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I. Bij de iteratieve oplossing van een lineair stelsel vergelijkingen, waarvan de systeem-
matrix positief definiet is, met behulp van de conventionele Gaus-Seidel overrelaxatie
wordt de maximaal toelaatbare waarde van de relaxatie factor gewoonlijk bepaald door de
grens waarboven de hoofdeigenwaarde van de iteratieve matrix complex wordt, hetgeen
aanleiding geeft tot oscillaties. Niettemin zijn er toch grotere waarden voor de relaxatie-
factor toelaatbaar en dit versnelt in sommige gevallen bovendien de convergentie van het
rekenproces.

. De in de literatuur gepubliceerde lijst van Mellin transformaties kan worden uitgebreid
met de volgende gelijkheid:
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De grootheid y, stelt de Mellin transformatie van y, voor.
De stabiliteit van zeedijken kan nadelig worden beinvioed door refractie van drukgolven in

het dijkmassief langs geometrische randen opgewekt door golfklappen op het dijktalud
en wel des te meer naar mate de dijk met water verzadigd is.

IV. De methode van Drucker om een spanningsveld te beschrijven door superpositie van
fictieve lijnspanningen kan worden toegepast op een belaste plaat door deze opgebouwd
te denken uit meerdere orthotrope balkenlagen in verschillende richtingen, die alleen op
buiging worden belast. De bekende plaatvergelijking, waarin de doorbuiging w onder
invioed van de bovenbelasting p wordt beschreven volgens:

vV viw = p/K,

ontstaat dan door een symmetrisch systeem van tenminste drie verschillend georiénteer-
de identieke balklagen te kiezen, waarbij de werkelijke plaatstijfheid K gerelateerd is aan
de fictieve balkstijfheid o. Zo geldt voor drie lagen (60°): K=9¢/8, voor vier lagen (45°):
K=3¢/2, en voor oneindig veel lagen: K= 3ng/8.

V. Een markant effect van het consolidatie proces is dat de fase-verschuiving bij cyclische
belasting negatief kan zijn. Hierin verschilt het essentieel van het warmte diffusie proces.

F. B. J. Barends, LGM-Mededelingen XIX, 1978

Van een ondergrond, die als halfruimte wordt opgevat, verloopt de bodemdaling ten-
gevolge van continue winning van olie of gas bij aanname van perfect elastische eigen-
schappen van de grond aanvankelijk snel, later zeer geleidelijk, maar er is geen eindige
limietwaarde.

VI

De uitdrukking voor de samendrukbaarheid van poriénwater met meegevoerde of in de
porién opgesloten vrije micro-bellen fucht kan worden uitgebreid tot de situatie, waarbij
ook fucht aan de gronddeeltjes is gebonden, onder de voorwaarde dat de adhesie aan de
gronddeeltjes sterker is dan de opperviakie spanning tussen water en lucht en dat de
diffusie van lucht uit vrije microbellen naar gebonden luchtvolumina niet wordt

belemmerd. F.B.J. Barends, LGM-Mededelingen XX-2, 1979

VIL

VII. Bij de berekening van de stabiliteit van een aarden talud moet in geval zich een damwand
bevindt in de beschouwde afschuivende schol een extra horizontale kracht in rekening
worden gebracht, die zijn oorsprong vindt in het door de damwand opgestuwde grond-

water. F.B.J. Barends, LGM-Mededelingen XIX, 1978
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Een tijdelijke verhoging in de rivierstand plant zich voort in het massief van een aangren-
zende dijk daarbij gedempt en vertraagd door freatische berging, zodanig dat de lengte L
van het invloedsgebied gemeten langs de freatische lijn in een eenvoudige formuie kan
worden uitgedrukt, namelijk:

L = ~/tT/in,

waarin t de tijdsduur van de verhoging voorstelt, T een gemiddelde transmissiviteit,
(T =KD), en n de freatische berging is.

. Als de freatische lijn in een massief gebieden met verschillende doorlatendheid door-

snijdt, doet zich op de grenzen van deze gebieden een singulariteit voor, die bij toepassing
van de Eindige Elementen Methode met lineaire basisfuncties tot numerieke instabiliteit
aanleiding kan geven, welke evenwel met een eenvoudige ingreep kan worden voorkomen.

. De expliciete tijdstap voor tijdsafhankelijke freatische grondwaterstromingsproblemen

opgelost met een numerieke methode kan aanzienlijke worden vergroot door de fluctua-
ties van de randvoorwaarde zelf in de beschouwing te betrekken zonder dat daarbij de
nauwkeurigheid wordt aangetast.

Computerfilms kunnen het ‘black box’ syndroom genezen.

Zoals reeds eerder beweerd door Verruijt, maar helaas nog niet algemeen bekend, is de
bergings- of consolidatie coefficient, welke een factor (1 —n) bevat (n is de porositeit),
principieel onjuist. Er is in dat geval geen rekening gehouden met het feit, dat de wet van
Darcy betrekking heeft op de beweging van het poriénwater ten opzichte van het be-

wegend poreuze medium. A.Verruijt, proefschrift Delft, 1969, stelling 4.
Dit proefschrift, hoofdstuk 3.

Met de potentiaal:
p
d=z+ | (Uggdt , pp= aFi(a+np),
PF

kan het stromingsgedrag van samendrukbaar porienwater inclusief eventueel aanwezige
micro luchtbellen in een rotatie-vrij vervormbaar poreus massief volledig worden beschre-
ven, mits de doorlatendheid isotroop is. Dit proefschrift, hoofdstuk 3.

De algemene niet-lineaire bergingsvergelijking voor horizontaal watervoerende lagen
fuidt:
v+ m(vp) = 2L
cat

welke met de transformatie: y = a exp(m¢) + b, kan worden teruggebracht tot de conven-
tionele lineaire bergingsvergelijking:

Vg = ax
cat -

Hierin zijn a en b vrij te bepalen, terwijl m de invioed ten gevolge van variaties in de door-
latendheid en in de dichtheid van de porien vioeistof bevat. De factor ¢ is de consolidatie

coefficient. Dit proefschrift, hoofdstuk 4

Slechts één wijziging maakt een bestaand grondwaterstromingsprogramma geschikt voor
niet-lineaire problemen. -

In plaats van de effectieve porositeit behoort de porositeit zelf in de kinematische rand-
voorwaarde voor een bewegende freatische lijn voor te komen. Dit proefschrift, hoofdstuk 5
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Samenvatting

Sinds Darcy in 1856 de basis iegde voor de berekening van de stroming van water door zand,
heeft de grondwaterstroming de wetenschappers beziggehouden. Grondwater is essentieel
voor de landbouw en de drinkwatervoorziening, maar ook speelt het een belangrijke rol, indien
grond als constructie-element wordt gebruikt, zoals bij dijken, wegen en funderingen. Het me-
chanisch gedrag van verzadigde of droge, fijnkorrelige of grove grond maakt een groot verschil.
De theorie van de grondwatermechanica moet worden gebaseerd op het systeem: water-grond-
lucht. Tot nu toe heeft men zich, wat de fysische eigenschappen betreft, beperkt tot nagenoeg
verzadigde en/of onvervormbare grond. In dit proefschrift wordt deze theorie uitgebreid tot die
van een samendrukbare poriénvloeistof in een semi-verzadigd vervormbaar poreus medium: een
water-grond-lucht mengsel, waarin de lucht voorkomt als vrije minuscule bellen en waarin het
water stroomt, terwijl de grond zelf vervormt. Er wordt aangenomen, dat dit vervormingsgedrag
lineair is en bovendien rotatievrij.

Na een diepgaande beschouwing wordt afgeleid, dat het mechanisch gedrag van dit systeem op
een betrekkelijk eenvoudige wijze kan worden geformuleerd, waarbij rekening wordt gehouden
met verschillende niet-lineaire effecten. Zo worden convectieve termen en de variatie in de door-
latendheid, als de grond vervormt, meegenomen. De geldigheid van de gevonden formuiering
wordt besproken. Een aigemene oplosmethode met behulp van Mellin transformaties maakt het
mogelijk de invioed van deze niet-lineaire termen te belichten aan de hand van analytische
oplossingen van enige karakteristieke problemen.

In de grondwaterstroming kent men ook zogenaamde bewegende randen. De grondwater-
spiegel, die immers varieert, is zo’n rand. Dit houdt in, dat het gebied waarin de stroming wordt
bekeken, zelf verandert (geometrische niet-lineariteit). Ook op dit aspect wordt nader ingegaan.
Met behulp van computerprogramma’s is men in staat tijdsafhankelijke grondwaterstromings-
problemen met bewegende randen op te lossen. In de discussie wordt vaak de uitgebreide litera-
tuur betrokken.

Tenslotte is er over niet-lineariteit in grondwaterstroming op te merken, dat in de meeste prakti-
sche gevallen de lineaire theorie goed voldoet, dat niet-lineaire effecten leiden tot een reductie
van 10% tot 20% in de zogeheten invioedssfeer, en dat tijdsafhankelijke freatische problemen
numeriek expliciet kunnen worden opgelost met een veel grotere tijdstap dan voorheen ge-
bruikelijk was.
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INTRODUCTION
The subject of this thesis is the nonlinear aspects of groundwater flow.

The origine of the study of groundwater flow (seepage) goes back to Darcy (1856), who
performed experiments about the flow of water in pipes filled with sand and established the
steady law of this motion. Depuit (1863) and Boussinesq (1903) developed the hydraulic theory of
flow of groundwater and Forchheimer (1901) gave the hydraulic theory of wells.

Later, a rigorous mathematical treatise on the theory of pore fluid flow was founded and
comprehensive textbooks explaining the fundamentals of this phenomenon were written,
Muskat (1937) and Polubarinova Kochina (1952). The fact that flow through porous media
involves the mathematical behaviour of a deformable porous matrix was recognized by Terzaghi
(1923), extended by Biot (1941) and applied in several textbooks, De Wiest (1969), Bear (1972),
Gudehus (1977). Many articles covering the various topics in groundwater mechanics have been
published in technical journals and in proceedings of conferences and symposia.

Some of this literature is discussed in this thesis, but no attempt is made to give a complete
citation.

The theory of seepage must be based on the system water-soil-air. However, the physical
properties of this system are usually restricted to saturated and/or undeformable porous media.
In this thesis an attempt is made to extend the contemporary theory to compressible pore fluid
flow in a semi-saturated deformable porous medium.

The contents of chapter 2 consist of an exposition of the fundamental laws describing the
constitution of the substances involved as well as their interaction. The applicability of Darcy’s
law is investigated utilizing the principles of aimensional analysis. An empirical relation
between permeability and porosity is formulated. A new formula for the compressibility of air-
water mixture is derived incorporating surface tension, air solubility and water evaporation
effects.

The influence of soil deformation on pore pressure generation is reconsidered from the original
abstractions in soil mechanics. A rigorous restriction is introduced, since Hooke’s law is
assumed to govern soil deformation behaviour.

Chapter 3 is devoted to a general mathematical formulation of the equations of motion for pore
fluid flow. The existence of extra terms in the continuity equation is clearified. They are induced
by the compressibility of the pore fiuid and the air content, and by the fact that porous matrix
deformations give rise to storage effects, to convective terms and to changes in the
permeability. Several approaches from literature are evaluated and their discrepancies are
explained. A general potential for irrotationally deforming semi-saturated porous media is
found to describe the porous flow process incorporating all the aspects concerned.

A straightforward analytical procedure to solve the general nonlinear storage equation is
described in chapter 4. It involves a specific transformation, which results in a common
potential equation but in terms of the so-called extensive potential. Though for the vertical
direction (gravity) a nonlinear coefficient remains in the governing equation. The Mellin trans-
formation technique permits handling this term for general boundary conditions. A proof is
given and for several characteristic problems a closed form mathematical solution is presented.

A typical feature of groundwater flow is the existence of a free (phreatic) surface, which may
change with pore pressure fluctuations. The flow field geometry varies and this phenomenon is
discussed in chapter 5. The mathematical formulation of the behaviour of a free surface is
extended to include convective terms due to soil deformation. A general view on numerical
procedures to solve groundwater flow problems in inhomogeneous media for general boundary
conditions is presented and some examples of realistic situations are shown. The numerical
treatment of transient phreatic porous flow problems is discussed including stability and
accuracy.

For the reader's convenience each chapter is preceded by a brief review of the most significant
aspects, wich are then extensively outlined in the successive sections of the chapter.

In conclusion, chapter 6 elucidates once again the main lines of discussion in this thesis
emphasizing the principles results.




2. CONSTITUTIVE NONLINEARITY

Summary of chapter 2

The constitution of substances involved in some thermodynamic process can approximately be
described by a relation of the state variables, such as pressure and volume. Such relations are
called constitutive relations. The coefficients appearing in these relations represent fundamen-
tal properties of the substances with respect to the considered process.

In this section some aspects of fundamental properties concerning groundwater flow will be
discussed.

Section 2.a deals with the transport process of water through soil, which is usually governed by
Darcy’s law. This law expresses, that the discharge of flow is proportional to the pressure
gradient. The corresponding coefficient of proportionality represents the fundamental property
of this process and it comprises the specific properties of the soil and the pore fluid.

The physical background and the applicability of this law are reviewed and the fundamental
property, the permeability, is extended to include nonlinear regimes of porous flow.

Section 2.b deals with the dependence of the permeability to the intrinsic pore geometry, as it
changes in deformeable soil. It appears that the permeability is approximately proportional to
the void ratio and consequently, a power function of the porosity itself.

Hence, the actual value of the permeability will vary strongly with changes in the porosity. This
effect is essential in the nonlinear behaviour of pore water flow in deformeable soils.

Section 2.c deals with the compressibility of the pore water in cases where air is entrapped in
the form of air bubbles and air pockets. For such air-water mixtures a convenient expression for
the resultant compressibility is deduced, incorporating air solubility, surface tension, water
vapour and the proximity of solid surfaces.

The discussion explicates the presence of air less than 15% and reveals a peculiar dis-
continuity in the resultant compressibility arising at a specific pressure, when free air becomes
dissoived. The magnitude of this jump is significant and it can be described as a simple
function of the initial state conditions.

Another advantage of the formula obtained is that the saturation degree (air in water), which is
usually difficult to measure under varying pressures, does not appear. Furthermore, in the case
of free air bubbles the resultant compressibility of the air-water pore content is much larger,
several hundred times greater than the compressibility of pure water. It is important to include
this effect in a correct description of the mechanical behaviour of semi-saturated soils.

Section 2.d deals with the constitutive relation for the soil skeleton deformation behaviour. The
resistance to groundwater flow increases when soil is compacted, but storage variations
causing pore pressure gradients induce porous flow and retard the soil deformation rate (con-
solidation). The mechanical behaviour of soil is significant to groundwater motion. Classical
soil mechanics involves two materials, solid particies and water. Here, two fundamental
assumptions allow for a mathematical description. The equilibrium in soil is based on
Terzaghi’s effective stress principle and the solid skeleton deformation is governed by Hooke’s
law, which represents a simple linear constitutive relationship between stresses and strains of
the skeleton.

However, experiments reveal that the deformation behaviour of soil is complicated, but the
obscurity of real soil parameters and the corresponding complex mathematical formulation
necessitate to restrict to a simplified constitutive model. Moreover, the main attention is called
to groundwater flow. Therefore, the stress-strain relation for soil is assumed to be perfectly
elastic, i.e. that soil has linear, reversible, isotropic, non-retarded mechanical properties, i.e.
Hooke’s law. It stands to reason that due to this assumption the theory to be developed will
provide an approximate description as far as the real soil deformation behaviour is concerned.

The reader who is acquainted with the subjects of chapter 2, is invited to proceed with chapter 3,
which discusses nonlinearity in the continuity equation.



2.a A GENERAL POROUS FLOW LAW

The transport process of groundwater through a porous medium involves two substances: water
and soil, and therefore, it will be characterised by specific properties of these two substances.
The process can be described in terms of an equilibrium of forces, see De Josselin de Jong
(1969). The driving force necessary to press a specific volume of pore water at a certain speed
through a porous medium is in equilibrium with the resistance force generated by internal
friction between the pore water and the pore structure.

In soils the driving action can be produced by a force H resulting from a pore pressure gradient
Vp and the gravity acting per unit volume og. In formula the driving force per unit volume beco-
mes:

H=Vp + ogVvz,

where z is measured vertically upwards, g is the fluid density and g the gravity acceleration. The
coordinate z is only significant in order to fix the direction of the gravity action and it does not
matter, whether the porous medium moves or not. Moreover, it is irrelevant in the above
expression if the density ¢ is a constant or a variable in space, since the unit volume considered
can be conceived as a physical point.

It is sometimes possible to introduce a potential ¢ to express the volumetric driving force H,
according to:

H=0gVd=Vp + ggVz. (2.1)

in this form ¢ can be indentified with a vertical head. It is generally referred to as the piezometric
head. Formula (2.1) is valid for irrotational fields, see the discussion in section 3.e.

The resistance force R generated by internal friction is characterized by Darcy’s law. This law
provides a relation between the filter velocity g and the corresponding volumetric resistance
force R, according to:

R= — ogWg. 2.2)

W is called the coefficient of resistance to flow.

This coefficient is related to the substances being considered and it contains information
regarding the properties concerning porous flow. Equation (2.2) reflects the internal constitution
of these substances in the form of a volumetric flux and a generated volumetric force. In this
respect it represents a constitutive relation for pore fluid flow. Such a relation can only be
stated by observation and Darcy (1856) was the first to verify this behaviour by experiments.
Beside the term ‘filter velocity’ or the ‘Darcy velocity’ definitions like ‘specific discharge’ or
‘volumetric flux’ are also frequently used for the same quantity g. Here, the term filter velocity is
chosen, since it reflects best the vectorial character essential in this section.

The equilibrium condition is satisfied by:

H =R
Introduction of equation (2.1) and (2.2) yields:

v = -Wgq, (2.3)
which represents a linear relation between the potential gradient and the filter velocity.
Expression (2.3) is usually identified with Darcy’s law and in this form it comprises two

fundamental concepts: equilibrium between driving and resistance forces and a constitutive
relation for porous flow.

Linear porous flow

In this section the validity of the proposed constitutive relation (2.2) is considerd. Using the
principles of dimensional analysis the character of this relation can be investigated.



For linear porous flow, in which the pore fluid moves under the influence of gravity and hydro-
dynamical pressure, two physically relevant numbers are involved:
— the bed-Reynold number, incorporating the internal friction of flow, defined by:

Re = gD/v.
— the Galileo number, incorporating the gravity versus friction, defined by:
Ga = v¥D% .

Here, v denotes the fluid viscosity and D is some relevant length, related to a relevant pore size
diameter. Contrary to expressions in hydraulics the filter velocity g is introduced for porous
hydraulics instead of the real velocity. The related number is correspondingly termed a ‘bed’-
number, after Rumer (1966).

If it is assumed that porous fluid flow is determined by the fluid viscosity v and the gravity g the
following proportionality, consistent with dimensional requirements, can be formulated:

R (:) R(Ga,Re). (2.4)

Assuming an exponential expression for the relation between the volumetric resistance force R
and the filter velocity q, according to:

R= -aqf, f=0, (2.5)
gives with (2.4) and the definition of the Galileo, and Reynold number:
a (:) v2-fDf-3¢g.

Considering the exponent of the viscosity v in this formula, it becomes clear that, since for real
fluids the one with a larger viscosity will generate a larger resistance at a unit filter velocity,
values for f exceeding 2 will be physically unreasonable. This important conclusion, merely a
consequence of simple dimensional analysis, was first suggested by Muskat (1937).

For f equal to 1, expressing linear flow, the influence of viscosity is significant and the propor-
tionality with D~2 shows similarity with experimental results. In this case equation (2.5)
represents Darcy’s law, expression (2.2), while the quantity a is identical to the linear coefficient
of resistance to flow, W. Thus, considering equation (2.3), linear porous flow is governed by:

Vo = — Wq; W(:)v/D3g. (2.6)

By introducing only effects of viscosity other eventually significant features in the flow
phenomenon are excluded. From the field of hydrodynamics much is known about these effects
in free flow. Dracos (1978) analyses alike effects in porous flow, such as inertia verticity,
development of shear layers, propagation of surface waves and wetting fronts. He concluded
that these perturbations practically have a negligible influence, since viscous forces dominate
the character of flow. This does not imply, that all porous flow can be described by a linear
constitutive relation.

Ante-linear porous flow; molecular linkage

For f tending to zero in equation (2.5), there exists a stationary resistance, while the filter
velocity q is zero. This limit can be homologized to the so-called initial gradient, or the threshold
gradient, below which there is no flow.

It occurs in clayey soils, and it is attributed to rheological non-Newtonian behaviour in
saturated soils, in particular as a result of molecular linkage. It affects the porous flow and can
be accounted for by introducing contact forces at the solid fluid interfaces, expressed in terms
of contact tension o, having dimensions kg/s?, similar to the surface tension at the water-air
interfaces.

For this case of very slow movements in media with very smail pores a relevant dimensioniess
number can be introduced, i.e. the Weber number, defined by:



We = gog D¥o,

to determine the character of the constitutional relation for porous flow incorporating mole-
cular linkage.
It can easily be verified that the non-linear expression:

R (:) R(Ga,We, Re) = Gaf Ref Wef-1,

can be transformed into the following form, using equation (2.6) for W :
R= - ogW(-S)"q".

A similar result has been mentioned by Slepicka (1961). It clearly reveals the threshold value at f
tending to zero:

ov
R,= - QQW(—G—)_1 (:) — o/D2, (2.7)
The factor (ov/ o), referred to as the coefficient of molecular linkage, has the dimension of sim
and it can be conceived as a velocity damping factor, adjusting the linear flow of affinite phases
in very fine pores.

Post-linear porous flow; turbulency

In the larger pores, inertial forces, such as convective and centrifugal acceleration forces, can
become predominant, and the viscosity is no longer the major phenomenon characterizing the
flow conditions.

These inertial forces can be represented by the bed-Froude number, defined by:
Fr = g¥gD,
resulting in a proportionality, according to:
R (:) R(Ga,We,Re,Fr).
Consistent with this proportionality is the extended Forchheimer law:
-V = -1, + Wg + Ca?, (2.8)

where | represents the initial gradient, related to the threshold value R, in equation (2.7),
according to:

eV

l, = RyJog = - W(—

)=t

Many researchers have tried to find proper expressions for the coefficients W and C in terms of
fundamental material properties, see Bear (1972). Some authors even added another term: @?,
but in accordance to the previous remark that the exponent f in equation (2.5) will not exceed 2,
this addition does not seem to make sense physically.

The quadratic term dominates when D or q are large. This can be understood from the resist-
ance of a single body in a Newtonian fluid (viscosity is a constant). At low velocities the relation-
ship becomes, according to Stokes’ law:

Vo= — Wq, W=Au/gD?, (2.9)

where A denotes a dimensionless factor related to the configuration of flow around the body,
including the shape of the body itseif (and eventually, influences of neighbouring particles).
Here, DA, is identical to the intrinsic permeability (see section 2.b). The expression given for W
is fully in agreement with the proportionality previously stated in relation (2.6).




The validity of Stokes’ law in expressing the resistance of a sphere in a uniform flow is
restricted to a certain range of the Reynold number Re. Nonlinearity is observed at Re>5.
Also measurement of flow in granular beds shows experimental evidence of linear porous flow
until a certain value of Re, beyond which the inertia involved in laminar fluid movements in the
pores can not be disregarded. Lindquist (1933) arrived at this conclusion. Karadi (1955) ex-
pounded that this type of inertia (in fact the inertia terms in the Navier-Stokes’ equations
describing the flow in a single pore) can only explain the deviation from the linear porous fiow
within a narrow range of Reynold numbers, 5 < Re < 200. Beyond this range turbulence
assumes increased significance, confirmed by numerical studies in an idealised porous
medium, reported by Stark (1958).

To understand the influence of turbulent pore water motion in a porous medium, consideration
of the drag force of a single sphere in a uniform flow serves to describe the constitutive be-
haviour of the porous flow at larger Reynolds numbers.

Following Ward (1964) and Rumer (1969), the reaction of a porous medium in a turbulent flow
can be formulated in terms of a volumetric resistance force R, according to:

R= — 0gA'C,Fr, (2.10)

where the factor A’ is related to the configuration of turbulent fiow around the particles in the
porous skeleton, and Fr is the Froude number, previously defined. G is a dimensionless coef-
ficient, termed the ‘drag coefficient’, and for incompressible flow measurements show that it is
a function of the Reynold number (see Fig. I). For Re > 600, C; becomes a constant, about 0.5. It
is to be noted that the Froude number is proportional to g% so that (2.10) with C, a constant cor-
responds to the conclusion drawn before, that f in equation (2.5) does not exceed 2.

A striking example of the quadratic flow law is measured by Hajdin, who investigated porous
flow in karstic media, reported by Boreli (1978).
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Fig. | The drag coefficient versus the bed-Reynold number.

A general porous fiow law

Since C, is a function of the Reynold number Re, it is possible to include linear porous flow in
the expression (2.10). In the linear regime the drag coefficient C is inversely proportional to the



Reynold number, confirmed by many experiments, and consequently, equation (2.10) becomes:
r A’ -1
R = — ggA’Fr (—;\— Re)~' = — og(Av/gD?*)q = —ogWa,

which is identical to the constitutive relation for linear porous flow, equation (2.2).

For the transitional regime the drag coefficient C is a non-linear function of the Reynold
number, this being itself dependent on the filter velocity g. Thus, equation (2.10) covers
turbulent, linear and transient flow, and subsequently, nonlinearity can be incorporated in the
following linearised constitutive porous flow relation:

R-R, = —eqWq ; W =~/AC,|R|/ogD .

0

Introducing the driving force, equation (2.1} and considering a state of equilibrium, this ex-
pression becomes:

Vo -1 = -Wq ; W =+/AC,|A¢0-1,[/gD . (2.11)

Various semi-empirical relations have been proposed for the coefficient A’, respectively A. For
example, De Lara (1955) suggests for coarse beds: A’ = 0.5 n-%, where n denotes the porosity.
Barends (1978) showed, that it is preferred to define the nonlinearity embedded in W’ in terms of
the absolute gradient | V¢ | rather than the filter velocity q, since the gradient is less sensitive
to successive adjustments in the flow pattern during iterative computations.

Formula {2.11) has been verified in a three-dimensional, 1:10-scale model test and agreement
between the pressure distribution measured and calculated was satisfactory, see Fig. Il

layer thickness
@ concrete grid 10 cm
@ rubbte 1000-3000 gr | 20cm
(3) | rupble 60-300 gr 12cm
(@ | gravet 5-15mm 5cm
@ tostor slakes 23cm
@ sandwich 7em
@) | fine gravel 25¢m
tosfor siokes i5cm

ONGRONONONORO,

potential distribution

—— - —— T
N T

- 2( i; 4

| | | ! | I

1 12 43 14 15 16 17
SECTION A

INHOMOGENEOUS LINEAR -TURBULENT FLOW MODELTEST 1:10

NORTH SEA OOSTERSCHELDE

| ESEA

ol 777, . B A
AN \

2 EI

sand bed |

LINEARIZED POROUS FLOW NUMERICAL MODEL (SEEP)

Fig. I Comparison between theory and tests.




The previous discussion about different regimes in the porous flow behaviour has been based
on the assumption of a constitutional relation in the form of a power law, see expression (2.5).
This approach is not generally applied, and some research workers follow the extended Forch-
heimer taw, mentioned in (2.8).

The Forchheimer flow law has been derived theoretically using a microscopic model, in which
flow is described by the Navier-Stokes’ equations, by [rmay (1958), Sunada (1965) and Stark and
Volker (1967), and as such it has been used to fit experimental data, frequently reported in the
literature.

Cox (1977) chooses the Forchheimer relation to incorporate nonlinearity in his studies of
groundwater flow. He assumes an isotropical flow resistance and suggests a ‘linearized
effective resistance’, according to:

W = W/2 + \/(W/2)2 + C| Vo],

in order to simulate linearized porous flow. This expression shows similarity with the coefficient
of resistance to flow given in equation (2.11).The nonlinear phenomena can be incorporated in
different values of the coefficient C.

Conclusion

Both formulations, the extended Forchheimer law (2.8) and formula (2.10), are equally well
capable of describing porous flow over a large range of velocities. The preference for equation
(2.10) is based upon the circumstance that the drag coefficient is a physical coefficient com-
monly applied in fluid mechanics. Measurements on this coefficient are available, and also the
relation of the coefficient of porous flow configuration, i.e. A for laminair and A’ for turbulent
flow, with granular bed properiies have been measured. For example, Benis (1968) succesfully
applied a power law relation in his theory for porous flow of non-Newtonian fluids to verify
various test results. Moreover, Polubarinova (1962) tried in a mathematical analysis to extend
nonlinear flow behaviour in more dimensions and suggested a power relation.

