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Abstract

Autonomous pod-based railway systems represent a promising innovation in freight transport, combin-
ing the flexibility of modular vehicle concepts with the efficiency of rail-based logistics. Their success,
however, depends on effectively managing the assignment and relocation of carriers under dynamic and
uncertain operating conditions. Static optimization approaches such as Mixed-Integer Linear Program-
ming (MILP) can design efficient baseline schedules, but these often prove fragile when confronted
with real-world uncertainties such as delays, carrier breakdowns, and structural disruptions. To address
this gap, this thesis develops a hybrid decision-making framework that integrates MILP-based planning
with a Discrete-Event Simulation (DES) environment, enabling dynamic re-optimization and real-time
resilience analysis.

The framework operates through an event-driven feedback loop: initial assignments are optimised
using MILP, executed within the DES, and re-optimised whenever disruptions occur. This coupling
allows for continuous adjustment of plans to reflect the real-time state of the system. The methodol-
ogy was validated through two case studies: a simplified Toy Case to verify the model logic and a
large-scale Randstad network to evaluate system robustness against cascading disruptions. The anal-
ysis incorporated a range of scenarios, including probabilistic delays, deterministic breakdowns, arc
removals, transport unit (TU) insertions at varying time brackets, and the impact of delivery-window
flexibility.

Results demonstrate that re-optimisation is highly effective in recovering service levels after dis-
ruptions, significantly improving fulfillment rates and resource utilisation compared to static schedules.
The system showed strong adaptability to sudden demand surges and carrier failures by reallocating idle
resources, while also highlighting resilience thresholds in cases of severe network degradation. Time-
window flexibility was found to play a dual role: it improved overall fulfillment but introduced delays,
suggesting trade-offs that need to be balanced by operators and policymakers. Carrier utilisation and
empty travel metrics further revealed how resilience is achieved at the cost of increased repositioning.

This study contributes both theoretically and practically. It establishes an integrated simulation—
optimisation framework that advances research on disruption management in autonomous rail systems,
and it provides operational insights on fleet pre-positioning, flexible service design, and the role of
redundancy in network infrastructure. The findings emphasise that digital re-planning capabilities are
necessary for future autonomous freight systems, while industrial and policy implications include in-
centivising early bookings, setting flexibility standards, and ensuring investment in redundant routing
capacity. Overall, the proposed framework provides a powerful tool for designing, testing, and im-
proving resilient autonomous pod-based rail networks, bridging the gap between strategic planning and
operational execution under uncertainty.
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Introduction

Intermodal transportation plays a pivotal role in modern logistics by significantly enhancing the ef-
ficiency and sustainability of freight distribution. It reduces transportation costs and CO2 emissions,
effectively addressing global environmental concerns while maintaining economic efficiency. This sys-
tem of freight transportation applies different types of vehicles to facilitate movement in an efficient
manner while using a standardised transport unit that is unchanged until the goods reach their destina-
tion. This method optimises the handling transfers between trucks, trains, ships, and barges, reducing
handling times, security risks, damage, and costs. It also integrates the benefits of different means of
transport in a single undertaking for efficient and environmentally friendly transport, combining truck
and rail services to reach areas without direct barge or rail terminals[1].

There are enormous benefits intermodal transport offers when compared to unimodal road systems,
with savings exceeding 20 per cent and reductions in CO2 emissions reaching 57 per cent [2]. This
strategy strengthens the efficacy and sustainability not only of freight forwarder processes but also of
the entire international supply chain by lowering the need for local emission-reducing measures using
intermodal strategies to change transport mode. The rail-freight mode of transportation has seen a
downward trend in the last ten years, mainly because of issues like lower flexibility and reliability
when compared to its main competitor, the road sector.

This underscores the importance of shifting from reliance on road transport to embracing intermodal
transportation systems. As a result, there have been several innovations aimed at improving the utili-
sation of existing railway systems. One such innovation is the development of autonomous wagons,
commonly referred to as ’pods,” which significantly enhance the flexibility and efficiency of rail trans-
port[3].

A “Pod” is a modular vehicle concept characterised by its detachable capsule(Transport unit) and
carrier architecture. Pods are essentially modular automobiles with an integrated transport unit and a
carrier that can work independently in a larger rail network, as depicted in Fig. 1.1. This system enables
Pods to actively join or detach from platoons to increase the flexibility and efficiency of operations. This
concept is the core of the Pods4Rail project, which combines different methods of transport in a single
unit for prompt transfer. The unit can be delivered by 1) Rail, 2) Road and potentially Rope. The
issue of managing the assignment and rescheduling of carriers can be solved through heuristics, which
reduces operating costs, increases infrastructure and vehicle utilisation, and represents a new stage in
the development of the systems of rail logistics[4].

The optimisation of assigning carriers to (TU) transport units in autonomous pod railway systems
is one of the major problems in the development of shared mobility services. Autonomous pods, which
integrate the advantages of rail transport and vehicle automation, require drastic coordination in time
(e.g., pickup/drop-off times) and space (e.g., predefined geographic railway networks), and on top of
that, the repositioning of empty carriers to serve future assignments. To achieve this goal, this work
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will formulate an optimisation model embedded into a discrete event simulation (DES) that reduces the
costs of operations and guarantees their timely execution. The proposed solution will be demonstrated
through simulation, paving the way for significant contributions to both academic research and practical
implementation in the transportation sector. This proposal presents enhanced methodologies along with
the appropriate simulation framework and the desired outcomes intended toward increased benefits in
the use of autonomous pod railway systems.

Transport Unit (TU)

Carrier

N \/

Figure 1.1: Conceptual image of a Pod with one Transport Unit (TU) coupled with a Carrier.

This thesis is structured into seven chapters. Chapter 1 introduces the project and integration of
discrete-event simulation (DES) with a MILP model to optimise carrier assignment in autonomous pod-
based rail systems. Chapter 2 reviews relevant literature and identifies key research gaps. 3 presents the
DES framework, including state-event modelling of carrier and transport units. Chapter 4 details the
system implementation and case studies. Chapter 4 explores disruption scenarios and re-optimisation
strategies. Chapter 5 presents performance results using key indicators, and Chapter 6 concludes with
findings, limitations, and future directions.

1.1. Research question, aims and objectives

This project employs a hybrid approach to address the challenges of optimally assigning carriers to
Transport Units (TUs) within an autonomous pod-based railway system, considering operational, spa-
tial, and temporal constraints. It combines the development of an optimisation model with subsequent
simulation.

Theoretical Basis of the Work:

As noted in the chapter 1, the focus of the research is that an autonomous rail system is likely to achieve
greater productivity along with lower expenditure through effective assignment and relocation of carri-
ers. So as to validate this claim, this research will attempt to use a hybrid approach whereby some static
demand cases that prevail in such systems will be treated with a mixture of deterministic and probabilis-
tic models. This approach comprises advanced optimisation algorithms such as Greedy, Tabu Search,
and Iterated Local Search Algorithms, which are known to constrain the spatial and temporal status of
carriers. The research will also make use of the in-hand simulation software for in-depth scenario anal-
ysis and performance metrics assessment. All these techniques make it possible to study the efficiency
of the system using a different range of working conditions under different operational case scenarios.



1.1. Research question, aims and objectives 3

Main Research Question

How can discrete-event simulation (DES) effectively evaluate and enhance the operational perfor-
mance of autonomous pod-based railway systems, considering predefined carrier assignments and relo-
cation strategies, dynamic demand conditions, operational constraints, and potential disruptions?

Sub-Questions

1. What are the key factors influencing the matching of carriers to TUs in an autonomous pod railway
system?

2. How can a discrete-event simulation (DES) model be structured and implemented to accurately
capture carrier assignment and relocation dynamics in autonomous pod-based railway systems
under static demand scenarios and operational constraints?

3. How robust are carrier assignment and relocation strategies under simulated disruptions (e.g.,

carrier delays, cancellations, operational interruptions), and how can DES identify opportunities
for improvement?
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1.2. Conceptual flowchart

To address the challenges of carrier assignment and relocation in autonomous pod-based railway sys-
tems, a structured research methodology was developed. The approach combines literature research,
data preparation, and identification of key operational factors with the development of both optimi-
sation and simulation models. A Discrete Event Simulation (DES) framework was integrated with a
Mixed-Integer Linear Programming (MILP) model to capture dynamic system behaviour and enable
re-optimisation during disruptions. The methodology also includes code implementation, performance
evaluation using relevant KPIs, and systematic reporting of findings. Together, these steps provide a
robust foundation for analysing system resilience and informing both theoretical and practical advance-
ments.

Literature research

|

v
Data preparation
A 4
Identifying factors
affecting the Carrier-
TU assignment
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Figure 1.2: Project methodology
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1. Literature Research: A comprehensive review of existing literature on carrier assignment and
relocation strategies in similar transportation systems will be conducted to build a solid founda-
tion.

2. Data Preparation: Synthetic data representing static demand within a railway system will be
generated, reflecting various operational scenarios, and suitable case studies will be selected.

3. Identifying Factors Affecting the Carrier-TU Assignment: To determine the key factors that
influence the matching of carriers to TUs, such as temporal constraints (e.g., pickup/drop-off
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times), spatial constraints (e.g., station locations), and operational constraints (e.g., carrier avail-
ability).

4. Discrete Event Modelling (DES) and Simulation: To simulate the dynamic behaviour of the au-
tonomous pod-based railway system and evaluate the performance of the optimisation models [5].
This includes building a DES model that captures events such as pod arrivals, TU pickups/drop-
offs, carrier assignments, etc. The DES model integrates the optimisation models to dynamically
adjust carrier assignments based on real-time data. A simulation framework that allows testing op-
erational scenarios. Discrete Event Simulation (DES) effectively models macro-level changes in
a system, such as the start and end of operations, while omitting continuous micro-level changes,
making it suitable for large-scale systems. Additionally, DES enables explicit representation of
synchronisation (where multiple conditions must be met for an event to occur) and parallelism
(where separate system dynamics evolve independently for a period) [6].

5. Mathematical Model Development: This involves taking inputs from an optimisation model
(MILP) that incorporates the identified factors and constraints. This model aims to minimise
operational costs, reduce turnaround times, and ensure high service reliability. This model gives
the assignment details that go as input to a discrete event simulation.

6. Code Implementation: The developed models will be implemented in a Python programming
environment using SimPy. This includes the development of algorithms capable of finding effi-
cient solutions to the carrier-TU assignment problems.

7. Performance Evaluation: The performance of the implemented models will be evaluated against
key metrics such as efficiency, service reliability, utilisation, etc. This involves comparing the
outcomes of the simulation scenarios with existing work carried out in this field [4]

8. Results and Reporting: Findings from the simulations and algorithmic studies will be docu-
mented in a detailed report, providing insights into the efficiency of the proposed solutions and
their impact on the system’s performance.

1.3. Experimental Set-up

This thesis aims to develop a discrete-event simulation (DES) environment in Python and integrate it
with the existing MILP optimisation model. This combined framework enables the study of how the
system behaves under different disruptions and how it can adapt through re-optimisation.

The DES will be implemented using SimPy to capture dynamic processes such as TU arrivals, CU
assignments, and disruption events (e.g., delays, breakdowns, arc closures). The MILP, formulated in
Python and solved using Gurobi, provides optimal carrier—TU assignments under baseline conditions.
Disruption snapshots from the DES will trigger re-optimisations, allowing the MILP to adapt the plan to
the updated system state, while the development of the MILP model is outside the scope of this project,
its outputs are integral to the research as they provide the essential CU-TU assignments.

Performance will be evaluated using key metrics such as fulfillment rate, delivery delays, carrier
utilisation, and platooning efficiency, with results analysed and visualised through Python libraries
(Pandas, NumPy, Matplotlib). .

1.4. Results, Outcome and Relevance

In this investigation, the main data components consist of dynamic demand scenarios, carrier capacities,
locations of transport units, and the operational time horizon. The experiments manipulate factors such
as carrier distribution strategies, disruption types, and scheduling policies to evaluate system robustness
and adaptability.
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The expected results go beyond cost and efficiency improvements: the combined MILP-DES
framework is designed to reveal how carrier assignments evolve when disruptions occur and how re-
optimisation can restore or improve system performance. Anticipated outcomes include quantifiable
improvements in fulfillment rates, delivery reliability, and resource utilisation under different disrup-
tion settings.

By validating the approach through disruption scenarios (e.g., CU breakdowns, arc closures), this
work demonstrates not only how the system can adapt in real time, but also how such methods can
inform broader design and operational decisions in autonomous pod-based railway systems. Given its
integration into the Pods4Rail project, the results are directly relevant for advancing both the theoretical
understanding and practical implementation of resilient, efficient, and scalable rail logistics systems.

Autonomous rail pod-based transport systems are becoming an essential component of modern trans-
portation networks. Improving their operational efficiency is crucial, as it can lead to significantly lower
operational costs and enhanced reliability of transport services in the existing infrastructure. Given its
integration into the broader pods4rail project [3], the findings from this thesis could directly influence
and improve the practical implementation of these systems.



State of the art

Within the broader context of the Pods4Rail [3] project, significant advancements have been made in
rail-based, intermodal freight transport systems. Liao, Han, and Saeednia [4] have explored ways to
enhance system flexibility through modular vehicle routing, focusing on the integration of autonomous
wagons in railway environments. Their research addresses key operational challenges like platooning
and routing efficiency, demonstrating potential reductions in transportation costs and improvements in
capacity utilization. Furthermore, contributed to a second study that introduced a heuristic framework
for scheduling these modular vehicles, optimizing makespan and enhancing railway capacity. These
collaborative efforts underscore the project’s commitment to developing integrated and efficient trans-
portation solutions [7].

Building on the foundation laid by previous research within the Pods4Rail [3] project, the focus
now shifts to addressing specific challenges associated with autonomous pod railway systems. While
prior studies have optimized broad aspects of intermodal transportation, this research seeks to delve
deeper into the nuanced dynamics of carrier-TU interactions within this innovative framework. The
ensuing discussion will explore the adaptation of established models from related fields to enhance the
efficiency and effectiveness of pod-based rail systems.

The optimization of resource allocation/assignment in transportation systems has been widely stud-
ied, particularly in the context of ride-sharing, autonomous vehicles, railway logistics , car-pooling
algorithms etc. While there is limited research addressing autonomous pod railway systems, existing
studies on related topics provide valuable insights into the key factors, optimization methods, simula-
tion and evaluation methods that can be adapted to address the challenges in this domain.

To clarify the relationship between the components of related problems (e.g., car/ride-sharing and
railway logistics) and the elements of the autonomous pod-based rail system, Table 2.1 provides a
mapping of these components.
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Table 2.1: Mapping Components to Pod Context

Related Problem Component in Litera- | Equivalent in Pod Con-
ture text

Car/Ride-Sharing Car/Vehicle Carrier
User/Passenger Transport Unit (TU)
Station/Pickup-Drop-off | Station

Railway Logistics Rolling Stock (Train Unit) | Carrier
Passenger/Goods Transport Unit (TU)
Station/Depot Station

Empty Rolling Stock Empty Train Units Empty Carriers

2.1. Factors influencing carrier-TU matching.

The matching of carriers to TUs is influenced by many factors, such as temporal constraints such as
wait times, operational costs, the vessels being demanded, and the fleet size (which, in our case, refers
to the number of carriers) that affect the matching of carriers to TUs [8], [9] . Research in the area of
ride-sharing systems [10], [11], [12] has identified time windows, vehicle travel distances, and avail-
ability as one of the critical factors in optimizing matching.

Tafreshian et al. (2020) [10] did a comprehensive review of ride-matching algorithms in peer-to-
peer (P2P) rideshare systems which they classify as one to one, one to many, and many to many matching.
This discussion of temporal and spatial constraints aligns closely with the challenges in autonomous
pod railway systems, where carriers must navigate on fixed railway networks and adhere to strict time
windows. Wu et al. (2008) [11] presented decentralized P2P shared ride systems with an explicit need
for spatial constraints and geospatial matching of riders and drivers. Ma et al. (2019) [13] introduced a
new heuristic algorithm to solve the P2P ridesharing match problem with the new recursive techniques
to pair riders on the based on feasibility constraints and preference lists.

In addition, this study highlights the employment of complex meta heuristics, nearest neighbour
dispatch strategies, and insertion algorithms as provided by [9], with emphasis on the FPSO’s (Firefly
Particle Swarm Optimization) capacity to quickly converge for robust solution quality and efficient
carrier distribution in preset scenarios with demand. Trip-vehicle assignment problems are in the focus
of Bei and Zhang (2018) [12], where they develop a two-phase algorithm using minimum weight perfect
matchings that guarantees no vehicle bears more than one request. This encapsulated approach achieves
impressive minimizing of travel distances and operational expenses and provides a solution framework
that can be adapted to the assignment of rail carriers to TUs, provided that each one can only move a
single TU at a given timestamp. Developments in this work has revealed the importance of the strategic
location design of the service area together with the composition of the vehicle fleet to not exceed the
emission of CO2 and at the same time serve the customer satisfactorily [14].

In following up this conversation, the paper ”A Fuzzy Approach to the Vehicle Assignment Problem”
by Milosavljevic (1996) [15] is an example of how fuzzy logic is utilized within vehicle assignment de-
cisions. This approach incorporates fuzzy set theory to manage the degree of unknowns and subjective
parameters involved in vehicle assignment, which is highly useful in the autonomous pod railway sys-
tems. By simulating dispatcher logic and dealing with the fuzziness of operational constraints such as
the number of vehicles and the timing of trips, this approach could considerably increase the efficiency
of carrier-TU assignments. Fuzzy logic helps in addressing real world problems of matching carriers
to TUs on the rails with the greatest possible economy within the given time and space parameters per-
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taining to specialized resources.

2.2. Repositioning of empty carriers

When managing autonomous pod systems on rail, efficient relocation strategies prevail because they
guarantee adequate availability of carriers, ensuring that the service coverage levels are consistently
high while attempting to reduce the operational costs. Effective relocation not only increases the service
level provided, but also assists in the distribution of the carriers across the network, which is essential
in reducing the idle times and unnecessary transit.

In railway operation, optimizing rolling stock circulation is crucial for resource efficiency and de-
mand fulfillment. Alfieri et al.’s [16] paper employs an integer multicommodity flow model with transi-
tion graphs to optimize train unit circulation, minimizing costs and maintaining operational compliance.
Peeters and Kroon’s [17] study enhances this by using a branch-and-price approach to efficiently allo-
cate train units across lines, reducing seat shortages and unnecessary operations. Similarly, Canca et
al.’s [18] work proposes a mixed integer programming model tailored for Rapid Transit Systems, fo-
cusing on minimizing train empty movements and equilibrating maintenance needs. Adapted to the
context of this project, where the train units represent carriers and the demand comprises the TUs, these
methodologies could optimize carrier assignments and relocations, ensuring timely and efficient tran-
sitions between road and rail, while facilitating effective platoon formations and carrier repositioning.
This approach is ideal for managing the complexities of dynamic carrier relocation and operational plan-
ning in the rail-based autonomous pod system.

While railway operation literature provides valuable insights for managing rolling stock and opti-
mizing schedules, it typically focuses on broad, network-wide optimizations and might overlook the de-
tailed needs of individual pod assignments in autonomous systems. This oversight leads us to delve into
car-sharing and ride-sharing literature. These areas excel in micro-managing resources and offer adapt-
able strategies for precise resource allocation, which are essential for meeting the specific operational
challenges faced by autonomous rail-based systems. In transitioning to car-sharing and ride-matching
literature, useful parallels are drawn: vehicles are analogous to carriers, and the riders’ demand corre-
sponds to the Transport Units (TUs).

A well-known example of such efforts is provided by (Illgen , Hock & Alfian) [19], [20], who in
their systematic review on VReP (Vehicle Relocation Problem) in one way car sharing networks tried
to capture the complexity of such logistic problems. Their research supports the effectiveness of mixed-
integer programming for such relocation problems, in addition to simulation models, and multistage
methods for relocation management. It was noted, however, that the best results in predictive remote
vehicle relocation with the vehicle’s historic location use were obtained out of the multistage methods.

