Department of Precision and Microsystems Engineering

Adjoint Based Guided Wave Tomography for Corrosion Imaging in Pipelines

Marn Klein Holkenborg

Delft
e t University of
Technology

Challenge the future




Ad]omt Based Gu1de Wav_é" ’
Tomography for Corrosion

Imaging in Pipelines
Marn KleinHolkenborg

innovation
for life

-

_ N



Adjoint Based Guided

Wave Tomography for

Corrosion Imaging in
Pipelines

by

Marn Klein Holkenborg

4660269

TNO supervisor: Emiel Hassefras
TNO supervisor: Arno Volker
Department: Acoustic & Underwater Warfare

TU Delft supervisor:  Jieun Yang
Faculty: Mechanical Engineering
Department: Precision and Microsystems Engineering

Cover: Liu, H. (2024, March 29). pipeline-technology.
Encyclopedia Britannica. (Modified)

]
TUDelft TNO i ™"



Abstract

In industries such as oil and gas, power generation, and chemical processing, the structural integrity of
piping systems is crucial for operational safety and reliability. Various factors such as corrosion, erosion,
and manufacturing defects can result in a loss of wall thickness, potentially leading to catastrophic fail-
ures. Detecting and assessing the integrity of piping systems without causing disruption to operations
or compromising their structural integrity is a challenge in asset management and maintenance.

Guided Wave Tomography (GWT) is a promising non-destructive testing (NDT) technique for assess-
ing the integrity of a pipeline by mapping its wall thickness. Using tomographic algorithms that use
forward wavefield extrapolators, based on the gradient of the misfit a defect reconstruction can be
made. Although the forward model is computationally inexpensive, the currently implemented gradi-
ent calculation is costly due to the large number of simulations required for each inversion parameter.
This study explores the feasibility of using the adjoint state method for gradient computation in GWT,
requiring only a single forward simulation independent of the number of model parameters.

A nonlinear conjugate gradient optimization method is implemented to iteratively update the wall thick-
ness based on the misfit between simulated and observed data. The inversion process makes use of
the dispersion curves to establish the relationship between phase velocity, frequency, and wall thick-
ness. The study specifically focuses on the Sy mode, analysing its suitability for complex defect recon-
struction. Numerical experiments demonstrate that the adjoint method effectively localizes defects in
both noise-free and noise environments, provided that there is a sufficient contrast in the sensitivity
kernel between the defect and its surroundings. The technique achieves a resolution of approximately
1 to 1.5\, with frequency continuation and multimodal inversions improving reconstruction accuracy.
However, challenges arise in handling noise and wall thickness interchanges, which can be mitigated
using adaptive regularization strategies.

The results suggest that the adjoint method is a viable alternative to traditional finite-difference sensitiv-
ity calculations. Future research should focus on experimental validation with real-world or as noise-free
alternative 3D elastodynamic data evaluating the method on complex defect geometries and varying
pipe configurations. Finally, the algorithm can be enhanced by integrating Hessian-based optimization
techniques, thereby implementing a second-order adjoint method.
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[1terature review

1.1. Introduction

In various industries, the integrity of piping systems is important to ensure operational safety, reliability,
and durability. Piping networks, serving critical functions in sectors such as oil and gas, chemical
processing, power generation and many more, are vulnerable to degradation over time due to factors
such as corrosion, erosion, fatigue, dents and manufacturing defects, as can be seen in figure 1.1. The
structural failure of a piping system can potentially lead to disastrous events. For example, in March
2006, a leaking pipe spilled approximately 5054 barrels of crude oil on the North Slope in Alaska. A
second spill occurred in August 2006, spilling approximately 24 barrels of crude oil [1]. In order to
prevent future disasters, accurate thickness mapping of large piping structures containing corrosion
damages is critical to assess the integrity and residual life of the components. However, detecting and
assessing the integrity of piping systems without causing disruption to operations or compromising their
structural integrity is a fundamental challenge in asset management and maintenance.

Non destructive testing (NDT) techniques play a vital role in the assessment and monitoring of piping
integrity. One of the NDT methods available, besides methods such as eddy current testing [3], mag-
netic flux leakage testing [4, 5] or radiography testing [6], is ultrasonic wave testing [7, 8]. The goal
of these methods is to create wall thickness maps of pipes and plates, thereby ensuring the structural
integrity of the system. Conventional ultrasonic thickness mappings are generated through the system-
atic traversal of a probe across the entirety of the pipe surface, creating the thickness profiles based
on the differences in wave reflections. Guided wave tomography (GWT) has emerged as a powerful
and versatile approach for inspecting long lengths of piping due to the fact that it can monitor areas

Figure 1.1: Example of typical corrosion defects (a) and dents (b) on a pipe [2].
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with restricted access efficiently and effectively [9, 10]. GWT removes the requirement to have direct
access to all points on the surface of the pipe. Furthermore, it also has the benefit of being faster since
there is no need for a point-by-point measurement. The inherent dispersive characteristics exhibited
by ultrasonic guided waves in plates have been widely utilised to create thickness maps. Specifically,
Lamb waves propagating at a defined frequency exhibit a change in phase and group velocities when
they interact with a region containing a reduced wall thickness caused by corrosion [11]. The accuracy
of GWT is highly dependent on the underlying assumptions used in the reconstruction of the wave
propagation.

In the context of pipe measurements, the defect is not encompassed by transducers; instead, it is
flanked by two ring arrays, as depicted in Figure 1.2a. In many industrial applications, the diameter
of a pipe is much larger than its wall thickness. In this case, a pipe can considered as an unwrapped
plate [12]. The problem can then be conceptually transformed into a plate with the defect positioned
between two linear arrays. Reconstruction from limited view data presents an ill posed problem, where
multiple solutions (defect geometries) can result in the same measured data. The cyclic nature of the
pipe allows waves to travel numerous times around its circumference, these helical paths enable the
same mode to reach a receiver at different times, which is visualised in in Figure 1.2b. The information
contained in higher order helical modes can be exploited in GWT, increasing depth estimation accuracy
[13].
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Figure 1.2: The unwrapping of a pipe section. as per [14] (a) Three distinct wave paths traverse a pipe section, originating
from a singular source and converging at a common receiver. (b) The unwrapped structure exhibits the direct path alongside
two helical modes, characterized by replication values of n = [ 1 0 1]. Note that the red squares all represent the same receiver,
where the signal reaches it at different times.

1.2. State of the art

In the process of creating quantitative wall thickness maps, the resolution is strongly affected by the
model used for wave propagation. Therefore, it is of great importance to identify a suitable model to
describe the behavior of the wave propagation. One of these possible models is based on the ray
theory of geometric optics, which is a widely used assumption and can be used as a forward model
in an acoustic wavefield inversion algorithm. The waves are assumed to propagate as rays, with the
arrival time being a line integral of the slowness (which is the reciprocal of the velocity profile) along
the ray path. Wong et al. [15] introduced a method using straight rays parallel to a borehole, but also
methods using bent rays exist to account for refraction effects [16]. Although these ray methods are
widely used in GWT [17], they do not account for any diffraction effects. Furthermore, the resolution of
this method is limited by the width of the first Fresnel zone v/ AL, where L is the distance between the
source and the receiver, and \ is the wavelength of the illuminating wavefield [18].
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In order to improve performance, several attempts have been made using Born approximations as
forward modeling assumptions. The Born approximation simplifies the analysis by considering only the
first order scattering of waves by the medium. This means that the interaction between waves and the
medium remains sufficiently weak, allowing the treatment of scattered waves as if they solely come from
the incident waves, avoiding the calculations of the interactions among the scattered waves themselves.
Therefore, this method accounts for diffraction effects. However, experimental results demonstrate that,
ultimately, the scattering from the array of transducers is a major source of error in the tomographic
reconstruction. When there is no scattering from the array of transducers, the reconstructions are very
similar to the inversions with modeled data [19]. However, the method is only applicable when the
perturbation is relatively small and of low contrast, thereby being weakly scattering. This given makes
the method impractical for most field applications.

Huthwaite et al. proposed the hybrid algorithm for robust breast ultrasound tomography (HARBUT),
which utilises the strengths of both ray and diffraction tomography. The algorithm is shown to produce
accurate reconstructions with realistic data from a complex three dimensional simulation. An in plane
resolution of 1 mm was achieved with a slice thickness of 9 mm. However, the known resolution is
limited to the diffraction limit [20] for idealized cases, and to around 1.5-2\ for realistic test data.

In order to deal with the challenges stated above, a comprehensive full waveform inversion (FWI) tech-
nique is employed within guided wave tomography to map thickness profiles. Initially established within
geophysics for seismic wave imaging [21, 22, 23], this method utilises a computational forward model
and the dispersive nature of guided waves through defect regions, along with an iterative inverse model
to reconstruct defect profiles. Throughout each iteration, numerical simulations are conducted with the
objective of minimising the least squared misfit between modelled and observed data. The achieved
resolution by FWI strongly depends on the essential ingredients: an efficient forward modelling scheme,
as well as an efficient gradient estimator.

There exists a wide range of methodologies employed for forward modeling in FWI. The most popular
method to discretise the wave equation in the time or frequency domain is the finite difference method
[24, 25]. However, techniques such as finite element methods [26, 27], finite volume methods [28],
discrete wave number methods [29] and more [21] are all used in literature. Recently, the utilisation
of recursive extrapolation for forward modelling in the frequency space (FX) domain has proven to
enable fast forward modelling for extensive pipe sections [14]. Using one way wave equations and
assuming zero reflection, the method approaches the speed of ray tracing while accurately accounting
for diffraction phenomena. It employs a table driven approach, with recomputed extrapolation operators
stored across a spectrum of wave numbers, giving computational benefits compared to other forward
models. Note, however, that due to the nature of the one way wave equations, the model does not
consider backscatter or reflections. In this thesis, we only analyse relatively smooth corrosion defects,
hence creating insufficient medium contrast for reflections, motivating the use of the the recursive wave
extrapolation method as a forward model in the inversion process for this thesis.

Because of the substantial computational expenses associated with computing synthetic data, the full
nonlinear problem of waveform inversion typically adopts an iterative "descent” methodology. In this
approach, the reduction of residuals is achieved through repeated calculation of a local gradient. Each
iteration’s gradient indicates the direction for minimising the objective function, in FWI, typically the L2
norm of data residuals. Prior to proceeding with the inversion of the linearised system, the sensitivity
or Fréchet derivative matrix, which is the partial derivative of data concerning the model parameters, is
explicitly determined.

1.3. Research gap

In the current tomography implementation at TNO, the derivative matrix is calculated with the use of
a forward difference scheme. To that end, each parameter of interest has to be perturbed, and a
new forward simulation has to run. Hence, constructing the sensitivity matrix becomes increasingly
prohibitive to achieve high resolution imaging due to the high parameter count. TNO aims to develop
a guided wave tomography technique that uses an adaptive meshing strategy to concentrate a large
number of parameters around the defect shape. This approach, combined with a newly developed multi
mode and frequency strategy tailored to address non uniqueness, improves the quality of the resulting
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images. However, running a simulation for each parameter is impractical, even with the relatively
inexpensive FX method.

Therefore, this thesis aims to implement an alternative gradient calculation strategy called the adjoint
state method [30]. This methodology entails computing the gradient of the misfit function without ex-
plicitly constructing the sensitivity matrix. Contrarily, the computational effort required for gradient cal-
culation in the adjoint method is similar to a single forward model. An important research question is
whether this method produces misfit gradients of accuracy comparable to the state of the art tomogra-
phy algorithm. To the author’s knowledge, no prior research has been conducted on this topic.

1.4. Conclusion

The integrity of piping systems across industries is critical for operational safety and reliability. Various
factors such as corrosion, erosion, and manufacturing defects can compromise these systems, poten-
tially leading to catastrophic failures. Non destructive testing techniques, including ultrasonic wave
testing, play a crucial role in assessing and monitoring the integrity of piping structures.

Guided wave tomography has emerged as a promising approach for inspecting long lengths of piping,
offering advantages such as efficient monitoring in areas with restricted access. However, creating ac-
curate thickness maps using GWT presents challenges, particularly in modeling the wave propagation.

Current methodologies for thickness mapping, including ray theory and Born approximations, have lim-
itations in addressing diffraction effects and achieving high resolution imaging. Full waveform inversion
techniques, originally developed in geophysics, offer a promising solution by iteratively reconstructing
defect profiles based on numerical simulations.

Recent advancements in FWI include the use of frequency space domain methods for fast forward
modeling. These developments aim to improve the efficiency and accuracy of thickness mapping in
GWT, particularly in handling complex defect geometries and reducing computational costs.

The proposed research aims to address the limitations of current gradient calculation methods in GWT
by implementing the adjoint state method. By bypassing the explicit construction of sensitivity matrices,
this approach promises to reduce computational overhead while potentially maintaining accuracy. The
effectiveness of this method, particularly in conjunction with one way forward models, will be the main
subject of investigation for the master thesis.



Methodology

A guided wave is a type of wave whose energy is confined between boundaries and propagates along
a waveguide [10]. Unlike bulk waves, which propagate freely without confinement to specific bound-
aries, guided waves are continuously reflected between the structure’s boundaries. These waves are
generated by an excitation at a specific location in the structure, producing various wave modes, each
characterized by unique properties and suited to specific applications. These modes differ in their
displacement patterns, wave velocities, and dispersion characteristics.

2.1. Guided waves

Lamb waves are a type of guided elastic wave that propagates in a thin plate or shell like structures,
such as solid materials like metals, composite materials, or biological tissues. They were first described
in a free plate problem (as seen in Figure 2.1) by the British mathematician Horace Lamb in 1917 [31].

Z 4

Propagation direction X

A

Figure 2.1: Free plate problem.

These guided waves can propagate long distances without significant attenuation and interact strongly
with thickness variations. The propagation characteristics of Lamb waves depend on various param-
eters, including the thickness and material properties of the structure, as well as the frequency and
the mode of excitation. They exhibit dispersion, meaning that different frequency components of the
wave propagate at different velocities, leading to waveform distortion over long distances [32]. These
waves consist out of symmetric (S) and antisymmetric (A) modes, which describe the relative motion
of particles on opposite sides of the plate’s midplane, as indicated by the orange arrow in Figure 2.2,
both having their own dispersive characteristics.
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(a) Symmetrical wave mode. (b) Asymmetrical wave mode.

Figure 2.2: Propagation of Lamb waves in a plate, illustrating the different characteristics of symmetrical and asymmetrical
wave modes.