Although since Darcy for more than a century the attention of many researchers has been
directed to the phenomenon of pore fluid flow and much of the fundamental characteristics
have been elucidated, the effect of molecular linkage in fine graded soils and the eventuation of
non-coaxiality of pressure gradients and fluxes in cases of turbulent porous flow (induced
anistropy) are not yet completely understood.

The previous discussion, in particular equation (2.11), covers only one-dimensional or iso-
tropical nonlinear flow. Even then, the solution of boundary value problems with a general non-
linear porous flow law analytically is almost impossible. Numerical methods may succeed
sometimes, as has been shown by Cox (1977) and Barends (1978).

In general, one might state that simplified approaches must be adopted with the obvious conse
quence that the results obtained can be regarded as acceptable under the restrictions
specified. In this respect the next sections will deal with an approximate, generalised porous
flow law, according to expression (2.11), in which the actual nonlinearity is considered as a
moderate deviation from linear flow.

2.b PERMEABILITY AND POROSITY

Since the establishment of Darcy’s law basic properties of natural materials concerning porous
flow received much attention. For an extensive review of these properties for rock as well as for
particulate media the reader is referred to Davis (1969).

Two relevant parameters, porosity and permeability, have been the main subject of study and
investigation, but despite intensive work expended in improving and adjusting measurements of
these properties, reliable values representing the real character of porous flow could not be
estimated. This fact is for the most part due to the complexibility of porous flow at microscopic
level and to the natural inhomogeneity of soil.

Comprehension of the constitution of the permeability in terms of representative or measurable
physical properties leads to the postulation that deviation in measured values is mainly

10



} HYDRAULIC GRADIENT |
mol. .
effects linear LtranSient' turbulent
/
I‘ / tan (W) SPECIFIC DISCHARGE q
05
1 e
2 =
5 -4
10 J GRAIN TEXTURE
30 4
50:—~—~~ AAAAA — - — — —
b heavy stones
80 ft
90 ; :
> b
98 A ! :
99 - | .
39,5 T by — T
0.05 01 02 05 1 2 5 10 20 50 100 200
— = DIAMETER {mm)
1
0s] 1
03
I I
01 /
006 ] ¢ o A
b 1 :afq
003 1 v -
I
0.01 — NUESUS———— ety e .
1 2 4 6 810_5 2 6 810_4 3 810_3 4 6 3}0_2 2 46 1a_1
-—-—-———-—-q
FLOW RULES
Fig. il Measured flow laws.

11




attributed to one particular factor: the tortuosity of the porous medium. This quantity has been
introduced by Carman (1937) and is extensively discussed by Whitaker (1966) and Bear (1972).
Bear states that the permeability of a porous medium depends on five basic properties.
Those of the porous matrix: porosity n, conductance D2, tortuosity T, and those of the pore fluid:
density g, dynamic viscosity p.

From section 2.a it became clear that the permeability depends on the ratio p/g, which is called
the kinematic viscosity v. It is necessary to mention this dependency, because the statement
that no density effects are involved in linear porous flow, does not coincide with the actual
appearance of the fluid density in a parametric expression for the hydraulic permeability.

From dimensional analysis (see section 2.a) an expression for the permeability in case of linear
flow can be obtained and formula (2.9) yields for the hydraulic permeability K:

K=kglv ; (k= D¥A), (2.12)

where k is referred to as the intrinsic permeability, depending on porous matrix properties only.
The medium is called homogeneous, if k does not vary in space. If k varies in different spatial
points, the medium is inhomogeneous, and if k varies in one point in different directions, the
medium is called anisotropic, otherwise isotropic.

Anisotropy can be represented by a second-rank symmetrical tensor, already indicated by Ver-
sluijs (1915), see Vreedenburgh (1936). Ferrandon (1948) obtained a similar result from a statis-
tical approach and De Josselin de Jong (1969) introduced an instructive method of scattering
mechanics, which proves the tensor character for the case of general anisotropy. Bear and
Dagan (1965) discussed the practical method of geometric scaling for anisotropic soils.

Other factors affecting the value of the intrinsic permeability are porous matrix deformation
(consolidation, swelling), solution of solid parts, chemical and biological activities and
saturation, see Irmay (1954) and Karadi and Nagy (1969).

For linear flow the intrinsic permeability can be represented by the relation:

k = CTD™, (2.13)

where the coefficient C varies in the range of 0.005 to 0.015, see Bear (1972), and the tortuosity T,
a dimensionless factor, incorporates the configuration of the intricate pore structure. In the
case of anisotropy the tortuosity becomes a tensor, as has previously been mentioned. Due to
non-uniformity of the complex network of interconnected channels through which flow takes
place, the tortuosity varies considerably, up to 200% and more. In fact, the main cause of
deviation in measured values of the permeability is embedded in this tortuosity.

The conductance D?, appearing in equation (2.13), is related to the pore cross-section and D
represents a characteristic pore width. D might be identified with a proper particle size of a
granular porous medium, since the pore geometry is somehow correlated to the texture.
Barends (1978) suggested D, for coarse granular soil, a figure resulting from several measure-
ments, see Fig. Il

The function 1 in relation (2.13) represents the general dependence of the permeability and the
porosity. 7 is called the porosity factor. Observing several empirical expressions given in
literature the following relations for the porosity factor can be deduced:

Kozeny (1927) n = ne?
Stark (1958) n = (ne)'S ;
Leonards (1962) n = n ;
Rumer (1969) n = ne ,

were e represents the void ratio, defined as the volume of pores per volume of solids:
e=nl(1-n). (2.14)

The above mentioned relations show sufficient similarity to conclude that the character of the

porosity factor is reasonably well specified. Moreover, if the porosity itself is uniform in the

porous medium being considered, the relation for the porosity factor can be useful in
expressing variation of the permeability due to porous matrix deformation (consolidation). This
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existence of this variation is not new, see Abbot (1960), De Leeuw and Abbot (1966), Gibson et al
(1967), but for soil densification the importance of this effect on groundwater flow has been
outlined recently by Barends and Thabet (1978).

With the assumption that the configuration of flow and the network of interconnected pores do
not essentially change during porous matrix deformation, the relative variation of the porosity
factor, expressed by:

n=n*e’,
becomes:
dn/n = xdele = (x/n)dn/(1-n); x=a(l-n)+ Db, (2.15)

where x is called the amplification factor. This relation is different from the one suggested by
Lambe and Whitman (1969), who expressed the permeability k as an exponential function of the
void ratio e.

Variation in the conductance D? can easily be accounted for, since the pore cross-sectional area
will alter more or less proportionally to n2 From the previously mentioned empirical relations for
the porosity factor, relevant values for the amplification factor x can be found to illustrate the
effect of small alterations in the actual porosity on the permeability. For example a 20% settle-
ment of a peat layer at an original porosity of 50% causes a formidable change in the permeabi-
lity: n/n, = 0.20, reducing the original permeability by 5.

Variation of the permeability due to small changes in the porosity caused by porous matrix
deformation, expressed by formula (2.15), will be introduced in the complete storage equation,
discussed in section 3.d.

2.c COMPRESSIBILITY OF AIR-WATER MIXTURES

Air and water comprise a large part of the soil and therefore they play a major role in soil
physics. The link between the behaviour of the components and the distribution of partial
stresses is determined by the individual compressibilities. It forms the basis of the effective
stress principle, widely applied in soil mechanics. However, this principle is generally accepted
for saturated soil without air.

Several authors, Skempton (1954), Koning (1963), Sparks (1963) and Verruijt (1969) have
attempted to incorporate the presence of free air in the pore water, because it significantly
affects the compressibility. Nonetheless, basic physical factors, such as surface tension, air
solubility and water vapour, involved in the mechanical behaviour of an air-water mixture, are
not always accounted for, and suggested formulas generally have a limited validity.

Disregarding only the water vapour, Schuurman (1964) could expound the typical behaviour of
pore water pressure in partly saturated undrained clay samples under various stress conditions.
His observations and conclusions include the following. As long as free air is present the
resultant compressibility of the pore content depends on the pore pressure. As a consequence
of air solubility and surface tension, he found that a distinct pressure exists beyond which the
free air becomes dissolved quite suddenly.

in free water bubbles are unstable and shrink or grow by diffusion depending upon whether
the water is under- or overconcentrated. In a porous medium the bubble growth is restricted
because of non-wettability and pore size dimensions. At an increasing pressure the tendency of
bubble growth will revert to shrinkage. Bubbles collapse causing an unstable increase of com-
pressibility. Since the time necessary to dissolve small air bubbles is in the order of a second,
almost instantaneously the pore volume is completely saturated, and because dissolved air in
the water does not contribute, the resultant compressibility will be solely due to the water. This
discontinuity is essential for a proper description of the mechanical behaviour.

In the present treatment consideration of mass balance in a fixed control volume will lead to a
final expression of the resultant compressibility, which confirms Schuurman’s conclusions and
includes the discontinuous behaviour of the compressibility of an air-water mixture, and it takes
into account to some extent the influence of solid surfaces.
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The compressibility

The simplest thermodynamic system consists of a fixed mass of an isotropic fluid not in-
fluenced by external or chemical processes. Such systems are usually described by three
measurable variables: pressure p, volume U and temperature T, see Abbot and van Nes (1976).
Experiments show that these three are not all independent, that fixing any two determines the
third. Thus, there must be a constitutive equation that interrelates these three variables for
equilibrium states. When such a specific relation is known to describe the considered system,
one of these variables can be solved in terms of the others. For example: V = V(p,T). The mathe-
matical description of changes which occur in the physical system leads to the exact differ-
ential of the form:

au i}V

du = (ja“_‘i_.)p dT + (—55‘)1- dp.

If T is considered to be a constant, this differential becomes:

au
dU = (5 ) dp. (2.18)

The partial differential quotient in this equation is directly related to a property commonly
tabulated for pure substances: the isothermal compressibility B, where:

1, 9U

Bp= - U(W)Ty

defined as the relative change of volume of a fixed mass subject to variations in the pressure p.
Regarding equation (2.16), p can be expressed by the total derivative dU/dp at constant tempe-
rature, according to:

1 du
= - ——. 217
B U dp 2.17)

Conservation of matter of the fluid gives:

oU = constant, (2.18)

in which g denotes the fluid density. Since for isothermal conditions volume U and the related
density o are only functions of pressure p, variation of the conservation equation (2.18) yields:

du/U = —dgle.

Therefore, the isothermal fluid compressibility, equation (2.17), can be expressed in terms of the
fluid density and by substitution it is found that:

B = 1 d— (2.19)
e dp

This expression states that the coefficient of compressibility can be defined as the relative
change of mass per unit volume subject to variations in normal pressure at constant tem-

perature.

It is the purpose to find an identical expression for the isothermal compressibility of an air-
water mixture in terms of the density o’ of the mixture and the water pressure p, that is:

p= de (2.20)
e dp

In fact two different substances are involved, water and air, partly mixed, since air dissolves in
water and water evaporates in free air. With respect to the preceding discussion about one
substance, it stands to reason that for a given initial air-water content the isothermal behaviour
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of the mixture can be described in terms of two independent variables: the water pressure and
the air pressure. Equilibrium conditions provide a relation between the water and air pressure.
Thus, the various states of equilibrium of the mixture can be expressed in terms of one indepen-
dent variable, for example the fluid pressure. Consequently, the variations of dependent
variables in the following treatment are to be conceived as exact differentials.

Simplifications and basic laws
For a real gas the constitutive equation is:
Q" = p"IZRT, (2.21)

where o denotes the gas density, p’ the gas pressure, Z the compressibility factor, R the gas
constant and T the absolute temperature. in general Z depends on p” and T, but Z is a constant
for an ideal gas.

In the case: Z=1/M, in which M represents the molecular weight, equation (2.21) becomes the
Boyle-Mariotte law, which will be applied for the behaviour of the air in the bubbles. The
absolute temperature T is a constant. Therefore, the entire term ZRT will be a constant in the

proceeding analysis.

Henry’s solubility law states that the mass of a slightly soluble gas, that dissolves in a definite
mass of a liquid at a given temperature is very nearly proportional to the partial pressure of that
gas. This holds for gases which do not unite chemically with the solvent. On the basis of this
law, Hilf (1956) assumes, that all air bubbles in the air-water mixture have the same radius. The
tendency to form larger bubbles is prevented in soil by small pore dimensions and the surface
activity of solid particles. According to Sparks (1963) the free air will form bubbles in the pore
water beyond a degree of saturation of about 85%. The bubbles are either of the same size as
the pores or smaller. To simplify, the free air is supposed to be present in the form of isometric
separate bubbles.

As a result of the Boyle-Mariotte law and Henry’s law the weight of dissolved air is proportional
to the density of the free air. This proportionality factor is referred to as the coefficient of solubi-
lity w. It decreases slightly with increasing air pressure, but here, it will be taken as a constant.
Since the compressibility of pure water is very small (B ~ 5.10-9 m2/N), the weight of dissolved
air is, following Henry’s law, also proportional to the considered volume of water.

The mass of free and dissolved air in a fixed control volume is supposed to be a constant. As the
pressure changes the saturation degree varies. Therefore, this assumption implies that only
free air originally present within the control volume dissolves in the extra volume of water
flowing into the control volume at a pressure increase. This approximation is justified, because
the coefficient of solubility of air in water is small (o ~0.02).

A general accepted simplified formuia for the bubble growth due to air diffusion is given by
Cable (1967):

()2 = 1 - 2wDt/r?,

where r. is the initial radius, o the air solubility in water, D the diffusivity and t the elapsed time.
The usefulness of this relation has been stated by many experiments, see Krieger et al (1967). A
characteristic time value can be deduced: t;=r?/2wD.

For air in cold water the diffusivity and the solubility are known: D = 2.10-%m? s and w = 0.02. For
bubbles in the pores of a fine graded soil, r~10-%m, the characteristic time becomes: t;~1.25
sec. The state of equilibrium will be assessed in a short period. Hence, in a relatively slowly
varying pressure field the effect of air diffusion can be disregarded. The same applies to the
diffusion boundary layer, and the uniformity of concentration, see Barends (1979).

The surface tension o is a constant for isothermal conditions. The insubstantial dependence on
the air pressure is disregarded conform Schuurman (1966).

Dalton’s law of partial pressures states that the pressure exerted by a mixture of gases is equal
to the sum of the separate pressures which each gas would exert, if it alone occupied the whole
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volume. According to this law, the saturation vapour pressure w is independent of the free air
pressure. Hence, in the system considered here this pressure w is assumed to be a constant.
In a partially saturated soil the curvature of the air-water surface and the proximity of the solid
surfaces will affect the water vapour pressure, but it is rather constant for high water contents,
see Raudkivi and Callander (1976).

The vapour pressure has a direct influence on the actual water pressure. For pore water con-
taining isometric bubbles with radius r the state of equilibrium yields a relation between the

water pressure p and the free air pressure p”, including the surface tension o and the water
vapour pressure w, according to:

p'=p—w+ 20/r. (2.22)
Since w is a constant, variation of this equation yields:

dp” = dp - (2c/r)dr/r. (2.23)

Recapitulation

The air-water mixture comprises water and isometric air bubbles with radius r. The saturation
degree is 85% or more.

The Boyle-Mariotte law, expression (2.21) with ZRT is a constant, interrelates the air density "

and the air pressure p’. The surface tension o, the water vapour pressure w and the air solubility
w are taken as constants. Diffusion effects are disregarded.

With the aid of previously mentioned laws (see Weast, 1976) and simplifications itis possible to

find an explicit and convenient expression for the resuitant compressibility of an air-water
mixture in a porous medium.

The resultant compressibility

Consider a fixed volume containing an air-water mixture with a saturation degree s. In a porous
medium s is defined as the volume of water per volume of pores. The remainder is occupied by N
isometric bubbles with radius r containing free air. Only free air bubbles are concerned. In a po-

rous medium surface bonded air pockets also exist. Although they can be included in the
proposed analysis, they will not be considered. Their influence is discussed by Barends (1979).

Thus:

(1—-s8)= —gﬂrNra, (2.24)

from which follows for the differential:
—ds = % AN 3rdr = (1 - 8)3dr/r. (2.25)

The amount of pure water in the fixed control volume equals sg, the amount of free air equals
(1-s)o”, and in accordance with Henry’s solubility law the amount of dissolved air is equal to
swo”. Hence, consider an average density of the air-water mixture, defined by:

o = sp + (1—s)” + swo”. (2.26)

For stagnant bubbles, conservation of the mass of air requires that the amount of air'in the
bubbles and the amount of dissolved air is constant. Thus:

df(1-s+ws)”}=0. (2.27)
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Employing the Boyie-Mariotte law, equation (2.21) with ZRT constant, this becomes:

;
- s)de"le" = (—— = s)dp"Ip". (2.28)

ds =
S (1—w 1-

Because of (2.27) the variation of ¢’ of the average density defined by (2.26), becomes with (2.28)

- s)dp”/p” + sdo.

dQ':QdS+SdQ=Q(11

Substitution (2.19) and dividing by o’dp gives:

1
1-w

1 do _

|0

-s)ip’ +sB} —, (2.29)

o]

in which the auxiliary pressure p’ is expressed by:
p’ = p”dp/dp”. (2.30)

The lefthand side of equation (2.29) has the character of a coefficient of compressibility in
accordance with the required quantity in definition (2.20). However, the auxiliary pressure p'
should be converted into an expression in terms of basic physical factors, which fortunately is
possible. Eliminating dp from (2.23) and (2.30) gives for the auxiliary pressure:

26 (p" dr
"=p 4+ —{— : 31
pr=p" ) (2:31)

Next, the term between braces will be evaluated. Reconsider the conservation of mass of air,
expression (2.27), which in view of the Boyle-Mariotte law can be written in the following form:

df[(1-w)(1-8) + 0]p"} = 0.
Since o is a constant, this becomes:
—(1-w)p’ds + [(1-w)(1-8)+ w]dp” =0.
Eliminating ds with (2.25) and dividing by dp” gives after some rearrangements:

i © }
r dp” 3

(1-w)(1—s8)

Thus, the auxiliary pressure p’, equation (2.31), becomes when employing equation (2.22):

[s) [63]

"= p-wW+ 2 — . 2.32
p=p Er C iy yrpmrysl (2.32)
Observing once again the average density, definition (2.26), and recalling the fact that the fluid
density is much larger than the air density, the approximation: g’ =g can be justified. Moreover,
separate bubbles are concerned, implicating a lower limit of the saturation degree of 85%.

Substitution of equation (2.32) into (2.29), and introducing the approximation: ¢’ = sp, yields:

,_ 1 do" _ 1 20 _ ©
p= g =Pt Gy S5 w2 - T T (233)

The coefficient B’ represents the resultant compressibility of an air-water mixture and incor-
porates all the basic physical factors involved.
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A discontinuity in the resultant compressibility

The new formula presented in equation (2.33), contains the constants B, w, ®, and g, and the
variable factors s and r, which are moderate functions of the fluid pressure p.

Since bubbles become stiffer at higher air pressures, it is conceivable that, when the fluid
pressure rises, the surface tension increases the stiffness of the air-water mixture. in other
words the resultant compressibility will decrease. In view of equation (2.33), this holds if the
surface tension term is positive or:

20

(O]
3 }

Aea-s’ > %

t2 -

However, the coefficient between the braces declines at increasing fluid pressure, since the
volume of air bubbles (1 — s) decreases. At a particular pressure p_ this coefficient becomes
zero, corresponding to a specific saturation degree, according to:

=1-—2 2.34
S =1 2(1 — @) (2.34)

For fluid pressures larger than p_, the surface tension termin equation (2.33) becomes negative,
causing an assymptotic increase of the resuitant compressibility. In Fig. IV the mathematical
behaviour of B’ is presented as a function of the fluid pressure p.
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Fig. IV The air-water compressibility versus water pressure.

The physical implication of the fact that surface tension ¢ does not contribute anymore, is that
air bubbles become unstable. The surface tension causing higher air pressures cannot prevent
free air from becoming completely dissolved.

Bubbles implode releasing the volume (1 —s), creating a sudden increase of compressibility.
Therefore, the resultant compressibility attains a minimum beyond the specific pressure p,, and
since the value of the compressibility is almost stationary at pressures around p, this minimum
is well approximated by the particular value at p,.

Substitution of (2.34) into (2.33) provides this minimum value:

L 3o
B,=B + 2-30) p.—w) (2.35)

When all the free air is dissolved, its influence vanished and for higher pressures ' becomes
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equal to B. Because the dissolving process occurs in a short period, a jump in the compressi-
bility emerges equal to:

3o
Cp 2.
Ps— B (2-30) (p,—w) '’ (2.30)

and simultaneously the saturation degree reveals a discontinuity equal to:

®
1—-8 = —. 2.37

s 201 -w) ( )
The actual bubble radius is involved, because it depends on the pressure. However, it varies
gradually unti! the collapse, which can be seen from equation (2.25). For example, if the original
saturation degree was 95%, the radius will have been reduced by about a factor2ats = 99%. It
is stressed that due to air solubility stable air bubbles cannot become infinitely small.

Verification

Skempton and Bishop (1954) disregarded surface tension, water vapour and fluid compress-
ibility. They found:

B’ = (1—s, + w8)p,/p?, (2.38)

which is covered by expression (2.33) for a certain range of the saturation degree. The same
applies to Koning (1963) and Verruijt (1969), who included fluid compressibility, but disregarded
solubility, water vapour and partly the surface tension. They suggested:

p'=sp+ (1-8)/p. (2.39)

Only Koning provided a proper relation for s(p), but he did not include this in the suggested
expression.

From expression (2.33) it is obvious that disregarding the air solubility {0 =0} or the surface
tension (o = 0) will consequently lead to a formula, which does not include the discontinuous
behaviour, because the denominator has no real root in this case.

Therefore, the above mentioned approximate expressions (2.39) and (2.38) have a limited
validity. More precisely, they are applicable for large degrees of saturation, but not far beyond
the specific saturation degree s_, given by equation (2.34), or not far beyond the specific fluid
pressure p_, which can be expressed in terms of the initial condition, see Barends (1979),
according to:

ps=w—2r—0\3/2(1—u))(1-s)/m + 2[1—(1—m)si][pi—w+2%]/3&). (2.40)

For a particular case graphs of (2.38) and (2.39) are compared to corresponding results based on
formula (2.33), represented in Fig. V.

Schuurman was the first to verify the discontinuous behaviour of the resultant compressibility
by triaxial tests on partly saturated undrained clay samples. He did not obtain an explicit
expression for B/, but could confirm the behaviour numerically. The obtained new formula,
expression (2.33), is fully in accordance with the observations of Schuurman.

As a striking example one of his tests is elaborated, see Fig. V. The following values are

involved:

o = 0.02
w = 0.0110°N/m?
ofr, = 0.1410°N/m?
. = 095 ; p, = 10°5N/m?
B = 5.10-9m?N
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Fig. V Comparison between different formulas for the compressibility.

The jump in the saturation degree is small following equation (2.37), but the discontinuity in the
compressibility is large:

B, = 1.4010-"m2IN,

which is about 300 times the compressibility of pure water. This jump starts to occur at the
specific pressure: p, =2.28 105 N/m2. The actual collapse takes place at a higher pressure,
which as a result of numerical calculation is equal to 2.93 105 N/m?2 The test shows a critical
pressure at about 2.9 10° N/m2.

In general this value depends on the initial conditions, in particular on the initial saturation and
the initial bubble size, and on the loading behaviour, since the actual collapse is controlled by
the diffusion process.

The abrupt behaviour along the unstable branche in Fig. V will not take place in reality. It is to
be expected that this instability will spread out due to non-simultaneous collapse of the
bubbles, because of slight differences in size.

According to Schuurman reduction of solubility and surface tension with increasing air
pressure as well as the tendency of smaller bubbles to combine to larger ones will possibly have
a retarded influence.

The actual behaviour of bubbles during collapse, i.e. cavitation, involves hydrodynamical
effects and is beyond the scope of this discussion. The reader is referred to Plesset et al (1977).

Conclusions and remarks

Upper areas of groundwater might contain free air (peat sometimes produces free gases),
though the saturation degree is usually large, since air bubbles tend to rise up if not entrapped
by small pores. Moreover, free air can be present in the form of gas pockets attached to solid
surfaces, which repulse water (hydrophobic). Although these gas pockets show a completely
different behaviour with varying fluid pressures as the free (traveling) bubbles do, the presence
of both kinds can be included in one formula for the compressibility, see Barends (1979).

The presence of surface bonded gas pockets seems not to essentially affect the behaviour of
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the resultant compressibility. The minimum value, given by (2.35), is hardly influenced, but the
value of the specific pressure and the critical pressure changes. The former pressure can be
expressed in terms of the initial conditions, according to:

o= w - 20 \3/2(1—m)(1—si—b)+ 2[1-(1-w)s]p,-w + 2a/r] e

r, b + o(i—b) 3[b + o(1-D)]

where b denotes the relative volume of bonded air bubbles in the considered control volume.
Correspondingly, the specific saturation degree, mentioned in equation (2.34) changes into:

ss=1-——3~b—-9—. (2.42)
2 2(1 - )

Since at increasing fluid pressures causing an accelerated air pressure increase the air-water
surface tension brings air becoming dissolved, the bubbles implode. This occurs in a certain
pressure range, between p_ and p, respectively the specific pressure, given by (2.40), and the
critical pressure, for which an explicit expression is suggested by Lowe and Johnson (1969):
p.=1.5 p,. Several nummerical calculations for various situations show the validity of this for-
mula, see Fig. V.
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Fig. VI The relation between the specific and the critical pressure.

In this section it is shown that in the absence of surface bonded gas pockets the resultant com-
pressibility can be expressed by two different constants, either defined by expression (2.35) in
case the pore water contains free air bubbles, or similar to the compressibility of pure water in
case all the free air has been dissolved.

Another advantage of the obtained formula (2.35) is that the saturation degree, which is usually
difficult to measure under varying pressures, does not appear.

Furthermore, in the case of the presence of free air bubbles the resultant compressibility of the

air-water mixture is much larger than the water compressibility itself. It cannot be excluded in a
proper description of the mechanical behaviour of semi-saturated soils.
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2.d DEFORMATION BEHAVIOUR OF SEMI-SATURATED SOILS

Soil can be visualised as a skeleton of particles encompassing interconnected voids, which in
general contain an air-water mixture. For the range of stress usually encountered in soil mecha-
nics practice the individual solid particles and the pore water can be considered to be incom-
pressible, but air is highly compressible. The volume of the soil skeleton can change due to
local deformations at the intergranular contact points and due to rearrangements of solid
particles into new positions. The strength of the soil skeleton depends on the structural arran-
gement of the solid particles. Shear can be resisted by the skeleton itself, but compression may
be resisted by the soil skeleton and by an increase in pore pressure.

In fully saturated soil a reduction of volume is possible only if some of the pore water can
escape from the pores. In dry or semi-saturated soil a volume reduction is possible by com-
pression of the air content.

Thus, changes in the pore geometry can generate pore fluid motion. An extra complication
exists, because the resistance to flow increases when the porosity is reduced. On the other
hand, the deformation rate is retarded due to the resistance to porous flow. This process, called
consolidation, is discussed here.

Terzaghi’s effective stress principle

The importance of intergranular forces in a soil skeleton was first recognised by Terzaghi (1923,
1943), who presented the principle of effective stress. This principle is shortly discussed, since
it is so common in soil mechanics, that the basic assumptions have become more or less

concealed.
Consider an elementary volume of saturated soil. For the motion of pore water through a defor-

meable porous medium the equilibrium for each of the substances, i.e. water and soil skeleton,
will enable an investigation on the influence on porous flow due to deformations of the soil

skeleton.
The equation of motion for the pore water occupying the pores of an elementary volume reflects
the equilibrium in terms of the inertia force, the driving force H and the resistance force R per

unit volume of pores, according to:

ng—aal:’—: n(H-R), (2.43)

where n represents the porosity, o the water density and w the average velocity of the con-

sidered volume of pore water.

The resistance force R incorporates the internal friction, according to equation (2.2).

The driving force H combines two features, see section 2.a, to wit, pore pressure gradients Vp
and the gravity force og Vz. Thus,

H=Vp + ogVz. (2.44)
The inertia effects in porous flow can be approximately accounted for by a linearized con-

stitutive relation, which couples the total volumetric resistance R’ comprising internal friction
and inertia effects, to the volumetric flux g, according to:

R =R+ gaa—‘:’ = —ogW1q. (2.45)

It is assumed that inertia effects in the pore fluid motion embody convective and centrifugal
acceleration of laminar flow patterns, and rotating flow of turbulent patterns, dominating in the
pore’s inside at larger pressure gradients. Relation (2.45) was discussed in section 2.a.
The linearized coefficient of resistance to porous flow W’ contains the inertia effects and the
internal friction. Therefore, the combination of equations (2.43), (2.44) and (2.45) gives the
following equation of motion for the pore water:

nvp + nog vz + nogW'q = 0, (2.46)

which is fully in agreement with the (extended) law of Darcy.
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The equation of motion of the soil skeleton in the considered elementary volume reflects the
equilibrium in terms of the inertia force, the volumetric driving force F and the resistance force
R’ per unit volume of pore water generated by the porous flow. In formula:

2
(1- n)gs—%t—t: = F + R, (2.47)

in which o, denotes the granular density and u the average displacement of the soil skeleton.
The resistance force R’ exerted by the pore fluid motion on the soil skeleton includes inertia of
the pore fluid. Notice that this force refers to the pore volume and acts here as a driving force.
The driving force F comprises the intergranular forces acting as concentrated forces at those
parts of a solid where it makes contact with neighbouring particles, and they include also solid
gravity forces.