Such methods are especially important for adjusting to the shifting requirements of a rail-based sys-
tem where carriers have to be efficiently redistributed in light of real-time requirements and bounds.
The review gives contributes towards the multistage approaches that combine optimization and simula-
tion, presenting a framework for real time control and decision making that is necessary for the effective
handling of carrier relocation in the autonomous pod transport systems (Illgen & Hock,2019)[19]. To
build on this, Clemente et al. [21], further elaborate on the concept in the study “The Vehicle Relo-
cation Problem in Car Sharing Systems: Modeling and Simulation in a Petri Net Framework”, where
user-based relocations strategies are modeled and simulated using Timed Petri Nets (TPN) in focusing
on user motives and incentives for load balancing in car-sharing systems. While these those modali-
ties were devised for dynamic demand, the methods are seamlessly applied for static, predetermined
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demand in autonomous pod based rail systems through preset carrier station allocation and movement
based on a control schedule. By TPN bounding the relocation paths and snapshot demand conditions,
the model provides the desired optimal condition of carrier position and operational efficiency.

Scheduled incentives can be strategically used to manage carrier utilization, enhancing service re-
liability and efficiency in a rail context . This integration from car-sharing systems into rail transport
demonstrates how tailored adaptations of dynamic models to static systems can significantly improve
resource utilization and system performance,on a broader scope study is being done on automated sys-
tems to perform the rellocation activity [8]. Further building on these foundational strategies, the paper
by Weikl, Bogenberger & Cepolina et al. (2012) investigates different relocation strategies for car shar-
ing, specifically focusing on operator-based methods and a two-step algorithm that combines predictive
offline planning with adaptive real-time adjustments [8], [22]. This method is particularly relevant for
our project on autonomous pod-based rail systems, where similar strategies can be adapted to optimize
the positioning of carriers. By applying a similar two-step approach, historical data can be utilised to
proactively plan carrier deployment and incorporate real-time data to make ongoing adjustments. This
guarantees that carriers are placed in strategic locations ahead of the anticipated fixed demand which
improves system reliability and efficiency without needing any manual effort from users. This also high-
lights the carriers’ management aspect that is necessary for strategic efficiency and the way in which the
techniques devised for car sharing can be more easily applied to complex and larger transportation sys-
tem railways. Algorithms like the greedy ,Tabu and Iterated Local Search Algorithm search have been
have been analyzed by several researchers including Ait - Ouahmed, Josselin, Zhou, and Lai [23], [24]
for their works studied in exploration of optimal vehicle distribution strategies for car-sharing systems.
In their work, they developed and tested these algorithms to efficiently address vehicle imbalances
across network stations. The greedy algorithm quickly identifies cost-effective moves by selecting
the most immediate beneficial relocation based on current vehicle excess or deficiency, focusing on
achieving short-term balance. In contrast, the Tabu search algorithm explores the solution space more
thoroughly by accepting worst solutions to escape local optima, all while avoiding previously explored
solutions through its Tabu list, leading to a potentially better long-term distribution solutions , whereas
iterated local search algorithm is within a rolling-horizon framework for dynamically optimizing the
carrier placements based on fixed schedules . In another study, Kek and Alfian [20], [25] proposed two
critical techniques for moving cars in a car sharing system: The Shortest Time Technique, which prior-
itizes rapid relocation to reduce operational downtime, and the Inventory Balancing Technique, aimed
at maintaining an optimal level of vehicle availability by redistributing vehicles based on station inven-
tory levels. These strategies ensure efficient use of resources and enhance service availability across
the network.The effects of the relocation time period, or when to move vehicles, were also examined
by Ganjar Alfian et al. They found that periodical relocation—that is, relocation that occurs every six
hours—had lower relocation costs than static relocation, which is the immediate relocation that occurs
when a station net flow reaches or falls below a certain threshold [26].

In the matter of our project on carrier-TU assignment, these algorithms can be instrumental in man-
aging the relocation of carriers to efficiently fulfill Transportation Unit (TU) matching. For example, a
greedy algorithm could be used during periods of predictable/static demand to quickly allocate carriers
to stations with imminent TU arrivals, ensuring rapid response and minimal waiting times. Meanwhile,
the Tabu search could be employed for long-term strategic planning, optimizing the distribution of car-
riers across the network to anticipate and adjust to varying demands throughout the day or in response
to special events.

Further details on the literature review are given in Table A.1 in Appendix Chapter A.
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2.3. Literature gaps and contributions

Although previous studies on ride-sharing, car-sharing, and railway logistics have made valuable contri-
butions, this research aims to cover new gaps that have emerged. The absence of autonomous pod-based
research is mainly caused by the focus on existing road-based systems (e.g. ride-sharing and car-sharing)
or traditional railway logistics. These systems raise novel issues like carrier-TU assignment and reloca-
tion in a hybrid road-rail scenario. This work aims at autonomous pod-based rail systems by creating
optimization models and algorithms that consider the special conditions of these systems. This research
integrates road and rail operations interaction which is often overlooked in literature. Also, while many
studies address dynamic demand scenarios in a real-time environment like ride-sharing or car-sharing,
there is little attention paid towards static demand situations within railway systems. Scheduled rail op-
erations give rise to static demand, but the topic of empty carrier relocation to satisfy future demand is
under-researched. Current strategies for relocation are largely user-incentive driven, which do not work
for systems that move TUs.This project focuses on dynamic demand scenarios and develops system-
driven relocation strategies that do not rely on user incentives, ensuring efficient resource utilization
and high service reliability.

Moreover, although the effect of platooning (multiple pods traveling together) is multi-faceted for a
lot of road-based systems, it is nearly non-existent for modular pod systems. Platooning has an impact
on carrier availability and scheduling, but this has not been sufficiently tackled in the context of carrier
TU assignment and relocation. Even though platooning is not the primary objective of this study, it
is recognized as a tertiary component that could impact the carrier TU assignments. The developed
models incorporate platooning in a way that guarantees carrier availabilities as well as scheduling is
optimally set even when several pods move simultaneously.

To finish, the use of Rolling Horizon is not novel (supply chain management, automotive sharing),
but its usage for carrier TU assignment and relocation in flexible modular pod rail systems is new.
Problems with dynamic decision making combined with uncertainty and time sensitivity of the given
task at hand can greatly benefit from the implementation of Rolling Horizon, yet this area remains
undiscovered. This study will implement Rolling Horizon as a primary tool to tackle the carrier TU
assignment and relocation problem. Rolling Horizon allows the user to continuously re-optimize by
dividing the problem into smaller time windows, in doing so the system stays agile and efficient.This
approach is integrated with MILP and DES, providing a robust framework for dynamic decision-making
and evaluate the system behavior with different scenarios. Together, these contributions address the
gaps in the literature and position this research as a significant advancement in the field of autonomous
pod-based rail systems.



System Dynamics

This chapter will provide a comprehensive overview of the system’s mechanics. First, the end-to-end
flow of a transport request will be visually illustrated, both with and without the consideration of pla-
tooning, to provide a high-level understanding of the process. Following this, delving into the specifics
of the state-event model systematically defines every possible operational state for both the Transport
Units (TUs) and the Carrier Units (CUs). Finally, we will detail the discrete events that trigger transi-
tions between these states, such as arrivals, departures, and loading operations. Together, these com-
ponents create a complete and precise blueprint of the system’s behaviour, which is essential for the
implementation of the simulation model discussed in the subsequent chapters.

3.1. Simulation Flow Process

Figure 3.1 illustrates the TU-CU matching process without considering platooning. It captures the ba-
sic point-to-point transport of TUs, where each TU is loaded onto a CU at the pick-up station, travels
solo through the network, and is finally unloaded at the destination. This approach assumes a direct,
ungrouped transit flow, where each TU is managed individually without the efficiency benefits of pla-
tooning.

When a transport request (TU) enters the system, it first arrives at its designated pick-up station and
remains there until a carrier unit (CU) becomes available. The CU then drives empty to that station
(if it is not already positioned), waits for the TU to be ready, and initiates the loading operation. Once
loading completes, the combined CU-TU pair departs immediately and traverses the network along the
predefined route toward the delivery station. Travel occurs without interruption until the pair reaches
the drop-off point, where the TU remains on board while unloading is performed. Upon completion
of unloading, the TU exits the system, and the CU departs the station empty. The empty CU may
then either proceed to the next pick-up station, reposition itself in anticipation of future requests, or
enter maintenance if required. This basic sequence—arrival, wait, load, in-transit movement, unload,
and empty departure—is shown in Figure 3.1 and captures the baseline operational logic without any
coordinated grouping of CUs.

Figure 3.2 extends the baseline sequence by allowing carrier units to travel in platoons both when
empty and when carrying a transport unit. After completing a loading or unloading operation, each
CU checks whether it should form or join a platoon before its next departure. If platooning is desired
(platoon stations are predetermined and known from the MILP output as explained in Chapter 4), a CU
will either wait at its current station for other CUs to arrive or move to a predefined station. Once at least
two CUs converge—whether they are empty or loaded—they merge into a single platoon, synchronise
their departure time and speed, and traverse the network together along the same route. The platoon
remains intact until individual CUs reach a station where one of two events occurs: (1) a loaded CU

12
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arrives at its delivery station and unloads its TU, or (2) an empty CU arrives at a designated split station
(either to pick up a TU or to further form a platoon). At that moment, the group dissolves: unloaded
CUs become available for new tasks or maintenance, and loaded CUs (if still in transit) continue to their
final delivery station alone. By enabling both empty and loaded platooning, this enhancement preserves
the core steps of arrival, loading, transit, unloading, and empty movement while improving resource
utilisation and travel efficiency.

Without Platooning:-
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Figure 3.1: Simulation flow process
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Figure 3.2: Simulation flow process with platooning

3.2. Introduction to State-Event Modelling in TU-CU Systems

This section introduces the core “states” and “events” that drive our discrete-event simulation of trans-
port units (TUs) and carrier units (CUs). A state describes what a unit is doing at a given moment—for
example, waiting at a station, carrying a load, or travelling between stops—while an event is the exact
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instant that causes a unit to change from one state to another (e.g., a TU arriving at a platform, a CU
beginning its journey, or two CUs joining a platoon). By enumerating every possible state for each
TU and CU and specifying the events that trigger each transition, the simulation can step through the
sequence of loadings, departures, platoon formations, arrivals, and unloadings in precise chronological
order. This clear, event-driven structure makes it straightforward to record, trace, and analyse every
action in the system.

A discrete-event system is one in which state changes occur instantaneously at specific points in
time, with nothing happening between those events. This contrasts with continuous systems, where
states evolve continuously. Systems fitting this description can be analysed using discrete-event simu-
lation [27].

Global system state At any point in time, the simulator keeps a single “snapshot” of the whole system.
This snapshot includes:

* Transport Units (TUs): for each TU—its current state (T0-T4), location (station or arc), as-
signed CU (if any), planned route/next stop, and time-window data.

* Carrier Units (CUs): for each CU—its current state (C0—CS), location, assigned TU (if any),
current itinerary step, platoon membership (if any), and remaining processing/travel time.

» Station queues and capacities: who is waiting (TUs/CUs), which load/unload operations are in
service, and current occupancy vs. capacity at each station.

» Active platoons: which CUs are grouped, where they are (arc/station), and their planned split/merge
stations.

* Network availability: which arcs/resources are open or closed (e.g., due to disruptions) and the
travel/handling times currently in force.

* Lock-ins (uninterruptible tasks): ongoing activities that must finish before re-planning can
change them (e.g., an in-progress arc traversal, an active load/unload, or a reserved station slot).

* Outstanding requests: TUSs that have been released but not yet delivered, plus any future releases
with their release times.

* Event calendar: the next scheduled completions (arrivals, departures, load/unload completions,
platoon join/split, etc.).

Events F1-F10 update this snapshot (see Tables 3.3 and 3.4); when an event fires, the relevant
records change state and the event calendar is refreshed. During a disruption, the simulation is paused
and this snapshot is passed to the MILP (TU/CU states and positions, network availability, lock-ins, out-
standing requests). The MILP produces an updated plan, and the simulation resumes while respecting
the lock-ins.

3.2.1. Transport Unit (TU) States

In a discrete-event simulation, states represent the various conditions or “modes” that an entity/actor
can occupy as it moves through the system. For a Transport Unit (TU), we define five distinct states,
labelled TO through T4. Below is a detailed explanation of each TU state.

Table 3.1: Transport unit (TU) states

State Code | State Description

TO At Station Waiting | TU is waiting at its pickup station for loading.
Tl Loaded to CU TU has been placed on the CU and is ready to depart.
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State Code | State Description
T2 In Transit TU is being carried by the CU toward its destination.
T3 At Delivery Station | TU has arrived at the delivery station, awaiting un-
load.
T4 Delivered TU has been unloaded, and its journey is complete.

TO: At Station Waiting
A TU in state TO is idle at its pick-up station, ready to be loaded onto a Carrier Unit (CU). It has not yet
been loaded to any carrier unit (CU); it is simply waiting for its turn. Key points about TO:
* The TU has arrived (e.g., by truck, or has been placed at the station) but has not yet been picked
up by a CU.
* It remains in TO until a CU becomes available at the pick-up station and the loading process
begins.
* In simulation, the moment the TU arrives at the station (often driven by a scheduled arrival time),
it transitions directly into TO.
* While in TO, the TU may incur a waiting cost or simply occupy space, but it is not moving.

T1: Loaded to CU
Once a CU has been allocated and the physical loading has taken place, the TU moves into state T1. At
this point, the transport unit (TU) has been placed onto the carrier unit (CU) and is ready for departure.
Key aspects of T1:
» The TU is now on board its assigned CU, but the departure has not yet occurred. It is in a “loaded,
but stationary” condition.
* In simulation terms, there is typically a small loading-time delay that must occur before the TU
transitions from TO to T1.

e During T1, the TU is effectively locked to its CU: it cannot be re-assigned (unless a CU fails,
which will be discussed under disruptions in chapter 4) or moved until departure.

T2: In Transit

When the TU-CU departs the pick-up station with its TU on board, the TU enters state T2. At this
moment, the TU is in motion along its planned route toward its destination. Important characteristics
of T2:

* The TU is moving from its pick-up station towards its delivery station as part of the CU’s journey.

* In simulation, a travel-time delay is usually specified for this transit segment. Only after that
delay elapses does the TU reach the next state.

* While in T2, the TU cannot be unloaded or rerouted; it is bound to the CU’s path until arrival at
the TU delivery station.

* If the CU joins a platoon, the TU remains in T2, possibly adjusting its estimated arrival time.

T3: At Delivery Station
Once the CU carrying the TU arrives at the TU’s designated delivery station, the TU transitions to state
T3. In this state, the TU is physically at the destination but has not yet been unloaded from the CU.
Details of T3:

» The TU has completed its transit and is now ready for the final unloading process.

* There may be a short unloading time simulated while the forklift or other equipment detaches the
TU from the CU.
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* The TU remains in T3 until that unload action completes.

» While in T3, the TU occupies space at the delivery station and may incur local handling costs or
delays.

T4: Delivered
When the unloading process finishes, the TU enters state T4, meaning the TU has been fully delivered
and its journey is complete. Highlights of T4:
* T4 represents completion; no further simulation actions will involve this TU.
* From a modelling perspective, we can record statistics (e.g., total transit time, waiting time) once
the TU reaches T4.
* In this DES framework, a TU in T4 is effectively removed from the active simulation, freeing up
resources.

* Although the TU is “finished,” its delivery may trigger downstream events in a larger supply
chain (e.g., starting a next-mile delivery), but that is beyond our current scope.

3.2.2. Carrier Unit (CU) States

A Carrier Unit (CU) in this discrete-event simulation can occupy one of nine distinct states, labelled CO
through C8. Each state corresponds to a specific operational condition of the carrier unit (CU), from
being idle or carrying a Transport Unit (TU) to repositioning or undergoing maintenance. Below is a
detailed description of each CU state.

Table 3.2: Carrier unit (CU) states

State Code | State Description

Co Idle and Unassigned CU is free and awaiting assignment or repositioning.

Cl1 TU Loaded to CU CU has a TU on board and is ready to depart.

C2 In Transit — Solo CU is carrying a TU alone, without platoon partners.

C3 In Transit — Platoon CU is carrying a TU as part of a platoon of CUs.

C4 At Delivery Station CU has reached the TU’s delivery station and awaits
unloading.

C5 At Station, Waiting CU is idle at a station, ready for pickup or platoon
formation.

C6 Repositioning — Solo CU is moving empty to another station on its own.

Cc7 Repositioning — Platoon | CU is moving empty as part of an empty-CU platoon.

C8 Out of Service CU is unavailable (maintenance or downtime).

In the simulation model.

CO0: Idle and Unassigned
* CU is free and not assigned to any tasks and is available for new tasks (pickup or empty reposi-
tioning).

* Remains idle until a scheduling decision allocates it to a TU or a repositioning order.



3.2. Introduction to State-Event Modelling in TU-CU Systems

17

C1: TU Loaded to CU
* CU has just completed loading a TU and is ready to depart.
+ Stationary at the station, with the TU on board.
* Dedicated exclusively to that TU; cannot perform other actions until departure.

» Awaits the departure event (ES) to transition into transit.

C2: In Transit — Solo
» CU is transporting a TU alone, covering each arc’s specified travel time.
* Moves under independent control (no platoon partners).
* Remains in solo transit until either:
— It reaches the TU’s delivery station (then E8/E9), or

— It merges into a platoon at the next station (E6).

C3: In Transit — Platoon
* CU carries a TU as part of a platoon (two or more CUs travelling together).
* Shares speed, routing, and departure timing with platoon partners.

» Cannot separate until a platoon-split event (E7) occurs at a station.

» Remains platooned until either dissolution or arrival at the TU’s delivery station.

C4: At Delivery Station
* CU (with its TU on board) has reached the designated delivery station.
* Parked at the platform; TU awaiting the unloading process.
* In a transient “arrival” condition, not yet unloaded.

 Awaits the unload event (E9) to transition into station waiting.

C5: At Station, Waiting
* CU is idle at a station, either just after unloading or after empty arrival.
* Occupies one of the station’s parking slots.
* Waits for its next task: loading a TU or empty repositioning.

C6: Repositioning — Solo
* CU travels empty from one station to another, following a planned route.
* Moves under independent control with no TU on board.
» Covers each arc’s specified travel time, then transitions to C5.

C7: Repositioning — Platoon
* CU travels empty as part of a platoon of empty CUs.

* Remains in platoon until:

— The platoon splits (E7), reverting this CU to solo repositioning or waiting.

C8: Out of Service
 CU is undergoing maintenance or otherwise unavailable.
» Cannot carry TUs, move, or accept assignments.

* Remains inactive until maintenance completes, then transitions to CO.
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By defining these nine CU states CO through C8, we capture all possible conditions of a Carrier Unit
within the simulation. Each state encapsulates a clear operational role, from waiting for work (CO or
C5), to carrying TUs alone or in platoons (C1, C2, C3, C4), to moving empty (C6, C7), or being offline
for maintenance (C8). The transitions between these states will be governed by discrete events, which
are discussed in the following section.

In summary, these nine CU states (CO—C8) capture every phase of the carrier’s lifecycle: from idle
availability and loading, through solo or platoon transit with or without a TU, to empty repositioning
and maintenance. Transitions between these states are driven by discrete events (e.g., loading, departure,
arrival, platoon join/split), ensuring that the CU’s behaviour is fully captured.

