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Abstract

In this thesis we study for which domain types the Poincare inequality holds for all functions having con-
tinuous first derivative. We first consider the classical Poincare inequality, which we prove holds for a very
large class of open sets in R?. We then constructively prove that bounded, open, and connected domains in
R4, which also possess a smooth C'-boundary, must satisfy the Poincare-Wirtinger inequality. We do this in
six successive steps.

First, we show that an arbitrary open rectangle in R% must satisfy the inequality. Second, we prove
that a C!-diffeomorphism with a sufficient condition, between a set which satisfies the inequality and an
open, bounded and connected set implies the open, bounded and connected set also satisfies the Poincare-
Wirtinger inequality. Third, we show that there exists such a C!-diffeomorphism between a domain in the
class of open rectangles with one face distorted by a C'-function and another domain in the class of arbi-
trary open rectangles in R?. Fourth, we show the class of all open rectangles with one face distorted by a
C!-function satisfies the Poincare-Wirtinger inequality. Fifth, we show the union of non-disjoint open sets
which satisfy the inequality in turn also satisfies the Poincare-Wirtinger inequality. Lastly, we cover the open,
bounded and connected domain with a C!-boundary by a collection of rectangles from the classes of open
rectangles with one face distorted by a C!-function and arbitrary open rectangles to show that the domain
satisfies the Poincare-Wirtinger inequality.

Finally, we extend our function space to the first-order Sobolev space and show that we can directly extend
our results to this function space.
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Introduction

We first start by motivating the Poincare inequality. To this end, let us temporarily abandon mathematical
rigour in favour of building our intuition of the inequality.
Let D be a nonempty open subset of R%. Let us take a look at the Poisson problem with Dirichlet boundary
conditions. This is nothing but
—Au=finD and u=0 ondD 1.1

=122
Since u = 0 on the boundary, it seems reasonable to consider the class of differentiable functions which
tend to 0 as x — dD. We can then multiply the Poisson equation by some test function ¢. Integrating over D
gives us

2
where A =37 9 is the Laplace operator.
i

f(Au)godxz—f fodx (1.2)
D D

and we can then further perform an integration by parts on the left integral of (1.2) to obtain

[(Au)(pdx:f (Vu)(pdx—f Vu-Vedx (1.3)
D oD D

where V=%, 6% is the gradient.
Then, because of the boundary conditions we impose on u and ¢, the integral over the boundary vanishes
and so we can combine (1.2) and (1.3) to find

fVu-V(pdx:f fodx. (1.4)
D D

We go through all this trouble because we want to define the concept of a weak solution. A function u
is said to be a weak solution of the Poisson problem as presented in (1.1) if it satisfies (1.4) for all choices
of test functions ¢. The advantage of working with weak solutions, as opposed to classical solutions, is that
(1.4) deals with only the first derivative and both integrals can be interpreted as inner products. Furthermore,
a classical solution does not necessarily always exist and so there are cases where we must work with weak
solutions.

It then remains to prove the existence and uniqueness of u. This is where the Poincare inequality comes
into the picture as it is the main tool used for this proof. The inequality has the form

”f”LP(D) = k”Vf”L,,(D) (1.5)

for k some constant, f differentiable and ||-|I;r(s) the LP-norm. We give much more rigorous definitions of
these concepts in Chapter 2, but for now, it is sufficient to understand that the Poincare inequality bounds a
function by its gradient, multiplied by some constant.

However, the Poincare inequality does not hold for all choices of D < R¢, in fact it does not hold for D = R%.
The problem then becomes to show for which domains it does hold and this is an entire field of mathematics.
For the Poincare inequality with Dirichlet boundary conditions, we do not actually have to do much work. In
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fact, we give a proof in Chapter 2 that, for r > 0, (1.5) holds for the class of sets with form D = (—r,r) x R%~1;
this is immediately a quite broad class of open sets in R,

The problems then arise when we repeat the previous derivation on the Poisson problem, but this time
take Neumann boundary conditions in (1.1). In Chapter 2, we will see that this introduces an extra term in
the norm of the left hand side of (1.5) and this makes it much harder to show that D satisfies the Poincare
inequality.

In this thesis, we go about proving that for D open, bounded, connected and possessing a smooth bound-
ary, the Poincare inequality with Neumann boundary conditions is satisfied. This proof already exists in the
available literature, see [10, p. 383], however all such proofs strive to derive a contradiction and as a result
do not tell us much about D. Instead, we give a different style of proof and show that we can cover D by a fi-
nite union of sets which satisfy the Poincare inequality and that this implies that D also satisfies the Poincare
inequality.



Preliminaries

This chapter gives the preliminary knowledge necessary for the results of Chapter 3. Section 1 is an intro-
duction to relevant topics in real analysis and multi-dimensional calculus, which can be skipped by a reader
familiar with these subjects. Note however that much of the notation used in later sections of the thesis is
introduced and defined here.

Specifically, we refresh the reader on metric and normed vector spaces and define the concept of a C!-
boundary. We then move on to compact sets and prove the finite sub-cover property as well as the Heine-
Borel theorem. Next, we refresh the reader on the notion of the integral and prove the monotone convergence
theorem, after which we define the product measure and prove the Fubini-Tonelli theorem. Following this,
we define LP-spaces and prove Hélder’s and Minkowski’s inequalities. Finally, we define the derivative in
R, state the change of variables theorem, define diffeomorphic mappings, and state the inverse function
theorem.

In Section 2, we give the definition of the Poincare inequality. We first visit the classic Poincare inequality
and prove it for the class of sets with form D = (—r, r) x R9-! after which we move on to the Poincare-Wirtinger
inequality; the form of the Poincare inequality we use in Chapter 3.

2.1. Real Analysis and Calculus in R¥

We start at the foundation of real analysis.

2.1.1. Metric and Normed Vector Spaces

A metric space is the couple (M, p) consisting of a set M and a metric p : M x M — [0,00) defined on M.

We define the diameter of a nonempty A € M by diam(A) = sup{a,b € A: p(a,b)}. We also define the
distance between a point x € M and a set A < M as p(x,A) = inf{a € A: p(x, a)}. Similarly, we define the
distance between any two sets A,Bc M as p(A,B) =infla€ A,be B: p(a, b)}.

A normed vector space is the couple (V,||-||) consisting of a vector space V and a norm ||-|| : V — [0,00)
defined on V.

Example 2.1.1. Let V = R?, we define the Euclidean norm on R? as
1
d 2
llxllp = (Z |x,-|2) 2.1)
i=1
where x = (x1,..., x;) € R%. We always refer to the Euclidean norm when x € R? and denote it by | x|.
Example 2.1.2. Let A:R? — R% be a linear operator. We define the operator norm by

I Allop = sup |ARI. 2.2)
|hl<1

We want to work with the operator norm because of its useful properties, which we state and prove in
Lemma2.1.1 and Lemma 2.1.2.
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Lemma 2.1.1. Let A:R% — R? be a linear operator and denote by A its largest eigenvalue. Then Il Allop = Al
Furthermore, if A is orthogonally diagonalisable, then || Allop = IAl.

Proof. Let v, be a corresponding unit eigenvector of A. Then we have
I Allop = [Aval = |Aval = [Mlval = AL (2.3)

Suppose now that A is diagonalisable with respect to an orthonormal basis {vy,..., v4} with corresponding
eigenvalues {11,...,14}. Then we can express any h € R? by h = c;v; + -+ + c4v4, hence

Ah=ciMvi+-+cghgvg<Alcrvi+---+cqvg) (2.4)
and we have
Il Allop = sup |Ah| < sup |Ah| =|Al (2.5)
|hl<1 |hl<1
We combine (2.3) and (2.5) to obtain |A| = [A]. O

Lemma2.1.2. Ler A:R% — R% be a linear operator and let AT be its transpose. Then ||A||(Jp = HAT || op*

Proof. We know that for all x, y € R?

ylax=xTaTyT. (2.6)

Then we can express the operator norm as

|Ax|
IAllop = sup |Ax| = sup — = sup [(y, Ax)|. 2.7)
IxI<1 Ixi#0 1X1 x<1)yl=<1
Combining (2.6) and (2.7), we find
lAllop=sup  [(pAv)|= sup [yTAx|= sup [AT)T|= sup [ ATyl=]AT],,. O
lxl<1,|y|<1 lxI<1,]y|<1 lxI=1,]y|=1 IxI=1,|y[<1

We move on to the definition of the boundary of a set. Denote the open ball around x with radius € > 0 by
Be(x).

Definition 2.1.1. Let (M, p) be a metric space and let A < M. We say a point x € M is a boundary point of A if
and only if
B:(x)NA#¢ and B,(x)NA°# ¢ (2.8)

for all € > 0. We denote the set of all boundary points of A by 0 A.

Suppose D is any open and bounded set in R?. It then follows immediately from the definition of open
sets that DNAD = @. While this makes sense mathematically, when visualised in R? for example, this property
can be quite counter-intuitive since we physically observe that there is a line where D 'stops’. If, at every point
on the boundary, we locally parameterise this line by a continuously differentiable function, then we arrive
at the definition of a C!-boundary.