Deformation of the soil skeleton is assumed to occur at the intergranular contact points by
local deformation or by rolling and slipping, which causes rearrangements in the skeleton
formation.

For the afore mentioned equation of motion referring to an elementary volume of soil, the con-
centrated intergranular forces can be averaged over this volume. Such an average measure is
proposed by Terzaghi (1923), called the effective stress (see Fig. VI

Fig. VIl A visualisation of Terzaghi’s effective stress principle.
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In saturated soils the grains are surrounded by pore water. Therefore, also the pore pressure
gradient acts as a driving force and it must be included in the equation of motion for the
skeleton. Thus, the volumetric driving force F can be expressed in terms of the effective siress
o;, which represents a tensor taken positive for tension, in terms of the gravity force ¢ g vz, and
the pore pressure gradient Vp, according to:

F=-o,+0- n)vp + (1—-nje,gVvz. (2.48)
Here, Gf',a represents the resultant force acting in the i-direction on a unit volume of soil due to
intergranular forces.
It must be understood that ¢} is not equal to the true contact stress between the particles, that
would be a random but very much higher stress acting over the contact area between solids.
In the theory of mixtures it is common to define a stress referring to the phase volume to which
it belongs, and such stresses are called phase stress or partial stress, see for example Houlsby
(1979). It is to be noted that o is not such a partial stress.
Clay particles may not be in direct contact due to their surrounding adhered layer of pore water,
but it is assumed that the interparticle force can be transmitted through the strongly bonded
water layer.
The symbol n’ denotes the effective surface area of the solid particles being in contact with the
pore fluid. This area is similar to the porosity n, likewise along the cross sectional plane drawn
in Fig. VIi, since the contact area is usually very small. In literature there is some discussion
about the equality of the volumetric porosity n, the cross-sectional porosity and the surface
porosity n’, in particular in cases where very high pressures are involved. In this treatise they are
considered to be equal.
The previous analysis is based on the conservation of momentum, resulting in the equations of
motion including inertia of the pore fluid and solid particles.
The stated equations of motion and the subsequent derivation are not complete in a theoretical
sense. It is assumed, here, that the inertia terms in the pore fluid motion contribute to a total
resistance R, according to equation (2.45), which is counterbalanced bij interfacial focus at the
solid surfaces. Moreover, the real dynamic behaviour of a saturated soil might include also
added mass effects due to the relative velocity of the different phases resulting in extraterms in
the momentum equations, see Van der Kogel (1977, 1979). These effects are not included.
In this discussion the granular inertia terms are disregarded. Only small and slow motion of the
soil skeleton is considered. In this respect the equation of motion for the skeleton, equation
(2.47), becomes, utilizing (2.45), (2.48) and the equality: n=n’,

—op, +(1-nVp+ (1 —n)e,g Vz — negW'q = 0.
Adding (2.46) eliminates the internal resistance force R’ and gives:

~0o. + Vp + (neg + (1 —n)e,g) vz =0. (2.49)

ij,i
Equilibrium in soils is governed by total stresses o, . For a saturated soil with volumetric weight
Y, the state of equilibrium for an elementary volume of soil is expressed by:
— 0+ BVZ= 0. (2.50)
Comparison with the equilibrium condition (2.49) leads to the foliowing conclusions:
-0, = = o;, + Vp, (2.51)
Y = neg + (1—ne,g- (2.52)

Terzaghi noticed that a change in the pore pressure produces practically no volume change and
has practically no influence on the stress condition for failure (shear). Therefore, porous
materials react to pore pressure changes as if they were incompressible. Moreover, shear
stresses seem independent from pore pressures. Consequently, all measurable changes in the
soil skeleton deformation are exclusively due to changes in the effective stress.

In this respect the following assumptions, satisfying (2.51), seem reasonable to reflect soil
behaviour:

s =0 —p, (2.53)

1=1,
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where o denotes the isotropic (mean) total stress, and ¢’ the isotropic (mean) effective stress.
The second relation expresses that total shear stress 1 is equal to the effective shear stress T,
which makes sense, since water can not resist total shear stresses.

Relation (2.53) is called the effective stress equation and it constitutes the core of Terzaghi’s
effective stress principle.

The effective stress equation can be better understood by considering equilibrium of normal
stresses acting on the wavy cross-sectional plane visualized in Fig. VIL.

Concerning partly saturated soils the effective stress principle has to be adjusted. Except for
high saturation degrees the pore air will form interconnected channels through the pore
structure, and the pore water will be concentrated in regions around the intergranular contact
areas. The pore air pressure p'’ is different from the pore water pressure p because of surface
tension or, in clays, because of molecular linkage. Bishop (1859) suggested for this case an
adjusted effective stress equation, according to:

c=0¢ —xp—(1-0p”" , O0=x=1,

where y is somehow reiated tot the saturation degree, the soil structure, and to the wetting
history.
For air in contact with open air (p” = 0) this equation reduces to:
c=0¢ — ¥Ap. (2.54)
Skempton (1960) and Henkel (1960) presented some expressions for x incorporating phase com-
pressibility and shear strength effects. Keveling Buisman (1939) already suggested an effective
stress equation identical to (2.54) with y=s, where s denotes the saturation degree.
As can be understood from Fig. VI, a cross-sectional wave plane through the particle contact
areas will pass partly through water and partly through air in the semi-saturated zone.
The effective stress principle is a rather popular subject of discussion. Leonards (1962) and
Bishop and Blight (1963) considered semi-saturated soils and phase compressibilities. They
reported experimental evidence for the suggested theory. Electrical forces and molecular
linkage have been investigated by Lambe (1960) and measurements on this phenomenon are
published by Sridharan and Venkatappa (1979). Bishop (1973) considered low compressible
soils. Garg and Nur (1973) extended the effective stress principle to saturated rock. Lately,
Houlsby (1979) offered in an elegant analysis a new interpretation of the principle of effective
stress in terms of continuum mechanics, in that the principle reflects the independence of work
input to the soil skeleton and to the pore fluid. Consequently, if the processes of skeleton
deformation and seepage are uncoupled, the mechanical behaviour of the skeleton will only
depend on the effective stress as suggested by Terzaghi.
If the degree of saturation of soil is such that the pore air exists in the form of free travelling
bubbles or attached small air pockets, it is still possible to draw a wavy plane through the pore
water only, see Fig. VIi. Subsequently, all the solid particles are aimost surrounded by coherent
pore water. In this case Terzaghi's effective stress principle, equation (2.53), is applicable. It will
be utilized in the proceeding analysis.

Consolidation in saturated soils

The previous discussion made clear that the mechanical behaviour of soil is significant to
groundwater flow. The motion of pore water is influenced by changes in the pore geometry,
which can occur in deformeable soils. Storage variations causing pore pressure gradients
induce porous flow. Resistance to flow by internal friction between the pore water and the soil
skeleton limitates the pore fluid motion and retards the deformation rate.
In conclusion, the mechanicail behaviour of soil is restrained by pore water dissipation and this
effect, referred to as consolidation, was first noticed by Terzaghi (1923), who mentioned the
resemblance of consolidation with heat diffusion.
For example, one-dimensional linear consolidation is governed by, see Barends (1978):

do’ a*p

= C .
at 072

Here, ¢ represents the coefficient of consolidation, comprising information regarding the pore
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fluid flow and the mechanical nature of the soil skeleton. p is the pore pressure and ¢ the
vertical effective stress.
introducing Terzaghi’s effective stress principle, equation (2.53), gives:

ap do ap
ot - S (2.55)

In case the total stress o does not vary in time, this reduces to the one-dimensional heat

diffusion equation:

9 &
a—f _ azf , (2.56)

which is referred to as Terzaghi’s consolidation. Adopting this philosophy Jacob (1940)
presented a mathematical theory to account for the infiuence of soil elasticity to pore water
dissipation in horizontal aquifers. Subsequently, several practical problems have been solved
using his theory, described by:

ép 2 2 7
—— =V ') .5
(9t ’ ( )

with the restriction that the total vertical stress is a constant and horizontal displacements are
negligible.

When the total vertical stress varies in time equation (2.55) and not (2.56) should be used. For a
one-dimensional vertical strip of saturated soil subjected to cyclic loading, the solution shows
locally a phase shift of the pore pressure response running ahead of the actual periodical
loading, see Fig. VHI.
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This phenomenon has been confirmed by experiments reported by Barends and Thabet (1978),
and such behaviour is characteristic for the consolidation process being different from heat
diffusion. Disagreements between diffusion and consolidation for spherical symmetry have
been discussed by Verruijt (1965), and by Sills (1975).

in more dimensions loading a saturated soil induces shear stresses as well, and it can be
expected that this will indirectly influence the pore water dissipation. A physically consistent
more-dimensional extension for a perfectly elastic soil behaviour was suggested by Biot (1941).
His mathematical formulation consists of two equations derived from a state of equilibrium of
the saturated soil, identical to (2.50) disregarding the gravity term:

-0 +Vp=0, (2.58)
and from the conservation of the mass of pore water, including the water compressibility,
resulting in the so-called storage equation, after De Josselin de Jong (1963):

e np P o K gy, (2.59)

at at ~  ov

where B denotes the coefficient of compressibility of the pore water and ¢ is the volume strain,
defined by:

g=Veu. (2.60)

The righthand side of equation (2.59) expresses the pore water dissipation, the lefthand side the
volumetric storage consisting of two components, one due to soil skeleton deformation andone
due to pore water compressibility. To interrelate (2.58) and (2.59) a stress-strain relation for soil
is necessary, which couples the stress tensor g, and the volumetric strain e. Terzaghi, Jacob
and Biot assumed a linear relationship.

Experiments show that the behaviour of real soils is more complicated than if they conformtoa
perfectly elastic material, but a fact in favour of Biot’s theory is that several peculiar obser-
vations from tests could be satisfactorily explained, assuming perfect elasticity. Moreover, the
obscurity of real soil parameters and the corresponding complex mathematical formulation
combine to favour a simple constitutive soil model. Therefore, the stress-strain relation for soil
is assumed to be perfectly elastic, i.e. Hooke’s law.

Such a relationship is a rather crude approximation is regard to the microscopic nature of soil,
in particular concerning the intergranular contact forces and the overall deformation of the
skeleton due to local pressing, crushing, rolling and sliding of solid particles. However, the
effect of most of the disturbances generating pore water dissipation is restricted to fairly
moderate fluctuations of stresses in comparison to in-situ stresses. In such situations Hooke’s
Jaw provides a first insight, and a description amenable to fundamental mathematical operation.
Writing the equilibrium equation (2.58) in terms of the displacement vector u of the soil skeleton,
see Barends (1978), gives:

V(Veu) — GaV X (Vxu)=aVp, (2.61)
where o represents the laterally confined compressibitity, measured in the oedometer, defined by:
a=1/(K, + 4G/3). (2.62)

K denotes the bulk modulus and G the shear modulus of the soil skeleton. Hooke’s law correlates-
the volumetric strain € and the isotropic effective stress ¢’, according to:

o' = K. (2.63)

In conclusion, introducing (2.60) into (2.61), and (2.59) results into the following set:

oe ap k
—_-— — = v? .64
pralll e e (2.64)

Ve — GaV x(Vxu)=avp, (2.65)

27




governing consolidation according to Biot’s theory. The coupling between the soil skeleton and
the pore water in this form is obviously dissimilar to the simple heat diffusion process. Such a
situationis shownin Fig. IX, where measurements correspond best to Biot’s theory and notto the
common potential or diffusion theory (after Selimeijer, 1978).
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Fig. IX Consolidation due to free water waves.

This contrast becomes manifest, in a pore pressure generation, contradicting expectations, i.e.
observed pore pressureincrease where adecrease isexpected. This feature shows some similarity
with the peculiar behaviour shown in Fig. Vlil. It can be explained with Biot’s theory.

For example, consider the equilibrium equation (2.65). Disregard the rotational part of the
displacements,i.e.V x u =0,whichisjustifiedinseveral types of problems. Next, integration gives:

e=a(p—F), (2.68)

where F is an integration constant, eventually a function of time. Inserting (2.66) into the storage
equation (2.64) gives:

o0 __ @ F _ uep, (2.67)

ot a+nB ot

where the coefficient of consolidation c is defined according to:

¢ = k/(ouv{a + nB)). (2.68)
Equgtion (2.67) is comparable to (2.55), which has been used to solve problems with varying
:?::r'\ngé shown that the pressure function F appearingin(2.66)is related tothe boundary stress. In
rotational deformation fields, where V x u # 0 holds, the pressure function F depends also on the

displacement vector u. This can be understood by taking the divergence of the equilibrium equati-
on{2.65), whichresultsin:

Vig = a V.
integrating this retation over the considered field yields an expression similar to equation (2.66),
but now F, as aresult of spatial integration, is a function of space and time. This can easily be veri-
fied by taking the gradient of (2.66) and subtracting (2.65), giving:

VF =GV X (Vxu). (2.69)

The term V x u reflects the internal rotations. This particular character of the function F has been
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expounded by De Josselin de Jong (1963) and as such F, appearing in {2.67), symbolizes the funda-
mental difference between the theory of Biot and Jacob’s approach, equation (2.57).

Several types of problems have been solved utilizing Biot's theory, for example, one-
dimensional cyclic problems (Barends, 1978), spherically symmetrical probiems (De Josselin de
Jong, 1953, 1964; Cryer, 1963; Gibson, 1963, 1966; Verruijt, 1965), cylindrically symmetrical
problems (De Leeuw, 1964; Calle, 1979), half plane problems (McNamee and Gibson, 1960;
Koning, 1968; Barends, 1978; De Groot and Sellmeijer, 1979), axially symmetrical half space
problems (Gibson and McNamee, 1962; Barends, 1971), finite layer problems (Verruijt, 1969;
Gibson et al, 1970; Selimeijer, 1976).

To demonstirate some peculiar effects of Biot’s theory, consider the problem solved by Barends
(1971), concerning a point well with a sudden constant production in an isolated half space. The
problem was treated using the principle of mirror images and transformation techniques
(Hankel- and Laplace transforms). Some results are shown in Fig. X. The calculated surface
settlement above the well first increases strongly, later more moderately with time. It does not
reach a final value (logarithmic), but the settlement is aimost stationary at t>100H?% ¢, which
might still represent a period of several years.

Surprisingly, the corresponding pore pressure initially increases before it decreases. This effect
is due to soil deformations. It is interesting to notice the influence of the elasticity of the porous
medium on this particular effect.
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The analyticall solution of consolidation problems using Biot's theory generally requires
advanced mathematics and cumbersome calculations. Numerical techniques, i.e. finite element
methods, overcome this disadvantage only partially, since numerical solutions obtained by
computer programmes, do not provide parametric solutions. Good correlation and interpre-
tation based on of computer calculations are relatively inefficient, because sometimes many
sensitivity computations are needed.

It seems preferable to utilize the more simple approach according to Terzaghi’s and Jacob’s
theory whenever possible. The conditions of applicability of these simple modeis are twofold.
The isotropic stress must be a constant in time or the displacement field must be irrotational
and loading is stationary. One can imagine a situation, which combines both conditions.
Different assumptions concerning the problem definition will iead to a specific expression for
the consolidation coefficient. One such approach is already dealt with: irrotational deformation
(Vx u=0) and constant loading (aF/at = 0), rendering (2.67) into Jacob’s equation (2.57), where ¢
is defined according to expression (2.68).

Another approach, suggested by Gibson and Lumb (1953) is more straightforward. Eliminate the
volume strain ¢ from equations (2.59) and (2.63) and next, applying Terzaghi’s effective stress
principle, equation (2.53), the following equation results:

ap 1 ac
—cw 2.70
ot T +Kap) at P (2.70)

where the coefficient of consolidation ¢ is defined by:
¢ = kK /{gu{1+ K nB)). (2.71)

It is obvious that, when the isotropic total stress ¢ is constant in time, equation (2.70) reduces to
(2.57) provided that the actual expression for the coefficient of consolidation is included.

This approach is also known as pseudo-consolidation, since the pore pressure and effective
stresses are decoupled, see for example Runesson (1978).

Sellmeijer (1978) considered a horizontal semi-confined aquifer. Disregarding shear stresses at
the upperbound he obtained the following equation for horizontal flow:

ap 2Go oA .
- 2.72
st T aTnp1-Go) ot _CV P 2.72)

where A is some function of time, and here, the coefficient of consolidation ¢ is defined by:
¢ = k(1—-Ga)/(gv(a+np(1 —Ga))). (2.73)

Selimeijer showed that for an aquifer with (semi)-infinite extent A equals zero, and (2.72) reduces
to equation (2.57), corresponding to Jacob’s approach, except for horizontal displacements,
which are parabolic in depth.

Lately, Verruijt (1979) suggested a more practical approach. He combined the diffusion damping
character with knowledge about the instantaneous behaviour and the ultimate situation based
on excercises with Biot’s theory. In this way the essential quantities in a consolidation problem
can quickly be derived in a suitable parametric form useful to engineering practice.

Conclusion

The previous discussion showed that despite the poor description of the soil deformation
behaviour by a perfectly elastic constitutive relation and the assumptions embedded in the
effective stress principle, the equation of diffusion is suitable to model the consolidation
process in various types of problems.

The models mentioned, in particular equations (2.67), (2.70) and (2.72), simulate the con-
solidation process quite well provided there are no rotations in the deformation field. Different
approaches and assumptions concerning the boundary conditions resulted in specific
expressions for the coefficient of consolidation, but on close examination they compare well.

Irrotational fields are completely defined by a potential (Helmholtz’ theorem). Thus the entire
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groundwater flow phenomenon can be expressed by a second order differential equation in
terms of a potential, according to, see Barends (1978):

P aF
d=z+ | (Meg)dp, pp=-——", (2.74)
Pe a+np

which in this form is an extension of Hubbert's potential for compressible pore water, see
Hubbert (1940).

Here, the pore water density is a function of the pore water pressure only, i.e. o=o(p). It is easily
verified, that differentation with respect to time using Leibnitz’ rule, which gives:

9 _ dp « aF
W% T ot T wenp ot

renders equation (2.67) in the following form:

90 _ owp. (2.75)

at

This approach shows once more, that the diffusion type of equation is well applicable for
groundwater flow in irrotationally deforming media.

In general rotations do not always vanish and therefore, they provide a concealed linkage
between soil skeleton and pore water, responsible for peculiar pore pressure developments.
In section 3 the fundamental contribution of soil deformation to porous flow, in particular the
volume strain € and the characteristic function F, will be discussed including nonlinearities.
It will be explained that the equations governing the consolidation process in saturated soils
are also valid in the case of semi-saturated soils, if the saturation degree is not too low.

NONLINEARITY IN THE CONTINUITY EQUATION

Summary of chapter 3

The concept of continuity of mass, momentum or energy is fundamental in the formulation of
physical processes. However, a mathematical description utilizing continuous functions having
proper derivatives suggests a material that is uniform and continuous. In case of a particulate
medium such as a granular soil, and more particularly when the pore water containes entrapped
air, the applicability of the continuum approach entails a thorough investigation to elucidate the
restrictions of an equation of continuity formulated to characterize the physical process con-
sidered.

Some of the aspects concerning the continuity are dealt with, in that the existence of extra
terms in a general continuity equation, responsible for the nonlinear character, are described.

Section 3.a discusses the scale at which the groundwater flow phenomenon is considered from
a mathematical point of view. It emphasizes the averaging nature of constitutive parameters
reflecting material properties suitable to describe the pore fluid motion. This scale intrinsically
restricts the range of validity of the proposed mathematical description.

Section 3.b deals with the fundamental derivation of the equation of continuity, called the
storage equation, governing porous flow in deformable semi-saturated soils. Due to deform-
ations a soil element displaces and conveys the pore content. Since the interaction between the
pore fluid and the soil skeleton involves friction, which is a so-called follow process (it moves-
with the soil element), the description of this phenomenon must be related to the actual position
of the soil element.

In physics it is common to define a process referring to a fixed coordinate system, but then
application of a porous flow law, such as Darcy’s law being defined in terms of the chosen
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coordinate system, is likely to lead to a physically unacceptable formulation unless the con-
veying effect is included.

In literature several approaches are still taken for granted, though the convective terms are not
accounted for. Here, they are evaluated on their deviation from the correct approach.

Section 3.c provides the theoretical background to state that the pore water motion in a semi-
saturated porous medium, in which air is present in the form of micro bubbles and pockets, can
equally well be represented by the storage equation valid for fully saturated soils by replacing
the pore water density with the air-water mixture density and by introduction of a compressibili-
ty for the air-water pore content. An approximation of minor importance related to the volume of
air pockets attached to the solid particles is the only concession to be made, while the
coefficient of permeability in Darcy’s law requires a small adjustment to include an increase in
resistance due to presence of stagnant bubbies blocking pore necks.

The fact that the familiar storage equation also describes the motion of an air-water mixture
through a deformable medium permits to conclude that the previous efforts invested in solving-
various saturated soil problems cover likewise semi-saturated soil problems representing more
realistic situations.

it is stressed that the compressibility of the air-water pore content plays a dominent role,
because the air is rather compressible.

Section 3.d discusses a trial to express the general nonlinear storage equation in terms of one
variable, a flow potential. This is only possible in the case where the process is irrotational,
requiring the deformation behaviour of the soil to be irrotational.

For a large class of practical problems the rotational part in the soil skeleton deformation can
be disregarded. A potential function is found, by which various effects can be formulated such
as variations of the permeability due to pore geometry alterations induced by soil deformations,
and a pore pressure imposed by transient boundary loading. This potential resembles Hubbert’s
potential, but it is expressed in terms of the average density of the pore content.

Section 3.e clarifies some aspects of the nonlinear storage equation. The fact that pressure
induced density variations will not give rise to rotations in the flow pattern is discussed.

It appears only to be valid in isotropic inhomogeneous media, which is an unfortunate
restriction to the theory presented, since natural sediments are usually stratified and aniso-
tropical.

The significance of convective terms is outlined. Two classes are distinguished, large strains
and small strains, the latter yet generating large displacements due to an integral effect of ma-
ny small strains. The first class requires a nonlinear soil deformation behaviour to be described,
which is beyond the scope of the subject. In the second class convective terms should be incor-
porated and for two general cases the corresponding storage equation is derived approximately
covering the convective effect.

3.a THE PHYSICAL CONTINUUM APPROACH

The study of groundwater flow at microscopical level is a comprehensive challenge. Repre-
senting the flow through the pores by a fictitious macroscopical model describing the average
flow will stand a better chance. There are in general two methods. The first is to define or
measure average properties and to compose a mathematical description of the macroscopical
flow. The second way starts with the constitutive equations describing the microscopical flow
and averaging these equations to a macroscopical level obtaining average parameters. The
latter provides for a complete interaction between all the phenomena involved and preserves a
deeper comprehension of the essence of the physical parameters, see Verruijt (1969) and Bear
(1972).

However, these parameters are of little practical importance, uniess they are measurable by
some standard method, or unless they are related to our sense perceptions and a mathematically
amenable flow model can be composed. Many such parameters have been defined already and
their applicability is a fact. Sometimes a microscopical property is chosen like density, fluidity,
grain shape, or a statistical characterisation, such as texture (soil particle distribution) and
specific surface, sometimes a macroscopical feature like packing, porosity, saturation, or even
a composed one, such as permeability, capillarity, compressibility and storativity.

The microscopical point of view represents a comparative way of considering elementary
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volumes in a physical point within a fictitious continuum symbolizing the composed material,
rather varied at microscopical level, and yet posessing relevant average bulk properties at
macroscopical level.

This treatment of soil and pore water as continua allows to describe the flow transport mathe-
matically. The elementary volume which might differ for any phenomenon, is precisely the
physical or material point of the considered medium at the mathematical point. If such a volume
exists for ail the properties concerned, the obtained average flow model is physically
meaningful.

The range of validity due to this averaging process has to be considered continuously, in
particular for investigation of special effects like local stability of the soil particies (piping,
internal migration, stability of hydraulic filters), see Bachmat and Bear (1972), Bear (1978).

An example of such an elementary volume for groundwater flow is represented in Fig. Xi. The
composition of a continuum out of elementary volumes is realised by mutual overlapping. In
this way the average quantities and properties, defined in the centroid of an elementary volume
can be represented in a continuous field. Derivatives do exist and mathematical manipulations
are permitted.

Ve s

CAPILLARY ZONE

[
05 GBS\
2 ://."/////;‘ B

4

PHREATIC SURFACE

FLOW FIELD

Fig. XI Elementary volumes, a physical-mathematical approach.

3.b A NONLINEAR STORAGE EQUATION FOR PORE FLUIDS

A general conservation principie valid for any fluid property related to the fluid mass, for
example the extensive property g, can be expressed in the following way, see Bear (1972):

| { ve(gw) + ag/at}du =0,
U
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valid in an isothermal process without internal production. Here, w denotes the velocity at
which the amount of property g occupying the volume U propagates. Since this expression
holds for any volume U, the integrand must vanish. Therefore, the equation:

Ve(gw) + dg/ot = 0 (3.1)

represents the general conservation principle of the extensive property g without internal
production.

For groundwater flow the variation of the fluid mass itself is essential to describe the quantity
of stored pore water in a bulk volume of soil. Introduction of the fiuid mass for property g results
in the so-called storage equation. Hence, in a soil with porosity n the property g has to be
identified with the relative density ng' of the pore fluid, where ¢’ denotes the pore fiuid density
including entrapped air, see section 2.c.

Since resistance to flow is directly related to the interaction between the pore fluid and the
porous skeleton, the flow velocity should be formulated with respect to the skeleton, which can
move due to deformations. Although this effect is sometimes assumed to be of negligible
significance, it should be included in the derivation of the storage equation in order to in-
vestigate its consequences properly.

The velocity w appearing in equation (3.1) representing the absolute velocity of the pore fluid
mass, is rewritten in terms of the absolute velocity v of the soil skeleton and the specific dis-
charge q, which is measured with respect to the moving soil skeleton. Actually, the specific dis-
charge q is related to the absolute velocity w of the pore fluid mass, to the absolute velocity v of
the soil skeleton, and to the porosity n, according to:

g=nw-Vv). (3.2)
Thus, equation (3.1) becomes:

— Ve(o'q) = Ve(ng'v) + d(ng")/ét, (3.3)

and it describes the pore fluid flow in a deformable porous medium.
Rewriting equation (3.3) in terms of substantial derivatives gives:

—Ve(0'q) = ng Vev + veV(ng') + d(ng’)/ot
= ng' Vev + D(ng')/Dt
= ng Vev + o'Dn/Dt + nD¢'/Dt. (3.4)

Velocity v varies in the field considered and is directly related to the rate of deformation of the
soil. A next step to simplify equation (3.4) is to show that:

Vev = De/Dt, (3.5)
where £ denotes the volume strain corresponding to the soil skeleton deformation, defined by:

de = dU/U, (3.6
in which de represents an incremental volume strain.
in this form ¢ is referred as natural strain. Strain can be defined in various ways, see Eringen
(1967), and any reasonable definition can be incorporated in a proper constitutive equation rela-
ting stresses and that particular strain. Here, definition (3.6) will be adopted. For small strains
(3.6) becomes identical to (2.60), which in fact represents an incremental form of volumetric

strain with respect to a fixed reference, for example, the initial state.

Consider an elementary volume U of moving soil particles of fixed identity (Lagrangian
approach). lts centre position is given by x(x_, t), representing the actual position as a function
of time t and of the initial position x_ at time t,.
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The absolute velocity v of this volume is defined by:

v = ax/at = Dx/Dt, (3.7)

Xo

where the last symbol represents the substantial derivative with respect to time emphasizing
the fact that the particular volume of soil particles is considered which had positionx_attimet,.

if the volume U contains a constant amount of the extensive property g, i.e.
gU = constant,

then 1/U itself represents an extensive property. The general conservation principle, according
to equation (3.1), yields in this case:

Ve (v/U) + a(1/U)/ot =0,
or:

Vev + UD(1/U)/IDt = 0.
Elaboration of this expression results in:

Vev - (1/U)DU/Dt = 0,

and introduction of definition (3.6) gives the justification of equation (3.5).