3.3. System events and transitions

Events are a crucial component of Discrete Event Simulation (DES), representing the discrete, instanta-
neous occurrences that drive state changes within a system, as shown in the transition diagrams in 3.3
and 3.4. In DES, events mark the precise moments when system elements transition from one state to
another, such as the arrival of a TU at a station, the loading of a TU onto a CU, or the departure of a
CU from a terminal. These events capture the cause-and-effect relationships that define the operational
flow of a complex system. The events and the event-state transition are shown in table 3.3 and 3.4,
respectively.
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Table 3.3: List of Events in the TU-CU System

Event Code | Event Description

El TU arrives at station Transport Unit appears at its pickup station
and begins waiting for a CU.

E2 CU becomes available Carrier Unit completes maintenance or down-
time and enters the idle pool.

E3 CU arrives at a station Carrier Unit (empty or loaded) pulls into a sta-
tion and transitions to waiting.

E4 TU is loaded onto a CU Loading completes: TU moves on board, CU
is ready to depart.

E5 TU-CU depart pickup station Loaded CU (solo or platoon) leaves the pick-
up station with its TU.

E6 CU joins platoon A solo CU merges into an existing platoon at
a station.

E7 CU leaves platoon A CU splits off from a platoon at a station, ei-
ther to deliver or reposition solo.

E8 TU-CU arrive at delivery station | Loaded CU completes its final link and
reaches the dropoff station of TU.

E9 TU unloaded from CU Unloading completes: TU exits the CU,
which becomes idle at that station.

E10 CU departs station empty Empty CU (solo or platoon) departs a station
to reposition elsewhere.
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Figure 3.3: Carrier Unit (CU) Event-State Transition Diagram



3.3. System events and transitions

20

G000

Figure 3.4: Transport Unit (TU) Event-State Transition Diagram
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Table 3.4: Event—State Transition Matrix

Event | Event Name Current State(s) Next State(s)
El TU arrives at station — (initial) TO: At Station Waiting
E2 CU becomes available — (initial) CO0: Idle and Unassigned
C8: Out of Service
CO0: Idle and Unassigned C5: At Station, Waiting
E3 CU arrives at station Cé6: Repositioning — Solo C5: At Station, Waiting
C7: Repositioning — Platoon | C5: At Station, Waiting
E4 TU is being loaded onto a | TO: At Station Waiting T1: Loaded to CU
CU C5: At Station, Waiting C1: TU Loaded to CU
E5 TU—CU depart pickup sta- | T1: Loaded to CU T2: In Transit
tion Cl1: TU Loaded to CU C2: In Transit — Solo
C3: In Transit — Platoon
E6 CU joins platoon C2: In Transit — Solo C3: In Transit — Platoon
C6: Repositioning — Solo C7: Repositioning — Pla-
toon
C2: In Transit — Solo
C3: In Transit — Platoon T3: At Delivery Station
E7 CU leaves platoon C4: At Delivery Station

C6: Repositioning — Solo

C7: Repositioning — Platoon . -
CS5: At Station, Waiting

E8 TU-CU arrive delivery | T2: In Transit T3: At Delivery Station
station C2: In Transit — Solo C4: At Delivery Station
C3: In Transit — Platoon
E9 TU is being unloaded | T3: At Delivery Station T4: Delivered
from CU C4: At Delivery Station C5: At Station, Waiting
E10 | CU departs station empty | C5: At Station, Waiting C6: Repositioning — Solo
C7: Repositioning — Pla-
toon

E1: TU Arrives at Station

Event E1 represents the moment when a Transport Unit (TU) first appears at its pickup station. When E1
occurs, the TU transitions from “not yet in the system” into the state TO, meaning “at station, waiting.”
No movement happens at E1 itself it simply records that the TU has shown up and is now ready to
be matched with a Carrier Unit (CU). In simulation, E1 often happens at a pre-scheduled arrival time
generated by the input data.

E2: CU Becomes Available

Event E2 marks the instant when a Carrier Unit (CU) finishes any maintenance or downtime and be-
comes free to start a new task. Before this event, the CU may have been offline, undergoing repairs,
or otherwise occupied. When E2 triggers, the CU moves from “out of service” into an “idle and unas-
signed” condition. Conceptually, E2 models activities such as completing a maintenance check, or
finishing paperwork—any action that renders the CU ready to work. After E2, the CU can be assigned
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to pick up a TU or to reposition itself to another station.

E3: CU Arrives at Station
Event E3 captures a moment when a CU (empty CU) pulls into a station. This can happen under three
scenarios:

1. A CU that was idle (CO) moves to its first station at the start of the simulation or after becoming
available.

2. A CU that has been repositioning alone (C6) finally reaches a station and is now waiting for its
next assignment.

3. A group of empty CUs travelling together as a platoon (C7) pulls into a station, ready to split up
or wait for further instructions.

When E3 occurs, the CU enters the “at station, waiting” state (C5). Although E3 happens at an instant
in simulation time, it implies that the CU has spent the incurred travel time en route. Immediately after
E3, the CU can either load a TU (if one is present) or prepare for another action.

E4: TU is being loaded onto a CU

Event E4 represents the instant when a CU and TU complete their loading process and become coupled.
Prior to E4, the TU must be in the “at station, waiting” state (TO) and the CU must be in the “at station,
waiting” state (C5). The loading process typically takes some measurable amount of time (e.g., forklift
operations, securing straps, paperwork). In discrete-event simulation, that loading duration is modelled
as a delay, and when that delay ends, E4 fires. As a result, the TU moves into T1 (“loaded to CU”) and
the CU moves into C1 (“TU loaded to CU”). No actual movement begins at E4; instead, it signifies that
the handling and securing steps are complete.

ES: TU-CU Depart Pickup Station

Event E5 occurs at the exact moment the CU, now carrying its TU, begins its journey out of the pickup
station. The TU transitions from T1 (“loaded to CU”) into T2 (“in transit”), and the CU transitions from
C1 (“TU loaded to CU”) into either C2 (“in transit — solo”) or C3 (“in transit — platoon”), depending
on whether the CU travels alone or joins a platoon immediately. In either case, the departure step is
instantaneous in simulation; the travel time along the route is represented by a separate delay.

E6: CU Joins Platoon

Event E6 designates the moment when a CU travelling alone (in state C2) or repositioning alone (in
state C6) merges into an existing platoon at a station. Imagine two or more CUs aligning their departure
times so they can travel together; that grouping is the platoon. At the station where the platoon forms,
E6 sets each joining CU’s state as “in transit — platoon” (C3) or “repositioning — platoon” (C7). While
the platoon travels as a group, the individual CUs share the same speed and routing instructions. E6
is instantaneous, but its precondition is that the CUs all meet at the same station and are scheduled to
travel to the same next destination.

E7: CU Leaves Platoon
Event E7 marks the instant when a CU splits off from a platoon at a station. Two states trigger E7:

* A CU traveling in a loaded platoon (C3) arrives at a station and separates In that case, the CU
transitions into C4 (“at delivery station”) while the TU moves into T3 (“at delivery station) if
that station is the TU delivery station, otherwise the CU can continue a solo travel to the next
station.

* A CU travelling in an empty platoon (C7) arrives at a station where it does not need to continue
in that group. It can either remain at that station (C5) or continue solo repositioning (C6).
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Because platoon splits only occur at stations, E7 does not represent travel time but a decision point that
changes the CU’s grouping. After E7, the CU either proceeds alone or waits for its next assignment.

E8: TU-CU Arrive Delivery Station

Event E8 indicates that a CU, with its TU on board, has completed its final transit link and physically
reaches the TU’s designated delivery station. The TU changes from T2 (“in transit”) to T3 (“at delivery
station”), and the CU moves from either C2 (“in transit — solo”) or C3 (“in transit — platoon”) into C4
(“at delivery station”). Although the transit time was consumed as a delay on the link, ES8 itself is the
instantaneous moment of arrival. No unloading has occurred yet, but the TU and CU are now co-located
at the delivery platform.

E9: TU is being unloaded from CU

Event E9 captures the precise instant when the TU is unloaded at the delivery station. Prior to E9, the TU
is in T3 (“at delivery station”) and the CU is in C4 (“at delivery station”). The unloading action typically
takes a finite amount of time (for example, forklift operations, paperwork). When that unloading delay
concludes, E9 fires and places the TU into T4 (“delivered”), while the CU transitions to C5 (“at station,
waiting”). In other words, E9 signifies completion of the delivery cycle and frees the CU for its next
task.

E10: CU Departs Station Empty

Event E10 represents the moment when an empty CU (in state C5) leaves a station to reposition to
another station without carrying a TU. Upon occurrence, the CU moves into either C6 (“repositioning
—so0lo”) or C7 (“repositioning — platoon”), depending on whether it travels alone or as part of an empty
platoon. Again, the actual travel time is modeled as a subsequent delay; E10 itself is the instantaneous
trigger indicating “ready-to-move” for an empty departure.



Methodology

This chapter presents the translation of the rail-based transport system’s mathematical models and sim-
ulation into executable code. Although the core mixed-integer linear programme (MILP) is solved
externally (further explained in section A.3), its solution is utilised as input to a discrete-event simu-
lation (DES) designed to evaluate operational performance and to explore “what-if” scenarios—most
notably the effects of vehicle platooning and random disruptions. An overview of the MILP model is
provided in section A.3, where the key inputs and outputs of the optimisation model are explained.

In Section 4.1, a small “toy” network and the Randstad Case Study are introduced as the test
environments. The DES architecture is then described: the principal classes (TransportUnit and
CarrierUnit), the finite-state logic governing loading, departure, platoon formation and dissolution,
and unloading events, together with the mechanisms for recording a timestamped trace of each state
transition. A pseudocode overview is provided first, followed by a detailed discussion of the actual
implementation.

Once the core DES framework has been established, methods for interpreting its outputs—time-
indexed tables of TU and CU states—are examined in order to compute key performance metrics such
as travel times, waiting times, and platoon utilisation. The chapter concludes with an extension of the
simulation to incorporate real-world uncertainties: the introduction of random delays, cancellations,
and equipment failures enables analysis of system resilience and robustness under disturbance.

4.1. Case Studies

This section lays out the experimental setting. We first introduce a minimal 7oy Case used to verify
model logic and analyse behaviour under controlled disruptions. We then describe the Randstad net-
work used to test realism and scalability, including stations, initial fleet placement, and the baseline
demand set. For both cases we define the evaluation protocol (baseline — disrupted — re-optimised),
the disruption types and timing, and the KPI pack used to compare outcomes.

4.1.1. Toy Case

The MILP model, as explained in section A.3, receives as input a small “toy” rail network, carrier initial
positions, and a set of transport requests. Table 4.1 summarises the network topology, station capacities,
and carrier fleet; Table 4.2 lists each transport request.

24
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Table 4.1: Rail network and carrier data

Stations {1,2, 3,4}, each capacity =2

Travel times (min) (1—2,4), (1—3, 3), (1—4,5),
(2—4, 3), (3—4, 4)

Carriers (CUs) IDs={1,2,3}
Initial locations CU 1@Station 1, CU 2@Station 2, CU 3@Station 3

Table 4.2: Transport requests

Req.ID Origin Dest. Pickup window Delivery window

1 4 2 [11,18] [14,21]
2 1 3 [12,18] [15,21]
3 3 2 [14,19] [21,2]
4 1 4 [1,5] [8,13]
5 2 4 [1,7] [5,11]
J 4 L]
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Figure 4.1: Toy network

Description: A four-station network (1-4) is considered, as shown in Figure 4.1, where each station
has a capacity of up to two carrier units (CUs). Travel times between connected stations are expressed in
minutes, and arcs are bidirectional. Three CUs are initially located at Stations 1, 2, and 3, respectively.
Five transport requests are required to be satisfied within specified pickup and delivery windows, subject
to the availability of carrier units in the system.

4.1.2. Randstad Case Study
The railway network employed for this analysis is represented by the existing system in the Randstad
conurbation, Netherlands (see Figure 4.2). The key characteristics of the model are outlined as follows:



4.1. Case Studies 26

* Geographical Scope: The network is defined over an area of approximately 72 km by 58 km,
bounded by the main stations of Den Haag (1), Amersfoort (10), Rotterdam (2), and Amster-
dam (13).

* Network Topology: Both principal and secondary lines and stations are incorporated, resulting
in a branched network structure.

* Demand Nodes: Nine major stations (1, 2, 3, 6, 7, 8,9, 10, and 13) are designated as “transfer
stations,” representing the locations where transport demand originates and terminates.

Figure 4.2: Case study network based on the Randstad area in the Netherlands with 17 stations (white: main, grey: routing)
connected by arcs with weights representing the ‘travelling time units’.

Table 4.3: Stations in Randstad Case Study: mode transfer stations (left) and other stations (right).

Mode transfer stations Other stations
Number Name Number Name
1 Den Haag Central 4  Woerden
2 Rotterdam Central 5 Alphen aan den Rijn
3 Gouda 11 Hilversum
6 Leiden Central 12 Amsterdam Sloterdijk
7 Haarlem 14 Breukelen
8 Schiphol Airport 15 Duivendrecht
9  Utrecht Central 16  Weesp
10 Amersfoort Central 17  Utrecht Overvecht

13 Amsterdam Central
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Example scenario.
Considering ten carriers in the Randstad Case Study, the following initial carrier locations are obtained
for a specific run, see Table 4.4.

Table 4.4: Initial locations of the carriers for the example scenario in the Randstad Case Study (generated with random seed
10).

Carrier 1 2 3 4 5 6 7 8 9 10
Station 1 9 10 1 6 10 7 3 13 8

Over a time period of 40 time units (7" = 40), a total of 19 transport requests are generated. Their
details are provided in Table 4.5.

Table 4.5: Transport requests for the example scenario in the Randstad Case Study (random seed 10 with T = 40).

Pickup Delivery Pickup time Delivery time

Request station station window window
1 8 6 [13, 17] [23, 29]
2 8 7 [13, 20] [25, 34]
3 7 13 [5, 12] [14,22]
5 6 8 [19, 26] [29, 38]
6 1 3 [7, 11] [18, 24]
7 6 7 [17, 23] [29, 37]
8 6 8 (21, 27] [31, 39]
9 9 8 (2, 9] [20, 31]
10 13 7 [7, 12] [16, 22]
12 7 6 [17,21] [29, 35]
13 3 6 [18, 25] [30, 39]
14 3 9 [24, 28] [34, 40]
16 8 13 [13, 20] [22, 30]
17 6 3 [4, 10] [14, 20]
19 3 6 [11, 18] [23, 32]

4.2. Discrete Event Simulation

This section explains how the MILP plan is executed in the discrete-event simulator and how re-optimisation
is triggered. We map MILP outputs into simulator inputs (fu_data for transport requests and cu_data for
carrier itineraries), outline the TU/CU processes and event logging (E1-E10), and specify the lock-in
rules that protect in-progress actions during re-planning. We conclude with the rolling loop (simulate

— detect disruption — re-optimise — resume) that underpins all experiments.

4.2.1. Inputs from MILP
Once the MILP returns a solution, the decision-variable values are converted into the two core inputs
for the discrete-event simulation:

1. Transport-Unit Table (tu_data): For each request r with the binary variable y, = 1, the fol-
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lowing variables is extracted:

* pickup time p, and delivery time d, obtained from the continuous variables,
» the assigned carrier, identified as the ¢ for which z, . = 1,

* the route node-sequence (e.g. [3,4,2]) specified in the input data,

* the origin (first node) and destination (last node) of the route,

* fixed load and unload durations, and

* the fotal travel time, computed as the sum of link travel times along the route.

2. Carrier-Unit Itinerary (cu_data): For each carrier c, the relocation-and-transport arc variables
zz[c, s1, S2, t] 1s scanned, and every (s1 — so,t) with zz = 1 is collected. Sorting by departure
time ¢ produced the CU’s time-sequence of moves. Together with the initial station, this sequence
constituted the CU-itinerary employed in the DES.

To make this concrete, Table 4.6 and Table 4.7 summarise the two resulting data structures.

Table 4.6: Fields in the Transport-Unit table (tu_data)

Field Type

Description

tu_id integer

pickup_time integer (time)
delivery_time integer (time)

assigned_carrier integer

route list of ints
origin_station integer
destination_station integer
total _travel time integer
load_time integer
unload_time integer

Unique request identifier

Scheduled departure time from origin station
Scheduled arrival time at destination station
Carrier unit assigned to this transport
Sequence of station IDs (e.g. [3,4,2])

First station on the route

Last station on the route

Sum of link travel times along route

Fixed loading duration

Fixed unloading duration

Table 4.7: Fields in the Carrier-Unit table (cu_data)

Field Type Description

cu_id integer Unique carrier identifier.

initial_location integer Station ID where the CU starts.

itinerary list of dicts Ordered list of arcs; each arc-dict contains the fields

from_station, to_station, start_time and travel_time.

With these two tables available, the DES engine is able to generate one process per TU (capturing
pickup, loading, transit, and unloading events) and one process per CU (capturing relocation, transport,
platooning, and drop-off events). In the subsequent section, the implementation of this event logic is

presented in pseudocode.
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4.2.2. Simulation Algorithm
In this section, the structure of the discrete-event simulation (DES) is outlined. A pseudocode sketch
of the two core processes (one per transport unit and one per carrier unit) is first provided.

Walkthrough of Algorithm 1: The discrete-event simulation (DES) is initiated by creating separate
processes for all transport units (TUs) and carrier units (CUs). Each TU is advanced along a straight-
forward timeline: arrival at the pickup station, loading, departure, travel to the delivery station, and
unloading. In parallel, CUs are progressed through their itineraries arc by arc: before departure, an as-
signed TU and possible platoon membership are checked, determining whether departure occurs loaded
or empty, and solo or in platoon. During travel, intermediate and arrival events are logged, unloading
is performed at delivery stations, or repositioning is continued. The simulation proceeds event by event
until all TUs and CUs have completed their processes, and a system-wide event trace is produced as
output.
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Algorithm 1 Overview of DES logic

Require: tu_data: list of transport-unit records

Require: cu_data: list of carrier-unit records

Require: platoon_arcs: set of (s1, s2, to) where platooning occurs
Ensure: trace «[]

1: procedure Main

2 for all tu € tu_data do
3 spawn TU_Process(tu)
4 end for

5: for all cu € cu_data do
6 spawn CU_Process(cu)
7 end for

8 SimulateUntilAllDone

9: return trace

10: end procedure

11: function TU_PROCESS(tu)

12: wait until tu.pickup_time
13: log E1: “TU arrives at station”
14: wait tu.load_time

15: log E4: “load”
16: log E5: “depart loaded”

17: wait tu.delivery_time - tu.pickup_time
18: log E8: “arrive delivery”
19: wait tu.unload_time

20: log E9: “unload”
21: end function

22: function CU_PrROCEss(cu)

23: Initialise CU state

24: log E2: “CU becomes available”
25: log E3: “CU arrives at start”

26: for all arc € cu.itinerary do

27 (s1, s2, to, dur) < (from, to, start_time, travel time)
28: assignedTU < (is there a TU on (s1 — s2, to)?)

29: inPlatoon < (s1, $2, t9) € platoon_arcs

30: wait until £

31: if assignedTU then

32: log E4: “load TU”

33: log E5: “depart loaded” (solo or platoon if inPlatoon)
34: else if not assignedTU then

35: log E10: “depart empty” (solo or platoon if inPlatoon)
36: end if

37: wait dur

38: if assignedTU and this is the TU’s drop-off arc then

39: log E8: “arrive delivery”

40: log E9: “unload”

41: else if inPlatoon and next arc not in platoon_arcs then
42: log E7: “leave platoon” (solo or at station)

43: else

44: log E3: “arrive at station” (repositioning)

45: end if

46: end for
47: end function
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Detailed Description

State-Event Tables. Both Transport Units (TUs) and Carrier Units (CUs) are represented as small
finite-state machines. Each possible event (e.g., TU arrival, CU departure loaded, CU joining a platoon)
triggers a deterministic state transition. Table 3.4 (already presented in Chapter 3) enumerates all states
and events together with their codes. In the implementation, these event—state transitions are stored in
the dictionaries TU_TRANSITIONS and CU_TRANSITIONS.