Definition 2.1.2. Let D c R? be open and bounded. We say dD is a C'-boundary if for each point x € dD there
exists an 7 > 0 and C!-function y, : R%~! — R such that, after relabelling and reorienting the axes if necessary,
we have

DnB,(x)={yeB;X)|ya>yx(1,...,Ya-1)} (2.9)

Intuitively, we say dD is C! if we can can press a C!-function against D such that, after moving and rotating
D in space if necessary, any point x € dD is ’above’ y.

D

0D
Yx

Figure 2.1: Open Ball Around x € 0D.
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Note that y, does not parameterise the entire boundary, only the boundary located in the neighbourhood
of x.

2.1.2. Compactness
We now introduce the notion of compactness.

Definition 2.1.3. Let (M, p) be a metric space and let e > 0. A set A< M is said to be totally bounded if there
exists finitely many points xi, ..., x, € M such that A < U}_ B.(x;). We say (M, p) is complete if every Cauchy
sequence in M converges to a point in M. Furthermore, we say (M, p) is compact if it is both complete and
totally bounded.

Before we continue, we need to prove the nested set theorem for complete metric spaces as we will need
it later. First, recall that for a metric space (M, p), a set A< M is said to be closed if and only if all convergent
sequences (x,) =1 € A converge to some point x € A.

Theorem 2.1.3. (Nested Set Theorem) Let (M, p) be a metric space. Let F| > F, > F3 > -+, be a decreasing
sequence of nonempty, closed sets in M with diam(Fy) — 0. Then (M, p) is complete if and only if NS | Fy # @.

Proof. For our purpose, we only require, and so only prove, the forward implication. Suppose M is complete
and let (F,),>1 be such a sequence as in the theorem’s statement. Since each F, is nonempty, we can find
some x, € F,, for all n = 1. By the assumption on diam(F,), we have for all y € F,

p(xn,y) < diam(Fy). (2.10)
Let € > 0. Then we can find some N = 1 such that m, n = N implies
0(Xn, Xm) < p(xpn, y) + p(Xm, y) < diam(Fy) + diam(Fy) <e. (2.11)

for y € F;;, where we assume without loss of generality that m < n. Then (x,) =1 is a Cauchy sequence and so
Xn — x for some point x € M. However, all F;, are closed. Hence x, — x € F,, forall n = 1. Then xe N3 | F, #
?. O

The reverse implication follows directly from the Bolzano-Weierstrass theorem on infinite and totally
bounded subsets of M. For a detailed proof, an interested reader is referred to [2, p. 95].

We call 4 = {G;};c1 a covering of some set A< M if A c U;e;G;. We call such a covering an open covering
if all G; are open sets.

Theorem 2.1.4. Let (M, p) be a metric space. M is compact if and only if every open covering§ of M has finitely
many Gy,...,Gp €9 such that M < U} | G;.

Proof. We only prove the forward implication. Suppose M is compact and suppose ¥ is an open covering of
M, but does not admit any finite sub-cover of M. We will derive a contradiction. Since M is totally bounded,
we can cover M by finitely many closed sets of diameter at most 1. Then at least one of these sets, say Aj,
cannot be covered by finitely many sets of 4. Note that A; # @ as this is an easy set to cover.

We know A is totally bounded, because M is, hence it can be covered by finitely many closed sets of
diameter at most 1/2. Then at least one of these, say A,, cannot be covered by finitely many sets of ¢4. Note
again that A, # ¢ as this would be an easy set to cover.

We continue and obtain a decreasing sequence A; > Ay © A3 O ---, where A, is closed, nonempty, has
diam(A,) < %, and cannot be covered by finitely many sets of ¢. Notice also that because M is complete, we
find that NS, A, # @ by the nested set theorem.

Letxe m‘,’f’:lAn. Since ¢ is an open cover, x € G from some G € 4. Since G is open, x € B¢(x) < G for some
€ > 0. Then for any n with % < € we must have that x € A,, € B.(x) € G. Hence A, is covered by a single set
from ¢ which is a contradiction to how we have defined A,,. O

Plainly speaking, Theorem 2.1.4 states that a set is compact if and only if every open covering of the set
admits a finite sub-cover. We do not require the reverse implication for future results and so have omitted the
proof for brevity. For a detailed proof, see [2, p. 112].

In Chapter 3, we work with open and bounded subsets of R?. It would be very convenient for us if such
sets were compact. Unfortunately, they are not. Fortunately, the Heine-Borel theorem allows for an easy
extension to a compact set.
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Theorem 2.1.5. (Heine-Borel Theorem) Let D c R%. Then D is compact if and only if D is closed and bounded.

Proof. Suppose D is bounded. Then there is some x € R? and some e > 0 such that D c B.(x). It immediately
follows that D is bounded if and only if it is totally bounded.

Suppose D is closed. Let (x),=1 € D be a Cauchy sequence. We know that R? is a complete metric space,
hence x; — x for some x € R4. It follows then that because D is closed, that x € D. Hence D is complete.
Conversely, suppose D is compact. Then D is complete. Hence all Cauchy sequences in D converge in D.
Again, because R4 complete, D is then closed. O

The Heine-Borel theorem directly implies Lemma 2.1.6.
Lemma 2.1.6. Let D < R? be bounded. Then D UdD is compact.

Proof. By the Heine-Borel theorem it is sufficient to show that D UdD is closed and bounded. Since D is
bounded, we can write D < B (x) for some x € D and r > 0. Now let € > 0 and define / = r + €. It is easy to
see by the definition of 0D that 6D < B;(x) which implies D udD < B;(x), because [ > r, and thus DUdD is
bounded.

Since D is open, we have D = int(D). Recall that D = int(D) U D, where D denotes the closure of D. Then
Du oD is a closed set and we are done. O

In this way, we can extend every bounded set D c R? to a compact set D UAD. Such an extension is
desirable because we can say much more about compact sets than bounded sets. Specifically, we can use
Theorem 2.1.4 on D U 0D to extract a finite sub-cover from any open covering of D udD. Then because
D c DU D, this same finite sub-cover also covers D.

2.1.3. Measure Spaces and the Fubini-Tonelli Theorem

The pair (S, /) consisting of a set S and a o-algebra «f € 22(S) is called a measurable space. We call a
o-additive function u : &/ — [0,00) for which p(®) = 0 a measure. Then the triple (S, 7, u) is called a measure
space. The natural continuation of this definition is to somehow connect measure spaces through functions.

Definition 2.1.4. Let (X, <) and (Y, 28) be measurable spaces. We call f: X — Y measurable if f~1(B) € o/
for all B € .

The class of functions which are compositions of measurable functions are measurable.
Let us now revise our definition of the integral. A function f : S — R is called a simple function if f is
measurable and only takes finitely many values. We can express all simple functions as

F=Y xilg, (2.12)
i=1

where x,...,x, € R are the distinct values which f can take and A; = {s € S: f(s) = x;}. Notice that by this
definition, it immediately follows that any simple function is a linear combination of characteristic functions.

We will define the integral first on simple functions, however in general we prefer to work with the class of
all measurable functions. To this end, we want to somehow bridge these two classes of functions. Fortunately,
it can be shown that we can pointwise approximate any measurable function with simple functions and we
state this without proof.

Theorem 2.1.7. Let (S, <) be a measurable space. We can find for any measurable f : S — [0,00] a sequence of
simple functions (fp)p=1 With0< fi < fo <... andlim,_. f,,(s) = f(s) forall s€ S.

Moreover, let R = [~co,00]. We can extend Theorem 2.1.7 to any measurable function f : S — R. Define the
functions f*, f~: S — [0,00] by f* = max{f,0} and f~ = min{- f, 0} and consider that for any f, we can write
f = f*—f".Then the result follows from the linearity of limits. For a detailed proof of this and Theorem 2.1.7,
an interested reader is referred to [15, p. 58]. Theorem 2.1.7 is a particularly useful result because it serves as
the aforementioned bridge between the class of all simple functions and the class of all measurable functions.

We can now define the integral over B € «f for some simple function f: (S, «/, u) — [0,00) as

n
fodu: Y xip(Bn A (2.13)

i=1
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where x3,..., X, are the values f can take and A; ..., A, disjoint sets in &« as in (2.12). By Theorem 2.1.7 we can
find for any measurable function g : (S, </, 1) — [0,00], a sequence of simple functions (g,),>; with0< g, 1 g.
We then define the integral of g over B € «f as

fgd,u: limfgnd,u. (2.14)
B n—oo Jp

Finally, for any measurable function & : (S, </, u) — R, we call h integrable if both |, whtdu<ooand [ h™du<
oo. We then define the integral of & over B € «f as

fhdu:f h+dp+f h™du. (2.15)
B B B

Using these definitions, we can show that the limit and integral can often be interchanged. This is the
monotone convergence theorem and we provide the proof from [11, p. 21].

