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PREFACE

The time flies and in the blink of an eye I am finishing my PhD with this thesis. These
almost 4.5 years have been quite a journey in my life. Ready for the new start and look-
ing back I am grateful that I got an opportunity to do my PhD in Delft. I could not thank
enough my supervisor Yaroslav, my friends, my grandmother, my husband and his fam-
ily for always being there.

I should mention the person from whom I got the passion for Physics. I still remem-
ber it was time before Christmas in 2002 when my Physics teacher Vladimir Bezruchko
asked me whether I would like to participate in the Physics Olympiad. He spend his time
during winter break to prepare me for it. Later I continued on the same path during my
Bachelor in Taiwan with Dr. Chung-Hou Chung. That’s where I learned that the theo-
retical results can be implemented in the experiment and further in industry in nearby
Science Park. Then, during my Master in Amsterdam I was fortunate to do something
more theoretical and abstract project with Prof. dr. Jean-Sébastien Caux.

The previous experience made me realize that during a doctorate I would like to do
something more applied and analytic. I send out couple of e-mails asking for the PhD
position and one of them was to Delft to Mrs. Miriam Blaauboer. She replied that, un-
fortunately, she did not have anything for the moment, but Prof. Yaroslav Blanter has an
open position. After that I have received an invitation to the interview and presented my
work. I was extremely nervous that time. I was looking at the faces to get a clue whether it
was clear. After the talk I had a chance to speak to Ciprian and he was very encouraging.
So finally, albeit my worries in October I have started to work on my first PhD project.

During my interview Yaroslav has stated clear that he expect a PhD student to be an
independent researcher and have 4 papers by the end of the PhD. I am very thankful
that from very beginning I had a lot of flexibility but you still helped me to keep up with
time schedule and not only in the scientific perspective but also in the moral support
and calm approach. In some sense, I’ve acquired a second father. Your diplomatic way
of speaking made me think over without being discouraged. I always appreciate your
light push toward the collaboration with other people and have learned the power of it.
You taught me that we can look at complicated things in much simpler and general way.
Sometimes I am so focused on the specific problem that I forget to build bridges and I
will try to improve this aspect of my personality.

When I entered the theory group I felt very welcomed. Many people were at the last
stage of their PhD. Their experience and wisdom helped me a lot later on. That time
we had 5 girls in the group including me. I was in the room together with Fatemeh M.,
she has a very kind and soft personality. Every day we chat about our life and research,
which made the atmosphere in the office very comfortable. Fateme J. was always passing
my room and stop by with the smile, which also made me smile. She has a very strong
personal opinion and a positive view on life. I am always enjoying our coffee time. From
her I am happy to meet Andy. Alina has more artistic personality despite our scientific
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environment. The long discussions about the vegans (the first time I’ve heard this word
during the coffee break in Delft), the pollution and wearing leather were raised by Mireia.
Of course, the girls diluted mostly male group. I had couple of research talks with Ciprian
and his view on living life was always surprising and at the same time interesting. If I
needed any advise Marcin was always available to provide it. I admire his perfectionism,
home parties and realistic as well as handy approach. He often brought a cake for the
coffee break without any reason. That’s how I met Cecile offline through her amazing
cooking skills. Talking with Yanting always remind me of the warm time in Taiwan and
my fun bachelor time. While not knowing Marnix that long he is very friendly and never
declined to help with moving. Akash organized very nice parties and is a great dancer
with enormous energy. Always relax Paul even though seldom being in Delft finds time
for the coffee breaks. I would always remember your amazing ideas such as making your
own coating of the pan and an one house for the friends’ families in order to still have
social life. We had a lot of fun teaching Statistical Physics together with energetic and
talkative Orkide. To Chris V., Chris D., Gio, Yunshan, Frans, and Rodrigo, thank you for
having occasional talks. Every time I meet Chris V. in the train or outside in den Haag is
such a happy coincidence. I know Maryna since our high school time, you know what
you want to do with realistic and straightforward thinking. It was fun to meet again and
spend time during your Master.

After many girls graduated, Erika was always there to deal with any administrative
issue and for more girly chats. She somehow manages to get things done in a short time
and I am very grateful for her moral support. Yuli always asks peculiar questions during
the group talks, but actually always to the point, and has great coffee break jokes. Miriam
was always very kind and enthusiastic during my evaluation meetings with a lot of pos-
itive energy. Jos is a very good teacher and it was a pleasure to be his teacher assistant.
Michael and Anton are great addition to the existing faculty members and the group has
been grown quite much thanks to them.

To Adriaan for such a great help with my Ducth translations. Tomo was my office-
mate for two years, with whom we shared the great cakes, very warm discussions about
marriage and research, day trips, and tasty Japanese food. João has joined Yaroslav’s
team and since then we have amazing coffee breaks and chats about our progress, re-
search and personal life. He is always digging to the end and drawing very interesting
characters. To Vincent for his open personality, cute French accent and sharing small
breaks with me. I was not that social with the new group after the birth of my son and a
new pregnancy, but I always enjoy the group coffee breaks and some lunches with Jose,
Albert, Sebastian, Rafael, Bas, Xiaoli, Evgeny, Vigdis, and Sanchar. To Doru and Michal
thanks for always asking me how am I doing and have a small talks.

During my PhD I had a great pleasure to join weekly Gary’s group meetings. I learned
a lot about experimental implementations and about looking at the problem from the
experimental point of view. While working on the project with Vibhor we had some great
scientific discussions. Although it was hard to convince you at times, I am happy about
our final result and learned a lot in the process. With Minyun we had similar "happy sit-
uation" and could share our experiences and support. To Shun for our discussions about
the SQUID. To Daniel, Sal, and Martijn for our short talks either during the conference
or simply in the corridor.
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I also would like to thank Saro for an amazing hosting during one month I was in Pisa.
You asked me great questions and gave me important scientific input for my projects.
For making my stay fun and spending some evenings with me, I thank Antonella and
Davide. Simone, Stefano, Matteo, and Francesco, thank you for teaching me Italian and
great lunch and dinner discussions.

Special thanks to Nastya. You have always supported me, understood and spent the
time in the university and outside of the work environment. To all my friends who are
outside of the work circle. To Yulya, you and Sasha with Margarita are such a fun people
to hang around. To Misha, you have always tried to understand what I am doing and
to Gloria, who is optimistic and so relax. To Dima and Emily, for great evenings out. To
Kathy, who is so far away but always checking with me. To Yulya, who lives in Ukraine, I
am always grateful for all the help and full support you provide. To Pasha for sharing the
same fate but being always positive about it and supportive. To Vincent despite knowing
you so short, but living close by and have history of being in Taiwan, you are close to me
by default.

To Dave, for your patience, support and all the happy moments we had together. To
the Chiu family, for treating me as a family member, having amazing trips, supporting
and helping us with our son despite living so far. And to my grandmother, thank you that
you are always thinking about me, your support and kind heart.

Olga Shevchuk
February 2017
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2 1. INTRODUCTION

1.1. OPTOMECHANICS
In my childhood I liked to play with light. By catching a light in the mirror and observing
a light spot moving around on the wall I didn’t realize that the reflection of light gives
rise to the momentum transfer referred to as radiation pressure force. This force is used
extensively in the current technology and studied carefully by many scientists. At first
the concept of the radiation pressure of light was predicted by Kepler and then in 1901
experimentally observed [1, 2]. In the 1970s it was Ashkin [3], who first demonstrated
that dielectric particles can be accelerated and trapped using radiation pressure force
from the focused laser beams. Then two groups [4, 5] of Hänsch and Schawlow as well
as Wineland and Dehmelt showed that the resonant light scattering provided essential
enhancement for the laser cooling of neutral atoms and ions, which also led to many
advances such as atomic Bose-Einstein condensates.