Another wave mode that exist is the shear horizontal (SH) wave mode. The particle motion is parallel to
the plane of the surface and orthogonal to the direction of propagation. This transverse motion results
in in-plane displacement, simplifying their dynamic behavior compared to other guided waves. These
waves are particularly notable for their simplicity compared to other guided wave types, as they lack
coupling with longitudinal or flexural motions in isotropic materials, making them relatively easier to
analyze and interpret.

To understand and predict the behavior of these wave modes, it is essential to delve into the disper-
sion equations governing wave propagation. Dispersion equations provide a quantitative relationship
between key wave parameters: frequency, wavenumber, and phase velocity. Which encapsulate the
influence of boundary conditions and material properties on wave behavior. These equations arise
from solving the wave equation under the stress free boundary conditions of a finite structure, for the
derivation the reader is referred to [33].

Solving the dispersion equations demonstrates the existence of multiple ultrasonic guided wave modes
within a plate. Multiple solutions emerge for specific combinations of frequency and plate thickness.
Therefore only numerical simulation methods can be used to solve these equations. Using a MATLAB
based software, ‘Dispersion Calculator’ (DC) [34], the dispersion curves for multiple wave modes can
be obtained, which exist in a certain material. This is then calculated, however, in the free case where
the plate is assumed to be surrounded by a vacuum so that no energy can leave the plate.

Analogues to the free plate problem, one can derive the case with a liquid loading of water on the
plate [35]. Liquid loading is relevant as pipelines are typically filled with liquids such as water or oil.
One characteristic of Lamb waves is that they exhibit out of plane displacement [31]. Consequently,
they have the potential to lose acoustic energy into the liquid medium, thereby leading to a decay or
complete attenuation of the desired guided wave amplitude before it reaches the receiver. Furthermore,
if this energy couples with the liquid, it can create a pathway for extra wave transmission between the
source and receiver, introducing undesired coherent noise into the data.

In Figure 2.3, the phase velocities are depicted for the symmetric, anti symmetric and shear horizontal
wave modes in a steel plate with material properties £ = 200 GPa, v = 0.3 and p = 7850 kg/m3. Here
A, So and SHy are the anti symmetric, symmetric and shear horizontal fundamental wave modes,
respectively. Furthermore, A,,,S,, and SH, represent the higher order wave modes, with n denoting
their order. The horizontal axis represents the product of frequency and the plate thickness, while the
vertical axis denotes the phase velocity. The DC software is utilised for generating the graph illustrating
the attenuation characteristics of wave modes within a steel plate. Figure 2.4 illustrates the attenuation
behaviour of these various wave modes.
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Dispersion diagram of a steel plate liquid loaded with water
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Figure 2.3: Dispersion curves for different modes in a steel plate with liquid loading of water [34].

Attenuation diagram of a steel plate liquid loaded with water
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Figure 2.4: Attenuation for different wave modes in a steel plate with liquid loading of water. Np is the natural logarithm of the
ratio of the initial amplitude to the final amplitude [34].
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2.2. Wave mode selection

One of the fundamental aspects of the design of a guided wave tomography system is the choice of
wave mode, which strongly affects the sensitivity of the inversion algorithm to defect interactions. Us-
ing the dispersion curves and assuming a fixed frequency, a relationship between the inverted phase
velocity and the thickness of the plate can be established. When a wave mode displays high sensitivity
to thickness variation, it can be utilized for thickness estimation. This dependency is represented by the
dispersion curve’s gradient, a steep gradient correlates with substantial velocity shifts relative to thick-
ness. Although higher order modes are generally more sensitive than the fundamental wave modes,
for certain frequencies, higher order wave modes co exist with other wave modes, as can be seen in
Figure 2.3. Wave mode separation techniques do exist, Jidong Hou et al. [36] present a method using
arrival time estimation to separate the multiple lamb wave modes. Although a smooth distribution of
arrival time for the fundamental wave modes and A4; wave mode is obtained, the mechanism behind
the method is adding extra complexity and noise, especially for wave modes of higher order than A,
when compared to the utilisation of the fundamental wave modes Sy and Aq. Furthermore, each higher
order wave mode has a cutoff frequency for which they don’t exist for specific frequency thickness
values (e.g. around 1.6 MHz-mm for the SH; mode). Therefore, when the frequency is fixed, below
a certain thickness, these waves will be unable to propagate through the medium. The fundamental
shear horizontal wave mode S Hy, is not explored due to the non dispersive nature of the mode. How-
ever, the utilisation of the first higher order shear horizontal mode S H; has been explored, enabling an
improvement in resolution compared to the fundamental modes [33].

Looking at Figure 2.3 we find that that Ay is much more sensitive than S, at low frequency thickness
values, which due to practical limits on the operating frequencies [37] is advantageous over S, which
is more sensitive at frequency thickness values of around 1.5 MHz-mm. As can be seen in Figure 2.4,
when a liquid boundary is present, such as in an oil pipe, the wave attenuation for A is very high and
therefore not well suited for liquid loaded pipes. From Figure 2.4, it can be found that the S, wave
mode is less sensitive for attenuation at low frequency thickness values, hence allowing signals to be
propagated and properly received at the receiver array. This thesis is part of a research project that
explores the joint inversion of fundamental wave modes and shear horizontal wave modes. Within the
scope of this thesis, we initially focus on the Sy, wave mode. This is because it has low attenuation
and relatively high sensitivity at low frequency thickness values. However, numerical simulations in-
corporating multiple wave modes within a single simulation will be conducted aswell in this thesis to
investigate their impact on mitigating the ill posedness of the problem. In these simulations, the Ay
wave mode will be examined alongside the S, wave mode.

2.3. Forward modeling

Forward modeling serves as a computational technique aimed at simulating the propagation behavior
of guided waves within a given structure. The process of forward modeling typically involves solving
the governing wave equations, such as the linear elastic wave equation or acoustic wave equation,
within the structure of interest. These equations govern the propagation of guided waves, taking into
account factors like material elasticity, geometry, boundary conditions, excitation sources, and defects
[38].

The main model of acoustics in the frequency domain can be derived based on the Helmholtz equation.
The Helmholtz equation is more efficient to solve than the time-dependent wave equation because
it is time-independent, allowing for a static, frequency-domain analysis and reducing computational
complexity. Assuming a constant density p, the Fourier transformed pressure field P(7,w) obeys the
Helmholtz equation and is given as:

2
V2P(7,w) + %P(F,w) —0, (2.1)
P

Where w is the frequency, v, the phase velocity and 7 equals /z2 + y? + 22.
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2.3.1. One-way wavefield extrapolation

While the elastodynamic wave equation offers a detailed description of the interactions of guided waves
with defects, its computational requirements frequently pose practical limitations for real-world scenar-
ios. To address this challenge, numerous contemporary implementations use 2D acoustic forward
models as a viable alternative. The finite difference method applies to both the acoustic and elastic
two-way wave equations. However, two-way wave-equation techniques often require substantial com-
putational resources. Alternatively, methods based on one-way wave equations typically offer greater
computational efficiency and straightforward implementation compared to their two-way counterparts.
A method operating in the frequency space domain (FX) has been utilized in [39, 40]. A one-way wave-
field can be propagated in a homogeneous media using an extrapolation operator in the wavenumber
domain [41]. The acoustic approximation is made by utilizing the phase velocity for a given frequency
in an acoustic model.

In order to derive the FX method, we follow the outline provided previously in the work of Hassefras
et al. [14]. The FX method is based upon Huygens’ principle, which states that the propagation of
a wave within a medium can be comprehended through the collective contributions of all secondary
sources distributed along its wavefront. This phenomenon is mathematically formalized in the Kirchhoff-
Helmholtz integral. Based on this (for a detailed derivation, the reader is referred to [14]), we obtain
the general formulation of the Rayleigh Il integral, which is formulated as:

(Fa,w / P(7, —dS (2.2)
where P (74, w) is the Fourier transform of the pressure field, w is the angular frequency, and G is the

Greens’s function. The anti-causal [42] Green’s function G describes the wave field due to a point
source excitation:

= —Jear
PN , (2.3)

where Ar = |7 — 74| the distance between an observation and source location at A. Substituting Eq.
2.3 into 2.2 gives the Rayleigh Il integral for wave field extrapolation:

— 1 YA
P (Fa,w) ZA 0 / / P (7 +‘7 rea:p d:cdy (2.4)

For each propagation step through the medium z;, eq. 2.4 can now be rewritten as a convolution
operation in Cartesian coordinates as [43]:
P(z,y, ziy1,w) = W(x,y, ziy1, 2i,w) * P(z,y, 2, w). (2.5)

Here, x denotes the convolution operator and:

8G(Z‘, Y, Zi+1|z = Ziaw)
0z ’

W(z,y, zit1, 2i,w) = (2.6)

where W(z;11, 2;) is a propagation operator that describes propagation in the propagation direction z,
from level z; to level z;, ;.

The convolution in the space-frequency domain corresponds to a multiplication in the wavenumber-
frequency domain given as:

P(k:ry kyuzi+l7w) = W(kz7ky7Zi+lazi7w)ﬁ(k:v7ky72i7w)a (27)

where k, and k,, are the lateral wavenumbers. The tilde symbol (~) indicates the wavenumber-frequency
domain. For a homogeneous medium, the extrapolation operator W has the form [41]:

W(km7ky7zi+l7ziaw) = exp(_]kZAz)7 (28)
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Figure 2.5: Recursive Wavefield Extrapolation, as per [44]. A different operator is used to extrapolate the pressure field at
every lateral position with varying velocities. [14]

with
- k2 — (k2 + k2), for k2 + k2 < k?, 29)
—j\/ (K2 4+ k2) — k2, for k2 + K > k2,

Note, however, that this operator is only valid for a homogeneous medium, as local homogeneity is
assumed for each grid point in this procedure. Furthermore, in a 2D medium, we find that k£, = 0.
Figure 2.5 shows the basic concepts of a recursive wavefield extrapolation with space-variant spatial
convolution operators. Using the whole length of the extrapolation operator (which theoretically goes to
infinity) is computationally expensive. For that reason, the operator can be truncated to a finite number
of grid points in the space domain, sacrificing resolution.

2.4. Full waveform inversion

Full-waveform inversion (FWI) in guided wave tomography is an advanced technique that reconstructs
the spatial distribution of material properties or defect characteristics within a structure using the com-
plete wavefield information. Unlike the ray tracing and diffraction methods for tomography, FWI lever-
ages the entirety of the recorded wavefield, to iteratively refine the model until it accurately reproduces
the observed data. An overview of a FWI scheme used in this thesis for a single frequency and single
mode can be found in Figure 2.6. The reconstruction’s multi-resolution characteristic is achieved by
iterating over multiple discrete frequencies, starting with lower frequencies and progressively advanc-
ing to higher ones. After each iteration at a particular frequency, a new model parameter for the wall
thickness is computed. It is set as the initial model for the subsequent iteration. The iterative process
continues until a predefined accuracy or minimum update size is met, or the maximum iteration number
is reached. In each iteration, a residual is calculated to set up an objective cost function of the model
parameter m. More details of the inversion steps will be discussed in sections 2.5 and 2.6.
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Figure 2.6: FWI scheme of a multi frequency and single mode inversion
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Chapter 2. Methodology

2.5. Gradient optimization

The goal of using an FWI multi parameter simulation is to minimize the cost function in Equation 2.10,
which the misfit between the observed data d,;,; and synthetic data u,. Here, m is the model parameter,
dops is recorded at the receiver position r due to the source f,, and u,, a complex vector of N elements
corresponding to the pressure field to the shot at s. The efficiency of the method greatly depends on
the accuracy and efficiency of the computation of this gradient. A common way of defining the objective
function is by using the least square norm, given as:

1
J(m) = 3 Z Z || dobs (Try Tsy w0, MU (T, T4, w)]| |2, (2.10)

In this thesis, m is considered to be the wall thickness. 2, and z, denote the source and receiver
locations, respectively. The gradient of the functional can be obtained with the Fréchet derivatives of
the state variables. The Fréchet derivatives are the derivatives of the state variables with respect to
the model parameter. This results in the Jacobian or sensitivity matrix.

2.5.1. Perturbation method
A straightforward and well known approach for evaluating the sensitivity of the functional involves em-
ploying finite differences. Using forward differences of first order, one can approximate the gradient
by:

g aJ _ J(m+ Am)J(m)

om Am ’

Am is a small step size. In the context of full waveform inversion, the quantity of design variables m
can become very large, given that the amount of parameters depend on the mesh size. In that case,
the gradient can be approximated as follows:

8J(m) ~ J(mlv"'ami+Amvmi+17'"7mN)J(m17"‘an’i>'"7mN)
om; Am

However, this would require N evaluations of J. As every evaluation of J corresponds to one additional
solution of the (forward model) state equation, this clearly becomes impractical for large N. Hence,
computing the Fréchet derivatives can be resource intensive [45, 46].

i=1,...,N 2.11)

In order to reduce the computational load a series of points on the plate’s surface can strategically be
selected to serve as representative locations for the parameterization of corrosion defects or thickness
reductions. These points are specifically chosen to cover regions where corrosion is most likely to occur,
ensuring that the coverage sufficiently exceeds the spatial extent of the defects. These evaluation
points are sampled coarser than the computational mesh for forward modelling and an interpolation
step is performed from the parameterisation to the forward model mesh to obtain a final image. This
strategy of a sub mesh of evaluation points to describe the geometric thickness is also referred to as
geometrical full waveform inversion, as in [47].

2.5.2. Adjoint state method

If non-linear optimization methods such as for example the non-linear conjugate gradient method, are
used, it may suffice to compute only the sensitivity of the objective function instead of calculating all
the Fréchet derivatives. A method based on the adjoint state can be used to efficiently calculate the
sensitivity field of the functional. The approach using the adjoint fields is independent of the number of
model parameters, making it, in contrast to the perturbation method, well suited for inversion problems
with a large amount of model parameters.

