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Behavioral-Based Pedestrian Modeling
Approach: Formulation, Sensitivity
Analysis, and Calibration

Samer Hani Hamdar'®, Alireza T:«.llebpour2 , Kyla D’Sa'o),
Victor Knoop®(®, Winnie Daamen®®, and Martin Treiber*

Abstract

Pedestrians are among the travelers most vulnerable to collisions that are associated with high fatality and injury rates. The
increasing rate of urbanization and mixed land-use construction make walking (along with other non-motorized travel) a pre-
dominant transportation mode with a wide variety of behaviors expected. Because of the inherent safety concerns seen in
pedestrian transportation infrastructures, especially those with conflicting multimodal movements expected (crosswalks,
transit platforms, etc.), it is important that pedestrian behavior is modeled as a risk-taking stochastic behavior that may lead
to errors and thus collision formation. In previous work, the complexity and cost associated with building pedestrian models
in a cognitive-based environment weighted down the construction of simulation tools that can capture pedestrian-involved
collisions, including those seen in shared space environments. In this paper, a tool that will help evaluate the safety of pedes-
trian traffic is initiated: an extended modeling framework of pedestrian walking behavior is adopted while incorporating differ-
ent physiological, physical, and decision-making elements. The focus is on operational decisions (i.e., path choices defined by
longitudinal and lateral trajectories) with a pre-specified set of origins and destinations. The model relies on the prospect the-
ory paradigm where pedestrians evaluate their acceleration and directional alternatives while considering the possibility of
colliding with other “particles.” Using a genetic algorithm method, the new model is calibrated using detailed trajectory data.
This model can be extended to model the interactions between a variety of different modes that are present in different
mixed land-use environments.
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Pedestrians are vulnerable elements of transportation
systems. Pedestrians often interact with other modes of
transportation, including bicycles/bicyclists, transit vehi-
cles, personal vehicles, obstacles/platforms, and other
pedestrians (/). During such interactions, pedestrians are
more exposed to collision/fall risks and often have less
physical protection than the other modes. The limited
protection and the high exposure to collisions and falls
(i.e., incidents) result in more severe injuries or fatalities
(2). Pedestrians are further exposed to higher risks of
injuries and fatalities in urban areas. In addition, urban
travelers often use multiple modes to commute, including
walking for at least a portion of their trips. In 2016, 76%
of pedestrian fatalities were in urban areas (3). In
Washington DC, U.S., pedestrian fatalities accounted

for 56% of total collision fatalities in 2015 (4). Of all
roadway fatalities in large U.S. cities (> 500,000 in popu-
lation size), pedestrian collisions as a median account for
12.1% of total traffic fatalities (4). In the current urban
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landscape, the most critical and unsafe time for pedes-
trians is when they are crossing the roadway. In 2011, of
all pedestrian fatalities from single-vehicle crashes,
76.6% are associated with pedestrian crossing in contrast
to 16.1% where the pedestrian is moving parallel to the
vehicular traffic (5). The risk of a collision involving a
pedestrian is then increased as a result of speed, the
adopted traffic control schemes, the more complex man-
euvering involved, and distractions. This safety issue has
motivated a focus on pedestrian interactions while
accounting for behavioral and cognitive dimensions
including distractions, risk-taking attitudes, uncertainty,
and sensitivity associated with the surrounding environ-
ment. The traffic or statistical models to analyze pedes-
trian scenarios are often limited in scope and need
adaptation to incorporate both safety and mobility per-
formance measures.

Trying to model pedestrian interactions in a cognitive
framework poses multiple challenges: (1) Heterogeneity
challenge: the pedestrians’ trajectories are not homoge-
neous and can differ dramatically depending on the
pedestrians’ risk-taking attitudes; (2) Formulation chal-
lenge: translating decision-making theories (i.e., judge-
ment phase) into trajectories (i.c., execution phase) is
computationally “expensive” with multiple behavioral
and physiological characteristics to be taken into
account; (3) Calibration and validation challenge: col-
lecting trajectory data at the moments that lead up to a
pedestrian contact or collision is challenging in nature.
Accordingly, a model that captures risk that leads to col-
lisions is essential. Such a type of model can utilize
collision-free trajectory data where pedestrians try to
avoid collisions. Such trajectory data is available, while
trajectory data with multiple collisions may not be read-
ily available for calibration and validation purposes. It
should be noted that collisions may be between pedes-
trians or between pedestrians and other modes of trans-
portation (i.e., bicycles, personal vehicles, buses, etc.).
This paper focuses on pedestrian-only traffic modeling
with the possibility of extending the modeling framework
to account for mixed traffic flow in the future.

Research into this field is essential to develop pedes-
trian/crowd management and control systems that can
accommodate different pedestrians’ interactions while
preventing unsafe walking behaviors. For walking to be a
practical choice, pedestrians must feel safe and protected
by the existing transportation infrastructure. To build
this infrastructure, designers and engineers must take
into consideration the way in which pedestrians interact,
and engineer features that will help to reduce pedestrian
injuries. In other words, the objective of this paper is to
develop a pedestrian flow model in a risk-taking environ-
ment that will assist engineers and planners in creating
safer and smarter urban transportation networks.