The nature of the radiation pressure force guided a development of the cavity op-
tomechanical systems, where an optical or microwave cavity contains a movable ele-
ment. An example of such system, known as an Fabry-Perot interferometer, is an optical
cavity with two mirrors and one of the end mirror oscillating just as it is attached to the
spring. This concept was used in the early gravitational wave antennas in the 1960s, but
mostly in the 1970s and 1980s. Braginsky analyzed an effect of the radiation pressure on
the suspended end mirror of the cavity, which either absorbs or reflects radiation and
results in the either damping or antidamping of mechanical motion. He demonstrated
it in the first experiments using a microwave cavity[6, 7]. In the optical regime, the first
observation was in 1983 of the radiation pressure induced optical bistability in the trans-
mission of Fabry-Perot interferometer [8]. Braginsky, Cave and others further analyzed
the consequences of the quantum fluctuations of radiation pressure and establish the
standard quantum limit for mechanical detection, which is crucial for the gravitational
wave detectors such as in Laser Interferometer Gravitational-Wave Observatory (LIGO).

While many concepts of optomechanics can be traced back to the study of gravi-
tational wave detectors, the idea of measurement and manipulation of the macroscopic
object at quantum limit motivated researchers from different fields of solid-state physics,
quantum information and computation to exploit the possibility of studying quantum
behavior of mechanical objects in their in comparison small labs. The availability of
the micromechanical and nanomechanical devices capable of probing extremely tiny
forces at the atomic scale and detailed understanding of the mechanical effects of light
made realization of macroscopic mechanical systems in the quantum regime achiev-
able with no significant thermal effects [9–13]. Coupling optical or microwave cavities
with mechanical resonators enables control of mechanical motion or mechanical con-
trol of optical or microwave fields. Optomechanical systems hold promise in the creating
nonclassical states of light and mechanical motion. All these provides the basis for the
applications in the quantum information processing, building hybrid quantum devices
and testing fundamentals of quantum mechanics. On another hand, optomechanical
systems provide highly sensitive detection of tiny forces, displacements and masses.

Starting from the 1990s there has been theoretical studies of the quantum optome-
chanical systems. The first steps in the direction of quantum optomechanics were the
quantum nondemolition measurement and squeezing of light. The experimental real-
izations of simple optomechanical systems followed showing optical feedback cooling,
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optical spring effect, self-induced oscillations, and so on. Then, different optomechani-
cal systems were proposed in order to achieve non-dissipative radiation pressure force.
Experiments with optical cavity involved membranes, suspended micromirrors, micro-
toroids, photonic crystals and many others[14].

Optomechanics can be also demonstrated with microwave radiation rather than visi-
ble light. Experiments with microwave cavity had its own independent development and
based on the measuring and controling mechanical resonator using electrical or other
nonoptical way. These include a superconducting transmission line with embedded
nanomechanical beam, a drum resonator which is integrated into the superconduct-
ing resonant circuit or coupling mechanical resonator to a superconducting flux qubit
[15–17]. The idea behind them is to couple mechanical resonator capacitively to the mi-
crowave cavity. Such devices have a great chance to be sensitive detectors and possibly
in realizing quantum hybrid systems by direct interaction with two-level systems. This
thesis mostly focuses on the latter branch of the optomechanics involving microwave
cavity.

1.1.1. BASIC THEORY
To describe the basic theory behind cavity optomechanics we again refer to the simple
driven Fabry-Perot cavity. Earlier, we described the effect of the radiation pressure on
the suspended mirror. However, the displacement of this mechanical resonator is also
changing the cavity length and, therefore, shifting the cavity resonance frequency ωc :

ωc (x) =ωc +x
∂ωc (x)
∂x

|x=0 + . . . (1.1)

The cavity frequency shift per displacement G = ∂ωc (x)/∂x|x=0 is often referred as op-
tomechanical coupling constant. Here we consider out of many cavity modes only the
one, which is closest to the drive frequency. Furthermore, we consider one mechanical
mode with mechanical frequency ωm . Then the uncoupled Hamiltonian of the cavity
and mechanical modes is given by two quantum harmonic oscillators with annihilation
(â, b̂) and creation (â†, b̂†) operators, which is usually a good approximation to the ex-
perimental results. The mechanical resonator is quantized using position operator x̂ =
xXPF(b̂+ b̂†) with zero-point fluctuations of the mechanical resonator xXPF =

�
ħ/2mωm

and effective mass of the mechanical resonator m. This results in the following uncou-
pled Hamiltonian

Ĥ0 =ħωc â†â +ħωmb̂†b̂. (1.2)

In order to obtain the Hamiltonian of the optomechanical interaction we should take
into account the cavity dependence on the displacement

ħωc (x)â†â =ħ(ωc +Gx̂)â†â ⇒ Ĥi nt =ħg0â†â(b̂ + b̂†) (1.3)

with the single-photon optomechanical coupling strength g0 = GxXPF, which has the
dimension of the frequency. By taking a derivative with respect to the displacement of
the interaction Hamiltonian we can find the expression for the radiation pressure force

F̂ =−ħGâ†â. (1.4)
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If driving is added to the system then we include also driving Hamiltonian

Ĥd =ħε(â†e−iωd t + âe+iωd t ) (1.5)

with driving frequency ωd and strength ε. Then, full Hamiltonian becomes time-depen-
dent. To suppress time dependence we can apply unitary transformation Û = eiωd â† ât

and switch to the rotating frame of the drive frequency

H̄ = Û (H0+Hi nt +Hd )Û †− iħÛ
∂Û †

∂t
=−ħ∆â†â+ħωmb̂†b̂+ħg0â†â(b̂+ b̂†)+ħε(â†+ â).

(1.6)
where ∆=ωd −ωc is the drive detuning with respect to the cavity mode.

We did not include into the Hamiltonian the effects of the cavity decay, mechanical
damping and fluctuations. The dissipation can only be included via adding the bath
Hamiltonian and coupling to the bath, which is very well studied. Although, one can take
a shortcut by including dissipation directly to the equations of motion and input-output
theory [18]. We use this formalism to describe the phenomenon of the optomechanically
induced transparency later in this chapter.

Hamiltonian that has been derived so far has nonlinear interaction due to the radia-
tion pressure and in order to simplify it Hamiltonian is often linearized. In many recent
experiments the number of photons in the cavity is large and this technique can be per-
formed. Then, we can split cavity field into an average coherent cavity amplitude ā and
fluctuating part δâ (â = ā +δâ). Then the interaction Hamiltonian is given by

Ĥi nt =ħg0ā2(b̂ + b̂†)+ħg0ā(δâ† +δâ)(b̂ + b̂†). (1.7)

Here we disregarded the term ħg0δâ†δâ(b̂ + b̂†) because this term is much smaller than
the first term. However, the first term identifies the presence of average radiation pres-
sure force F̄ = ħGā2 and can be omitted after shifting the average displacement origin
x̄ by δx̄ = F̄ /mω2

m , which in turn shifts the detuning ∆ = ∆+Gδx̄. Also we assume ā to
be real and positive from what follows that ā = �

nd , where nd is the number of drive
photons inside the cavity. Thus, leaving the interaction Hamiltonian with linear inter-
action between cavity and mechanical modes and the coupling strength g = g0ā being
many-photons optomechanical coupling strength.

However, to observe nonlinear quantum effects it is highly desirable to have strong
coupling regime when g0 exceeds cavity decay rate or even ultrastrong regime when g0
also exceeds mechanical frequency. In this case, one cannot linearize Hamiltonian and
has to solve the nonlinear problem.