Since the volume of the individual solids remains practically constant, see section 2.d, that is:
df(1-nuU} =0,

a variational relation between the porosity n and the volume strain ¢ is obtained, employing
equation (3.6):

dn = (1 -=n)de. (3.8)
From this expression the substantial derivative with respect to time is derived, resulting in:

Dn De
or = (0-"pr (3.9)

Substitution of (3.5) and (3.9) into (3.4) gives:
— Ve(o'q) = p'De/Dt + n Dg'/Dt. (3.10)

In section 2.c the compressibility p' of the pore content consisting of pore water including
entrapped air has been studied, as it was defined by equation (2.20). It was shown that p’' is a
very moderate function of the fiuid pressure p in case air is present in the form of microbubbles.
in view of equation (2.20) the rate of change of the density of the pore content within an elemen-
tary volume of soil particles of fixed identity moving at velocity v becomes:

Do’
Dt

—_ mt Dp
= 0B ot
Substitution in expression (3.10) gives:

D D
~ Ve(o'q) = @’{D—:‘ + nB’——D%}, (3.11)

which represents the storage equation for groundwater flow in a deformable porous medium in-
cluding entrapped air. It is referred to as the general nonlinear storage equation, since it
properly includes the nonlinear behaviour of the air-water mixture occupying the pore volume, it
includes convective terms due to the soil skeleton deformations embedded in the substantial
derivatives with respect to the soil movements, and it contains a specific discharge measured
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with respect to the soil skeleton, so that a nonlinear porous flow law, suggested in section 2.a,
can be introduced in order to account for turbulent effects in the pore fluid motion. Moreover,
the actual behaviour of the soil deformation is not restricted sofar, except for the assumption
that the individual soil particles are relatively incompressible. A general nonlinear soil behavi-
our is adaptable in this storage equation.

In literature several trials have been described to define a proper storage equation governing
porous flow. Many authors have contributed to a good comprehension of this process and most
of the suggested approaches result in a storage equation describing the physical behaviour of
groundwater flow sufficiently accurate for practical engineering purposes.

However, on the occasion when the soil deformability is considered, the common consent is
jost and up to now educational books in the field of geohydrology do not contain a unique and
always correct approach, which should end up with expression (3.11). Several such approaches
will be briefly discussed.

Literature review

Jacob (1950) was probably the first to introduce the compressibility of the pore water and simul-
taneously the variation of the porosity of the soil skeleton. He considered the behaviour of
aquifers and assumed that changes of iateral dimensions are by comparison negligible. His
approach resulted in the following storage equation describing the rate of change of the mass o
of the pore water without air (soil deformation restricted, except for the vertical direction):

— Ve(oQq) = nodeldt + d(ne)/at, (3.12)

which is identical to equation (3.4) except for of the term: veV(ng), and only if Vev is ap-
proximated by de/dt omitting the convective term, see equation (3.5).

Jacob based his approach on the conservation of pore mass in an elementary volume taking
into account the fact that the vertica! dimension varies due to changes in the porosity.
However, he did not consider the convective term which automatically arises due to soil
deformations induced by these porosity alterations itself. Several authors have adopted
Jacob’s approach unaware of this shortcoming, see for example Raudkivi and Callander (1976).
After Biot (1941, 1956), De Josselin de Jong (1953, 1963) developed a storage equation for com-
pressible pore water in three dimensions, according to:

~ Ve(oq) = 9{%:“— + nﬁ%}, (3.13)

which differs from equation (3.11) in respect of convective terms. Although these terms usually
have little effect on the process of groundwater flow, they might become significant to large
strain consolidation in soft soils, see for example Kuantsai Lee and Sills (1979). Presence of
entrapped air is not included in equation (3.13).

De Wiest (1966) questioned the validity of Jacob’s storage equation. His comments concern the
fact ‘that in one side of Jacob’s equation the net inward flux was calculated for a volume
element without deformation while in the other side of the equation, to compute the rate of
change of the mass inside the volume eiement, the element itself was deformed.’

This conclusion is unclear, since Jacob only did not include convective terms. To provide a
better equation De Wiest suggested another approach starting from:

— Ve(@q) = d(ng)/at. (3.14)

Sofar this equation is correct, see (3.1). It represents the mass conservation of pore water, while
the specific discharge q is measured with respect to a fixed coordinate system.
Consequently, Darcy’s law, which as a constitutive law relates physical quantities and sub-
sequently is independent on a coordinate system (constitutive invariance, see Gudehus, 1969)
can only be introduced in the absence of soil deformations.

Therefore, the porosity n must be a constant. Nonetheless, De Wiest introduces Darcy’'s law and
allows at the same time the soil to deform. Disregarding convective terms he arrived at an incor-
rect storage equation, according to:
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~ Veloa) = o (1— )5 + -1 (315

Irmay (1968) utilizes the so-calied fixed box analysis, which is widely applied in the field of geo-
hydrology, in an improper way. His analysis ends up with a storage equation identical to (3.15),
and this equation is essentially dissimilar to equation (3.11) by the term: nde/ at, which is merely
due to an incorrect definition of the specific discharge q.

This is most easily shown for a situation where a saturated soil is considered with both the pore
fluid and the individual solid grains incompressible. Consequently, the total flow of material
into an arbitrary volume U fixed in space must be zero. |f S is the surface boundingU and s a unit
vector in the direction of the outward normal to an element dS, then this condition may be

written as:

f{rw+ (1-nyv}esds =0,
S

where w denotes the actual mean velocity of the pore fluid and v the velocity of the soil skeleton.
Making use of the divergence theorem of Gauss gives:

fve{nw+ (1-nyv}du=0.
U

Since U is an arbitrary volume, the integrand must always be zero. Thus:
ve{nw + (1-nyv} =0,

represents the compatibility condition for incompressible soil grains and pore fluids. Defining a
specific discharge according to (3.2), and introducing (3.5) gives:

—Veq = De/Dt,

which corresponds to expressions suggested by Jacob, Bioi and De Josselin de Jong.
However, defining a specific discharge according to: q=nw, gives:

~V.q = (1—n) De/Dt,
revealing similarity to De Wiest’s and Irmay’s approach.

In the latter case the specific discharge q is measured with respect to fixed coordinates, so that
Darcy’s law can only be introduced, while considering a fixed soil skeleton. But this automa-
tically implies that the soil skeleton must have a zero volume strain. Consequently, (3.15)
reduces to the common storage equation for free compressible viscous flow. This has not
properly been recognised by De Wiest, Irmay and later, Bear (1972).

It is unfortunate that still many hydrologists accept these different approaches to include soil
flexibility without a deep comprehension, the more since Cooper (1966) clearly had pointed out
the incompleteness of Jacob’s equation and the inconsistency of De Wiest’s approach.
Cooper gave a correct analysis of the storage equation of pore water in a vertically deformable
aquifer and his result coincides with equation (3.4), which in turn is valid for three dimensions.
Also Bear (1972) discussed the above mentioned approaches, but he did not emphasize the
essential discrepancies. Bear stated that the difference between the expressions (3.13) and
(3.15) stem from different assumptions in the various derivations and suggested that, since in
practical cases the storativity is determined by actual field experiments, its exact dependency
on the compressibility of the medium need not to enter in the definition itself.

As previously outlined the differences are essential at least for educational purposes and
violating the principle of constitutive invariance can not be considered as a justifiable
assumption. It should not be used to expound a physical process.

A proper judgement of existing approaches inevitable for a deep comprehension of the process

of groundwater flow was missing up to now and this section is meant to give an appropriate
derivation of the storage equation providing understanding of the essential differences of
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comparable equations suggested in literature. In the proceeding discussion equation (3.11) will
be evaluated into a form amenable to analytical and numerical computation.

3.c STAGNANT AND MOVING AIR BUBBLES

Fine saturated soils are usually classified as incompressible when subjected to rapid loading,
as a consequence of their low permeability, but observations reveal that for any nature of soil a
first compacting operation always results in an immediate considerable settlement. This is
understandable for granular soils, but traditional theories can not explain this fact for saturated
impermeable soils. Subsequent research showed that most of the fine soils contain gas in the
form of micro-bubbles at a content of a few percent, see Ménard and Broise (1975). The volume
of these bubbles plays a fundamental role in the coefficient of compressibility of such soils,
which is extensively discussed in section 2.c.

Another particular feature affected by the presence of air bubbles is the permeability and cor-
respondingly the specific discharge. To investigate whether the storage equation (3.11) is appro-
priate to include the existence of micro-bubbles two different situations are considered. First
case, air bubbles sticking to solid particles or blocking a pore neck will move with the soil skele-
ton deformations. Second case, free air bubbles in the pore water are transported by the water
at the water velocity. In a real soil both possibilities simultaneously occur, but here they are

dealt with separatedly.

Verruijt (1969) considered a system of three phases: a porous soil skeleton, pore water and air
bubbles in the pore volume. By postulating that the individual components each as a particulate
medium satisfy the conservation of mass principle and by defining a proper equation of state
for each phase, sufficient and necessary conditions are available to find the correlation
betweeen the partial concentrations and the substantial velocities in the form of a storage
equation identical to expression (3.11). This operation will only succeed by a suitable choice of
the partial fluxes, i.e. the specific discharge, as will be outlined next.

Following Verruijt the conservation of mass requires for the soil skeleton (see equation (3.1)):

%((1 - njg) + Ve ((1-n)gv) =0, (3.16)

for the pore water:

--gt—-(sng) + Ve(sngw) = 0, (3.17)

and for the air content:

—:-t—((T ~8)ng"} + Ve ((1—s)ng”"w”’) = 0, (3.18)

in which n denotes the porosity and s the pore water saturation. The velocities v, w and w"’ are
absolute velocities for the soil skeleton, the pore water and the air content, respectively.
Although the air is present in the form of bubbles, it will be considered as a coherent particulate
medium, so that a mean velocity and density are existent.

The following constitutive relations are defined, for the soil:

do, =0, (3.19)
corresponding to the condition of individually incompressible solid particles, for the pore water:
do = 0B dp, (3.20)

and for the air content:

dQ” = (Q”/p)dp (321)
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The effect of surface tension, vapour pressure and air solubility have been disregarded in this
treatment in order to make the discussion not unnecessarily complicated.
Substitution of (3.19), (3.20) and (3.21) into (3.16), (3.17) and (3.18) gives:

- ‘Z—': + Vev — Ve(nv) = 0, (3.22)
a ap

T(ns) + nsB—gt— + Ve (nsw) + nsweVp = 0, (3.23)
an ad n(1—-s) dp " n(1—s)

— — ——(ns) + ———L —E ¢ Ve(n(1 —s)W") + "eVp = 0. 3.24
ot P (ns) > 5t (n(1 —sjw") 5 w'"eVp (3.24)

First consider the case of stagnant bubbles. Thus:
v=w'’. (3.25)
Eliminating w” from (3.25) and (3.24) and adding (3.22) to this result, gives:

~ 9 g+ =8 P gey _ve(nsy) + wvon =0. (3.26)

ot p ot

Next, adding (3.23) renders this into:

n(sp + 1-s )% + VeV + Ve (ns(w—V)) + WV'VD + nspwe Vp = 0
or:
1-s ap
n(sB + —p~) {7 + VeUp} + Vev + Ve(ns(w—V)) + nspw—v)eVp = 0. {3.27)

Using the constitutive relation (3.20) the last two terms in equation (3.27) can be combined into
the form:

Ve(ns(w—V)) + nsP(w ~v) e Vp = (1/g) V ¢ (onsS(w — V). (3.28)

The term between braces in equation (3.27) represents the substantial derivative with respect to
time following the moving soil skeleton, thus:

ap _Dbp
e + veVp = T (3.29)

The second term in equation (3.27) is equal to the substantial derivative of the volume strain
with respect to time, see equation (3.5). Substitution of (3.28), (3.29) and (3.5) gives finally:

. ) = of D8 1-s, Dp
— Ve (ons(w—v)) = of bt + n(sp + 5 ) Bt 1. (3.30)

Comparison with the general nonlinear storage equation (3.11) reveals that for stagnant bubbles
an appropriate specific discharge exists, according to:

g = ns(w-—vj, (3.31)

and a corresponding resultant compressibility for the air-water mixture, according to:

B = sp + 1;8 (3.32)

Since stagnant bubbles do not contribute to the specific discharge, definition (3.31) makes
sense. In view of equation (3.2) it is reduced by the saturation factor s, like a pore volume
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reduction. Hence, also the permeability according to Darcy’s law has to be refined and an
adjusted porosity factor according to:

n = (sn)*(1—-n)?, (3.33)

will do as a first approximation. Actually the local air-water friction is involved and possibly the
tortuosity is increased by stagnant bubbles, see section 2.b. Only measurements can provide
quantative data for this phenomenon, likewise represented by Zeller (1961) and Koning (1962).

Next consider the case of moving bubbles, transported by the pore water at a similar velocity,
thus:

w=w"'. (3.34)

Eliminating w'’ from (3.24) and (3.34) and adding (3.23) to this result gives:

an 1-s . dp
3t + n{sp + 5 ) ot + Ve(nw) + n(sp +

_S)w-Vp:O.

Addition of equation (3.22) and introduction of (3.29) and (3.5) render this equation into:

De =8, 0P | Getnw— T=5 V) evp =
Dt + n(sp + D )Dt + Ve(n(w—V)) + n(sp + D Y(w—Vv)eVp = 0. (3.35)

Verruijt (1969) considered the same case of conveyed micro-bubbles and defined a specific
discharge according to (3.31). Developing the third term of (3.35) by:

Ve(nw—V)) = { n(w—Vv) » Vs + Ve(ns(w—V)) }/s,

permits to introduce this definition of the specific discharge into the storage equation (3.35),
which becomes:

De 1-s, Dp . . _
S—W + ns(sP + > )D—t + n(w—Vv)e Vs + Ve(ns(w—V))
+ ns(Sp + —>)w—v)sVp =0. (3.36)

An identical expression has been obtained by Verruijt, but it can not be further evaluated. The
same applies to (3.35) itself, since the last two terms can not be combined into a proper term
without a constitutive relation valid for the air-water pore content as one single substance. The
discussion in section 2.c, in particular equation {2.33), made clear that in the absence of effects
from surface tension, water vapour, air solubility and air diffusion the following constitutive
relation exists for the considered air-water mixture:

1-5s
"= o 3.37
do' =o' (B + sp )dp, (3.37)

in which o represents an average density according to:
o =so+ (1—-58)". (3.38)

Since the resultant compressibility in the last term of equation (3.35) does not coincide with the
corresponding factor in the constitutive relation (3.37), equation {3.35) is not appropriate to
derive a form identical to the general nonlinear storage equation {3.11), and no definition for the
specific discharge whatsoever will compensate this fact.

Another approach will do. Because the pore water conveys the micro-bubbies, the pore content
behaves as one single substance. Therefore, it is preferred to start with two conservation
equations, one for the soil skeleton conform (3.16) and one for the air-water pore content,
according to:
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ait(ne’) + Ve(ng'w) = 0. (3.39)

Employing the constitutive relations (3.19) and (3.37) yields for (3.16) and (3.39) the following set:

—2—?+VOV-V°(nv)=O,
an 1—s ., dp 1—s

—_ Ve eVp = 0.
3 + n{g + sp ) n + (nw) + n(B+ s Ywe Vp

Adding both equations and introducing (3.29) and (3.5) gives:

De. 1-8 ) 0P culnqw— 128 ) W) e vp =
Dt+n(B+ sp)Dt+V(n(W V) + nB + Sp)(w vyeVp = 0.

Almost identical to the unsuitable equation (3.35), but now it is possible to combine the last two
terms using the constitutive relation (3.37) valid for the pore content as one single substance.

The result is:

~ Ve @) = ¢ (B + 0+ ——2) B}

At this stage disregarding the free air content in the average density ¢', that is: o' = s, which is
justified, because the air density is practically negligible compared to the water density, ren-
ders the storage equation into:

-—v-(gns(w—v))=g{s-g«‘:‘—+ nsp + 153)3—‘:}. (3.40)

Comparison with the general nonlinear storage equation (3.11) and the storage equation for
stagnant bubbtes (3.30) reveals that for moving micro-bubbles a storage equation exists with a
similar specific discharge conform definition (3.31), and with a similar resultant compressibility
conform (3.32).

In section 2.c an expression for the resultant compressibility has been obtained including
effects of surface tension, water vapour and air solubility. In the above mentioned approach this
compressibility can be introduced into the definition of the constitutive relation for the air-water
mixture, equation (3.37), without violating the present treatment resulting in the storage
equation (3.40).

Transported micro-bubbles create no specific hindrance to the process of pore water flow.
Hence, the permeability needs no adjustment when using Darcy’s law.

Equation (3.40) differs from the storage equation for stagnant air bubbles (3.30) in the term
concerning the substantial volume strain rate of the soil skeleton by a coefficient s, represen-
ting the saturation degree of the flowing air-water mixture.

For a soil containing stagnant bubbles at a volume of bn and conveyed micro-bubbles at a
volume of (1 — s~ b)n this coefficient becomes equal to s/(1 - b), see Fig. Xil.

pure water

tree air
bonded air

solids

UNIT VOLUME VOLUMETRIC  DISTRIBUTION

Fig. Xli Volumetric distribution of solids, water, bonded and free air.
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Introducing Darcy’s law in this case necessitates an adjustment of the saturated permeability
with respect to the relative volume of stagnant bubbles, resulting in a porosity factor according
to:

n = ((1=-0bn)* (1 —n)?. (3.41)

Also the tortuosity might increase by blocking bubbles, but stagnant air possibly is present on
hydrophobic surfaces in micro cracks and crevices. it stands to reason that the tortuosity of the
porous medium will not necessarily be increased by stagnant air.

Finally, the preceding discussion has proved that the pore water motion in a semi-saturated
porous medium in which air is present in the form of micro-bubbles and pockets, can be
represented by a storage equation according to:

s De 1-s, Dp
— Ve — = —_ —
osnw—v) = g f 5 ot * ns(p + - ) By !,
or:
1 De Dp
— Velp'g) =o'} —mm —— = 4
o) =ty 5t W) (3.42)

in which the specific discharge g is defined according to (3.2) and the resultant compressibility
B’ of the air-water mixture by (2.35) including effects of surface tension, water vapour and air
solubility. Except a minor difference embedded in the coefficient 1/(1 —b) equation (3.42) is
identical to the general nonlinear storage equation (3.11), described in section 3b.

The attention is restricted to pore water with separate air bubbles, for which the saturation
degree s is not less than 85%, see section 2.c. This figure is usually between 96% and 99%.
Since: 1=(1 —b)=s=0, is valid, only a small error is made by approximating: 1/{1-b) = 1.

As such the general storage equation for semi-saturated soils will be considered in the
following discussion.

3.d A FLOW POTENTIAL INCLUDING IRROTATIONAL SOIL DEFORMATION

In this section the attention is directed to those situations where the groundwater flow can be
fully described by a unique flow potential.

The pore water motion including air bubbles through a deformable porous medium is governed
by the general storage equation (3.11):

- VeleD) = o' [ B + B D). 249

To arrive at a proper potential with the aid of this storage equation the specific discharge g and
the volume strain € will be expressed in terms of the fluid pressure p, which is a scalar quantity.
Then, it is easy to define the potential, itself being a scalar.

After the discussion in section 2.a a linear relationship between the specific discharge g and
the pressure gradient Vp can be postulated, while the effect of different types of flow behaviour
can be incorporated in the coefficient of permeability. The following relation is suggested in
accordance to the previous formulas but with respect to the average density o' of the air-water
mixture:

q= — (k/ve’){Vp + o'g vz}, (3.44)

where the intrinsic permeability k is introduced according to (2.12) and z denotes the vertical
coordinate. By postulating (3.44) as a flow law for porous flow including air bubbles, it is tacitly
assumed that the presence of air bubbles does not affect its validity, except for a modification
of the intrinsic permeability k in the porosity factor conform (3.41) as far as stagnant air bubbles
are concerned. Inserting the approximation g’ = s, renders (3.44) into a flow law for an air-water
pore content according to:

sq = — (kive){ Vp + seg Vz }.
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Verruijt (1969) suggested a similar expression, but he disregarded the factor s in the last term.
This is not in agreement with hydrostatic equilibrium requirements, if the pressure p is regarded
as an average quantity with respect to the pore cross-sectional area.

Equation (3.44) provides a relation between the pore pressure p and the specific discharge g, but
at the same time the basic parameters involved are directly or indirectly dependent on the pore
pressure as well. For the intrinsic permeability k depends on the porosity by means of equation
(2.13), the density o' changes with the pore pressure p according to (2.20) and the kinematic
viscosity v possibly is a function of the pore pressure.

Concerning the permeability an assumption is posed at this stage, in that the tortuosity will not
alter, when the porosity changes at pore pressure fluctuations. In other words the flow con-
figuration is supposed not to be affected by porous medium deformations. Therefore, the
dependence of the intrinsic permeability on alterations in the flow system is limited to solely
the porosity factor, conform equation (2.15), which also may include the influence of variations
in the effective pore cross-sectional areas.

Concerning the viscosity v it is known that this feature only weakly varies with pressure, but
stronger with temperature.

Groundwater has a remarkably constant temperature, since the porocus medium conserves it
from natural heat sources, except vulcanic activities. In the case of infiltration of industrial
waste and cooling water the temperature dependence of the viscosity v might become
significant (v varies by 3% per °C approximately).

The pressure dependence of the viscosity of natural fresh water is depicted in Fig. Xill. Since
the groundwater temperature is usually at about 10 °C, its kinematic viscosity v is rather
invariable to moderate pressure fluctuations induced by natural disturbances, like rain (in-
filtration), river and sea level changes and human activities for water supply and building
purposes. Therefore, the viscosity v of the pore water will be considered as a constant.
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Fig. Xlll Viscosity of natural water versus pressure and temperature.

Introduction of the equaition of state for the linear flow motion (3.44) yields for the lefthand side
of the storage equation (3.43):

-~ Ve(g'q) = VO(k/U){ vVp + 0'¢g VZ}
= V(k/v)e { Vp+a'gVz} + (k/v) Ve { Vp+o'gvz}. (3.45)

The intrinsic permeability k depends on the volume strain & by means of the porosity factor n.




From (2.13) and (2.15) the following variational relation is derived:

% dn
n (1-n)’

dk:idn=k
n

and with equation (3.8) providing the coupling between the porosity n and the volume strain e,
this becomes:

dk = k{x/n)de, (3.48)

where x is defined as the amplification factor, see section 2.b. Using equation (3.46)
equation(3.45) becomes:

— Ve(g'q) = (klu)[%Ve «{Vp + 0gVz} + Vp + V(o'g) e Vz].

Applying the equation of state for the air-water pore content acoording to (2.20) renders this
into:

~ Ve('q) = (kiv)[V2p + %Vp-Ve + Q—ng~{>~:Va +np'vp}evz]. (3.47)
Eliminating q from (3.43) and (3.47) gives:
K % o'g De Dp
— v ZVpev == v = e .48
g’g[ P+ —-VpeVe + — {xVe+np'vp}evz] Sralil et (3.48)

where the hydraulic permeability K is introduced conform definition (2.12).

A similar approach is presented by Barends {(1978) for a case slightly different as discussed
here. The amplification factor x was put equal to 2 in order to minimize the complexity of the
analysis and in stead of assuming v being a constant the treatment was based on keeping the
dynamic viscosity u a constant. The latter fact might seem essential, but straight forward
analysis shows that a comparable result is obtained in case p is kept a constant. A storage
equation is obtained similar to equation (3.48), save a coefficient 2nf’ in stead of np’ in the last
term on the lefthand side.

The preceding analysis explains that, if the effect of porous matrix deformations reflected in
alterations in the porosity is considered, it is fundamental to include variations in the per-
meability as well, this itself being a function of the porosity. Altough much is written about the
physical aspects of the storage equation, this fact is only sometimes mentioned, but up to now
not incorporated in the basic analysis. Here, it is shown in a simple form by equation (3.48) to
what extent the common disregard of permeability variations violates the generality of the sto-
rage equation. It appears to be of the same order of influence as represented by De/ Dt relatively
to np’Dp/Dt. Therefore, it makes sense to include this phenomenon in a general storage
equation.

Next, the volume sirain ¢ appearing in (3.43) has to be expressed in terms of the pore pressure p.
After the discussion in section 2.d dealing with the deformation behaviour of the soil skeleton
the elementary equilibrium condition for a semi-saturated, perfectly elastic porous medium pro-
vides a simple relation between the volume strain ¢ and the pore pressure p, see equation (2.66):

e=a(p-—F), (3.49)

which includes as a result of integration the pressure function F. This function is related to the
rotational part of the soil deflections, following expression (2.69). in some geometries there are
no such rotations due to symmetry requirements and F becomes a constant in space, which still
can be a function of time to be determined from the boundary conditions. In general rotations do
not vanish, as became clear from the discussion in section 2.4.

Correct solutions for groundwater flow are obtained by soiving simultaneously the storage
equation and satisfying the equilibrium conditions. However, the general nonlinear storage
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equation (3.48) is quite complicated. Although accessible with modern numerical techniques,
the present treatment is restricted. Rotational effects will be disregarded, thus: VF =0. In that
case equation (3.49) reflects the relation between ¢ and p, while F is only a function of time.
Eliminating ¢ from (3.48) and (3.49) results in the following expression:

3 D DF
om+nB’}—a§—] =(a+nﬁ')~a‘t’—- o (3.50)

K
o'g

ox o'g
VZ 2 -
[vep + (7P + ==

written in terms of p only.

In section 3.e special attention will be paid to the influence of convective terms. Here, the
velocity of the soil skeleton motion is considered to be small and consequently, the substantial
derivatives with respect to time can be replaced by local derivatives: D()/Dt ~ 4()/at. Equation
(3.50) becomes:

aF

o'g o
at

n

K 3
L Tvp o+ %—(Vp)z + 29 (ot nB'}%] = (a+nB’)% —a (3.51)

o'g

Disregarding rotational deformations indicates a restriction to the class of porous flow
problems. However, horizontal flow in deformable aquifers, vertical one-dimensional flow,
cylindrically and spherically symmetrical flow fields are included. In some flow fields the
rotational part of the deformation behaviour can be disregarded as a second order effect.

Hemholtz’ theorem states that for irrotational vector fields a scalar potential exists describing
the field completely. Hence, since pore water flow is related to a deforming medium which itself
does not contain rotations, a unique potential must exists. Consider the foliowing potential &:

p
o=2z+(1g) | Lﬂ)dt’. (3.52)

!
pr @

This expression is identical to (2.74) except for o' in stead of p. This potential resembles
Hubbert’s potential, but the density o' to which it refers to, is the average density of the air-water
mixture in the pores, and the lower boundary contains a pressure pg, which is not necessarily
the reference (atmospheric) pressure.

Because the density ¢’ is a function of the pore pressure only, see section 2.c, derivation with
respect to time, using Leibnitz’ rule, results in:

i) 1 0 1 9 1 ] a
o _ b _ Pr _ ( P pF). (3.53)

a Qg 8t og It g ot at

Here, it is assumed that the difference between the density ¢’ and ¢f is negligible.

In regard of equation (3.51) this potential is suitable to absorbe the function F which only is a
function of time in irrotationally deforming porous media. Hence,

o Fit), (3.54)

Pr = o+ np’

renders equation (3.53) into the following form:

, n 00 ~ Op JF
o+np)—— = (¢ +nPp)— — g —, 3.55
o'g( B) at { B 3t at ( )

which represents the right hand side of the general storage equation (3.51).
Expression (3.52) can be written in a variational form:

0'gdd = d(p—p¢) + 'gdz.
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Because pg, according to (3.54), is only a function of time, this variational relation yields the
following equalities, when employing (2.20):

Vp = P(VRYP + Q'g V¥0,

(Vpy? (@9” { (Vof - 200/9z + 1],

apléz = o'g{ovioz — 1}.
With these expressions and (3.55) the storage equation (3.51) becomes:

K[V + %(mﬁ np) { (V) — adloz } ] = o'gla+np)ad/at, (3.56)

written in terms of a potential §. The fact that pressure induced density variations will not give
rise to rotations in the flow pattern is discussed in section 3.e.

Potential § defined by (3.52) gives a more complete picture of the phenomenon of porous flow. It
includes presence of air in the pore water and takes into account only that part of the generated
pore pressure which causes porous flow, i.e. a pore fluid motion through a (deforming) skeleton.
This can easily be understood by assuming ’'=0, making o' a constant. Thus equation (3.52)
becomes in this case, using (3.54):

b=2z+ (P-pelie'g =2z + (p—F)leg.
In respect of equation (3.49) the potential ¢ is directly related to the actual volume strain g, and

consequently to the boundary conditions. The above expression holds for a =0, valid in case of

a stiff soil skeleton.
Contrary to this result the potential (the piezometric head) is commonly defined by:

»=2z+ pleg,

which is valid for porous flow fields, where F = 0. This condition is not always satisfied. It is then
engineering intuition to realize that § covers only the pore pressure related to the pore water
motion, while an instantaneous overail pressure originated from equilibrium requirements is not
included.

By introducing the pressure pg in the expression for the potential §, equation (3.52), this point is
clarified. Furthermore, the usual assumption applied to general aquifer fiow behaviour, that is
the total stress invariance principle, i.e. F=0, can be extended to more general boundary
conditions without violating the generality of the storage equation (3.56), as long as the
rotational part of the soil deformation can be disregarded.