In order to derive this method we follow [48] and start by stating the Helmhotz equation here again:

w2
[V2 + v2(m)] u(@, x5, w) = —f(w)d(z — ), (2.12)

Which we can rewrite in the general simple form of

A(z,w,m)u(z,xs,m) = f(w). (2.13)

12
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The gradient of the objective function can be found via the chain rule (for full derivation please see
Appendix A):
0J
om(x)
From our objective function we find that §d = dops (-, x5, w) — u(x,, s, w) which is the data misfit, i
denotes the real part and I is the Fréchet derivative matrix given as:
ou
dm;(x)’

Vind(z) = =R [F(x)Tch* (z,25,w)] . (2.14)

r=

(2.15)

WHere ju represents the perturbation in the wavefield due to a small perturbation in the model parame-
ters. Instead of directly calculating the Fréchet matrix we can define a more efficient solution by taking
the derivative of equation 2.13 with respect to the model parameter m:

ou 0A

A(z,w,m) 5me(@) = _5m(x) us(x, x5, w), (2.16)

which can be rewritten as:
0A
om; ()

ou
om; ()

= —A(z,w,m)"" us(x, x5, w). (2.17)

We can now substitute equation 2.17 into equation 2.14 to obtain the final form for the gradient of our
objective function:
JAT

(sz'

0J

om

?R[ (e, 2y, w) A Nz, w,m)éd* | . (2.18)

Since we have an objective function on the receiver axis for every source position and every frequency,
and given that in the construction of the adjoint sensitivity kernel phase velocity is used as model
parameter we find that:

Sm ( ) a vg(x) ’ '
hence we find the final form for construction of the sensitivity kernel as:
5J w?
= 2R [Zw: ;us(x,xs,w)m)\s (x,w)] . (2.20)

A% (z,w) denotes the adjoint field, which is back propagation of the misfit. So the source term is the the
misfit between the simulated data u (which is a pristine plate for the first iteration) and the observed
data u,ps at the receiver line, as can be seen in Figure 2.7. Here Figure 2.7c is the source perturbation
(the misfit between Figure 2.7a and 2.7b) that is injected at the receiver line and back propagated in
order to construct the adjoint field A\, (x,w) for a single source.
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(a) Pressure recorded at receiver (b) Pressure recorded at receiver (c) Difference in pressure recorded
line for a pristine plate line for a plate containing a defect at the receiver line, which is the
source term for the construction of
the adjoint field.

Figure 2.7: Comparison of pressure recordings for 2 different scenarios for a center located defect and £1N helical path
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The construction of the adjoint sensitivity kernel for a single frequency is displayed in Figure 2.8. Ob-
serving the computation of cumulative interactions between forward and adjoint fields yields insight
into what is commonly referred to as a sensitivity kernel. This kernel encapsulates the sensitivity of
the cost function to perturbations in model parameters. Specifically, the adjoint field sets out the lo-
cation of defects, serving as their secondary source. At the same time, the forward solution traverses
through these defects, resulting in a interaction between the two wave fields at the perturbation location.
Therefore, the adjoint field concentrates its energy predominantly at the site of the defect, as a peak in
amplitude while diminishing elsewhere, as can be seen in Figure 2.8d.
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Figure 2.8: The construction of an adjoint sensitivity kernel for a single frequency using =1 N helical paths.

2.5.3. Limited view

The number and spatial distribution of sources and receivers significantly influence the detection of the
position and shape of an unknown defect [49]. Since the kernel is constructed as a sum over the number
of sources and receivers, a higher transducer count enhances the solution’s ability to distinguish the
defect from its surroundings due to a stronger contrast visible in the sensitivity kernel. Additionally,
strategically placing sources around the defect improves its shape description since shooting at the
defect from different angles enriches the sensitivity kernel and enabling more precise characterization
of the defect, which in turn reduces the ill posedness of the problem. However practical limitations, such
as mainly the geometry of the pipe and cost considerations, impose constraints on sensor deployment.

However a limited number of sources on the circumferential axis can in many applications constrain
the ability to effectively image defects. As briefly discussed in Section 1.1, helical paths are considered
as a means to enhance coverage by interacting with the defect from multiple angles. By utilizing these
paths, the defect is exposed to a wider range of orientations, increasing the shape reconstruction of the
defect by the sensitivity kernel. This can be seen in Figure 2.9, where Figure 2.9a uses +1N helical
paths and Figure 2.9b uses +3N helical paths for a centered Gaussian defect shape. As can be seen
in the figure, using a single helical path makes the defect in the sensitivity kernel much more elongated
while using 3 helical paths encapsulates the round shape better. This approach helps mitigate the chal-
lenges associated with ill posed optimization problems, as the increased number of angles improves
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Chapter 2. Methodology

the stability and accuracy of the solutions. Consequently, the use of helical paths proves valuable in
improving defect detection and characterization in scenarios with restricted source locations.

It is important to recognize that maximum interaction between wave fields does not necessarily occur
at the defect location but rather at the primary source location, as can be seen in Figure 2.8c. This is
due to the higher amplitude of the primary source compared to the secondary source. When the spatial
sampling of the transducers is below the nyquist limit, notable aliasing contributions can be observed at
the transducer locations. This will be explained in more detail in Section 3.1.3. Furthermore a trace of
nonzero components from the source to receiver locations via the defect is created, which are unwanted
as it does not physically represent wall thickness loss. These effects can be partly managed by applying
a mask to suppress contributions near the transducer locations or by utilizing a Tukey window centered
in the region of energy focus, as shown in Figure 2.9c.

Sensitivity Kernel folded Sensitivity Kernel folded OMasked Sensitivity Kernel
0 T 0

o
w
o
w

08 115 115

I
IS
I
~

0.6

o
n

o
«»
o
«»

o
o

o
o
o
o

0.4

propagation axis [m]

propagation axis [m]
o
3

e
3

o
©

o
©

1

0 0.2 0.4
circumferential axis [m]

o
©

o
©

1

0 0.2 0.4
circumferential axis [m]

0.5

0 0.2 0.4
circumferential axis [m]

(a) Folded sensitivity kernel for N=1 (c) Masked sensitivity kernel

helical paths

(b) Folded sensitivity kernel for N=3
helical paths

Figure 2.9: Sensitivity kernels for different helical path configurations and the application of a masking technique. The defect is
displayed as contours.

2.6. Constrained non linear optimization methods

Unconstrained nonlinear optimization methods aim to find the minimum or maximum of an objective
function without any explicit constraints on the variables. One of the most simple algorithm’s is the
Steepest Descent. The gradient of the objective function VJ always points in the direction of the
steepest ascent, perpendicular to the contour lines of the objective function. The parameter update is
then given as:

Mit1 = My + ad, with d = —VJ(mk) (2.21)
Where m is the model parameter, and « the step size, often determined via a line search. Even though
the negative gradient makes sure that the logarithm finds the steepest decrease of the objective function
in a small region around the current solution, it is not necessarily the optimal choice globally since its
always perpendicular to the contour lines. Therefore, convergence to a local minimum can require

many iterations, as illustrated in Figure 2.10.
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Figure 2.10: lllustration of the steepest descent method on an arbritrary objective landscape. The search direction follows the
negative gradient, which is always perpendicular to the contour lines. This can lead to slow convergence, requiring many
iterations to reach a local minimum.

In order to improve the convergence rate, Newton’s method improves upon the steepest descent
method by incorporating second-order curvature information, leading to faster and more stable conver-
gence. For Newton’s method the the Hessian matrix H is required, which captures the local curvature
of the function:

Mp1 = my — aH 'V J(zy). (2.22)

By considering second-order information, Newton’s method adapts the step direction more effectively,
avoiding the zigzagging behavior of steepest descent and often achieving quadratic convergence near
a local minimum. However, it requires computing and inverting the Hessian. The Hessian is given as

H=T¢(m)T(m) (2.23)

Where J¢(m) is the Jacobian matrix. Since the Hessian consists of second-order partial derivatives,
its computation requires calculating the Fréchet derivatives, making the method computationally ex-
pensive, particularly when applied in a large parameter optimization problem. Given that this thesis
focuses on exploring optimization methods that use the adjoint state method and therefore do not rely
on Fréchet derivatives, Newton’s method is not considered in this thesis.

A commonly used approach that improves on the convergence rate of the steepest descent, but avoids
the calculation of the Hessian, is the non linear Conjugate Gradient (CG) method. The CG method is
based upon the steepest descent but extends it by ensuring that each successive search direction is
not only a descent direction, but also conjugate to all previous directions. Therefore it avoids previously
optimized directions, leading to more direct convergence to the minimum, as visualized in Figure 2.11.

The nonlinear conjugate gradient method is used in this thesis due to its ease of implementation and its
ability to efficiently handle large parameter spaces without requiring explicit second-order information.
Therefore in the following section the algorithm is further explored in more detail.

Figure 2.11: lllustration of the nonlinear Conjugate Gradient (CG) method on objective landscape. Unlike steepest descent,
CG ensures that each search direction is conjugate to the previous ones, preventing redundant steps and improving
convergence efficiency.
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2.6.1. Conjugate Gradient

The outline of the algorithm can be found in the pseudo code 1. In the context of adjoint-based op-
timization, the search direction at each iteration is defined as the negative of the (adjoint) sensitivity
kernel since the initial step the sensitivity kernel is directly used as gradient. Since the sensitivity kernel
is a sum over the sources and scaled by the frequency squared, the amplitude is very much dependent
on the frequency and amount of sources used in the system. This can lead to very high amplitudes in
the sensitivity kernel that are multiple factors higher than the nominal thickness of 10 mm. Hence the
sensitivity kernel is scaled to a range where the maximum of the kernel is within the bound of 1 and -1
mm, ensuring a numerical stable update. At iterations, the conjugacy coefficient /3 is used to ensure
that the new search direction maintains conjugacy with previous directions.

Algorithm 1 Nonlinear Conjugate Gradient Method

1: Input: Initial guess x(, minimal update amplitude ¢
2: Compute gradient gy = V.J(my)

3: Scale gradient: abs(go) < (1-107%))

4. Set search direction dy = —go

5 k<« 0

6: while ad, > ¢ do

7: Initialise oy 1

8: Compute step size «y, using line search & o i,
9: Update solution: my1 = my + agdy,
10: Compute new gradient: g1 = VJ(2k11)

11: Scale gradient: g;41 < scale(gx+1)
12: Compute conjugate coefficient 5y,
13: Update search direction: dy11 = —gx+1 + Brdk

14: k< k+1
15: end while
16: Output: Approximate solution my,

An important component of the CG method is the line search, which determines the step size « with
which the search direction is scaled, ensuring the prevention of large overshoots aswell as a faster
convergence rate. The algorithm can be found pseudo code 2. « is computed using the strong Wolfe
conditions, which ensure sufficient decrease and curvature of the objective function (line 5 and 10 in
alg. 2 respectively). The zoom function, which can be found in pseudo code 3 is the part of the line
search algorithm that refines « to satisfy the strong Wolfe conditions when an acceptable step has not
been found in the main line search loop. Within the interval [a;,., anign] the function iteratively updates
« and re-evaluates the objective function and gradient. Once the conditions are satisfied, the algorithm
returns the refined step size . For methods that do not generate well scaled search directions, it is
important to use current information to make an initial guess for ag  [50]. Therefore the first-order
change in the function at iterate m;, will be similar to that at the previous step. The initial step length at
each iteration «y j, is chosen such that:

L,

ok = { ViE L di-1
k1T Ty

if iteration =1,

otherwise

For updating the conjugacy coefficient 3, the Polak-Ribiére (PR) method is a widely used approach
in conjugate gradient optimization [50]. It refines earlier methods by incorporating additional gradient
information, enhancing stability and performance, particularly in complex optimization landscapes. Un-
like basic formulations that may struggle with stagnation in curved objective functions, the PR method
adjusts 8 based on the difference between successive gradients. It is defined as:

VIL (V. — V1)
VJIT Ve

Bpr = (2.24)
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This formulation allows the PR method to adapt more effectively to changes in the optimization land-
scape, making it particularly robust in ill-conditioned problems. Numerical experience suggests that it
often outperforms other approaches, offering improved convergence behavior and efficiency in practi-
cal applications.

Algorithm 2 Line Search with Strong Wolfe Conditions

1: Input: Objective function J, gradient V J, initial step size «, direction d, parameters ¢, co
2: Compute initial function value J, = J(m) and gradient gy = V.J(m)Td
3: for i = 1 to max iterations do

4: Evaluate J(m + ad) and VJ(m + ad)
5: if J(m + ad) > Jo+ ciago or (i > 1 and J(m + ad) > J(Tegiprev)) then
6: Call Zoom(eptiow, @)

7: Return o

8: end if

9:  Compute g = VJ(m + ad)’d

10: if |g| < —cag0 then

11: Return o

12: end if

13: if g > 0 then

14: Call Zoom(«, eptiow)

15: Return o

16: end if

17: Update a,t100 = «, increase «

18: end for

19: Return o (warning: max iterations reached)

Algorithm 3 Zoom Function for Line Search

1: Input: Bracketing values aegtiow, Ctexthign, function J, gradient V.J, parameters cy, co
2: for j = 1 to max iterations do

3: a = 0.8a

4: Evaluate J(m + ad) and V.J(m + ad)

5: if J(m + ad) > Jy + crago or J(m + ad) > J(zow) then

6: Update Qhigh = &

7

8

else
: Compute g = VJ(m + ad)Td
o: if |g| < —cago then
10: Return o
11: end if
12: if g(ahigh — Oqow) > 0 then
13: Update Qhigh = Qlow
14: end if
15; Update ajon = @
16: end if
17: end for

18: Return « (warning: zoom did not converge)
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Numerical simulations

This chapter evaluates the performance of the nonlinear conjugate gradient optimization algorithm, in
combination with the adjoint state method, as introduced in Section 2.6.1. The objective is to assess
its effectiveness in full waveform inversion by examining key parameters, selecting an appropriate
transducer configuration, and determining the most suitable modes and frequencies for the analysis.

The investigation begins with a simplified defect, modeled as a Gaussian shaped pit. Starting with a
simplified defect allows for a clear and controlled validation of the algorithm, as the smooth and well
defined nature of the Gaussian defect ensures that inversion errors can be more easily attributed to
methodological performance rather than complex geometric effects and hence helps in systematically
identifying and understanding the influence of different parameters in the simulation settings.

Following this, the analysis is extended to a more complex defect. Unlike the idealized Gaussian
shape, real world corrosion induced defects often exhibit irregular geometries characterized by sharp
edges, asymmetry, and rough surfaces due to the stochastic nature of material degradation. To better
represent such complexities, an analysis of the so called 'Echo’ defect [33] is introduced, which is
reconstructed from laser scans of an actual corrosion defect provided by industry.