1.2. SUPERCONDUCTING MICROWAVE CAVITY
A superconducting microwave cavity coupled mechanically resonator is described by
the same optomechanical Hamiltonian as a Fabry-Perot cavity with an oscillating mir-
ror. When we talk about microwave cavity we mean a resonant electric circuit. It is not
literally cavity and the term "cavity" is used to strengthen the connection to the cavity
optomechanics and resolve confusion with the words resonator or oscillator, since those
can be used referring to both electrical and mechanical degrees of freedom. Whereas
cavity is known to be referred to the electrical degree of freedom.
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The idea of using superconducting circuits in optomechanics came about when ex-
periments demonstrated the quantum nature of microwave light [19]. They achieved
the coherent coupling between a qubit and a single microwave photon suggesting that it
could be possible to couple a microwave cavity and a mechanical resonator. Even earlier
there has been theoretical proposals for the quantum nanomechanical systems based
on superconducting circuits [20]. The property of the superconductivity is that metal be-
low a certain critical temperature Tc behaves as a perfect conductor without dissipation
when an electric current passes through the metal. Meaning the experiments with su-
perconducting circuits require cryogenic temperatures and for GHz cavity frequencies,
the temperatures below 1 K are sufficient. Moreover, low temperature provides an ad-
vantage over optical cavity by eliminating difficulties with aligning and stabilizing. The
microwave cavity is quite stable and rigid except for the involved mechanical resonator
itself. There is also a draw back in comparison with optical cavity in terms of the lower
frequency and as a consequence lower momentum transfer of the photons. Neverthe-
less, the single-photon optomechanical coupling strength can be of the order or even
larger than in the optical setups.

Another challenge is photon detectors, which are essentially used in optical schemes
but are not available in microwave optics. Indeed, whereas the detection of light is quan-
tum limited, microwave amplifies are not shot-noise limited and add noise to the system.
This problem is tackled by either using a nearly shot-noise-limited microwave interfer-
ometer or using the backaction-evading techniques [17, 21]. All advances of technology
made it possible to probe a superconducting qubit with a mechanical resonator and to
prepare a mechanical resonator coupled to a qubit in the quantum ground state with
phonon occupation number less than one [16, 22].

The working mechanism of microwave cavity optomechanical systems based on the
use of transmission line or lumped element circuit with an inductance and capacitance
per unit length where radiation propagates. Then, in most cases the microwave cavity
can be modeled as parallel LC circuit. The displacement of the mechanical resonator
couples to the cavity capacitance C , see Fig.1.1, and shifts the cavity frequency defining
optomechanical coupling constant G = ∂ωc (x)/∂x ∝ ∂C (x)/∂x, which can be extracted
from transmission or reflectivity measurement. This results in the nonlinear interaction
Hamiltonian proportional to a†ax̂ as discussed in previous section and often referred
as the radiation pressure interaction. To be precise this is not always actual "pressure"
in the textbook sense as a force per unit area and such interaction without linearization
is rather dispersive optomechanical interaction in general sense. However, since it has
the same origin in this thesis we refer to the interactions of the form a†ax̂ as the radia-
tion pressure interactions, which can be linearized to the beam-splitter interaction. For
example, the mechanical resonator can be coupled via dielectric gradient forces to the
microwave cavity or inductively coupled as shown in Chapter 3 of this thesis. In addi-
tion the mechanical resonators can be coupled to the non-superconducting microwave
cavities. Sideband cooling from room temperature to 100 K has been shown for non-
superconducting cavities, which usually have low quality factors [23].



1

6 1. INTRODUCTION

(a) (b)

Figure 1.1: (a) Chip with 6 stripline resonators (pink) and the straight feedline (green).The bottom panels are
zooms into a capacitive elbow coupler and a mechanical resonator. (b) Scanning electron microscope image
of an embedded mechanical resonator with displacement x.(Fig. from Ref. [15])

1.3. JOSEPHSON EFFECT
We start from describing theory of superconductivity, which leads to the Josephson ef-
fect. The concept of a superconductivity as a quantum phenomenon on a macroscopic
scale was first proposed by London [24] and the microscopic theory of superconductiv-
ity was derived by Bardeen, Cooper and Schrieffer [25]. They showed that some of the
free electrons become paired together. These electrons attraction producing this pairs,
so-called Cooper pairs, arises from electron-phonon interaction, which should be larger
than the Coulomb repulsion between electrons making metal superconducting. In order
for pairs to benefit most from the attractive interaction, all of the phases of pairs must
be the same. Thus, if the phase is fixed at any point of the superconductor, the relative
phase of all other points adjust accordingly. This phase coherence is responsible for the
dissipationless current flow and flux quantization, which shows that the flux contained
in a closed superconducting loop is quantized in units of the flux quantum Φ0 = h/2e
(h is Planck’s constant and e is the electronic charge). The superconducting state with
paired electrons is lower in energy and, hence, more favourable than the normal state of
the metal. Then the pairs are in condensate state which may be described by the macro-
scopic wave function introduced by Ginzburg and Landau [26] before BCS theory

Ψ(x, t ) =
�
ρ(x, t )eiχ(x,t ), (1.8)

which is a complex-valued order parameter in the superconducting phase. The density
of pairs in the superconductor is given by ρ(x, t ) = |Ψ(x, t )|2. In the absence of applied
fields or currents, the phase χ(x, t ) takes the same value throughout the superconductor.

In 1962 Josephson made a prediction that a supercurrent should flow between two
superconducting electrodes separated by a thin insulating barrier even in the absence of
voltage [27]. If there are two superconductors isolated from each other, the phase of each
superconductor can change independently. As long as superconductors are moved close
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Figure 1.2: A schematic diagram of the Josephson junction connected to the voltage V . The wavefunction of
the left electrode isΨL and of the rightΨR and the phase difference across the junction is ∆φ=χR −χL .

together and separated by "weak link" it is often interpreted as coherence of electrons at
two sides of the barrier. A weak link can be an insulating layer, as Josephson originally
proposed, or a normal metal layer made weakly superconducting by a proximity effect,
or a constriction in almost continuous superconducting material. These three cases of
Josephson junction are often referred as S − I −S, S −N −S, or S −c −S junctions, where
the S, I , N , and c denote superconductor, insulator, normal metal, and constriction, re-
spectively [28]. Eventhough there is a weak link the phase correlation occurs between
two superconductors then the whole system behaves to some extent as a single super-
conductor.

To describe theory of the Josephson effect, we follow very simple derivation of Feyn-
man [29], which is based on a two-level system picture. We consider a tunneling struc-
ture superconductor-barrier-superconductor as Fig. 1.2 shows. The pair wave function
ΨL (ΨR ) for the right (left) superconducting electrode is defined in eq.(1.8). If we con-
sider a d.c. potential difference V across the junction and a zero voltage in the halfway of
the barrier then the time evolution of the system is described by the Schrödinger equa-
tion for each electrode:

iħ∂ΨL

∂t
= eVΨL +KΨR ,

iħ∂ΨR

∂t
=−eVΨR +KΨL , (1.9)

where K is the coupling amplitude, which gives a measure of the coupling interaction
between the two superconductors and depends on specific junction structure. Next, we
separate real and imaginary parts and get equations for the phase difference∆φ=χR−χL
and the density of the left and right superconductor

∂ρL

∂t
= 2

ħK
�
ρRρL sin∆φ, (1.10)

∂ρR

∂t
=− 2

ħK
�
ρRρL sin∆φ, (1.11)

∂∆φ

∂t
= 2eV

ħ . (1.12)
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The current density is defined as J ≡ ∂ρL
∂t =− ∂ρR

∂t and from eq.(1.10) and (1.11) it follows

J = 2K
ħ

�
ρRρL sin∆φ. (1.13)

This also can be written in terms of supercurrent between two superconducting elec-
trodes and is known as the first Josephson relation

I = Ic sin∆φ (1.14)

with the critical current Ic , which is the maximum supercurrent that the junction can
support. The second Josephson relation described by eq.(1.12) says that if a voltage dif-
ference were maintained across the junction the phase difference would evolve accord-
ingly.