Theorem 2.1.8. (Monotone Convergence Theorem) Let (f,),>1 be a sequence of measurable functions such
that0 < f, 1 f. Then f is measurable and we have

limffnduszdu. (2.16)

Proof. The first part of the theorem follows from the measurability of pointwise convergence. It remains to
prove (2.16). By the monotonicity of the integral, we have

limffnd,usffdu. (2.17)

By Theorem 2.1.7, we can find a sequence of simple functions (g,;) m=1 such that 0 < g,,; 1 f. Choose some
m’ =1 and denote g = g,,». Let c € (0,1) and set E,, = {s € S: cg(s) < f,(s)} for all n = 1. Then each E, is
measurable, E; c E; c E3 ... and U, E;, = S. We motivate the last equality. Suppose s € S; if f(s) = 0, then
se Ep. If f(s) >0, then cg(s) < f(s) since c <1, hence s € E,, for some n = 1. Then by the monotonicity and
linearity of the integral

cf gduzf cgdusf fnd,usffd,us limffndp. (2.18)
Ep En En S n—oo Jg

Now write g = Zle x;i1 4; with (x,-)i.‘:1 the values g can take and (Ai)i.‘:1 disjoint sets in «/. Since E,; N A; 1
SN A;, we find that

k k
fE gdu=) xiu(E,nA;) — iny(SnAi):ngdp. (2.19)
n i=1 i=1

Then ¢ [ gdu < lim,_o 5 fndp and because c € (0,1) was arbitrary, [ gndp <lim, .o [g frdp forall m=1.
Letting m — oo, we obtain

ffdus limffndusffdp. O
S n—oo Jg S

We now define so called jointly measurable functions. Consider two measurable spaces (X, «/) and (Y, %).
In general, we cannot simply assume that the Cartesian product o x 8={Zc XxY :Z=AxB,A€ o/,B € %}
is a o-algebra. Instead, consider o(<f x 28) to be the smallest o-algebra generated by </ x Z8. That is

0(f xB)=n{€:€ isao-algebraon Ax B and sl x B €} . (2.20)

We denote this construction with the special notation « ® %8 = o(«f x 98) and call it the product o -algebra.

It remains to construct a measure on < ® %8. For this we define the tensor product. Let f and g be
functions defined on X and Y respectively with both having values in K where K = R or K = C. The tensor
product, f ® g, is the mapping (x, y) — f(x)g(y) for all (x, y) € X x Y. We show in Lemma 2.1.9 that the tensor
product inherits measurability from f and g.

Lemma 2.1.9. Let (X,«/) and (Y,%B) be two measurable spaces. Suppose f is o/ -measurable and g is 9 -
measurable. Then f ® g is of ® 9B-measurableon X x Y.
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Proof. Write

(fegx,=fgy=(fely)xydxeg(xy). (2.21)

Then it is sufficient to show measurability of (f ® 1y)(x,y) and (1 x ® g)(x, y). For the first tensor product, we
have for every set D € K

(fely) 'D)={xy): f(x)eDi=fD)xYeod B (2.22)
The measurability of the second tensor product is proved analogously. O

We can then define on the measurable space (X x Y, o ® 98) the product measure (u®v)(Ax B) = u(A)v(B)
forall Ax Be of ® .

We go through the trouble of defining the product o-algebra because of the Fubini-Tonelli theorem. In
essence, this theorem allows us to switch the order of integration for non-negative and of ® 98-measurable
functions f: X x Y — K.

Lemma 2.1.10. Let (X, <f) and (Y,98) be measurable spaces and let f : X x Y — K be of ® B-measurable, then
i. forallx e X, the function y — f(x,y) is measurable;
ii. forallyeY, thefunction x — f(x,y) is measurable.

Proof. Let € be the collection of all sets C € « x 98 such thati. and ii. hold for f = 1. We know that the
characteristic function is measurable, hence it can be shown that € is a o-algebra containing every set of
form A x Bwith A€ of and B € 88. Then € = o/ ® & by (2.20).

Now, let f = Z;?ZI c¢ilc; be a simple function with disjoint sets C; € « ® 28. Then, because € = o« ® %, i.
and ii. hold by the linearity of measurable functions.

We extend this to f any positive, measurable function. Choose a sequence of simple functions as in Theo-
rem 2.1.7, theni. and ii. follow from the pointwise approximation of positive, measurable functions by simple
functions. Finally, let f = f* — f~, then the result follows from the linearity of measurable functions. O

We say a measure space (S, o, 1) is finite if 2(S) < co. Moreover, we call a space o-finite when we can find
countably many Ay, Ay, - € o with u(A,) < oo for all n = 1 which satisfy U,>1 A, =S.

Theorem 2.1.11. (Fubini-Tonelli Theorem) Let (X, </, 1) and (Y, %8, v) be o -finite measure spaces. Let f : X x
Y — K be non-negative and «f ® 9B-measurable, then

i. the non-negative functiony — [y f(x,y)du is measurable;
ii. the non-negative function x — [y f(x,y)dv is measurable;
ii.
fxxyf(x,y)d(uébv) =fx(fyf(x,y)dv) d,uzfy(fxf(x,y)du) dv. (2.23)

Proof. Suppose that p(X) = v(Y) = 1 and let € be the collection of all sets C € o« ® %8 such that all three
statements hold for f = 1. We show € is a o-algebra. All 3 conditions are trivial for f = 14 = 0. Suppose i-iii.
hold for some C € €. We write 1cc =1 —1¢. Then i. and ii. clearly hold for C¢ by linearity of measurability
and we have by the linearity of the integral

f Teed(pe®v) =f 1-1cd(uev) = l—f Tcd(pev)
XxY XxY XxY

:1—fy(fxllcdp)dv=fy(fxl—]lcdu)dv (2.24)
= [ [ tewau)av.

We can similarly derive the other equality in iii. and so iii. holds for 1¢c. Suppose i-iii. hold for disjoint
sets C1,Cy,- -+ € of ® 9B and let C = U= C;,. The monotone convergence theorem and linearity of the integral
imply i-iii. all hold for f = 1¢. Hence ¥ is a o-algebra. Since i-iii. clearly hold for all A x B where A € « and
B € %, then € = o/ ® 9 by the definition of the product o-algebra.
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Now suppose ¢ and v are finite. Then we can repeat the previous step on the normalised measures Iﬁ
and # to find that i-iii. hold for all C € « ® 98. We can then extend this to the case where p and v are o-
finite. This follows from the monotone convergence theorem as in the last step we took to show that € was a
o-algebra in the first part of the proof.

Finally, we can extend this result to all measurable functions in much the same way as in the proof of
Lemma 2.1.10. We extend to simple functions by taking linear combinations of characteristic functions. We
extend to positive functions using the monotone convergence theorem. Finally, we extend to all measurable
functions by taking a linear combination of positive functions and the result follows. O

The proofs of the Fubini-Tonelli theorem and Lemma 2.1.10 are partly sourced from [10, p. 672]. It is
important to note that the Fubini-Tonelli theorem is not directly applicable to the Riemann integral. It can
however be shown that for all continuous functions, the integral with respect to the Lebesgue measure cor-
responds to the Riemann integral. Moreover, f is Lebesgue integrable if and only if [ |f|dx exists as an
improper Riemann integral. As a direct result, we can apply the Fubini-Tonelli theorem to almost every Rie-
mann integrable function.

Now that we have a better understanding of the integral, let us look at an example of a useful measure
space and its respective integral.

Example 2.1.3. Let S =N and &« = 22(S) as the o-algebra. We can define the measure p: ¢ — [0,00) by

#A Ais finite
p(A) = e
oo Aisinfinite

for all A € o« where #A denotes the cardinality of A. This measure is called the counting measure. Then for
any f : S — R which is non-negative, we see that the integral is defined as

ffdyz Y fn. (2.25)
N n=1

2.1.4. L”-Spaces and Holder’s Inequality

Let (S, </, u) be a measure space. We now give the definition of L”-spaces.

Definition 2.1.5. For p € [1,00) let the space
LP(S) = {f :S— K : f is measurable and f |f|Pdu< oo} (2.26)
S

be equipped with the norm
1
P
171 is) = (fs |f|pdu) : (2.27)

Note that L'(S) is nothing but the class of integrable functions f : S — K. Note also that all functions
f € LP(S) are measurable and we have a positive function inside the integral norm. As a direct result of this,
we can always apply the Fubini-Tonelli theorem when working with LP-norms.

A very powerful result for L”-spaces, which we use extensively in Chapter 3, is Holder’s inequality.

Lemma 2.1.12. (Holder'’s Inequality) Let p,q € (1,00) satisfy ’—17 + é = 1. Let f € LP(S) and g € L9(S). Then
feel'(S)and | fg| s =|flwesl8lios-

For the proof of this result we first give the definition of convexity for functions and prove Young’s inequal-
ity for products.

Let V be areal vector space. We say a set X c V is convexif (1-f)x+tye X forall x,ye X and £ € [0,1].In
R<, this translates to: any point on any straight line between any two points in X is itself in X.

Definition 2.1.6. Let X be a convex subset of a real vector space and let f : X — R be a function. We say f is
convexifforall te€[0,1]and all x,y € X

fx+A -0y <tf(x)+A-0f). (2.28)
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It is a well known fact that a twice differentiable function is convex if and only if it has nonnegative second
derivative.

Lemma 2.1.13. (Young's Inequality) Let a, b € Rso and p, q € (1,00) satisfy % + % =1, then

aP b1
abs —+— (2.29)
p q’

Proof. The inequality clearly holds for a = 0 or b = 0, suppose then that a > 0 and b > 0. Let ¢ = %7, then

1-t= %. We know the mapping x — —In(x) is convex because it has has second derivative é = 0. Hence by
the convexity of our mapping

—In(ta? + 1 - 0b7) < —rln(a”) — (1 - 1) In(b9) = —In(ab). (2.30)
Multiplying our inequality by —1 and then exponentiating, we obtain
P pd
ab<sZ + O
P q’

We are now ready to prove Holder’s inequality.

