
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Fig. 2: Our proposed SDN-based architecture.

Since MPLS is currently widely implemented in service
provider networks, we propose to only replace or update the
edge devices with OpenFlow-enabled network devices while
keeping the network core unchanged. The latest versions of
the OpenFlow protocol and their switch specifications support
key MPLS operations. Our legacy network core involves
proactive installation of full-mesh static LSPs, in contrast to
dynamic LSPs built through signalling and routing protocols.
As a result, the network edge performs all complex network
operations and functions on the incoming network traffic and
steers it across the simple and static legacy network core by
label switching.

In order to perform closed-loop network control and man-
agement, we propose to use sFlow [6] at the network edge and
SNMP [7] at the network core. sFlow is chosen because most
of the commercially available OpenFlow-enabled network
devices, such as Open vSwitch [8], support sFlow. Similarily,
we use SNMP because of its widespread adoption.

The mentioned data plane considerations are depicted in
Figure 2. This approach results in an intelligent and complex
network edge that is decoupled from a simple and static legacy
network core.

B. Control Plane Considerations

Our control plane considerations primarily aim to provi-
sion simple abstractions of the underlying network resources,
enabling network virtualization through SDN to the north-
bound NaaS based network service orchestration platform as
proposed in [1][2][3]. For the complex network edge, the
control plane involves (1) an OpenFlow based SDN controller
for applying dynamic and flow-level traffic control, (2) an
sFlow based network analyzer for flow-level traffic monitoring
and (3) a network configuration system that configures the
underlying resources. Furthermore, for NaaS based network
service orchestration and closed-loop network control, the
OpenFlow based SDN controller and sFlow based network
analyzer must expose their northbound APIs. For the simple
and static legacy network core, one can reuse the current
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Fig. 3: The Proof-of-Concept design of our architecture.

legacy network management system while exposing SNMP
through an analyzer’s API.

IV. PROOF OF CONCEPT

In this section, we first present and discuss our Proof of
Concept design in subsection IV-A, followed by its imple-
mentation on a physical network testbed in subsection IV-B.
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Fig. 4: Testbed Setup A with Juniper (M10i) legacy routers as
the network core MPLS LSRs.
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Fig. 5: Testbed Setup B with Pica8 (P-3290) open switches as
the network core MPLS LSRs.

A. Proof of Concept Design

Our Proof of Concept (PoC) design is depicted in Figure
3. The PoC design does not involve any virtualized network
functions being implemented on the underlying virtual servers.
The NaaS based northbound service provisioning platform is
accessed through CLI. The OpenDaylight Controller (Base
Edition) [9] is chosen as the OpenFlow based SDN controller
because of its full-stack support for SDN and NFV, well-
documented northbound APIs and large developer community.

For monitoring, we use the sFlow-RT network analyzer [10]
and we have built a custom SNMP based web application
with northbound APIs for network core interface monitoring,
exposing link failures and utilization events at customizable
polling intervals and thresholds. Vendor-specific CLIs and web
GUIs are used for network device configurations as our PoC
design involves only static network configuration. The NaaS
platform involves an application that acts as an abstraction
layer to represent all underlying APIs as simple abstractions
and function calls to other applications in the platform. The
implementation of our PoC is published open source and can
be found at our GitHub web page [11].

B. Implementation on a Physical Network Testbed

Our physical network testbed consists of 4 Pica8 open
switches (2 P-3922 48-port 10-GBE and 2 P-3290 48-port 1-
GBE switches), 4 Juniper M10i series routers, 7 Linux based
virtual machines (VMs) running on 5 different servers and a
remote PC. The 4 Pica8 open switches can either be used in
legacy L2/L3 mode or Open vSwitch mode.

