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Summary

Shifted linear systems are of the form

(A− σkI)xk = b, (1)

where A ∈ CN×N ,b ∈ CN and {σk}Nσk=1 ∈ C is a sequence of numbers, called shifts. In
order to solve (1) for multiple shifts efficiently, shifted Krylov methods make use of the
shift-invariance property of their respective Krylov subspaces, i.e.

Km(A,b) = Km(A− σI,b), ∀m ∈ N,∀σ ∈ C, (2)

and, therefore, compute one basis of the Krylov subspace (2) for all shifted systems. This
leads to a significant speed-up of the numerical solution of the shifted problems because
obtaining a basis of (2) is computational expensive.

However, in practical applications, preconditioning of (1) is required, which in general
destroys the shift-invariance. One of the few known preconditioners that lead to a new,
preconditioned shifted problem is the so-called shift-and-invert preconditioner which is
of the form (A − τI) where τ is the seed shift. Most recently, multiple shift-and-invert
preconditioners have been applied within a flexible GMRES iteration, cf. [10, 20]. Since
even the one-time application of a shift-and-invert preconditioner can be computationally
costly, polynomial preconditioners have been developed for shifted problems in [1]. They
have the advantage of preserving the shift-invariance (2) and being computational feasible
at the same time.

The presented work is a new approach to the iterative solution of (1). We use nested
Krylov methods that use an inner Krylov method as a preconditioner for an outer Krylov
iteration, cf. [17, 24] for the unshifted case. In order to preserve the shift-invariance prop-
erty, our algorithm only requires the inner Krylov method to produce collinear residuals
of the shifted systems. The collinearity factor is then used in the (generalized) Hessenberg
relation of the outer Krylov method. In this article, we present two possible combinations
of nested Krylov algorithms, namely a combination of inner multi-shift FOM and outer
multi-shift GMRES as well as inner multi-shift IDR(s) and outer multi-shift QMRIDR(s).
However, we will point out that in principle every combination is possible as long as the
inner Krylov method leads to collinear residuals. Since multi-shift IDR [31] does not lead
to collinear residuals by default, the development of a collinear IDR variant that can be
applied as an inner method within the nested framework is a second main contribution of
this work.

The new nested Krylov algorithm has been tested on several shifted problems. In
particular, the inhomogeneous and time-harmonic linear elastic wave equation leads to
shifts that directly correspond to different frequencies of the waves.

Keywords: shifted linear systems, flexible preconditioning, inner-outer Krylov meth-
ods, Induced Dimension Reduction (IDR) method, time-harmonic elastic wave equation
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1 Introduction

We consider shifted linear systems of the form

(A− σkI)xk = b, k = 1, ..., Nσ, (3)

where the dimensions are A ∈ CN×N ,xk ∈ CN ,b ∈ CN and Nσ denotes the number of
distinct shifts σk ∈ C. For simplicity, we will often write

(A− σI)x(σ) = b, σ ∈ C, (4)

keeping in mind that we aim to solve (4) for a sequence of many shifts σ and that quantities
with a superscript belong to the respective shifted system, i.e. x(σ) is the solution of the
linear system with system matrix (A− σI) and right-hand side b.

For an overview on the numerical solution of shifted linear systems using Krylov meth-
ods we refer to [12]. Multi-shift Krylov methods have been developed for QMR [6],
GMRES(k) [8], FOM(k) [22], BiCGstab(`) [7], CG [29] and, most recently, for IDR(s) [31].

This paper mostly focuses on preconditioning techniques for shifted linear systems. So
far, known preconditioning techniques for shifted linear systems are the so-called shift-and-
invert preconditioner of the form (A− τI) where τ is a seed shift. This preconditioner has
been applied to shifted Helmholtz problems for example in [4]. Since the shift-and-invert
matrix has to be solved by a direct method, this approach can be computationally very
costly. This can be overcome by either a multi-grid approach [5, 21] or by an approximation
of the shift-and-invert preconditioner using a polynomial approximation as shown in [1].
Most recently, many shift-and-invert preconditioners have been applied in a flexible Krylov
method in order to capture a wider range of shifts, cf. [10, 20]. In this article, we will
present two new algorithms that are both nested Krylov methods in the sense that an inner
Krylov method is used as a (polynomial) preconditioner to solve shifted linear systems in
an outer Krylov iteration.

Our article is organized as follows: In Section 2 we repeat briefly the multi-shift GMRES
[8] and the multi-shift QMRIDR [31] algorithm without preconditioning. Both are used as
an outer Krylov method for the new nested framework in Section 3.4 and 3.5, respectively.
As for the inner, collinear Krylov method, we present the multi-shift FOM algorithm that
automatically leads to collinear residuals in Section 3.3.1. In order to use IDR as an inner
method, we present a collinear variant of IDR(s) in Section 3.3.2. The article is summarized
with various numerical tests in Section 4.

2 Multi-shift Krylov methods

The main property that is used in Krylov subspace methods for shifted linear systems, is
the shift-invariance of the Krylov subspaces that are generated by the matrix A and the
shifted matrix (A− σI) when the same right-hand side b is used, i.e.

Km(A,b) ≡ span{b, Ab, ..., Am−1b} = Km(A− σI,b) ∀σ ∈ C. (5)
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The immediate consequence of this invariance-property is that a basis for the underlying
Krylov spaces only has to be build once for all shifted systems.

2.1 Multi-shift GMRES

The well-known GMRES method [19] has first been applied to shifted systems by [8].
In this section, we review the main ideas of [8] and point out how the shift-invariance
property (5) is used in the algorithm in order to speed-up the computational performance
when solving the shifted systems numerically.

In the classical GMRES method for the unshifted system Ax = b, an orthogonal basis
of the m-th Krylov subspace is obtained by the Arnoldi method. This leads to the well-
known Hessenberg relation [28, eqn. 33.3],

AVm = Vm+1Hm, (6)

where the columns of Vm ∈ CN×m span an orthonormal basis of Km(A,b), and Hm ∈
Cm+1×m is the respective Hessenberg matrix with entries hij that are uniquely determined
by the Arnoldi iteration. Then, in classical GMRES, an approximation to the solution of
Ax = b in the m-th iteration is given by

xm = Vmym, where ym = argmin
y∈Cm

‖Hmy − ‖b‖e1‖, (7)

with e1 being the first unit vector of Cm. The optimization problem in (7) can be solved
efficiently due to the Hessenberg-structure of Hm using for instance Givens rotation, cf. [9,
Section 5.1.8]. Clearly, we see from (7) that xm ∈ Km(A,b).