The handle_event () Routine: Advancement of a unit from one logical state to the next is managed
through the function

handle_event(env, unit, event_code, trace, ..)

This single helper function performs the following tasks:

* the unit’s prior state is retrieved,
* the new state is determined via the appropriate transition map,
* the unit’s current state and location are updated, and

* atimestamped record is appended to the global trace list.

Transport-Unit Processes: Each TU is progressed through the following sequence:

1. Arrival occurs at the pickup station at time pickup_time (event E1).

2. A fixed load_time is then observed, after which the /oad event (E4) is logged and immediate
departure loaded (ES) takes place.

3. Travel continues until the delivery_time, followed by logging of the arrival event (E8) and
execution of unloading (E9).

Carrier-Unit Processes: Each CU is advanced along its itinerary, defined as a time-ordered list
of station-to-station arcs. For each arc:

» The MILP-derived decision variables z and zz are examined to determine whether the arc corre-
sponds to a TU transport or an empty repositioning.

* It is also verified whether the arc forms part of a platoon (i.e., when two or more CUs share the
same arc at the same time).

At the scheduled start time of the arc, either

— E4+4ES5 (load TU — depart loaded) is logged if a TU has been assigned, or
— E10 (depart empty) is logged otherwise,

with the transition tagged as platoon or solo.
o After the specified travel_time, one of the following is logged:

— E8+E9 if the arc corresponds to a TU drop-off,
— E7 if the CU leaves a platoon mid-route and continues solo, or
— E3 to record a pure repositioning arrival.

Collecting the Trace: All calls to handle_event result in the appending of a tuple
(time, TU_id or empty, CU_id, location, old state, event, new state, duration, arc)

to the global trace list. This list is subsequently exported into a pandas DataFrame and written to Excel
for downstream analysis.
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4.3. Disruption Implementation

Traditional planning in freight transport is typically undertaken within a static environment using Mixed
Integer Linear Programming (MILP). Although MILP is capable of producing globally optimal solu-
tions when all parameters are known in advance, it exhibits limitations in accommodating uncertainty,
unforeseen events, and sudden variations in demand. Real-world operations are, however, rarely static:
carrier breakdowns, arc closures, and ad hoc transport requests occur unpredictably, and static MILP
solutions rapidly become infeasible without complete re-formulation.

To overcome this limitation, MILP is coupled with a Discrete-Event Simulation (DES) framework.
Within this framework, the DES continuously monitors the system state, recording carrier availability,
the progress of ongoing trips, and the consequences of disruptions. When an event arises, the DES
generates a system snapshot that is used as input for re-optimisation. Ongoing trips are thereby “locked
in” and permitted to complete, while subsequent tasks are re-planned under the updated conditions. This
hybrid DES—MILP approach introduces the flexibility required to adapt dynamically to uncertainty and
to perform on-demand re-optimisation in near real-time. The disruption scenarios employed for this
purpose are summarised in Table 4.8.

Disruption Type Description Simulated Case
CU Breakdown  CU breakdown during loading Toy Case, Randstad
TU Breakdown TU breakdown during loading Toy Case

CU Delay CU late arrival Toy Case

TU Delay TU late arrival Toy Case

TU Addition Request addition at different times Randstad

Arc Removal Travel route closed for maintenance Randstad

Table 4.8: Disruption Types explored in the study

The analysis commences with a simplified Toy Case, which is employed to demonstrate the funda-
mental mechanics of disruption—response prior to the introduction of strategic, probabilistic disruptions.
The framework is subsequently applied to the large-scale Randstad Case Study, where it is subjected
to a set of disruptions designed to emulate complex, cumulative operational challenges. The principal
objective of this chapter is to provide a transparent account of how disruptions are modelled, how the
system is adapted through DES-MILP re-optimisation, and to establish the foundation for the perfor-
mance analysis presented in the subsequent chapter.

4.3.1. Toy Case

In this section, the resilience of the system and the effectiveness of dynamic re-planning are assessed
using a simplified Toy Case Study. The methodology is structured in three stages. First, a baseline
operational plan is generated by solving the MILP for a fixed set of requests, representing a nominal
disruption-free scenario.

Second, this baseline plan is executed within the Discrete-Event Simulation (DES), during which
specific pre-defined disruptions are introduced. These disruptions are formulated to invalidate portions
ofthe initial plan, thereby creating a disrupted scenario and enabling the measurement of their immediate
impact on system performance.

Third, when a disruption results in plan failure, the simulation is paused. The current state of the
system—including the locations and availability of all Carrier Units (CUs) and the status of all uncom-
pleted requests—is then passed back into the MILP. The model is re-optimised to generate a recovery
plan for the remainder of the operational period. This procedure enables direct comparison of key per-
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formance indicators (KPIs) across the nominal, disrupted, and re-optimised scenarios.

Toy Case Disruption Scenarios

In this section, a probabilistic approach to modelling disruptions is adopted. Rather than assuming that
a disruption will occur with certainty at a specific time, disruptions are defined on the basis of statistical
likelihoods. This method employs what may be described as “synthetic data” to replicate the uncertainty
and variability characteristic of real-world operations.

Table 4.9: Disruption scenarios employed in the Toy Case for probabilistic simulation across 200 runs.

ID Disruption Type Affected Unit Event Probability (%) Delay Range
D TU 001 DELAY TU El 10 [2, 8]

D CU 002 DELAY CuU E3 5 [2, 8]

D TU BRK 1 BREAKDOWN TU E4 20 [100, 150]
D CU BRK 1 BREAKDOWN CuU E4 10 [0, 0]

Each row in Table 4.9 defines a unique type of disruption that can be injected into the simulation. The
columns collectively determine the behaviour of these events:

* Disruption ID and Type: Used to identify and categorise each failure as either a ‘DELAY‘ or a
more severe ‘BREAKDOWN®.

» Affected Event and Unit: Specify the conditions under which a disruption may occur (the event
code) and the entity that is impacted (either ‘CU* or ‘TU*).

* Probability %: Defines the likelihood that a disruption will occur whenever its trigger event
takes place, thereby introducing stochasticity into the simulation.

* Delay Range: Ifa disruption occurs, the delay duration is drawn randomly from within this range.
The disruption is applied only for the selected time value.

* Specific CU or TU ID: An optional parameter that may be used to target a disruption to a single
vehicle or shipment. This parameter is primarily employed in the Randstad Case Study.

By combining these parameters, the framework enables a flexible and robust representation of oper-
ational failures, ranging from frequent minor delays to rare but critical breakdowns. This configuration
forms the basis for a comprehensive stress test of the system’s resilience. Furthermore, by employing
a probabilistic model, the DES can be executed across multiple iterations, each yielding a distinct se-
quence of disruptions. In this way, system performance is evaluated not against a single pre-determined
failure, but across a spectrum of possible operational realities.

4.3.2. Randstad Case Study

For the more complex Randstad case study, a sequential, cumulative disruption methodology was em-
ployed to test the system’s adaptive re-planning capabilities. The experiment begins with a baseline
plan, generated by the MILP for a pre-defined set of requests. The DES then simulates this plan, but
unlike the Toy Case, it is subjected to a series of cascading disruptions.

Disruption Types and Lock-in Mechanisms: The system handles three distinct types of disruptions,
each with specific lock-in and re-optimisation strategies:

1. Transport Unit (TU) Addition Disruptions: The system accommodates dynamic request ar-
rivals at various time points during simulation, including immediate additions at simulation start
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and mid-simulation arrivals. When new requests arrive, the system immediately triggers re-
optimisation to integrate these demands into the existing plan. The lock-in mechanism pre-
serves all ongoing carrier operations, ensuring that carriers currently executing tasks continue
their planned routes while the MILP re-optimises the remaining unassigned requests and newly
arrived demands. This approach maintains operational continuity while accommodating dynamic
demand changes. The system also supports time bracket analysis, where requests are added at
different simulation times to evaluate the impact of timing on system performance, and time win-
dow flexibility analysis, where pickup and delivery windows are relaxed to assess the trade-offs
between fulfillment and punctuality.

2. Carrier Unit (CU) Breakdown Disruptions: When carrier units fail during simulation, the sys-
tem implements a comprehensive lock-in strategy. All active carrier operations are preserved and
allowed to complete as planned, while the failed carrier’s assigned tasks are immediately dropped
from the system. The re-optimisation process then redistributes these dropped tasks among the re-
maining operational carriers, considering their projected availability times and current workload.
This ensures that the system maintains service continuity despite capacity reduction. The system
also supports time window flexibility analysis for CU breakdown scenarios, where pickup and
delivery windows are relaxed to assess the system’s ability to recover from capacity reductions
under different flexibility levels.

3. Arc Removal Disruptions: The system handles both permanent and temporary arc removals.
For permanent removals, the arc is unavailable throughout the entire planning horizon, requiring
all affected requests to be rerouted through alternative paths. For temporary removals, the arc be-
comes unavailable during specific time intervals (e.g., from t=7 to t=17), after which it is restored
to the network. The lock-in mechanism preserves all ongoing operations that do not depend on
the removed arc, while the re-optimisation process reroutes affected requests through alternative
network paths, adjusting pickup and delivery windows as necessary to maintain feasibility. This
approach preserves operational continuity while adapting to structural network changes.

Combined Disruption Scenarios: In addition to individual disruption types, the system is designed
to handle complex scenarios involving multiple simultaneous or sequential disruptions. These com-
bined scenarios test the system’s resilience under maximum operational stress, where the MILP must
simultaneously address demand surges, capacity reductions, and structural network constraints.

4.3.3. A General Framework for Sequential Disruption Analysis
While this report focuses on the impact of three specific disruptions to test system resilience, the under-
lying methodology is built upon a general and robust algorithm. This framework, presented in Algo-
rithm 2, is designed to systematically incorporate any number of disruptions occurring sequentially over
time. It integrates a Mixed-Integer Linear Programming (MILP) optimiser with a Discrete Event Sim-
ulation (DES) in a rolling horizon approach, allowing the system to dynamically replan its operations
in response to unforeseen events.

The core logic of the algorithm is to advance through time from one disruption event to the next,
treating each disruption as a trigger for re-optimisation.
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Algorithm 2 Sequential Disruption Framework for DES-MILP Integration

Require: Disruption configuration D = {(d1,t1), (d2,t2), ..., (dy,t,)}, Total horizon T’

1: Extract baseline MILP inputs from case study

2: Set topt = 0
3: for all i in D do
4 t; < disruption time
5 if t; = topt then
6: Apply disruption logic to inputs at ¢ = #op
7 Prepare disrupted MILP inputs
8 Run MILP optimisation to generate plan file (.pkl)
9: ti+1 < next disruption time
10: if t;1 exists then
11: Simulate DES from ¢, to ¢; 1 with lock-in method
12: Receive Excel output from Zop to 241
13: Extract MILP inputs at disruption time #; 1
14: topt < tit1
15: continue
16: else
17: Simulate DES from ¢, to 7" without lock-in
18: Generate Excel output from 2y to T’
19: end if
20: else
21: Run MILP optimisation to generate plan file (.pkl)
22: Simulate DES from £, to ¢; with lock-in method
23: Receive Excel output from Zp to 2;
24: Extract MILP inputs at disruption time ¢;
25: Apply disruptions at t = ¢;
26: Run disrupted MILP from ¢; to T to generate plan file (.pkl)
27: t;+1 < next disruption time
28: if t; 1 exists then
29: Simulate DES from ¢; to ¢; 1 with lock-in method
30: Receive Excel output from ¢; to ¢;41
31: Extract MILP inputs at disruption time ¢;1
32: topt — Tiv1
33: continue
34: else
35: Simulate DES from ¢; to 1" without lock-in
36: Generate Excel output from ¢; to T’
37: end if
38: end if
39: end for

40: Aggregate performance metrics across all simulation segments
41: Calculate system resilience indicators

Algorithm Explanation

The Sequential Disruption Framework is designed to integrate disruptions into a coupled DES-MILP
environment in a stepwise manner. While the pseudocode explicitly distinguishes between disruptions
occurring at the initial optimisation time (¢,,¢ = 0) and later stages, the underlying logic is uniform: the
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system simply moves forward in time until a disruption occurs, applies it, re-optimises, and continues
simulating until the next disruption or the final horizon. The explanation below simplifies the process
into a general workflow, independent of the code-specific branching.

The algorithm progresses sequentially across the planning horizon by alternating between simu-
lation and re-optimisation steps. Its key purpose is to ensure that disruptions are incorporated at the
correct times, while the system continuously adapts through re-optimised MILP plans. The main steps
can be summarised as follows:

Inputs and Initialisation:- The inputs are initialised as follows:
« Disruptions: D = {(dy,t1), (d2,t2), ..., (dn,tn)}, where d; is the disruption realised at time ¢;.
* Total horizon: T, the terminal time of interest.

 Baseline MILP inputs are extracted from the case study and the optimisation clock is initialised,
topt < 0.

Iterative Disruption Handling:- For each disruption time in ascending order, repeat:

* Simulate to the next disruption: Run the DES from the current optimisation time ¢, up to the
next disruption time tpex; using the lock-in method to honour previously fixed decisions.

» Apply disruption at ¢,,¢x¢: Update inputs according to the disruption logic (e.g., capacity changes,
resource unavailability, timing shifts).

» Re-optimise: Solve the MILP with the disrupted inputs to obtain a refreshed executable plan
(e.g., exported as a .pk1 plan file).

* Record outputs: Store the DES segment outputs (e.g., Excel reports) covering [topt, tnext)-
 Advance the clock: Set ¢,y < tnexe and proceed to the next disruption time.

Final Stage (Post-Last Disruption):- After the final disruption has been applied and re-optimised,
simulate from the last . to the end of the horizon 1" without lock-in, and generate the final Excel
output for this terminal segment.

Post-Processing:- Following post-processing steps were performed for further analysis:
» Aggregate the outputs across all simulation segments.

» Compute performance metrics and system resilience indicators to quantify response quality under
the realised disruption sequence.

This chapter has detailed the methods used to introduce disruptions into the simulation framework. Es-
tablished a clear process for testing the system against both predictable, deterministic failures in the toy
case and more complex, cascading disruptions in the Randstad network. Furthermore, by incorporating
a probabilistic model for loading delays, we have set the stage for a more realistic assessment of opera-
tional uncertainty. Validation of the DES logic (Algorithm 1) was performed using the master example
in Appendix A.5.

The impact of these implemented disruptions on the system’s operational efficiency and service
reliability will be quantitatively analysed in the following chapter. The Key Performance Indicators
(KPIs) scenarios are presented and evaluated in chapter 5.



Results & Discussion

This chapter presents a comprehensive analysis of the system’s performance under various conditions.
We will evaluate a set of Key Performance Indicators (KPIs) for our two primary case studies: the sim-
plified Toy Case and the more complex Randstad Case Study. The analysis aims to quantify the impact
of different disruptions on operational efficiency and service reliability, thereby providing insights into
the system’s overall resilience.

5.1. Key Performance Indicator (KPI) Selection
To evaluate the performance of the autonomous pod system, a set of Key Performance Indicators (KPIs)
was selected. These KPIs are designed to provide a comprehensive view of the system’s operation by
measuring its overall effectiveness, the efficiency of its resources, and the quality of service offered.
The performance is measured by analysing the output of the Discrete Event Simulation (DES) under
both a nominal (baseline) scenario and various disruption scenarios.

5.1.1. Category 1: Service Effectiveness & Quality
These KPIs measure the system’s ability to achieve its primary goal of fulfilling transport requests and
the reliability of its service.

fulfilment Rate (%)

This is the most fundamental KPI, as it directly measures the success of the system in completing its
tasks. A high fulfilment rate indicates an effective system, whereas a low rate suggests a failure in
planning or an inability to cope with disruptions. The fulfilment rate is calculated as the percentage
of successfully delivered Transport Units (TUs) relative to the total number of TUs considered for the
plan. The number of fulfilled trips can be found in the ’fulfilment Summary” sheet from the DES code
output, shown in section 4.2.2 or just by counting the number of T4 (Delivered) states in the "Trace”

sheet.
Number of successfully delivered TUs

fulfilment Rate = ( ) x 100%

Total number of TUs in the system

Average Delivery Delay

This KPI measures the system’s reliability and adherence to the optimal plan generated by the baseline
MILP. It quantifies the quality of service by measuring the deviation from the planned schedule. A low
average delay, particularly in a disruption scenario, indicates a robust and resilient system that can man-
age unexpected events effectively. It is the average of the difference between the actual delivery time
recorded in the DES and the planned delivery time from the baseline MILP solution, for all completed

37
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requests.
> (Actual Delivery Time — Baseline Delivery Time)

A Delay =
verage Delay Number of completed requests

5.1.2. Category 2: Resource Efficiency
These KPIs measure how well the system utilises its assets, the Carrier Units (CUs).

Carrier Utilisation (%)

This measures the operational efficiency of the carrier fleet. High utilisation indicates that these CUs
are not sitting idle. However, a utilisation rate approaching 100% may suggest a lack of spare capac-
ity, potentially reducing the system’s ability to absorb disruptions. ”Busy time” for a carrier includes
all productive work: transporting a transport unit (TU), repositioning (travelling empty), loading, and
unloading. Events where the CU is busy are E4, ES, E6, E7, E§, E9 and E10. With this KPI measure in
hand, the idle time of the CU can be calculated, i.e the total % of time the CU is at the station waiting.
The average utilisation across all carriers.

. e Total Busy Time
C Utilisation = 1009
artier UHiisation <Total Available Time> < 100%
Idle Time (%) = 100% — Carrier Utilisation (%) (5.1)

Empty Travel Ratio (%)

This is a direct measure of logistical inefficiency. Time spent by a carrier travelling empty to its next
pickup location is necessary but unproductive (also known as deadheading). An effective plan should
minimise this ratio. Comparing this KPI between nominal and disruption scenarios reveals how dis-
ruptions force less efficient movements. The ratio of time spent travelling empty to the total travel

time. ) o
Total time spent repositioning (empty)

Empty Travel Ratio = ( ) x 100%

Total travel time (transport + repositioning)

Average TUs per CU

This Key Performance Indicator (KPI) measures the overall productivity of the carrier fleet. It quantifies,
on average, how many requests each Carrier Unit (CU) completed during the operational horizon. A
higher value indicates greater efficiency, suggesting that each vehicle is being used effectively to fulfill
demand. Conversely, a lower value may point to underutilisation or an excess of non-productive travel,
such as empty repositioning. The metric is calculated as the ratio of the total number of successfully
delivered transport units to the total number of carriers in the fleet.

Total Fulfilled Requests
Total Number of Carrier Units

Average TUs per CU = (5.2)

5.1.3. Category 3: System-Specific Performance
This category focuses on measuring the performance of unique features of the autonomous system.

Platooning Rate (%)

As platooning is a key system feature designed for energy savings and efficiency, this KPI directly mea-
sures how often this strategy is successfully implemented. A higher rate indicates better coordination
between carriers. The percentage of total travel time that carriers spend moving in a platoon.

Total time all CUs spent in a platoon
Total travel time of all CUs

Platooning Rate = < ) x 100%
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5.1.4. Discussion

The Key Performance Indicators detailed in this chapter have been carefully selected to provide a mul-
tidimensional view of the system’s performance. By organising them into three distinct categories,
Service Effectiveness & Quality, Resource Efficiency, and System-Specific Performance can move
beyond a single measure of success and create a holistic operational profile.

This approach is crucial for a comprehensive resilience analysis. For instance, a system might main-
tain a high fulfilment Rate (Effectiveness) during a disruption, but at the cost of a drastically increased
Empty Travel Ratio (Inefficiency). Similarly, a high Carrier Utilisation rate might seem positive but
could also indicate a lack of spare capacity to handle further unexpected events.

Ultimately, these KPIs are the analytical tools that will be used to interpret the simulation outputs.
They provide the quantitative basis for comparing the baseline, disrupted, and re-optimised scenarios,
allowing us to draw meaningful conclusions about the system’s robustness and the effectiveness of
the dynamic re-planning strategies. The application of these metrics to the simulation results will be
presented in chapter 5.