Toward realizing such an objective, a behavior-based for-
mulation is offered and tested for feasibility. The formu-
lation is then translated into a mathematical model that:
(i) is computationally inexpensive; (ii) includes the psy-
chological pedestrian decision-making process (based on
prospect theory [PT]); and (iii) is adaptable to model mul-
timodal mixed environment scenarios in the future.

Given such objectives and approach, this paper is
organized as follows. The next section presents a brief
review of literature on the main studies that address (i)
pedestrian safety and (ii) pedestrian walking behavior,
especially those focusing on the decision-making compo-
nent of such behavior. The section after that offers the
formulation paradigm along with the corresponding sen-
sitivity analysis. The following section presents the cali-
bration method and results. The penultimate section
offers the numerical simulation and analyzes the corre-
sponding output. The final section concludes this paper,
with possible future research directions.

Background

There are several approaches to dissecting pedestrian
interactions. A limited number of these approaches,
however, account for physical contact and safety issues.
Often researchers study pedestrian safety empirically or
via exposure statistics to reduce the observed fatalities/
injuries of pedestrians with other objects (6, 7). Another
approach is risk analysis through physical modeling (8).
This method has a greater scope as it can be applied to
interactions that result in collisions and those that do
not.

Focusing on pedestrian flow modeling, there is a
wealth of literature on pedestrian walking behavior. Such
literature is based on the work of Yuan and Daamen (9).
The physical walking models, also called the “human
movement models” are classified into five categories: (i)
force-based models; (ii) optimization-based models; (iii)
cellular automata (CA) models; (iv) utility-based models;
(v) agency-models, and (vi) data-driven approaches
(models). The force-based models’ seminal paper is that
of Helbing and Monar (/0). This paper first introduced
the force-based models under the name of a social-force
model: pedestrians’ interactions are represented mainly
by internal attraction forces (i.c., based on the pedes-
trian’s destination) and external repulsion forces (based
on the location of other pedestrians and obstacles).
Additional social potential fields can supplement the
model, thus offering flexibility in relation to adding dif-
ferent factors (through different fields/potentials) (117).
However, the additive aspect of the forces and the non-
realistic representation of contacts/collisions through
Newtonian physics remain a subject of criticism (/2). The
optimization-based models consider the pedestrians’
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movement as an outcome of an optimization exercise on
an energy or utility scale (i.e., least effort concept applied
to pedestrians’ movement). However, the interpretation
of the parameters in such models is non-intuitive and this
type of model cannot represent behavior in some
crowded situations such as panic situations (/3). CA
models are based on the discretization of space and the
representation of the movement of pedestrians occupying
each space unit through basic two-dimensional rules
(random and/or deterministic rules) (/4). CA models
may be classified as floor field models (where additional
layers may capture the route choice decisions of pedes-
trians) or lattice gas models (15, 16). Despite their com-
putational simplicity, the main issue in these models is
the non-natural movements generated and the non-
ability to reproduce some more complex crowd dynamics
such as those observed in narrow bottleneck situations
(17). Discrete choice models are mostly based on
random-utility theory: rationality is assumed where
pedestrians try to maximize a given utility based on the
operational alternatives presented in front of them (i.e.,
speed and direction alternatives) (/8). Despite these mod-
els capturing a behavioral decision-making dimension
rarely seen in other models, the corresponding frame-
work may be too rigid since it assumes transitivity and
consistency in behavior. Accordingly, some modifica-
tions on such modeling frameworks are suggested,
including the use of bounded rationality theory (/9).
These models remain problematic in relation to imple-
mentation and calibration requirements; such require-
ments limit the use of discrete choice models in building
simulation tools for prediction purposes; discrete choice
models are mostly used to analyze pedestrian traffic in
specific situations. Finally, “agency models” (i.c., agent-
based models) consider pedestrians as “proactive
and autonomous” entities (i.e., agents). The dynamics
governing the movement of such agents may range from
rule-based dynamics or collision avoidance/evading
maneuvers’ dynamics (9, 20). Despite being suitable to
replicate multiple traffic dynamics, agent-based models
are complex to calibrate and do not capture risk-taking
behavior in an explicit manner. Some efforts to incorpo-
rate some of these dynamics, especially the evasive
maneuvers’ dynamics, into different aforementioned
modeling frameworks have also been attempted with dif-
ferent levels of success (2/-27). Finally, the “data-driven
approaches” models of Yuan and Daamen are classified
as “data-in-the-loop” models and “data-in-the-model”
models. The data-in-the-loop models are simply based
on real data that are fed in to analyze and predict collec-
tive movements of pedestrians through smoothing, inter-
polation, and integration techniques. Such data-driven
approaches may generate artificial behaviors since they
are mostly based on sensing technologies (video sensing,

GPS sensing, blue-tooth sensing) rather than actual beha-
vioral modeling. The data-in-the-model models are based
on real data fed into a calibration module to estimate
parameters of one of the aforementioned modeling types.
The calibrated models are then used to predict and ana-
lyze pedestrian’s traffic dynamics. In other words, the
data-driven models of Yuan and Daamen are simply an
application of one type of the aforementioned modeling
approaches (9).