Because of the shift-invariance property (5), the matrix Vm which spans the m-th Krylov
subspace can be re-used for any shift σ. Therefore, the Arnoldi iteration in multi-shift
GMRES only needs to be performed once, and from the shifted Hessenberg relation,

(A− σI)Vm = Vm+1(Hm − σIm),

we can derive an approximated solution to the shifted problem (4) via,

x(σ)
m = Vmy(σ)

m , where y(σ)
m = argmin

y∈Cm
‖(Hm − σIm)y − ‖b‖e1‖, (8)

where Im is the identity matrix of size m × m with and extra zero row appended at the
bottom. We note that the matrix Hm(σ) ≡ Hm−σIm for the shifted system is of Hessenberg-
structure as well. Clearly, we get the original Hessenberg matrix of the unshifted problem
back if σ = 0, i.e. Hm(0) = Hm.

By comparing (7) and (8), we note that the m-th iterate is in both cases spanned by the
column space of the matrix Vm and, therefore, lies in the same Krylov subspace Km(A,b).
Moreover, we note from the derivation of the shifted Hessenberg matrix Hm(σ) that the
shift of the matrix A directly translates into a shift of the Hessenberg matrix.
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In order to allow restarting for multi-shift GMRES, the authors of [8] require collinear
residuals in order to preserve shift-invariance of the respective Krylov spaces after restart-
ing, cf. [8, Algorithm 2.4]. So far, no preconditioner has been applied and we want to
point to [17] for a detailed description of flexible preconditioning for the classical GMRES
method.

2.2 Multi-shift QMRIDR

The QMRIDR method presented in [31] is a variant of the Induced Dimension Reduction
(IDR) method [25] that makes use of a so-called generalized Hessenberg decomposition and
determines the m-th iterate via a quasi-minimization of the m-th residual. In [11, 31], the
following relation is derived:

AGmUm = Gm+1Hm, (9)

where Um ∈ Cm×m is upper triangular, Hm ∈ Cm+1×m is of Hessenberg-form, and s consecu-
tive vectors in Gm belong to the nested Sonneveld spaces G0, ...,Gj. The entries of Um, Gm

and Hm are uniquely determined by the specific implementation of the IDR algorithm, cf.
[11] for a detailed derivation. Based on the generalized Hessenberg decomposition (9), a
multi-shift IDR method, the QMRIDR(s) algorithm, can be derived.

The approach of QMRIDR(s) is very similar to the GMRES approach. Therefore, the
m-th iterate is constructed by a linear combination of the columns of Gm by putting xm =
GmUmym, with a coefficient vector ym ∈ Cm that is determined via a least-squares problem
that involves the Hessenberg matrix Hm only. Altogether, the following minimization
problem needs to be solved,

xm = GmUmym, where ym = argmin
y∈Cm

‖Hmy − ‖b‖e1‖, (10)

which is called ’quasi-minimization’ of the m-th residual because the matrix Gm does not
have orthogonal columns, cf. [31].

For shifted linear systems of the form (4), a very similar relation holds,

x(σ)
m = GmUmy(σ)

m , where y(σ)
m = argmin

y∈Cm
‖(Hm − σUm)y − ‖b‖e1‖, (11)

and by comparing (10) with (11), we note that the approximate solution to the respective
systems lie in the same subspace and the matrix Hm(σ) ≡ Hm−σUm is again of Hessenberg-
structure because Um is an upper triangular matrix with an extra zero row.

From the derivations of multi-shift GMRES in Section 2.1 and of multi-shift QMRIDR
in this section, we note that in both cases the efficient computation of the Hessenberg
matrix of the shifted system Hm(σ) is crucial for the design of the algorithm. Therefore, we
will put emphasis on the computation of Hm(σ) in the nested Krylov framework in Section
3.4 and Section 3.5 as well.
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3 Flexible preconditioning for multi-shift Krylov

methods

This section is structured as follows: We will first point out the requirements of a single
preconditioner for shifted linear systems. In contrast to [26, 27], we restrict ourselves to
such types of preconditioners that preserve the shift-invariance property of the Krylov
subspaces in (5). Based on the requirements of a single preconditioner that preserves shift-
invariance, a flexible preconditioner is designed that requires collinear residuals for the
inner iteration. In Subsection 3.3, we present two Krylov methods that lead to collinear
residuals; namely the FOM method that produces collinear residuals by construction and
a variant of the IDR(s) method where some modifications are necessary in order to obtain
collinear residuals. Both methods are used as preconditioners in a nested Krylov method
in Subsection 3.4 and 3.5, respectively.

3.1 The single shift-and-invert preconditioner for shifted systems

In order to precondition a shifted linear system (4) without destroying the shift-invariance
property of the respective Krylov spaces, we require the following equality after precondi-
tioning,

Km((A− σI)P(σ)−1,b) = Km(AP−1,b), (12)

where P(σ) is a different preconditioner for every considered shifted system, and P is a
preconditioner for the unshifted system Ax = b. Relation (12) is satisfied if we find a
parameter η that depend on the shift σ and a constant matrix P such that,

(A− σI)P(σ)−1 = AP−1 − η(σ)I, (13)

which in fact means that we can write the preconditioned shifted systems as shifted pre-
conditioned systems with new shifts η(σ). From [14, 15, 23], it is well-known that the
so-called shift-and-invert preconditioner P ≡ (A− τI) applied to (13) leads to:

(A− σI)P(σ)−1 = A(A− τI)−1 − η(σ)I

= (1− η(σ))(A+
τη(σ)

1− η(σ)︸ ︷︷ ︸
≡−σ

I)(A− τI)−1.

By choosing η(σ) in an appropriate way, we can factor out the term (A − σI) on both
sides, which yields the following formulas:

η(σ) =
σ

σ − τ
, P(σ) =

1

1− η(σ)
P =

τ − σ
τ
P ,

where the dependence of P(σ) on the shift becomes explicit. Therefore, only the seed shift
τ has to be chosen and in order to invert P(σ) we only need to decompose P . However,

10



the one-time decomposition of P can numerically be very costly and the suitable choice of
the seed shift τ is difficult for a large range of shifts σ1, .., σNσ , as has been pointed out by
[20]. In [1], a polynomial preconditioner is suggested that cheaply approximates P−1.

3.2 Flexible preconditioning for shifted linear systems

Flexible preconditioning of an iterative Krylov subspace method means that a different
preconditioner can be used in every iteration j, see [17] where flexible GMRES has been
introduced for preconditioning of systems Ax = b. For flexible preconditioning of shifted
linear systems, we require a very similar relation to (13), namely,

(A− σI)Pj(σ)−1 = αj(σ)AP−1j − βj(σ)I, (14)

where the parameters αj and βj depend on the shift, and different preconditioners Pj,Pj(σ)
are used at every iteration j. Note that the right-hand side in (14) is again a shifted
linear system and, therefore, the shift-invariance is preserved by the flexible preconditioner.
Since in a practical algorithm, the preconditioner is always directly applied to a vector vj,
equation (14) becomes:

(A− σI)Pj(σ)−1vj = αj(σ)AP−1j vj − βj(σ)vj. (15)

We will next determine how αj and βj have to be chosen such that (14) and (15) hold.
We assume the preconditioning to be done by a multi-shift Krylov method itself (the inner
method) which means that

zj = P−1j vj,

z
(σ)
j = Pj(σ)−1vj,

are computed via a truncated multi-shift Krylov method. More precisely, the vectors zj
and z

(σ)
j denote the approximate (truncated) solution of the linear systems with system

matrix A and (A−σI), respectively, and right-hand side vj. Therefore, the corresponding
(inner) residuals are given by,

rj = vj − Azj = vj − AP−1j vj, (16)

r
(σ)
j = vj − (A− σI)z

(σ)
j = vj − (A− σI)Pj(σ)−1vj. (17)

We require the residuals (16)-(17) of the inner method to be collinear, i.e.