5.2. Toy Case

The Toy Case serves as a foundational model to evaluate the core logic of the DES-MILP framework. In
this section, its performance is examined under a more realistic setting involving probabilistic failures.
This approach enables the establishment of a baseline understanding of how the system responds to and
recovers from disruptions within a controlled environment.

Table 5.1: Disruption scenarios employed in the Toy Case for probabilistic simulation across 200 runs.

ID Disruption Type Affected Unit Event Probability (%) Delay Range
D TU 001 DELAY TU El 10 [2, 8]

D CU 001 DELAY CuU E3 5 (2, 8]

D TU BRK 1 BREAKDOWN TU E4 20 [100, 150]
D CU BRK 1 BREAKDOWN CU E4 10 [0, 0]

Table 5.1 outlines the set of disruption scenarios considered in the experimental design. These
scenarios encompass two types of events—delays and breakdowns—applied to both transport units
(TUs) and carrier units (CUs). Each disruption is characterised by an associated event identifier, a
probability of occurrence, and a corresponding delay range. For instance, minor delays are modelled
for both TUs and CUs with probabilities of 10% and 5%, respectively, while breakdowns are represented
as rarer but more severe events, particularly for TUs, where delays may extend from 100 to 150 time
units.

These disruption scenarios were applied across 200 simulation cases. The disruptions are intro-
duced probabilistically, based on predefined probabilities. Specifically, a random number generator de-
termines whether a given disruption occurs: if the generated value is less than or equal to the assigned
probability, the disruption is activated in that simulation run. This probabilistic application reflects
the inherent uncertainty of real-world operations while maintaining a structured and repeatable testing
environment.

Such a design ensures that the Toy Case not only validates the underlying mechanisms of the frame-
work but also provides a robust foundation for subsequent experimentation with more complex and
realistic scenarios.
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5.2.1. KPI Summary
This subsection presents the performance of the Toy Case under probabilistic disruptions by focusing
on one representative case from the 200 simulation runs. The objective is to illustrate how the system
reacts to randomly applied disruptions and how optimisation measures can mitigate their impact.
Table 5.2 reports the disruptions that occurred in the selected case, together with their triggering
events, affected units, and delay implications. The first disruption corresponds to a carrier unit (CU)
breakdown at time step 2, triggered by event E4, which imposed a delay of 140-time units. Subsequently,
a transport unit (TU) breakdown occurred at time step 11, also triggered by event E4, but with no
additional delay recorded. This sequence of disruptions highlights how both CU and TU failures can
emerge within the same operational horizon, demonstrating the stochastic and cumulative nature of
disruption propagation.

Table 5.2: Disruptions applied in the selected simulation case.

Time Disruption Name Triggering Event Affected CU Affected TU Delay Added

2 D CU BRK_1 E4 2 5 140
11 D TU BRK I E4 4 0

Building on this, Table 5.3 presents the corresponding key performance indicators (KPIs) for the
baseline, disrupted, and optimised settings. The baseline reflects system performance without disrup-
tions, while the disrupted case captures the deterioration caused by the breakdowns of the CU and TU.
The optimised case incorporates the recovery strategy implemented by the DES-MILP framework.

Table 5.3: KPI summary for the Toy Case under probabilistic disruptions.

KPI Baseline Disrupted Network Reoptimised Network
Total Requests 5 4 4
Fulfilled Requests 5

Unfulfilled Requests 0 3 1
fulfilment Rate (%) 100.00 25.00 75.00
Average Delivery Delay N/A N/A 3.33
Average Relative Delay (%) N/A N/A 16.60
Max Delivery Delay N/A N/A 7.00
Min Delivery Delay N/A N/A -2.00
Number of Delayed Deliveries N/A N/A 2.00
Percentage of Delayed Deliveries N/A N/A 66.67
Carrier Utilisation (%) 42.20 10.00 33.30
Idle Time (%) 57.80 90.00 66.70
Empty Travel Ratio (%) 7.90 0.00 13.40
Platooning Rate (%) 0.00 0.00 3.70

Average TUs per CU 1.67 0.33 1.00
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The results demonstrate that disruptions substantially degrade system performance. In the disrupted
case, only 2 of the 5 total requests were fulfilled, resulting in a fulfilment rate of 20% compared with
100% in the baseline. Carrier utilisation also dropped sharply from 42.2% to 10%, while idle time
increased to 90%. However, once the re-optimisation procedure was applied, performance improved
notably. The fulfilment rate increased to 60%, demonstrating that the optimisation strategy success-
fully recovered part of the disrupted demand. Improvements were also observed in other operational
measures. Carrier utilisation rose from 10% in the disrupted case to 33.3% in the optimised case, while
idle time dropped from 90% to 66.7%. Moreover, the optimisation introduced platooning opportuni-
ties (3.7%) that were absent in both the baseline and disrupted scenarios, highlighting an additional
efficiency gain. These results confirm that although the disruptions caused severe deterioration, the
framework was able to restore system effectiveness to a significant extent.

CU Time Allocation
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Figure 5.1: Carrier unit time allocation for Run 135 under baseline, disrupted, and optimised scenarios.

The CU time allocation in Figure 5.1 further illustrates the dynamics behind these performance
differences. In the disrupted case, both CU 1 and CU 2 were completely idle due to breakdowns, while
CU 3 maintained some transit activity but remained largely underutilised. The optimised scenario,
however, redistributed workload more effectively: CU 1 returned to a balanced utilisation similar to the
baseline, CU 2 remained idle due to persistent unavailability, and CU 3 exhibited a clear shift, with a
significant share of its time reallocated to repositioning activities. This reallocation explains the partial

recovery in fulfilment rate, as the framework leveraged the remaining functional resources to satisfy
additional requests.
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5.2.2. Aggregate Analysis (200 Runs)

While the case-specific analysis provides valuable insights into individual disruptions, the boxplots in
Figure 5.2 summarise results over all 200 probabilistic runs, thereby offering a broader view of system
behaviour. These 200 probabilistic disruptions were applied to the baseline with the probability of
occurrence specified in Table 5.1.
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Figure 5.2: Distribution of fulfilment rate, carrier utilisation, and empty travel ratio across 200 runs for disrupted and
optimised cases. Baseline values are shown as dashed lines.

The fulfilment rate distribution highlights the strong adverse impact of disruptions, with the median
value in the disrupted case falling to around 60% and a wide variance across runs. In comparison, the
optimised case demonstrates a consistent upward shift, with median fulfilment rising to approximately
80%. Although the baseline value of 100% is not fully restored, the improvement is substantial and
consistent across runs, underscoring the robustness of the optimisation approach.

Carrier utilisation exhibits a similar pattern. The disrupted case is characterised by lower median
utilisation, reflecting widespread CU inactivity during breakdowns. The optimisation process improves
utilisation, pushing the distribution closer to the baseline, though again not fully reaching it.

Finally, the empty travel ratio shows a more nuanced effect. In the disrupted case, the ratio is
generally low, as many CUs are idle rather than moving. Optimisation increases the ratio somewhat,
since repositioning movements are introduced to reconfigure the system. While this may appear less
efficient in isolation, it represents a necessary trade-off, enabling higher fulfilment rates and better
overall resource usage.
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Figure 5.3: Errorbar plot of fulfilment rate, carrier utilisation, and empty travel ratio across 200 runs for disrupted and
optimised cases.

The performance of the system in terms of fulfilment rate, carrier utilisation, and empty travel ratio
was further examined using measures of variability and precision. Figure 5.3 shows the error bar plot
visualising the p £ o, where p is the mean and o is the standard deviation. In the optimised case,
fulfilment rate had a mean of 71.0% with a standard deviation of 16.8%, while in the disrupted case,
the mean dropped to 65.2% with an even larger standard deviation of 24.3%. This indicates substantial
variability in fulfilment across simulation runs. By contrast, carrier utilisation was more stable, with
mean values of 35.8% = 11.0% (optimized) and 28.9% + 10.0% (disrupted). The empty travel ratio
showed the lowest spread, at 12.4% + 10.6% (optimized) and 9.8% + 7.5% (disrupted).
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Figure 5.4: 95% confidence intervals of fulfilment rate, carrier utilisation, and empty travel ratio across 200 runs for
disrupted and optimised cases.

When considering the 95% confidence intervals of the mean (Figure 5.4), the results demonstrate
that despite the variability, the mean estimates are statistically reliable. For fulfilment rate, the CIs were
[68.5—73.5]% (optimised) and [61.8—-68.6]% (disrupted). Carrier utilisation had narrow Cls of [34.2—
37.41% (optimised) and [27.5-30.3]% (disrupted), while the empty travel ratio showed [10.8-14.0]%
(optimised) and [8.7-10.8]% (disrupted). The confidence intervals are considerably narrower than the
standard deviations due to the large number of runs, which strengthens confidence in the estimated
means.

Beyond the primary KPIs analysed in the disruption scenarios, the system performance evaluation
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encompasses a comprehensive set of operational metrics that provide deeper insights into the system’s
behaviour under various conditions. These additional metrics include detailed statistical analysis of
fulfilment rates, delivery delays, carrier utilisation patterns, and operational efficiency indicators across
multiple simulation runs.

The statistical analysis, based on 200 simulation runs, reveals significant performance variations be-
tween optimised and disrupted system states. The optimised system demonstrates higher fulfilment rates
and carrier utilisation, while the disrupted system shows reduced operational efficiency but maintains
better delivery punctuality. Detailed statistical summaries, including mean values, standard deviations,
median values, and 95% confidence intervals for all performance metrics, are provided in Tables A.4
and A.5 in the Appendix.

In this context, robustness means the ability to keep service performance high, and variability con-
trolled, when the system is perturbed—without retuning the model. The Toy Case results indicate that
the DES-MILP loop is robust in that sense. In the representative run, re-optimisation lifts fulfilment
from a severely disrupted state (25%) to 75%, with carrier utilisation recovering from 10.0% to 33.3%
while platooning reappears (3.7%)—at the expected cost of more empty repositioning (13.4%). These
patterns show that the framework can systematically reconfigure assets to restore service after shocks.

Aggregated over 200 stochastic runs, the robustness signal is stronger: the median fulfilment shifts
from roughly 60% (disrupted) to roughly 80% (re-optimised), and the dispersion of outcomes narrows
(fulfilment standard deviation reduces from 24.3% to 16.8%). Mean utilisation increases (28.9% = 10.0%
to 35.8% =+ 11.0%), while the empty-travel ratio rises moderately (9.8% +7.5% to 12.4% £ 10.6%)), evi-
dencing a controlled efficiency trade-off in exchange for more reliable service. Overall, the combination
of (i) consistent uplift in fulfilment across seeds, and (ii) reduced variability in outcomes, supports the
claim that the proposed re-optimisation policy delivers robust performance under probabilistic disrup-
tions.

Key Insights

The combined analysis of individual runs and aggregated outcomes leads to several key insights. First,
disruptions lead to severe degradation in both service quality and resource efficiency, confirming the
system’s vulnerability to stochastic failures. Second, the optimisation framework consistently mitigates
these effects, restoring a substantial share of lost performance. In particular, the fulfilment rate shows
marked improvements, with recovery from severe shortfalls to moderate-to-high levels across most
runs. Finally, the results demonstrate that optimisation does not merely stabilise the system but actively
reconfigures resource usage, introducing repositioning and platooning strategies that were absent in the
baseline, thereby enhancing resilience.

5.3. Randstad Case Study

Building upon the insights from the Toy Case, the analysis will be applied to the large-scale Randstad
Case Study. This section evaluates the system’s resilience against more complex and impactful disrup-
tions, reflecting realistic operational challenges. Comparison is made with baseline performance against
three scenarios: an unexpected increase in demand, a critical carrier breakdown, an arc breakdown, and
a combination of these two disruptions.

5.3.1. TU Addition
This subsection analyses how the system responds to sudden increases in demand through the addition of
new transport units during simulation. The analysis examines both simultaneous and non-simultaneous
demand surge scenarios to understand the system’s capacity to handle varying patterns of increased
workload. Followed by time flexibility and time bracket analysis.

Two distinct demand surge patterns are investigated to evaluate system performance under different
temporal distributions of increased demand:
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Simultaneous Demand Surge:- Three transport units (TU4, TU15, and TU18) are added simultane-
ously at time t=0, representing an immediate and substantial increase in system workload. This scenario
tests the system’s ability to handle a sudden spike in demand from the beginning of the simulation pe-
riod.

Non-Simultaneous Demand Surge:- Transport units are added at different time points to simulate
a more gradual increase in demand. TU4 is introduced at time t=4, followed by TU15 at time t=25,
creating a staggered demand pattern that allows the system to adapt incrementally to increased workload.

Analysis Framework

The comparison between baseline performance and these demand surge scenarios provides insights
nto:

+ System capacity utilisation under increased demand
» Effectiveness of re-optimisation strategies for different demand patterns

Trade-offs between simultaneous vs. staggered demand introduction

* Impact on key performance indicators such as fulfilment rates, delivery delays, and carrier utili-
sation

This analysis establishes the foundation for understanding how the system’s adaptive capabilities
respond to different types of demand disruptions, setting the stage for a more detailed examination of
each scenario’s specific characteristics and performance outcomes.

Simultaneous surge in request (TU) demand:
This analysis examines the system’s performance when three additional transport units (TU4, TU15,
and TU18) are added simultaneously at time t=0, creating an immediate surge in demand that tests the
system’s capacity to handle increased workload from the beginning of the simulation period.

The characteristics of the added transport units are detailed in Table 5.4.

Table 5.4: Transport Units Added for Simultaneous Demand Surge Analysis

TUID | Origin | Destination | Pickup Window | Delivery Window
TU4 Station 7 Station 8 [4, 10] [16,24]
TU15 | Station 10 Station 9 [25, 30] [33, 39]
TU18 | Station 2 Station 3 [14, 20] [25, 33]

This simultaneous demand surge increases the total system workload from 15 to 18 transport re-
quests, representing a 20% increase in demand. The analysis compares three scenarios: the baseline
system with original demand, the disrupted system with increased demand but no re-optimisation, and
the re-optimised system that adapts to the new demand pattern.

The KPIs explained in table 5.5 demonstrate how the system responds to a sudden increase in work-
load and the effectiveness of re-optimisation strategies in improving fulfilment rates and operational
efficiency under simultaneous demand surge conditions.
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Table 5.5: KPI Comparison for Randstad TU Addition (Simultaneous Surge)

KPI Name Baseline Disrupted Network Reoptimised Network
Total Requests 15 18 18
Fulfilled Requests 15 15 16
Unfulfilled Requests 0 3 2
fulfilment Rate (%) 100.00 83.00 88.00
Average Delivery Delay N/A N/A 0.36
Average Relative Delay (%) N/A N/A 1.60
Max Delivery Delay N/A N/A 4.00
Min Delivery Delay N/A N/A -1.00
Number of Delayed Deliveries N/A N/A 2.00
Percentage of Delayed Deliveries N/A N/A 14.29
Carrier Utilisation (%) 56.80 56.80 54.50
Idle Time (%) 43.20 43.20 45.50
Empty Travel Ratio (%) 11.70 11.70 8.70
Platooning Rate (%) 24.60 24.60 18.70
Average TUs per CU (All CUs) 1.50 1.50 1.60

Non-simultaneous surge in request (TU) demand:

This scenario simulates an unexpected surge in demand by introducing additional Transport Unit (TU)
requests at the start of the simulation that is at t = 0 and at t = 25. The analysis focuses on the system’s
ability to adapt its plan to accommodate new, high-priority tasks. The performance impact is detailed
in table 5.6.
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Table 5.6: KPI Comparison for Randstad TU Addition (Non-simultaneous Surge)

KPI Name Baseline Disrupted Network Reoptimised network
Total Requests 15 17 17
Fulfilled Requests 15 15 16
Unfulfilled Requests 0 2 1
fulfilment Rate (%) 100.00 88.00 94.00
Average Delivery Delay N/A N/A 0.73
Average Relative Delay (%) N/A N/A 4.10
Max Delivery Delay N/A N/A 6.00
Min Delivery Delay N/A N/A -1.00
Number of Delayed Deliveries N/A N/A 4.00
Percentage of Delayed Deliveries N/A N/A 26.67
Carrier Utilisation (%) 56.80 56.80 53.80
Idle Time (%) 43.20 43.20 46.20
Empty Travel Ratio (%) 11.70 11.70 10.70
Platooning Rate (%) 24.60 24.60 14.90
Average TUs per CU (All CUs) 1.50 1.50 1.50

In this analysis, TU 4 and TU 15 are added to the system. At every TU addition, the system will
re-optimise the system depending upon the current CU and TU status.

A critical observation across both scenarios is the system’s adaptive resource reallocation behaviour,
where existing baseline requests are dynamically managed to accommodate new demands.

Baseline Request Replacement Mechanism: A particularly noteworthy observation in both scenar-
ios is the replacement of TU3 from the original baseline. When new TUs were introduced, the system’s
re-optimisation process effectively “replaced” TU3 by reallocating its assigned resources to fulfill the
new demands. This replacement mechanism demonstrates the MILP model’s ability to dynamically
prioritise and reallocate resources based on current system conditions, rather than maintaining rigid
adherence to the original baseline plan.

Scenario 1 - Simultaneous TU Addition (TU4, TU15, TU18 at t=0): This scenario investigates the
system’s performance when three new Transport Units (TU4, TU15, and TU18) are added simultane-
ously at the very beginning of the simulation (t=0), increasing the total demand from 15 to 18 requests.
The replacement of TU3 by TU4 and TU15 results in a net increase of 2 requests (15 - 1 +2 = 16 total
requests) as seen in table 5.4.
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Key Observations from Simultaneous TU Addition:

« fulfilment Impact: The addition of 3 TUs at t=0 immediately reduced the fulfilment rate from
100% (Baseline) to 83% in the disrupted state, as the system could only fulfill the original 15 re-
quests. Post-re-optimisation, the fulfilment rate improved to 88%, indicating that the re-optimised
plan successfully integrated and fulfilled two of the three new requests, reducing unfulfilled re-
quests from 3 to 2.

* Delivery Delays: The re-optimised network shows an average delivery delay of 0.36 time units,
with a maximum delay of 4.00 time units. Interestingly, a minimum delay of -1.00 indicates that
some deliveries were completed earlier than their original planned times, suggesting efficient
re-routing. Two deliveries (14.29% of relevant deliveries) experienced delays.

* Carrier Utilisation and Idle Time: Carrier Utilisation slightly decreased from 56.80% (Base-
line/Disrupted) to 54.50% in the re-optimised network. Correspondingly, Idle Time increased
from 43.20% to 45.50%. This suggests that while the system handled more requests, the re-
optimisation prioritised fulfilment and delay reduction over maximising carrier utilisation.

* Empty Travel Ratio: A significant improvement was observed in the Empty Travel Ratio, which
decreased from 11.70% to 8.70% in the re-optimised network. This indicates that the re-optimisation
effectively found more efficient routes, reducing the carrier repositioning trip.

* Platooning Rate: The Platooning Rate decreased from 24.60% to 18.70% after re-optimisation.
This suggests that to accommodate the new requests and optimise other KPIs, the re-optimisation
had to break up some platoons, as platooning often requires strict timing and routing, which can
be less flexible under dynamic conditions.

* Average TUs per CU: The Average TUs per CU slightly increased from 1.50 to 1.60 in the
re-optimised network, reflecting the carriers handling a marginally higher workload.

Scenario 2 - Non-Simultaneous TU Addition (TU4 at t=0, TU15 at t=25): This scenario examines
a staggered demand surge where TU4 is introduced at the simulation start (t=0), followed by TU15 later
in the simulation at t=25. Similar to the simultaneous scenario, TU3 from the baseline was replaced by
TU4, resulting in a net increase of 1 request (15 — 1 + 2 = 16 total requests).