Based on the above review, the main two modeling
approaches that capture risk-taking behaviors are social
force (SF) models (through the interplay of the repulsion
and the attraction force parameters) and discrete-choice
models (through the rationality or the bounded rational-
ity paradigm while weighing different alternatives).
Given that SF models cannot capture the contact/colli-
sion dynamics through the Newtonian Force framework,
the authors believe that decision-making theories are a
feasible approach to formulate a new model that can
account for cognitive and behavioral dimensions such as
uncertainty and risk. However, instead of relying on
bounded rationality theory, this research is based on PT
as a natural extension to random utility maximization.
Moreover, this paper presents an implementation
approach to transform such theoretical framework into
an implementable pedestrian traffic simulation tool that
may be calibrated and validated.

In PT, the interpretations of gains and losses and the
resulting physical reactions are at the core of the
decision-making processes that lead to different risk-
taking attitudes. These attitudes may constitute the fun-
damental cause behind pedestrian’s acceptance of con-
tact. It is important that pedestrian models include a
comprehensive decision-making process to accurately
account for human errors. Utilizing PT will enhance
modeling accuracy and provide space to account for
pedestrians’ misinterpretations. A subjective utility-based
formulation will calculate immediate future risks and will
be the base of a generalized model that can be applied in
multiple pedestrian movement scenarios.

Economics-Based Modeling Paradigm and
Base Sensitivity Analysis

The economic-based modeling paradigm is focused on
introducing a novel modeling framework based on the
concept of “rational” theory to characterize the beha-
viors of pedestrians with the possibility of allowing colli-
sions with different objects (28, 29). The rational theory
assumes that humans do have a “value” associated with
different alternatives and they are trying to maximize
such value. As in the discrete choice models, the alterna-
tives can be the direction of movement and the speed of
movement. Unlike the traditional bounded rationality



Hamdar et al

337

approaches, the main intellectual merit behind introdu-
cing this new framework is to allow risk-taking tenden-
cies with subjective estimation of such risk (i.e., loss
associated with collisions and relative gain associated
with accelerating versus decelerating). It should be noted
that this modeling research is not offered as a critique to
existing modeling efforts. It is noted that collective
pedestrian traffic phenomena (such as lane formation
and zipper effects) may not be created as an outcome of
individual interactions; similarity in decision-making
logic and pedestrian modeling should not be interpreted
as similar behavior, as adapting a decision-making the-
ory to account for collective processes is a challenging
task. It is still unclear if the behavior of the sum of indi-
viduals can be aggregated to a crowd behavior model at
this stage of this research.

With such limitations being acknowledged, under the
construct of rationality, it is considered that pedestrians
are subjectively aware of their physiological and
information-processing capabilities and vulnerabilities,
and behave according to those capabilities. Given these
capabilities, the underlying decision-making logic is
linked to alternatives that may be characterized by a
directional component and a movement component.

Starting with the directional component of the model,
pedestrians should choose their direction of movement in
a two-dimensional environment (at this stage of this
research work). This paper assumes that pedestrians
decide their direction of movement based on the value
function. The value function to determine the direction
can have different forms (e.g., exponential constant rela-
tive risk aversion [ECRRA] form, constant relative risk
aversion [CRRA] form, and PT form). Assuming a PT
value function form where the desired direction is speci-
fied to be directly ahead:

Upr(ay) =, cos(6;)

where

i indicates a given pedestrian number,

0 is the angle between the line connecting the pedestrians
to the destination and the direction of travel, and

vg 18 the desired speed.

The desired speed is interpreted as the speed aimed for
by a pedestrian during free-flow conditions and in pass-
ing conditions. Accordingly, when modeling the accelera-
tions of pedestrians, the desired speed is the maximum
speed adopted by a decision-maker even during a passing
maneuver. The existence of different desired speeds in
different walking scenarios is acknowledged, but is not
accounted for at this stage of the formulation.

Focusing on the form of the value function, n and § are
parameters to be calibrated (v is an amplitude parameter
that represents the sensitivity to the choice of direction
and & is a measure of non-linearity in the PT value func-
tion). Finally, v is the maximum achievable speed at direc-
tion O given the choice of acceleration a, ; (or a; at this
stage ignoring added inter-driver heterogeneity—subject
to reaction time R7; and relaxation time T;). This model
recognizes that the value function is at its maximum (at
the value of 1) when traveling toward the destination at
the desired speed. The value function may be standardized
to be between different values (example, between —1 and
+ 1). Each of the aforementioned parameters should be
calibrated based on individual characteristics to reflect
user heterogeneity. Figure 1 illustrates the above value
function for different values of 6 and V), ..