For the analyses in Sections 3.2 and 3.3, an inverse crime is intentionally carried out. This refers to the
case where synthetic data used for inversion are generated using the same numerical model as the
one employed in the inversion process. This approach provides an validation of the algorithm’s consis-
tency and accuracy. It enables a controlled assessment without uncertainties from model mismatches,
isolates discrepancies to numerical accuracy and algorithm performance, and verifies the correctness
of the adjoint state implementation. However, it does not reflect real world conditions, where discrep-
ancies between the forward model and the physical system introduce additional challenges.

To bridge this gap, in Section 3.4, we introduce noise into the synthetic data. This step is important as
real experimental measurements are inherently affected by noise due to sensor limitations, environmen-
tal influences, and numerical discretization errors. By incorporating noise, we assess the algorithm’s
robustness and its ability to reconstruct defects under more realistic conditions.

3.1. Model configuration

A well-defined model configuration is important for obtaining reliable and meaningful results in the ex-
periments. This section details the key aspects of the model setup, including the selection of operating
frequencies, the configuration of transducers, and strategies to mitigate non-uniqueness in the obtained
solutions. Additionally, we outline performance indicators used to assess the model’s effectiveness.

3.1.1. Plate and defect configuration

To test the algorithm, a 2D model of an unfolded steel pipe with a length Lpi,e of 1 m, and a diameter
Dyipe 0f 0.159 m is used. When unfolded, this diameter corresponds to a circumferential length of 0.5 m.
Furthermore, 3 helical paths will be included in the simulation. The nominal thickness of the pipe is 10

19
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mm. It must be noted that during manufacturing, slight variations in pipe or plate thickness can occur,
with deviations of up to 10% [33] not being unusual. In real world scenarios these thickness variations
will result in corresponding variations in wave velocity. Another factor that may influence wave velocity
is material anisotropy, which can arise from uneven rolling during manufacturing. However in this thesis,
in order to focus on the validation of the adjoint method methodology, the material is assumed to be
isotropic with a nominal thickness.

To model a Gaussian-shaped defect in a plate, a spatially varying function is used to define the defect
profile. The defect is centered in the plate. To validate the inversion methodology, an initial defect is
introduced with a width wgq.ss Of 0.25 m and a depth d,,., 0f 2.5 mm. The chosen dimensions ensure
a clear defect response while remaining practical for analysis. A 0.25 m width spans half the circumfer-
ential width, allowing wave interactions to be observed in both defected and undisturbed regions. The
2.5 mm depth, moderate relative to the 10 mm plate thickness, is sufficient to affect wave propagation
without introducing excessive distortions.

The width wyq.ss Of the Gaussian defect is determined using the relationship
w

w =
gauss g /= log(20)

In this context, o represents the standard deviation of the Gaussian function, which controls the spread
of the defect, the factor /— log(20) ensures that the Gaussian function reaches 95.45% of its maximum
at a distance of wgayuss/2 from the center. The defect profile is then described by

2((z = 20)* + (m—x0)2)> 1
Dnorm

(3.1)

D(z,2) =1 — dmax exp <— (3.2)

2
Wgauss

where dmax is the maximum defect depth, and (zo, zo) represents the center position of the defect. The
normalization factor Dyom ensures that the maximum defect depth is preserved, independent of the
spatial distribution described by the Gaussian function. The exponential function is scaled correctly

and is defined as: , )
Dnorm = max (exp (—2 (= 20" + (@ = 20) )>> . (3.3)

2
Wgauss

The resulting plate can be seen in Figure 3.1a, where the defect is represented as a reduction in
wall thickness, serving as the model parameter to be updated during the inversion process. Via the
dispersion curve, a known frequency and wave mode, we can map the spatial defect to its associated
phase velocity. This is illustrated using the S, mode at a frequency of 130 kHz, which can be seen in
Figure 3.1b.
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Figure 3.1: Visualization of a 2D Gaussian-shaped defect. (a) The defect is characterized as a reduction in wall thickness,
serving as the model parameter to be updated in the inversion process. (b) Calculated phase velocity using the Sy mode
dispersion curve at 130 kHz.

In this chapter, the plate and defect configuration outlined in this section will be used as the default,
and all simulations will be conducted with these settings in a noise free environment unless specified
otherwise.

3.1.2. Frequency selection

Selecting an appropriate frequency (range) is critical for the effectiveness of the inversion. The choice of
frequency influences both the sensitivity to defects and the practical limitations imposed by attenuation.
This section explores the trade offs involved in frequency selection, and by analyzing the wavenumber
domain representation we establish a strategy for optimizing frequency selection to enhance the defect
imaging accuracy.

As discussed in Section 2.2 due to its low attenuation characteristics we initially consider the S0 mode.
The dispersion curve for this mode indicates that, for a 10 mm steel plate, frequencies within the range
of approximately 100 kHz to 300 kHz are within the sensitive region for this mode. Intuitively one might
suggest that picking the highest possible sensitivity is desirable which, as can be seen in Figure 3.2 can
be achieved by picking high frequencies. Although higher frequencies, with their shorter wavelengths,
offer finer spatial resolution, they also experience higher attenuation during propagation, as shown in
Figure 2.4, which reduces their effectiveness over longer piping sections.
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Figure 3.2: Frequencies and its associated location on the dispersion curve for 10 mm plate containing a defect with a
maximum depth of 2.5 mm (red) and pristine case (blue). As the frequency increases, the phase velocity difference between

(@) f = 130 kHz

(b) f = 180 kHz

(c) f =210 kHz

the pristine and defective cases also increases, enhancing sensitivity.
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To achieve effective imaging of a defect, it is crucial to consider the minimum required spatial resolution.
In real world applications, the defect is typically unknown, making the required spatial resolution also
uncertain. Therefore, a strategic approach is necessary, such as initially using low frequencies to locate

the defect’s general position, followed by iterative refinement with higher frequencies to resolve finer
details.

We can determine the minimal spatial resolution by performing a 2D Fourier transform of the spatial
defect into the wavenumber domain. The spatial resolution refers to the smallest detectable feature
size and is inversely proportional to the wavenumber. Specifically, the spatial resolution A at a given
wavenumber £k is defined as:

27
A=— 3.4
. (34)
where k represents the radial wavenumber. As the wavenumber increases, the resolution improves,
allowing for the detection of finer spatial features in the original data.

In diffraction tomography, the maximum wavenumber components are constrained by the Ewald limiting
circle in k space, where the zero frequency component is centered in the spectrum [33]. Low spatial
frequency (or wavenumber) components are located at the center of k space, whereas high frequency
components appear toward the outer regions. This is visualized in appendix B, where a defect is
smoothened by filtering out the high frequency components in the wavenumber domain. As shown
in Figure 3.3, the Gaussian defect exhibits smooth edges, resulting in the absence of high frequency
components in the image.
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Figure 3.3: wavenumber domain representation Figure 3.4: Wavelength vs frequency
of the Gaussian defect. plot for a plate with nominal thickness

of 10 mm for the Sy wave mode. A
frequency of 130 kHz has a
wavelength of 0.04 m.

As discussed in Section 1.2, the theoretical resolution limit is governed by the diffraction limit and given
as A,.. = \/2. However in realistic (elastic) modeling data the resolution limit drops to around 1.5 to
2) [20]. Therefore, to make a conservative estimation, we find that the minimum required wavelength
would be approximately 0.06/2 = 0.04 m. From Figure 3.4, based on the dispersion curve’s phase
velocity relation with the wavelength A = v/ f, we find that this corresponds to a minimal frequency of
130 kHz.

Another consideration that needs to be taken into account is phase cycle skipping. The initial misfit plot,
which compares the observed signal with the calculated signal on a pristine plate, reveals cycle skipping
effects around 210 kHz, as shown in Figure 3.5. Cycle skipping is a common numerical challenge in
guided wave tomography, where the observed and predicted waveforms differ by an integer multiple of
the wave period. This arises because phase differences between the two signals are multiples of 27,
leading the inversion algorithm to converge to an incorrect solution. Although 210 kHz is not considered
in this case due to its relatively high attenuation, cycle skipping can still occur at lower frequencies when
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sensitivity is high, especially when the difference in wall thickness between the defect and the pristine
case is very large. While various techniques exist to mitigate cycle skipping, as discussed in Section
2.2, this thesis focuses on selecting frequencies and defects that naturally avoid cycle skipping issues,
reducing the need for additional computational complexity and overhead.

Phase Misfit Phase Misfit
- ‘ i 3

Receiver position [m]
A¢ [rad]
Receiver position [m]
A¢ [rad]
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Source no. Source no.
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Figure 3.5: Phase misfit at varying frequencies: (a) 130 kHz and (b) 210 kHz, which illustrates the transition from = (yellow) to

« (blue) known as cycle skipping. Each column represents the receiver axis for a single source. Due to the interaction with the

defect, a phase difference is observed. As the source location moves from left to right along the plate, the corresponding arrival
location on the receivers shifts accordingly.

We determined that each defect requires a minimum spatial resolution, which sets a lower bound on
the frequency. In addition to spatial resolution, cycle skipping and attenuation need to be considered.
There is however another factor to consider. One aspect that remains unaddressed but influences the
choice of frequencies is the number of transducers, which will be discussed in the following section.

3.1.3. Transducer configuration

The positioning of sources and receivers plays a fundamental role in guided wave tomography, directly
impacting the accuracy and resolution of defect imaging. Proper placement ensures that waves prop-
agate through the structure in a way that maximizes coverage for tomographic reconstruction. The
optimal configuration balances uniform spatial sampling around the defect, to minimize imaging arti-
facts and improve defect characterization. Unfortunately, as discussed in Section 2.5.3, guided wave
tomography in pipeline inspection using only circumferential transducer rings suffers from a limited view
problem, as sources and receivers can only be placed along the circumferential axis of the pipe. This
constraint means that wave propagation is only observed from a restricted set of angles. In order to
maximize the amount of angles the sources are always evenly distributed over the circumferential axis.

Sources

The number and distribution of sources directly affect the accuracy of the sensitivity kernel. If the
number of sources is too low, resulting in large spacing between sources, aliasing effects can occur
when performing the summation in Equation 2.20. This can introduce artificial artifacts in the sensitivity
kernel, as can be seen in Figure 3.7a. These aliasing effects occur due to the way the sensitivity kernel
is constructed. Recall from Section 2.5.2 that for each source position we calculate the interaction field,
which is the cross correlation of the adjoint field and the forward field. The interaction field is depicted
again in Figure 3.6a.

With sufficiently small source spacing, the combined interaction fields of all sources cause destructive
interference at the localized high-amplitude regions. Thereby not interfering with the focusing around
the defect. On the other hand, when the source spacing is too large, the interaction fields do not
have enough coverage to properly cancel out these high amplitude regions near the sources. This
is illustrated in Figures 3.6b and 3.6c. In both cases, 10 sources are used, one set placed centrally
with sufficiently small spacing, which avoids aliasing, and another set evenly distributed, which results
in aliasing artifacts. In this scenario with 10 sources, it is important to note that although aliasing
artifacts are present, the focusing effect created by the evenly spaced sources significantly outweighs
the placing the sources sufficiently close to each other, preventing aliasing but losing the focusing effect.
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Figure 3.6: (a) Interaction field. (b) Kernel with 10 sources that are sufficiently spaced in the center, reducing aliasing effects
but losing the focusing effect accordingly. (c) Kernel with 10 sources that are evenly spaced at the circumferential axis,
inducing aliasing effects but keeping the focusing effect.

In order to minimize the effects the spatial sampling of the sources should be at least below the Nyquist
limit of A\/2, as demonstrated in Figure 3.7a-c, where the aliasing artifacts become visible for a source
spacing of ), and disappear for a source spacing meeting the Nyquist limit. These aliasing artifacts act
as noise, distorting the kernel, which can be seen in Figure 3.7d, which shows the aliasing contribution
to the initial update step.

0 0.25 0

025 o 0.05 0 2.00e-05
_.02 —02 0.2
E 019 E 0.19 & 002 02 000,05
) 2 o -
%04 %04 %04 % 04
c c c :
% 0.12 % 0.12 S -0.00 5 0.00e+00
< T
%0.6 %0.6 go.6 QO.G
Q. Q Q o
£ 0.06 & 0.06 £ 003 £
o B o B -0. A - -
08 08 T o & 1.00e-05
1 000 1 000 1 006 1 -2.00e-05

0 0.25 0.5 0 0.25 0.5 0 0.25 0.5 0 0.25 0.5
Circumferential axis [m] Circumferential axis [m] Circumferential axis [m] Circumferential axis [m]

(a) Sensitivity Kernel for source
spacing of A

(b) Sensitivity Kernel for source
spacing of A\ /2

(c) difference between
kernel a and b.

(d) Difference update step between
source spacing of A & \/2

Figure 3.7: The effect of source spacing on aliasing in the adjoint sensitivity kernel and the influence of aliasing on the update
step (ady)

Receivers

Not only the number of sources play an important role, but also the number of receivers determine
the accuracy of the sensitivity kernel. When a sufficiently dense receiver array is used, the misfit is
captured with adequate spatial resolution, ensuring a better reconstruction of the adjoint field, which is
constructed from the back propagated misfit. In this case, the aliasing effects are mitigated because
the high frequency components introduced by undersampling are minimized.

When the receiver spacing exceeds the Nyquist limit, the back propagated misfit exhibits artificial oscil-
lations, as can be seen in Figure 3.8. Similar to insufficient source spacing, this effect in turn introduce
high frequency noise into the sensitivity kernel, as can be seen in Figure 3.9. To minimize these aliasing
effects, the spatial sampling of the receivers must be atleast above the Nyquist limit of A/2.
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Figure 3.8: The adjoint field for a single source positioned at the center of the circumference. It becomes evident that when the
receiver spacing falls below the Nyquist criterion for spatial sampling, aliasing artifacts emerge in the adjoint field.
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Figure 3.9: The effect of receiver spacing on aliasing in the adjoint sensitivity kernel and the influence of aliasing on the update
step

At the TNO lab and in most real world scenarios, the maximum number of physical transducers that
can fit around a pipe with circumferential of 0.5 meter is around 24. This means that for our default
case the distance between each source is 0.5m/24 = 0.021m. Consequently, the maximum frequency
that can be used is the frequency that has the minimum wavelength A,,;,, of 0.042 mm. Based on the
dispersion curve of the S, mode, for a 10 mm thick plate the maximum frequency that can be used
without any aliasing effects occurring is slightly above 123 kHz.