∃γ(σ)j ∈ C : γ
(σ)
j rj = r

(σ)
j . (18)

Note that the collinearity factor γ
(σ)
j will be different at every iteration j and for every

shift σ. Moreover, relation (18) is not a very strong assumption since for example multi-
shift FOM [22], multi-shift BiCGstab [7], restarted multi-shift GMRES [8] and multi-shift

11



IDR [13] lead to collinear residuals. With this assumption, αj and βj can be determined
from (15) by using the collinearity relation (18) as the following calculation shows:

(A− σI)z
(σ)
j = αjAzj − βjvj

⇔ vj − (A− σI)z
(σ)
j = αjvj − αjAzj + (1− αj + βj)vj

⇔ r
(σ)
j = αj︸︷︷︸

≡γ(σ)j

rj + (1− αj + βj)︸ ︷︷ ︸
≡0

vj

Thus, with (15) the residuals are collinear if we choose

αj = γ
(σ)
j , βj = αj − 1 = γ

(σ)
j − 1

in every (outer) iteration 1 ≤ j ≤ m. We show the following relation,

(A− σI)z
(σ)
j = γ

(σ)
j Azj −

(
γ
(σ)
j − 1

)
vj, (19)

or, in terms of the flexible preconditioners Pj and Pj(σ), the following holds:

(A− σI)Pj(σ)−1vj =
(
γ
(σ)
j AP−1j −

(
γ
(σ)
j − 1

)
I
)

vj, 1 ≤ j ≤ m.

Note that the factors αj and βj do depend on σ since the collinearity factor γ
(σ)
j is different

for every shift.

3.3 Krylov methods with collinear residuals

In the previous section, we have derived the theoretical basis for a nested Krylov method
for shifted linear systems. In order to be able to design a preconditioner that preserves the
shift-invariance of the corresponding Krylov spaces, we assumed collinear residuals (18)
for the inner multi-shift method. Next, we will present two multi-shift Krylov methods
that lead to collinear residuals and, therefore, fulfill assumption (18). It is well-known
that the multi-shift version of the Full Orthogonalization Method (FOM) leads to collinear
residuals. We will review this result in Subsection 3.3.1. Moreover, we design a new
variant of the Induced Dimension Reduction (IDR) method that has collinear residuals in
Subsection 3.3.2.

3.3.1 Collinear residuals in the Full Orthogonalization Method (FOM)

The multi-shift FOM method (msFOM) can be derived very similarly to the multi-shift
GMRES method in Section 2.1, cf. [22]. In FOM, an orthogonal basis of Km(A,b) is
obtained via the Arnoldi iteration which yields,

V T
mAVm = Hm,
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and can be derived from (6) by left-multiplication with V T
m . Here, Hm is a square matrix.

Assuming Hm is invertible, the m-th iterate is then obtained by

xm = Vmym, where ym = H−1m (βe1),

where, for simplicity, we assumed x0 = 0 as an initial guess, and β ≡ ‖r0‖ = ‖b‖. Similarly
to multi-shift GMRES, the shifted Hessenberg matrix in msFOM can be derived as Hm(σ) =
Hm − σIm, see [22]. The complete multi-shift FOM algorithm is giving in Algorithm 1.

Algorithm 1: msFOM for (A− σkI)xk = b, k = 1, ..., Nσ, [22]

1: // Single FOM:
2: Initialize r0 = b, β = ‖r0‖, v1 = r0/β
3: for j = 1 to m do
4: Compute w = Avj

Arnoldi iteration5: for i = 1 to j do
6: hi,j = 〈w,vi〉
7: w = w − hi,jvi
8: end for
9: Set hj+1,j = ‖w‖ and vj+1 = w/hj+1,j

10: end for
11: Solve ym = H−1m (βe1)
12: Set xm = Vmym
13:

14: // Multi-shift FOM:
15: for k = 1 to Nσ do
16: Construct Hm(σk) = Hm − σkIm
17: Solve y

(σk)
m = Hm(σk)

−1(βe1)

18: Set x
(σk)
m = Vmy

(σk)
m

19: end for

It is well-known that the msFOM method as presented in Algorithm 1 leads to collinear
residuals of the shifted system and the original (σ = 0) system. We repeat this result in
the following Lemma.

Lemma 3.1 (Collinearity of the residuals in Algorithm 1). We use the notation of Algo-
rithm 1. Let the respective residuals of the original and the shifted system after m steps
be

rm ≡ b− Axm,

r(σ)m ≡ b− (A− σI)x(σ)
m .

Then there exists a scalar γ(σ) that depends on the number of performed msFOM iterations
m, and the shift σ such that

γ(σ)rm = r(σ)m .
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Proof. This proof can be found in [18, Proposition 6.7] as well as in [22]. For the residual
of the original system it holds after m iterations,

rm = b− Axm = b− AVmym = r0 − AVmym

= βv1 − VmHmym︸ ︷︷ ︸
=0

−hm+1,meTmymvm+1 = −hm+1,meTmymvm+1.

Repeating the same calculation for the shifted system yields,

r(σ)m = −h(σ)m+1,meTmy(σ)
m vm+1,

with em ≡ [0, ..., 0, 1]T ∈ Cm, and the Arnoldi vector vm+1 is identical to the unshifted
case. Since the off-diagonal elements of the shifted Hessenberg matrix are identical to the
unshifted Hessenberg matrix in Algorithm 1, and the orthogonal basis vectors vi obtained
by the Arnoldi iteration are identical, we conclude,

γ(σ) = y(σ)m /ym, (20)

with ym, y
(σ)
m being the last entry of the vectors ym,y

(σ)
m , respectively. The residuals are

collinear with the collinearity factor γ(σ) explicitly given by (20).