To complement the directional component, the pro-
posed movement component has its roots in the car-
following model of Hamdar et al. (30). The original
model by Hamdar et al. is focused on vehicle maneuvers
within a lane. The new modeling paradigm, on the other
hand, utilizes Hamdar et al.’s approach to determine the
possible maximum speed for each direction of travel.
For this purpose, pedestrians’ maximum speed should be
determined based on pedestrian-pedestrian interactions.

Following the original Hamdar et al.’s model and con-
sidering U}, (the value function), the total utility func-
tion can be calculated for pedestrians:

) = e (1 =5, ) 0 an) ko )

(2)
where
0.8
0.6
0.8
0.4
0.6 0.2
o
§ 0.0
0.4 02
-0.4
0.2
-0.6
0.0 -0.8

—-150 -100 -50 50

0
6

Figure |. Value function of Equation | for different values of
6 and V), .
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Jj denotes the type of interaction (with another pedestrian
or another obstacle), and

PS,_/a we, and k(v,Av,j) denote the collision probability,
collision weighting parameter, and collision seriousness
term, respectively.

Note that k(v, Av,j) is different for different combina-
tions of pedestrian-pedestrian or pedestrian-object inter-
actions. For example, it is expected that pedestrians put
more weight on pedestrian-to-wall collisions compared
with pedestrian-pedestrian collisions (depending on the
characteristics of the wall or the pedestrian).

To elaborate further, Equations 1 and 2 constitute the
basis to calculate the utility of moving at a certain direc-
tion (given the 8 component) at a given speed (given the
a, value along a given direction relative to a reference
axis that provides the speed change from the previous
time-step, i.e., the reference speed). The collision serious-
ness term k may be a function of speed, relative speed,
and type of conflicting object. However, at this stage, this
term is set to be equal to 1, since all pedestrians are mov-
ing in the same direction and since there is no interaction
considered between different types of traffic object (e.g.,
pedestrian versus bicycle versus personal vehicle). As for
the collision weighing parameter, it is a parameter that
will be calibrated based on trajectory available and is
specific to each pedestrian, capturing inter-pedestrian
heterogeneity. The type of conflict between pedestrians
(i.e., crossing versus side conflict) is assumed not to affect
the collision weighing parameter. The authors hypothe-
size that the change of the collision weighing parameter
is minimal at this stage from time-step to time-step, but
is significantly different across pedestrians as it is more
related to the pedestrians’ characteristics.

With the above assumptions, the formulation pre-
sented still considers the stochastic response adopted by
pedestrians by generating different probabilistic forms
associated with the utility of movements (Equation 2).
Among these forms, the logistic functional form (depend-
ing on the value function error distribution) specified by
Hamdar may be used to calculate the probability density
function (31):

Lﬁw)/amin <an <Aamax
ge = J‘””lux CBPTUO (ﬂ )dal

Amin

3)

Otherwise

where

Bpr reflects the sensitivity of choice to the utility U%(a,).

Once the pedestrian selects the acceleration, the speed
can be calculated for the direction of 8 (see Equation 1
for more details).

For implementation purposes, at this stage of the
study, a start is made with the basic assumption by cal-
culating the probability of collision based on the possi-
bility of trajectory intersection between pedestrian / and
a pedestrian j in the vicinity of pedestrian i. The vicinity
of the pedestrian is currently defined as the total number
of pedestrians surrounding pedestrian i from all direc-
tions (i.e., exhaustive approach). In particular,

;= {(1)
(4)

Accordingly, for a given pedestrian i, the total collision
probability is set to:

o
D (%) 5)

if the trajectories of pedestrians i and j intesect
otherwise

where
N is the total number of pedestrians numbered from
Jj = 1in the vicinity of pedestrian i at a given time-step.

The vicinity of a pedestrian may be represented by a
given circle encompassing all surrounding pedestrians at
this stage, but this term may be described differently by
different researchers. Equation 5 assumes that all con-
flicts are weighted similarly by a given pedestrian regard-
less of the type of conflict (i.e., merging versus crossing
conflict) and the proximity of the conflict. This constitu-
tes a starting point given that pedestrians function in a
limited decision space and given that pedestrians travel at
relatively low speeds to take into account longer anticipa-
tion horizons. This assumption will be tested in this paper
through the calibration exercise. It should be noted that,
despite the simplistic form of Equations 4 and 5, the pro-
posed collision probabilities take into account the speed/
acceleration and the direction of movement of surround-
ing pedestrians in the next anticipation horizon: the num-
ber of trajectory intersections depends on the current
directions and speeds of the surrounding pedestrians as
estimated by the pedestrian in motion (i.e., speed and
direction of surrounding pedestrians follow a normal dis-
tribution with the mean and standard deviation being the
current speed and distribution, respectively). In other
words, since a pedestrian-only scenario with low speeds
and unidirectional movement is being dealt with, the
offered concise yet calibrated collision probability formu-
lation is feasible.