Gauge-invariant phase
For simplicity we derived Josephson relation in term of the phase difference, which

can be used at zero magnetic field. Generally, ∆φ is not gauge-invariant quantity and,
thus, cannot describe current I at a finite magnetic field. This can be resolved by replac-
ing ∆φ with gauge-invariant phase difference φ defined as

φ≡∆φ− 2π
Φ0

�
A ·ds, (1.15)

where the integration is from the left electrode of the weak link to the right one and A is
a vector potential.

RCSJ model
For the practical applications, the Josephson junction is usually modeled as a re-

sistively and capacitively shunted junction (RCSJ) model. In this model, the Josephson
junction has a critical current I0 and in parallel there are a capacitance C and a resis-
tance R of the junction. Using Kirchhoff’s law the current through the junction can be
written as

I0 sin(φ)+ V
R

+CV̇ = IB . (1.16)

V is eliminated using the second Josephson relation and the time can be changed to
the dimensionless time τ = ωpl t , where ωpl =

�
2πI0/(CΦ0) is plasma frequency of the

junction. We also define a quality factor of the junction Q =ωp RC . The dynamics of the
phase φ can be viewed as the equation of motion of a point mass in a field of force

d 2φ

dτ2 + 1
Q

dφ
dτ

= IB

I0
− sin(φ) =− 2π

Φ0I0

∂U
∂φ

, (1.17)

where we defined tilted washboard potential U (φ) of the Josephson junction with the
amplitude of the potential given by the Josephson energy E J = I0Φ0/2π

U (φ) = E J

�
1−cosφ− IB

I0
φ

�
. (1.18)
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(a) (b)

Figure 1.3: (a) Schematic drawing of the dc SQUID. It consists of two Josephson junctions in parallel. The loop
is biased by a current IB and the voltage drop V . (b) Equivalent circuit of the SQUID using RCSJ model.

1.3.1. DC SQUID
The dc SQUID (superconducting quantum interference device) consists of two Joseph-
son junctions connected in parallel on a superconducting loop (see Fig. 2.1(a) ). The
first experiment performed by Jaklevic et al demonstrated quantum interference be-
tween two thin-film Josephson junctions [30]. The authors observed the rapid oscil-
lations, which are due to quantum interference, analogous to two-slit interference in
optics, and their period is given by the field required to generate one flux quantum in
the SQUID loop. The advantage of the SQUID is very sensitive detection of the mag-
netic flux. SQUIDs are capable of measuring any quantity which can be converted to
magnetic flux, for example, magnetic field, magnetic susceptibility, current, voltage, and
mechanical displacement.

To proceed, we relate the magnetic flux through the SQUID with the gauge-invariant
phase difference. We ignore the effect of the magnetic field on the electrodes and focus
on its effect on the gauge-invariant difference. We can write a flux Φ threading through
the loop via A taking into account that A =Φ0/2π∇χ in the electrodes

Φ=
�

A ·ds = Φ0

2π

�

electrodes
∇χ ·ds+

�

barriers
A ·ds. (1.19)

The phaseχ of electrodes must be single-valued meaning that the first term plus the sum
of the finite phase differences of each junction across the links Φ0

2π∆φ1 and −Φ0
2π∆φ2 must

be zero (mod 2π). Combining this with integral over links and using eq.(1.15), one can
arrive at the condition for the phase difference of two junctions

φ1 −φ2 =
2πΦ
Φ0

+2πn, (1.20)

where n is an integer.
In most dc SQUID setups each junction has a resistive shunt to suppress hysteresis

on I −V characteristic and can be modeled with the RCSJ model [31] as in Fig. 2.1(b).
Each Josephson junction has a critical current I0 assuming SQUID is symmetric. We
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introduce the bias current IB and the circulating current in the loop J to the SQUID then
the dynamics of each phase is describes by the differential equations






d 2φ1
dτ2 + 1

Q
dφ1
dτ = IB

2I0
− J

I0
− sin(φ1),

d 2φ2
dτ2 + 1

Q
dφ2
dτ = IB

2I0
+ J

I0
− sin(φ2).

(1.21)

Since the phase difference of two junctions ϕ− = (φ1 −φ2)/2 is fixed by the flux, the dy-
namics of the SQUID governs the overall phase ϕ+ = (φ1 +φ2)/2

d 2ϕ+
dτ2 + 1

Q
dϕ+
dτ

= IB

2I0
− sin(ϕ+)cos(ϕ−) =− 2π

Φ0I0

∂U
∂ϕ+

, (1.22)

where we defined the potential U (ϕ+) of the SQUID

U =−E J

�
cos(ϕ+)cos(ϕ−)+ IB

2I0
ϕ+

�
. (1.23)

SQUID can be also views as a LC circuit. Then, we can define an effective Josephson
inductance V = L J∂I /∂t of the SQUID

L J =
Φ0

4πI0 cos(ϕ−)
. (1.24)

The Josephson inductance depends on the phase difference and subsequently on
the flux. If we incorporate the mechanical resonator into the loop, then the total flux
will change when the resonator with the length l and displacement x(t ) oscillates : Φ=
Φb +Bl x, where Φb is the flux through the SQUID area. Hence the cavity frequency will
be modulated by the mechanical resonator

ωc (x) =
�

1
L J C

=

����4πI0 cos
�

2π(Φb+Bl x)
Φ0

�

Φ0C
. (1.25)

1.4. OPTOMECHANICALLY INDUCED TRANSPARENCY
One of the important phenomenon in optomechanics is optomechanical induced trans-
parency(OMIT). It takes its roots from electromagnetically induced transparency(EIT),
which occurs in the multilevel atoms by coherent interaction of the laser with the atomic
states leading to the quantum interference in the excitation pathways [32]. In this way
the absorption and refraction can be eliminated at the resonant frequency of a trans-
mission for the weak probe field. In the optical response this effect observed as a narrow
spectral transparency window induced by a drive laser. The benefit of EIT lies in its po-
tential great applications for the nonlinear optics and quantum information processing
because in this way slowing, advancing and switching light is possible and even a com-
plete stop of light enables optical pulse storage.

OMIT is equivalent to EIT but instead in the cavity optomechanical systems and re-
solved sideband regime, where cavity decay rate is much weaker than mechanical fre-
quency. Theoretical predictions of OMIT followed by experimental observations starting
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Figure 1.4: The schematics, which illustrates the process of the interference between photons scattered from
the drive field due to the modulation of mechanical resonator and photons of the probe field.

as of 2010 [33]. Since in this thesis we are focused on the microwave rather than optical
cavity, we discuss OMIT phenomenon in the microwave context.