An example of this fact concerns barometric fluctuations causing water level changes inan
open piezometer cased in a confined aquifer, see Jacob (1950).
Consider a variation dp, in the load on the confined aquifer. Hence,

—do = dp,.
Using expression (3.49) and Terzaghi’s effective stress principle, equation (2.53), one obtains:
dp, = —do = —do’ + dp = —(la)de + dp = dF.

Disregarding the small amount of pore water flowing into and out off the piezometer, there is no
porous flow and in correspondence to (3.51) the following holds:

1 dp dpo
a+n — = =
( & dt dt

If the level fluctuations due to the atmospheric pressure variations are denoted by dh, then
vertical equilibrium in the piezometer requires:

dp _dp, 1 dh

dt dt o'g dt
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Eliminating dp/dt from the last two equations yields the response of the water level in the piezo-
meter to barometric variations:

dh np’ dp,

dt a+np  dt

It appears that, if the pore water is incompressible, no fluctiations are perceived. Moreover, in
principal it is possible to measure the aquifer flexibility a with a piezometer.

This example clarifies that the pressure function F, or pg, is related to that part of the pore
pressure which does not give rise to porous flow. In the same manner, equation (2.70) can be
covered by the same potential §, defined according to (3.52). The pressure function pr takes then
the form:

o (

Pp= - ————o0
o +nf’

in which o represents the isotropic compressibility of the porous medium and o the isotropic
total stress, assumed only to be a function of time.

It would make no practical sense whatsoever to perform the extensive analysis to arrive at the
nonlinear equation (3.56), if it were not amenable to a basic analytical solving procedure.

In chapter 4.a general method to solve this equation without additional simplifications is
presented.

3.e ROTATIONS, CONVECTIVE TERMS AND LARGE STRAINS

Gravitational rotations

The behaviour of fluids in porous media has been traditionally described in terms of macro-
scopic variables, i.e. quantities averaged over microscopic distances in the order of the pore
size. For instance, the specific discharge is a flow per unit macroscopic area. This view of
porous materials is quite practical, because it facilitates calculation of average flow in various
geometries. Furthermore, it is now well established that the porous material being complex at
microscopic scale can be characterized by relatively few macroscopic parameters in many
circumstances.

When considering the flow of fluid elements, i.e. the distribution of marked particies or the flow
of constituents, it becomes necessary to distinguish the various constituents of the fluid, which-
occupies different regions of the flow system.

Not all the fluid elements move at the same velocity. Instead, the motion is diffuse as a result of
molecular diffusion and of the actual variation of local fluid velocities in the pore structure. For
example, the uplift of air bubbles in the pore fiuid due to boyency forces induces a locally rotati-
onal flow.

In a wide range of natural situations this diffusive type of porous flow, called dispersion, may be
well described macroscopically and the significant parameter is known as the dispersivity. It is
observed that dispersion is not isotropic, being essentially greater in the direction of the carry-
ing flow than perpendicular to it. The phenomenon of dispersion has been extensively studied
and it is described by Bear {1972), who refers to it as hydrodynamical dispersion.

A special situation occurs when the flow parameters, such as viscosity, density and permea-
bility, are variable. In such cases the pattern of flow may change as the flow progresses. These
changes can become such that spatial variations of the velocity are amplified and protuber-
ances or ‘fingers’ develop. Similar instabilities can also arise through the action of gravity in the
distribution of fluids of variable density.

A review of regions of instability with respect to the flow rate, viscosity gradient and density
gradient is given by Heller (1965).

The case of gravitational instabilities has been treated by De Josselin de Jong (1960, 1969), who
explained the appearance of rotations due to density gradients and provided a theory of
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generating functions by which the fluid displacements can successively be traced. The density
variation considered originates from different fluid elements at different locations in the flow
field, but the fluid elements themselves are assumed to preserve their density during displace-
ment. They are incompressible. Hence conservation of mass requires that the specific dischar-
ge q (notably a volumetric flux) obeys the continuity equation:

V~q=0.

Inthis form it is essentially different in comparison to the continuity equation for a compressible
homogeneous fluid described inthe previous sections, equation(3.11), which gives fora stationary
flow in an undeformable porous medium:

Ve(oq) = 0.

Nonetheless, the existence of pressure gradients will cause density gradients, which will be
responsible to a rotational character of flow in the same manner as has been explained by De

Josselin de Jong (1969, 1979).
Since Darcy’s law applies to irrotational flow of fluids through porous media, it is instructive to
evaluate the specific influence of density flow on the average porous flow.
A vector field q is irrotational when everywhere the curl vanishes, that is:

vxq=0. (3.57)
For groundwater flow the vector field is represented by the filter velocity q. Although this
quantity is related to the moving porous skeleton, condition (3.57) is sufficient for the flow to be

irrotational, if the soil deformation field itself is considered to be free of rotations.
The curl of the filter velocity q is elaborated. From equation (3.44) one obtains:

vxq = — Vx [ (kigw){vp + 0'gvz}].

Since the kinematic viscosity v is considered to be a constant, see section 3.d, and because Vz
itself is obviously rotation free, this equation becomes:

vxq = — (1/v)V x [ kvp/g']

- () f (110 V x kvp) + V(i/o) x(kVp)]

= — (o) { Vv x (kVp) — (1/¢') Vo' X (kVp)}.

The pore pressure p is a single-valued physical scalar quantity and therefore free of rotation.
The intrinsic permeability k is a scalar quantity in isotropic porous media, but in anisotropic me-
dia it represents a symmetrical tensor, see section 2.b. The product kVp denotes also a vector
field which is irrotational. In this respect the above equation reduces to:

Vxq = | Vo x (kvp)}/o'?v. (3.58)

In general the density ¢’ may vary in space through independent variations of pressure p,
concentration ¢ and temperature T.
Therefore:

do = 2@ gp 4+ 9@ 4o 4+ 92 g7,
ap ac aT

The last two terms on the right hand side may cause a rotational component. Such effects due
to temperature differences have already been mentioned by Hubbert (1940). Rotations in
multiple fluids caused by a difference in molecular weight can be identified with variations due
to concentration, and the character of this type of flow is discussed by De Josselin de Jong
(1969).
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Next, assume that the air-water density o’ is a function of the pressure p only, thus:
o' = o' (p) (3.59)

rendering the considered equation (3.58), with:

Vo' = vp,
into:
vxq ={ vp x (kvp)} %Ql—lg’zu.
p

The quotient do'/dp is a scalar, non-zero quantity. To satisfy condition (3.57), the following equ-
ation must hold:

Vp X (kVp) = 0. {3.60)

Only for isotropic porous media, where k is a scalar, the vectors Vp and kVp are collinear and

their outer product vanishes everwhere.

Conseguently, the entire flow field is irrotational and can be represented by a single potential in
isotropic porous media. In conclusion, pressure induced density variations only generate
rotations in the flow pattern, if the porous medium is anisotropic.

This represents an unfortunate restriction to the presented theory, since soil sediments are

anisotropic by nature.

However, the influence of this effect is not predominant, because of two reasons. First, the
collinearity between the vectors kvp and vp is a fact, if one of them is in a principle direction of
anisotropy; then condition (3.80) is valid. Second, the influence of density rotations is of second
order importance, which can be understood from elaborating (3.58). In accordance to equation

(2.20) the following holds:

do’
o'dp

1

and the magnitude of the rotational part becomes:
lvxql| = (B/a'v) |Vp]| |kVp| sin 6,

where 8 is the angle between the pressure gradient Vp and the vector kVp.

Convective terms

In section 3.d the substantial derivative D&/Dt was replaced by the local derivative 8%/3¢. This
assumption is valid in the case where the convective term v.Vp remains relatively small. For a
large displacement rate this term pretenses more significance. In order to be able to give an
estimate of this effect the character of the convective term will be considered.

Recalling the definition of the potential @, according to expression (3.54), the substantial
derivative becomes, employing Leibnitz’ rule:

Dd)__DZ+ 1 Dp « 1 DF aoF

3 p - —_7
Dt Dt o'g Dt a+nf og Dt F o+ np’
where o' denotes the density at p = pe.
In the above expression the coordinate z is measured with respect to a reference, z = 0, fixed in

space. Assume that the location of an elementary volume of porous soil originally at position,
z =0, does not move. Such a situation can occur at the bottom of a deformable aquiferonarigid
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base. The location of any elementary volume having an original position at z>0, will vary
accordingly to the deformations, and consequently, the coordinate z referring to the actual
position of the considered volume will be a function of time.

Next, assuming that the difference between o’ and o is negligible, the foilowing expression can
be obtained from equation (3.61):

I_D__F)__ ___D_E_: U 4 E@_.__D.z_
(@+np) 5= = a0 e'glo+np) [ - Dt}- (3.62)

Elaborating the substantial derivative at the right hand side, gives:

(+np) 2P _ o BF _ oga+np) 22 + ogla+np)vevin-2), (3.63)

Dt Dt at
where v denotes the velocity of the porous medium. Note that Dz/Dt equals veVvz.

The form (3.63) has been introduced in the derivation of the general storage equation (3.56),
except the last term, which is a mere consequence of convection caused by soil skeleton

displacements.

Using (3.62) the general storage equation (3.56) can be expressed in the form:

! a
K[ v + %(axwL np) (Ve —V2) . V9] = g’g(a+nB’)[T§f~ + Ve(VH-V2) ],
or:

V3% + m{ (V)P — 39/dz } (1 —ve(meVy) ™) = < o (3.64)

where: m = g'glax+np’)/n,
¢ = Ki@g(a+np)) .

The last term on the left hand side represents the convective effect. It is small when the
absolute pore fluid velocity w is much larger than the absolute skeleton velocity v. Since x> 1,
see section 2.b, elaboration of this term yields, employing (3.44), (3.52) and (3.2):

v nv nv nv 1
<

mcve KV q nw —v) - (_\Cl —1) '

In most practical cases w/v> >1, and consequently the convective effect is negligible. In some
occasions it can be included in the general storage equation without increasing its complexity.

Such a situation occurs for aquifers conveying mainly horizontal flow (3%/3z~0), while
horizontal deformations are precluded. Consequently, horizontal velocities of the soil skeleton
vanish, and the substantial derivative of the potential  becomes:

Dy _ 9% | yeyp =90 (3.64)
Dt at at

Therefore, the storage equation, expression (3.50), using (3.52) and (3.62) becomes:

! d Dz
K[vp + 29 o+ np’)(vp)?] = o'g (o + nﬁ'){—i -—1, (3.65)
h at Dt
where the operator V refers to horizontal coordinates only. Introduction of a new variable §,
defined according to:

Dz

dt,
Dt)

=0 [
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renders expression (3.65) into the following storage equation:
K [ V3 + ing—(om+ nB’) (Vﬁ;)z] = o'gla+ nB’)-%‘;i-. (3.66)

The potential § is now measured with respect to the vertical convective coordinate z. An
identical equation, not including ox, has been derived by Cooper (1966). It describes horizontal
porous flow in a vertically deformable aquifer including second order terms and vertical
convective terms.

Since the potential § corresponds to the piezometric head with respect to the substantial
vertical coordinate z, the reference of the coordinate system is not essential anymore. This
quantity is exactly measured with a potentiometer which moves with the soil, and therefore,
automatically includes the vertical convective term.

Another particular case exists: vertical flow in a deformable porous medium. The equation of
motion in terms of the potential § is, according to the previous discussion:

a? ! ad ] a3 a
KIZY 4 29 i) (22~ 20 )] = gg (e np) (50 + VG- 1), (66D

where v represents the vertical velocity of the porous medium. Assume a reference at z=0,
where also v =0 holds. in that case, if the strain ¢ is uniformly distributed, the following identity
can be derived, see equation (3.5):

De Dz _ v (3.68)

Dt  zDt z

In regard of equation (3.49) this implies:

v=oz(B2P _ DFy (3.69)
Dt _ Dt

Noting that Dz/Dt equals v, the vertical soil velocity, equation (3.62) becomes:

nbp _  DF _ " (900 0% _
{0+ np’) Dt o Dt o'gla+np){ p" + v po 1}. (3.70)

Eliminating Dp/Dt from equations (3.69) and (3.70) using DF/Dt = 3F/ot, because VF = 0, re-
sults in:

vy 00 np’  9F
29 75t a+np ot
V= oz . 3.71)
i)

(1-oaze'g (; -1)

Finally, substitution in the storage equation (3.67) gives:

9 . 09 W0, 0% ay : 00 e P
K[ ot (o) (55 - = 1= gle+np)(1+0)—= - nBo——, B.72)

where:

-1

1y (OB
11/ 00 _
[ezes (22— ]

The coefficient w is a smooth function of §, because practical values for «, ¢, and 39/9z make ®

small, i.e. @< <1. For example, a=10-7 m2/N, o'=104 N/m3, 0<z<10 m, 0<d9/dz<1, give:
0<w=0.11. Since soil is relatively stiff, the convective effect is usually small.
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Large strain

The convective term appearing in the storage equation (3.64) is a result of the motion of a soil
element caused by the deformation rate of the soil skeleton. It has been assumed that the
porous medium deforms according to a perfectly elastic material. Furthermore, rotations in the
deformation behaviour have categorically been disregarded. The question arises whether the
deformation behaviour assumed is representative to natural soils.

Observed soil deformation behaviour is typically nonlinear. For example, based on much
experimental evidence Vermeer (1978) suggested for sands a constitutive model under general
stress and strain conditions, clearly revealing the nonlinear character.

In literature many such models incorporating a measured stress-strain relationship are
described, but although the numerical problems are fairly well solved, the unaquaintedness of
the model’s relevance is still the main reason of a reserved attitude towards application in soii
mechanics practice, see Roscoe (1970).

The assumption of a perfectly linear model, whereas soils exhibit a nonlinear behaviour by
nature, implies a rigorous restriction to the generality of the storage equation, expression (3.56).
It makes sense, however, to suppose that for small strains a linear deformation model can be
regarded as reasonable, in that it gives a first approximation of the influence of the flexibility of
soil on pore pressure generation, in particular when the soil properties are related to the initial
stress situation. In this case the storage equation (3.56) may be useful to give some information
about several second order effects, otherwise it should be applied under great reservation,
because nonlinearity caused by the soil deformation assumes predominance.

Concerning convective terms in the general storage equation (3.64), which has been derived with
a linear soil model, it is to be noted that in this manner these effects more likely correspond to a
deformation rate reiated to an integral result of many small strains than to large strains. Con-
vective terms due to large strain rates should be accounted for in combination with a realistic
and therefore, nonlinear soil deformation model.

A very few trials have been published dealing with nonlinear soil deformation including the
convective effects. De Leeuw and Abbot (1966) presented a numerical method for one-
dimensional nonlinear consolidation of a multi-layered soil applying a time step continuously
adjusted to account for the nonlinearity. The convective effect was covered by updating spatial
positions every step. Gibson et al (1967) suggested a theory using a Lagrangian formulation to
describe general nonlinear one-dimensional consolidation problems to trace the correct upper
boundary motion of a deforming phreatic aquifer. They obtained a simple storage equation, but
the flow field border is now the unknown feature (geometric nonlinearity). A discussion about
geometric nonlinearity, in particular the class of transient phreatic flow problems is presented
in chapter 5.

ELEMENTARY SOLVING METHODS

Summary of chapter 4

The previous analysis concerns the physical aspects of the process of porous flow through a
deformable porous medium. The result is a general storage equation in the form of a nonlinear
partial differential equation including several second order effects. To arrive at this result
represents a first step. The next step, equally essential, is to solve the posed equation mathe-
matically. Nowadays, no equation seems to be unsolvable with the aid of advanced numerical
techniques and fast computers. However, to provide a deeper understanding of the con-
sequences of nonlinearity in porous flow, it is recommendable to derive closed form solutions.
Then, their parametric form will permit to evaluate immediately these effects in comparison to
linear solutions. Of course, the class of problems amenable to analytical solving procedures is
limited, in that they usually concern a homogeneous medium having suitable boundaries and
appropriate boundary conditions. Nevertheless, the real character of the physical process being
investigated can be elucidated.
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In section 4.a it is shown that the nonlinear storage equation can be transformed into a linear
differential equation by a simple substitution. Only the vertical contribution contains a variable
coefficient. A general proof is given.

A particular result is that for horizontal flow in aquifers the general noniinear storage equation
is exactly identical to the conventional storage equation but now in terms of the so-called
extensive potential, which appears to be the exponential of the piezometric head multiplied by
the coefficient of nonlinearity. Thus, all the physical nonlinearity provided in the foregoing
chapters is embedded in a very simple transformation. Furthermore, solutions obtained for the
linear type of aquifer flow are easily extended to the nonlinear one.

fn section 4.b the general solution of vertical nonlinear porous flow is investigated. A known
procedure is possible, to wit, the Euler substitution. However, another method is suggested. It is
shown that the Mellin transformation technique can be applied. It permits to handle general
boundary conditions, while the incorporation of these conditions is realized by defining the
extended potential within a finite domain. An advantage of this approach is that the inverse
Mellin transform becomes identical to a Laplace inverse transform, many of which are listed in

literature.

In section 4.c some characteristic cases of horizontal flow problems are discussed. The non-
linearity can be extended to phreatic aquifers as well. Special attention is payed to the area of
influence related to a disturbance in the flow field of a horizontal aquifer. The nonlinearity
actually provides a reduction between 10 and 20% on this area when estimated according to the
linear theory. A steady state solution for semi-confined aquifers is given.

In section 4.d several solutions of nonlinear vertical porous flow are presented, applying the
finite Mellin transformation technique. Cyclic vertical flow, a unit shock and a unit step
disturbance are considered. In the last case the steady state solution contains a physical
anomaly, which is a direct consequence of the pressure dependent density of the pore fluid,
assumed to correspond to an exponential relation. The real behaviour of the density at large
depths, and subsequently at large pressures, is not well described by the stated formula
keeping the compressibility of the pore fluid a constant.

4.a A NONLINEAR TRANSFORMATION; THE EXTENSIVE POTENTIAL
in section 3.d the general storage equation of porous flow through an irrotationally deforming
porous medium in terms of a potential §, defined by:

P
d=z+ | (1o'gde, pe =aFt)/(a+np),
PF

has been derived. This equation can be written in the following form, see (3.56):

v2p + m{(Ve)2 — 39/0z ) = (1/c)ad/ot, 4.1)
where:
m = o'glax + nf')n,
(4.2)
¢ = Ki(@'g(a+np')) = ki{e'v(a+np’)).

It includes the relation between the intrinsic permeability k and the porosity n, which changes
due to porous matrix deformations, and also the compressibility of the pore fluid containing air
bubbles.

The storage equation (4.1) is typically nonlinear and a general solution seems not available.
However, a rather simple transformation exists rendering (4.1) into a linear partial differential
equation with one variable coefficient. It is fortunate that such a transformation exists, and it
represents a new method of solving a practicle class of flow problems governed by the
nonlinear storage equation.
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The transformation suggested is new in the field of geohydrology, but is based on a
combination of two wellknown mathematical transformations, namely the so-called Hopf
transformation, see Ames (1967), and a generalization of the Euler substitution for the vertical
coordinate z. A general proof will be given.

Consider the linear partial second order differential equation:

%y 9, 9%
———— S 4'
on? + 9(® a0 pral (4.3)

where n, { and t are independent variables and g is some function of { only.
Under the transformation:

x=F) , v=vnCin1), (4.4)
the partial differential equation (4.3) becomes nonlinear in terms of y:

Ry 3y d2F  dF vy ., Oy oy _ By
a—nz+g(C) 5 + (! dw){( o) + 90 () J=—— (4.5)

Next, applying the substitution:
¥ = {0, (4.6)
from which follows:

oy dy  df

- 4

ag a8 dg
and:
Py Py ( df ot oy  d*f
Fle a9 dg a9 dge’
renders equation (4.5) into:
a*y dy , df oy df
+ —(—) + — +
o g® 707 ( dC) g(® 20 dC
d?F , dF oy oy df oy
/ 2 4+ 2 21 = . 4,7
av dw)“dn) Q(Q(d\‘))(dc)} P (4.7)

Now, let it be assumed that F is restricted so that the following identity holds:

d?F / dF

=1.
dy?  dy

This confines the function F to the class:

F=C,+ Crexp(y), (4.8)

where C, and C, are arbitrary constants. Let it furthermore be assumed that the function g can
be chosen in such a way that both:

g(Q)(dfidey = 1, (4.9)

and:

g@)yd*idgz = —1. (4.10)

Then equation (4.7) reduces to the foliowing form:

9? 3 d
v v (W)z+(

v, oy ay
- = ) 4.11
an? 992 an 3\9) 39 at (@.11)
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With a linear transformation associated to the variables used, according to:

y=md,

= my,
3: m;’ 4.12)
T = mit,

expression (4.11) becomes:

. 9, _ 1 3
- = — —. 4,13
dy? * oz ay 62) J (4.13)

0z c at

Without loss of generality another space variable may be added:

& =mx, (4.14)

having a similar character as n (§ has been omitted to avoid lengthy formulas). This finally
makes equation (4.13) identical to the general storage equation (4.1).

In the previous analysis it has been assumed that the function f and function g satisfy
conditions (4.9) and (4.10). The consequences of these assumptions are still to be investigated.
Eliminating g({) from the two conditions gives the differential equation:

dazf + df
dg dg

y =0,

which has a general solution according to:

f©) = In(C+C3) + Cy, (4.15)
where C; and C, are arbitrary constants.
The expression for g({) is determined after substitution of (4.15) into equation (4.9), and then, it is
found that:

aG) = (¢ + Cy)%, (4.16)

satisfies both (4.9) and (4.10).

Without affecting the general storage equation (4.1) the constants C,, C,, C; and C, can be
chosen. A convenient choice is:

C, = -1,
C, = 1,
C, = 0. (4.17)
C, = 0.
Using expressions (4.8), (4.12) and (4.15) the set of transformations becomes:
X = exp(my) -1,
£ = mx,
n = my, (4.18)
§ = exp(mz),
1 = mit.

Consequently, the expression for function g, equation (4.16), and the above set of trans-
formations (4.18) inserted in (4.3), result in the transformed storage equation:

x 0%y, 0%y, 9y
+ + [2 = . 4.19
o T Ve T e 4.19)

This is a linear second order partial differential equation with one variable constant, governing
porous flow described by the general storage equation (3.56).
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It can be conceived from the set (4.18) that general boundary conditions defined in terms of &
can be expressed in terms of y. In the proceeding sections this will be shown by some general
solutions of several various types of porous flow problems.

As a consequence of the form of the transformed storage equation (4.19), horizontal com-
pressible flow in deformable porous media is fully described by the transformation set:

exp(my) -1,
X,
Y,
ct,

A3 g xR

W

resulting in the storage equation:

62 2
Xy a%y
ox? Jy?

61‘ (4.20)

in which reference is made to the original coordinate system. This equation is exactly similar to
the conventional storage equation for horizontal flow, extensively discussed in literature. It is
remarkable that all the physical nonlinearity provided in the foregoing sections is embedded in
the simple transformation of the potential §, according to:

x=exp(mp — 1. (4.21)

For practical values encountered in groundwater, such as:

density: ¢’ ~ 103 N/m?3,
gravity: g ~ 10m/s?,
porosity: n ~ 1,
permeability: » ~ 1,
skeleton: o ~ 10-8 — 10-"m4N ,
pore water: B/ ~ 10-7 — 10-9*ma/N

and subsequently for the coefficient m, defined by (4.2);
m~ 10-2 — 10-3m~7,

the quantity m@ can be considered relatively small, since the fluctuations in the potential § are
usually in the order of a few metres. Hence,

my<1, (4.22)

holds for practical cases, permitting a series expansion for y, to aobtain:
X = md + 0(m2yp?) .
Substitution in the governing storage equation (4.20) results in the ordinary storage equation for
horizontal porous flow, when disregarding second order terms.
Consideration of large flow fields might violate the validity of (4.22) and nonlinearity becomes

manifest. In this regard the quantity y is called the extensive potential, since it provides
information about the extent of perturbations in groundwater.

4b APPLICATION OF INTEGRAL TRANSFORMS
In section 4.a the general nonlinear storage equation (4.1):
V2 + m{ (VR — 89/8z ) = (1/c) 89/ ot ,
has been transformed into a linear partial differential equation, called the transformed storage

equation (4.19):
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92y, + y, + e Ay _ 0y (4.23)

9E? on? ac ot

Only the contribution along the {-direction, in fact the vertical direction, contains a variable
coefficient preventing the application of common mathemathical techniques at the first
inspection. The class of equations:

d?y
¢ ac - SO (4.24)

is known as the Euler or Cauchy equation. As can be conceived from the result in the previous
section, in particular equation (4.15) and (4.6), a simple substitution, i.e. {=exp (9) called the
Euler substitution, renders it into a linear differential equation with constant coefficients, but
also the inhomogeneous part S(C) is transformed. Thus, equation (4.24) becomes:

d2y dy _
a T a9 - S{exp(9)) ,

for which several solving methods exist. Since for a general case the procedure to find the
particular solution satisfying the inhomogeneous part, function S, might be a difficulty because
of the Euler substitution, another procedure is suggested.
This procedure is found amongst integral transformation techniques. They eventually comprise
an advantage above solving differential equations, in that an integral can always be majorated
to give an approximate solution.
The Fourier transformation technique is known to be particularly suited to handle differentiat
equations with variable coefficients, see Sneddon (1951). The Fourier transform and inversion
theorem states the following. When the function F(n) represents the Fourier transform of f(y),
given by:

+

Fm) = —— | fy)exp (iny) dy,

AV2n -

and y is a point of continuity, then the function f{y) is given by:

fly) = ——= | Ffn) exp (= iny) dn .

\2n -

The condition of y being a point of continuity can be relaxed to the condition that f is piecewise
continuous and absolutely integrable.
In that case the last integral does not equal f(y) in a point where y is discontinuous, but:

+ o

L | Fmexp(-inydy = L[fy") + fiy)]. (4.25)

where fly~) and f(y*) represent the limit value of f from the lower and upper direction,
respectively, see Inselberg (1973).

Introducing new variables, according to:

C=exp(y),
and:
s=c¢c+in ; Imc)=0,Imn)=0,

the Fourier transform and inversion theorem becomes:

Fs=¢c,_ 1 [, e
=) \/55 (Ingy ¢-cLs-1dt,

F(Ing) = —— | F2=0) oo ds,

in/2m c=-iw
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With the definition of new functions, according to:

¢etinQ),

and:

the following set is obtained:

Y

%) = [x@e-1de, (4.26)
~ MJ—_ C+io _ »
Q= 5= CS_im 3(s)¢-3ds, (4.27)

which is known as the Mellin transform and inversion theorem, see Bateman (1954). The
analysis holds when the integrals mentioned exist. This actually restricts the possible class of
functions y.

The inverse Mellin transform (the Mellin inversion), according to expression (4.27), is equivalent
to the inverse Laplace transform, which is defined by:

C+iom

W0 =——1f %(s)exp(~sinyds, (4.28)
27 c i

provided that the following holds:
In) <0. (4.29)

This condition suggests to confine the considered field in the domain:

O0<l <. (4.30)

This domain is sufficient for the considered problem of nonlinear groundwater flow described

by equation (4.1).
Because of the transformation of the physical field z to the field ¢, given by equation (4.18):

{ = exp(mz); m>0,

any interval of the real z-domain defined by: z<0 can uniquely be represented by an interval in
the (-domain defined by (4.30). In this domain the function y representing the physical quantity:
exp{md)— 1, according to (4.18), can be integrated and consequently the finite integral:

1

wWs) = [u©es-1dg, (4.31)

0
is physically meaningful. This form is easily extended to the domain:

0<{<0,

without affecting the physical meaning by defining the function  identical to zero in the added
interval, or:

1o =0,forg>1, (4.32)
so that (4.31) becomes:

1 %

ws) = | x@es-1de = § @ es-de,

0 [+
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similar to the Mellin transform defined by (4.26). in respect of the formula (4.25) and the fact that
the Fourier transform and inversion theorem hold for a piecewise continuous and absolutely
integrable function, it can be conceived that also the Mellin inversion defined by (4.27) is valid.

The Mellin transformation technique is particularly suited to solve differential equations
involving expressions such as (4.24). This is a mere coincidence, since the transform of (4.24)
can be reduced to a linear expression in terms of the transform of y itself. A general proof is

given next.