The above lemma shows that msFOM is suitable as a preconditioner for the nested
framework derived in Section 3.2. The required collinearity factor γ

(σ)
j of the j-th outer

iteration in (19) is given by (20), where we assume that msFOM is stopped after m inner
iterations

3.3.2 A variant of multi-shift IDR(s) with collinear residuals

The IDR method as presented in [25] is a Krylov subspace method that is based on the
idea that the residual is forced to lie in spaces Gj of shrinking dimensions as the number
of iterations increases. In more detail, we require the residual rn+1 to fulfill,

Gj+1 3 rn+1 = (I − ωj+1A)vn, with vn ∈ Gj ∩ S, (21)

with G0 ≡ KN(A,b), and, without loss of generality, let S = N (PH) be the null space of
some N × s matrix P = [p1, ...,ps]. It is known from the IDR theorem [25, Theorem 2.1]
that the spaces Gj that are generated via the recursive definition (21) are of decreasing
dimension and that, eventually, Gj = {0} for some j ≤ N . This result guarantees that the
residual will be equal to zero in exact arithmetic at some point. Moreover, note that the
scalar ωj+1 in (21) can be chosen freely which we will exploit in the following in order to
derive a collinear variant of the IDR(s) method.

According to [25], the vectors vn ∈ Gj ∩ S are computed in the following way,

(PH∆Rn)c = PHrn,

vn = rn −∆Rnc,
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with ∆Rn ≡ [∆rn−1, ...,∆rn−s], and residual difference ∆rn−1 ≡ rn − rn−1. In a similar
way, we denote the matrix of the last s+ 1 residuals by Rn ≡ [rn, ..., rn−s].

A first approach to adapt the IDR method to shifted linear systems that leads to
collinear residuals has been done by [13]. However, the algorithm presented in [13] has
the disadvantage of evaluating a polynomial recursively. For the collinear IDR-variant
presented in this section, we first note that collinear residuals rn+1 and r

(σ)
n+1 will lie in

the same Sonneveld spaces. We therefore aim to construct the spaces Gj only once for
all shifted systems. Our approach can be described in two phases: First, we note from
(21), that in order to obtain collinear residuals, we need to produce collinear vectors vn.
Therefore, we want to calculate the intermediate vector c(σ) of the shifted systems such
that v

(σ)
n = αvn. The following calculation shows that we can even avoid storing residual

differences of the shifted system,

v(σ)
n = r(σ)n −∆R(σ)

n c(σ) (22)

= [r(σ)n ,−∆R(σ)
n ]

[
1

c(σ)

]
(23)

= R(σ)
n D

[
1

c(σ)

]
(24)

= RnΓ̃(σ)
n D

[
1

c(σ)

]
(25)

= [rn,−∆Rn]D−1Γ̃(σ)
n D

[
1

c(σ)

]
. (26)

In step (24), we used that the residual updates can be expressed as a product of the actual

residuals and a difference matrix D in the following way [r
(σ)
n ,−∆R

(σ)
n ] = R

(σ)
n D, where D

is defined as the difference matrix:

D ≡


1 −1

. . . . . .
. . . −1

1

 ∈ Cs+1×s+1.

Then, in step (25), we can map the residuals of the shifted system to the residuals of the

original system via a diagonal matrix Γ̃
(σ)
n = diag(γ

(σ)
n , ..., γ

(σ)
n−s) that consists of the last

s + 1 consecutive collinearity factors. It holds, R
(σ)
n = RnΓ̃

(σ)
n . The factor α can then be

found by solving,

D−1Γ̃(σ)
n D

[
1

c(σ)

]
=

[
1
c

]
,

for [1, c(σ)]T and normalizing the first component. Note that this computation not only
determines the factor α but also leads to the intermediate vector c(σ) for the shifted system
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without actually storing the residual differences for the shifted system. This is an advantage
concerning memory requirements of the new multi-shift algorithm.

In the second step of our approach, we determine the free IDR parameter ω
(σ)
j+1 and the

factor γ(σ) such that the residuals are collinear, i.e.

γ(σ)rn+1 = r
(σ)
n+1.

Therefore, we substitute the definition of the residuals from (21) and use the collinearity
of the vector vn:

γ(σ)rn+1 = r
(σ)
n+1

⇔ γ(σ) ((I − ωj+1A)vn) = (I − ω(σ)
j+1(A− σI))αvn

⇔ γ(σ)vn − γ(σ)ωj+1Avn = (1 + ω
(σ)
j+1σ)αvn − ω(σ)

j+1αAvn.

By matching the coefficients of the terms that belong to vn and Avn, respectively, we
obtain,

γ(σ) = α + ω
(σ)
j+1σα, γ(σ)ωj+1 = ω

(σ)
j+1α,

where γ(σ) and ω
(σ)
j+1 can be calculated as:

ω
(σ)
j+1 =

ωj+1

1− ωj+1σ
, γ(σ) =

α

1− ωj+1σ
. (27)

Thus, we have derived a formula for the collinearity factor γ(σ) which can be used in the
nested framework in (19). In Algorithm 2, we present the collinear IDR variant (called

collIDR(s)) using (27) for the choice of the free IDR parameter ω
(σ)
j+1. Note that in (27)

the explicit dependence of the collinearity factor on the shift becomes obvious. Since
in Algorithm 2 we loop over Nσ distinct shifts, all shifted quantities are labeled with a
superscript that depends on this loop index k. Concerning the choice of the s-dimensional
shadow space S and the parameter ωj+1 of the unshifted system, we refer to Section 4.1
and 4.2 of [25], respectively.
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Algorithm 2: collIDR(s) for (A− σkI)xk = b, k = 1, ..., Nσ

1: Set r0 = b, x0 = x
(σk)
0 = 0, and γ

(σk)
0 = 1

2: for n = 0, ..., s− 1 do
3: v = Arn; ω = (vHrn)/(vHv)
4: ∆xn = ωrn; ∆rn = −ωv
5: for k = 1, ..., Nσ do

6: γ
(σk)
n+1 = γ

(σk)
n

1−ωσk
; ω(σk) = ω

1−ωσk
7: ∆x

(σk)
n = ω(σk)γ

(σk)
n rn

8: x
(σk)
n+1 = x

(σk)
n + ∆x

(σk)
n

9: end for
10: Update: xn+1 = xn + ∆xn; rn+1 = rn + ∆rn
11: end for
12: ∆Rn+1 := (∆rn, ...,∆r0); ∆Xn+1 := (∆xn, ...,∆x0)

13: ∆X
(σk)
n+1 := (∆x

(σk)
n , ...,∆x

(σk)
0 ); γ(σk) := (γ

(σk)
n+1 , ..., γ

(σk)
0 )

14: n = s
15: while ‖rn‖ > TOL and n < MAXIT do
16: for j = 0, ..., s do
17: Solve c from PH∆Rnc = PHrn
18: v = rn −∆Rnc
19: for k = 1, ..., Nσ do
20: Γ̃

(σk)
n := diag(γ(σk))

21: Solve [1, c(σk)] from D−1Γ̃
(σk)
n D[1, c(σk)] = [1, c] such that v(σk) = α(σk)v