In an OMIT setup, two microwave fields are injected inside the cavity. A strong drive
field Sd e−iωd t with drive frequency ωd at lower (red-detuned) or upper (blue-detuned)
mechanical sideband frequency ωd =ωc −ωm or ωd =ωc +ωm , respectively, and a weak
probe field Sp e−iωp t with probe frequencyωp measures the cavity response by sweeping
the probe tone in the vicinity of ωc . The presence of both fields creates a radiation pres-
sure force oscillating at the detunning between the probe and drive fieldsΩ=ωp −ωd . If
the detunning matches mechanical frequency for the red sideband or negative mechan-
ical frequency for the blue sideband then mechanical resonator is driven resonantly.
Mechanical resonator in turn modulates the drive field and results in the Stokes- and
anti-Stokes scattering of microwave photons from the drive field. When the system is in
resolved sideband regime, the Stokes scattering with frequency ωd −Ω is far off cavity
resonance and can be ignored. The anti-Stokes scattering has frequency ωd +Ω, which
is exactly the frequency of the probe field. Furthermore, this process is also phase co-
herent with the probe leading to an interference with the original probe field measuring
the cavity response. The schematic picture of this process for red and blue sidebands is
shown on Fig.1.4.If the interference is destructive then the probe and drive field suppress
the intracavity field and lead to OMIT effect. However, for the single-port cavity we can
only measure the reflection and, hence, this effect is called optomechanically induced
reflection (OMIR). If the interference is constructive then these two fields amplify the
intracavity field and we observe optomechanically induced absorption (OMIA), which is
equivalent to the electromagnetically induced absorption (EIA) in the atomic physics.

Now understanding the physical picture of the phenomenon, we can solve the math-
ematical equations describing OMIT captured by the Langevin equations of motion for
the cavity modes in terms of the creation and annihilation operators (â†, â) and me-
chanical modes in terms of the displacement operator (x̂)

d
d t

â(t ) =
�
i∆− κ

2

�
â(t )− iGx̂(t )â(t )+�

ηκ(Sd +Sp eiΩt ), (1.26)

m
�

d 2

d t 2 x̂(t )+Γm
d

d t
x̂(t )+ω2

m x̂(t )
�
=−ħGâ†(t )â(t ) (1.27)
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with the difference of the cavity and drive frequencies ∆ = ωd −ωc , which is set by red
or blue sidebands and Γm being the mechanical damping rate of the resonator. The
cavity coupling parameter is given by η= κe /(κ0 +κe ) = κe with κ0, κe and κ denote the
intrinsic, the external, and the total dissipation rates, respectively.

Since the probe field is much weaker than the drive we can separately treat them and
linearize optomechanical dynamics for the cavity field â(t ) = ā +δâ(t ) and mechanical
displacement δx̂(t ) = x̄ +δx̂(t ) around the steady-state mean values. The mean values
can be easily found by disregarding the probe field and setting all time dependent deriva-
tive to zero

ā2 = ηκ

∆
2 +κ2/4

S2
d , (1.28)

x̄ =−ħGā2

mω2
m

, (1.29)

where ∆ = ∆−Gx̄ is an effective cavity detuning including the frequency shift due the
static mechanical displacement. We also learned that there is only anti-Stokes scattering
that matters meaning δâ(t ) = Ae−iΩt . Then the mechanical resonator oscillates with the
same frequency Ω and one can write a solution δx̂(t ) = X e−iΩt + X ∗eiΩt . The solutions
to these complex amplitudes of the cavity and mechanical modes can be evaluated using
the Langevin equations for the red sideband andΩ close to the mechanical frequency

X =−i g xZPFχm A, (1.30)

A =
�
ηκχc

1+ g 2χmχc
Sp , (1.31)

where χm(Ω) = 1/(−i (Ω−ωm)+Γm/2) is the susceptibility of the mechanical resonator,
χc (Ω) = 1/(−i (Ω+∆)+κ/2) is the susceptibility of the cavity. For the blue sideband and
Ω close to the negative mechanical frequency the solutions has the same form but the
mechanical susceptibility is taken with the minus sign (−χm(Ω)).

The transmission or as in the case of single-port cavity the reflection coefficient is
defined as the ratio of the output and input fields at the probe frequency [33]. Experi-
ment observing OMIT measures this coefficient at different probe frequencies and his
mathematically expressed as following

tr = 1−�
ηκ

A
Sp

. (1.32)

To analyze the reflection coefficient solutions we choose an overcoupled cavity (η>
0.5) and a realistic set of parameters for the cavity and the mechanical resonator. Fig.1.5
shows OMIA and OMIR for the blue and red sideband. For the red sideband the weak
drive power results in the OMIA effect and while the drive power is increased an absorp-
tion feature becomes a reflection. This happens due to the increase in the intrinsic dissi-
pation rate κ0 +4g 2/Γm when the many-photon optomechanical coupling is increased,
which results in the total intrinsic dissipation rate higher than the external dissipation
rate. Similar situation occurs for the mechanical damping Γm +4g 2/κ and then it leads
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Figure 1.5: OMIA and OMIR effects for the red and blue sidebands and two different drive powers. For weak
drive power the zoomin into the transparency window is shown inside the main plot. The shape of the peak/dip
has Lorentzian shape. The set of parameters is used to visualize tr coefficient: κ= 2π150 kHz, κe = 2π110 kHz,
g /ā = 2π0.65 Hz, ωm = 2π50 MHz, m = 0.3 pg, and Γm = 2π400 Hz.

to the obvious broadening of the transparency window. For the blue sideband and over-
coupled cavity for the weak and strong drive power there is only OMIR. However, for
the stronger drive power the OMIR peak has increased in height, which suggests that
more probe photons are on the output than were on the input leading to an amplifica-
tion of the signal. The amplification can be understood by increased g so that 4g 2/Γm
becomes larger than intrinsic cavity dissipation κ0 and then total intrinsic dissipation
cavity rate becomes negative. The same picture of the OMIA and OMIR is observed in
the experiment between a superconducting microwave cavity and a graphene mechani-
cal resonator [34]. For the undercoupled cavity the panels are switched between red and
blue sidebands so that for the red sideband there is only OMIR and for the blue sideband
there is OMIR and OMIA for different drive powers.

For OMIA and OMIR, we can quantify the features of the peak using the optomechan-

ical cooperativity, defined as C = 4g 2
0 nd
Γmκ . The minimum value of the reflection coefficient

for OMIA is given by much simplified expression
��� 2η

1+C −1
���, which is the maximum value

of reflection coefficient for OMIR in the transparency window. In the limit of no optome-
chanical coupling (C = 0), we recover |2η−1| expression for the minimum for a single-
port reflection cavity, which sets the base line of OMIA/OMIR feature. The linewidth of
OMIA/OMIR feature is given by (1+C )Γm , where the additional term CΓm originates
from the backaction effects and can be tuned by nd . Furthermore, amplitude of the me-

chanical resonator can also be cast into a convenient form, X = xZPF
� C

1+C

��κe
g

��np with
np being a number of probe photons. It is instructive to see that for low cooperativity
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(C < 1), the mechanical amplitude can be tuned by both the probe and drive tone as
X ∝�nd np . On the other hand, in the limit C > 1, the mechanical amplitude is pro-
portional to

�
np /nd , suggesting that an increase in drive field leads to optomechanical

damping and hence a reduction in the mechanical amplitude. Although the depth of the
OMIA dip in the reflection coefficient does not depend on the probe power, the mechan-
ical force of the resonator does: increasing the probe power for a fixed drive power will
exert a larger oscillating force on the resonator, and can drive it into the nonlinear regime
[35]. In the limit κ� 2g � Γm , the measurement of the OMIA/OMIR allows to directly
probe the responsivity of the mechanical resonator giving its amplitude and dissipation
rate, thus making it a sensitive technique.

1.5. OUTLINE OF THIS THESIS
In this thesis we theoretically study the effects of the nonlinearity of the cavity or me-
chanical resonator in microwave optomechanics. The first part of the thesis is focused
on the dc SQUID cavity, which is intrinsically nonlinear, and embedded harmonic me-
chanical resonator. We start with classical investigation of the nonlinear cavity effect on
the dynamics of the SQUID coupled to the mechanical resonator in Chapter 2. In Chap-
ter 3, we take the next step and quantize this system as well as taking into account the
SQUID asymmetry of two Josephson junctions in critical currents. We obtain the cou-
plings of this system and discuss possibility of reaching ultrastrong coupling regime. In
Chapter 4, the Kerr nonlinearity of the SQUID affects the cavity frequency and dissipa-
tion. These shifts are derived using variational theorem for path integrals.