Based the above, it is now possible to find the velocity
v; (the term i is dropped for added clarity) associated
with acceleration a; leading to the highest utility term.
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First, the derivatives of both PT and the total utilities
with respect to the velocities should be computed:

avl; _
dv

() (1 ()™ =5 () (1 + ()™
(e ()"

(6)
For added simplicity, the term k(v, Av, ) is assumed to be
1 in Equation 2. The first derivative with respect to v of
the total utility term becomes:

avy _ Uy

0
= =) ™
As for the second derivative,
d*Uy oy 4°Upr
h? - (1 _pi) 2 (8)

Given such values, and since the g(.) function of
Equation 3 can be approximated, a normal distribution
and the Wiener implementation process may be adopted.
The velocity and directional means are the (combined)
mean p? that maximizes the utility term UP. As for the
variance, it can be approximated as:

o), = —1~0/ (Br%E) 9)

At every time-step, and with a given relaxation time, the
velocity directional term may be computed as:

vi(t + Af) = wd + o)« (t + Ar) (10)

where
y(t + At) is the standard Wiener process.

Toward illustrating the behavioral patterns repro-
duced by the model, a base sensitivity analysis is per-
formed, modifying key parameters in the model: the
collision weight, w,, the sensitivity term Bpy, and linear-
ity term & These parameters are key in the calibration
process, as will be shown in the following section. The
behavioral patterns are mainly illustrating by the model
functions g” of Equation 3, U of Equation 2, and U},
of Equation 1. The collision probability p? is set at 0.1.
The results are shown in Figure 2.

A sensitivity analysis helps determine the parametric
values that will re-create reasonable pedestrian behavioral

patterns while analyzing the associated meaning of each
term incorporated in the model being studied. Comparing
Figure 2, a—c, with Figure 2, g—i, it can be deduced that
the impact of the sensitivity term to the surrounding sti-
muli (i.e., Bpy) is more pronounced that the impact of the
non-linearity term {. Increasing sensitivity will produce a
more limited angular choice set, as may been seen if com-
paring Figure 2a with Figure 2¢. In other words, pedes-
trians will have a more limited choice in relation to the
angles they choose from. On the other hand, the added
sensitivity will result in higher speed values (concentration
of the probability distribution function in an area with
higher v/v, ratios) but with less variance/volatility in such
speeds. In other words, higher sensitivity reduces the dis-
turbances and limits the pedestrian behavior to a more
straightforward path choice with more concentrated speed
set. Such a result may be expected, as being sensitive to
the surroundings limits pedestrian choices and reduces
pedestrian behavior to a more deterministic approach
(assuming that the surrounding stimuli is stable). On the
other hand, as the non-linearity term is increased, the
main impact seems to be on the choice of velocities (rather
than the choice of angles) that tend to go to lower values
with higher variations in the available speed choice sets.

In relation to the collision parameter w,, it is clear that
increasing the corresponding values from 1 to 100 (i.e.,
Figure 2d versus Figure 2¢) affects the associated pedes-
trian behavior observed. Such impact is almost negligible
when increasing w, from 100 to 1,000. Since the collision
weight does affect the avoidance behavior of pedestrians
in the offered modeling framework, this observation
leads to the hypothesis that w, is closer to 100 than to
1,000 (or even 10,000). This hypothesis leads to the use
of such a range when choosing the initial w, values in the
calibration exercise. More importantly, the w, values in
the work of Hamdar et al. when analyzing driver beha-
vior were found to be in the area of 10,000 (32). This
means that drivers put a much higher weight on the loss
associated with a collision with another car/vehicle com-
pared with the weight pedestrians put on colliding with
another pedestrian. Such a result illustrates the advan-
tage of this modeling framework quantifying the risk-
tendencies of drivers or pedestrians when being in near-
collision scenarios. Further insights are given on the suit-
ability of the aforementioned parametric values when
performing a more elaborate calibration.

It should be noted that different value functions will
lead to different outcomes in relation to behavioral inter-
pretations. However, regardless of the form of the value
function, (1) the suggested modeling framework in which
such function is incorporated, (2) the implementation and
calibration of this framework, and (3) the analysis of the
associated findings are among the proposed contributions
made in this research work.
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Calibration and Simulation Validation

There have been multiple recent efforts to calibrate
pedestrian walking behavior at the microscopic level
using high-resolution trajectory data. These -efforts
mainly differed in relation to the estimation methods
adopted (e.g., maximum likelihood estimation versus
heuristic-based estimation) and in relation to the objec-
tive error being minimized (e.g., absolute error terms in
location/speed versus relative or mixed error terms in
location/speeds). For example, Zeng et al. calibrated the
parameters of a modified version of an SF model using
the maximum likelihood estimation (33). Trajectory data
were collected at a signalized intersection in Nagoya
City, Japan. On the other hand, Hussein and Sayed used
a heuristic-based calibration approach leveraging a
genetic algorithm (GA) to calibrate a pedestrian-agent-
based simulation model (34, 35). Trajectory data in dif-
ferent walking environments (e.g., crowded intersection
versus bridge walkway) are extracted and the cost func-
tion to minimize was a distance-based function incorpo-
rated in a mixed error form (34, 35). Given the complex
nature of the formulation adopted in this paper, the
maximum likelihood function could not be derived, and
a heuristic-based approach is needed. This approach is
in line with multiple recent calibration efforts (36—40).
However, such calibration approach is utilized with this
prospect-based risk-taking modeling framework for the
first time; the ability to reach an acceptable error value
while capturing inter-pedestrian heterogeneity may be
perceived as a contribution.