22: end for
23: if j == 0 then
24: t = Av
25: ω = (tHv)/(tHt); ω(σk) = ω

1−ωσk
26: ∆xn = −∆Xnc + ωv; ∆rn = −∆Rnc− ωt
27: else
28: ∆xn = −∆Xnc + ωv; ∆rn = −A∆xn
29: end if
30: Update: xn+1 = xn + ∆xn; rn+1 = rn + ∆rn
31: for k = 1, ..., Nσ do

32: γ
(σk)
n+1 = α(σk)

1−ωσk
33: ∆x

(σk)
n = −∆X

(σk)
n c(σk) + ω(σk)α(σk)v

34: x
(σk)
n+1 = x

(σk)
n + ∆x

(σk)
n

35: end for
36: // The IDR-update:
37: n = n+ 1
38: ∆Rn := (∆rn−1, ...,∆rn−s); ∆Xn := (∆xn−1, ...,∆xn−s)

39: ∆X
(σk)
n := (∆x

(σk)
n−1, ...,∆x

(σk)
n−s); γ

(σk) := (γ
(σk)
n , ..., γ

(σk)
n−s )

40: end for
41: end while

17



3.4 Nested FOM-GMRES for shifted linear systems

We now present a special case of the nested Krylov framework of Section 3.2, namely a
version where multi-shift FOM (msFOM) is used as inner preconditioner and flexible GMRES
(FGMRES) is used as an outer Krylov iteration. Flexible GMRES has been introduced by
[17] for unshifted systems Ax = b and provides a different preconditioner Pj in the j-th
outer iteration. The Hessenberg relation (6) therein extends to,

AZm = Vm+1Hm, (28)

where at step 1 ≤ j ≤ m the (flexible) preconditioning zj ≡ P−1j vj is carried out, and
Zm ≡ [z1, ..., zm]. Note that (28) is formulated for the unshifted case and that one column
of relation (28) yields,

Azj = Vm+1hj,

which we will use next in order to determine the shifted Hessenberg matrix. Therefore, we
assume that the preconditioner Pj(σ) is equivalent to a truncated msFOM inner iteration

with collinear factor γ
(σ)
j of the residuals according to (20). From the following calculation

(A− σI)Pj(σ)−1vj = Vm+1h
(σ)
j

⇔ γ
(σ)
j Azj −

(
γ
(σ)
j − 1

)
vj = Vm+1h

(σ)
j

⇔ γ
(σ)
j Vm+1hj − Vm+1

(
γ
(σ)
j − 1

)
ej = Vm+1h

(σ)
j

⇔ Vm+1

(
γ
(σ)
j hj −

(
γ
(σ)
j − 1

)
ej

)
= Vm+1h

(σ)
j

we can conclude the j-th column of the shifted Hessenberg matrix to be,

h
(σ)
j ≡ γ

(σ)
j hj −

(
γ
(σ)
j − 1

)
ej, 1 ≤ j ≤ m, (29)

with ej being the j-th unit vector of Cm+1. Aligning the columns of m outer iterations
together, yields the following formula for the shifted Hessenberg matrix,

Hm(σ) = (Hm − Im) Γ(σ)
m + Im, (30)

where Im is the m×m identity matrix with an extra column of zeros attached and Γ
(σ)
m is

a diagonal matrix with the collinearity factors on the diagonal, i.e.

Γ(σ)
m ≡

γ
(σ)
1

. . .

γ
(σ)
m

 ∈ Cm×m. (31)
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We use this notation in order to point out the similarities to the nested algorithm in
Section 3.5. Note that for σ = 0, the shifted Hessenberg matrix (30) reduces to the plain
Hessenberg matrix, Hm(0) = Hm, because in this case the collinearity factors are all equal

to one and, hence, Γ
(0)
m = I. The FOM-GMRES nested Krylov method for shifted linear

systems is summarized in Algorithm 3.

Algorithm 3: FGMRES with a msFOM preconditioner for (A−σkI)xk = b, k = 1, ..., Nσ

1: Initialize r0 = b, β = ‖r0‖, v1 = r0/β
2: for j = 1 to m do
3: Preconditioning: z

(σk)
j = msFOM(A− σkI,vj)

4: Compute γ
(σk)
j according to (20)

5: Compute w = Az
(0)
j

Arnoldi iteration6: for i = 1 to j do
7: hi,j = 〈w,vi〉
8: w = w − hi,jvi
9: end for
10: Set hj+1,j = ‖w‖ and vj+1 = w/hj+1,j

11: // Loop over shifted systems:
12: for k = 1 to Nσ do
13: Define Z

(σk)
j = [z

(σk)
1 , ..., z

(σk)
j ]

14: Construct Hj(σk) according to (30)

15: Solve y
(σk)
j = argminy

∥∥βe1 − Hj(σk)y
∥∥, with e1 = [1, 0, ..., 0]T ∈ Rj+1

16: Set x
(σk)
j = Z

(σk)
j y

(σk)
j

17: end for
18: end for

We note that in the same way as in flexible GMRES for the unshifted case, extra
storage is required because the matrices Z

(σk)
j which span the solution space for every

shifted problem need to be stored. This is in fact a drawback of flexible GMRES that has
already been pointed out by [17] and applies here for every shift.

3.5 Nested IDR-QMRIDR for shifted linear systems

In a similar way to the nested FOM-GMRES algorithm, we present a nested IDR-QMRIDR
method for shifted linear systems where collIDR(s) is used as inner method. For Vm ≡
GmUm, relation (9) in QMRIDR was given by,

AVm = Gm+1Hm.

In flexible QMRIDR (FQMRIDR) which has been introduced in [31, Section 4], this relation
is replaced by

AZm = Gm+1Hm, (32)
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with Zm consisting of the columns zj ≡ P−1j vj for 1 ≤ j ≤ m, just as before. One column
of (32) reads,

Azj = Gm+1hj,

which we will use in order to derive the shifted Hessenberg matrix.
We assume that the factor γ

(σ)
j is given from (27) by an inner collIDR(s) iteration.

Then, the flexible QMRIDR relation applied to a shifted problem yields:

(A− σI)Pj(σ)−1vj = Gm+1h
(σ)
j

⇔ γ
(σ)
j Azj −

(
γ
(σ)
j − 1

)
vj = Gm+1h

(σ)
j

⇔ γ
(σ)
j Gm+1hj −

(
γ
(σ)
j − 1

)
Gmuj = Gm+1h

(σ)
j

⇔ Gm+1

(
γ
(σ)
j hj −

(
γ
(σ)
j − 1

)
uj

)
= Gm+1h

(σ)
j

and one column of the shifted Hessenberg matrix is given by,

h
(σ)
j = γ

(σ)
j hj −

(
γ
(σ)
j − 1

)
uj, 1 ≤ j ≤ m, (33)

where uj ≡ [uj, 0]T is the vector uj from the j-th iteration of QMRIDR with an extra zero.
Altogether, we have derived the shifted Hessenberg matrix,

Hm(σ) = (Hm − Um) Γ(σ)
m + Um, (34)

with Γ
(σ)
m as defined in (31), and Um ≡ [u1, ...,um]. Here we see the close relation between

the two nested methods: By comparing the expression for the shifted Hessenberg matrices
in (30) and (34) we first note that in principle every inner Krylov method can be used
that provides collinear residuals. Moreover, we use this factor within the (generalized)
Hessenberg relation of the outer Krylov method in a very similar way which shows that in
principle also every Krylov method as an outer iteration is suitable.