Key Observations from Non-Simultaneous TU Addition:

+ fulfilment Impact: The addition of 2 TUs (TU4 at t=0, TU15 at t=25) increased total requests
to 17. The disrupted state maintained 15 fulfilled requests, resulting in an 88% fulfilment rate.
Post-re-optimisation, the fulfilment rate improved to 94%, successfully fulfilling 16 out of 17
requests and reducing unfulfilled requests from 2 to 1.

* Delivery Delays: The re-optimised network shows an average delivery delay of 0.73-time units,
with a maximum delay of 6.00 time units. Four deliveries (26.67% of fulfilled requests) experi-
enced delays, which is higher than the simultaneous scenario, suggesting that staggered additions
may create more scheduling challenges.

 Carrier Utilisation and Idle Time: Carrier Utilisation decreased from 56.80% to 53.80% in the
re-optimised network, with Idle Time increasing to 46.20%. This indicates that the re-optimisation
prioritised fulfilment over utilisation efficiency.

* Empty Travel Ratio: The Empty Travel Ratio improved from 11.70% to 10.70% in the re-
optimised network.

* Platooning Rate: The Platooning Rate significantly decreased from 24.60% to 14.90% after re-

optimisation, indicating that the staggered addition pattern made platooning more challenging to
maintain.
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* Average TUs per CU: The Average TUs per CU remained constant at 1.50 across all scenar-
i0s, suggesting that the staggered addition pattern did not significantly alter the average carrier
workload.

Comparative Analysis: Comparing both scenarios reveals a clear trade-off between fulfilment quan-
tity and delivery quality. The non-simultaneous addition strategy demonstrates superior fulfilment capa-
bilities, achieving a 94% fulfilment rate compared to 88% for the simultaneous approach, successfully
fulfilling 16 requests with only 1 unfulfilled, versus 2 unfulfilled in the simultaneous scenario. Con-
versely, the simultaneous addition strategy excels in delivery punctuality and operational efficiency
for fulfilled requests, achieving significantly lower average delivery delays (0.36 vs. 0.73 time units),
fewer delayed deliveries (2 vs. 4), lower empty travel ratio (8.7% vs. 10.7%), and higher platooning
rate (18.7% vs. 14.9%). This indicates that while the non-simultaneous approach prioritises fulfill-
ing as many requests as possible through incremental adaptation, the simultaneous approach prioritises
efficient delivery and operational excellence for the requests it can fulfill, suggesting that the choice
between strategies depends on whether the primary objective is maximising fulfilment quantity or en-
suring high-quality delivery performance for fulfilled requests.

Adding to this analysis, TU addition disruption was tested with varying time window flexibility
and time bracket analysis. This investigation explores how the system’s re-optimisation capabilities
are influenced by the allowance to relax delivery and pickup time windows, as well as the timing of
dynamic request introductions. The analysis examines two key dimensions: (1) the impact of time
window flexibility levels (0, 10, and 40-time units) when adding 2 TUs at a specific point in time, and
(2) the effect of adding 3 TUs at different time brackets (t=0, t=10, t=20) to understand how timing
affects system performance and resource allocation.

TU time window flexibility analysis

Two dynamic transport units (TU15 and TU18) are added at time t=14 to simulate mid-simulation
demand changes. The system is then re-optimised with varying levels of time window flexibility to
accommodate these new requests. The characteristics of the added transport units are detailed in Ta-
ble 5.7.

Table 5.7: Dynamic Transport Units Added for Time Window Flexibility Analysis

TUID Origin Destination | Pickup Window | Delivery Window
TU15 | Station 10 Station 9 [25, 30] [33, 39]
TU18 | Station 2 Station 3 [14, 20] [25, 33]

The analysis compares five scenarios to evaluate the trade-offs between system flexibility and per-
formance:

Baseline: Original system with 15 requests, no disruptions

Disrupted: System with 17 total requests (15 original + 2 dynamic) but no re-optimisation
Flexibility = 0: Re-optimisation with no window relaxation (strict time constraints)
Flexibility = 10: Re-optimisation with 10 time units of window relaxation

Al

Flexibility = 40: Re-optimisation with 40 time units of window relaxation (maximum flexibility)

This analysis reveals the critical trade-off between maintaining strict delivery schedules and achiev-
ing higher fulfilment rates through increased operational flexibility. The results demonstrate how win-
dow relaxation strategies can improve system resilience while potentially introducing delivery delays.
Table 5.8 details the list of KPIs analysed in this scenario.
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Table 5.8: KPI Comparison for Randstad TU Addition (Flexible Window Analysis)

KPI Name Baseline Disrupted Time Time Time
window window window
flexibility = flexibility = flexibility =
0 10 40

Total Requests 15 17 17 17 17

Fulfilled Re- 15 15 13 15 15

quests

Unfulfilled Re- 0 2 4 2 2

quests

fulfilment Rate 100.00 88.00 76.00 88.00 88.00

(%)

Average Deliv- N/A N/A 0.46 2.93 3.00

ery Delay

Average Rela- N/A N/A 1.80 9.80 10.10

tive Delay (%)

Max Delivery N/A N/A 9.00 10.00 10.00

Delay

Min Delivery N/A N/A -4.00 -4.00 -4.00

Delay

Number of De- N/A N/A 2.00 8.00 8.00

layed Deliveries

Percentage of N/A N/A 15.38 53.33 53.33

Delayed Deliv-

eries

Carrier Utilisa- 50.50 50.50 49.00 58.00 58.00

tion (%)

Idle Time (%) 49.50 49.50 51.00 42.00 42.00

Empty Travel 9.70 9.70 12.10 12.00 10.70

Ratio (%)

Platooning Rate 18.00 18.00 23.10 26.20 23.30

(%)

Average TUs 1.50 1.50 1.30 1.50 1.50

per CU (Al

CUs)

The time window flexibility analysis reveals critical trade-offs between fulfilment quantity and
delivery punctuality. When 2 TUs are added with no time window flexibility (flexibility = 0), the system
achieves a 76% fulfilment rate, fulfilling only 13 out of 17 requests (as shown in table 5.8). However, as
flexibility increases to 10 and 40-time units, the fulfilment rate improves to 88%, successfully fulfilling
15 requests and reducing unfulfilled requests from 4 to 2. This improvement comes at a significant cost
to delivery punctuality: average delivery delays increase from 0.46-time units (flexibility = 0) to 2.93
time units (flexibility = 10) and 3.00 time units (flexibility = 40). The percentage of delayed deliveries
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also increases dramatically from 15.38% to 53.33% with higher flexibility levels, indicating that while
the system can accommodate more requests by relaxing time constraints, it does so at the expense of
delivery timeliness.

Time Bracket analysis

This subsection presents a comprehensive analysis of system performance under different timing sce-
narios for dynamic request addition. The study investigates how the timing of introducing additional
transport units (TUs) affects overall system efficiency, fulfilment rates, and operational metrics.

Table 5.9: KPI Comparison for Randstad TU Addition (Time Bracket Analysis)

KPI Name Baseline Disrupted TUaddedat TUaddedat TU added at
t=0 t=10 t=20

Total Requests 15 18 18 18 18

Fulfilled  Re- 15 15 16 13 15

quests

Unfulfilled Re- 0 3 2 5 3

quests

fulfilment Rate 100.00 83.33 88.89 72.22 83.33

(%)

Average Deliv- N/A N/A 0.36 2.25 0.60

ery Delay

Average Rela- N/A N/A 2.60 8.00 1.90

tive Delay (%)

Max Delivery N/A N/A 11.00 10.00 6.00

Delay

Min Delivery N/A N/A -2.00 -7.00 -3.00

Delay

Number of De- N/A N/A 1.00 5.00 4.00

layed Deliveries

Percentage of N/A N/A 7.14 41.67 26.67

Delayed Deliv-

eries

Carrier utilisa- 50.50 50.50 50.80 53.00 52.50

tion (%)

Idle Time (%) 49.50 49.50 49.20 47.00 47.50

Empty Travel 9.70 9.70 6.00 8.90 12.20

Ratio (%)

Platooning Rate  18.00 18.00 13.90 14.70 25.00

(%)

Average TUs 1.50 1.50 1.60 1.60 1.50

per CU (Al

CUs)
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Experimental Setup

Three dynamic transport units (TU4, TU1S, and TU18) were introduced at different time points dur-
ing the simulation horizon to evaluate the system’s adaptive capabilities. The characteristics of these
additional requests are detailed in Table 5.10.

Table 5.10: Dynamic Transport Units Added for Time Bracket Analysis

TUID Origin Destination | Pickup Window | Delivery Window
TU4 Station 7 Station 8 [4, 10] [16, 24]
TU15 | Station 10 Station 9 [25, 30] [33, 39]
TU18 | Station 2 Station 3 [14,20] [25, 33]

Time Bracket Scenarios
The analysis examines four distinct scenarios:

1. Baseline: Original system with 15 requests, no disruptions

2. Early Addition (t=0): Dynamic TUs added at simulation start with immediate re-optimisation
3. Medium Addition (t=10): Dynamic TUs added at t=10 with re-optimisation

4. Late Addition (t=20): Dynamic TUs added at t=20 with re-optimisation

This time bracket analysis provides insights into the optimal timing for introducing additional trans-
port requests and the system’s ability to adapt to changing demand patterns throughout the planning
horizon. The KPIs (table 5.9) demonstrate how early intervention can improve fulfilment rates while
late additions may lead to increased delays and operational inefficiencies.

The time bracket analysis demonstrates how the timing of TU additions significantly impacts system
performance. Adding 3 TUs at different simulation times reveals distinct performance patterns:

Early Addition (t=0): Adding TUs at the simulation start results in the best overall performance,
achieving an 88.89% fulfilment rate with the lowest average delivery delay (0.36-time units) and mini-
mal delayed deliveries (7.14%). This suggests that early integration allows the system to optimally plan
and allocate resources from the beginning. Dynamic requests 4 and 15 are fulfilled in this bracket; that
is, 2 of 3 added requests are fulfilled.

Mid-Simulation Addition (t=10): Adding TUs at t=10 presents the most challenging scenario, re-
sulting in the lowest fulfilment rate (72.22%) and highest average delivery delay (2.25-time units). The
system struggles to accommodate mid-simulation demand surges, with 41.67% of deliveries experienc-
ing delays, indicating that mid-simulation disruptions create the most complex scheduling challenges.
The dynamic request TU15 added in this bracket is fulfilled. That is 1 of 3 added requests that are
fulfilled.

Late Addition (t=20): Adding TUs at t=20 shows moderate performance, achieving an 83.33%
fulfilment rate with moderate delays (0.60-time units average). This suggests that late additions provide
some planning flexibility but still create scheduling constraints. Here, none of the dynamically added
requests are fulfilled.

Operational Efficiency Trends: The analysis reveals several operational efficiency trends across
different scenarios. Carrier utilisation generally increases with TU additions, peaking at 53.0% when
TUs are added at t=10, indicating that mid-simulation additions require higher carrier workload. The
empty travel ratio shows interesting patterns, with the lowest ratio (6.0%) occurring when TUs are added
at t=0, suggesting more efficient routing for early additions. Platooning rates vary significantly, with
the highest rate (25.0%) occurring at t=20, indicating that late additions provide more opportunities for
carrier coordination and platoon formation.
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Strategic Implications: The combined analysis of time window flexibility and time bracket ef-
fects reveals that system performance is highly sensitive to both the timing of disruptions and the flexi-
bility allowed in time constraints. Early TU additions with moderate time window flexibility appear to
provide the best balance between fulfilment and delivery quality, while mid-simulation additions cre-
ate the most challenging scenarios regardless of flexibility levels. This suggests that proactive demand
management and early integration strategies may be more effective than reactive approaches to dynamic
demand surges.

5.3.2. CU Breakdown

Here, a critical carrier failure is modelled by simulating the unexpected breakdown of a Carrier Unit
Initially a single CU breakdown disruption is analyzed to test the system’s ability to re-route tasks
and maintain service levels with reduced fleet capacity. The resulting KPIs are compared against the
baseline in table 5.11. Att=35, CU 5 breaks, and the system will lock in the trips that are in transit and
will re-optimise from time horizon 5 to 40. This CU breakdown analysis is extended to capture how the
system reacts to time window flexibility.

Table 5.11: KPI Comparison for Randstad CU Breakdown

KPI Name Baseline Disrupted Network Reoptimised Network
Total Requests 15 15 15
Fulfilled Requests 15 13 14
Unfulfilled Requests 0 2 1
fulfilment Rate (%) 100.00 87.00 93.00
Average Delivery Delay N/A N/A 3.07
Average Relative Delay (%) N/A N/A 11.80
Max Delivery Delay N/A N/A 10.00
Min Delivery Delay N/A N/A -3.00
Number of Delayed Deliveries N/A N/A 9.00
Percentage of Delayed Deliveries N/A N/A 64.29
Carrier Utilisation (%) 56.80 56.40 65.30
Idle Time (%) 43.20 43.60 34.70
Empty Travel Ratio (%) 11.70 12.50 11.70
Platooning Rate (%) 24.60 23.50 17.80
Average TUs per CU (All CUs) 1.50 1.44 1.56

A set of key performance indicators (KPIs) is compared across the baseline, disrupted, and reopti-
mised networks to quantify the immediate and post-reoptimisation impacts of the breakdown. Second,
the allocation of CU time is assessed to illustrate how operational activities such as transit, reposition-
ing, and idle periods are redistributed when one CU becomes unavailable. Finally, the role of temporal
flexibility is investigated by introducing alternative delivery time windows, thereby assessing the extent
to which scheduling flexibility can mitigate disruption and restore system performance.

Single CU Breakdown: The breakdown of a single CU introduces a range of performance impacts
that can be observed both at the system level and in the distribution of operational activities across the
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remaining CUs. These effects are summarised in Table 5.11 and visualised in Figure 5.5.

Impacts on Key Performance Indicators (Table 5.11):
* Service performance:
— Fulfilment rate decreases from 100% in the baseline to 87% in the disrupted scenario, cor-
responding to two unfulfilled requests.

— Reoptimisation partially restores performance, increasing the fulfilment rate to 93% and
reducing the number of unfulfilled requests to one.

— The improvement comes at the expense of delivery punctuality, with an average relative
delay of 11.8% and nine delayed deliveries (64% of total).

¢ Utilisation and idle time:

— Carrier utilisation remains largely unchanged between the baseline (56.8%) and the disrup-
tion (56.4%), suggesting limited immediate redistribution of tasks.

— Reoptimisation, however, increases utilisation to 65.3% and reduces idle time to 34.7%,
reflecting intensified use of the remaining units.

* Operational efficiency:

— The empty travel ratio remains broadly constant (around 12%), indicating that repositioning
inefficiencies are not significantly worsened by the breakdown.

— The platooning rate falls from 24.6% in the baseline to 17.8% in the reoptimised case, sig-
nalling a decline in cooperative opportunities as the system prioritises request fulfilment.

CU Time Allocation: CU Breakdown
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Figure 5.5: CU utilisation summary for the CU breakdown disruption

Impacts on CU Time Allocation (Figure 5.5):

* CU 5, the disrupted unit, shows a complete absence of activity, eliminating its contribution to
transit, repositioning, or idle time.

* The lost workload is redistributed primarily to CU 2, CU 3, and CU 6, which experience notable
increases in transit and repositioning shares.

* Idle time is consistently reduced across most CUs, consistent with the higher system-wide utili-
sation observed in the KPI table.
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 The redistribution results in greater operational imbalances across the fleet, with some CUs car-
rying disproportionately higher loads.

» These imbalances constrain flexibility and reduce the prevalence of platooning, thereby limiting
efficiency-enhancing behaviours.

In summary, while reoptimisation allows the system to absorb the effects of a CU breakdown and
partially restore service levels, it does so by intensifying the utilisation of remaining units and reducing
operational slack. This creates a trade-off between system resilience and efficiency.

Further tests are run to examine the system’s resilience and adaptability when a carrier unit ex-

periences a breakdown during operation. The analysis examines how varying levels of time window
flexibility can mitigate the impact of carrier failures on overall system performance and request fulfil-
ment.
Experimental Configuration: Carrier Unit 5 (CUS5) experiences a breakdown at time t = 5, repre-
senting a realistic operational disruption scenario. This carrier failure occurs early in the simulation
timeline, requiring the system to immediately re-optimise the remaining carrier assignments to handle
the workload previously allocated to the failed carrier. The system must then adapt to this reduced
carrier capacity while maintaining service quality for existing and future transport requests.

The analysis compares five scenarios to assess the effectiveness of time window flexibility in man-
aging carrier breakdowns:

1. Baseline: Original system with all 10 carriers operational, no disruptions

2. Disrupted: System with CUS failure at t=5 but no re-optimisation applied

3. Flexibility = 0: Re-optimisation with no window relaxation (strict adherence to original sched-
ules)

4. Flexibility = 10: Re-optimisation with 10 time units of window relaxation

5. Flexibility = 40: Re-optimisation with 40 time units of window relaxation (maximum operational
flexibility)

This analysis demonstrates how time window flexibility can serve as a critical recovery mechanism
when the system experiences carrier capacity reduction. The results reveal the trade-offs between main-
taining strict delivery commitments and achieving higher fulfilment rates through increased scheduling
flexibility in the face of operational disruptions.The KPIs are detailed in table A.3.

Flexibility Window Analysis: The role of temporal flexibility in mitigating the impacts of a CU
breakdown is shown in Figure 5.6. The figure reports changes in fulfilment rate, carrier utilisation,
and empty travel ratio, all expressed relative to the baseline scenario. The results demonstrate that the
introduction of delivery time windows substantially alters system performance across these dimensions.
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Key KPIs: Flexibility Window Analysis

Percentage Change (%)
o

Baseline Disrupted Network T™W =0 ™ =10 TW = 40

—eo— Fulfilment Rate (%) —e— Carrier Utilisation (%) —e— Empty Travel Ratio (%)
Figure 5.6: KPI percentage change variation from baseline with flexible time windows

Service performance (Fulfilment Rate):

* The CU breakdown leads to a reduction of approximately —7.1% relative to baseline.

* Reoptimisation without added flexibility (TW = 0) does not alter this shortfall, as the rate remains
at —7.1%.

* A 10-unit window offers only a marginal improvement, raising the rate to —6.7%.
* With 40 units of flexibility, the system fully recovers, returning to baseline performance (0.0%

change).

Resource efficiency (Carrier Utilisation):
* The breakdown slightly reduces utilisation by —0.5%.
* Even with no flexibility (TW = 0), reoptimisation improves utilisation by +1.3%.
« At TW = 10, utilisation increases further to +1.5%.

* The greatest improvement occurs at TW =40, where utilisation rises sharply by +7.0%, indicating
highly effective deployment of available CUs when broader scheduling freedom is permitted.

Operational trade-offs (Empty Travel Ratio):

* Empty travel initially increases by +0.6% following the breakdown.
* Under TW = 0, the ratio rises further to +1.7%, and at TW = 10 it peaks at +1.8%.

* At TW =40, the ratio returns close to baseline, with only a marginal increase of +0.2%, suggesting
that higher flexibility enables more efficient routing that offsets the earlier repositioning burden.

In summary, the introduction of delivery flexibility produces two important outcomes. First, it
directly supports service quality by restoring the fulfilment rate to baseline levels once sufficient flex-
ibility (40 minutes) is granted. Second, it enhances system efficiency by increasing carrier utilisation
and ultimately stabilising empty travel requirements. Small levels of flexibility provide only incremen-
tal benefits, whereas higher flexibility allows the network to both recover service levels and achieve a
more efficient deployment of resources.
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5.3.3. Arc Removal

This disruption tests the system’s ability to re-route tasks in response to an unexpected arc removal/block.
The resulting KPIs (table 5.12) are compared against the baseline. The arc (1,3) is broken from time
7 to 17; during this time period, the arc is inactive and cannot be used by any of the carriers. Att=7,
the carriers which are currently using this arc are locked in to complete their trips, and the carriers that
would eventually be using this arc are rerouted. Similarly, att =17, the arc reopens, and the simulation
continues from 17 to 40.