Proof. (Holder's Inequality) We first treat two special cases. Suppose | f|,,5 =0, then f = 0 almost every-
where, hence the product fg = 0 almost everywhere, and thus H fg||L1 (s) = 0. The second case, ||g||Lq(S) =0,
follows analogously.

Suppose then that ||f||L,,(S) >0 and ||g| 45 > 0. Denote F = ”f”]:}’(S) and G = ngs), then ||Flizp(s) =
IGllzasy = 1. By Lemma 2.1.13, we have forall s€ S
F)IP  1Gs)|9
PG < LD OO, 231)
q
Then, we integrate both sides over S to show that
(alls IGI? 1 1
IFGIp s < — 2 + — & = — 4~ =1 (2.32)
a pq
and hence, after multiplying our inequality by || f ” 17(s) || g|| La(s)» We obtain
||fg||L1(S) = ||f”LF7(S) ”g”m(sr O

Another well known inequality on LP-spaces which we use is Minkowski’s inequality.
Theorem 2.1.14. (Minkowski’s Inequality) Let p, g € (1,00) sattsjfy + ~=1.Letf,ge LP(S). Then f+g € LP(S)
and ||+l 1o = £ ois) + 18] o cs)-
Proof. We first show that for a,b =0

(a+ b)? < (2max{a, b})?P = 2P max{a”, bP} < 2P (aP + bP). (2.33)
Then

fs|f+g|”dpszl’fs(|f|”+|g|”)dp<oo. (2.34)

and hence f+ g € LP(S). We can rewrite the condition on p and g to g = 1 such that Hf” ! “Lq(s) ||f||Lp(S)
Then by Holder’s inequality and the triangle inequality

I+ 8105 = [ 17+ gl"de

< 171+l dus [ [gllr+ gl d

= F+" s+ 18+ M

<[l +87 o + 181wl + 87 s
= ”f”LP(S) “f+g||Ll’(S)+ ”g”Ll’(S) ||f+g||LF’(S)

(2.35)
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Finally, dividing by || f + g |7, (ls), we obtain
“f+g||LP(S) = ”f“LP(S) + ”g”LP(S) O

2.1.5. Calculus in R?
Let us now define the derivative of some function mapping points from R? to RY' . First, we introduce the
notion of partial differentiability.

Definition 2.1.7. Let D be contained in R?, let f : D — R be a function, and let a € D be an interior point.
Then f is called partially differentiable with respect to the 1 < ith < d variable x; if

lim flay,...,a;+h,...,a3) - f(ay,...,ai,...,aq)
h—0 h

(2.36)

exists.

If f is partially differentiable at a, we denote 9; f(a) to be the partial derivative of f at a in the ith direction

ie.0if(a)= %(Ci“).

Definition 2.1.8. Let D be contained in R%, let f: D — RY be a map, and let a € D be an interior point of D.
Then the map f is called differentiable at a if there exists a linear map L: R? — R? such that

i |fla+h) - f@-Ln)| o
h—0 I A

(2.37)

If f is differentiable at a, the linear map L is unique. We then call it the differential of f at a and we denote
this linear map by d f (a). However, (2.37) is in general an inconvenient definition to work with. To overcome
this, we find another condition for differentiability in Theorem 2.1.15 and introduce more convenient nota-
tion.

Theorem 2.1.15. Let D be contained inR%, let f : D — RY bea map and a € D be an interior point. We write

f: (flr-")fd’)'
i. The map f is differentiable at a if and only if all component functions fi,..., fy are differentiable at a.

ii. If f is differentiable at a, we call the column vector

01f(a)
Vf(a):= (2.38)
daf(@

the gradient of f at a.

iii. Furthermore, if f is differentiable at a, then we call the matrix of d f (a) the derivative of f at a, given by

[01f1(a) 02fila) ... O0gqfi(@)]

O1fol@) 0O2fr(a) ... 0O4fa(a)
(2.39)

_alfdr((l) 62fdr adfdr ]

and we denote it by f'(a).

The proof for i. follows from working in each coordinate of Definition 2.1.8. Furthermore, we will use
linear maps from R% — R in Chapter 3. In such a case, the determinant of f'(a) is well-defined. We call it the
Jacobian of f at a and we denote it by J(a, f) := det(f'(a)).

Let us also define the differentiable inverse.
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Theorem 2.1.16. (Inverse Function Theorem) Let U < R be open and let f : U — R? be differentiable. Suppose
that J(a, f) # 0 for a € U, then there exists an open neighbourhood V < U of a such that the map f: V — f(V)
has differentiable inverse g : f(V) — V and for all x € V, we have

g (fx) =) (2.40)

Essentially, the inverse function theorem allows us to interchange the derivative and inverse such that, for
f(a) = b, we have (f'(a))~' = (f~1(b))’. For a proof, an interested reader is referred to [14, p. 35].
Let us now define a C!-diffeomorphism.

Definition 2.1.9. Let D and D* be contained in R?. We say they are homeomorphic if there exists a bijective
map f : D — D* such that both f and f~! are continuous. We call such a mapping a homeomorphism.
Furthermore, if f and f~! are also differentiable, we call such a mapping a C!-diffeomorphism.

It is immediate to see that a C!-diffeomorphism is a stronger condition; all C!-diffeomorphisms are
homeomorphisms, but not all homeomorphisms are C!-diffeomorphisms.

Theorem 2.1.17. (Change of Variables Theorem) Let D and D* be open and contained in R%. Suppose g : D —

D* is a diffeomorphism. Then for any measurable f : D* — R and any measurable set A< D

ff(g(x))|](x,g)|dx=f fdy. (2.41)
A g(A)

The proof for this theorem is beyond the scope of this paper, however observe that this theorem is a multi-
dimensional variant of the one-variable substitution rule. For a proof of this theorem, an interested reader is
referred to [3] and [13] .
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2.2, Poincare Inequality

Let D be an open, bounded and conne_cted setin R%. Define C! (D) as the space of all functions f: D — R4
having continuous derivative. Define C!(D) as the space of all functions f € C!(D) with V f having continuous
extension to D.

2.2.1. Classic Poincare Inequality

The Poincare inequality has two main forms, dependent on the conditions we set on our function. A
domain D satisfies the classic Poincare inequality for p € (1,00) if for all u € C'(D) with u = 0 on 4D, there
exists some constant k > 0 such that

lullr oy < kIVul Lr . (2.42)

It is important to note that in Definition 2.1.5, we specify that f € LP(S) is a function with image in K,
however we map u into R%. As a result, we are integrating over the Euclidean norm of u and Vu.

We are specifically interested for which domains (2.42) holds. In Theorem 2.2.1, we show that we only
need to bound D in one dimension.

Theorem 2.2.1. Let D be contained inR = (—1,r) xR~ for somer > 0 and let p € (1,00), then for any u € C' (D)
with u=0 on 8D, we have

_1
lullzrpy =2rp 7 Vullrr .- (2.43)

Proof. Let q € (1,00) satisfy % + é = 1. Let s € [—r, 7] be arbitrary, then since u(-r, x2,..., x4) = 0, we have by
Holder’s inequality

N

|u(s)x27---yxd)|:‘ alu(t)-XZr---yxd)dt‘

—-r
s
< |01 uldt

—-r

s Pl rs »
< (f lth) ( |61u|’”dt) (2.44)
- -r

r

1

s 1

=(s+r)é( Ialul’”dt)p
—-r

1 r %
<(s+r)a ( Ialulpdt) .

—-r

Let us rewrite our condition for g as p = % + 1 for clarity. Then, raising to the power of p and integrating
over R, we have by the Fubini-Tonelli theorem

1ul?, g =fR|u|de

.
Sf(s+r)§(f I01u(t,x2,...,xd)|”dt)dx
R —

r

r r
ff s+ [ 10yuPdrdsdxs...dxy
R RJ-r -r

r r r (2.45)
= (s+r)stf---f |07 ulPdtdx,...dx,
-r R RJ-r
1 P 4
= [E+l(s+ rya* 18y !l gy
q s=—r1
@2nP
< IVul?, g

where the last inequality in (2.45) follows from the trivial inequality [10; ull;rr) < IVullzrr) forall 1 =i < d.
Then raising our inequality to the power of %, we obtain (2.43) as desired. O
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2.2.2. Neumann Boundary Conditions

Notice that the classic Poincare inequality imposes Dirichlet type boundary conditions on u € C'(D).
What happens if we use instead Neumann boundary conditions i.e. Vu =0 on dD? This is the Poincare-
Wirtinger inequality. For these boundary conditions, we see that the classic form of the Poincare inequality is
not consistent for all u € C1 (D).

Example 2.2.1. Letue C!(D) be defined by u(x) = ¢ for some c € R4. Then Vu = 0, but

1

P 1
lullzrpy = (fumlp) =|clIDI? £ kllVullrrp) (2.46)

where |D| is the Lebesgue measure of D.

To avoid such edge cases, we introduce a new value. Denote
! f (s)d (2.47)
up=— | u(s)ds .
DI Jp

the "average’ of u. We say D satisfies the Poincare-Wirtinger inequality if for all # € C'(D), there exists some
constant k , (D) such that

lu—uplliirpy < xpD)IVulrr D). (2.48)

We now avoid the problem in Example 2.2.1 because || u — up | 1»py = 0 for u(x) = c. Note the notation we use
for our constant; ¥ p(D)isnota function, however it is always derived from D. Notice also that (2.48) does not
concern itself with the location or orientation of D, only its size and shape; if some D centered on the origin
satisfies (2.48), then so does the same D which is now centered on some arbitrary point in R and rotated by
a likewise arbitrary angle.