The second part of this thesis studies optomechanical response of the cavity and
nonlinear mechanical resonator. By driving optical or microwave cavity hard enough the
system can be taken to the Duffing regime. In Chapter 5, the OMIA and OMIR features
of the nonlinear response are analyzed in the details including drive frequency detuning
from the red or blue sidebands, considering overcoupled and undercoupled cavity, and
going beyond Duffing mechanical resonator. Chapter 6 presents the fittings to the ex-
periment with a graphene mechanical resonator coupled to the microwave cavity based
on the theory developed in chapter 5. Moreover, the obtained effect of the negative non-
linear damping of the mechanical resonator is also addressed.
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2
MULTISTABILITY OF A JOSEPHSON

PARAMETRIC AMPLIFIER

O. Shevchuk, R. Fazio and Ya. M. Blanter

We study the dynamics of Josephson parametric amplifier (JPA) coupled to a mechanical
oscillator, as realized with a dc Superconducting Quantum Interference Device (SQUID)
with an embedded movable arm. We analyze this system in the regime when the frequency
of the mechanical oscillator is comparable in magnitude to the plasma oscillation of the
SQUID. When the nanomechanical resonator is driven, it strongly affects the dynamics of
the JPA. We show that this coupling can considerably modify the dynamics of the JPA and
induce its multistability rather than common bistability. This analysis is relevant if one
considers a JPA for detection of mechanical motion.

This chapter has been published in Phys. Rev. B 90, 205411 (2014).
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2.1. INTRODUCTION
Recently, there has been considerable interest in coupling mechanical resonators to op-
tical and microwave radiation, as well as to electric conduction [1–3]. Resulting devices,
nanoelectromechanical and optomechanical systems, combine excellent mechanical and
electrical/optical properties, such as low dissipation both in the cavity and in the me-
chanical resonator. These systems have already displayed a rich variety of interesting
physical phenomena. At the same time, they have found applications, e.g., as sensors
and transducers. Most of the experiments so far have been carried out in the regime
of classical mechanical motion, though recently the quantum regime has been demon-
strated as well [4–8].

An important problem in this field is to find efficient schemes to detect the mechan-
ical motion. To this end, one should find systems whose properties are significantly af-
fected by the mechanical resonator, consequently carrying a distinct signature of this
coupling. On the other side, the coupling to the detector has sizable consequences on
the resonator too. Backaction, understood as an effect of the detector (for example, an
optical or a microwave cavity) on the properties of the mechanical resonator, is one of
the fundamental issues in the fields of nano- and optomechanics [2]. Even though back-
action is not always wanted in the experiment and can be suppressed with backaction-
evasion techniques [9], one can nevertheless use it as an advantage in order to manipu-
late, for example, to cool [10] and to heat, the resonator. In optomechanics, backaction
is provided by radiation pressure and its properties are very well established, both theo-
retically and experimentally [3]. More recently, backaction in nanomechanical devices,
caused by electrostatic interactions [11, 12] and by Lorentz force [13, 14], both in the clas-
sical regime, has been demonstrated experimentally. It is important that in all of these
examples, the mechanical resonators were in the linear regime. The backaction effect
consisted of the modification of the frequency (optical spring) and the quality factor, as
well as the induced nonlinearity of the mechanical resonator.

Within the area of superconducting nanomechanical systems, superconducting quan-
tum interference device (SQUID)-based circuits have been intensively investigated. A dc
SQUID and its integration with the mechanical resonator has been theoretically pro-
posed [15–19] and experimentally demonstrated [13, 14, 20]. The detection of the me-
chanical oscillations was possible through an analysis of the dynamics of the electri-
cal response of the superconducting circuit. A SQUID is a nonlinear cavity. Nonlinear
effects in opto- and nanomechanical systems recently drew a lot of attention (see Ref.
[3]). They originate from different sources — nonlinear coupling between the resonator
and the cavity, mechanical nonlinearities of resonators made of carbon nanotubes and
graphene, and also from the cavity itself. Our aim is to study the role of nonlinearity in
the dynamics of a SQUID coupled to a mechanical resonator. Our interest is two-fold.
On one hand, we would like to explore further the impact of mechanical oscillation on
the stability of the SQUID dynamics, thinking to eventually use this information as a de-
tection mean. On the other hand, backaction in the presence of strong nonlinearities
requires a closer inspection. Due to the complexity of dynamic behavior of nonlinear
systems, one can expect that even a small effect of backaction can considerably alter the
properties of a nonlinear oscillator.

In this chapter, we make the first step in this direction. We consider a dc SQUID cou-
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pled to a driven harmonic mechanical resonator. Whereas formally this system is similar
to the one studied experimentally in Ref. [20], to explore the regime where the backac-
tion is the strongest, we consider the situation when the mechanical and the cavity fre-
quencies are of the same order. This is the regime when the dc SQUID acts as a Josephson
parametric amplifier (JPA) [21, 22] and displays a multistable behavior: the amplitude of
the oscillations of a driven JPA can assume two values in a wide frequency range; such
behavior was seen in the response of the nonlinear oscillators to the parametric forc-
ing [23–25]. This feature of the JPA can be used to readout the state of the qubit, since
different amplitudes correspond to different states of the qubit. We consider the sit-
uation when both the field of the cavity (the phase of the Josephson junctions) and the
coordinate of the mechanical motion are classical variables. In our chosen setup, the JPA
is parametrically driven. Assuming a weak coupling between the JPA and the mechanical
oscillator, we demonstrate that the backaction can considerably modify the dynamics of
the JPA and lead to multistability rather than bistability. We obtain this result analytically,
approximating the JPA by the Duffing oscillator, and also confirm it numerically, relaxing
this approximation. The results of this chapter demonstrate that backaction can indeed
essentially modify the behavior of a nonlinear oscillator. The present analysis is therefore
relevant when considering the JPA as a detector for mechanical motion. In comparison
with the qubit detection, where the hysteretic regime permits a readout, the mechanical
motion detection uses the whole finite amplitude regime. Therefore, here the JPA acts as
a threshold detector. Moreover, the multistability results in the extra hysteretic region,
which enhances the sensitivity and range of the detector.

This chapter is organized as follows. In Sec. 2.2, we describe the device and set up the
model to describe it. In Sec. 2.3, we consider the case of negligible coupling (no backac-
tion of the SQUID on the mechanical oscillator) and solve the corresponding equations.
In Sec. 2.4, the corrections to the amplitude due to backaction are found by considering
the coupling term in the equations of motion. The conclusions of this work are summa-
rized in Sec. 2.5.

2.2. THE MODEL
We consider a dc SQUID with two (nearly) identical Josephson junctions coupled to a
mechanical resonator. The resonator is formed by a suspended segment of supercon-
ductor. We only consider one mode of the mechanical resonator. It can be externally
driven, which is experimentally realized by fabricating the suspended part of the setup
close to a piezoelectric element. The schematic overview of the system is shown in
Fig.2.1. The coupling between the SQUID and the mechanical resonator is based on
the fact that the critical current of the SQUID periodically depends on the magnetic flux,
making it a very sensitive magnetic flux detector. The oscillations of the resonator in-
duce a variation of the area thus affecting the flux. When the mechanical resonator is
driven, the flux modulation leads to a parametric driving for the SQUID [15, 16].