Although not listed in literature, a special application of the Mellin transform exists. Consider
the folowing integral:

o

[ @eryoemyge-1de. (4.33)

o

Performing partial integration leads to:

3 @

S X(n+1)cn+sd§ = 5 cn+sd x(n)=

[} o

@

— s ™ den+s 4 {x(n)(:n+s}

[o]

o—8
I

S

(- (n+s) | xers-rdg + [y}

[+

o— 38

Once again partial integration results in:

3 o

(— 1+ 9) (+s=1) [ (0-NEE2d0 4 [ A0S 4+ (= 1) (n+8) L0 OL T

[o]

’

[+

and after repeating this procedure j times, while j<n, the following expression is obtained:

@

(-0i+' [th+s)(n+s=1)..... n+s—j] | xo-vgn+s=1-idg  +

[¢]

{ YMEnts 4 (=) (n+8) g0 Es-T 4 L

o——38

..... (-i[n+s)n+s—1) ..... (n+s+1—)) xn-Ign+s-i}
For the special case: j=n, this reduces to:
n o0
(=+1 [ TI (n+s-m)] | x&s-7de +
m=0 [o]
{xmgn+s 4+ (=) (n+s)y0-ngnes=t 4 L

n—-1
..... (-] r_IO(n+s-m)]xz;s} | . (4.34)

o

Thus, combining (4.33) and (4.34) the following identity holds for n=1:

@ @

[ exers-1dy = s(s+1) | xgsorde + { xMgstt = (s + 1) x¢

0 [¢]

o—8

The integrals in this expression represent Mellin transforms, according to (4.26). It can be writ-
ten in the form:

N
@ = s(s+1) % + [ x0T — (s+1) %8}

o—8
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Recalling the fact that the physical domain is restricted to 0<{<1, according to (4.30), the
above formula can be reduced under the extra condition:

W =0 for (>1,

to obtain:

T~ 1

B = s+ + AT = 5+ )

’
o

or:

~ ~
@ =56+ + {x"—(s+D)x} , (4.35)
o1

provided that x and y™" are regular in the considered domain and the following contributions
vanish:

Lim Cs+1 x(1) = 0’
¢io

and:

Lim{y = 0.
gio

Formula (4.35) is the required expression by which the differential equation (4.23) can be
reduced to a linear form amenable to conventional mathematical techniques, while general
boundary conditions applied at the boundary: { = 1 can easily be introduced. Actually, the Mellin
transformation is a straight forward technique, and for the inverse, being a Laplace inversion, a
long list of solved integrals is available in literature, see Bateman (1954).

In the section 4.d some characteristic problems are solved using the Mellin transformation
technique and the Laplace inversion technique.

4.c NONLINEAR STORAGE IN HORIZONTAL AQUIFERS

Confined and phreatic aquifers

According to the theory presented in section 4.a confined porous flow in horizontal aquifers is
governed by the transformed storage equation (4.20):

2 2 1
% x_ 1 o (4.36)
ax? ay? c ot

in which the variabele y, referred to as the extensive potential, is a function of the physical
potential  according to (4.21):

x = exp(md) -1, (4.37)
where m, defined by (4.2), incorporates nonlinear effects:
m = g'glox+nf’)/n. (4.38)

Since the amplification factor x, see section 2.b, is of the order unity, the nonlinear coefficientm
is comparable to the coefficient of consolidation ¢ in the following manner:

m = K/cn. (4.39)
The type of equation (4.36) is well known in the field of heat diffusion, widely investigated in

literature, see Carslaw and Jaeger (1951) and Bear (1972). Many solutions are available, and they
are here applicable without restriction, taking into account the boundary conditions in terms of
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x and performing to the solution an additional operation, i.e. substitution of relation (4.37).

In section 4.a it has been outlined that the difference between the physical potential § and the
extensive potential y becomes manifest in case m is of the order of unity. This is made clear for
a theoretical case of flow towards a well in a rectangular aquifer. The solution both in terms of §
and y is obtained by a finite element program: the SEEP code (see Barends, 1976), and results
are represented in Fig. XIV.

The value of the coefficient m, in which the nonlinearity is embedded, assumes different values.
From the iso-potentials it becomes clear that nonlinearity can become significant with respect
to the distance from the actual location of a disturbance in the pore fluid.

[t

/T, o &

m® = 001

~LINEAR

o

N

N
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m3, =05

INFILTRATION

Fig. XIV Confined flow in a horizontal aquifer.
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In practice the case of flow towards a well frequently occurs. For example, stationary pumping
for water supply purposes or temporary, when during a period at a job site the groundwater table
has been lowered to a constant level. In both cases it is important to know the area of influence
due to the generated flow field, which, of course, largely depends on the geo-hydrological
situation and the period of duration of pumping. In most cases the flow field has a
predominantly horizontal stratification, whereas the porous flow is mainly horizontal. Therefore,
the transformed storage equation (4.36) is suitable to describe this type of flow.

The character of the flow field of such horizontal situations can be either plane-symmetrical or
axi-symmetrical. Moreover, the aquifer can be confined (fully saturated) or phreatic.

in the last case also the storage equation (4.36) is applicable to simulate the flow including
secondary effects, while the coefficient of nonlinearity m includes another phenomenon: the
phreatic storativity. This can be understood by the following explanation.

Fig. XV Phreatic fluctuations.

Consider a phreatic aquifer, see Fig. XV, having a phreatic porosity n, denoting the volume of
pores taking part in the storage of phreatic fluctuations. This quantity is also called the phreatic
storativity of an aquifer, or the drainage coefficient. A fluctuation in the pressure p averaged

over the aquifer height H can be expressed according to:

dp = dple'g,
giving an extra storage possibility per unit surface area for a small volume dU of water:

dU = n.dp/o'g. (4.40)

The volume of water U already stored in the aquifer per unit surface area at the same location
amounts:

U=nH. 4.41)

Conforming to the definition for the compressibility coefficient B, equation (2.17), it is possible
to define a similar coefficient , which includes the volume fluctuations due to phreatic storage:

After introduction of (4.40) and (4.41) this becomes:

B = n/(nHe'g). (4.42)
In respect of the discussion in section 2.c, the following expression holds for phreatic aquifers:

do' = ¢'Bdp
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where B is defined by (4.42), which is obviously a constant. Evidently, the preceding analysis is
likely valid for phreatic horizontal flow in aquifers. This result permits another significant
implication of the coefficient m. Using equation (4.38) and dropping the coefficients o and x,
which are not considered in a phreatic aquifer, give with (4.42):

m = o'gh = ny/(nH). (4.43)

In sands the phreatic porosity n, is nearly equal to the volumetric porosity n, but in clays it might
be much smaller, see Zeller (1969). Equation (4.43) reveals that m denotes a simple scale factor

in the relation between the potentials § and .
Applying equation (4.39) and (4.43) the consolidation coefficient appearing in the storage
equation can be expressed by:

¢ = K o KH (4.44)

mn N,

In conclusion, phreatic horizontal flow in aquifers including geometric nonlinearity is described
by the following storage equation:

%y a7y, Ne 9y
= 4.45
ax? + ay? KH ot "’ (4.45)

where:

x = exp (my)—1, m= n,J/(nH).

The fact that the common potential equation in terms of an exponential function of the
piezometric head §, describes this type of flow, is a very convenient result, since it allows to
estimate nonlinear effects in a simple manner.

The value m@ appearing in the relation between ¢ and y is bounded for physically relevant
phreatic flow fields, as the drop in piezometric head $ can not exceed the aquifer height.
Therefore, in practical cases (4.22) holds for mo.

Area of influence including nonlinear effects

Both for axi-symmetrical and plane-symmetrical flow fields in infinite aquifers, phreatic or
confined, the partial differential equation (4.36) describing the nonlinear porous fiow behaviour
can be reduced to an ordinary differential equation with variable coefficients by definition of a
new variable, known as the Boltzman transformation, see Bear (1972).

First consider the plane-symmetrical case. The new variable is:
® = x/+/ct .
From the basic rules of partial differentiation, it appears that:

a0y dy do dy
= = — 2
at do ot o (@20,

and:
L dzx(awz dx(azw _ dzx(_cg2
ax? ~ de? ' ax do " ax?’ ~ do? ' x
Substitution into equation (4.36) results in:
2
P AN S (4.46)

do? * © do
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This equation makes sense, when also the boundary conditions can be expressed in terms of
the new variable .

For a sudden drawdown =0 at x=0, t >0, while y=exp(mdg)~ 1 = yg for all values of x>0 at
t =0, the boundary conditions are:
=0 , ©=0,10, (4.47)

A=Ag, © — .

Integrating equation (4.46) twice yields the final solution:

x=xaerf(2), (4.48)
where:
erf (o) = 2 f exp (— ¢2) dr¢, (error function).
Vo,
In terms of § and x this can be rewritten into:
1 X
O =—/n{1+ (exp(mdg)— 1)erf( H, (4.49)
—in| 5 ]

representing the solution according to the nonlinear theory. Equation (4.48) can be expressed in
the following form:

X 1= erfc{w/2) ’ (4.50)
Xs erfc(w,/2)

where o, tends to zero. Here, erfc denotes the complementary error function, defined according
to:

2 =]
erfc(o) = —= | exp (- ¢2) de,
LR

and related to the error function erf by the relation:
erfc (o) + erf (@) = 1.

The obtained result, equation (4.49), is represented in Fig. XVI for different values of m.

R nonlinear

INFILTRATION
PLANE SYMMETRY

Fig. XVI Area of influence in nonlinear transient aquifer flow.
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Next, consider the axi-symmetrical case. The same method is applicable. Definition of a new
variable:

w = riajct,

gives for the partial derivatives:

dy _ Oy do _ dy (— ® )

at = deo dt = do 2t "’

1 .0 & _dx e, d o
c or | ar dcoz(r) * o (rz)'

Substitution into equation (4.36), which for axi-symmetry becomes:

1 0 a 1 8y (4.51)

yields the differential equation:

d?y ® 1, dy
— 4 )2 =0, 4.52
dw? + 2 + a)) do 0 ( )
Integration gives:
dx _ Yo o
do =~ o exp ( 4 X

where y, is an integration constant related to the boundary condition. To avoid the singularity at
| 0, further integration is performed according to:

= — %o Eq {

°S° dy ‘S” exp(—e2)de 1 T exp(-f)de 1 32)
©® df XO w2 e - 2 Xo w3 4 f 2 4 )

The function E, is known as the exponential integral function. The boundary conditions, in
accordance to {4.47), inserted in the solution, finally ends up with:

X _ g _Erl@4)

_ _ 453
” E, (wo/4) | (4.59)

This solution is conformal to the plane-symmetrical solution, equation (4.50). The only essential
difference is the function: erfc in plane-symmetry and E, in axi-symmetry.

Expansion of E, for small values of @, leads to the so-called ‘well function’, introduced by
Hantush (1964), in terms of y.
The solution in terms of § and r yields:

=1 _ _ _Ey(*4ct) 4
= m/n[1 + (exp(mdg)— 1) (1 E. (4o )] (4.54)

The flow fields discussed are generated due to a sudden drawdown of 5. The area of influence
R defines the area of measurable or perceivable disturbance in the form of a locally lowered
groundwater level, which in comparison to &g is denoted by Agg. Only in the presence of natural
infiltration, such as caused by rain, leakage or canals and rivers, a constant area of influence

can be expected after certain time.
Usually one is interested in the influence of a temporary drawdown, which is chosen as the area

Ry, where a fraction:

f = Adp/Ps,

is found. This area R; will grow, as the drawdown continues, but also after releasing this draw-
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down the recovery of the original level will start after a delay, which takes longer with greater
distance.

An expression for R, can be obtained by developing the solution (4.48) and (4.53). In both cases
the fraction f can be expressed in terms of 5. By definition:

X _ A (4.55)

1_—"" 1

xB xs

and elaborating this in terms of § using (4.37) results into:

AXB = A(eXp(mG)B)“U — A¢B(1_exp(_,m¢8))_1

xs exp{mdg) —1
= Ads — l -1 - — _1 -1
= SR~ 5 mbe) T = (1= mag) . (4.56)

provided that mygz <1 holds.

The following inequality exists for the error function, see Abramowitz and Stegun (1968):

®

X++/X2+2 )" < exp (x?) | exp(—e2)de = (x+~/x*+4/n )T,

which yields for large values of x:

—x2
exp(—¢2)de = 2 exp(=x%) = 2 exp(—x2) , x>>1.

2§
NEA N x2 N

in this respect the solution for the piane-symmetrical case, equation (4,48), can be elaborated
using definition (4.55) and (4.56), to arrive at:

erfc(x) =

1 2 w?
f(l——mdg) ' = —exp(— —), o>>1,
2 " = 4
or.
m;Z\/[In(‘l—%md}B) — Inf - 089] , ©>>1. (4.57)

The following inequality exists for the exponential integral function, see Abramowitz and
Stegun (1968):

X+t < Ejxyexp(x) = x~1,
which yields for large values of x:

E, (%) E_eg_p_f(_—_x)_ = exp(—=x), x>>1.

In regard of this result the solution for the axi-symmetrical case, expression (4.53), gives
utilizing (4.55) and (4.56):

(- %m(bB)—‘ = exp(- w24)/E, (02/4), ©>>1.

For small values of @, the denumerator can be evaluated, see Abramowitz and Stegun (1968),
and the result is:

F(— L mog)-1 = exp(— wd)lin (2.246/03), ©>>1,

2
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or.

o=2vV[In{- Imag) - Inf - In(0.809 - 2inw,)]. (4.58)

The last term under the square root varies smoothly for o,< <1, in fact:
10-2> @, > 10-8— 231 < In(0.809-2/nw,) < 3.63,

and consequently, (4.58) can be approximated by:

msZ\/[/n(T—%m@B)—/nf—B.O] o> >1. (4.59)

Since, w = R,/+/ct holds by definition at the location where the specific fraction f is considered,
a formula for the area of influence R; is obtained, both for plane-symmetrical and axi-sym-
metrical flow fields in horizontal aquifers:

R: = o+Jot ,

where o is defined by (4.57) in plane-, and by (4.59) for axi-symmetry.
For different fractions f, the following values occur for o:

plane-symmetry axi-symmetry
f=0.01 mog=0.0 3.9 2.5
mdg=1.0 3.5 1.9
f=0.001 Mg =0.0 4.9 4.0
mpz=1.0 46 3.6

Hence, nonlinearity in the storage equation, embedded in the factor mg, results in a maximum
reduction of about 10 o 20% in the estimated area of influence.
Since actually x provides this information, x is called the extensive potential.

Only if the term myg assumes large values, the influence of nonlinearity becomes manifest,
even more pronounced for phreatic aquifers, but in general the nonlinearity, whether geo-
metrical effects or density and permeability effects, is of little significance to the area of
influence related to horizontal porous flow. This result is important, since it explains that the
linear theory results in appropriate values to support, for example, judgement about claims on
damage to agriculture or building caused by nearby pumping activities.

Semi-confined aquifers

For moderate variations of ¢ in the vertical direction, it is conceivable that also y will be almost
invariable in {. Hence, expressing y in terms of a mean potential y over the vertical, defined by:
12
r=3=——— | xdt, (4.60)
C2_ 2;1 &

will provide another possibility to consider the effect of nonlinearity.

Multiplication of the transformed storage equation (4.19) by di{/({,—¢,) and performing
integration according to (4.60), leads to:

—_ — 93 —
%y 2y 1 a*x Y
+ ;2 d¢ = . (4.61)
ag? an? L& <,§1 ag? ¢ it
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Elaboration of the last term at the left hand side is possible by partial integration:

262X — 7 ﬁ’.ﬁ_- 23')( - _ai
Cacz dg = gd( az;)"d(C BC) 2¢ aC dg

= d(e g’é - 2Ly + 2L

In respect of the definition (4.60) this renders equation (4.61) into:

ay &
20y -2
% yi+2i=az+(cxc i | ¢ 62
e T o ot (€=t ’ '

where the last term includes the boundary conditions at {, and &,.

Consider an aquifer confined by a leaky layer (aquitard) at {={,, and an impervious layer at
{={,. The leakage can be expressed in terms of §, see Verruijt (1970):

ad H
_5%“ = K; (@ - d)e) at z= Zy , (4633)
2 _ o at z=z, . (4.63b)
az

H represents the aquifer thickness, H =z, —z,, and 1 is the leakage factor, defined according to:

A=+/KHC ,

where C denotes the hydraulic resistance of the aquitard. The term , represents the piezo-
metric head outside the considered flow domain, see Fig. XVIi.

v
7

i1y,

Fig. XVIl A semi-confined aquifer.
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Because of {4.18) y and $ are interrelated, thus:
¢ = exp(mz),
x = exp(md)-1,

and consequently,

9x _ x+1 9%

ac 4 oz

Using this relation the last term in equation (4.62) can be expressed with (4.63) in the following
way:

d
-3 |2

(= L)
- 2(%o%2 — Gixa) + H G+ 1) (19— 8e)
G~ 2 (G2~ &)
2o =Citn) , H G bt D in [+ Dixe+1)]
(G2~ 21) ma? (G~ L)

Since y is supposed to vary smoothly with { this, in accordance with (4.60), reduces to:

= H G = _
2% + 3 <;2_C1<x+1)/n[<%+1)/<xe+1)]

Further, assuming that ¥ <1, this can be approximated by:

25(- + (Y—XQ)I Xza

in which the dimensionless parameter A is defined according to:

— exp(mz,) — exp(mz,) exp(mH) -1
A=A = — 4.64
\/m exp(mz,) H m}”\/ mH ( )
Finaily, equation (4.62), becomes:
25 2 v N
8x+3x_6x+x Xe (4.65)

3 ot a2

which in this form is fully in agreement with the conventional equation for semi-confined flow in
regard of the linear theory, see Verruijt (1970). Therefore, all the solutions obtained in the
literature are equally valid in the nonlinear theory, simpiy by introducing the boundary
conditions in terms of ¥ and replacing the leakage factor by A, defined in equation (4.64).
Barends (1978) presented some solutions of the nonlineary theory. One example is worked out
here in this section. It deals with steady axi-symmetrical flow in a semi-confined aquifer. The

boundary conditions are:
$=0 forr—oo,
o=, forrir,.

The governing equation for this case in terms of ¥ is:

1 d d —_ =
— ——e——x=%x/A , g=mr,
o de  de
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and the general solution states:
T = %Ko (mrid),

which satisfies the first of the boundary conditions, whereas the coefficient y, is related to the
second one. Hence,

%o = (exp(md,)— 1)/ Ky(mro/ 1),
and the final solution becomes:

¥ = (exp(md,)— 1) K (mr/ MK (mr,/ A), =1,

2.0

e X

Fig. XVIlIl Modified Bessel functions of the second kind, order 1 and 2.

Here, K, denotes the modified Bessel function of the second kind of order zero, a graph of which
is shown in Fig. XVIII. It is verified that y <1, which has been the only condition sofar in the
derivation of the transformed storage equation (4.65). In terms of & the solution yields:

&= —in[1+ (exp(mdy)— 1) Ko(mrl ) Ko(mro/ )], r=r, . (4.66)

m

in this form it includes the soil flexibility and as such it reduces the drawdown at large
distances in comparison to the linear theory. Some graphs of this case are presented in Fig. XIX,
showing, for example, the effect of the pressure dependent density in the typical difference
between pumping and infiltrating at identical discharge. In the linear theory these two
disturbances would generate identical potential fields.

To clearify the effect of nonlinearity, solution {4.66) is elaborated by series expansion. In view of
(4.64) A can be approximated by:

A= mamH + L (mH)2 + .. .)/mH

=mi(1+mH/4). (4.67)
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Fig. XIX Steady radial nonlinear flow in a semi-confined aquifer.

Developing the modified Bessel function in a Taylor series gives:

K (mrl %) = K0(4X(1+;1H/4))
r mHr r
= K, (1) - K. (-
o(l) Ty o(x)

Hr r
= K, () + 8k (L,
o(}») Ty 1(X)

which holds when the second term is relatively small, i.e. for values of r<.

In this respect the following can be deduced:

mHr
- K
Ko (mri7) K, (rix) + 4 (H1})
K A mHr
oM/ M)k () + 2o k(1)
4\
{4.68)
_ Kol T
Ko (ro/A) 8
where:
F = KA 1, K/

AOK (I A K, (/R

Nothing that the area of interest is restricted by r<, it can be shown that F <1.5. The limit for
r=r,10 is of special interest, and here, F tends to zero, see Abramowitz and Stegun (1968):

2 -1
Lim XK4(X) - Lim X2 In(x/2)x~ 11 {x) + 1

x10 Ko(x) x10 —y = In(x/2) I4(x)

= Lim X2 In(x/2) + 1
xi0 —v — In(x/2)

= Lim (x¥2) = 0.
x10
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With the approximate expression:
1
exp(md)o) -1= mq)o (1 + '2'_ mq)o) s

and the obtained results (4.67) and (4.68) the solution (4.66) can be evaluated:

o= -—; In[ 1+ (exp(md,)— 1) Ko(mr )/ K(mr,/ 1) ]
1 Ko (r/) 1
= — Do (41— —(mH)2F
P, (1 + 5 md,) Ko(ro/k)( p (mH)? F)
1 1 K, (r/\) 1
- — — So M (- — 2E) ...
[1 5 md, (1 + ) md,) Ko 1) (1 5 (mH)2 F) + ]
K, (riZ) 1 K, (r/\) 1
=, —2—— — B e C . 4.69
%o K, (rol A) [1+ 2 M, (1 Ko (Tl %) ) 8 (M) ] (469

The nonlinearity, expressed as a converging series in terms of the coefficient of nonlinearity m,
shows that it is of second order importance. It becomes manifest in case md, is large, but in
practical situations m,< 1. The first term represents the solution in accordance to the linear

theory.
Moreover, the second order term:

1 K, (r/)
R 1_ _—),
> m, ( K, (ra/%) )

in the obtained resuit (4.69) reveals once again that the nonlinearity is of no importance nearby

the disturbance, since there, K (r/\)/Ko(rs/A) = 1. At greater distance the influence of non-
linearity appears, which is in agreement with the results previously mentioned about the area of

influence.

4.d NONLINEAR VERTICAL POROUS FLOW

Cyclic vertical flow

Periodical loading on deformable soils is a popular subject in the field of coastal engineering
and offshore construction. The marine subsoil is attacked by cyclic pressures generated by sea
surface waves and a construction based on the sea bottom will move due to wave loading. On
flexible soils these movements will cause deformations in the subsoil, and subsequently, pore
water pressures arise. Altough not always the periodic character of this phenomenon does
create serious pore water motion, forceful topical gradients may occur occasionally, which
without precautionary measures can affect the stability.

The relationship of simultaneous reaction of pore water and soil skeleton to cyclic loading fora
one-dimensional case in a perfectly elastic environment, according to the linear theory, is given
by Barends (1978). Some peculiarities of this phenomenon have already been discussed in
section 2.d, see for example Fig. VIl

In this section some fundamental solutions will be considered in the nonlinear theory, i.e.
solutions of the nonlinear storage equation (4.1).

Vertically symmetrical porous flow is governed by, see (3.56):

Z

922 3 az © ¢ at
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or by the transformed storage equation, see (4.19):

2
p % _ (4.70)
a2 at

while the different variables are related according to (4.18).

Mellin transformation

As has been outlined in section 4.b the Mellin transformation technique is applicable. A
restriction is made to the domain: 0<{< 1, corresponding to the semi-infinite vertical medium:
— o <2< 0, whereas the boundary conditions are acting at the boundaries: {=1and {= 0. ltis
assumed that all the contributions at {!0 (or z— — o) will vanish. On the boundary: {1 (or 210)
cyclic vertical flow is generated and hence, a harmonic behaviour is attained. In this respect the
extensive potential y can be expressed by:

G 1) = Q) expliort),

rendering equation (4.70) into:

e g; = iof. 4.71)

in accordance to formula (4.35), the Mellin transform, this can be transformed to yield:
7 df o
ss+)f + [———(s+1)f} = iof, (4.72)
dg Lt

where the transform f is defined by:

oo

fis)= § foe—1de. (4.73)

(o]

The solution of (4.71) in terms of f leads to:
f= (1_'*'3_'&_:_:1_, (4.74)
s{s+1) — i
in which the boundary conditions are related to:
fy = Q) at g1,

df
fi = — at {11.
T &

Inverse transformation

Next, the inverse of f has to be determined, which can be found by performing the integration,
see equation (4.27):

G+ioo

f)=—-—]  Hs)¢-cds, (4.75)

27 ¢-ioo

where ¢ >k, such that k satisfies the condition that

0

§1flge-Tde,

o]

exists. This condition has to be fuifilled in order to ensure the existence of the actual Mellin
transform (4.73).
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As has been discussed in section 4.b, the function f is defined in the domain: 0<{<1, while in
the remainder: {>1, it is equal to zero. Consequently, f will be finite in the interval 0<{ <1, but
the behaviour at {10 needs some constraint. Suppose that the following holds:

Limf = M{' , (Missome finite number).
gio

Then the integral:

fIf]gerde,
o]
is finite, if the following inequality holds:

{+k=-1>— —1—,
2

or:

K> 1 —7.
2

Later, for the obtained solution it will be verified whether the condition:

c>k>%—€, (4.76)

is satisfied.

Fig. XX Contour integration in the complex s-plane.

Proceeding with the solution of the integral (4.75), in which the integrant is given by (4.74),
contour integration is performed in the complex s-plane, see Fig. XX. First the poles of s are
considered. They correspond to the roots of the equation:

s(s+1) — i =0,

or:

%(sm —1), (4.773)

Sy = — -—%—(Sw 1, (4.77b)

»
1

o= 1+ 4o, 4.77¢)
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and s, is chosen such that:

Re(s,) = 1. (4.77d)

Developing s, yields:

s, = &+ in = 1+ 4o = &1+ 1607 {cos(—;— tan-14a) + Sin(% tan-1 4w) } .

This results in:

g2—n2 = 1+ 1602 cos(tan-14w) = 4,
which represents a hyberbola.

Because =0 and Re(s,)=1 is chosen, s, is located on a branche of a hyperbola in the positive
(¢,n) quadrant. Consequently, f has two poles in the complex s-plane, s = x + iy, namely s, and s,
which are points of intersection of the hyperbola:

X+ %) —-y2=1,

and the line:

y = 2 \/\/1+16m2 sin(%tan—%w) )

The contour along which the integration will be performed is such, that it encompasses both
poles. Integration all around this contour, using Cauchy’s theorem, results in:

C+io
1 §Fexp(-sinQds = ——fc-sds + —— | fc-ods
2mi 2ni 2m c-ie

= ¥ Residuals (f¢-5).

It can be shown that the contributions along the circular paths of this contour will vanish for
|s| -, and in view of (4.75) the solution of f is:

f = ¥ Residuals (f¢-5),
provided that ft;—s is analytical in the area in the s-plane encompassed by the contour.
The residuals with expression (4.74) give:

(1+50) f=26 gy (1= 8u) fi= 21,

. . L0 +s0)/2, (4.78)

f=

At this stage it is possible to interrelate the boundary conditions at {11 and {!0. Corresponding
to the definition of f, and f; see (4.74), the function f, expression (4.78), has to satisfy the
following relations:

(1—s,) f;—2f; — (1~s,) fs + 21,

= f
2s !

f, =

«©
and:

Lim f=0. (4.79)
¢io

Rewriting (4.78) results into:

A gt-sarz [(14s,) f -2 — [ (1—s,) f,—2f; } o).

2s

f =

«
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Recaliing the fact that Re(s,) =1, the limit value of this expression at { tending to zero yields:

Li-s)2[ (1 +5,) f, -2 ]

Lim f= Lim —
710 £l0 28,

[(1+s,)f,—2f ] Lim -3z,
2s,, )

To satisfy condition (4.79) the term between square brackets has to be zero, or:
(1+s,)f, = 2f,.
Therefore, the solution (4.78) becomes:

f=f (1+s0)2, (4.80)

Obviously the boundary conditions are satisfied. Moreover, inserting solution (4.80) into the
governing differential equation (4.71) proves that it is the proper solution:

sm+1
daf . s,+1 2
@ = fy( 5 )¢
sm+1
dzf 1 -1 T, 72 .
tf—d—cz—=f1z;2<s—m2‘—’-—><3m2 o 2 = (=88, = iof,

where the expression for the poles s; and s,, according to (4.77a) and (4.77b) has been
introduced.

The condition for existence, expression (4.76), is verified. In view of solution (4.80), which is valid
in the domain: 0<{< 1, the following holds:

Lim |f| = MU/,
210

where ?is related to s, and employing (4.77d) gives:
¢=Re[(1+s,)/2] = 1

In conclusion, the choise that ¢ is such that ¢ > Re(s,) is valid in the elaboration of the contour in-

tegration, see Fig. XX, is fully in accordance to the requirement that c>k>%-i must be
satisfied.

In terms of the extensive potential y solution (4.80) becomes:
1 = fexp(ion) = f, exp [ iot + —;—(sm+ 1ine]. (4.81)

Separation of the real part leads to the response to a cyclic loading at {11 conformal to:
¥y = fycos{mt).
Elaboration yields:

Re(y) = f,Re [ exp {iot + %(Sm+1)/f'§}]

= f,Re[ exp { ior + %(\4/1 T 1607 (cos(-;-tan-mm) + isin(—;—tan~14m)) +1)int} ]
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f, Re [ exp {i(or + %\4/1 + 1607 sin (% tan-4w) In)
+ %(\4/1 + 1607 cos(% tan-4) + 1)ing }]
= f,cos [t + %\“/1 + 160? sin (—;— tan-14w)/nt |

exp [ % (F1 + 1607 cos(%tan—‘4m)+ 1)ing]

f,cos[ ot + %utan v Int ] exp[%n +w)inc],

where:

1
= —tan Y40,
v 2

1 +160? cos v .