In our physical network testbed, we use one VM for running
the OpenDaylight Controller and sFlow-RT network analyzer
for edge flow monitoring, one VM for running our custom built
SNMP web application and optionally the sFlow-RT network
analyzer for core interface monitoring, 5 VMs running on the
remaining 3 servers as our 5 end-hosts and a remote PC for
hosting the NaaS platform. Moreover, end-host 5 is configured

to be in a different IP subnet compared to the other end-
hosts in the physical network testbed in order to emulate
routing across service provider networks. At the network edge,
we use the 2 P-3922 Pica8 open switches as the OpenFlow-
enabled LERs. At the network core, we have two different
implementations, one implementation involves the four Juniper
M10i series routers as the legacy network core LSRs, whereas
the other implementation involves the two P-3290 Pica8 open
switches as the static network core LSRs. In the latter, we use
sFlow instead of SNMP for network core interface monitoring
in the comparative testbed setup as the Pica8 open switches
support sFlow. Thus, we have two testbed setups, which are
respectively depicted as Testbed Setup A and Testbed Setup
B in Figures 4 and 5.

In both testbed setups, network devices are connected
through 1GB fiber-optic interfaces, while the end-host VMs
are connected to the network through gigabit Ethernet cables.
Furthermore, we pre-install full-mesh static LSPs performing
penultimate hop popping in the network core of both our
testbed setups. Finally, the OpenFlow-enabled LERs need
to replace the destination MAC addresses of the incoming
network traffic with that of the next-hop router.

V. PERFORMANCE EVALUATION AND VALIDATION

In this section, we present the experimental performance
evaluation of our PoC. We focus on performance analysis of
the involved network control overhead. In order to perform
our evaluation, we use the packet analyzer Wireshark at
the involved VMs (controllers, analyzers, monitors, and end-
hosts). Since the captured packet information from Wireshark
involves time-stamped data, we resample this time series data
into buckets of 1 second to plot network load in terms of
frames per second, bytes per second, and bits per second over
this sampled time.

For the performance analysis of the involved control over-
head in the PoC physical network testbed, we first study and
analyze the involved OpenFlow, sFlow, and SNMP protocol
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Fig. 6: OpenFlow protocol traffic load samples at the OpenDaylight Controller in the PoC physical network testbed.

traffic in Testbed Setup A at the OpenDaylight Controller,
sFlow-RT network analyzer, and custom built SNMP web
application, respectively, while provisioning and managing
the PoC basic network connectivity services over it. Later,
a similar analysis is carried out in Testbed Setup B and
compared with that of Testbed Setup A. In essence, Testbed
Setup B only differs from Testbed Setup A in terms of its
network core, it has open switches instead of legacy routers
and uses sFlow instead of SNMP based network monitoring.

As can be seen from Figure 6, the overall network control
overhead is much higher in Testbed Setup A compared to that
of Testbed Setup B. At the network edge, the average value
of the total OpenFlow protocol traffic load at the OpenDay-
light Controller to/from the two underlying open switches in
Testbed Setup A is around 45 Kbps with a standard deviation
of around 50 Kbps, whereas in Testbed Setup B the average
value is around 1.5 Kbps with a standard deviation of around
4.5 Kbps. This huge difference can be explained by analyzing
their involved traffic load samples.

In general, the OpenDaylight Controller gathers statistics
from the underlying open switches every 15 seconds, i.e. flow,
group, meter, port counters, and table statistics, using the
OpenFlow statistics request and reply messages, whose traffic
peaks can be clearly noticed in Subfigure 6b. Furthermore,
the only other major operation of the OpenDaylight controller
in the PoC physical network testbed is that of installing and
deleting flows in the underlying switches, which involves
OpenFlow packets of around 200 bytes large. However, the
reason for the high traffic load in Testbed Setup A is due to
the involved link-state routing protocol, OSPF, in its legacy
network core. The legacy routers send out multicast OSPF
"Hello" packets every 8 seconds. The edge open switches,
upon receiving those packets, send them to the OpenDaylight
Controller for corresponding action, which in turn returns them
to the underlying open switches to appropriately multicast
them. In this manner, they cause a high traffic load in the
network and at the OpenDaylight Controller.