Note that Algorithm 4 is schematic. For a more detailed and memory-efficient imple-
mentation of the flexible QMRIDR(s) routine, see [31, Algorithm 1]. In fact, we only need
to apply the collIDR(s) routine as a preconditioner in line 18 and change line 32 by the
formula (33) in order to adapt [31, Algorithm 1] to our nested method.
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Algorithm 4: FQMRIDR with a collIDR(s) preconditioner for (A−σkI)xk = b, k =
1, ..., Nσ

1: Initialize r0 = b, β = ‖r0‖, v1 = r0/β
2: for j = 1 to m do
3: Preconditioning: z

(σk)
j = collIDR(A− σkI,vj)

4: Compute γ
(σk)
j according to (27)

5: Compute hj,uj as in QMRIDR, see [31, Algorithm 1]

6: Compute h
(σk)
j from (33)

7: // Loop over shifted systems:
8: for k = 1 to Nσ do
9: Define Z

(σk)
j = [z

(σk)
1 , ..., z

(σk)
j ]

10: Construct Hj(σk) according to (34)

11: Solve y(σk) = argminy

∥∥βe1 − Hj(σk)y
∥∥, with e1 = [1, 0, ..., 0]T ∈ Rj+1

12: Set x
(σk)
j = Z

(σk)
j y(σk)

13: end for
14: end for

4 Numerical experiments

The numerical examples we present are motivated in two respects: First, we consider
examples taken from earlier publications on nested Krylov method and multi-shift Krylov
methods, respectively. We will compare how the new nested framework compares to the
results presented earlier. We consider the numerical solution of the Helmholtz equation in
Section 4.1 and of the time-harmonic elastic wave equation in Section 4.2. In both cases, we
consider the numerical solution at multiple frequencies that arise from a frequency-domain
model of acoustic and elastic waves, respectively. We will point out that there exists a
one-to-one relation between the considered shifts in (3) and the frequencies of the waves.

All examples have been implemented in Matlab R2011b on a Intel(R) Xeon(R)

CPU E3-1240 V2 @ 3.40GHz CPU.
For the numerical solution of shifted linear systems of the form

(A− σkI)xk = b, k = 1, .., Nσ, (35)

it is of practical use to re-formulate the problem (35) by the following substitution:

σ̃k ≡ σk − σ∗,
Ã ≡ A− σ∗I,

for some σ∗ ∈ {σ1, ..., σNσ}. This way, it is equivalent to solve the shifted linear systems

(Ã− σ̃kI)xk = b, k = 1, .., Nσ, (36)

with the only difference that in the formulation (36) the unshifted (σ̃k = 0) solution
corresponds to one of the Nσ solutions we are interested in.
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4.1 A Helmholtz problem

As a first example, we consider acoustic wave propagation which can be modeled by the
so-called Helmholtz equation,

−∆p−
(

2πfk
c(x)

)2

p = s, in Ω ⊂ R2, (37)

where p stands for the pressure and fk is the k-th wave frequency. We consider the
wedge problem which was introduced in [16]. Therein, the computational domain Ω is
Ω = [0, 600]×[0, 1000] and the underlying sound velocity c(x) is heterogeneous as displayed
in Figure 10, Appendix A. Moreover, the sound source is given by a point source at the
top of the computational domain, s = δ(x − 300, z). We distinguish between reflecting
boundary conditions (homogeneous Neumann boundary conditions),

∂p

∂n
= 0, on ∂Ω, (38)

and absorbing boundary conditions (so-called Sommerfeld radiation boundary conditions)
of the form,

∂p

∂n
− i
(

2πfk
c(x)

)
p = 0, on ∂Ω, (39)

where i is the imaginary unit. Preconditioning techniques for the Helmholtz problem in
the single-shift case (Nσ = 1) are for instance discussed in [3, 21, 30].

4.1.1 Reflecting boundary conditions

When including homogeneous Neumann boundary conditions (38) in the discretization of
(37), we derive a systems of the form,

(K − (2πfk)
2M)p = s, (40)

where K is the (negative) discrete Laplacian, M is a diagonal mass matrix, and the un-
known vector p consists of discrete pressure values. Since M is diagonal, we can cheaply
re-write (40) as a shifted linear system,

(A− σkI)pk = b, σk = (2πfk)
2,

with A = M−1K and b = M−1s. In the same way as in [31], we consider in the following
Nσ = 4 different frequencies, fk = {1, 2, 4, 8}Hz. In the considered setting, this requires
a system size of almost 4, 000 equations. Moreover, we applied a shift-and-invert precon-
ditioner as described in Section 3.1 in order to speed-up convergence for all considered
solvers, cf. Table 1 where the seed shift τ is specified.

First, we apply the multi-shift GMRES (see Section 2.1) and the multi-shift QMRIDR
(see Section 2.2) algorithm without nested preconditioning to the problem. As shown in

22



Figure 1, the convergence behavior is quite similar for the different frequencies. Moreover,
we note a phase of stagnation in the convergence which in general does not give rise to a
promising application of nested methods.
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Figure 1: Convergence behavior of multi-shift GMRES (left) and multi-shift QMRIDR(4)
(right) for (37)-(38) at four different frequencies.

Because of the slow convergence behavior in Figure 1, we conclude that a large number
of inner iteration is required in the nested framework. Therefore, we applied the nested
FOM-GMRES algorithm (Algorithm 3) with a relatively large number of inner iterations,
cf. Table 1 and Figure 2. We observe from Figure 2 that once the inner FOM method
converges below a relative tolerance of 0.1, the outer multi-shift GMRES algorithm con-
verges within a few iterations. An optimal combination of inner-outer iterations has been
evaluated and is presented in Table 1. We note that a computational speed-up of a factor
two is obtained. Due to the stagnation phase of multi-shift GMRES, we were not able to
obtain convergence for the restarted multi-shift GMRES version of [8, Algorithm 2.4].
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Figure 2: Convergence behavior of FOM-GMRES for (37)-(38): Typical inner convergence
(left) and outer convergence (right).
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multi-shift Krylov nested multi-shift Krylov
msGMRES QMRIDR(4) FOM-GMRES IDR-QMRIDR(4)

# inner iterations - - 85 104
# outer iterations 94 119 3 4

seed shift τ 0.7-0.7i 0.7-0.7i 0.7-0.7i 0.7-0.7i
CPU time 3.24s 1.27s 1.62s 3.28s

Table 1: Comparison of multi-shift and nested multi-shift algorithms for the wedge problem
with reflecting boundary conditions.