Although aliasing effects reduce the accuracy of the sensitivity kernel, they do not necessarily cause
instabilities in the inversion. Instead, they primarily degrade the overall performance of the algorithm
capability to have a proper shape estimation. The impact of aliasing on the algorithm will be further
examined in Section 3.2.1. Furthermore in Sections 3.2.4 and 3.3.4 parameter sweeps on the number
of sources and receivers will be conducted.

Unless stated otherwise, the default for the simulations in this chapter use 24 sources and 24 receivers.
The sources are located at the position where the length of the pipe z=0, and the receivers at z=L, both
placed on the circumferential axis, as can be seen Figure 3.10, in which 12 sources and receivers are
plotted for visualization purpose.
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Figure 3.10: Default transducer layout. For better visualization 12 sources and 12 receivers are used in this figure.

3.1.4. Reducing non-uniqueness

Accurate reconstruction of wall thickness variations is challenging due to the inherent non-uniqueness
of the inverse problem. One key issue suffering from this is model parameter trade off, where errors
in one region of the model are compensated for by errors in another. In our context of wall thickness
inversion, this means the algorithm might artificially add wall thickness in one area while instead of
removing wall thickness in another, leading to a solution that still satisfies the phase match, but does
not accurately reflect the true defect geometry. To mitigate this, additional independent constraints are
required. Two possible strategies for improving inversion accuracy are the use of multiple frequencies
and multiple wave modes.

Multiple frequencies

Although the spatial resolution at 130 kHz might be sufficient for detecting and estimating the overall
shape of a defect, certain fine details, such as the minimal depth error, may still be inaccurate due to a
lack of sensitivity and constrains. This can be particularly problematic when using a single frequency,
as phase shifts at a given frequency can not provide enough independent constraints to distinguish
between different thickness distributions. By using multiple frequencies, additional independent con-
straints are introduced into the inversion process, as visualized in Figure 3.11 and Figure 3.12. Here
the increased sensitivity of the 150 kHz compared to the 130 kHz, next to an increase in amplitude,
becomes visible as at distances far away from the source (top right for source = 72) the defect artifact
is better defined compared to the 130 kHz case. Note that the misfit for each frequency is scaled to
the same order as the maximum frequency to ensure that constraints imposed by lower frequencies
remain sufficiently influential. The inversion is performed in a sequential manner, starting with a single
low frequency and gradually adding higher frequencies in subsequent iterations.
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Figure 3.11: Misfit using a single  Eigure 3.12: Misfit using multiple frequencies, further constraining
frequency. the simulation.

Multiple wave modes

Incorporating multiple wave modes, such as the Ay or SH; modes can further constrain the inversion,
similar to using multiple frequencies. Different modes interact uniquely with the defect, possibly provid-
ing complementary information that a single mode alone cannot capture.
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For example, the Ay mode is highly sensitive to thickness variations at low frequencies and higher
order shear horizontal modes like SH; exhibit low attenuation and strong sensitivity, making them
advantageous in certain conditions. Remember however that the Ay mode suffers from high attenuation
in liquid filled pipelines, limiting its use to gas filled pipes. Different wave modes fundamentally differ
in their interaction with defects. For example, in contrast to the Sy mode, for the A; mode the phase
velocity goes down with a decrease of wall thickness, resulting in negative phase shift, as can be
seen in Figure 3.13. This could offer greater independence between constraints that reduces the non-
uniqueness of the problem, and thereby attribute to a better inversion result.

# Receivers [-]

-0.50

. -0.96
1 9 16 24

# Sources [-]

Figure 3.13: Misfit using 2 both Sy and Ay modes in a single inversion.

3.1.5. Performance indication
To assess the performance of the inversion result, two metrics were introduced [47]. The first error
metric ey, referred to as shape error, evaluates the quality of the shape reconstruction.

The shape error is calculated as:

“( 2
o — \/f Jr T2 ; fTWxxzi} dl;l;(: z)da:dz7 (3.5)

where T} represents the nominal thickness, which is 10 mm for this thesis, T'(x) denotes the thickness
map of the true defect model, and T*(z) refers to the reconstructed thickness map. The parameter
W is a windowing function centered around the defect, with a radius equal to the defect width. This
ensures that the evaluation focuses on the defected region and avoids misleading results caused by
unaffected areas of the plate.

A lower value of e; indicates that the reconstructed defect shape better matches the true defect shape,
meaning a more accurate inversion result with e; = 0 being a perfect reconstruction. Conversely, a
higher value of e¢; suggests a larger deviation from the true shape, implying that the reconstruction does
not accurately capture the defect geometry.

Since a pipeline is only as strong as its weakest point, small pit-like corrosion defects can be critical.
Therefore, one of the key parameters of interest is the deepest point of the defect. To evaluate the
deepest point a second error metric es is introduced, which measures the accuracy of the minimum
depth error, hence referred to as depth error.

The depth error is calculated as:

|Tm B T;H
T,

where T,,, and T} represent the minimum thickness of the true model and the synthetic model, respec-

tively.

(3.6)

€g =

A lower value of e; means that the reconstructed minimum defect depth is close to the actual minimum
defect depth, indicating high accuracy in capturing the deepest point of the defect. In contrast, a higher
value of e; means that the reconstructed defect depth deviates from the true defect depth.
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3.2. Inversion results for the Gaussian defect

A comparison of three single-frequency inversions at 130, 150, and 180 kHz is conducted to analyze
the impact of different frequencies. The defect is discretized by the wavelength of the frequency that is
used. In order to make a fair comparison for each frequency a mesh is used with the size of A4 /4,
where A4, is the wavelength of the highest frequency. Following this, an inversion incorporating
multiple frequencies is conducted to evaluate the effect of further constraining the problem through the
use of multiple frequencies. Furthermore an inversion is done using both the S, and the Ay modes,
evaluating the influence of multimodal wave propagation on the inversion process. Finally, 2 parameter
sweeps are conducted to explore the algorithm’s sensitivity and robustness to different experimental
conditions. One sweep varies the number of transducers to analyze the consequences of aliasing on
shape reconstruction, while another investigates the effect of different defect configurations, providing
insights into the algorithm’s robustness across diverse defect geometries.

3.2.1. Single frequency inversion
Figure 3.14a shows the initial phase misfit and sensitivity kernel for the 130 kHz inversion.
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Figure 3.14: Wall thickness, phase misfit and adjoint sensitivity kernel on iteration 0

The thickness reconstruction is shown in Figure 3.15b. The imaging process reveals a clear presence
of the defect, with the circumference and shape reconstruction being well-defined in axial direction.
However due to the inherent limitations in the field of view, the resulting image shows elongation of the
defect, which is consistent with expectations based on the sensitivity kernel which also has the shaded
side areas with limited coverage. An alternating pattern of positive and negative errors can be seen in
Figure 3.15c. The alternating pattern arises because the algorithm adds and removes wall thickness
in unintended locations. However, due to the non-uniqueness of the problem, these changes still lead
to a reduction in the misfit, allowing the pattern to be preserved. Lastly, the Tukey window also creates
artificial wall thickness variations at its borders due to the gradient of the Tukey window. Both effects
cause the misfit to be illegitimately reduced, which in turn leads to depth underestimation.

The convergence plot, which can be found in Figure 3.16, demonstrates a relatively stable and well-
behaved optimization process, with the misfit ratio progressively decreasing towards a solution. No-
tably, at the second iteration the misfit does not decrease. This can be attributed to an imposed con-
straint on the maximum allowable change in «, which is implemented to prevent excessively large
updates that lead to numerical instability or divergence, particularly in the early iterations when the
algorithm is gradients are very strong.
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Figure 3.16: Convergence plot of the inversion where xo/x; is the misfit ratio between the misfit iteration and the initial misfit
calculated in the pristine case. x; is the root mean square (RMS) of the misfit vector.

In an attempt to improve the performance, the frequency is increased to 150 and 180 kHz. The re-
sulting thickness reconstructions are shown in Figure 3.17 and Figure 3.18. Higher frequencies have
shorter wavelengths, allowing them to detect finer details of the defect. As a result, the slopes near the
defect edges are expected to be better captured, slightly reducing the interchange of wall thickness and
minimizing the alternating error pattern. However, when looking at the reconstructed thickness results
for 150 and 180 kHz, shown in Figure 3.17 and Figure 3.18, we observe that while both frequencies
improve over 130 kHz in terms of error metrics, the inversion at 180 kHz shows a slight increase in
error over 150 kHz.
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Figure 3.18: Inversion result for 180 kHz. The colorbars indicate wall thickness in mm.

Since we are operating above the Nyquist limit for the transducer spacing, the contribution of aliasing is
inspected for the 180 kHz inversion. Figure 3.19 compares the first inversion update with an inversion
that uses sufficient transducer sampling. Since the update step is in the order of 10~2mm, the aliasing
contribution to wall loss is negligible. Furthermore, Figures 3.20 and 3.21 show the sensitivity kernel in
the wavenumber domain before regularization at the first and final iteration. From these plots we find
that in the first iteration the update step is dominated by low frequency components, corresponding to
an initial more course reconstruction of the defect. Although at around kz = +50 the aliasing introduces
some high frequency noise components, they are considered to be negligible. Through the iterations
we find that the aliasing effects slightly increase but stay negligible. In the final iteration, the sensitivity
kernel captures some high-frequency components that are near A = 27 mm, which is the wavelength for
180 kHz. However, low-frequency components continue to dominate even at this stage of the inversion,
suggesting that the advantage of using 180 kHz for a smooth, noise free, defect remains limited.
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In order to get a better understanding of the influence of the frequency on the behavior of the algorithm,
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inversions are done for both Sy and Aq in a wavelength range of 25 to 40 cm, corresponding to a fre-
quency range of 125 to 190 kHz for the Sy mode, and 45 to 87 kHz for the Ao mode. The corresponding
error metrics are presented in Figures 3.22a and 3.22b. However, these figures do not indicate a clear
correlation between frequency and inversion performance.

Numerical experiments reveal that the inversion outcome is sensitive to the scaling of the stepsize
«. Since the gaussian defects exhibit smooth, well-defined gradients, the optimization takes a highly
effective first step. This rapid initial improvement causes the residual gradient norm ||g|| to shrink sig-
nificantly, leading to a small denominator in the step size update formula and, consequently, a much
smaller « in subsequent iterations. As a result, the optimization slows down prematurely. Therefore
for each iteration the growth of the initial o j is restricted to a maximum of 20%. When varying this
grow restriction, from which the results can be found in Appendix C, variations in step sizes lead to
differences in the inversions outcome, indicating that there is no single minima.

Another possible explanation is that for all inversions conducted in this section a noise free case is
considered. The absence of noise and smooth defect configuration could make the problem similarly
posed for each frequency, and since the differences in errors across frequencies are small, the inver-
sion converges near the same minimum, with slight variations possibly due to the line search. If noise
were introduced into the system, we expect increased variability in the inversion results since high fre-
quencies can handle noise better. In section 3.4, further investigation is conducted to draw conclusions
on the influence of noise on the inversion process.
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Figure 3.22: (a) Shape error for multiple wavelengths evaluated as single frequency inversions. (b) Depth error for multiple
wavelengths evaluated as single frequency inversions.

3.2.2. Multi frequency inversion

From the single frequency inversions we find that increasing the frequency does not directly lead to
better inversion performance. However as discussed in section 3.1.4 we aim to further improve the per-
formance by constraining the problem using multiple frequencies that are within the usable frequency
range. An inversion is initially conducted using frequency continuation with 130 and 150 kHz (130/150
kHz). The resulting thickness reconstruction is shown in Figure 3.23. It is found that both the shape
and minimum depth error decreased relative to both the 130 and 150 kHz single frequency inversion.
The shape error compared to the 130 kHz inversion improved from 2.28% to 1.68% by adding 150
kHz consecutive to the inversion. When comparing Figure 3.15¢c and Figure 3.23c, the increase in
performance is mainly achieved by the reduction of the alternating error pattern, indicating that in the
algorithm the extra constraint misfit does not allow the interchange of wall thickness.

Additionally, an inversion is performed using 150/180 kHz, as well as one using 130/180 kHz. The
inversion results can be found in Figure 3.23 and Figure 3.25. When combining multiple frequencies,
it is observed that selecting frequencies that are as far apart as possible generally leads to better per-
formance. This is because each frequency constrains the problem in a different way, capturing com-
plementary information about the defect. Therefore a wider separation between frequencies ensures
a more diverse set of constraints, improving the overall inversion accuracy.

31



Chapter 3. Numerical simulations

True Profile Inversion Result Difference Deepest point
10.5 10.5 0.5
' 10 =
01 9625 01 9.625 : : 025
—=0.2 Fr —=0.2 i 9
ET R . g5 E | ‘ ; 8.75 a 0 E
<03} - <03} — E
; - ; ; . . ! 8
0.4 785 04 7.875 0.25 el=1.68
€2=5.55
5 7 5 7 5 0.5 7
0.3 0.4 05 0.6 0.7 0.3 0.4 05 0.6 0.7 0.3 04 05 0.6 0.7 0 0.5 1

z[m]

z[m]

z[m]

z[m]

Figure 3.23: Inversion result for multi frequency inversion using 130/150 kHz.The colorbars indicate wall thickness in mm.
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Figure 3.24: Inversion result for multi frequency inversion using 150/180 kHz. The colorbars indicate wall thickness in mm.
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Figure 3.25: Inversion result for multi frequency inversion using 130/180 kHz. The colorbars indicate wall thickness in mm.

To further investigate whether the addition of more frequencies improves the inversion performance,
we extend the analysis by incorporating a third frequency. A new inversion is conducted with three
frequencies: 130/150/180 kHz. The inversion result can be seen in Figure 3.26.

When comparing the results in table 3.1, compared to the inversions performed with 130/150 kHz and
150/180 kHz, we observe an improvement in performance using a third frequency. However, when
compared to the 130/180 kHz inversion, the performance goes down. Examining the convergence plot
for the triple frequency inversion in Figure 3.27, we see that for the first two frequencies, there is a
significant reduction in the misfit. Here, it is important to note that for each inversion, the misfit ratio is
relative to its first iteration, causing it to reset to 1 at the first iteration for each frequency. The use of the
third frequency, 180 kHz, does not lead to a significant reduction in the misfit. Since at this stage of the
inversion the defect is already relatively well defined by the previous two frequencies, the sensitivity is
not large enough to make proper distinctions in phase velocity. As a result, the overall performance
does not surpass that of the 130/180 kHz inversion, where 180 kHz still retains sufficient sensitivity after
the 130 kHz inversion to meaningfully contribute to the defectimaging. This suggests that simply adding
more frequencies does not always enhance inversion performance. Rather, the chosen frequencies
must effectively complement each other to provide meaningful constraints. It should be noted that
for the Gaussian defect considered in this study, the lower frequencies already capture the defect
configuration relatively well. For more complex defect geometries, introducing a third frequency might
be more significant for the inversion quality.
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Figure 3.26: Inversion result for multi frequency inversion using 130/150/180 kHz. The colorbars indicate wall thickness in mm.