Similarly, our end-host VMs are installed with an LLDP

(Link Layer Discovery Protocol) implementation daemon
called lldpd, which sends out multicast LLDP requests every
30 seconds and similarly introduces high traffic load in the
network. Moreover, the sFlow based network edge traffic
monitoring involves sampling of packets and exporting of
interface statistics to the sFlow-RT network analyzer at a
configured rate. Thus, the sFlow-RT network analyzer is also
over loaded with the additional sFlow protocol traffic in
Testbed Setup A. Nevertheless, both LLDP and OSPF are
additional features to the PoC physical network testbed and
can be removed, as shown in Testbed Setup B and Subfigure
6b, or handled accordingly by the OpenDaylight Controller to
avoid additional network control overhead.

As can be seen from Figure 7, the average value of the total
SNMP protocol traffic load at the custom built SNMP web
application to and from the four underlying legacy routers in
the network core at Testbed Setup A is around 2.5 Kbps with a
standard deviation of around 6 Kbps, whereas in Testbed Setup
B the average value of the total sFlow protocol traffic load
at the sFlow-RT network analyzer from the two underlying
open switches is around 0.8 Kbps with a standard deviation of
around 1 Kbps. This difference can be explained by analyzing
their involved traffic load samples.

In Testbed Setup A, at the network core, the custom built
SNMP web application gathers only three interface counters
from the Management Information Bases, being ifOperStatus,
ifInOctetes and ifOutOctetes in IF-MIB of SNMP MIB-2, in
the underlying legacy routers at once every 20 seconds. The
involved SNMP v2c request and reply packets in gathering the
three interface counters are each of a size around 90 bytes.
In Testbed Setup B, at the network core, the sFlow standard
implementation in the underlying open switches is configured
with a packet sampling rate of 1000 and an interface statistics
polling rate of 20 seconds. The involved sFlow packets in
exporting the per-interface statistics and sampled packets are
each, respectively, around 186 bytes and 218 bytes large.
Furthermore, two or more interface statistics message and
sampled packets may be exported as a single sFlow packet,
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Fig. 7: Network core monitoring traffic load samples in the PoC physical network testbed.

in which case the total packet size is less than the sum of the
individual packet sizes when sent seperately. Protocol traffic
load measurements in the corresponding testbed setups are
shown in Subfigures 7a and 7b, respectively.

Although Testbed Setup B has less network core devices
compared to that of Testbed Setup A, the control overhead
at the network core is still logically higher in Testbed Setup
A compared to that of Testbed Setup B. Firstly, SNMP
based network monitoring in Testbed Setup A involves pull-
based gathering of only three interface counters for detecting
interface failure and high utilization events, whereas the sFlow
based network monitoring in Testbed Setup B involves push-
based exporting of all the interface statistics from the underly-
ing open switches. Secondly, sFlow based network monitoring
additionally involves flow sampling for more visibility into
the traffic at the network core. Finally, SNMP based network
monitoring gathers interface statistics of the underlying legacy
routers once every 20 seconds, whereas sFlow based network
monitoring involves exporting of interface statistics once every
20 seconds for each interface.

Additionally, we have found that Testbed Setup B experi-
ences a higher round-trip delay compared to that of Testbed
Setup A. The main reason behind this is that the two open
switches in Testbed Setup B’s network core execute MPLS
forwarding operations in their CPU instead of their hardware
ASICs. Thus, the involved open switches in our proposed evo-
lutionary approach must support MPLS switching operations
in their hardware ASICs for much faster switching, avoidance
of network bottlenecks, and to prevent unnecessary load on the
switch CPUs. Altogether, our proposed evolutionary approach
performs much better compared to the legacy solutions in
terms of network control overhead as it avoids the usage
of legacy signaling and control protocols. Furthermore, the
incremental deployment of open switches in the network
core will greatly reduce the network control overhead while
enabling much better visibility into the network core. Thus,
our proposed evolutionary approach enables flexible and inde-
pendent evolution of both the network core and edge.

VI. CONCLUSION

In this article, we have proposed an SDN-based architec-
ture for the Network-as-a-Service (NaaS) cloud-based service
model. We have implemented a Proof-of-Concept implementa-
tion on a physical network testbed, combined with provision-
ing and management of basic network connectivity services
over it. Our performance evaluation yields sufficient results
with low control overhead and a quick response time.
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