We call domains which satisfy the Poincare-Wirtinger inequality p-Poincare and denote the collection of
all such domains by &, It turns out that we cannot so easily show (2.48) holds for some very large class of
open sets as we just did in Theorem 2.2.1. In Chapter 3, we show that if D has a C'-boundary, then D € Py.



Poincare-Wirtinger Inequality

This chapter builds upon the preliminaries in Chapter 2 to constructively prove that an open, bounded
and connected domain in R with a C'-boundary is p-Poincare. Section 1 deals with the simplest case, we
show an arbitrary open rectangle in R? is p-Poincare. In Section 2, we prove that Cl-diffeomorphisms, sat-
isfying a special condition, between p-Poincare domains and open, bounded and connected domains in R¢
transmit the p-Poincare property. In Section 3, we construct an open rectangle with one face parameterised
by a C!-function and use results from the previous two sections to show such a rectangle is p-Poincare.

In Section 4 we combine the three previous sections to prove that an open, bounded and connected do-
main in R? with a C'-boundary is p-Poincare. We do this by constructing a finite covering consisting of
domains from Section 1 and Section 3. Finally, in Section 5, we introduce the Sobolev space and extend the
space of functions for which the central result of the thesis holds.

Denote D and D* as open, bounded and connected subsets of R?. We write | D| for the Lebesgue measure
of D. We also denote p and g as the Holder conjugates; p, g € (1,00) such that % + cl’ =1.

3.1. Poincare-Wirtinger Inequality on an Open Rectangle

The arbitrary open rectangle is perhaps one of the simplest domains which we can prove is p-Poincare in
RY. We define it as

Q=(0,1)) x - x(0,I5) cR? 3.1)

for0<l; <ocoforall1 <i = d. Although we define Q as lying on the origin of the plane, this placement is for
convenience only. An equivalent definition of this shape is the arbitrary open rectangle generated by some
point x € R?. We define this rectangle by

Q=1 -k, x1+ k) x--x(xg—kg,xq+kg). (3.2)

with 0 < k; <ooforall 1 =i <d.Itis clear to see that Q and Q, have the same shape and furthermore have the
same size if [; = 2k; for all 1 < i < n. Hence, if Q € &), then Q, € &), forall x € R%. This is made even clearer

when we consider that Q = Q; it is the open rectangle generated by % = (%,..., 17’1) € RY with ki = %’ for all
2
l=i=d.
Before we can prove that Q is p-Poincare, we prove a useful lemma.

Lemma 3.1.1. For (x;)}_,, a finite sequence of points inR, it holds that

P,
<ni leil”J (3.3)
i=1

n
D Xi
i=1

Proof. LetS={1,...,n}and u be the counting measure. We work in the measure space (S, 22(S), u). Let f : N —
R be defined by f(i) = |x;| for all 1 < i < n. Then f is clearly non-negative. Hence by the triangle inequality

15
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and Holder’s inequality

n n
x| = 2 Axil = fl e < (£ o 1lzaes)
i=1 i=1
1 1 1 (3.4)
n 14 n q 1 n p
i=1 i=1 i=1
and we arrive at (3.3) by raising our inequality to the power of p. O

We can now prove that Q € 22,,.

Theorem 3.1.2. LerQ = (0,1) x --- x (0,14) be the d-dimensional rectangle with l; > 0 forall1 <i<d. Let
I =max)<;<4l; and let u e C1(Q), then

lu—uallirq <dlVullr g (3.5)

Proof. We have by Hoélder’s inequality

p

1
u(x) — @ A u(s)ds

= ‘ﬁ[ﬂu(x) —u(s)ds

—1 - d ’
<
_(| |f [u(x) — u(s)| s)

1 1 \P
< L(flu(x)—u(s)l’”ds p(f lds)qu
Q] Ua Q

= (Iﬂlg_pf lu(x) — u(S)I”dS)
Q

lu—uqlP =

p

(3.6)

= ﬁfﬂm(x)— u(s)|Pds.

Then, for s,x € Q arbitrary, we can draw a path, which travels parallel to the axes, between these two
points. We know such a path exists because of the shape of Q.

Y2 Q=1(0,11)x(0,1)
I

Ln

Figure 3.1: s — x Path Visualisation in R?

We can further assume, without loss of generality, that our path walks along each dimension following the
ordering of their indices. Walking along our path, we can apply the fundamental theorem of calculus on the
first 1-dimensional line of our path to find

X1
U(X1,82,...,87) = U(S1,,...,Sq) +f o u(ty, S2,...,54)dt; 3.7
51
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Repeating the same idea on the second line of our path, we find
X1
u(xy, x2,83...,84) = u(sl,...,sd)+f o u(ty, s2,...,84)dn (3.8)
X2
+f 62u(xl,t2,83...,3d)dt2.
52
Repeating this process such that we walk the entire path, we find
d Xn p
lu(x) - u(s)lP = Z OnU(X1,.. s X1, by Snt1s---» Sa)din
p
< f dnudtn)
d Xn p
< Zf 10, uldt, (3.9)
d ply p
< Z f 105 uldtn)
E d
da Z ( |0nu|dtn)
where the last inequality in (3.9) follows from Lemma 3.1.1. By Holder’s inequality
2 d ([l p
lu(x) — u(s)|P < ‘JZU |6nu|dtn)
1\ P
B d In q( »
£ ([" )" ([ ")
n=1 0
(3.10)
p d P oply
=di )y l,‘{f |0, ulPdt,
n=1 0
p & prh
<d? 314 [o,urdt,
n=1 0
Integrating over Q x Q2 we have
P d p
fflu(x)—u(s)lpdxsdqff Zlq/ |0,,ulPdt,dx (3.1
QJa QJQp=1 0
r & p In
:ququff 10, ul”dt,dx. (3.12)
=1 JaJaldo
Let us zoom in on one element of (3.12), say element i. We see that our function u(xy,...,x;_1, t;, Si+1,---, Sd)
is independent of {s1, ..., S;—1, S;, Xi, Xj+1,---, Xq}. Then by the Fubini-Tonelli theorem
I; la h pla h pli
fff Iaiulpdtidxds=f f [ f f |0; ulPdt;dxy...dxgds; ... dsg
aJaJo 0 o Jo o Jo
la livi pli plia h
= li|Q|f f f f f |0;ulPdx;...dx;_1dt;ds;sq...dsg (3.13)
0 0 o Jo 0
slIQlf |0;ul”dz
Q
where {z1,...,z4} = {x1,..., Xi-1, ti, Xi+1,..., Xq}. Zooming back out, we have
Lol d
ff lu(x) — u(s)Pdxds<dila™"|Q| ) | 18,ulPdz. (3.14)
aJa

n=1JQ
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Combining (3.6) and (3.14), we have

1

flu—ugl”dxs— flu(x)—u(s)lpdxds
Q 1Ql JaJa

prg &
sddili™ ) | 10,ulPdz

n=1 Q
prg
ddla Z[IVulpdz
n=1 Q

p P
dq“lq“f IVulPdz.
Q

IA

(3.15)

Then, rewriting our condition for the Hoélder conjugates as 5 +1 = p and exponentiating by %, we finally have

lu—uallzrq < dlliVullLrq)-

O
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3.2. C'-Diffeomorphism Theorem

In this section, we show that if D € &, then the existence of a C 1-diffeomorphism f:D— D* with a
special condition implies D* € &7,,. This is a desirable result because not all domains are so nicely shaped as
Q. As aresult of this, it is often easier to show that an unwieldy domain is 'similar’ to a nice domain which is
p-Poincare than to show directly that the unwieldy domain is p-Poincare. Let us define the aforementioned
sufficient condition which f must possess.

Definition 3.2.1. Let f: D — D* be a C!-diffeomorphism. We say f has L-bound if there exists some L > 0
such that for all x € D it holds that

%Ihls\f’(x)h\sLlhl (3.16)
forall h e RY.
Such a C!-diffeomorphism has useful properties which we show.
Lemma3.2.1. Let f:D — D* be a C'-diffeomorphism with L-bound. Then |](x, f)| > L% forall x € D.

Proof. Let A; be eigenvalues of f’(x) with corresponding unit eigenvectors v,,. Then

1
i/liv/li| = \f’(x)v,lil > Z|l/,1l. . (3.17)
Hence |A;| = % and
d d
7 O] =TT Al = [Tl =274 (3.18)
i=1 i=1
forall xe D. O

Theorem 3.2.2. Let f: D — D* be a diffeomorphism with L-bound. Then there exists some inverse, differen-
tiable mapping g : D* — D with L-bound.