Table 3.1: Error metrics e; and e for different single and

1
[ [kHZ] ep [%]  ea [%] ]
130 228 545 0.8
150 174 6.15 T 06
180 179  6.41 = g
130/150 168 5.55 < 0.4 L
150/180 150 4.79 0.2ls N 7
130,180 139 4.25 : E E

0 = L ikl | Rl
130/150/180 | 1.46  4.84 1 s 10 15 1

iterations [-]

Figure 3.27: Convergence plot for an inversion using
130/150/180 kHz. Note that the misfit ratio is depicted on
the y-axis. The misfit is reset to 1 at each first iteration of

each frequency.

multi-frequency inversions.

3.2.3. Multi mode inversion

To further improve inversion performance, an alternative approach is to incorporate multiple wave
modes. The sensitivity kernels for the S; and Ay modes in Figures 3.28a and 3.28b reveal how each
mode responds uniquely to the defect. In order to make sure that both sensitivity kernels have suffi-
ciently influence they are scaled to the same magnitude. To obtain the finial sensitivity kernel, both
mode kernels are summed, resulting in the final sensitivity kernel, as visualized in Figure 3.28c.
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Figure 3.28: Construction of the sensitivity kernel for multiple modes.
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The effectiveness of this approach is evaluated by testing different frequency pairings for the two modes
using wavelengths that are similar to the multi frequency simulations, as can be seen in Table 3.2.

Sy mode Ag mode
A=39.Tmm | 130 kHz 45kHz
A=338mm | 150 kHz 58 kHz
A=274mm | 180kHz T79kHz

Table 3.2: Wavelength and their corresponding frequencies for Sy and Ay modes.

From Tables 3.3 and 3.4 we find that, in contrast to the multi frequency simulation, higher-frequency
components for the Ay and Sy modes improve inversion accuracy since the lowest errors are achieved
with both highest frequencies.

| fao=45kHz fag=T9kHz | fao=45kHz  fag=T9kHz
fso =130 kHz 1.47 1.36 fso =130 kHz 2.70 2.54
fso=180kHz 1.41 1.20 fso =180 kHz 2.62 1.96
Table 3.3: Shape error in % for multi-modal inversion using Table 3.4: Depth error in % for multi-modal inversion using
both Sp and Ap modes. both Sy and Ap modes.

Unlike multi-frequency inversion where maximizing frequency separation reduced the ill posedness, the
multi-mode inversion already enforces different constraints due to the fundamental differences between
the wave modes. Therefore, maximizing the frequency spacing between modes does not necessarily
yield the best results. Instead, using the highest available frequencies for both modes provides the
greatest spatial resolution in each case, ultimately leading to better defect imaging.

In Figures 3.29c and 3.30c, which compare the inversion results to the true profile for fsq = 180 kHz
combined with f49 = 45 kHz and f4o = 79 kHz, it is observed that variations in wall thickness are
reduced. This reduction leads to a decrease in shape error.
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Figure 3.29: Inversion result for multi mode inversion using 45 kHz for the Ay mode and 180 kHz for the Sy mode. The
colorbars indicate wall thickness in mm.
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Figure 3.30: Inversion result for multi mode inversion using 78 kHz for the Ay mode and 180 kHz for the Sy mode. The
colorbars indicate wall thickness in mm.
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3.2.4. Parametric study

To systematically assess the performance and limitations of the inversion algorithm, a parametric study
is conducted. This study investigates the influence of key parameters on the defect reconstruction
process, focusing on variations in defect geometry and transducer configurations.

Different defect configurations

A parameter sweep is conducted using the default configuration settings and a frequency continuation
with 130 kHz and 180 kHz. This parametric study varies the defect configuration by adjusting its width
and depth in each inversion.

The defect width is tested at 4 different values: at the diffraction limit of half a wavelength, a single
wavelength, which is below the realistic minimum resolution for elastic data, two wavelengths, which is
slightly above the realistic minimum resolution for elastic data, and lastly a reasonably large defect of
250 mm is considered, representing 50 percent of the plate’s circumference. Similarly, three different
defect depths are considered, ranging from a shallow defect of 10% to a moderate depth of 25% and
a critical depth of 50%. Since defects deeper than 50% are already considered highly critical, deeper
depths are not investigated.

The results of the parameter sweep in Figure 3.32 demonstrates that the algorithm can effectively
estimate defect shapes across various defect sizes. However for depth estimation we find that an
increase in depth leads to higher errors. When a defect is very shallow, there is minimal shift along
the frequency-thickness axis on the dispersion curves, as shown in Figure 3.31a. Therefore, detecting
shallow defects requires selecting a sensitive region of the dispersion curve. Conversely, for very deep
defects, as illustrated in Figure 3.31c, the phase velocity shift occurs in the less steep portion of the dis-
persion curve. As a result, the system’s sensitivity decreases, making it difficult to distinguish between
variations in this depth range. This increases the likelihood that the inversion algorithm accepts multiple
solutions. Consequently, when inspecting deep defects using the S, mode, high frequencies, or the
use of a more sensitive mode, are necessary to ensure sufficient sensitivity. Furthermore the results
show that increasing the defect width leads to a reduction in shape error. This is expected because,
for a Gaussian defect with a fixed depth, a greater width results in a shallower wall loss gradient. As a
result, there are more points of contact for the propagating wave to interact with the defect, leading to
more phase shift, and thereby improving the accuracy of the reconstructed defect shape.
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2 2 =
‘© ‘© ‘©
o o e}
< 4000 < 4000 < 4000
> > >
[} [} [0}
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(a) Defect depth = 10% (b) Defect depth = 25% (c) Defect depth = 50%

Figure 3.31: Frequencies and its associated location on the dispersion curve for 10mm plate containing a defect(red) and
pristine case (blue). As the frequency increases, the phase velocity difference between the pristine and defective cases also
increases, enhancing sensitivity.
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Figure 3.32: 130/180 kHz inversion results for different source (Ns) and receiver (IV;-) counts. The left three columns show
circumferential defect representations at the deepest point, the right three columns show the corresponding defect shape.

Different transducer configurations
To better understand the effect of transducer quantity, another parameter sweep is performed with
the default defect configuration using 130/180 kHz. The results can be found in Figure 3.33. Across
the entire range of transducer counts, we observe that the inversion stably converges, and the defect
shape is well reconstructed. However, when the source count is reduced to three, aliasing effects
become significant, introducing noticeable jittering artifacts in the inversion result. This arises from the
construction of the sensitivity kernel, which is a summation over individual contributions. With fewer
sources, the absolute amplitude of the kernel is lower, while the aliasing effects remain present, making
the inversion more susceptible to these jittering effects, degrading the reconstruction quality.
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Figure 3.33: Defect configurations for different relative widths (17) and depths (D) for a nominal thickness of 10 mm and
circumferential width of 0.5 m. The left three columns show circumferential defect representations at the deepest point, the
right three columns show the corresponding defect shape.

3.3. Inversion results for the Echo defect

In real-world scenarios, corrosion-induced defects rarely exhibit smooth, Gaussian-like shapes. In-
stead, they often present irregular geometries characterized by sharp edges, asymmetry, and rough
surfaces due to the stochastic nature of material degradation. As a result, studying idealized, smooth
defects may not fully capture the structural and operational challenges posed by real corrosion damage.
To address the gap, this section focuses on the investigation of the more complex 'Echo’ defect in a

noise free environment.

3.3.1. Model configuration
As mentioned in the introduction, the Echo defect is reconstructed from laser scans of an actual corro-
sion defect provided by industry. The defect exhibits pronounced asymmetry and non-uniform surface
characteristics, as shown in Figure 3.34.
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Figure 3.34: Wall thickness the so-called Echo defect.

Similar to the analysis of Gaussian defects, we ensure a fair comparison across frequencies by recon-
structing the defect on a mesh based on the wavelength at 180 kHz. This is particularly crucial for the
Echo defect, as using a frequency-dependent parametrization could otherwise smooth out its sharp
edges when a low frequency is used with large wavelengths. To evaluate the necessary spatial reso-
lution, we once again perform a 2D Fourier transform of the defect, representing it in the wavenumber
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domain. The resulting representation is shown in Figure 3.35. From this figure, it is found that the im-
age contains relatively high amplitude values at a high radius from the center, indicating that the defect
is characterized by high-frequency components which are associated with sharp edges. In order to
accurately image this defect a wavelength of at least 2 - 0.015 m = 0.03 m is required. From Figure
3.36 is becomes apparent that for the Sy, and A, modes the required frequency is 168 and 69 kHz,
respectively.
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Figure 3.35: Wavenumber domain

: Figure 3.36: Wavelength vs frequency for different modes
representation of the Echo defect.

3.3.2. Single frequency inversion
Since we aim to image sharp edges in the defect, ideally the inversion is performed at the maximum

usable frequency where the attenuation is still sufficiently low. Therefore a maximum frequency of 180
kHz is used.

The inversion results for 130, 150 and 180 kHz is shown in Figures 3.40, 3.41 and 3.42, respectively.
When analysing the FFT of the initial sensitivity kernel for 130 kHz, which can be seen in Figure 3.37,
we find that at the initial iteration the sensitivity kernel only captures low frequency components and
hence makes a coarse model update, as can be seen in Figure 3.39, which visualizes the wall thickness
after the first iteration step. Throughout the inversion more and more high frequency components are
introduced in the wavenumber domain up to the diffraction limit of A\/2 (which is 20mm for 130 kHz),
As can be seen in Figure 3.38, which is the wavenumber domain of the sensitivity kernel in the final
iteration. In the plot, the effect of the limited-view problem becomes apparent. While the wavenumber
components in k, direction are well-defined, those in the k. direction remain uncaptured.
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Figure 3.39: Wall thickness after first iteration step for a 130 kHz inversion.
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From the difference plot in Figure 3.40c, it is evident that the shape error is primarily concentrated
around the sharp edges of the defect that require a finer spatial resolution than 20 mm as these re-
gions correspond the components that are not captured by the sensitivity kernel. Furthermore, depth
estimation errors remain high across all inversions of the Echo defect due to physical limitations im-
posed by the diffraction limit. The pit, which has a pike-like shape that narrows with depth, can only be
resolved down to a width of /2, leading to significant minimum depth estimation errors.
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When looking at the first and last wavenumber domain representation of the sensitivity kernels for the
180 kHz inversion, visualised in Figure 3.43 and Figure 3.44, a similar pattern is observed. At the initial
iteration the update step is mainly dominated by low frequency components. Notably, in contrast to
130 kHz, some high frequency components are visible, which can be attributed to the aliasing effects
attributing to the sensitivity kernel. Again, in the final iteration we find that frequency components are
captured up to the diffraction limit which is 14 mm for 180 kHz.

To determine the maximum achieved resolution achieved, we analyze the wavenumber domain of the
reconstructed defect for 130 kHz and 180 kHz. The decibel plot reveals a very strong dominance of low
frequencies. To improve resolution assessment and facilitate comparison, the figures are presented
using the 97th percentile. This means the highest 3% of values are excluded, emphasizing the range
that contains 97% of the data. This approach helps reveal high-frequency components, as shown in
Figure 3.45 and Figure 3.46 for 130 kHz and 180 kHz, respectively. From the figure it becomes apparent
that some frequency components are captured at the diffraction limit A/2, however their contribution is
negligibly small. The significant contributions are primarily within 1 to 1.5\ (corresponding to 60 and 41
mm for 130 and 180 kHz respectively) and above. Although for the 130 kHz case there are significant
attributions at a resolution of \.
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Figure 3.45: Wavenumber domain of inversion Figure 3.46: Wavenumber domain of inversion
result for the Echo defect at 130 kHz. Plotted as  result for the Echo defect at 180 kHz. Plotted as
the 97% percentile. the 97% percentile.

When performing inversions with a range of different frequencies, although small, there is a correlation
between increasing the frequency and a reduction in shape error. This trend is observed for both the
Sp and Ay modes, as shown in Figure 3.47. This outcome is expected for the complex Echo defect, as
its reconstruction relies on high resolution to capture finer details, unlike the Gaussian defect with its
smooth edges.
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3.3.3. Multi frequency inversion

Similarly to the Gaussian defect we aim to improve the performance by constraining the problem us-
ing multiple frequencies within the usable frequency range. An initial inversion is conducted using a
two-frequency continuation approach with 130 and 150 kHz (130/150 kHz). The resulting thickness
reconstruction is shown in Figure 3.48. Compared to the single-frequency results at 180 kHz we find
that the shape error goes up from 1.72% to 1.82%. This indicates that the shape error is dominated by
the sharp edges that cannot be imaged, as in our multi frequency inversion we miss out on the higher
resolution provided by the 180 kHz wavelength.

Further inversions are performed using 150/180 kHz and 130/180 kHz. The results, shown in Figures
3.49 and 3.50, indicate that the 150/180 kHz inversion achieves the best reconstruction. From table
3.5 we find that, unlike the Gaussian defect case, where spacing frequencies further apart generally
improved performance, for the Echo defect the higher frequency combination of 150/180 kHz outper-
forms the wide spacing of 130/180 kHz. This additionally suggests that for a defect containing rough
surfaces, higher frequencies play a more dominant role the reconstruction.
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Figure 3.48: Inversion result for 130/150 kHz. The colorbars indicate wall thickness in mm.
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Figure 3.49: Inversion result for 130/180 kHz. The colorbars indicate wall thickness in mm.
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Figure 3.50: Inversion result for 150/180 kHz. The colorbars indicate wall thickness in mm.

fIRHZ] | ea [R]  es []

130 1.94 883
150 1.89 7.9
180 1.72 748

130/150 | 1.82 8.1
130/180 | 1.78  8.16
150/180 | 1.67  7.20

Table 3.5: Error metrics e; and e for different single and multi-frequency inversions.