Moreover, we applied the collinear IDR variant as a flexible preconditioner to multi-
shift QMRIDR (Algorithm 4). The results of Table 1 and Figure 3 show that again a
large number of inner iterations is required until the inner Krylov method acts as a useful
(flexible) preconditioner. This results again in a small number of required outer iterations
but the overall time that is required does not show an improvement compared to the plain
QMRIDR method.
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Figure 3: Convergence behavior of IDR-QMRIDR(4) for (37)-(38): Typical inner convergence
(left) and outer convergence (right).

4.1.2 Absorbing boundary conditions

When non-homogeneous Neumann boundary conditions (39) are included in (37), we end
up with a discretization of the form,

(K + i(2πfk)C − (2πfk)
2M)p = s, σk = 2πfk, (41)

where C represents the boundary conditions. Note that (41) is a quadratic eigenvalue
problem in σk which according to [23] can be re-written as a shifted problem, see (45) in
the next section for more details. In the present setting, we aim to solve a wider range of
frequencies fk = {1, 2, 4, 8, 16, 32}Hz. For the resolution of high frequencies and due to
the doubling of unknowns in (45), the system size becomes more than 30, 000 equations.
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We present the convergence behavior for multi-shift GMRES and multi-shift QMRIDR(s)
using only the single shift-and-invert preconditioner in Figure 4, respectively. The conver-
gence curves are similar to the ones presented in Figure 1 in the sense that the residual
norms first stagnate or even increase in the case of QMRIDR(s). However, the conver-
gence curves are much more flat as soon as the residual norms decrease. Therefore, it is
intuitively to truncate the inner iterations in this region.
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Figure 4: Convergence behavior of multi-shift GMRES (left) and multi-shift QMRIDR(8)
(right) for (37)-(39).

The convergence plots of nested FOM-GMRES and nested IDR-QMRIDR(8) are pre-
sented in Figure 5 and Figure 6, respectively. In both cases, the number of inner iterations
is chosen in such a way that the relative residual norms are of the size 0.1 or smaller which
seems to be a good choice for truncation of the inner algorithm. The convergence rate of
the outer Krylov method is in both cases very fast.
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Figure 5: Convergence behavior of FOM-GMRES for (37)-(39): Typical inner convergence
(left) and outer convergence (right).
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Figure 6: Convergence behavior of IDR-QMRIDR(8) for (37)-(39): Typical inner convergence
(left) and outer convergence (right).

In Table 2, we want to point out the time that is required in order to solve all six shifted
systems up to a relative tolerance of 10−8. Comparing multi-shift GMRES and multi-shift
GMRES preconditioned by a nested FOM method (called FOM-GMRES), we observe that
the nested method is more than five times faster. Since the total number of iterations, and
therefore, the number of matrix-vector multiplications is larger in the nested method, we
conclude that the observed speed-up is due to shorter recurrence of the orthogonalization
process. This also explains why we observe no speed-up for QMRIDR which is a short
recurrence method by design.

multi-shift Krylov nested multi-shift Krylov
msGMRES QMRIDR(8) FOM-GMRES IDR-QMRIDR(8)

# inner iterations - - 170 200
# outer iterations 404 471 5 8

seed shift τ 0.7-0.7i 0.7-0.7i 0.7-0.7i 0.7-0.7i
CPU time 193.69s 73.12s 36.66s 75.61s

Table 2: Comparison of multi-shift and nested multi-shift algorithms for the wedge problem
with absorbing boundary conditions.

4.2 The time-harmonic elastic wave equation

Our second example considers the wave propagation of sound waves through an elastic
medium. We are interested in the numerical solution of time-harmonic waves at multiple
(angular) frequencies σk = 2πfk, k = 1, ..., Nσ. The scattering of time-harmonic waves is
described in [2] by a Navier equation,

−σ2
kρ(x)u−∇ · τ(u) = s, x ∈ Ω ⊂ R2, (42)

where u : Ω → R2 is the unknown displacement vector, s is typically a point source, and
ρ(x) is the density of the material which is assumed to be space-dependent. The strain
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and stress tensor are derived from Hooke’s law and are given by,

τ(u) ≡ λ(x) (∇ · u) + 2µ(x)ε(u), ε(u) ≡ 1

2

(
∇u + (∇u)T

)
.

Note that the underlying density ρ(x) as well as the Lamé parameters λ(x) and µ(x) have
to be prescribed in the considered model, see Table 3.

In contrast to the example in Section 4.1, we will consider more realistic boundary
conditions. Therefore, the following impedance boundary condition is prescribed,

iγ(x)σkρ(x)Bu + τ(u)n(x) = 0, x ∈ ∂Ω, (43)

where γ is the absorbency coefficient, i ≡
√
−1, and Bi,j(x) ≡ cp(x)ninj + cs(x)titj. Here,

ni and ti are the components of the (outer) normal vector n and the tangential vector
t, respectively. For Ω ⊂ R2 we consequently get a 2 × 2 matrix B for every boundary
point x ∈ ∂Ω. The quantities cp and cs are the speed of pressure wave and shear wave,
respectively (see Table 3). In the following, we prescribed absorbing boundary conditions
on whole ∂Ω by setting γ ≡ 1.

ρ [kg/m3] cp [m/s] cs [m/s] λ [Pa] µ [Pa]
2.7 · 103 6.8983 · 103 4.3497 · 103 2.6316 · 1010 5.1084 · 1010

Table 3: Value of constant parameters taken from [2].

From a discretization of (42)-(43) using linear finite elements, we obtain the linear
systems

(K + iσkC − σ2
kM)u = s, (44)

with K,C,M being symmetric and sparse matrices, and u, s being the discretized counter-
part of u, s in lexicographical order. Here, C contains the boundary conditions (43) and
M is a diagonal mass matrix. Re-formulation of (44) yields{[

iM−1C M−1K
I 0

]
− σk

[
I 0
0 I

]}[
σku
u

]
=

[
M−1s

0

]
, (45)

which is a standard step for the numerical treatment of quadratic eigenvalue problems, cf.
[23]. Note that (45) is a block system of the form

(A− σkI)xk = b, σk = 1, ..., Nσ,

which is again a shifted linear system.
The considered numerical setting is described in [2, 14]. Therein, the parameters are

set to the values presented in Table 3, and the unit square is considered as computational
domain Ω. The angular frequencies σk are given by σk = 2πfk and range from f1 =
5, 000Hz until f6 = 30, 000Hz in uniform steps. For more details, see Appendix B.
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We were again running our numerical experiments using an additional shift-and-invert
preconditioner with seed shift τ as shown in Table 4. In Figure 7, we present the conver-
gence curves of multi-shift GMRES and multi-shift QMRIDR(s) without nested precondi-
tioning. In this experiments, we observe a flat convergence behavior that gives rise to an
early truncation in the nested framework.
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Figure 7: Convergence behavior of multi-shift GMRES (left) and multi-shift QMRIDR(4)
(right) for (45).