The mechanical resonator is modeled as a harmonic oscillator driven by external
periodic force Fd cos(ωd t ) with driving frequencyωd . The magnetic flux passing through
the SQUID loop is dependent on the position of the resonator, Φ=Φext +β0Bl x, where
Φext =α0B A represents the flux through the area A when the resonator is at rest, B is the
magnetic field, and y is the displacement from the equilibrium position of the resonator.
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(a) (b)

Figure 2.1: (a) The picture of the system: the rectangular-shaped dc SQUID with the suspended beam. The
magnetic field is orthogonal to the SQUID. The oscillation of the beam is in the loop plane. Therefore, the
displacement x generates change in the magnetic flux passing through the loop. (b) The schematic overview of
the setup. The system is driven with force Fd . Josephson junctions are modeled as resistively and capacitively
shunted junctions(RCSJ).

The geometric factors of α0 and β0 (both of the order of unity) depend on the direction
of the magnetic field. Finally, the inductance of the SQUID is assumed to be negligibly
small.

To analyze the dynamics of this system one can look at the sum and difference of
gauge-invariant phases across each Josephson junction, respectively, ϕ± = (φ1 ±φ2)/2.
The condition that the superconductor order parameter is single valued leads to the re-
lation between the phase difference and total flux bias,

ϕ− =π
Φ

Φ0
=φb +ξx +2πn. (2.1)

Here, n is an integer, Φ0 =πħc/e is a superconducting flux quantum, and the geometric
constants of the system are

φb = πα0B A
Φ0

and ξ= πβ0Bl
Φ0

. (2.2)

The Hamiltonian H = Hx +Hϕ+U of the SQUID with the movable arm is thus

Hx = p2

2mr
+

mrω
2
m x2

2
−Fd x sin(ωd t ), (2.3)

Hϕ =
p2
ϕ

2mϕ
, (2.4)

U =−2E J cos(ϕ−)cos(ϕ+), (2.5)

where E J = I0Φ0/(2π) is the Josephson energy, p, mr , and ωm are the momentum, the
mass, and the frequency of the mechanical resonator, respectively, and pϕ and mϕ are
the momentum and the mass of the SQUID phase. The effective Hamiltonian is com-
posed of the contribution from the resonator Hx , the kinetic energy of the SQUID Hϕ,
and the potential energy of the SQUID U . Since the potential energy U depends on the
phase difference it provides the coupling between the SQUID and the oscillator through
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Eq. (2.1). From our system it follows that the momentum of the mechanical oscillator
is p = mr ẋ. The phase momentum of the SQUID is given by pϕ = mϕϕ̇+ = E J ϕ̇

2
+/ωpl ,

where mϕ = 2E J /ωpl is the mass of the phase, ωpl =
�

2πI0/(CΦ0) is the plasma fre-
quency, and I0 and C are the critical current and the capacitance of each Josephson
junction.

Clearly, the potential energy of the SQUID is a nonlinear function inϕ− andϕ+. Since
we are interested in the two dynamical variables x andϕ+, the dependence on the phase
difference should be changed to the dependence on the oscillator displacement. In the
current experiments, the ratio ξx is very small which enables us to expand the potential
energy so that

U =−2E J
�
cos(φb)− sin(φb)ξx

�
cos(ϕ+). (2.6)

2.3. EQUATIONS OF MOTION
The dynamics of the system is governed by the following equations of motion,

ẍ +Γm ẋ +ω2
m x = Fd

mr
cos(ωd t )− 2E Jξsin(φb)

mr
cos(ϕ+), (2.7)

ϕ̈+
ω2

pl

+ δ

ωpl
ϕ̇++

�
cos(φb)− sin(φb)ξx

�
sin(ϕ+) = 0. (2.8)

where Γm = ωm/Qy and δ = 1/Qϕ are the dissipation rates for the resonator and the
SQUID, with Qy and Qϕ being the respective quality factors.

The two equations are coupled by the last term in Eq. (2.7), which expresses the
backaction of the SQUID on the mechanical resonator, and by the term proportional to
ξx in Eq. (2.8), which provides the effect of the resonator on the SQUID. Note that both
couplings are proportional to ξ. For ξ = 0, the equations are decoupled: The SQUID is
not driven, ϕ+ = 0, whereas the driven mechanical resonator shows the usual response,

x(t ) = A(ωd )cos(ωd t )+D(ωd )sin(ωd t ) (2.9)

with

A(ωd ) = Fd

mr

(ω2
m −ω2

d )

(ω2
m −ω2

d )2 +Γ2
mω

2
d

, (2.10)

D(ωd ) = Fd

mr

Γmωd

(ω2
m −ω2

d )2 +Γ2
mω

2
d

. (2.11)

In the following, we will analyze the consequences of the coupling on the classical
nonlinear dynamics of the SQUID. We first disregard the backaction of the SQUID [drop-
ping the last term on the right-hand size of Eq. (2.7)], but still consider the effect of the
mechanical resonator on the SQUID. In this case, the SQUID is parametrically driven.
There is always a trivial (zero) solution for the overall phase drop ϕ+; the non-trivial one
is found by substituting y(t ) from Eq. (2.9). For convenience, we introduce the parame-
ters

�
ω= ωd

2ωpl
, ω2

φ = cos(φb), τ=ωpl t ,

γ= ξsin(φb)A(ω), β= ξsin(φb)D(ω),
(2.12)
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and choose the regime where cos(φb) > 0, so that Eq. (2.8) is rewritten as

ϕ̈++ω2ϕ+ =−δϕ̇++ω2ϕ+−ω2
φ sin(ϕ+)+

�
γcos(2ωτ)+βsin(2ωτ)

�
sin(ϕ+). (2.13)

Under realistic experimental conditions , the coefficients in front of the phase-dependent
functions on the right-hand side of the equation are usually small. Setting them to zero
gives the unforced and undamped linear oscillator. Therefore, we can employ widely
used analytical techniques for solving the Duffing oscillator [26], based on a perturbation
around a solution to the linear oscillator. One of the methods to obtain the perturbative
correction is based on the van der Pol transformation,

u =ϕ+ cos(ωτ)− ϕ̇+
ω

sin(ωτ), (2.14)

v =−ϕ+ sin(ωτ)− ϕ̇+
ω

cos(ωτ), (2.15)

where u and v are slowly varying quantities. The transformation turns the second-order
differential equation into a system of two first-order differential equations,

ωu̇ =−sin(ωτ)
�
ωδ(u sin(ωτ)+ v cos(ωτ))+ω2 (u cos(ωτ)− v sin(ωτ))

−ω2
φ sin((u cos(ωτ)− v sin(ωτ)))+γcos(2ωτ)sin(u cos(ωτ)− v sin(ωτ))

+βsin(2ωτ)sin(u cos(ωτ)− v sin(ωτ))
�

, (2.16)

ωv̇ =−cos(ωτ)
�
ωδ(u sin(ωτ)+ v cos(ωτ))+ω2 (u cos(ωτ)− v sin(ωτ))

−ω2
φ sin((u cos(ωτ)− v sin(ωτ)))+γcos(2ωτ)sin(u cos(ωτ)− v sin(ωτ)

+βsin(2ωτ)sin(u cos(ωτ)− v sin(ωτ))
�

. (2.17)

In order to solve such system, the method of averaging over the period T = 2π/ω
is used. The idea is to approximate the equation in the form ẏ = f (y, t ) by averaging
out fast oscillatory dynamics, obtaining ẏ � = 1/T

�T
0 f (y �, t )d t ≡ f̄ (y �). For that, slowly

varying quantities are written in polar coordinates, i.e., u = r cos(θ) and v = r sin(θ).
Then, the integrals of nonlinear functions can be found from the properties of the Bessel
functions [27],

�π

−π
ei (u cos(τ)+v sin(τ)) cos(kτ)dτ= 2πi k cos(kθ)Jk (r ), (2.18)

�π

−π
ei (u cos(τ)+v sin(τ)) sin(kτ)dτ= 2πi k sin(kθ)Jk (r ), (2.19)

where k is an integer and Jk (r ) is the Bessel function of the first kind. On proceeding this
way, we are left with two equations in terms of the amplitude r and the phase θ,

ωṙ =−
�
δω

r
2
+ 1

2
(γsin(2θ)+βcos(2θ)) (J1(r )+ J3(r ))

�
,

rωθ̇ =−
�
−ω2

φ J1(r )+ω2 r
2
+ 1

2
(γcos(2θ)−βsin(2θ)) (J1(r )− J3(r ))

�
. (2.20)



2.3. EQUATIONS OF MOTION

2

23

0.98 0.985 0.99 0.995 1 1.005

0.2

0.4

0.6

0.8

Ω', frequency

r,
am

p
li

tu
d
e

b"0.01505

b"0.01

b"0

Figure 2.2: Frequency response of the SQUID for dimensionless driving force c = 0.03 and different values of
SQUID dissipation b. The purple horizontal line represents the zero solution. Here, only stable equilibria are
shown.