Proof. By Lemma 3.2.1, we see that J(x, f) # 0 for all x € D. Since D open and bounded, the existence and
differentiability of g : D* — D directly follows from the inverse function theorem. Let f(x) = y, then g'(y) =
(f'(x)~! by the inverse function theorem. Then we have for all & € R¢

\al = ) R =|f (08 Wh| < L|g' (y)h|. (3.19)
Similarly, we have
1
lhl = ) R =|f (08 h| = ZIg'(y)h|. (3.20)
Combining (3.19) and (3.20), we have for all y € D*
1 !
Z|h|s|g(y)h| <L|h| (3.21)
for all i € R? as desired. O
Before we continue, we prove one more Lemma which we will later need.
Lemma3.2.3. Let A D. Ifu € L” (D), then for all c € R%

|D|\»
lu—wuallprpy <2 1 luw—cllLrpy. (3.22)
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Proof. By Holder’s inequality

1 Po\p 1
||uA—c||Lp(D)=(f fu(s)ds— dx) :(

f(u(s) —c)ds

o)

1 1
= |D|%( Iill f (u(s)—c)ds p),, = %'[A(u(s)—c)ds
< 'ﬁh f|u(s)—c|ds- '| '| -~ c||L1(A) (3.23)
=— lDl I gyl —clirray = |A|‘7||Lt clirra

|Al |Al

1

= (@) lu——clra = (lDl)E lu—clir -

|Al |Al

Since A < D, we have lIT 1, hence we have by the triangle inequality

lu—uallpppy < lu—cllrrpy + llua—clize

< (@)F = cllgoipy + lea — cllipy
| Al (3.24)
< .2(@)E lu—cll oy,
Al
as desired. O

Notice that for D = A, Lemma 3.2.3 translates to |[u— upllzrp) < 2llu—cliipp) forall c € R%. We are now
equipped with all the tools we need to prove the central theorem of this section.

Theorem 3.2.4. Suppose that D € 22, with Poincare constant x ,(D) and f D — D* is a C'-diffeomorphism

with L-bound. Then D* € 2, with Poincare constantx (D*) = 2Ky (D)L2 ptl

Proof. Let u€ C'(D*). For each x € D, define v: D — R by v(x) = (uo f)(x). Denote f'(x)" the transpose of
f'(x). Then
Vo(x) = /(0" Vu(f(x) (3.25)

and furthermore

7760 op = sup | (o] < sup Linl = (3.26)

Hence, | f’(x)T||Op = | f'@]|,, = L for all x € D by (3.26) and Lemma 2.1.2. Then by the change of variables
theorem

fIVv(x)Ipdx=f |/ 0T Vu(f )| dx
D D
stf [Vu(fx))|Pdx
D (3.27)
< [pd fD IVu(fe|?| U, dx

:L”*de* |Vu(y)|pdy.

By Lemma 3.2.1 and Theorem 3.2.2 we have |](y,f‘1)| > L% for all y € D*. Then by the assumption that
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De2y
f lu(y) - vDI”dy=f lv(f () - vp|"dy
D* D*
sLde* (1) - vp e, £7H)|dy
=Ldf lv(x) - vplPdx (3.28)
D
sx,,(D)PLdf IV (x)|Pdx
D
sx,,(D)PLZ‘“Pf |Vu@y)|Pdy.
D*
Hence ) )
1 . 1
( fD |u(y) - VDI”dy)” <xp(D)L*» " ( fD * |Vu(y>|”dy)” : (3.29)
Finally, we have by Lemma 3.2.3
2441
lu—up-lrrp+ < 2lu—vplrrp+y < 2xp(DIL"P " IVullzr(p+)- O
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3.3. Open Rectangle with Smooth Face
Let us now return to our cuboid shape. We are working towards a finite covering of D U 0D for D having a
C!-boundary. It is clear to see that while Q type cuboids are sufficient for covering the interior of D, problems
arise when we try to cover the boundary. Let us then define a new sort of cuboid. This cuboid is very similar
to Q, except we let one face of its boundary be parameterised by a C!-function. If we let y : R?"! — R be a
C!-function, we define G as
G=(0,5h) x---x(0,15-1) x (y(x),1) (3.30)

with 0 < l; <ocoforall1<i<dand x € (0,1;) x --- x (0,14_1). For ease of writing, for y € R%, we write y(y) :=
Y(J/ly---;J/d—l)-
Similarly to Section 1, we can also equivalently define such a cuboid as being generated from some point
x €R%. Then let Yx: R%~1 — R be a C!-function, we define G, as
Gy = (01— ki, X1+ k) x -+ x (xg-1 — ka-1, Xa-1 + ka-1) * (Xa = Yx, Xa + ka) (3.31)

with 0 < k; <ooforall 1 <i <d.Itis clear to see that G and G, have the same shape and furthermore have the
same size for [; = 2k; forall1 =i <d-1and l; = k4 +2y,. Then as with Q and Q in Section 1, G € 2, if and
onlyif Gy € &, forall x € R,

Example 3.3.1. It is useful to visualise G in R? and R® to understand how it differs from Q. Notice that one
face is distorted by y.

X2 X2

L s
I3
I, /

Y(x1, X2)

v (x1)

ll *1 ll X1

Figure 3.2: G in R? and R3

We want to combine Theorem 3.1.2 and Theorem 3.2.4 to show G € 22;,. To do this we construct an explicit
C!-diffeomorphism f: Q — G with L-bound.

However notice that the definition of a C!-boundary speaks of an open ball around some point on the
boundary, but we desire a cuboid form. We show every open ball in R? contains an open rectangle.

Lemma 3.3.1. Letr >0 and let B, (x) be the open ball around some x € R%. Then there exists an open rectangle
R such that R < B, (x) and x € R.

Proof. Let R=(x1— 5,X1+5) %+ x (Xxg — 5,Xq + 3). Clearly x € R, so it remains to show that R c B, (x). Let
Y€ R, then y; € (x; — %,xi + é) and

d d ,
lx=yl= X lxi-yil<} - =r. (3.32)

i=1 ind
Hence y € B, (x) and this completes the proof. O

Now let us return to Definition 2.1.2. Let x € D have some r > 0 and C'-function y, : R?~! — R such that,
after relabelling and reorienting the axes if necessary, we have

DnB(x)={y€Br(x): ya >y} (3.33)
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By Lemma 3.3.1, we can find some open rectangle R in B, (x) with x € R. Then let this rectangle be bisected
by yx such that R = R; U R, with R; and R, both open rectangles with one face parameterised by y. By our
definition of y, one of our rectangles has nonempty intersection with D, say R;, and the other has empty
intersection. Then this R; has the same shape as Gy.

We will prove later that the mapping ¥ : Q — G given by

d—Xd
W(X1,.ee0sXg) = X100y Xg_1,Xq + Y(X1,..., Xq-1) (3.34)

la
is a sufficient mapping for our purposes. However, as it stands, our definition of G is incomplete.
Example 3.3.2. For this example, we work in R? for visual clarity. We have defined G by (0, I1) x (y(x1), I). The

problem which can then arise is that there is nothing in the definitions of G to ensure that y(x;) < I, for all
x1 € (0, I1). We visualise this in Figure 3.3.

X2 /

I -

Y(x1)

L %
Figure 3.3: G with y Leaving Through the 'Roof’ of G

It is clear to see that there exists some small € > 0 such that y(l; —€) > I; this is inconsistent with our
definition of G. Additionally, ¥ (/; —¢€, x») ¢ G for all x; € (0, ) and so ¥ is not a mapping from Q to G.

We want to somehow avoid the problem of Example 3.3.2. Notice that we can bound the growth of all
feCby | V]|, where ||l is the supremum norm. Then for x € (0, 1) x --- x (0, [4—1) we have

[y (O] =101, xa-DI [ VY [ oo < 1o La-DI | VY [ o (3.35)

However, we are still not done because y can be some constant function, say y(x) = ¢ for ¢ € R. Then clearly

(3.35) does not hold for such a y. We account for this edge case by moving and reorienting the axes such that

y(%, ..., 21y = 0. We can do this because, again, we are only interested in the size and shape of G. Hence, it

is sufficient to make G small enough in the first d — 1 dimensions to avoid the problem in Example 3.3.2.
Then for y: R4-! — R a Cl-function, we redefine G as

G=(0,01) x-+-x(0,lg-1) x (y(x), la) (3.36)

for0<ly<ooandly,...,I4—y suchthat|(ly,...,l4-1)I|Vy| o, < Iz and, after relabeling and reorienting the axes
if necessary, y(%,..., ld—’l) =0.

Similarly, for some point x € R%, let y, : R%~! — R be a C!-function. We define such a cuboid generated by
x € R? as, after relabeling and reorienting the coordinate axes as in Definition 2.1.2 and then moving G, such
that x sits on the origin,

Gy = (=k1, k1) x -+ x (=kg-1,ka-1) x (yx, ka) (3.37)

with 0 < k; < oo and ki, ..., k;_1 such that |(2k1,...,2kd_1)|“}/x||oo <ky.

We can now show that ¥ is indeed a C!-diffeomorphism with L-bound from Q to G.

Theorem 3.3.2. Let the mappingV : Q — G be given by

Xd
Y(X1,..0 Xg-1) |- (3.38)

d
W(x1,...,Xq) =|Xx1,..., Xg-1, %4 + 7
d

Then V¥ is a C' -diffeomorphism.
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Proof. We first show ¥ is a bijection. Suppose x, y € Q such that ¥(x) = ¥(y). Then clearly x; = y; for 1 < i <
d —1 and hence y(x) = y(y). Then

lg—x lg—
xat+ 2y (0 = ya+ <y ()
lg lg
= x5+ _2d = I _Ya (
a +1layxy E?’(x)—J’dJF/M EY X) (3.39)
= XqUa=7) = yq(l X))

= Xd=Yd

and V is injective. Choose arbitrary y € G. We look for x € Q such that ¥(x) = y. Clearly ¥;(x;) = y; © x; = y;
forall1 <i<d—-1, hence y(x) =y(y) again. Then

lg—x
xa+ -y () = yq
la
= xq(g—y(x) =1lgya—lay(x) (3.40)
=X = ldyd_—m
la—y(x)

and it remains to check whether x; € (0, ;). By (3.35), we have [; —y(x) > 0 and y; —y(x) > 0. Then x4 > 0.
Since y4 < 1y, we find that JI'Z:;'((;C)) < 1. Then x4 = I, )1/5:7},/((;)] <l;and x; € (0,1;). Hence x € Gand V¥ is a
bijective mapping.