For nested FOM-GMRES, we chose the number of inner FOM iterations such that the
relative residual norms are below a threshold tolerance of 0.1, cf. Figure 8. Our numerical
experiments have proven that this leads to a rapid convergence in only 7 iterations in the
outer GMRES loop. When measuring the actual CPU time that is required to solve all
Nσ = 6 shifted systems with multi-shift GMRES and nested FOM-GMRES, we observe a
speed-up of almost two, cf. Table 4.
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Figure 8: Convergence behavior of FOM-GMRES for (45): Typical inner convergence (left)
and outer convergence (right).
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multi-shift Krylov methods
msGMRES rest msGMRES QMRIDR(4) collIDR(4)

# inner iterations - 20 - -
# outer iterations 103 7 136 134

seed shift τ 0.7-0.7i 0.7-0.7i 0.7-0.7i 0.7-0.7i
CPU time 17.71s 6.13s 22.35s 22.58s

nested multi-shift Krylov methods
FOM-GMRES IDR(4)-GMRES FOM-QMRIDR(4) IDR(4)-QMRIDR(4)

# inner iterations 30 25 30 30
# outer iterations 7 9 5 15

seed shift τ 0.7-0.7i 0.7-0.7i 0.7-0.7i 0.7-0.7i
CPU time 9.62s 42.19s 8.14s 58.36s

Table 4: Comparison of multi-shift and nested multi-shift algorithms for the linear elastic
wave equation.

Moreover, we applied nested IDR-QMRIDR(s) to (45). From the convergence behavior
of the inner IDR iteration (Algorithm 2), we note that the convergence curves show irregular
jumps which makes a proper truncation of the inner preconditioner rather difficult. As in
the previous tests, we do not observe a speed-up in CPU time for the nested algorithm
which is mostly due to the fact of short recurrence of QMRIDR(s).
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Figure 9: Convergence behavior of IDR-QMRIDR(4) for (45): Typical inner convergence
(left) and outer convergence (right).

In Table 4 we present as well numerical results for an implementation of restarted
multi-shift GMRES (rest msGMRES) and our IDR-variant that exploits collinear residuals
(collIDR(s)) which can be seen as a multi-shift Krylov method when being applied as a
stand-alone algorithm as presented in Algorithm 2. Moreover, we compare performance of
the nested Krylov methods with different inner-outer methods combined. For the specific
setting considered in Table 4, we first note that QMRIDR(4) and collIDR(4) require similar
CPU times. Moreover, we observe that a combination of inner msFOM and outer QMRIDR(4)
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perform best among the nested algorithms. The restarted version of multi-shift GMRES
performs best in this setting but did not converge in the examples considered in Section
4.1.

5 Conclusion

This work presents an algorithmic framework for the numerical solution of shifted linear
systems (3) with inner-outer Krylov methods that allow flexible preconditioning. In this
sense, it can be seen as a generalization of the work of [24] to sequences of shifted problems.
The most general algorithm of this paper can be summarized in the following way,

1. the flexible preconditioner Pj(σ) is itself an inner multi-shift Krylov method which
produces collinear residuals in the sense of (18),

2. the collinearity factor is used in the j-th iteration of an outer Krylov method in order
to derive the Hessenberg matrix of the shifted systems, cf. (29), (33).

We call this new framework a nested Krylov method for shifted linear systems since the
inner Krylov iteration is considered as a flexible preconditioner for the outer Krylov method.

This general framework has been illustrated and tested for two possible combinations of
inner-outer Krylov methods. We present a combination of inner FOM and outer GMRES
in Algorithm 3. Therefore, the collinearity factor for the inner Krylov method (multi-
shift FOM) is given by (20) without any further manipulations. When combining multi-
shift IDR(s) and QMRIDR(s) as presented in Algorithm 4, a new variant of IDR(s) has
been developed which leads to collinear residuals with collinearity factor given by (27),
cf. Algorithm 2. In both cases, a shifted Hessenberg matrix has been derived using the
respective collinearity factors. This has been done for flexible GMRES (30) and flexible
QMRIDR(s) (34), respectively.

Various numerical tests have been performed that showed an optimal performance of
the nested algorithm when the inner Krylov method was truncated as the relative residuals
satisfy ‖r(σk)j ‖/‖r(σk)0 ‖ < 10−1 at every (outer) iteration j and for all shifts σ1, ..., σNσ . This
way, we were able to obtain a computational speed-up up to a factor of five when comparing
multi-shift GMRES to nested FOM-GMRES.
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Appendices
The focus of this work is not on the discretization of the numerical examples presented in
Section 4.1 and Section 4.2, respectively. However, for the sake of completeness, we present
the actual simulation results of these examples in the appendix.

A Numerical solution of the wedge problem

We present the numerical solution of problem (37) with absorbing boundary conditions (39)
as discussed in Section 4.1.2 at a frequency of 32Hz. The problem has been discretized
with linear finite elements on a uniform triangulation of Ω = [0, 600]× [0, 1000]. We used a
constant grid size of h = 6.25m in both spatial dimensions. For the problem presented in
Figure 10, this implies the solution of shifted linear systems roughly at the size of 30, 000
unknowns. In Figure 10, we see that different layers for the sound velocity (left) lead to
refraction of the wave which is emitted on the top of the domain (right).
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Figure 10: Left: sound velocity profile c(x) of the wedge problem as described in [31].
Right: numerical solution of (37) with absorbing boundary conditions (39) at f = 32Hz.
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B Numerical solution of the time-harmonic elastic wave

equation

The linear elastic wave equation (42)-(43) has been solved on the unit square domain,
Ω = [0, 1]× [0, 1], using the parameter setting of Table 3 as suggested in [2]. We used linear
finite elements for the discretization which leads to a straight-forward implementation of
the boundary conditions (43). For the discretization, we used a triangulation of Ω with
mesh points equidistantly spaced in both dimensions with mesh size h. For the resolution
of the wave, we require at most 10 grid points per wavelength λ, i.e.

h <
λ

10
, where λ = min

k∈{1,...,Nσ}

(
cs
fk

)
. (46)

Here, we used Nσ = 6 different frequencies fk = {5, ..., 30}kHz which leads to h = 0.01 to
be a sufficiently small grid size according to (46). Hence, we use 10, 201 grid points and,
therefore, the system size for all shifted systems in (45) equals N = 40, 804.

We used the results presented in [2] for the validation of our implementation when
absorbing boundary conditions (43) and a points source in the middle of Ω has been
prescribed, i.e. s = δ(x − (0.5, 0.5)T ). The numerical solution for the frequencies used in
Section 4.2 are presented in Figure 11.

Figure 11: Numerical solution of the linear elastic wave equation (42) at multiple frequen-
cies. We display the absolute value of the real part of u(x).
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