Table 5.12: KPI Comparison for Randstad Arc Removal

KPI Name Baseline Disrupted Network Reoptimised network
Total Requests 15 15 15
Fulfilled Requests 15 13 15
Unfulfilled Requests 0 2 0
fulfilment Rate (%) 100.00 87.00 100.00
Average Delivery Delay N/A N/A -0.93
Average Relative Delay (%) N/A N/A -2.3
Max Delivery Delay N/A N/A 4.00
Min Delivery Delay N/A N/A -11.00
Number of Delayed Deliveries N/A N/A 6.00
Percentage of Delayed Deliveries N/A N/A 40
Carrier Utilisation (%) 56.80 50.50 50.5
Idle Time (%) 43.20 49.50 49.50
Empty Travel Ratio (%) 11.70 11.60 9.7
Platooning Rate (%) 24.60 20.8 18.0
Average TUs per CU (All CUs) 1.50 1.30 1.50

The analysis evaluates how the system adapts to reduced network topology and the effectiveness of
re-optimisation in maintaining service quality under structural constraints.

Performance Impact Analysis: Arc removal depresses service performance without changing de-
mand volume: total requests remain at 15, but the disrupted network shows a Fulfilment Rate drop
from 100% to 87%, with 2 unfulfilled requests. This confirms that topological losses immediately
curtail feasible routings even when all other resources are intact (Table 5.12).

Re-optimisation Recovery: Re-optimisation restores 100% fulfilment (0 unfulfilled), demonstrating
that the MILP can find alternative paths to recover service despite the missing arc. However, core
efficiency does not fully return to baseline: Carrier Utilisation remains at 50.5% (vs. 56.8% baseline)
and Idle Time stays elevated at 49.5% (vs. 43.2%).

Delivery Performance Analysis: The re-optimised plan achieves an average delivery delay of -0.93
time units (slightly earlier than the baseline plan on average), with 6 delayed deliveries (40% of fulfilled
jobs). Delay dispersion spans from a max of +4.00 to a min of -11.00 time units, indicating that some
requests benefit from shorter detours while others incur moderate lateness.
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Carrier Utilisation Patterns: The carrier utilisation analysis, as shown in Figure 5.7, reveals dis-
tinct patterns of workload redistribution following arc removal and re-optimisation. The visualisation
demonstrates how individual Carrier Units adapt to the structural disruption, with some CUs experienc-
ing significant changes in utilisation while others remain unaffected.

CU Utilisation Composition: Arc Removal
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Figure 5.7: Carrier utilisation under arc disruption

Key Utilisation Trends:

* Significant Decreases: CU1 and CU2 experience substantial decreases in active utilisation (-
35.0% and -25.0% respectively), indicating that the arc removal disrupts their primary routing
patterns and reduces their operational effectiveness.

Moderate Decreases: CU3 and CUS show moderate decreases in active utilisation (-7.5% and
-5.0% respectively), suggesting partial impact from the structural disruption.

Increases: CU4 and CU6 demonstrate increases in active utilisation (+2.5% and +7.5% respec-
tively), indicating that these CUs are leveraged to compensate for the reduced capacity of other
carriers.

* Unaffected CUs: CU7, CUS8, CU9, and CU10 show no change in utilisation, suggesting that

their operational patterns are independent of the removed arc or that they were already operating
at optimal levels.

Impact on a Specific Task: The Case of TU 6: The most direct consequence of removing arc (1,3)

was on TU 6, which was originally scheduled to use this path. The following analysis details how the
system adapted its plan for this single task.

Baseline Scenario Performance: In the original network configuration:

* TU 6 Route: Direct path 1 — 3

* Travel Time: 9 time units

* Pickup Time: t =7

* Delivery Time: ¢ = 20 (estimated)

Arc Removal Scenario Performance: After removing arc (1,3):
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* TU 6 Route: Alternative path1 -6 — 5 — 3

¢ Travel Time: 15 time units (5 + 4 + 6)

* Pickup Time: ¢ = 7 (unchanged)

* Delivery Time: t = 24

Detailed Route Analysis: The re-optimisation algorithm successfully found a viable, albeit longer,
alternative route for TU 6.

Original Route (Baseline)

TU 6: Station 1 — Station 3 (Direct)
Arc (1,3) : 9 time units

Total travel time: 9 time units

Alternative Route (Arc Removed)

TU 6: Station 1 — Station 6 — Station 5 — Station 3
Arc (1,6) : 5 time units
Arc (6,5) : 4 time units
Arc (5,3) : 6 time units

Total travel time: 15 time units

Performance Metrics Comparison: The disruption forced a trade-off between completing individual
tasks and maintaining overall network efficiency, ultimately leading to service failures.

Metric Baseline | Arc Removed Impact

Route Length (TU 6) | 9 time units | 15 time units +67% increase
Delivery Time (TU 6) t~20 t=24 +4 time units delay

Table 5.13: Performance Metrics Comparison

Operational Efficiency Metrics: Post re-optimisation, Carrier Utilisation holds at 50.5% (below the
56.8% baseline), and Idle Time at 49.5% (above 43.2%), signalling persistent productivity loss from
the removed link. Notably, the Empty Travel Ratio improves to 9.7% (vs. 11.6% disrupted and 11.7%
baseline), implying that the solver prefers longer but more loaded itineraries over deadheading. Average
TUs per CU rebounds to 1.50 (from 1.30 disrupted), matching baseline throughput per carrier.

Platooning Rate Impact: Platooning Rate declines from 24.6% (baseline) to 18.0% after re-optimisation—
an absolute drop of 6.6 points (=27% relative). Reduced connectivity limits simultaneous, co-timed
paths, making coordinated platoons harder to form.

Strategic Implications: Arc removal creates structural limits that optimisation cannot erase: while
service can be brought back to 100% fulfilment, utilisation and platooning remain below baseline. In
practice, this argues for (i) immediate re-optimisation to recover service, coupled with (ii) targeted
network redundancy (loops/micro-detours) on fragile OD corridors to restore efficiency and platooning
potential.
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5.3.4. System Resilience Under Multiple Disruptions

This section examines the system’s response to multiple concurrent and sequential disruptions that occur
throughout the simulation horizon. Two distinct disruption scenarios are analysed to understand how
different disruption types interact and compound their effects on system performance.

Scenario 1: Sequential Mid-Simulation Disruptions The first analysis investigates a two-phase dis-
ruption sequence where a Carrier Unit (CU) breakdown occurs mid-simulation, followed by dynamic
Transport Unit (TU) additions. This scenario tests the system’s ability to recover from initial capacity
loss while simultaneously accommodating new demand.

Scenario 2: Triple Disruption Combination The second analysis presents a more complex scenario
involving three simultaneous disruption types: (1) permanent arc removal from the network topology,
(2) immediate addition of three TUs at simulation start (t=0), and (3) a CU breakdown occurring mid-
simulation. This scenario evaluates system resilience under maximum disruption load, combining struc-
tural, demand, and capacity constraints.

Both scenarios utilise the re-optimisation framework to assess how the MILP model adapts to chang-
ing system conditions and quantifies the cumulative impact of multiple disruption events on key perfor-
mance indicators, including fulfilment rates, delivery delays, and carrier utilisation.

Scenario 1: Sequential Mid-Simulation Disruptions:

This scenario examines a two-phase disruption sequence where a Carrier Unit breakdown occurs mid-
simulation, followed by dynamic Transport Unit additions. The system’s ability to recover from initial
capacity loss while simultaneously accommodating new demand is evaluated as shown in 5.8.

Baseline CU4 Breakdown TUI15 Added End
| | | |

t=0 t=11 t=25 t=40

Figure 5.8: Sequential Disruption Timeline - Scenario 1
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Table 5.14: KPI Summary for Randstad Case Study under 2 Disruptions

KPI Name Baseline Disrupted Network Reoptimised Network
Total Requests 15 16 16
Fulfilled Requests 15 13 15
Unfulfilled Requests 0 3 1
fulfilment Rate (%) 100.00 81.00 94.00
Average Delivery Delay N/A N/A -0.29
Average Relative Delay (%) N/A N/A -0.50
Max Delivery Delay N/A N/A 8.00
Min Delivery Delay N/A N/A -11.00
Number of Delayed Deliveries N/A N/A 6.00
Percentage of Delayed Deliveries N/A N/A 42.86
Carrier Utilisation (%) 56.80 56.40 57.8
Idle Time (%) 43.20 43.60 422
Empty Travel Ratio (%) 11.70 12.60 9.10
Platooning Rate (%) 24.60 23.70 6.30
Average TUs per CU (All CUs) 1.50 1.44 1.67

The disruption sequence creates a supply-demand mismatch where the system must serve additional
demand (TU15) with reduced carrier capacity (CU4 unavailable), testing the effectiveness of the re-
optimisation framework under constrained resources. The KPIs for this scenario are detailed in table
5.14.

Scenario 2: Triple Disruption Combination:
This scenario presents a more complex disruption pattern involving three simultaneous disruption types
that test the system’s resilience under maximum disruption load.

TU4, TU15, TU18 Added
Arc(1, 3) Removed CU6 Breakdown End
| | |
I I 1

t=0 t=26 t=40

Figure 5.9: Triple Disruption Timeline - Scenario 2

This scenario creates a triple constraint scenario in which the system must operate with reduced
connectivity, increased demand, and reduced capacity (CU breakdown) simultaneously.
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Table 5.15: KPI Summary for Randstad Case Study under 3 Disruptions

KPI Name Baseline Disrupted Network Re-optimised Network
Total Requests 15 18 18
Fulfilled Requests 15 12 15
Unfulfilled Requests 0 6 3
fulfilment Rate (%) 100.00 67.00 83.00
Average Delivery Delay N/A N/A -0.64
Average Relative Delay (%) N/A N/A -1.90
Max Delivery Delay N/A N/A 5.00
Min Delivery Delay N/A N/A -9.00
Number of Delayed Deliveries N/A N/A 2.00
Percentage of Delayed Deliveries N/A N/A 14.29
Carrier Utilisation (%) 56.80 48.60 54.40
Idle Time (%) 43.20 51.40 45.60
Empty Travel Ratio (%) 11.70 9.50 6.40
Platooning Rate (%) 24.60 19.60 15.00
Average TUs per CU (All CUs) 1.50 1.33 1.67

The analysis covers two distinct scenarios: (1) a two-disruption scenario involving a Carrier Unit
breakdown and dynamic TU addition, and (2) a three-disruption scenario combining arc removal, TU
additions, and CU breakdown. These scenarios test the system’s ability to maintain operational effec-
tiveness under increasingly complex disruption conditions.

Two-Disruption Scenario Analysis: The two-disruption scenario demonstrates the system’s response
to a combination of capacity reduction and demand increase. The KPI summary reveals significant per-
formance impacts, with the fulfilment rate dropping from 100% (Baseline) to 81% in the disrupted
state, representing a 19% reduction in service quality. However, the re-optimisation process success-
fully recovers performance, achieving a 94% fulfilment rate and reducing unfulfilled requests from 3
to 1. Notably, the re-optimised network shows a negative average delivery delay (—0.29 time units),
indicating that deliveries are completed earlier than planned, suggesting efficient resource reallocation
and scheduling optimisation.As shown in table 5.14

Three-Disruption Scenario Analysis: The three-disruption scenario presents a more challenging op-
erational environment, combining structural, demand, and capacity constraints. The disrupted state
shows severe performance degradation, with fulfilment rate dropping to 67% and 6 unfulfilled requests
(shown in table 5.15). The re-optimisation process demonstrates remarkable recovery capabilities,
improving fulfilment rate to 83% and reducing unfulfilled requests to 3. The re-optimised network
achieves a negative average delivery delay (-0.64 time units), indicating superior scheduling efficiency
despite the increased complexity.

Carrier Unit Utilisation Patterns: The carrier utilisation analysis, as shown in Figure 5.10, reveals
distinct patterns of resource reallocation under multiple disruptions. The visualisation demonstrates how
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individual Carrier Units adapt to increasing disruption levels, with some CUs experiencing complete
breakdowns (CU4 and CU6) while others are leveraged more heavily to maintain system functionality.

CU Utilisation: Multiple Disruptions
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Figure 5.10: Carrier utilisation under multiple disruptions

Key Utilisation Trends:

* Breakdown Impact: CU4 and CU6 experience complete breakdowns in both scenarios, repre-
sented by 100% idle utilisation, significantly reducing available system capacity.

* Compensatory Utilisation: CU3 and CU7 demonstrate increased active utilisation under dis-
ruptions, with CU3 showing a significant increase by 15% (2 Disruptions) and CU7 transitioning
from 20% active (Baseline) to 47.5% active (3 Disruptions) .

* Reduced Utilisation: CUI and CU10 show decreased active utilisation under disruptions, sug-
gesting re-routing effects and reduced overall system capacity.

» Stable Performance: CU9 maintains consistent utilisation across all scenarios, indicating its
operational independence from the specific disruption patterns.

Operational Efficiency Analysis: The operational efficiency metrics reveal interesting patterns across
both scenarios. In the two-disruption scenario, carrier utilisation increases from 56.8% (Baseline) to
57.8% (Re-optimised), while the three-disruption scenario shows a decrease from 56.8% (Baseline) to
54.4% (Re-optimised). The empty travel ratio demonstrates significant improvement in both scenarios,
decreasing from 11.7% (Baseline) to 9.1% (2 Disruptions) and 6.4% (3 Disruptions), indicating more
efficient routing and resource allocation.

Platooning Rate Impact: The platooning rate shows a consistent decline across both scenarios, de-
creasing from 24.6% (Baseline) to 6.3% (2 Disruptions) and 15.0% (3 Disruptions). This suggests that
multiple disruptions create scheduling constraints that make platoon formation more challenging, as the
system prioritises individual request fulfilment over coordinated carrier operations.

Comparative Performance Analysis: Comparing the two scenarios reveals that the three-disruption
scenario presents more significant challenges, with lower fulfilment rates (83% vs. 94%) and higher
unfulfilled requests (3 vs. 1). However, the re-optimisation process demonstrates remarkable resilience,
successfully recovering from severe disruption impacts and maintaining operational effectiveness. The
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negative delivery delays in both scenarios indicate that the re-optimisation framework not only recov-
ers from disruptions but also improves upon the original baseline performance in terms of delivery
timeliness.

Strategic Implications: The analysis demonstrates that while multiple disruptions create significant
operational challenges, the re-optimisation framework provides effective recovery mechanisms. The
system’s ability to maintain negative delivery delays under complex disruption scenarios suggests that
the MILP model successfully identifies more efficient scheduling solutions than the original baseline
plan. This indicates that the disruption-recovery process can lead to system improvements beyond
simple restoration to pre-disruption performance levels.



Conclusion

This thesis set out to evaluate and enhance the operational performance of autonomous pod-based rail-
way systems by developing a framework that integrates existing Mixed-Integer Linear Programming
(MILP) for optimisation with Discrete Event Simulation (DES) for dynamic evaluation. The primary ob-
jective is to assess the system’s resilience and the effectiveness of a dynamic re-planning strategy when
faced with operational disruptions. By modelling both simple and complex networks under various
failure scenarios, this research has provided significant insights into the behaviour of such autonomous
logistics systems.

This research successfully answered its guiding sub-questions. The key factors influencing carrier-
TU matching, such as temporal and spatial constraints, were identified in the literature review (Chapter
2), addressing SQ1. A detailed state-event model was then developed (Chapter 3) and validated with a
master example (Section A.5) to accurately capture system dynamics, answering SQ2. The core ques-
tions on strategy effectiveness and system robustness (SQ3 and SQ4) were addressed through extensive
disruption analysis (Chapters 4 and 5), which consistently demonstrated that dynamic re-optimisation
is a highly effective tool for mitigating disruptions.

The results from the case studies confirm the value of the integrated DES-MILP approach. The anal-
ysis of the selected Key Performance Indicators (KPIs) across the baseline, disrupted, and re-optimised
scenarios has yielded several key findings:

* Dynamic Re-planning is a Highly Effective Recovery Tool: The results consistently confirm
that re-optimising the plan at the moment of a disruption significantly improves performance. In
the Toy Case, re-optimisation was critical, restoring the Fulfillment Rate from a disrupted 25%
back to 75%. This demonstrates the fundamental value of the adaptive framework in overcoming
service failures.

« Statistical Reliability and Variability of Toy Case KPIs: Across all KPIs, the optimized sys-
tem is more efficient and consistent, while disruption leads to lower fulfillment and utilization,
higher idle time, and the loss of platooning. The standard deviations reveal greater variability
in fulfillment rate, especially under disruption, while carrier utilization and empty travel ratio
remain comparatively stable. At the same time, the 95% confidence intervals are narrow for all
KPIs, confirming that despite run-to-run fluctuations, the reported mean values are statistically
reliable.

* Resilience Comes with Quantifiable Trade-offs: To maintain service levels, the system often
sacrifices operational efficiency. For instance, while recovering from the CU breakdown in the
Randstad Case, the Carrier Utilisation increased from 56.8% to 65.3%, but this came at the cost
of a lower Platooning Rate, which fell from 24.6% to 17.8%. This highlights a clear trade-off
between service completion and logistical efficiency.

65
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« System performance is limited by network topology (arc removal): When arc (1, 3) is blocked
(from ¢t = 7 to t = 17), the disrupted plan achieves 87% fulfilment (13/15), but re-optimisation
restores 100% (15/15) by rerouting (see Table 5.12). Efficiency does not fully recover: Carrier
utilisation falls from 56.8% (baseline) to 50.5% (re-optimised) and idle time rises from 43.2%
to 49.5%; the empty-travel ratio improves 11.7% — 9.7%; the platooning rate declines 24.6%
— 18.0%. This shows topology losses can cap efficiency and coordinated movements even when
service is fully recovered.

» Time Window Flexibility is a Key Enabler of Resilience: The analysis of time window flexibil-
ity in the Randstad Case demonstrates that even a small amount of flexibility (e.g., 10 time units)
can significantly improve the fulfillment rate after a disruption. This highlights the importance
of incorporating flexibility into service level agreements to enhance system robustness.

» Early Intervention is More Effective than Reactive Measures: The time bracket analysis in
the Randstad Case shows that adding new transport units early in the planning horizon (t=0) leads
to better performance than adding them later (t=10 or t=20). This suggests that proactive demand
management and early integration of new requests are crucial for maintaining system efficiency.

6.1. Industrial and Policy Insights

This study underscores the importance of aligning policy frameworks and industrial practices to enhance
resilience in long-haul autonomous rail freight operations. On the policy side, the results demonstrate
that allowing moderate delivery window flexibility enables recovery of high fulfilment rates after dis-
ruptions, though with trade-offs in punctuality. Regulators should therefore design mechanisms that
incentivise flexibility through pricing and contractual caps. The larger advantages of implementing
early transport units over mid-horizon additions point out that booking cut-offs and incentives for early
commitment will improve overall service robustness. Since service re-optimisation always recovers
the service level under single and multiple disruptions, digital decision-support systems, like the DES-
MILP integrations, should be considered vital resilience assets. However, the lack of progress in the
cases of arc removal justifies public spending on redundant infrastructure, such as alternative routes
and loops. In the end, practice-based monitoring of the implementation of resilience principles, delays,
empty travel, utilisation, and platooning of the reporting system should be incorporated within the reg-
ulatory reporting framework to provide visibility and standards between operators. These observations
align with previous studies on circulation and redundancy in rail systems [16].