We now check the differentiability of W. We have, because v is a C! function, for a€ Q

ld —aq
la

0;¥(a)= (0...,1,...,0, 6i)f(a)) (3.41)

foralll<i<d-1. Thenalso )
04%¥(a) = (0,...,0, 1- l—y(a)) (3.42)
d

and hence VY is differentiable by Theorem 2.1.15.
We now show P~1:G— Qis similarly bijective and differentiable. Denote ® = p-L Clearly ®;(x) = ¥;(x)
forall 1 =i <d — 1. We then derive an explicit expression for ®;(x)

lg—D4(x)
Dy(x) + 4420 ld Y(@(x)) = xq
“ . (3.43)
= @ (x) = 1,4
la—=y(x)
Hence @ : G — Q is the mapping defined by
D00 = (11,1 x4y, 12 =YD ) (3.44)
la—yXx)

It is well know that the inverse mapping of a bijective mapping is itself bijective, hence ® is bijective. Finally,
because y(x) is a C! function, all component functions of ® are clearly differentiable from which it follows
that @ is differentiable by Theorem 2.1.15. O

It remains to show that ¥ has L-bound. Note that we are not very interested in what L is precisely, merely
that it exists. As it turns out however, the quickest way to check its existence is to derive it.

Lemma 3.3.3. Let¥ be as in Theorem 3.3.2. Then ¥ has L-bound.
Proof. For a €, we have by (3.41) and (3.42)

1 0 0 0
0 1 0 0
¥'(a) = : : : : : (3.45)
0 0 1 0
la g, y(a) 4 *ayy(a) Ly ay(@) 1- 1y
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Then for any h € R%, we have

hy
W (@yh = : , (3.46)
ha-
M (1 dyy(@) + -+ ha10417(@) + ha 1= £-y(@)

Let us zoom in on the dth coordinate. We find
(hla”/(a) teeet hd—lad—lY(a)) =(hy,...,hg-1)- V}/(a)T <|(hy,..., hd_1)||V}/(a)|
[(hi,...,hg-1)I (3.47)
a |(llv--~yld—1)|

where - denotes the dot product. Then, by the triangle inequality and (3.35), we have

<1(ht,. e, ha-DI| VY| <1

Iy— 1
| (@7 = |- (hlaﬂ’(a)+"’+hd—16d—17’(61))+hd(1_EY(Q))
|(h1)-”)hd—1)| ( 1 )
<|(lz;—- —_—t hyl-— 3.48
(la = aa) (U1, lg-1)I a ldY(a) (5.48)
|(h17~--yhd—l)|
<op, LlL o BV o
gyl 2l

Denote [ = Mlﬁ By Young’s inequality, we know (a + b)? < 2(a? + b?) for all a,b = 0. Then taking the
Euclidean norm of ¥’/ (a) h, we have

(W (@h|= /13 ++ K+ (V' (@h)a)?

< B2+ 4 13 4 @y, ha-) |+ 21ha))? (3.49)

<\/(+8)|(hy,..., hg-)P +8h% < max(V/1 +812, 2V} .

It remains to find a lower bound for \‘P’(a)h|. By Theorem 3.2.2, this is equivalent to finding an upper bound
for |®'(a)h|. Then we have for a € D

1 0 0 0
0 1 0 0
' (a) = : : : . (3.50)
0 0 1 0
lalag—1g) lalag—1q) lalag—1y) ]
| Gamy@r 1Y@ G @p02y(@ . EoERfay@ o
Then for any h € R4, we have
h
o' (@)h= ' (3.51)
ly(ag—1 P !
(Zi(ff,(_uﬁ; (mory(@) + -+ ha-10a-1Y(@) + ha %
Suppose y(a) <0, then because y(x) < I
G _Ua—y@? _ 552)
Ug—y@)? ™~ Ug-y@)? '
Similarly, if y(a) = 0, then
2 2
d d _ 1. (3.53)

Ua—y@Z " 2
d
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2
Combining (3.52) and (3.53), we find that (ld_l—;(a)) < 1. Then zooming in on the dth coordinate, we further

find by the triangle inequality and (3.35) that

laltag—14) d
@' =22 2 (h,0 +--+hy 104 +h
@@= |5, =y (o @ a10a V@) ha g
B(ag—1a) |(hy,...,hq_))| ‘ la
" Ua—y@)? (..., lq-1) 7@ (3.54)
[(h1,..., hg-1)l
<lag-lj|————————+1h
aa=lal Gy T
[(h,...,hg-1)I
<2lyj—————————+2|h
AT T I

Denote [ = m again. Then taking the Euclidean norm of ®'(a) h, we have again by Young’s inequality

@' (@)a| = /12 ++- 4 B2+ (@' (@h))?

< \/h§+---+ 12 _ + @I(hy,..., ha-Dl + 21 hal)? (3.55)

< \/(1 +812)|(hn,..., ha-)| + 812 < max(V/1+ 812,22} .

Let L= max{Vv'1+82,2v/2}, then ¥ has L-bound by (3.49) and (3.55). O
We now prove that G € &2,
Theorem 3.3.4. Lety:R%! — R bea C'-function and let G be defined as
G=(0,11) x---x(0,1g-1) x (y(x),15) (3.56)
for0<ly<ocoandl,..., 1y such that|(ly,...,la-DI| VY|, < la. Then G € 2.

Proof. This is directly follows from the combined results of Theorem 3.1.2, Theorem 3.2.4, Theorem 3.3.2,
and Lemma 3.3.3. O
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3.4. Open and Bounded Domains with Smooth Boundary

In this section, we combine the results from previous sections to show that if D has a C!'-boundary, then
itis indeed p-Poincare. We first prove a very important Lemma on the unions of Poincare domains.

Lemma 3.4.1. Let D and D, be open, bounded, and connected in R4, Suppose D1, D; € 22, with Poincare
constantx ,(D;) for i = 1,2 such that Dy N D, # @. Then D = Dy U D € 22, with Poincare constant

1
xp(D) = (ID11xp(D1)P + | Dalk , (D2)P) . 3.57)

1
|Dy N Do|?

Proof. We apply Lemma 3.2.3 twice and use the monotonicity property of integrals, as well as the additive
property of integrals for disjoint sets, to show that

f Iu(x)—uDlpdeZ”f |u(x)—quD2|pdx
D D1UDs
=2”(f |u(x)—quD2|pdx+[ |u(x)—quD2|pdx)
D1 Dy\Dy

<2P (f |u(x)—quD2|pdx+f |u(x)—quD2|pdx)
Dy D,

z » (3.58)
=2PY | |u(x)—up,np,|"dx
i=1YD;
: |Dil »
2Py 2P —— |u(x) - up, |Pdx
31 IDin D2l Jp,up,
2% 2
= |Di|f |u(x)—uDl.|’”dx,
ID1NDal i D;
Then by the assumption
1
2 ) 5
lu—upliirp) < T Y IDjl|u - up, ||L,,(Dl_))
|DlﬂD2|P i=1
4 2 ) g
< —— | X IDilcp(D)P IVl
Dy n Dyl \i=1
Dy N Dyl P \i 1 .59
4 2 p P
< ——— [ X IDilk (D7 IV Ul
| Dy N Dy|P \i=1
4 2 »
- 1 Z'Di“(p(Di)p) IVulLr )y
|DlﬂD2|P i=1
as desired. -

With the Poincare constant explicitly written out, it is easy to see why we require there to be some overlap
between two domains in order for their union to also be Poincare. If D; N D, = @, then |D; N D,| = 0 and we
divide by zero which we clearly cannot do.

Notice also that A; N A2 # @ does not necessarily imply |A; N Ay| # 0 for arbitrary sets Ay, A, € R%. For
example, the Cantor set is a well known set with infinite points but Lebesgue measure equal to 0. However,
for our case, a nonempty intersection does in fact imply nonzero Lebesgue measure. This is because D, and
D, are open, hence their intersection is open.

If x € D1 N Dy # @, there exists some ¢ > 0 such that B.(x) € D; n D,. Then this open ball has nonzero
Lebesgue measure, hence |D; N D] > 0 and it is sufficient to show that the intersection between two open,
bounded, and connected sets, which are both in £, is nonempty in order to be able to apply Lemma 3.4.1.

For x, y € R%, we write p(x,y) to mean p(x,y) = |x = y|, sometimes called the Euclidean distance, for the
following proof.