3.3.4. Parametric study

Similar to the Gaussian defect study, a parameter sweep is conducted for the Echo defect using the
default configuration settings and a frequency continuation at 130 kHz and 180 kHz. However it is
important to note that the absence of noise in this study significantly influences the results. As the noise
free environment allows the inversion process to over-perform compared to scenarios that include real
world constraints such as the sensor noise.

Different defect configurations

When creating the observed data set the defect is discretized on the grid used for forward simulation,
leading to pixelation effects when the defect width is very small, as can be seen in Figure 3.51. As
a result, the defect shape becomes highly distorted at these small widths, forming a highly pixelated
version of the intended defect geometry.

The results of the parameter sweep indicate similar trends to those observed in the Gaussian defect
study. However, already at W = X inversion struggles as defect depth increases due to a lack of
sensitivity. When the defect width is less than half a wavelength, the available wavefield does not have
sufficient spatial resolution to distinguish these fine-scale features. As a result, the inversion process
attempts to recover details that cannot be resolved, leading to significant overshooting. Beyond the
diffraction limit, the inversion algorithm can reconstruct the defect, even though the resolution achieved
is lower than the realistic resolution of 1.5\. This is because the inversion does not have to deal with
discrepancies between the model used for inversion and the actual wave behavior in experiments which
normally degrade the resolution. Due to the discretization process, the maximum defect depth scores
remain low for small widths since the pit inside the defect is not accurately modeled. At larger defect
widths, this becomes more apparent, as the formation of the pit significantly increases the depth error.
Overall, the inversion process effectively estimates defect shape across various defect sizes but the
influence of discretization must be carefully considered, particularly when interpreting results for narrow
and deep defects.
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Figure 3.51: Defect configurations for different relative widths (1) and depths (D) for a nominal thickness of 10 mm and
circumferential width of 0.5 m. The left three columns show circumferential defect representations at the deepest point, the

right three columns show the corresponding defect shape.

Also a parameter sweep is conducted using the default Echo defect configuration and a frequency
continuation at 150 kHz and 180 kHz. The conclusions drawn from this parameter sweep are similar
to those observed in the Gaussian defect case. Across the range of transducer counts, the inversion
process remains stable, and the defect shape is effectively reconstructed. However at low transducer
counts such in the case of 3 sources and 12 receivers, the jitter caused by the aliasing effects start to
become problematic since the deepest point is not clearly distinguishable to the rest of the image.
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Figure 3.52: circumferential defect representations at the deepest point and shape reconstruction with a varying number of
sources (N;) and receivers (N,.). Conducted using frequency continuation simulation using 130 and 150 kHz, which expects
aliasing effects below 30 sources and receivers.

3.4. Inversion performance under noise

In real-world applications, measurement data is always affected by noise components due to vari-
ous factors such as sensor imperfections, environmental conditions, and signal processing limitations.
Therefore to make a more realistic assessment of the inversion performance, in this section we again
analyze the Echo defect but now with noise added to the observed data.

Since we found that the resolution we achieve in the noise free case is around 1.5, in order to accurately
image this defect a wavelength of at least 0.015/1.5 m = 0.01 m is required. From Figure 3.53 is
becomes apparent that for the Sy and Ay modes the required frequency is 320 and 278 kHz, respectively.
For liquid loaded pipes, based on the attenuation curve in Figure 2.4, using a frequencies this high is
not feasible for both modes. The shear horizontal wave modes (S H) can offer an suitable alternative
as it experiences significantly less attenuation from liquid loading. This reduction in attenuation is due
to the absence of vertical, out of plane displacement in the shear horizontal propagation. However
the required frequency is around 442 kHz, which is not feasible due to practical transducer limitations.
Although a reconstruction that perfectly describes the details of the defect might not be feasible due to
a lack of resolution, a usable reconstruction indicating the presence and shape of the defect up to the
resolution limit, which still gives valuable information about the structural health of the pipeline.
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Figure 3.53: Wavelength vs frequency for different modes

Unless stated otherwise the signal to noise ratio (SNR) is generated as broadband Gaussian noise in
the time domain at 30 dB, meaning it initially has a flat spectral distribution before processing. The noise
is transformed into the frequency domain using a Fourier transformation, where its power is computed
and scaled at the center frequency of 155 kHz to the desired SNR. The noise degrades the quality of
the misfit, as can be seen in Figure 3.54 and Figure 3.55, where we see the same misfit for the previous
case of a noise free misfit, and the misfit in which noise is added.
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Figure 3.54: Misfit for the Echo defect Figure 3.55: Misfit for the Echo defect Figure 3.56: Misfit for the Echo defect
at 130 kHz without noise. at 130 kHz with noise. at 180 kHz with noise.

When comparing the misfit plots for 130 kHz and 180 kHz with noise in Figure 3.55 and Figure 3.56, we
observe that higher frequencies are less influenced by the noise. This is due to the increased sensitivity
at high frequencies. Therefore the misfit pattern is being more in contrast with the noise.

The inversion result for 180 kHz including noise is shown in Figure 3.57. When compared to Figure
3.42, we find that at 180 kHz noise case the algorithm is still capable of reconstructing the defect without
any significant loss of performance. Based on the misfit plot this is also not unexpected since the defect
artifacts are still clearly distinguishable and not significantly distorted.
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Figure 3.57: Inversion result for 180 kHz with noise (SNR = 30 dB). The colorbars indicate wall thickness in mm.

If we further decrease the SNR to 20 dB, we observe a significant distortion of the misfit, as visualized
in Figure 3.58. This degradation is also reflected in the error metrics, as can be seen in Figure 3.59,
where the shape error increases from 1,71% to 2,13%. Since the depth error remains relatively stable
(changing from 7,52% to 7,35%), we can attribute the increase in shape error primarily to noise artifacts

introduced in the sensitivity kernel, as the noise is prominently present in the measured misfit.
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Figure 3.58: (a) 180 kHz noise free case and (b) 180 kHz case with a SNR 20 dB.
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Figure 3.59: Inversion result for 180 kHz with noise (SNR = 20 dB). The colorbars indicate wall thickness in mm.

Due to the ability of high frequencies to better handle noise, we now observe a more clear correlation
between the algorithm’s performance and frequency, as can be seen in Figure 3.60. The overall shape
error decreases in a linear fashion as frequency increases, while the maximum depth error keeps
fluctuating. Besides the influence of the algorithm’s line search, the fluctuation in depth error can be
attributed to the random nature of the noise introduced at each frequency. Although the SNR remains
fixed at 30 for all inversions, the specific realization of noise varies, affecting certain frequency cases
more than others. This variability can lead to inconsistencies in the reconstructed depth, sometimes
causing an underestimation of the deepest point. Additionally, noise artifacts may introduce jitter, which
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can resultin alocal deep point within the defect region that does not necessarily correspond to the actual
deepest location. This effect could also contribute to the outliers observed in the shape error at 145 and
155 kHz. However, further investigation is required to better quantify the impact of this randomness on
inversion results.
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Figure 3.60: (a) Shape error for multiple wavelengths evaluated as single frequency inversions with SNR = 30 dB. (b) Depth
error for multiple wavelengths evaluated as single frequency inversions also with SNR = 30 dB.

Similarly to the previous sections we conduct two parameter sweeps for the noise case with a SNR
of 30 dB and a frequency continuation of 150/180 kHz. The results can be found in Figure 3.61 and
Figure 3.32. As expected for the width of 0.5w we find that there is hardly any performance loss due to
the noise since in the misfit for 180 kHz, the defect pattern is clearly distinguishable. However at small
defect widths we observe that the method already starts breaking down at a width of 2\. Looking at
the misfit for this inversion we find that for this width the noise does play a significant role as the defect
is hardly visible in the sensitivity kernel, as can be seen in Figure 3.62 where the initial and third kernel
is plotted for a defect width of 2\. Due to the lack of sensitivity the amplitude of the focusing does not
have a clear contrast to the background. This is further confirmed when looking at the convergence
plot in Figure 3.63, where it becomes apparent that a steady state is being reached while the misfit is
hardly reduced.
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Figure 3.61: Defect configurations for different relative widths (1) and depths (D) for a nominal thickness of 10 mm and
circumferential width of 0.5 m. The left three columns show circumferential defect representations at the deepest point, the
right three columns show the corresponding defect shape.
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Figure 3.62: Sensitivity kernels at different iterations for a
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Figure 3.63: Convergence plot for the inversion of a defect
with a width of 2 and a depth of 0.25T using 150/180 kHz.

In order to increase the contrast of the defect focusing and the background, either the sensitivity needs
to be increased (e.g. by increasing the frequency) or the number of sources should be increased since
the summation over sources gives an increase amplitude of the focusing compared to the background
noise, as can be seen in Figure 3.64 where a spatial sampling of A/4 for both sources and receivers
is used for 180 kHz, resulting in 73 sources and 73 receivers. As can be seen in Figure 3.65 with the
increased sensor count an effective image can be created.
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Figure 3.64: 2 Sensitivity kernels at different iterations in an inversion for a defect with a width of 2X and a depth of 0.5T using
150/180 kHz and 73 sources and 73 receivers.
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Figure 3.65: Inversion result for defect of width of 2\ and a depth of 0.5T using 150/180 kHz and 73 sources and 73 receivers.
The colorbars indicate wall thickness in mm.

The effect of varying SNR levels on the reconstruction quality is further investigated by performing
inversions with 150 kHz/180 kHz with SNR values ranging from 25 to 5 dB. The results, shown in
Figure 3.66, indicate that the overall defect shape is relatively well preserved down to an SNR of 15 dB.
Below this level, significant degradation of the defect shape occurs, leading to unrecognizable defect
shapes. While the general outline remains identifiable at an SNR of 15 dB and higher, finer defect
details are increasingly disturbed, with the deepest region of the defect becoming indistinguishable
from surrounding noise artifacts at 20 dB and below. Furthermore, when the SNR exceeds 15 dB,
noise artifacts starts to form around the defect, indicating that the inversion algorithm has difficulty
constraining the reconstruction as result of the noise.
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Figure 3.66: Echo defect reconstruction using 150/180 kHz under different noise levels for the Sy mode. The green cross
indicates the true maximum depth location. The red cross indicates the reconstructed maximum depth location.

Although 150/180 kHz at an SNR of 30 is relatively unaffected by noise, the transducer sweep with
noise on the Echo defect yields results similar to the noise-free case. However, the noise introduces
additional background interference, adding to the existing background noise caused by the aliasing
effects. This reduces contrast with the sensitivity kernel, leading to additional jittering effects and incor-
rect minimal depth locations. Notably, at lower frequencies the distortions becomes more pronounced
due to reduced defect sensitivity. Consequently, jittering could occur even at higher transducer counts
compared to the 150/180 kHz case.
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Figure 3.67: Transducer sweep results for different configurations of Ny and N,- under noisy conditions.
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Discussion

The defect reconstruction is influenced by modeling choices, numerical approximations, and regulariza-
tion techniques. Achieving accurate reconstructions requires balancing theoretical performance with
practical applicability, especially when dealing with noise, model discrepancies, and limited data avail-
ability. This chapter examines key factors that impact inversion performance, including the role of
inverse crime, the importance of proper kernel scaling, and the application of regularization techniques
to improve stability and robustness.

First, we discuss the inverse crime. While this approach eliminates modeling inconsistencies and
provides an idealized test environment, it does not account for real-world uncertainties such as material
property variations and numerical approximations, leading to overly optimistic results that may not
translate well to practical applications.

Next, we explore the kernel scaling, a crucial step in ensuring stable update steps during inversion.
Without proper scaling, the inversion process suffers from instability, with updates that are too large
causing divergence. Or, the update steps are too small, leading to slow convergence.

Finally, we address the role of regularization in the defect reconstruction, which helps mitigate the ill-
posed nature of the problem by constraining the solution space. Techniques such as the application of
a Tukey window and threshold constraints can improve inversion accuracy. However, these methods
can also introduce application limitations which need to be carefully considered.

4.1. Inverse crime

By using the same numerical model for both data generation and inversion, discrepancies due to mod-
eling errors, numerical approximations, or unknown physical effects are eliminated. This leads to faster
convergence and high reconstruction accuracy. The inverse crime offers several benefits: it provides
an idealized test scenario to verify the correctness of the inversion algorithm, ensures that observed er-
rors stem from the inversion method itself rather than modeling inconsistencies, and enables controlled
assessments of the adjoint methodology. Although the inverse crime is very valuable for proving the
fundamental effectiveness of the adjoint method, in practical applications, model discrepancies exist,
and the inversion may not perform as well. Key considerations include:

» The inversion results may appear more accurate than they would be with real experimental data,
where modeling errors and noise play a significant role.

* The method’s ability to handle realistic conditions is not tested, potentially leading to unexpected
challenges in real-world applications.

» Without modeling errors, the inversion may appear robust even under conditions where it would
typically struggle, such as limited transducer count.

While the inverse crime is useful for testing inversion techniques, assessing performance under more
realistic conditions is crucial. Future research should introduce modeling errors, such as discrepancies
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in material properties affecting phase velocity calculations, numerical approximations, discretization
errors, or incorrect transducer characteristics. These factors can significantly impact the accuracy and
robustness of the inversion. To mitigate this, future work should consider using a different forward model
for inversion than for data generation or incorporating measured data, such as the 3D elastodynamic
wave equations.

4.2. Scaling and Regularization

This section discusses two key aspects of scaling and preconditioning in the current inversion scheme.
First, we address kernel scaling, which ensures that sensitivity kernels produce updates of appropriate
magnitude. Furthermore we discuss the preconditioning using a Tukey window, which helps localize
the inversion process around the defect while minimizing interference from irrelevant regions.

4.2.1. Kernel scaling

The sensitivity kernel is not naturally scaled within the range of a feasible update step. If left unscaled,
the magnitude of the updates could be in the meter range, leading to instability in the inversion. In the
current implementation the sensitivity kernel undergoes rescaling to maintain update values between
-1 mm and +1 mm to preserve meaningful update ranges. Setting the scaling limit of the sensitivity
kernel to high values such as +3 mm or +5 mm results in larger update steps which could speed
up convergence for large defects. However this approach presents risking inefficient oscillations or
divergence when updates become too forceful, especially for smaller defects. When the scaling factor
is excessively small it causes the convergence to occur at a slow pace. There is no a-priori knowledge
of the defect configuration which prevents the scaling parameter from being tuned. In the case where
the initial scaling is way off the actual defect sizing, the step size parameter « functions as a safety
mechanism to further scale the update step. If the sensitivity kernel scaling is too large, the line search
will naturally select a smaller « to prevent overshooting. Conversely, if the update step is too small, the
line search may allow for a larger « to speed up convergence while keeping updates within a stable
range. Furthermore after a few iterations the sensitivity kernel is naturally scaled within the scaling
bounds do to the diminishing sensitivity as the defect reconstruction is better shaped every iteration,
effectively making the scaling factor 1 for later iterations.