The objective of the calibration (i.e., the objective
function) is to minimize the location trajectory error; in
other words, the error is based on the Euclidean distance
between the simulated location and the actual observed
location at every time-step. For such purposes, the
Euclidean distance (which is also an absolute error mea-
sure) between simulated pedestrians’ coordinates and
their corresponding real coordinates should be mini-
mized while changing the parameters mentioned in the
previous modeling section (Economics-Based Modeling
Paradigm and Base Sensitivity Analysis). Given such an
approach, the next sub-section presents the data used,
and the calibration formulation is introduced afterward.

Data Description

The trajectories for a narrow bottleneck scenario were
provided based on experiments conducted at the Delft
University of Technology (TU Delft) (4/). Such a sce-
nario is chosen since it covers different traffic regimes
and the associated microscopic behaviors (i.e., congested
and non-congested regimes). In the narrow bottleneck
experiment, the walking area consisted of an area 5m
long by 4m wide, followed by an area 5m long by 1 m

wide. In other words, pedestrians are instructed to pass
through a corridor that has a 1 m width and a 5m length.
The narrow bottleneck experiment conducted at TU
Delft recorded the trajectories of 1,154 pedestrians for
915s. Every data point consisted of an x-y coordinate
recorded every 0.1s. In total, 178,195 data points were
saved. At the bottleneck data (entrance of the corridor),
the mean speed was 0.68 m/s with a standard deviation
of 0.4m/s.

Genetic-Algorithm (GA)-Based Calibration

This research aims at having a microscopic calibration
with emphasis on the non-homogenous traffic dynamics
that stem from individual interactions between pedes-
trians. Accordingly, the parameters introduced in the
modeling section (Economics-Based Modeling Paradigm
and Base Sensitivity Analysis). should be chosen to
minimize an error term. Since the model suggested is
non-linear and stochastic in nature, the corresponding
optimization problem is also nonlinear in form and
needs to be solved numerically. For such reasons, a GA
is used for calibration purposes and is based on the GA
method used by Hamdar et al. to calibrate a PT-based
car-following model (43). Such an algorithm will directly
compare the trajectories observed with the trajectories
obtained from the microscopic simulation while pre-
specifying the boundary (initial) conditions and the final
direction of travel. A key aspect remains the identifica-
tion of the neighboring pedestrians. In this research, it is
considered that all neighbors within a 5m radius of a
given pedestrian affect this pedestrian’s behavior and are
thus incorporated in calculating the different individual
utilities of the different directional accelerations chosen.
The second key aspect is the error function. To allow for
consistency, at the beginning of the simulation, the loca-
tions/coordinates are initialized to be equal to the
observed values. The calibration performance measure is
then the coordinate location. This value can have a direct
translation to the velocity, gap, and relative velocity
error. The free-flow speed is calculated by finding the
maximum speed adopted by a pedestrian during the
experiment.

An absolute location error term is selected as the type
of error to be minimized. In other words, the calibration
objective function is the Euclidean distance between the
simulated pedestrian’s location and the observed (actual
data-based) pedestrian’s location. This selection is made
because such error is not sensitive to the type of conges-
tion regime a pedestrian is encountering. For example, if
using the difference in velocity as the base of the objective
function to be minimized, the absolute error is more sen-
sitive to changes in the empirical data when speeds are
higher, and the relative error is more sensitive to changes
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Table I. Average Absolute Error Statistics (in meters)

Statistic Value
Maximum 0.059
Minimum 0.019
Average 0.029
Median 0.025
Standard deviation 0.009

at lower speeds. Specifically, the location error is calcu-
lated at every time-step for a given pedestrian. At the
next time-step, the location of the pedestrian is reset to
their actual location. The future position of the pedes-
trian is then calculated and compared with their actual
position while considering the surrounding pedestrians/
obstacles. This will give each pedestrian an absolute error
term at every time-step of the simulation. The final objec-
tive function to be minimized is the average error based
on the entire observation period.

In addition to the objective function—also known as
the fitness function—the genetic algorithm involves using
chromosomes to represent sets of goal calibration para-
meters. During each chromosome generation, the mixed
error fitness is calculated, and greedy selection is used to
pick the parameters with the 10 best fitness scores. These
become parents that are then used to generate chromo-
somes which are combined to create children. During
this combination, a crossover point is chosen using ran-
dom selection, and genes, except for the chromosome
with the single best fitness score, are randomly mutated
with a probability rate of 10%. At the beginning, a fixed
number of generations are assessed, and the process ends
when the fitness score drops below 10cm or there is no
improvement during 20 successive chromosome
generations.