The solution in terms of  becomes, using (4.18):

"

P = %In[ 1+ f, cos (em2ct + %— mzutany) exp(m(1 +p1)z/2)]. (4.82)

The cyclic boundary condition was expressed in terms of x. However, the boundary condition in
terms of ¢ at 210, according to:

¥, = —In[ 1+ f, cos(emct)] = % In[ 1+ (exp(md,)— 1) cos(et) ],

1
m
can be approximated for md, <1 to:

Do = By cOS(@nt) , By = %/n(fm), (4.83)

which shows, that the original boundary condition has a comparable cyclic character in the real
domain, while the circular frequency o, is related to o by:

®y = ® m’c.

Some graphs corresponding to this solution are represented in Fig. XXI.

Vertical flow due to a sudden disturbance

Two cases are considered, a unit shock disturbance and a unit step disturbance.
Again, the vertical flow in the nonlinear theory is described by the ditferential equation (4.70):

2
A AL S ST PP
o2 at

Consider the following boundary conditions:

Lim y=0 for 0O<{<1, (4.84a)
ti0

x=0 for (l0,t1>o0, (4.84b)
x = Cyn(t)y for (i1, (4.84c¢)
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Fig. XXi  Cyclic vertical nonlinear porous flow.

where n(z), called the Dirac delta-function, is defined by:

n(t)=0 for t>e>0, (eis small),

+ o

{ n@yde=1.

- oo

Laplace transformation, defined by:

@

7= | xexp(-pr)dr,

o

78




yields the following differential equation for (4.70), taking into account conditions (4.84a) and
(4.84b):

d?x _

G aw PX-

The general solution of this type of equation has been solved in the cyclic flow problem. The
corresponding solution, equation (4.80), applies here again. Thus:

1
T=cpz Vet (4.85)

represents the solution, while c, is related to the boundary condition (4.84c).

In a similar manner a solution can be obtained for a slightly different boundary condition,
namely in stead of (4.84c):

¥ = ¢, H{x) for (11, (4.84d)
in which H(z), called the Heaviside unit-step function, is defined according to:

H(x) = 0 for <0,

H(x) =1 for 1>0.
In this case the general solution takes the form:

%+ Jp+ 14

Ci¢ . (4.86)

=3
p

Laplace inverse transformation

The solution of both transformed expressions (4.85) and (4.86) requires a Laplace inversion,
which will be performed by contour integration, see Fig. XXIL

|l

arg(p)

Gs

Fig. XXIl Contour integration in the complex p-plane.
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The inverse of the function f is sought:
f(p) = g‘—ég)Lexp[ -yp+ @ ], (4.87)

with: y<O0,
and: Re(t)>0.
A(p) and B(p) are rational polynomials in p while A is of less or equal order compared to B.

The function f_(p) is analytical in the area enciosed by the contour in the complex p-plane, see
Fig. XXII, by means of a branch cut along:

— o < Re (p) < —0o?.
For the argument along this cut, the following specific choice is made.

Lim AP+ a2 = v, (4.88a)

arg(p)in
Lim AP+ et = —iv, (4.88b)
arg(p)t —n

while v is a real number, parameterizing along the branch cut:
p= —(vV+ o).
T is now analytical within the enclosed area.

The inverse of f is by definition:
1 c+io?_

fir)=—— | f(p)exp(pr)dp. (4.89)
2ri

c—o

Applying Cauchy’s theorem leads to:

—2—1—i<§> Tlp)exp(pr)dp = X Residuals (T(p)exp(pr)). (4.90)
m

The assumption that the contributions along the circular parts of the contour will vanish for
| p| — o, results in the solution for f:
— G4

f(r) = X Residuals (f(p)exp(p1)) — —2% GS fpyexp(pr)dp. (4.91)
2

it will not be shown here, that for f defined by (4.87) the contributions along the circular paths
vanish. A later check of the solutions by substitution will prove its completeness.

Eleboration of the integral in (4.91) yields:

G, G
1 4 - 1 “A
— | fexp(ptydp = — | Alp)_ exp[ —y/p + &2 + pt]dp
2ni o) 2ni & B(p)
- ——1.— 56'3 N _l__ 504
el IR el BERE

exp(—iyv —t(vi+ a?)) (— 2vdv)

1 50 A= V2 — o?)
2 B(=V2—o?)
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1 A(— V2 —a?) v — TV + 02)) ( — 2vd
pyr (f) B(—vie ) exp(+iyv — (v + o?)) (— 2vdv)

oD A= =) g o — i) — expi
= 5o i B (v — o) exp(—t(v2+ 02)) [ exp(—iyv) — exp(iyv) ] 2vdv

EHIN

i %‘ﬁ_ﬂ%exp(_r(vuaz))sin(yv)vdv. (4.92)
o - Vi

The unit shock solution

With this result it is now possible to find the inverse transform of {4.85). In this case there are no
poles. Thus, according to (4.91) only the integral remams In fact, the contribution along the
branch cut represents the solution. Hence, with A/B = Z;

-

x = CyL% = exp(-— /4) § exp(—tv2) sin (yv) vdv

c;¢*% exp(—1/4) | exp(—18) sin (y/8 ) do.

The integral in this expression itself represents a Laplace transform, of which the closed form
solution is given in literature, see Bateman (1954):

1 °§ sin(2+/k8 ) exp(— 10)de = exp (—k/1)

Jik o Wt

This leads to the final solution, withy = —In{:

L% y(21a/nt )~ exp(—t/4 — y¥41)

¢,y 21/nt )~ exp(—y/2) exp(—t/4 — y¥41)
= ¢,y (2t/nt )~ exp(— (1 + y)/41)

—~ ¢, In¢(2t/mt )T exp(~ (1 — In) 4t). (4.93)

X

In terms of ¢ this gives:

b= —in[1-c,— M2 exp(~(t—mzpl4r)], t=mct, 2<O0, (4.94)
m

21/ 7T

denoting the response of porous flow to a unit shock load in the nonlinear theory. Some graphs
of this solution are given in Fig. XXIll.

The unit step solution

Next, the inverse transform of (4.86) is considered. There exists a pole in p=0. The residual is:
c,L. The contribution along the branch cut, according to expression (4.92) with A/B = c,t"ip
gives the solution in terms of y:

Y = ¢, (1— EC“’/* exp(—t/4) S Mexp(—rvz)vdv). (4.95)
T o Vi+ s
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The integral in this formula is a Fourier transform and the closed form solution is mentioned in
literature, see Bateman (1954):

\4

————exp (= v¥)sinyv)dv =
0 Vi+a?

%exp(raz) { exp(— ay) erfc(an/t — y/2+/7 ) — exp(ay) erfc(er/t + yi2a/t )}

This renders (4.95) into its final form, with y= - /n{:

X = Cil— %016;‘/2 { 0% erfo(n/712 + Int/2JT )= L~ Herfe(n/T/2 - Inti2/T ) }

e fed- %erfc (WeI2 + Ing247)) + %erfc(\/?/z—/nc,/z\/?)} (4.96)
In terms of § the solution becomes:

o=—In[1+c, {expmz)(1- %erfc(g— ma/ct  + z/2+/ct )

1
m (4.97)

+ %erfc (%m\/gt —z/2Jet )}] ,2z<0,t>0,

representing the response of porous flow to a unit step load in the nonlinear theory. Some
graphs of (4.97) are represented in Fig. XXIV.

It can be shown that expression (4.96) satisfies the differential equation {4.70) and the stated
boundary conditions (4.84a), (484b) and (4.84d). The proof is quite laborious. It is presented here,
since in an earlier stage of this discussion the contribution along the circular paths of the
contour have arbitrarily been assumed identical to zero.

Check on the completeness of the unit step solution

First some limit values are considered.

Lim erfc (\/t/2 = Ing/2+/t ) = Lim erfc(x/1/2) = 0, (>0
T - OO

T—
Lim erf(y/2+/t )=1, y>0
ti0
Lim erf(in¢/2</t )= =1, o<(<1.
—erf(y) = erf(—y) 710
Thus,

Lim erfc(x/t/2%Ini2y/t) = Lim erfc(xInt/2+/t )
1i0 Tl0

=Lim (1—erf(+In/2</t )) = Lim (1% erf(ng/2+/t )) = 11, 0<(<1.
710 710

Obviously the boundary conditions (4.84a), (4.84b) and (4.84d) are satisfied, since:

Lim y=c¢,{ , 0<l<1, (4.98)

T—®
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which represents the steady state solution, see Barends (1978), and:

Limx=c {¢i-—+2)+0}=0 , 0<i<1,
110 2

and also:

Lim In¢f2aJt =0 — x(1,1)=¢; , 1>0.
g

Finally, the question whether the solution satisfies the governing field equation, is considered.

The derivatives:

—g‘erfc = - e“"d—f

2
dx NS dx

with:

fr = f2( 1) = JT/2 = Ing/24/T ,

af* 1 -
= (1 + In¢/t),
at 4\/?

ofr
o V@7 ),

azf: - )
o 1@et),

+

yield:

2
9 erfc(f*) e~ {x2+1x/ntit},

_ 1
g2 - 2~/

9 erfo(fr) = ———e-*{1F/nlir}.

d1 2-/nt

Moreover, the following holds:

a2 d d*g
2 1= = 20 28
¢ g [-o@] = -2 i

The governing field equation is:

2
A ) (4.99)
ay? a7
Elaboration of the left hand side with solution (4.96) using the expressions above mentioned
gives:
3y - o 32
ag? o

¢ Lo/ {501 - erfo(t)) + erfe(t)}]

e, [ - aac erfc(f+) — %G :; erfc(f+) + %G :; erfc(f™) ]
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¢4 [C2~j~:e"’/(2cx/?) - %Ce‘“((‘;-F/nC/r)/(Z\/nT:)

n

+ %e—f* (=1-Ingo)lEenr )]

c e[ ¢ —intit) = (1 +Intit) ] 1 @A~/nT ).

1l

Elaboration of the right hand side of equation (4.99) yields:

o0 e [et - %erfc(ﬁ)) + %erfc(f‘)]

o1 at

= ¢, [%Z;e"f’ﬁ NN —;—e—f’ﬁ +IngioyEeT )]

= c,e~"[cO-Intt) — (1 +Ing)] 1 (@~/nT ).

And the completeness of solution (4.96) is proved.

A physical anomaly

In this section a general solution procedure has been applied to derive complete solutions of
some characteristic problems in the fields of porous flow in deformable soils including non-
linear effects. One remark has to be made on the steady state solution. In the last example
steady state is attained at t— o, see expression (4.98), of which the form in terms of  can be

described by, see Barends (1978):

b= Lin[1 + (expmd) - Nexpma)], - e <z<0,
where $, denotes the value at z10. Some graphs of this particular case are represented in
Fig. XXV.

This result implies that a vertical steady flow exists according to the nonlinear theory, while the
boundary condition at z— — o is not affected. In other words the medium shows an infinite
capacity of storage. This physical anomaly is a direct consequence of the pressure dependent
density, ¢'(p), defined according to (2.20) which assumes:

o = g, exp(p'(P—po)) , B'>0.

In an infinite vertical strip it can be expected that the density will tend to infinite values for
z-- . Thus, the ‘deep’ boundary at z— — o contains such a density, that vertical transport of
pore water is possible, without actually changing the situation at this boundary. The steady
state vertical flow solution owes its character to this peculiarity, which is physically not correct,
because the real behaviour of the density at large pressures is not described well by the stated
formula keeping the compressibility B’ a constant.

The presented solutions in the semi-infinite domain which do not affect the mean state of
pressure, like the case of the unit shock response and the cyclic agitation, do not include this
anomaly, and they are valid in the entire domain.
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GEOMETRIC NONLINEARITY

Summary of chapter 5

A remarkable feature of groundwater flow is the existence of a free surface, or a phreatic
surface. It constitutes the separation between the flow domain and the exterior, where the
eventually present pore water does not take part in the gravitational fiow process. In nature
such a sharp interface does not exist. The transition between the flow domain and the exterior
appears in a zone. However, for the mathematical formulation of groundwater flow a sharp
border is assumed.

A similar situation occurs when the flow domain contains two immiscible fluids each of them
occupying a different region. At the interface of both fluids a separation surface is assumed,
which behaves somehow like a free surface.

The free surface represents a part of the flow fieid border along which specific conditions are
imposed: a pressure condition, because there must be always an equilibrium, and a storage
condition, which controls the flux across the surface. In case a boundary flux occurs at a free
surface, pore water is transported to the exterior. Since all the pore water taking part in the flow
process considered must be encompassed by the flow field border, the free surface must move
with the efflux. This implies, that the position of the free surface is determined by the boundary
flux and precisely the phreatic storage condition governs this process. It is also referred to as
the moving or Kinematic boundary condition. Because the geometry of the flow field varies, this
class of problems is typified by geometric nonlinearity.

In section 5.a the background of the moving boundary condition is outlined. It is shown that the
compressibility of the pore water and volumetric storage variations due to soil deformations
have no influence on the formulation of the free surface storage condition. Moreover, the
convective terms caused by infiltration at the free surface are included. The moving boundary
condition is essentially nonlinear.

In section 5.b several aspects of a numerical procedure to solve general porous flow problems
including presence of a free boundary are considered. The calculus of variations provides a
mean to discretize. The fundamentals of the calculus of variations are described, whereas
general boundary conditions are included in the governing functional. The basis of a finite
element formulation is given and some different methods are briefly discussed. Application of a
user-orientied computer program, the SEEP code, is presented for a case concerning different
types of flow behaviour, for an axi-symmetric free surface problem, for a drainage and
infiltration problem in an inhomogeneous flow field and for a case of a discontinuous phreatic
surface. About the contribution of capillary water some remarks are mentioned.

In section 5.c the numerical treatment of time dependent phreatic flow problems is considered
in detail. Several methods are discussed. Most of them are incomplete in case of infiltration. For
an explicit method the stability of the numerical procedure is expressed in the form of a time
step criterion, which includes the coherence of the flow field and the rate of change of
prescribed time dependent boundary values. A reduction is advised to improve accuracy. An
example of a sand dyke subjected to tides and a storm surge is included to prove the reliability
of the time step criterion suggested.

5.a NONLINEAR TERMS IN THE MOVING BOUNDARY CONDITION

A phreatic surface separates the saturated flow field from the unsaturated area. In nature there
is no such sharp border, i.e. a surface of discontinuity, between the saturated and unsaturated
parts in soils. In this section the phreatic surface is defined as the imaginary surface where the
pressure equals the atmospheric pressure p,, which is assumed to be a constant. Thus, if the
vertical position of an element of the surface is denoted by z, the piezometric head ¢ at that
position is described by:

=2+ p,/eg. (5.1)

The pore fluid present in the porous area above the phreatic surface also will contribute to
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porous flow. Here, this contribution is disregarded and the phreatic surface is considered as a
material-of-fluid surface. In other words, when there is no accretion (infiltration) or evaporation,
this surface contains the same fluid elements. Once on a phreatic surface such an elementary
fluid volume will remain at this surface, but not necessarily at the same position.

Since in time dependent flow the separation surface is moving, it can be represented by an

eguation, of which the general form is:
Sty =0, t=(xy32), (5.2)

where ¢ denotes the position vector. Another interpretation is, that property S, which according
to (5.1) can be defined by:

S=2z4+p/og—-0=0, (5.3)
is assigned to any elementary fluid volume at the phreatic surface.

Consider such a volume at initial position ¢, at time t,.
The position at any later time t is defined by #((,,t). The rate of change of this position

represents the absolute velocity:

W = ~Qg-, f,is constant. (5.4)
Dt

Here, D/Dt denotes the (fluid) substantial derivative, indicating partial differentation with
respect to time, while following a fluid volume of fixed identity, as it is displaced in the flow
field.

The substantial derivative of property S is defined in a similar manner. Since S is a function of ¢
and t, for ¢, is a constant, the chain rule for differentiation applies:

DS _ S _ 85 D
Dt at a0 Dt

which becomes in virtue of (5.4):

DS _ 35 | y.vs, (5.5)
bt at

Note that 4/9¢ is identical to the spatial gradient.

The general conservation principle, as it has been derived in section 3.a, equation (3.1), holds
also for property S, while propagating at velocity w. Thus:

% +VewS)=J, (5.6)

where J denotes the free internal production of property in the considered fluid element.

In view of the discussion in section 3.b the conservation of matter of a compressible pore fluid,
propagating at velocity w in a deforming soil skeleton moving at velocity v, can be expressed by:

) , De pr DP
—v.{onw-v)} = o == + ng'p' ——,
{onw=-v)} ~ B 5,

Here, D/Dt, which is called the (skeleton) substantial derivative, is defined by:

and it denotes the substantial derivative, while following a soil particle moving at velocity v.
The above equation can be rewritten into the form:
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Vew = —F, (6.7)
where F is given by:

1 De Dp
F=—}{{1-n—— 4+ np —— + (W—vV)Vn {.
n{< ) or B+ W= }

Eliminating V.w from equations (5.6) and (5.7) results in:

ﬁ+w.vs=—£§=J+SF. (5.8)

Property S incorporates the equilibrium condition (5.3) at any time. Thus, the last term in
expression (5.8) vanishes:

L + w.VS = DS =J. (5.9)
at D

The (fluid) substantial derivative of property S equals the internal production of property S,
independently from the mechanical behaviour of the pore fluid and the porous medium in the

flow field.

Assume that the internal production only takes place at the phreatic surface. It represents for
example accretion (infiltration) or evaporation. Essentially, it has to produce a change in
phreatic position in accordance to the definition of the property S, equation (5.3).

Let the internal production J, being a contribution of fluid material at the phreatic surface, be
stored in the porous area immediately above the phreatic surface. Hence, it causes a change of

position of the phreatic surface.

The motion of the elementary fluid volume considered at the surface is affected by this
contribution. In this respect, the convective velocity of property S in equation (5.9) has to be
adjusted. It must be enlarged with the velocity produced by the storage of internal production.
Therefore, equation (5.9) becomes:

S L wid)vs =0,

where d represents the velocity due to internal production J. This expression can be written in
the form:

DS | w-v+d.vS=0,
Dt

where the (skeleton) substantial derivative is introduced. inserting the specific discharge q,
given by (3.2), yields:

n2S | (q+B).vS = 0. (5.10)

Dt

Here, B denotes the fluid volume added per unit total surface per unit time:
B = nd. (5.11)

Note that B represents in fact a kind of specific discharge along velocity d. It can be conceived
as the time rate of change of the position of the phreatic surface due to accretion.

The specific discharge g is related to the potential $, according to:
q - - de))

and equation (5.10) becomes, employing (5.3):
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nvsvz —ng—? + (—KVp + B).V(z-9) =0,
_n% + (=KVp + B + nv).Vz—9) = 0,

n»%if— = K(VGY = (B+nV)eVd + (- KV + B +nv)evz. (5.12)

This expression gives a complete picture of the boundary condition at a moving phreatic
surface. It is referred to as the moving or kinematic boundary condition, and in this discussion
the influence of second order terms, free contribution and convective terms due to soil motion
have been included.

Particularly the last effect has not been considered in titerature up to now. In view of equation
(5.12) the convective effect by soil motion can be incorporated in another definition of accretion,
to wit, by considering the rate of infiltration including the soil skeleton velocity.

In the absence of skeleton deformations, i.e. v=0, equation (5.12) becomes identical to a form
given by Todsen (1971). Assuming, that the accretion is only vertical

B=(00N),

and disregarding the soil motion renders (5.12) into:

90 _ kwar — K+ NP2 4 N 513
nat (@)(+)at+, 6.13)

which is described by Bear (1972).

By purpose the quantity ‘effective porosity’ (n,) has been avoided in the previous discussion,
since, according to the definition of the specific discharge, equation (3.2), and to the general
storage equation (3.42) valid for air-water mixtures with stagnant air, the mass transport in the
pores is considered, whether it contributes partly or completely to the flow motion. In particular
in the phreatic zone effects of stagnant air play an important role and a reduction of the
saturation degree up to 20% and more is observed, caused by entrapped air. The approach
outlined in section 3.c shows here that it is not necessary to distinguish between effective
porosity (or phreatic storativity) and the volumetric porosity. The influence of stagnant air must
be embedded in a reduction of the permeability, a formula of which is given by expression (3.41).
The moving boundary condition should not contain any other quantity than the volumetric
porosity. The existence of stagnant pore water (not taking part yet in the gravitational flow) can
be incorporated in the infiltration term,

5.b A NUMERICAL MODEL ; THE COMPUTER CODE SEEP

Numerical methods

The analytical method draws attention to general trends in physical processes and helps to
distinguish between which factors are of primary significance and which are of secondary im-
portance. It is surely a useful supplement to engineering intuition, but not always the best
procedure for quantifying results. Geometric complexity and natural inhomogeneity limit the
application of analytical methods. it is therefore evident that, as soon as the generality of
numerical methods of analysis were recognized having fast digital computers at one’s disposal,
emphasis was directed to develop practical methods to treat complex geometries and material

properties.

in the field of seepage flow through porous media observed in various disciplines of
engineering, the application of computers has become a common practice. Several numerical
techniques have been designed amongst which the finite difference method is mentioned,
resulted from the early experience with discrete nets of electric resistances (analogue models),
and later the finite element method which proved to be a more flexible procedure. Both classical
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methods are well described by Verruijt (1970). Later, Verruijt (1975) developed a method to
incorporate the time dependent storage term by introducing an average value per time step.

Also more sophisticated methods are applied, such as a boundary integral method using a com-
plex potential suggested by Van der Veer (1976). It shows much similarity with the method of
collocation, where the approach requires that the chosen field equation is exactly satisfied ata
limited number of points per subdomain. Another intricate method is proposed by Baiocchi
(1973). He introduced a special function. This method is particularly suited to free surface

problems.

The various numerical methods are all attempts to find trial functions, which approximately
satisfy the field equations and the boundary conditions. Characteristic differences between
these methods are in general of second order importance, but for specific classes of problems a
certain method can be preferred.

In this section some aspects of the finite element method are reviewed.

Calculus of variations

Boundary value problems for differential equations governing seepage flow are equivalent to
problems of the calculus of variations. Recognition of this fact goes back to Euler and
Bernouilli, and the general three-dimensional approach was first considered by Green, in 1837.
The calculus of variations can be conceived as an extension of the concept of differentiation. In
this manner it is very useful to obtain numerical values for boundary value problems.

The method is based on a minimum principle of a functional. A functional is a variable that
assumes a specific numerical value for each function which is substituted into it, for example:

b

J@) = | ax)dx. (5.14)

a

Here, J represents a functional for a class of functions ¢ defined in the domain a<x<b.

The fundamental problem in the calculus of variations is to find a function @, such that
increments &9 in this function yield only a second order increment in the functional J.

This condition gives an equation, called the Euler equation, which determines ¢. If the Euler
equation is equivalent to the field equation considered, then the condition that the first order
variation of the functional, 8J, vanishes for arbitrary variations in the trial function @, is suffi-
cient to solve the problem.

The variation of a functional is sometimes defined as a derivative, see Nozicka (1969):

SJ((T)) = Lim J { @(X) + C6®(X)} - J {QS}
¢c—0 ¢

(5.15)

H

where ¢ is independent of the space variable x.
Consider a function:
L=L{x &x),de/dx}.

Allowing & to vary by 8¢ yields for the first order in J, employing the mean value theorem:

b b
& = & | Ldx= | (5L)dx
b L{x 3 +c8p - @+068) ) — L{x0 dp/dx}
= | Lm [ dx ] dx
a ¢c—0 c
° el L
LY 8 489 4 . (5.16)

= +
a ad a(dd/ dx) dx
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Integrating by parts results in:

b

aL d aL d aL
8 = Ol g4 9 (0L sy osp-9(— 9
aS { a0 0t Tax (a(dqs/(dx) 9) - 8- ! 3(do/dx) )}
° L d aL aL "
= - 8 L . A7
as { 36 dx ( 3(dpldx) )Jadx  + 3(dp/dx) &Dl (6.17)

The variation 83§ is arbitrary in the considered domain. Therefore, the first variation of the
functional J is equal to zero, if the differential equation:

oL d kg (5.18)
06 dx = a(dpldx)

is satisfied and the boundary contribution:

aL d
- § 5.19
adp/dx) ¢ zla ( )

vanishes. Equation (5.18) is called the Euler equation. The function L is referred to as the

Lagrange function.

The second order variation of J determines the character of the ‘stationary value’ of J where
8J = 0. Is 8(5J) positive definite, negative definite or of undeterminate sign, then the value of J is
an absolute minimum, an absolute maximum, or a saddle point, respectively.

The approach is easily extended to more dimensions. in order to incorporate also the boundary
contributions (5.19) the functional is extended to, see Edelen (1969):

Joy= [Ldv — [ L.sdA. (5.20)

D D
The domain D is the three-dimensional space, where dV denotes a volume element. aD is the
border of the domain D and dA represents a surface element of this border. The symbol s in ex-

pression (5.20) is a unit vector outwardly directed on the surface element dA. The Lagrange
function L is a function of space, of the function ¢ and its first derivatives, thus:

L= L{X!yazaq)(X7Y7z))—7_—y_"'"—}-
ax

The function L is defined on the border as a function of space and of the function d(x,y,z), thus:

L’ = L’ { X, Y, Z; (T)(Xy)’»z) } M

The first variation of J can be expressed as follows:

8 = [ @BLAV - | (3L)-sdA
D oD
= M%ﬁ;“*%mﬂdv - BSD%M'NA
= Dg {%—(%‘;—)J}smdv + Dj (—é%:q))_idv - BQ%“"S“A
= DS{%—(%MSMV + BSD{%;~%}6¢-NA. (5.21)

The suffix preceded by a comma denotes partial differentiation. Repeated suffixes denote
summation (Einstein convention).
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In respect of the above result disappearance of 8J for arbitrary 8% is equivalent to the following
conditions:

oL aL .
L =), =0 D .
2 ( o, )i , in (5.22)
a = 0 , on aD, (5.23)
aL oL
= - Z=yes =0 oD 5.24
(a¢ﬁ, 3 )es on 2 (5.24)

where the border 3D is split up into two parts: 3D = aDy + aD,.

The addition of L' to the functional J can be considered as a compensation for the contribution
arising from constraints on the gradient of the function ¢ at the boundary 4D,.

Stationary groundwater flow is described by the set:

Kp), =0 , in D (5.25)
p = f , on aD, (5.26)
K3 _ g | on 4D, (5.27)
as
where: ® : potential,
f . aconstant,
s : the outer normal on dD,,
K : the permeability,
D : flow field,

oD, + aD, : the flow field border.

For the choice:
1
L= > K@;? , L =g9, (5.28)

the set (5.25), (5.26) and (5.27) becomes equal to the conditions (5.22), (5.23) and (5.24).
Therefore, the functions (5.28) are the Lagrange functions of which the Euler equations
correspond to the field equations of porous flow, while general boundary conditions can be
incorporated. The functional J accordingly defined represents a suitable quantity from which
the numerical solution can be obtained.

Finite element formulation

The integral representation of the functional is appropriate to spatial approximations. The
domain D in which flow is considered is subdived into many small subdomains. In such a
subdomain the local potential distribution can be approximated by a given spatial function,
such as:

d=0(,Y,2,0,0, ... 0y, (5.29)
where o, are yet undetermined parameters. Substitution into the functional J for all subdomains
results in an expression in terms of the parameters o,. For any arbitrary variation in each a; the
functional J must be a constant, in that the first variation of J vanishes. Hence, for each o; a
condition can be formulated when employing the identity:

a—J'(S(!i = O,
aq,;
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so that a complete set of equations is found from which all the parameters o, can be
determined. Subsequently, the approximate solution (5.29) is defined.

The set of equations can become large, but nowadays fast computers with large memories and
sophisticated methods to efficiently solve many equations, allow for almost any flow problem
to determine an approximate (weak) solution in a straightforward manner taking into account
arbitrary boundary conditions.

The most common approximation per subdomain is a simple linear function parameterized in
nodal values at the nodal points suspending the subdomain in space. The derivation of the
corresponding set of discrete equations in this case is extensively described in many textbooks,
see for example Verruijt (1970). It will not be further outlined.

Also the boundary integral method makes use of the calculus of variation. In this case exact
solutions are parameterized in a finite number of boundary nodes defining the border of a
subdomain. The final solution is therefore exact inside the subdomains, but fluctuation
between selected points can violate the imposed boundary conditions and the compatibitity of
the solution at the subdomain separations.

The previous analysis shows that, since the functional J is not affected by a limited number of
finite jumps in the Lagrange function, different values for the permeability can be assigned per
subdomain. There is also no restriction to the form or distribution of subdomains, except that
they must cover the flow domain completely.