Theorem 3.4.2. Let D have a C'-boundary. Then D € Py.
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Proof. For all x € D, let Q, be an open rectangle generated around x. We want to contain Q in D, hence we
define it as

Qy = (x1—p(x,0D), x1 + p(x,0D)) x -+ x (x4 — p(x,0D), x4 + p(x,0D)). (3.60)
We similarly define %, also generated by x € D, as

Qyx P p(x,dD),

+ p(x’aD)) X x (xd— p(x’zaD),xﬁ pLx,0D)) | (3.61)

X
! 2

2 ! 2 2

Then by Theorem 3.1.2, Qy € 22 and % € Py forall xe D.
For all y € 0D, lety, : R4 — R be a C!-function such that, after relabeling and reorienting the axes if
necessary, G,N D ={z € Gy, : z; > Yy(2)} as in Definition 2.1.2. Then further moving G, in space so that y sits

on the origin, we define
Gy =(=ky, k1) x -+ x (=kg-1,kg-1) x (yy(¥), ka) (3.62)

with 0 < kg < oo and ki, ..., kq—; such that |(2ky,...,2ka-1)I|yy |, < k4. We similarly define %, also an open
rectangle generated by y € 4D, as

G k
7y = (=K}, Ky x o (=K, K )) % (yy(y), 7‘1) (3.63)

with k7, ..., k;,_l such that k; <k;foralll<i<dand |(2k’,...,2k;_1)|||yy||oo < %. Note that G, and % both
contain y and that by Theorem 3.3.4, G, € 2%, and % € Py forall yedD.

Let ¢ ={xeD: %} uU{yedD: %}, then ¥ is an open covering of D UdD. We know D UdD compact
by Lemma 2.1.6, hence, by Theorem 2.1.4, € admits a finite sub-cover. That is, we can find finitely many
X1,..,Xp€Dand y;...,¥m € 0D such that

Q. Gy,
DcDudDc (u;?d%) U (U;ﬂﬂl) < (UL, 0x) U (U, Gy, ). (3.64)
Forlsi<snandl=<j<m,let
K Qxi GJ’J’
J,’:{x,-ED:Qxl.}u{yjeaD:Gyj} and 7: x,-eD:T u yjeaD:T . (3.65)

Since £ is a finite, open covering of D, it remains to show that we cannot write it as # = &% U %" with
FnF*=¢forall Fe ¥ and F € &*, where we define & and & * as, after reordering the indices if necessary,

F={xieD,1<i<n":QqlulyjeD,1<j<m':Gy} (3.66)

and
9’*:{xiED,lsisn*:Qxi}u{ijD,lstm*:Gyj}. (3.67)

with n' + n* = n and m' + m* = m. Suppose that we can write # = % U%* with FNF* = ¢ for all F € & and
FeF*.

We claim that for any F € &, and therefore any F* € &%, that if A < DudD and g nA = @, we have
p(FEA<p (g, A) . This directly follows from g C Ffor all F € & and the way in which we have define Gy with
respect to the location of DU dD.

Let € > 0. We claim that because .£" is an open covering of D udD and D is connected, we can find some
Fe % and F* € &* such that p(F, F*) < e. Suppose we cannot, i.e. there exists some € > 0 such that p(F, F*) = ¢
forall Fe & and F* € &*. Then, because DUAD is connected and the way by which we have constructed the
sets of our open covering, there must be some z € DUdD such that 0 < p(z, F) + p(z, F*) < £ + £ = €. In other
words, there is some z € DUAdD which is located in the space between & and & * and which is not in F or F*
forall Fe & and F* € #*. Hence & U & * is not an open covering of D UdD which is a contradiction.

Suppose then that p(z, F*) <2p(F, F*) forsomeze FIfz€ g, then p (g,F*) <p(z, F*)<p(z, F)+p(F F*) =
o(F, F*), but we must have p (F,F*) < p (%, F *) . Then we have a contradiction by the assumption on z. Hence
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ze€ F\ g But since JZ—( is an open covering of D U dD, we must have that z € % for some F; € &. Then

0 (%,F*) < p(z,F*) < p(z, F1)+p(F, F*) = p(Fy, F*) which is a contradiction because we must have p (F;, F*) <

0 (%,F*) .Hence FNF* # @.

We have now shown we cannot write # = % UZ* with FN F* = ¢ forall F € & and F € & *. Additionally,
if x € K1 N Ky # @ for some K1, K, € A, then, because K; and K> open, there exists some r > 0 such that
By (x) € K1n K. Hence K1 N K3 has positive Lebesgue measure. We have also shown that K € 22, forall K € %'
Then Uge # K € 22, by Lemma 3.4.1 which gives finally D € 22,,.

O
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3.5. Extending to Sobolev Spaces

Define C!(D) as the subspace of all C!(D)-functions which have compact support. We define the support
of a function f as the set

supp(f) ={xe D: f(x) #0}, (3.68)

the closure of all points on which f(x) # 0. We say f has compact support if there exists a compact set K c
D such that {x € D : f(x) # 0} < K; the set of all points on which f # 0 is contained in some compact set.
Intuitively, we say f has compact support on a set D if it is zero on all points outside of some compact set
KcD.

Denote LIIOC(D) as the space of all measurable functions f : D — R for which f : U — R? is integrable for
U any open set with compact closure contained in D. We call such functions locally integrable.

Then for a = (ay,...,a4) € Nd, we define the order of « as |a| = a1 +--- + a4. We also denote 0% = 6?1 0---0
Ogd. For our purposes, we are only interested in |a| < 1; if || = 0, then 0% f = f and if || = 1, then we have
a;=1forsomel<i<dandd®f=20;f.

Definition 3.5.1. Let f € LIIOC(D). A function g € LIIOC(D) is said to be weak derivative of order |a| € N? of f if
for all h e C!(D) we have
f f(x)0%h(x)dx = (-1« f g(x)h(x)dx. (3.69)
D D

We then call f weakly differentiable if it has weak derivatives 0% f € LY (D) for|al <1.

loc

We can use this definition of weak differentiation to define a new space of functions.

Definition 3.5.2. Let 1 < p < oo. The Sobolev space W!? (D) is defined as the space of all functions f € L” (D)
which are weakly differentiable with 6¢ f € L” (D) for a < 1. We equip this space with the norm

”f”wl.n(D) = ‘ ;1 ||6af“LP(D) = ||f”LP(D) + ”Vf“LP(D)‘ (3.70)
al<s

We have so far been working with u € C!(D). However, we can use the previous sections as a foundation
and extend our function space to W'? (D). For this we need to first prove that C'(D) is dense in WP (D). We
give an equivalent theorem without proof.

Theorem 3.5.1. For any f € WV P (D), there exists a sequence of functions (f),s1 € C*(R%) which, when we
restrict their domain to D, satisfylim . Hf —In || wirp) =0

For a proof, see [10, p. 367]. Recall that for (M, p) a metric space, a set A c M is said to be dense in
M if every point in M is a limit of a sequence from A, so the density of C'(D) in W'? (D) directly follows
from Theorem 3.5.1. We can rewrite the limit in Theorem 3.5.1 to a more useful form. Let € > 0. Then for all
f € WP (D) there exists some g € C' (D) such that || f = g| ;) <€ and |V(f = &) () <€

Theorem 3.5.2. Suppose D € 2, with Poincare constantx ,(D). Then for all f € wlP(D)
I.f = foll ooy = 2xp DIV £ 1o - (3.71)

Proof. Lete > 0. Then by Theorem 3.5.1, we can find some g € CY(D) such that

€
I =&l <3 (3.72)
and .
IV =) 1oy < 3 (3.73)

We have by Minkowski’s inequality

1

UDIf—fDI”dx)p =(fD|f—g+g—gD+gD—fD|’”dx)'1’

1 (3.74)
s(f |f-g|Pdx p+(f lg—gp|’dx
D D

1 1
’ +(f |gD—fD|’”dx)".
D
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We treat the first and third integral separately. By (3.72), we have for the first integral

1
P €
([, l7-l7ax]” =15 ~glvn =5 379

We can rewrite our condition for g to % = p— 1 for clarity. Then by Hélder’s inequality, we have for the third
integral

p P
dx = f f(s)—gpds
D

f |fD‘ngpdx=
D

1
ds-— I
(s)ds—gp Dl

IDIq (f |fs)- gD|dS)

Ly (3.76)
((f |f(s) - gD|pds) (/ 1ds q)
IDI" b
= [ 176 - golds= [ 151~ g05) + g5~ g | ds.
Then by Minkowski’s inequality and again (3.72)
1
(f |fo- gDI”dX) (f |f(s)—g(s)+g(s)— gD|”dS)
1
( |f(s) - g(S)I”dx) U lg(s) - gDI”ds) 3.77)
1
_€
<o+ f!g(s) gp|"ds|”
Combining (3.75) and (3.77), we have by the assumption on D
1 1 1
U |f—fD|pdx)pse+2(f |g—gD|pdx)pse+21<,,(D)(f |Vg|pdx)p. (3.78)
D D D
Let us now treat the integral separately for brevity. Then we have again by Minkowski’s inequality
(f |Vg|”dx) U Vg - Vf+Vf|”dx)
1 1 (3.79)
sU |Vg—Vf|”dx)”+(f |Vf|”dx)”
D D
Then by (3.73)
1
P €
([ 1vg=v117ax)" =198 =Vl = 19 - @1nq < 5 3.80)
Combining everything, we have
1
p
1= ol = [ 1~ ol
1
se+2Kp(D)(§+(f |Vf|pdx)p) (3.81)
D

=e(l+xp(D)) +2xp(D) ||vf”Ln(D)
= 2kp D) |V 1 )

as desired. O
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