Calibration and Simulation Results

The calibration methodology described earlier has been
applied to 830 pedestrians of the 1,154 pedestrians
observed at the TU Delft experiment. The results are
offered in Table 1 and Figure 3.

The error statistics and its distribution are encoura-
ging as the values found are below the 10cm threshold
with a single peak around the 3cm value. Given such
results, Figure 4 presents the distributions of the different
parameters discussed in the section presented earlier
(Economics-Based Modeling Paradigm and Base
Sensitivity Analysis). It is clear that a significant level of
inter-pedestrian heterogeneity is captured through the
offered calibration exercise. It is also noticed that the
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Figure 3. Error distribution for all pedestrians in the calibration
exercise.

distributions found do not exhibit clear peaks (i.e., a pre-
dominant value for each parameter) as is normally
observed when calibrating vehicular traffic models.
Another interesting observation is possibly seen in Figure
4c¢. The non-linearity term { has a bi-modal distribution
and thus there might be two walking regimes that should
be further investigated. The first regime may be associ-
ated with more conservative walkers and the second
regime may be associated with more aggressive stable
walkers.

To make sure that the parameters observed are all
contributions to the behavioral patterns to be replicated
by this model, the correlation between the four para-
meters presented in Table 2 is studied. The results show
that limited correlation exists between the calibrated
parameters, and thus it is suggested that the modeling
construct offered in this paper is feasible and produces
realistic behavioral patterns.

For validation purposes, simulation is used to further
investigate the suitability of the modeling and calibration
approaches adopted. The pedestrian model is implemen-
ted using a python code. The simulation time-step is
0.1s. Each pedestrian reacts in a continuous manner
(every 0.1s) with a delay equal to the reaction time. The
pedestrian maximum accelerations/decelerations and
directional change are governed by the Wiener process,
mainly through a correlation time parameter. The maxi-
mum directional change reported was 3° per second
(within the range provided in Liu et al.) (43). The maxi-
mum absolute acceleration value reported is 2.5m/s>
(44—46).

Starting with the microscopic measures, an attempt is
made to re-create the trajectories observed through simu-
lating the first 100 pedestrians detected in the TU Delft
experiment. These trajectories are offered in Figure 5.

The PT-based pedestrian model is able to reproduce
similar trajectory patterns to those observed at the TU
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Table 2. Correlation Matrix Between Calibrated Parameters

mn g Wc Ber
mn |
18 0.123320338 |
W —0.06667759 —0.01717079 |
Ber —0.02528499 0.134601975 —0.04694932

Delft experiment. In particular, the layer/lane formation
patterns inside the bottleneck area (i.e., concentration of
trajectory lines at the upper, middle, and lower sections
of the bottleneck) may be observed in both the observed
and the simulated trajectories. Moreover, the funneling
behavior seen at the entrance of the bottleneck is re-cre-
ated. However, the lateral variation associated with the
steps taken by each pedestrian is not clearly seen in the
simulated trajectories. In addition, the lane formation/
zipper effects seen within the bottleneck walls are not as
clearly formed if comparing the simulation results with
the observed trajectories. Despite the encouraging trajec-
tory patterns re-created, further investigations may be
needed to look into the walking behavior re-created by
the proposed model especially in crowded situations.

In relation to macroscopic traffic measures, the focus
at this stage is on the macroscopic speed-density relation-
ship at the entrance of the bottleneck. The speed-density
data points are aggregated for 30s durations in the area
preceding the bottleneck. In other words, the densities
are extracted for the x-coordinates ranging between 5m
and 10 m and for the y-coordinates ranging between 0 m
and 4 m (as displayed in Figure 5). The results are offered
in Figure 6.

For both simulated and observed flows, the free-flow
speed ranges between 1.5 and 2m/s; as the density
increases, the speed decreases as expected. However,
the speed rate of decrease seems to accelerate at a den-
sity level of 2 ped/m?. The main difference pertains to
the more congested states of traffic. At higher density
levels (i.e., densities greater than 4 ped/m?), the simu-
lated flow often exhibits slower speed patterns if com-
pared with those observed in the experiment. This type
of result may be associated with the consideration of
multiple surrounding pedestrians when computing the
collision probability in the proposed model. Such con-
siderations may reproduce slower speed patterns espe-
cially in crowded situations. In addition, the simulated
model does not produce data points that may
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Figure 5. Observed (a) versus simulated and (b) trajectories of the narrow bottleneck scenario TU Delft experiment—first 100

pedestrians.
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Figure 6. Speed-density relationship at X=7 m for simulated
versus observed (original) pedestrian flow at TU Delft narrow
bottleneck experiment.

correspond to outliers in relation to the speed-density
relationship (i.e., data points associated with low densi-
ties and low speeds). The outliers may be related to
experimental observations (e.g., human subject partici-
pants slowing down with no pedestrians in the sur-
rounding space, possibly because of distraction) but
not to a pedestrian walking behavior reproduced by a
given microscopic model.