4.2.2. Regularization

Since inverse problems in defect reconstruction are often ill-posed, regularization techniques have
appeared to be essential for the inversion process, as can be seen in the unregulated inversion in
Figure 4.2a. They impose constraints that limit the solution space, thereby enhancing robustness and
reducing non-uniqueness. In our inversion we make use of a Tukey window to spatially constrain
the reconstruction to the defect region. Furthermore threshold forging is introduced for noise cases
to prevent artificial wall growth beyond the nominal thickness. Both approaches improve inversion
performance but also introduce challenges.

Tukey window

The current inversion scheme applies a Tukey window at the defect site to suppress artifacts in re-
gions of the plate that are not near the defect, reducing the ill-posedness of the problem. By aligning
the window size with the defect dimensions, the method optimally reduces unnecessary degrees of
freedom.

While the Tukey window improves inversion stability and efficiency, it also has drawbacks. The current
implemented round shaped Tukey window is only effective for localized defects, making it unsuitable
for larger defects, such as long axial grooves. The current implementation relies on prior knowledge
of the defect, which isn’t available in real-world applications. In order to mitigate this, a Tukey window
can be designed that is placed based on the focusing in the sensitivity kernel. A threshold value can be
set in the kernels amplitude to determine the Tukey window size. Numerical experiments show that the
sensitivity kernel in the initial iteration captures the rough defect shape of non circular defect shapes
well, as visualized in Appendix D. Also for different pipe configurations a clear contrast remains in the
sensitivity kernel for the default case. Therefore, a method utilizing a threshold to determine the Tukey
window is not restricted to circular defects or short pipe lengths.
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Furthermore, the Tukey window creates an artificial gradient around the defect, which is directly printed
on the sensitivity kernel. Therefore the Tukey window artificially creates wall thickness growth, contribut-
ing to an increase in shape error. Here, a trade-off needs to be made between the rate of decay of the
Tukey window, and the increase of null space.

In order to mitigate this effect another regularization step can be applied to the problem which prevents
the wall thickness from exceeding the nominal thickness value after the update step. This can be
achieved by applying a threshold that sets all contributions exceeding the nominal thickness to zero,
which can be illustrated well for the noise free Gaussian defect in Figure 4.1. Using the method the
non-uniqueness of the problem is reduced, as the redistribution of wall thickness is constrained below
the nominal thickness. Furthermore this is particularly beneficial for the adjoint method, as the limited
view can create shadow regions adjacent to the defect, leading to artificial wall thickness growth. These
unintended variations result in compensatory wall losses throughout the pipe, ultimately reducing the
phase misfit. However, this step can only be done after the update step, as otherwise an overshoots
in the reconstruction cannot be corrected anymore. As can be seen in Figure 4.2c, using this method
alone does not significantly improve the inversion result and thus could be used in combination with
the Tukey window.

Both regularization methods can be considered valid in different scenarios depending on defect char-
acteristics. However, they also introduce the risk of over performance, where the algorithm achieves
artificially high accuracy under controlled conditions that may not translate well to real-world applica-
tions. For example if the assumed nominal thickness is not accurate (e.g., due to manufacturing vari-
ations where the nominal pipe thickness can vary by up to £0.75% [51]), applying this threshold may
systematically obstruct the reconstruction. Careful consideration of these limitations is necessary to
ensure the robustness and practical applicability of the inversion approach in real defect reconstruction
scenarios.
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Figure 4.1: Visualization of threshold forging using through cut at the center of a guassian defect case. No wall growth is
allowed above the nominal thickness, and hence is set back to 0, as indicated by the red arrows.
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Conclusion

In this thesis, the adjoint method has proven effective for localizing defects in a pipe using forward
modeling in the FX domain. The method works well in both noise-free and noisy environments, provided
there is sufficient contrast between the defect focusing and its background.

If the sensitivity is insufficient, additional sensors can be employed to create the focusing effect in the
sensitivity kernel, or higher frequencies should be used due to their increased sensitivity. For defects
that lead to high sensitivity, using only a few transducers remains feasible, however for a low contrast
defect case noise plays a more significant role and additional transducers are required. Although
insufficient transducer sampling produces aliasing effects when the spacing is larger than \/2, their
effect on the inversion performance is found to be minimal.

Since the adjoint method back-propagates the misfit measured at the receiver line, the method is vulner-
able to sensor measurement noise. For the intended use case of the S; mode with 24 transducers and
a maximum frequency of 180 kHz, the signal to noise ratio needs to be atleast 25 before reconstruction
quality is significantly reduced.

During the initial stages of the reconstruction process, for both the simple Gaussian and the more
complex defect, low-frequency components dominate, resulting in a rough initial image. High-frequency
components refine the reconstitution at later iterations. Wavenumbers up to the diffraction limit are
included in the subsequent iterations but have weak amplitude. The algorithm achieves a resolution of
approximately 1 to 1.5\ in noise-free scenarios.

The method demonstrates convergence without regularization but achieves significantly better perfor-
mance through application of a Tukey window that limits the null space and decreases the problems
ill-posedness. However in the current method a-priori information is used to effectively model the Tukey
window. To overcome this constraint a windowing technique could be created that uses iterative sizing
throughout the inversion process.

Similar to the perturbation gradient method employed at TNO, the use of the adjoint method results in
wall thickness interchanges which cause an alternating error pattern thatis an over and underestimation
of wall thickness. Using multiple frequency continuation or multiple modes in a single inversion further
constrains the solution space which helps to reduce wall thickness interchange. Through numerical
experiments, it is observed that the choice of frequency is crucial for overall performance. Frequencies
should be chosen complementarily to enhance inversion performance. While low frequencies provide
a rough reconstruction of the defect, the subsequent lack of sensitivity at high frequencies prevents the
capture of fine details in the reconstruction.

For the Echo defect, the S, mode proves unsuitable for perfect reconstruction, as errors are primarily
concentrated at sharp edges that cannot be modeled due to limited resolution. However, the presence
of the Echo defect is clearly depicted, and a good shape reconstruction is obtained but without details
that are smaller than a width of approximately 1 to 1.5)\. Increasing resolution by using higher frequen-
cies is, similar to the Ay mode, not feasible for the S; mode due to attenuation. Different modes such
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as the S H; mode should be explored to increase resolution due to their low attenuation characteristics.

To conclude, the adjoint method offers a promising approach for gradient calculation in guided wave
tomography. While it requires regularization steps, which can impose limitations in certain use cases,
its ability to efficiently compute gradients and locate defects makes it a promising tool for optimizing
defect reconstruction. However experimental validation using measured data or 3D-elastodynamic data
is essential to bridge the gap between simulation and real world applications, ensuring the method’s
robustness and practical feasibility.

5.1. Recommendations and further research

Building upon the findings of this study, several recommendations forimproving reconstruction accuracy
are proposed in this section.

5.1.1. Hessian-Based Optimization and trust region

To further improve reconstruction accuracy and stability, an alternative optimization method based on
a Hessian approximation should be explored. Instead of directly computing the Hessian using Fréchet
derivatives, quasi-Newton methods, such as BFGS (Broyden—Fletcher—Goldfarb—Shanno), provide an
efficient alternative [50].

In the BFGS method an approximation of the inverse Hessian is done using only gradient information,
hence the sensitivity kernel can be used for that. With the extra Hessian information improved inver-
sion performance is expected since better step directions can be made in the optimization process.
Furthermore this potentially help constraining the problem and thus mitigating the effects of wall thick-
ness interchange. Future work should investigate the integration of BFGS or limited-memory BFGS
(L-BFGS) into the inversion framework to enhance reconstruction quality and computational efficiency.
However the gradient information needs to be carefully scaled in order to be effective. Similar to the
non linear Conjugate Gradient method, an integral part of the BFGS method is calculating the step size.

In our current algorithm, a line search method is used to determine step sizes in the optimization pro-
cess. While line the search ensures progress toward the optimum by selecting a step size that suffi-
ciently decreases the objective function, it is computational expensive in complex large scale non linear
optimization regions. An alternative approach is the trust-region method [50], where the update step
is constrained within a region around the current iteration where the model is expected to be ’reliable’.
Trust-region methods generally have improved stability in ill-conditioned problems. However they can
also perform bad if the gradient information is not well scaled.

Therefore future work should explore the integration of trust-region strategies alongside quasi-Newton
methods like BFGS to increase robustness, particularly in noise cases.

5.1.2. Validation on Real-World and 3D Elastodynamic Data

To ensure the effectiveness of the proposed inversion techniques and to prove it's promising use in real
world applications, testing on elastodynamic or real-world measured data is necessary. Currently the
artificial data provides a solid foundation for developing and adjoint based reconstruction algorithms,
but real experimental data introduces additional complexities, such as sensor noise and material irreg-
ularities. Comparing results from real-world ultrasonic measurements will help evaluate the practical
feasibility and robustness of the inversion approach.

Furthermore, future research should investigate the extension of the inversion to three dimensional
elastodynamic data. Incorporating 3D simulations will allow a more accurate assessment of defect
characterization, and can possibly be extended to more complex geometries like a curve. By validat-
ing the methodology on both real-world experimental data and full 3D elastodynamic simulations, the
usability of the adjoint method in the reconstruction can be further established.

5.1.3. Validation on different configurations

This thesis has been mainly focused around single center circular defects, as mention before, pipelines
can develop various defects during their lifespan, including corrosion due to chemical or electrochemical
reactions, or gouging caused by impacts from foreign (third party) objects, which can appear as ridges
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and/or grooves that contribute to stress concentration. Dents result from localized deformation, leading
to a reduction in diameter at a specific section. Additionally, combined defects can occur, such as dents
with cracks, dents with gouges, or a combination of cracks and dents within corroded areas [52].

As already mentioned, the adjoint sensitivity kernel is definitely not limited to the defect shapes used in
this thesis. In future research these more ’exotic’ defect configurations should be examined to further
argument on the feasibility of the adjoint in real world applications. It is likely that different defect
geometries will require more complex regularization strategies for effective inversion. For instance, the
current circular Tukey window, which works well for single-center circular defects, is not be suitable for
a groove defect. Instead, alternative regularization approaches, such as the earlier adaptive windowing
technique should be explored to better accommodate the specific geometry and characteristics of each
defect type.

Furthermore, in this thesis, we solely focused on a pipe with a length of 1 meter and a circumference of
0.5 meters. However, from short numerical experiments the initial kernel showed also promising results
for mapping defects in longer pipe lengths or different circumferences. Evaluating the performance of
the adjoint sensitivity kernel in these cases is important to understanding its robustness and practical
applicability. In particular, when pipelines are very short or the defect is very close to the transducers,
aliasing effects might play a more significant role, potentially affecting the accuracy of the inversion.
Future research should investigate these scenarios, ensuring reliable defect characterization across a
wider range of pipeline configurations.
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Derivation of the Gradient of the
Objective Function

We derive the gradient of the objective function J(m), defined as:
1
J(m) =5 SN lldobs (@, w6, w) = ul@y, z4,w)] [, (A1)

with respect to the model parameter m(zx).
The objective function can be expanded explicitly as:

J(m) = % ZZ (dobs(:cr,xs,w) — u(mr,ms,w))*(dobs(xr,ws,w) — u(xhxs,w)), (A.2)

w 8,7

where x denotes the complex conjugate. Letting éu = dyps (2, 5, w) — u(x,, x5, w) represent the data
misfit, this becomes:

J(m) = % Z Z ot (zr, T, w)o0u(Ty, Ts,w). (A.3)

w

To compute the gradient V,,, J(m), we utilize the chain rule. The derivative of J with respect to u(z,, zs,w)
is given by:

6J .
The gradient can then be expressed as:
Z N ou(,, s, w)

w  s,T

The relationship between the perturbation in the wavefield « and the perturbation in the model m is
described by the Fréchet derivative A:

ou
= . A.
dm;(x) (A.6)
Substituting T" into the gradient expression, we obtain:
Vd(m) =R g g ou* (x5, w)T(2) | . (A7)

w s,T
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Smoothing defect shapes by
wavenumber domain filtering

It is possible to filter out the high-frequency components in the wavenumber domain by applying a
windowing function in k-space, as can be seen in Figure B.1. By suppressing these high frequencies
and performing an inverse 2D Fourier transform, the reconstructed defect is smoothed, effectively re-
moving the sharp edges introduced by the corrosion. While this process retains the overall structure of
the original image, it results in a noticeably blurrier reconstruction, as the fine details of the defect are
intentionally filtered out to reduce imaging artifacts.
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Varying the o maximal growth rate

In this appendix, we examine the effect of varying the maximal allowable growth rate, max dag 5. This
parameter serves as an upper bound on the initial step size « ; before the line search begins. Specif-
ically, when we update the step size using

Lo P

Cnew — a% (C.1)
on each iteration, the step size a decreases rapidly for Gaussian defects, while it remains relatively
stable for more complex defects. Gaussian defects exhibit smooth, well-defined gradients, allowing
the optimization to take a highly effective first step. This rapid initial improvement causes the residual
gradient norm ||g|| to shrink significantly, leading to a small denominator in the step size update formula
and a very small a. As a result, the optimization holds after the second or third iteration prematurely
due to a update step that is in the magnitude of micrometers. This is why in Figure C.5 and Figure C.6
the error remains constant for the higher frequencies, as the first update step is the same due to the
scaling factor on the sensitivity kernel.

The following figures present the shape and depth errors for multiple wavelengths, evaluated as single-
frequency simulations for the S, mode. The results are shown for different values of max day , illus-
trating its impact on the solution.
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Initial kernels of non circular defects

While circular defects have been extensively studied in this thesis, real-world corrosion patterns often
have more complex geometries. This appendix presents the initial sensitivity kernels corresponding to
non-circular defect configurations, which can be found in Figure D.1, providing insight into how different
shapes influence the sensitivity distribution at the first iteration of the inversion process. Additionally,
in Figure D.2, the effect of pipe length on the sensitivity kernel is investigated by considering different
pipe lengths.

The selected defect geometries include a rounded groove, a donut-shaped defect, and a double pit
configuration. Each case is examined using a 130 kHz excitation frequency with a default transducer
configuration.
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