From an industrial perspective, the findings provide operational insight for operators and equip-
ment builders. The most effective operational doctrine, which ensures recovery even during complex
disruptions, was the lock-in and rolling re-planning mechanism. This can be institutionalised as an
autonomous freight standard control room procedure. The observed punctuality versus fulfilment trade-
offs give rise to differentiated service level agreements, premium contracts with sharp fulfilment time
windows and low resilience, and flexible contracts with higher disruption fulfilment guarantees. This
evidence in support of early TU insertions also underlines the importance of demand-shaped TU, for
example, pricing policies that pay for early bookings. At the fleet management level, the recovery of
the disruption as a carrier that is unevenly used indicates the need for standby CU resources, plus the
CU is placed in an active way to conserve platoon opportunities and reduce unnecessary travel. Also,
the enduring consequences of removing arcs indicate the need for closer cooperation with infrastructure
managers for the design of detour loops and micro-routes that protect critical OD pairs. These industrial
implications align with relocation and circulation strategies in shared-mobility and transport literature
[19], reinforcing the importance of flexible service portfolios and strategic fleet positioning for resilient
and efficient operations.
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6.2. Contributions

This research makes several key contributions to the field of autonomous logistics and the Pods4Rail
project. The primary contribution is the development and successful implementation of an integrated,
event-driven re-optimisation framework that bridges the gap between static planning and dynamic exe-
cution. By using the DES to simulate a plan and feed real-time state information back to the MILP upon
a disruption, this work provides a practical methodology for enabling adaptive, resilient operations.

6.3. Limitations and Future Research
While this study provides a robust framework, it is subject to several limitations that open avenues for
future research:

* The analysis was conducted using synthetic data. Future work should aim to validate the models
using real-world operational data to enhance the accuracy of the findings.

* The set of disruptions, while representative, was limited. Further research could explore a wider
range of stochastic events, such as variable travel times, station capacity blockages, or more
complex carrier failure modes.

* A limitation of the current study is its relatively short time horizon of 40 time stamps. Expanding
this planning period in future work is essential for scaling the analysis to larger railway networks
and incorporating more complex, dynamic scenarios

Ultimately, this thesis has demonstrated that the integration of optimisation and simulation provides
a powerful tool for designing and managing resilient autonomous transportation systems. The proposed
framework not only allows for a detailed evaluation of system performance but also provides the means
to actively enhance it in the face of the uncertainty inherent in all real-world logistics operations.
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Table A.1: Summary of Literature Relevant to the Project

AP - Assignment problem, RP - Repositioning problem, RA - Railway assignment problem
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Author Problem | Objective Model Algorithm y. AP | RP Findings .
Type straints project
. . e imilar trategi
Maximise  profit High car utilisation, S strategles
. can be adapted for
Car- from renting cars Arc capac- low demand losses, .
. . Lo One- . . . scheduling and re-
sharing | while minimising . ity, FCFS and denied trips. . . .
. Gurobi solver | way and . . locating carriers in
Chang et | fleet relocation and . (First- CO[] emission limits .
. . ILP for ILP opti- | round- - v our pod-based rail
al.[14] location | maintenance costs, misation i Come, reduce profit, but system fo minimise
and relo- | subject to budget P First- the high demand for yst .
. . demand . environmental  im-
cation and COL! emission Served). energy-efficient cars .
. pact and operational
constraints compensates.
costs.
Classification-
based and
simulation- Various  al
. based . The dynamic and
Ride- . gorithms, . .
. Optimise the al- | approaches | ¢ . . real-time matching
matching . . including Search strategies .
location of trips | for search One- Passenger . . algorithms can be
for . . k-means .. guide riders and o
Chakrab- | . to drivers and | strategies; . . | way and | waiting . . adapted to optimise
rides- S . clustering, Di- . drivers to suitable .
orty et . users, considering | opti- . , round- time, v v . . the static, sched-
ourcing . jkstra’s least- | . . . locations, while .
al.[9] spatio-temporal mal and trip driver idle . . uled relocations
and . . cost path, . assignment strategies . .
o demand and supply | simulation- .| demand | time . of carriers in our
similar L and multi- ensure trip allotment. .
. variations. based . autonomous rail
services objective
approaches S system.
optimisation.
for as-
signment
strategies.

Continued on next page
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Author | Problem | Objective Model Algorithm | Demand | Key Con- |\, | pp Findings Relevance to  the
Type straints project
Demand
and supply The FPSO’s(Firefly
constraints, Particle Swarm Op- S
. . . These optimization
Ride- . . . cost- timization)  ability .
. Optimize rideshar- Hybrid . . techniques can be
sharing . . . saving to quickly converge
. ing cost savings Firefly-PSO . . adapted to enhance
opti- constraints, and its robustness !
. . and allocate (FPSO) and . . , . . . the scheduling
Hsieh[29] | miza- . MILP . Static drivers v - in solution quality .
. savings among Firefly-DE . . . . and routing effi-
tion and X single win- make it a wviable | . .
stakeholders (FDEi) algo- . . . ciency of carriers
cost al- . . ning  bid option compared | . .
. effectively rithms . . in autonomous rail
location constraint, to the traditional svstems
binary PSO (Particle Swarm Y '
decision Optimization)
variables
Improved ero The Shortest Time
Vehicle .. Three vehicle-time (ZVT) and. Inventory . Bal
Develop a decision phase  OTS . o o ancing  techniques
relo- N Vehicle by 4.6% to 13.0%,
. support system to (Optimisation- o L can be  adapted
Kek et | cation C . . availabil- maintained low full- .
. optimise vehicle re- | MILP Trend- Static . . v v . to  optimise the
al.[25] in car- .. . . ity, station port-time (FPT), and . .
. location in carshar- Simulation) . dynamic/static ~ al-
sharing | . .. capacity reduced the number . .
ing systems. decision sup- . location of carriers
systems of relocations (NR) | . .
port system in autonomous rail

by 37.1% to 41.1%.

systems.
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Demand

Key Con-

Relevance to the

Author Problem | Objective Model Algorithm . AP | RP Findings .
Type straints project
To enhance rail-
based intermodal
frelgh.t. systems The proposed MILP
flexibility and .
. . . model effectively re-
integration  into Time duces transportation
PDMVRP mobility services windows costs and ﬁn roves
Liaoetal. | - with | by efficiently rout- . . . IPTOVES | £orms the foundation
. MILP - Static for pick- | v - railway capacity util- . . .
[7] platoon- | ing modular ve- . . | for this project topic.
: . . ups  and isation through opti-
ing hicles, ultimately . . .
. deliveries. mised scheduling and
reducing costs .
. : platooning of modu-
and improving .
. o lar vehicles.
capacity utilisa-
tion in railway
environments.
Rolling-horizon
decision frame-
work,  particularly
i the iterated local | The iterated local
One- Maximise  profit . .
wa by optimising car Parking ca- search algorithm, | search algorithm and
Minghui Y . Iterated Local | Dynamic, . is highly efficient | dynamic reoptimiza-
. electric | relocation,  user pacity, bat- .
Lai et o epe MILP Search (ILS) | uncer- v v and outperforms | tion can enhance
car- flexibility, and L . tery charg- . . .
al.[14] . . . heuristic tain . both the Particle | carrier  scheduling
sharing | EV charging in ing T, . ;
. Swarm Optimisation | in autonomous rail
system real-time.

(PSO) algorithm | systems
and a First-Come,
First-Served (FCFS)
greedy policy.
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Lo . Demand | Key Con- . Relevance to the
Author Problem | Objective Model Algorithm y. AP | RP Findings . N
Type straints project
Forecasting reloca-
One tion outperforms
Improve  system . Car avail- traditional relocation | The predictive relo-
way S Discrete . o . . .
car utilisation and Event Multilayer ability, and methods in terms of | cation strategies can
Alfian et . reservation ac- | o . Perceptron . | customer system  utilisation | be adapted to man-
sharing . Simulation Dynamic . v v . . o
al.[20] system ceptance ratio (DES) (MLP) for reservation and reservation | age carrier distribu-
> by forecasting forecasting con- acceptance ratio. | tion in autonomous
imbal- . model . . .
Ance relocation. straints. However, it incurs | rail-based systems.
higher relocation
costs.
The proposed 6-
One hourly relocation | The Periodic Re-
wa Minimise reloca- Discrete model reduces relo- | location  technique
. Y tion cost while Periodically . | Parking cation costs by 30% | can be adapted for
Ganjar car- e Event . Dynamic, . . .
. maintaining  cus- | . . triggered relo- capacity, compared to static | scheduled carrier
Alfian et | sharing ; . Simulation . uncer- N e v . N )
tomer satisfaction cation (every . car avail- shortest-time  relo- | redistribution in
al. [26] system . . (DES) tain o . . .
. and vehicle utilisa- 6 hours) ability, cation but slightly | rail-based systems
imbal- . model I L .
ance tion. decreases utilisation | to maintain optimal
and acceptance | carrier availability.
ratios.
To minimise the Availability The ' framework
makespan and . effectively  reduces
Modular .. .. of carriers,
. ) optimise the use of - Heuristic . makespan and op- .
Liaoetal. | vehicle . . Heuristic . . Time con- . . Forms a foundation
railway infrastruc- for carrier | Static . v - timises capacity . .
[4] schedul- . framework . straints for e . for this project
in ture by scheduling scheduling ickun and utilisation,  particu-
& modular vehicles piexup larly effective with
delivery

efficiently.

larger problem sizes.
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Author | Problem | Objective Model Algorithm | Demand | Key Con- |\, | pp Findings Relevance to  the
Type straints project
. Tempor.al Potentially the pro-
Carrier- constraints
TU (pickup/dropl posed models would
assign- off times) reduce  operational
ment Possibly . spatial costs, tmprove
.. . . . | Static . turnaround times,
and re- | Optimise carrier- . Rolling Hori- constraints .
. . . MILP inte- (sched- . and ensure high ser- .
This location | TU matching and . zon, Greedy, (station . o Forms a foundation
. . . grated with uled ) v v vice reliability. Inte- . .
paper in au- | relocation to im- DES Tabu Search, - locations), ration of MILP and for this project
tonomous| prove efficiency. Iterated Local carrier & . .
mand) . DES with Rolling
pod- Search avail- . .
based ability Horizon  provides
rail sys- platooning a robust fram.e i
tems (seconda work for dynamic
' factor) Y decision-making.
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A.2. Extract of DES - Master Example
Table A.2: Extract of DES trace for the master example

Time Request CU  Old State Event New State Arc Trip
Repositioning platoon from 3—4 (t=2—3):
2 - CU1  C5 (At Station, Waiting) E10 (CU departs station empty) C7 (Repositioning — Platoon)  3—4  Relocation
2 - CU2  CS5 (At Station, Waiting) E10 (CU departs station empty) C7 (Repositioning — Platoon)  3—4  Relocation
3 - CU1l  C7 (Repositioning — Platoon)  E3 (CU arrives at station) C5 (At Station, Waiting) - Relocation
3 - CU2  C7 (Repositioning — Platoon)  E3 (CU arrives at station) C5 (At Station, Waiting) - Relocation
Pickup and transport platoon from 4—5 (t1=3—4):
3 1 CU1  C5 (At Station, Waiting) E4 (CU loads TU1) C1 (TU Loaded to CU) - Transport
3 2 CU2  C5 (At Station, Waiting) E4 (CU loads TU2) C1 (TU Loaded to CU) - Transport
3 1 CUl  C1(TU Loaded to CU) E5 (TU-CU depart pickup station) C3 (In Transit — Platoon) 4—5 Transport
3 2 CU2 Cl1(TU Loaded to CU) E5 (TU-CU depart pickup station) C3 (In Transit — Platoon) 4—5 Transport
4 1 CUl  C3 (In Transit — Platoon) E8 (TU-CU arrive delivery station) C4 (At Delivery Station) 45 Transport
4 1 CU1  C4 (At Delivery Station) E9 (CU unloads TU1 at delivery station) ~ C5 (At station, Waiting) - Transport
Mid-route split and solo continuation from 5—6 (t=5—06):
5 2 CU2  C3 (In Transit — Platoon) E7 (CU leaves platoon) C2 (In Transit — Solo) 5—6 Transport
6 2 CU2  C2 (In Transit — Solo) E8 (TU-CU arrive delivery station) C4 (At Delivery Station) 5—6  Transport
6 2 CU2  C4 (At Delivery Station) E9 (CU unloads TU2 at delivery station)  C5 (At Station, Waiting) 5—6 Transport

A.3. Optimization Model Overview

In order to assign transport requests to carrier units and to plan their exact pickup, delivery, and repo-
sitioning moves (including platooning decisions), a mixed-integer linear program (MILP) is solved as
a first step. Although the detailed formulation is outside the scope of this thesis, the MILP performs
three main tasks:

1. Assignment: Selects for each transport request which carrier unit (CU) will serve it.
2. Timing: Determines the exact pickup and delivery times within user-specified windows.

3. Routing & Platooning: Specifies, for each CU, the sequence of network arcs to traverse (possi-
bly with loaded or empty moves) and identifies which arcs will be travelled in a platoon.

A.3.1. Key Inputs
* Network topology: Set of stations, travel times on each bidirectional link, and station capacity
limits.
* Carrier fleet: IDs and their initial station locations.

* Transport requests: For each request, an origin and destination station, a fixed (precomputed)
route of intermediate stations, and allowable pickup/delivery time windows.

* Operation parameters: Fixed loading and unloading durations, and any minimum platoon-size
requirements or other business rules.

A.3.2. Key Outputs
* Assignment decisions: Which CU serves each request.

* Schedule: Exact pickup and delivery times for every transport request.

e CU itineraries: Ordered lists of station-to-station moves (with departure times) for each CU,
marked as either loaded (transport) or empty (repositioning), and the subset of moves executed
in platoon.

* TU movements: For each transport request, the specific arc-by-arc time steps on which it is
carried by its assigned CU.
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These outputs are then parsed into two Python data structures (tu_data and cu_data) which serve
as the exact inputs for our discrete-event simulation in Section 4.2.1.

Table A.3: KPI Comparison for Randstad CU Breakdown (Flexible Window Analysis)

KPI Name Baseline Disrupted Time Time Time
Network window window window

flexibility = flexibility = flexibility =
0 10 40

Total Requests 15 15 15 15 15

Fulfilled  Re- 15 13 13 14 15

quests

Unfulfilled Re- 0 2 2 1 0

quests

Fulfillment 100.00 92.90 92.90 93.30 100.00

Rate (%)

Average Deliv- N/A 0.00 0.08 3.79 4.20

ery Delay

Average Rela- N/A 0.00 0.20 15.80 21.30

tive Delay (%)

Max Delivery N/A 0.00 9.00 10.00 23.00

Delay

Min Delivery N/A 0.00 -4.00 -4.00 -7.00

Delay

Number of De- N/A 0.00 2.00 10.00 9.00

layed Deliveries

Percentage of N/A 0.00 15.38 71.43 60.00

Delayed Deliv-

eries

Carrier Utiliza- 50.50 50.00 51.80 52.00 57.50

tion (%)

Idle Time (%) 49.50 50.00 48.20 48.00 42.50

Empty Travel 9.70 10.30 11.40 11.50 9.90

Ratio (%)

Platooning Rate 18.00 19.20 11.80 15.70 13.20

(%)

Average TUs 1.50 1.44 1.30 1.40 1.50

per CU (Al

CUs)

A.4. KPIs for Toy Case

The Toy Case analysis provides a quantitative overview of system performance under both optimised
and disrupted conditions. Key performance indicators (KPIs) were evaluated across multiple runs to
capture trends in efficiency, reliability, and delay behaviour. Detailed results for both cases are presented
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in tables A.4 and A.5, including mean values, variability (standard deviation), and confidence intervals
for all KPIs.

Table A.4: KPI Statistics for Optimized System (n = 200 runs)

KPI Mean Std. Dev. Median 95% CI Low 95% CI High
Fulfillment Rate (%) 71.0 16.8 80.0 68.5 73.5
Average Relative Delay (%) 24.5 18.7 18.2 21.8 27.3
Carrier Utilization (%) 35.8 11.0 36.7 34.2 37.4
Idle Time (%) 64.2 11.0 63.3 62.6 65.8
Empty Travel Ratio (%) 12.4 10.6 9.8 10.8 14.0
Platooning Rate (%) 8.1 16.3 0.0 5.7 10.5
Average Delivery Delay 3.37 2.02 3.2 3.07 3.67
Max Delivery Delay 7.03 2.56 8.0 6.65 7.40
Min Delivery Delay -0.18 1.63 0.0 -0.42 0.06
Number of Delayed Deliveries 2.36 1.06 2.0 2.21 2.52
Percentage of Delayed Deliveries  63.6 259 66.7 59.7 67.4

Table A.5: KPI Statistics for Disrupted System (n = 200 runs)

KPI Mean Std. Dev. Median 95% CI Low 95% CI High
Fulfillment Rate (%) 65.2 243 60.0 61.8 68.6
Average Relative Delay (%) 3.6 7.1 0.0 2.6 4.5
Carrier Utilization (%) 28.9 10.0 289 27.5 30.3
Idle Time (%) 71.1 10.0 71.1 69.7 72.5
Empty Travel Ratio (%) 9.8 7.5 8.8 8.7 10.8
Platooning Rate (%) 0.0 0.0 0.0 0.0 0.0
Average Delivery Delay 0.44 0.81 0.0 0.33 0.56
Max Delivery Delay 1.25 2.08 0.0 0.96 1.54
Min Delivery Delay 0.03 0.24 0.0 -0.00 0.06
Number of Delayed Deliveries 0.44 0.74 0.0 0.33 0.54
Percentage of Delayed Deliveries  13.3 22.3 0.0 10.2 16.4

A.5. Master Example: Two-CU, Two-TU Scenario

To demonstrate that the DES operates correctly across all possible events (loading, departure, platoon-
ing, splitting, unloading, etc.), a small “master” example with two Carrier Units (CUs) and two Trans-
port Units (TUs) is examined. In this scenario:

» Both CUs initially reposition empty from their respective start stations (stations 1 and 2) and form
a platoon.

* The two CUs then collect two TUs together at station 4 and travel in platoon to station 5.
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» At station 5, CU1 unloads TU1 and its journey is completed, while CU2 separates, transitions to
solo travel, and continues with TU?2 to station 6.

This example exercises the C7 (Repositioning — Platoon), C2—C3 (platoon formation), C3—C2
(platoon dissolution mid-route), and C2—C4 (solo arrival) transitions in full.

A.5.1. Input Data

Table A.6: Carrier-Unit itineraries for the master example (split view)

Ccu Start  Arc (From—To) Dep. Time Travel Time

1—-3 0 2
CUl Stationl 3 — 4 2 1

4 —5 1

2—>3 0 2

3—>4 2 1
CU2 Station 2

4 — 5 3 1

5—6 5 1

Table A.7: Transport-Unit requests for the master example

TU Pickup time Pickup station station Delivery time Delivery station Route

1 3 station 4 4 station 5 [4—5]
2 3 station 4 6 station 6 [4—5—06]

A.5.2. Event Timeline and State Transitions
Table A.2 shows a selected extract from the full simulation trace that illustrates all key transitions.
This fully exercises all of our modelled transitions:

Walkthrough of Key Transitions

* Repositioning platoon (3—4): Both CUs are departed empty from station 3 at # = 2 in state C7
(reposition—platoon), and arrival at station 4 occurs at t = 3.

* Pickup and transport platoon (4—5): At ¢ = 3 each TU is arrived (E1), loaded (E4), and both
CUs are departed together in C3 (in-platoon) on arc 4—5. Arrival at station 5 occurs at t = 4
(ES/E9).

* Mid-route split at station 5: The TU assigned to CU1 is completed at this station, while CU2 is
required to separate from the platoon. At t = 5, CU2 logs E7 (leave platoon), transitioning from
C3 to C2 (in-solo), after which departure occurs carrying TU2 to station 6.

* Solo transport to station 6: CU2 arrives at station 6 at = 6 (event E8), unloads TU2 (E9), and
remains in state C5 (waiting).

This illustrative example confirms that the DES implementation is capable of capturing all CU-TU
interaction events, including platooning logic and mid-route splitting behaviour.
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