Conclusions

This paper offers a new modeling paradigm of pedestrian
walking behavior using PT. With such a decision-making

paradigm, an explicit incorporation of a collision prob-
ability is made possible. Moreover, a value function
allows translating the objective directional pedestrians’
gains in speed into subjective perceived gains. This value
function is key to identifying the risk averseness or the
risk-taking tendencies of pedestrians from a cognitive
perspective (i.e., judgement phase). In line with such for-
mulation, the newly presented formulation was then
translated into an implementable Wiener process for a
faster, more efficient simulation exercise. Once imple-
mented, the model was calibrated using GA methodol-
ogy, then validated in relation to trajectory re-creation
and a resulting speed-density relationship. The data used
for calibration and validation purposes are trajectory
pedestrian observations provided by TU Delft in a nar-
row bottleneck scenario.

Given the aforementioned summary, the following
two questions may be asked: 1) What is the contribution
of another pedestrian walking behavior model if com-
pared with the many existing models such as the CA
pedestrian model, the SF model, or the pedestrian dis-
crete choice model (that has the same random utility con-
struct of the offered PT pedestrian model)? 2) Does the
model re-create existing walking behaviors and crowd
dynamics? Answering these questions defines the contri-
bution made in this paper.

Answering Question I: Existing pedestrian flow models
are mostly physics-based or mechanistic in nature (e.g.,
the CA model, and the SF model and its variants) and
does not have an underlying decision-making theory sup-
porting them. Using such models does not result in para-
meters or parametric values that are straightforward to
interpret from a pedestrian behavior perspective. The
CA models have been developed further to account for
behavioral observations while incorporating decision-
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making considerations. Such development does not lead,
however, to a modeling paradigm that may account for
collision formation while interpreting the associated find-
ings from a risk-taking cognitive perspective (47, 48).
The discrete choice models and the rule-based informa-
tion processing models attempted to answer such issues,
but were not offered in an implementable efficient simu-
lation form. In other words, discrete choice models (as is
the case when analyzing acceleration models) are more
suited to analyzing behaviors than to creating a traffic
simulation tool for design and prediction purposes. The
offered modeling approach of the PT behavioral para-
digm may be able to address such problem. Given such a
contribution, it should be noted that the offered model-
ing paradigm is not intended as a critique reducing the
significance of existing pedestrian walking models. These
models are of extreme importance to the traffic flow
community despite some of their limitations that this
paper tried to address.

The other contribution of the offered paradigm is that
it is built as an extension to a unidirectional PT driver
acceleration model. In other words, deriving the Wiener
process for both a directional and a speed value set of
alternatives makes it possible to extend the formulation
further and investigate different forms of collision prob-
abilities and subjective value functions. Moreover, this
work is a first step toward re-creating a generalizable
decision-making model for pedestrians, cyclists, and
drivers that is efficient in relation to computational com-
plexity and that can be calibrated against individual tra-
jectory data.

The final advantage of the offered model lies in the
possibility of re-creating collisions/contact between the
decision-makers being modeled. Even though safety in
pedestrian traffic is more associated with turbulences
(lateral and longitudinal waves possibly leading to stam-
pede and “crush” scenarios) rather than contact, safety
in mixed traffic may be related to the contact between
pedestrians and other modes of travels such as cyclists
and motorized vehicles. Accordingly, re-producing colli-
sions through a “subjective” collision probability and colli-
sion weight factors may be of interest for analyzing
pedestrian safety in mixed right-of-way scenarios (e.g.,
crossing a road, pedestrians and cars sharing a given
urban space). Different value functions—possibly reducing
the associated error term—may be further investigated,
resulting in different behavioral analysis, assessment, and
evaluation.

Answering  Question 2: the formulation of a
behavioral-based pedestrian model with possible insights
into the cognitive dimensions leading to unsafe walking
scenarios may be appreciated by traffic safety and
human factor researchers. However, from a traffic flow

theory perspective, the models created should be cali-
brated/validated against trajectories and macroscopic
traffic data before being used for simulation purposes.
Even though the formulation offered in this paper is ana-
lytically non-tractable, the adoption of the Wiener pro-
cess makes it possible to use heuristic-based approaches
to calibrate the corresponding parameters. In other
words, the use of the GA method (heuristic) makes it
possible to find the parametric values that minimize the
difference between the observed trajectories and the
simulated trajectories (i.e., the objective function to be
minimized in the Euclidean distance between the actual
and simulated location of a pedestrian at every time-
step). It is acknowledged that analytically tractable cali-
bration methods (e.g., maximum likelihood methods)
allow testing for the statistical fit of each parameter’s
estimate and the associated robustness. However, at this
stage of the research, the authors believe that the calibra-
tion exercise presented in this paper and the associated
validation simulation effort show encouraging results.
These results constitute a motivation for the extension
and improvement of the offered modeling approach,
while capturing both inter- and intra-pedestrian
heterogeneities.
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