With the calculus of variations and the availability of large computers the limitations of
analytical solving methods, i.e. complex geometry and inhomogeneous material properties, are
mastered.

The free boundary condition

As has been the subject of discussion in section 5.a a specific boundary condition exists in the
field of seepage flow, to wit, the free surface. This surface coincides with the border of the
considered flow domain and it is determined by pressure conditions (atmospheric pressure).
The position is usually unknown prior to the calculation, unless the border is fixed, for example
a seepage surface.

According to the preceding analysis the application of the calculus of variations upon a
functional defined as an integral over the entire flow domain does not automatically inciude
variation in the flow domain itself. A fundamental reconsideration of the analysis is possible to
incorporate variation of the domain (defining a kind of Leibnitz’ rule for variations).

Another approach was designed by Baiocchi (1972). The idea is to extent the domain over the
unsaturated area by definition of a suitable new variable related to the potential .
Consequently, the flow domain can be defined as a constant area in space for this new variable.
The field equation in terms of the new variable is appropriate to apply a solution procedure
based on calculus of variations.

However, not all boundary conditions can be formulated, and the procedure to obtain the
solution in terms of the potential (by derivation) causes loss of accuracy, see Engering (1976).

Recently, another method was suggested and worked out by Bathe and Khoshgoftaar (1979).
Their solution algorithm employs a nonlinear permeability description to account for the a priori
unknown free boundary position. In fact, an iterative procedure determines the unsaturated
area, where corresponding to negative values of the potential head the permeability is assigned
fictituous small values (numerically zero).

Time dependency causing a contineously changing position of the free boundary is not covered
by the method of Baiocchi or Bathe and Khoshgoftaar. Although their methods do not seem
unpractical to treat free surface porous flow problems, no preference is yet found above
applying an explicit method, simply using a steady state solving procedure every time step.
The flow domain is allowed to change after every time step in accordance to the moving
boundary condition, equation (5.12).

Aware of the fact that the character of the moving boundary condition is nonlinear, whereas the
field equation and other boundary conditions are linear, it seems profound to design an explicit
procedure. Such a method has been proposed by Verruijt (1970). It involves iteration of the finite
element mesh, i.e. an updating of free surface node positions every time step. It requires
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therefore a thorough organisation of numerical data and a time step which does not giverise to
dominant numerical noise or divergence. In section 5.c a semi-empirical formula for the
maximum admissible time step is derived.

The computer code SEEP

The purpose of analysis is to solve practical problems or better, to provide a practical tool to
solve problems. Such a user-oriented tool governing general seepage flow is the computer
program SEEP, which has been composed at the Delft Soil Mechanics Laboratory by Barends
(1976). It uses the finite element technique.

The emphasis for this program was directed towards:

— general application; more dimensional, free surface flow in heterogeneous flow fields of
arbitrary geometry under varying boundary conditions;

— automatic accuracy; the user is not hindered by mathematical details and no specific
knowledge concerning coherence of matrices, and convergence of iterative solving
procedures is required,

— flexibility; different kinds of problems or various aspects of a certain problem can be
simultaneously evaluated at little extra effort;

— communication facilities; a simple user-language to input a problem is composed and
various possibilities to visualize results are available.

w0l

7

i
A

EL 20

l

4 5o 7 w0l o7 07

{oundation bed

sand

A

<
A

N

AN
-

Fig. XXVl Subsurface, nonlinear flow through a foundation of a sea barrier.
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By realizing these conditions a method became available to optimize the design process and to
increase insight in the aspects of seepage flow in all kinds of earth works and foundations. In
Fig. XXVI a recent example of a complex problem is shown.

It concerns the subsurface flow through the filter construction of the sill in the foundation of the
Oosterschelde storm surge barrier, see Barends and Thabet (1978). The constitution of the flow
varied from linear to transitional and turbulent types. The finite element mesh, iso-potential
lines for a steady state flow and corresponding iso-gradient lines in the sand bottom and the
first sea-gravel layer are represented.

The concepts of the SEEP code are outlined in a bulky system documentation, and a compact
user's manual is written. The structure of the program is such, that the user can model the
required numerical actions. Four phases (units) are distinguished:

— unit GENA for mesh generation and composition of the system matrix,

— unit CALC for steady state flow calculation,

— unit TRIA for three-dimensional mesh generation,

— unit TIME for transient free surface flow calculation.

These different units can be combined into one jobstream, see Fig. XXVII. In every phase the
user can direct individual operations, and over twenty user controlled actions can be started,
see Fig. XXVIII. The code contains about 7000 fortran statements and the additional plotting

library another 4000.

Next, three examples of utilizing the code are given. The first example, mentioned in Fig. XXIX,
concerns steady, free surface, axi-symmetrical flow towards a well including a seepage surface.

40 4—n —-
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x T u
20/
o H
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Fig. XXIX Steady, free surface, axi-symmetrical flow towards a well.

A second example in Fig. XXX shows the case of locally lowering of the groundwater table by
horizontal drains required for a deep situated highway. The contribution due to infiltration (rain)
is taken into account. The discussion in section 5.2 made clear that the effect of internal
production along a free surface is equivalent to infiltration at the free surface. In the finite
element approach a nodal discharge at the free surface nodes simulates infiltration. The
program SEEP determines the correct steady state free surface position including a constant
infiltration. Also a sheet piling on either side of the highway has been installed to separate the
groundwater regime in the highway section from the environment, a polder. A sheet piling con-
struction is not impermeable, see Brauns (1978). The purpose of calculations was to optimise
the location and dimensions of the drainage systems.

A third case presented in Fig. XXX deals with a free boundary porous flow problem, where the
phreatic surface is discontinuous. Along some parts of the flow field border the free boundary
conditions are converted to seepage conditions or artesian conditions. The position of such
parts is unknown. Though in some situations an approximate analytical solution exists, see
Moench and Prickett (1972) even for inhomogeneous multi-phase flow fields see Strack (1979), a
numerical iterative procedure can be applied as well. Furthermore, a numerical method is
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Fig. XXX Drainage of groundwater under a deep situated highway.

appropriate to general inhomogeneous flow fields with arbitrary geometry, see Fig. XXXI. Some
intermediate approximations of the free surface position during the iterative process is shown
as it has been determined by the program SEEP. A few iterations provide a sufficiently accurate

result, and a corresponding iso-potential plot is composed.

In the previous examples the capillary zone has been disregarded. it may sometimes have a
pronounced contribution. This has already been indicated by Terzaghi (1943), and an
experimental study by Kerr (1954) clearly reveals the effect in extreme cases.
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Fig. XXX} A discontinuous phreatic porous flow problem.

For a limited range of boundary geometry Chapman (1959) gave some mathematical
formulations of the contribution of the capillary zone. Also a numerical procedure will do.
Another constraint at the free surface, in fact introducing a capillary pressure head in stead of
the atmospheric pressure, will automatically include this zone within the flow field.

However, at the fixed border of the flow field pore water can not seep out at pressures under the
atmospheric pressure, and consequently some special conditions have to be imposed. For the
finite element approach this does not represent a serious problem.

The program SEEP contains a hundred error checks in order to try to defend the user against his
own fantasy and to show the plausibility of the calculated results. The various plotting facility
has proved to be an important feature to scan the program’s reliability.

5.c NUMERICAL AND ACCURACY OF PHREATIC FLOW PROBLEMS

In this section the case of non-steady flow will be considered. Storage of water due to the com-
pressibility of pore water or due to volumetric deformations of the soil can be included by
solving the fieid eguation in terms of the extensive potential, equation (4.19), for the steady
case, and explicitely solving the free boundary condition in terms of the potential $. According
to the discussion in section 5.a this condition is independent from the volumetric storage
variations in the flow field.

However, in most situations the effect of volumetric storage within the field is small in order
compared to phreatic storage effects. This becomes evident from the corresponding values of
the coefficient of nonlinearity, described in section 4.c, equations (4.39) and (4.43).

The time dependent character of flow is introduced through the presence of a free moving
boundary. The position of the boundary is a function of time. The field equation however is the

same as for steady flow.

In section 5.a the kinematic boundary condition along such a free surface is derived. It has been
shown that equation (5.13) governs phreatic storage with vertical infiltration N:
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9% _ Kwap - K+N)22 4 N, (5.30)
at daz

In several textbooks a similar expression is adopted, but not always the second term on the
right hand side is complete, as it misses then the infiltration N. This particular term covers the
convective contribution due to infiltration, and it should be included in the phreatic storage
equation .

At the free boundary a second condition is imposed, in fact a pressure condition, see equation
(5.1):

b =2+ p,leg (6:31)

where p, denotes the atmospheric pressure. When a capillary zone is considered this pressure
has to be replaced by the capillary pressure p,. Both conditions, (6.30) and (5.31), control the
equilibrium and the position at the free surface.

Steady free surface flow

Steady free surface porous flow is solved by imposing (5.30), infact defining an impermeable
boundary along the free surface, the position of which is yet undetermined. Lacher (1975) gave a
method to determine a steady phreatic surface for a turbulent type of flow. He derived an
analytical solution for a simple geometry and verified this result with an experiment. In a finite
element formulation an impermeable boundary condition is a natural condition, and no special
arrangements are required. Steady infiltration is taken into account by nodal discharges. To
satisfy the second condition (5.31) the position has to be adjusted. The SEEP code calculates
the correct location of the free surface applying an iterative method, according to:

HI* = (1-0)H + 0@ ~ p,/eg), (5.32)

where H, represents the vertical position of the free surface at different free surface nodes i. The
factor w is an interpolation coefficient, the value of which is usually somewhere in the range:
0<w<1. The flow fields presented in Fig. XXIX, Fig. XXX and Fig. XXXi have been determined

using this method.

Transient free surface flow

Also in non-steady surface flow condition (5.30) and (5.31) are imposed at the free boundary. in
this case the numerical procedure is different. It starts from a steady state situation, generated
at initial time. Upon this steady state solution the time dependency is superimposed, step by
step.

The phreatic position is in pressure equilibrium. Hence, condition (6.31) is imposed along the
free surface by a guess {fixed nodal potentials). The efflux (nodal discharge or potential gradient
normal to the surface) at the free boundary due to a time step change in the prescribed time
dependent agents determines the phreatic surface adjustments through the storage equation
(5.30) being solved explicitly. However, the adjustment of the free surface will not take place
linearly in time. They cause a slightly different potential distribution and a different efflux at the
phreatic surface within the same time step (without altering the actual values of the time
dependent agents). A second refinement in the same time step is recommendable.

Numerical methods

There are several methods to determine the transient free surface position, see Perrels (1975).
For example, Verruijt (1970) utilizes nodal discharges caused by time step alterations..The
storage equation (5.13) becomes by introduction of the filter velocity, q= — KV§:

9 _ N qve-(1+ N 5.33
n P qQVid - (1 + K)Z). (5.33)
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Verruijt solves this equation for plane vertical flow in a linearized form, but he disregarded the
term N/K:

aH oH
n-L-=q, - g,—+ N, 5.34
P g, — O« ™ (6.34)

p=H.

Another method is suggested by Todsen (1971). He makes use of the potential gradients, which
are available in a finite element formulation in the free surface elements. The difficulty which
arises is that the position and the potential are nodal agents, whereas the gradients are average
values in elements.

Todsen utilizes an interpolation scheme which is solved explicitely. Also equation (5.34) is used
which misses the term N/K of (5.33). Cheng and Li (1973) designed a modified method, also
based however on (5.34). The pressure boundary condition (5.31) is written in the following form:

P (x, Hx, 1), 1) = Hix, b),

where H is related to the position of the free surface.
Differentiation with respect to x gives:

86>+6® oH _ oH

3

X dz ax X

or:
00 _ (4- 90, H (5.35)
X dz oz

In a similar manner differentiation with respect to t leads to:

00 _ (g 0%, 0H (5.36)

at oz ' ot

Substitution of (5.35) and (5.36) into the phreatic storage equation (5.33) yields:

aH ad aH ., ad ap
L= K- 229 (57 — (K+ Ny — NY/(1 = —2). 5.37
nCr = KO = 20 (5 = (Ke N = NJ(1 = ) (5.37)
Cheng and Li derived a slightly different formula, namely:
oH i) aH |, i)
— = K(1 - ( - - N). .38
N5t K( = )( ™ Y -(K = N) (5.38)

They did not include the time dependence of H according to (5.36), and also the convective
contribution Né§/adz is not considered.
Next, equation (5.38) is linearized by introducing the approximation:

oH . , , 0H oH _ oH
ax ax - ox ax

aH

ax )

i

(S =

The calculation starts with an initial guess for FI, which is then adjusted until a certain
accuracy.

Barends (1976) applies the method suggested by Verruijt.
Stability and accuracy

Solution of the phreatic storage equation involves an equation of the type:

a_F_=a__‘9_’:_+b-
ot ax
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The corresponding difference scheme is:

i+t el i+1 i i _ gl
F. Fi —ale F F r (-0 Fi - Fi B (5.39)
At AX AX

in which o represents an interpolation factor between time level j and j+ 1. The stability
criterion for this equation yields:

At<—B% 0ot (5.40)
a(1 — 2a) 2

Equation (5.39) is unconditionally stable for —;-scost

In respect of equation (5.34), keeping in mind that the filter velocity g is determined and kept a
constant in the considered time step, this criterion becomes:

At < nAx/(Kg—®(1—2m)),
X

or.

At < —NAx? (5.41)
KA (1 - 20)

The variation A is related to the variation in the time dependent boundary value, which is
denoted by A®, during the same time step. Thus:

A=< AAD. (5.42)
The factor A is related to the configuration of the flow pattern, i.e. to the coherence of the
considered boundary node and the actual prescribed time dependent boundary value. For
groundwater flow A<1 holds (the extreme values for § are situated on the border of the flow
field). Since the time dependent behaviour of @ is known, the value of A® can be determined by:

A® = )AL, (5.43)

where A denotes the extreme value of | d®/dt|, see Fig. XXXII.

5 i

tan-12

_A

.

Fig. XXXII Variations in the boundary value.

Substitution of (5.42) and (5.43) into the stability criterion (5.41) gives:

At < AxA/N(KAMA(T = 2w)) . (5.44)

Stability does not imply accuracy. A reduction on the time step determined by this criterion will
improve the accuracy of the resuits. Barends (1977) checked the validity of (5.44) for different
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configurations using a fully explicite scheme (w = 0). Sufficient accuracy is found for a time step
according to:

At < %Ax«/n/(K)»A) . (5.45)

it must be noted that a secondary of the influence of boundary motion on the stationary
gradients at the free surface has been taken into account by a so-called multi-time-step method,
which is not further discussed.

An example of the application of the computer program SEEP for complex transient free surface
flow problems is represented in Fig. XXXIII. The case concerns a sand dyke subjected to tides
and a storm surge. The slope of the sand dyke is partly covered by an asphaltic layer and at the
toe a sheet piling construction is installed. The attention is drawn to the effect of accumulation
of phreatic pore water during the storm and to the pressure at the asphaltic layer immediately
after the storm fall off. Fortunately, due to the time step criterion, equation (5.45), a large time
step (about one hour) could be used without affecting the stability and the accuracy.

A similar problem has been simuiated by an electric analogon, see Pereboom (1978). Though
difference in discretization between a digital and an analogous model exist, a good agreement
was found. Hence, the accuracy of the calculation results was sufficient. Digital computers can
efficiently be used for large transient free surface porous flow problems.

SURVEY OF NONLINEARITY IN GROUNDWATER FLOW

To summerize the principical results of this thesis a survey of the various aspects about the
process of groundwater flow, discussed in the preceding chapters, is presented emphasizing
the deviations from to the linear theory.

Groundwater flow is described by Darcy’s law according to:

9= - Xwp+ogvy= - Lo, 6.1)
u v

which comprises two fundamental concepts: a constitutive relation for groundwater flow, and
equilibrium between driving and resistance forces. A dimensional analysis reveals that with
four physical numbers (the Galileo, the Weber, the Reynold, and the Froude number) the
constitutive relation for porous flow can be formulated to cover general ante-linear, linear and
post-linear flow behaviour. On physical grounds the nonlinearity is bounded by a parabolic
behaviour. Turbulence in a porous medium is geometrically restricted to pore size dimensions.
An approximate linearization technique is suggested, tested and evaluated experimentally. The
linearization involves an iterative procedure about the intrinsic permeability k, which is defined
by:

k =v(A'C,g|Vo|/D)™ " (6.2)
In coarse beds a post-linear porous flow behaviour is more significant to the specific discharge
(q) distribution than to the potential (¢) distribution.
The permeability k, a fundamental property of porous flow, is related to the void ratio e (or
porosity n) in the following way:

kik, = (ele;)* , e=n/(1-n}. (6.3)
The power x is generally larger than unity (3<x<5) causing an amplified effect in the

permeability when the porosity varies (soil deformations). » is determined by experiments.
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The resultant compressibility B’ of an air-water mixture can be expressed by two different
constants, defining either the case where small air bubbles are present, or the case where all
free air has been dissolved. The corresponding discontinuity occurs at a critical pore pressure
p., which is fully determined by the air solubility coefficient w and the initial saturation degree s;
measured at pore pressure p,. Disregarding surface tension it is found that:

p' = 2wl/p, for p<p,

B'=p for p>p., (6.4)
where:

P. =(1-5)plo. (6.5)

and where B is the compressibility of pure water.

Since in the presence of free air bubbles the compressibility 8’ is much larger that in the
absence of free air in the pore water, this phenomenon cannot be ignored in a proper description
of the mechanical behaviour of semi-saturated soils.

The interaction between pore water and the porous medium is reconsidered in the form of
continuity of momentum for both substances. Under very general conditions this formulation
reduces to Terzaghi’s effective stress principle:

(6.6)

6=G"—p,

which states a relation between the total isotropical stress o, the effective isotropical stress ¢
and the pore pressure p. For semi-saturated soils this principle holds when the pore water
remains coherent. Therefore, the present theory is restricted to circumstances where the
saturation degree s of the pores is above 85% (s>0.85).

The mechanical behaviour of soil is significant to groundwater flow. The motion of pore water is
influenced by changes in the pore geometry, which can occur in deformable soils. it affects the
permeability and induces storage variations causing pore pressure gradients, which giverise to
porous flow. Resistance to porous flow by internal friction between the pore fluid and the
porous skeleton limits the pore fluid motion and retards the deformation rate of the skeleton.
Hence, the mechanical behaviour of soil is restrained by pore water dissipation (consolidation)
and for specific circumstances (irrotational elastic deformations) this effect can be described
by a storage equation according to:

3(9;{95) = cVp, 6.7)

where p; is related to the boundary conditions (or to the total isotropic stress o). The presence
of this function pg is the reason that the storage equation is not always similar to the familiar
heat diffusion equation, even in the simple case of irrotational deformations.

In deriving equation (6.7) a perfectly elastic soil deformation behaviour has been assumed. Such
an assumption in a rather crude approximation in regard to the microscopic nature of soil, in
particular concerning the intergranular contact forces and the overall deformation of the porous
skeleton due to local pressing, crushing, rolling and sliding of solid particles. However, the
proposed linear behaviour provides a first estimation, and a description amenable to
fundamental mathematical operations, contributing to a deeper comprehension of the
fundamental character of the process.

Due to deformations a soil element displaces and conveyes the pore content. Hence, it should
be obvious that the interaction phenomenon between the pore fluid and the porous skeleton
must be formulated with respect to the moving soil.
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This implies that Darcy’s law must be introduced relative to the soil motion, thus:
g = n(w—v, (6.8)

where w denotes the absolute pore fluid velocity and v is the absolute porous skeleton velocity.
Several authors have violated this fundamental concept and they obtain a storage equation with
an erroneous storage coefficient (consolidation coefficient) when including soil deformations.

It has been shown that the familiar storage equation for a fully saturated porous medium
according to:

—V-(@q)=9{%+nB—D§}, (6.9)

where D/Dt represents the substantial derivative with respect to a deforming (moving) soil
(D/Dt=4/8t +v.V), is also valid for semi-saturated porous media. In that particular case, in a
slightly modified form, the governing storage equation becomes:

1 De Dp
—Ve(@'q) = ¢ + np’ . 6.10
(@q) = ¢'{ 6 Dt B Dt} (6.10)

Here, o' constitutes the pore fluid density including the air content (¢’ =so+(1—-8)o"") and b is
the specific volume of stagnant air, which is considered to be small (b<1—s). ¢ denotes the
volumetric strain of the skeleton.

Darcy’s law is defined by:
q= ..-éf-‘-;(v;wr Q'gv2) = _k—uqum ~ KV, 6.11)

for semi-saturated soils (provided that s> 0.85). The permeability is affected by the presence of
stagnant air. A modification of the permeability is suggested in the form of a reduction by a
factor (1 —b)*.

For an irrotationally deforming porous media the porous flow field: itself is irrotational.
Therefore, the process can be formulated in terms of a potential. It is found that the folowing

potential:

o
d=z+ | (1/ggde, (6.12)
pF

transforms the governing storage equation (6.10) into:

Vo + m((Ve) — ‘;—f) - % (6.13)

where ¢ is the common consolidation coefficient and m denotes the coefficient of nonlinearity,
defined by:

m = g'g({ox + nf’)/n. (6.14)
It incorporates the dependence of permeability and porosity, expression (6.3), the com-

pressibility of the air-water mixture p’ and a soi! deformation parameter a. Its dimension is the
inverse of a lenght.

in anisotropic porous media the pressure induced density variations (¢’ is a function of p only)
will give rise to density rotations in the flow pattern. This effect is small of second order.
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In general the significance of convective terms (the second term in the right hand side of
equation (6.13), D®/Dt = ap/ot + v.V®) is negligible. In some particular cases it can be taken into
account in an approximate way.

For horizontal (confined or phreatic) aquifers equation (6.13) can be transformed into a common
form, namely:

Dy
Viy = . 6.15
X =D (6.19)

The potential x appearing in this equation is called the extensive potential. It is related to the
potential § according to:

¥ = exp(my) — 1. (6.16)

Since (6.15) itself represents an ordinary storage equation and because general boundary
conditions can be formulated in terms of y, the nonlinear effects in the original storage equation
(6.13) can be included in a very simple manner.

The nonlinearity becomes manifest in a reduction of the area of influence by 10% tot 20%.

For vertical flow the storage equation (6.13) can be transformed into:

a%x Dy
2 = A7
¢ Gl Dt ’ (6.47)

exp (mz) ,
m2ct .

g
I n

This equation can be solved for general boundary conditions using a finite Mellin trans-
formation technique. Several characteristic solutions (a unit shock, a unit step, and a cyclic
boundary condition) reveal a specific influence of nonlinearity.

A numerical procedure to solve (6.17) is a simple matter.

Since in most practicle cases the coefficient of nonlinearity m is relatively fairly smali, the li-
near theory of groundwater flow provides sufficiently accurate results (provided that the flow
behaviour can be described by Darcy’s law). At far distances from the disturbance considered
the nonlinearity becomes relatively more predominent. The real nonlinear soil deformation
behaviour, which is not discussed in this thesis, may contribute to this effect.

Moving boundaries (phreatic surfaces) form another type of nonlinearity encountered in ground-
water flow (geometric nonlinearity). The general phreatic storage equation, or the kinematic
boundary condition is derived, including infiltration B and convective effects due to soil

deformations:

n —‘%‘f’- = K(VO)? — (B+nV)sVd + (B+nv—KV§)-Vz. (6.18)

In a linearized form this condition states:

B _N-geve—+ N
NS =N = QY@ (1+92). (6.19)
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including only vertical infiltration N measured with respect to the soil skeleton velocity v. A
survey of numerical methods to treat (6.19) is given. The term N/K is usually disregarded, but
this seems to be unnecessary (K = kg/v: hydraulic permeability).

Volumetric storage variations due to soil deformation and to pore fluid compressibility do not
influence the kinematic boundary condition (6.19). General nonlinear groundwater flow can be
solved in the flow field in terms of the extensive potential y, whilst the phreatic boundary
condition is solved in terms of §, or employing in (6.19) the identity:

o= “inx+1). (6.20)
m
A stability criterion for the time step At to solve (6.19) is derived according to:
At < AX (KAMA(1 =2w)/n)™ "%, O <w<'%. (6.21)

Here, Ax denotes a space discretization, A is the maximum time rate in a given boundary value
and A is related to the configuration of the flow pattern. o is an interpolation factor in the time
domain. Introduction of A and A in the criterion makes an explicit procedure to solve transient
porous flow problems rather efficient.
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coefficient of nonlinear porous flow
relative volume of bonded air pockets
coefficient of consolidation: K/{(o'g{la+np')) = ¢
convection velocity by internal production
void ratio: nf(1-n) = e

exponent of nonlinear flow

gravity acceleration: 9.81 m/s?

complex unity: 2 = - 1

intrinsic permeability: D¥A = CTDn = Kk
coefficient of nonlinearity: o'glox+np’)/n = m
porosity

unit vector in the direction of the outward normal
pore pressure

Laplace transform variable

atmospheric pressure

capillary pressure

air pressure

boundary pressure: aF/(a+np’) = pe
filter velocity, specific discharge

bubble radius; radial coordinate
saturation degree

Mellin transform variable

time variable

displacement vector

soil skeleton velocity

water vapour pressure

pore fiuid velocity

air bubble velocity

coordinate, position vector

coordinate

vertical coordinate

coefficient of porous flow configuration (linear, turbulent)
specific infiltration: nd = B

hydraulic resistance of confining layer: d/K=C
drag coefficient

particle size

diffusion coefficient

pressure function

volumetric driving force

shear modulus

volumetric driving force

aquifer thickness

initial gradient: | Vo | g0 = |,

rate of volumetric mass production
hydraulic permeability: kgiv = K

buik modulus

molecular weight

specific number of bubbles

total volumetric discharge

gas constant

volumetric resistance force

area of radial extent, area of influence
aquifer storativity: HKlc = §

specific volumetric storativity: Kic = S
absolute temperature

tortuosity

specific volume

linear flow resistance: Av/gD?=W

nonlinear flow resistance: 4/A'C, | Vo | /gD =W’

gas compressibility factor
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laterally confined compressibitity: 1/(K; +4G/3) = o

isotropic soil skeleton compressibility: 1/K; =o'
pure water compressibility
compressibility of an air-water mixture
volume strain
porosity factor
transformation variable: my =1
transformation variable: exp[0] =
transformation variable: mz=29
permeability amplification factor
leakage factor: \/KHC =1
refative leakage factor
dynamic viscosity: gu=u
kinematic viscosity: u/o=v
transformation variable: mx=¢§
3.141529
fluid density
air density
air-water mixture density
solid particle density
surface tension
total stress
effective stress: s +p=0¢’
stress tensor
transformation variable: m2ct=1
piezometric head; potential: z+ pleg = ¢
potential: z+ (P (1/g'g)dp = &

PE
extensive potential: exp(md)—1 = ¢
phase shift
air solubility coefficient (in water
non-dimensional coordinate: rlA/ct = ®
circular frequency
gradient operator
divergence operator
curl operator
Laplacian operator: VeV = V2
partial derivative symbol
substantial derivative following the soil skeleton
substantial derivative following the pore fluid
variation
summation symbol
multiplication symbol

bed-Froude number: q¥gD = Fr
Galileo number: v¥gD*=Ga
bed-Reynold number: gD/v=Re
Weber number: ogD¥c = We
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Summary

Since 1856 when Darcy laid the basis for the calculation of the flow of water through sands,
researchers have been interested in groundwater flow. Groundwater is essential for agriculture
and water supply, but it also plays an important role when soil is used as a construction
element, such as for dykes, roads and foundations. The mechanical behaviour of saturated or
dry, fine graded or coarse soils are quite different.

The theory of groundwater mechanics must be based on the system: water-soil-air. Up to now
study has been restricted to mainly saturated and/or undeformable soil. In this thesis the
contemporary theory is extended to compressible fiuid flow in a semi-saturated deformable
porous medium; a water-soil-air mixture, the air in which appears in the form of micro-bubbles.
The pore water moves, whereas the soil itself deforms. It is assumed that this deformation
behaviour is linear and free of rotations.

From a fundamental reconsideration it is shown that the mechanical behaviour of this system
can be formulated in a rather simple way taking into account various nonlinear effects.
Convective terms and the variation of the permeability related to soil deformation are included.
The validity of the formulation derived is discussed. A general solving procedure applying the
Mellin transformation technique allows elucidation of the influence of these nonlinear terms on
the basis of analytical solutions of some characteristic problems.

In the phenomenon of groundwater flow so-called moving boundaries also occur. The free
surface of natural groundwater, which actually varies, is such a boundary. This implies that the
domain in which the process of porous flow is considered, changes (geometric nonlinearity).
This aspect is explained. Transient phreatic porous flow problems can be solved by applying
numerical models. In the discussion reference is made to the extensive literature.

In conclusion, the following statements hold for nonlinear groundwater flow. In most practical
cases the linear theory is sufficiently accurate, nonlinearity becomes manifest in a reduction of
the area of influence, and time dependent porous flow problems can be explicitely solved
applying a time step much larger than formerly assumed.
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