The equilibrium points of the slow flow are determined by setting ṙ and θ̇ to zero, giving

γsin(2θ)+βcos(2θ) =− δωr
J1(r )+ J3(r )

, (2.21)

γcos(2θ)−βsin(2θ) =−
ω2r −2ω2

φ J1(r )

J1(r )− J3(r )
. (2.22)

By taking the square and then summing Eqs. (2.21) and (2.22) one gets the algebraic
equation for the amplitude only,

(rω�2 −2J1(r ))2

(J1(r )− J3(r ))2 +
�
brω��2

(J1(r )+ J3(r ))2 = (γ2 +β2)

4ω4
φ

, (2.23)

where ω� =ω/ωφ and b = δ/ωφ.
We are interested in stable solutions of Eq. (2.23) and, therefore, we need to perform

the stability analysis [28]. It is done by varying the amplitude and the phase of the out-
of-equilibrium solution (r0,θ0) obtained from Eqs. (2.21) and (2.22),

r = r0 +∆r and θ = θ0 +∆θ, (2.24)

where ∆r and ∆θ are small deviations. Substituting (2.24) into (2.20) and linearizing in
∆r and ∆θ, we obtain the constant coefficient system,

�
∆ṙ
∆θ̇

�
=

�
e(r0) f (r0)
g (r0) h(r0)

��
∆r
∆θ

�
= M

�
∆r
∆θ

�
. (2.25)

We seek the following solutions to the linear system: ∆r = Aeλt and ∆θ = Deλt . The
solutions should be bound as t goes to infinity, meaning the eigenvalues λ of M should
be negative. We impose the conditions on the trace of the associated matrix M, tr =
e(r0)+h(r0) ≤ 0, and on its determinant, det = e(r0)h(r0)− f (r0)g (r0) > 0. From these
conditions the stability testing of the solutions is straightforward.

Equation (2.23) is the equation for the amplitude r if the backaction is not taken into
account. The equation is valid for any values of r . Analytical solutions can be obtained,
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Figure 2.3: The dependence of the amplitude on the frequency for fixed dissipation b = 0.001 and driving forces
c = 0.008,0.03,0.1 .

however, only for small values of r . The denominators on the left-hand side of Eq. (2.23)
can be safely ignored because the dissipation and quantity ω�2 − 1 are small as long as
the backaction is not included. Their inclusion does not change the result (they will
be taken into account in the next section for evaluating the effect of backaction). The
Bessel function in the numerator of Eq. (2.23) is instead approximated up to the third
order in the amplitude, J1(r ) ≈ r

2 −
r 3

16 . We focus on the special case when the mechanical
oscillator is in the resonance ωd ∼ ωm . Then, introducing the dimensionless driving
force, c = (ξ tan(φb)Fd )/(2mrωφωplΓm), and since γ = 0, we obtain the amplitudes of
the two stable solutions,

r0 = 2

�

2−2ω�2 +
�

c2 −4b2ω�4

ω� and r0 = 0. (2.26)

The amplitude for different values of dissipation is shown in Fig. 2.2. Note first that at
negligible dissipation and driving there is a bifurcation point ωd = 2ωc , which depends
on the cavity frequency ωc =ωpl

�
cos(φb). Above this point, r = 0 is the only stable so-

lution; below this point, a non-trivial solution emerges. This behavior is typical and has
been experimentally observed for the parametrically driven oscillator [25]. The bistabil-
ity below the bifurcation points must result in the hysteretic behavior. If the frequency is
slowly increasing, the amplitude remains zero, then "jumps up" to the upper branch and
follows it down. If the frequency is sweeping backward, the amplitude follows the upper
branch to some point and then drops to the lower branch. To complete the picture, we
also plot the amplitude for different values of the driving/coupling (as parametrized by
the parameter c). This is shown in Fig. 2.3.

Both the finite dissipation and the finite driving push the bifurcation point to higher
frequencies. However, when the dissipation is too strong, ω� >

�
c/(2b), the non-trivial

solution does not appear. This condition is frequency dependent, and therefore at the
finite dissipation and weak driving, the non-trivial solution does not exist close to the
bifurcation point but reappears at lower frequencies. Note that our analytical analysis
is restricted to r � 1; therefore, for strong enough dissipation, the non-trivial solution
does not appear at any frequency.
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Figure 2.4: (a) The dimensionless amplitude r of the dc SQUID overall phase is plotted vs. the frequency ratio
ω� for different coupling strength g , which induces backaction. The values of dissipation are set to b = 0.01 and
the renormalized force is c = 0.03. (b)–(d) Analytical amplitude results (solid line) compared with numerical
simulations (dotted line) for corresponding backaction strength (b) g = 0.1, (c) g = 0.2, and (d) g = 0.29. Purple
line shows the zero-amplitude solution.

2.4. BACKACTION
In Sec. 2.3, we investigated the situation when backaction of the SQUID on the resonator
is negligible. In this section, we take this backaction perturbatively into account and
demonstrate that it leads to further multistability of the SQUID. One can take into ac-
count the second term of Eq. (2.7) by inserting solutions from Sec. 2.3

ϕ+ = r cos(θ)cos(ωd t/2)− r sin(θ)sin(ωd t/2). (2.27)

In this way, we perturbatively study the effect of backaction on the amplitude of the
SQUID.

We can eliminate the phase dependence using Eqs. (2.21) by cos(2θ) =−bω�2r /c(J1+
J3) and then expanding cos(ϕ+) in term of the Bessel functions using the identities

cos
�

p cos(
ωd t

2
)
�

cos
�
m sin(

ωd t
2

)
�
=

2
∞�

i=0
(−1)i �

J2i
�
p

�
J2i+2 (m)− J2i+2

�
p

�
J2i (m)

�
cos(ωd t )
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and

sin
�

p cos(
ωd t

2
)
�

sin
�
m sin(

ωd t
2

)
�
=

2
∞�

i=0
(−1)i �

J2i+1(p)J2i+3(m)− J2i+3(p)J2i+1(m)
�

sin(ωd t )

+2J1(p)J1(m)sin(ωd t ), (2.28)

where p = r cos(θ) and m = r sin(θ). Other harmonics of the overall phase which have
the frequenciesω= nωd /(2ωpl ), where n is an integer, are disregarded in the expansions.
They generate the Bessel functions of higher orders, which are small for the amplitudes
of our interest, r � 1.

To provide an analytical solution, we again look at small amplitudes. In this case, the
two cosines of Eq. (2.28) can be approximated by (m2−p2)cos(ωd t )/4, and the two sines
give pm sin(ωd t )/2. Then, we see that the driving force is shifted due to the backaction

Fd → F � = Fd − E Jξsin(φb)
c

bω�2

1− r 2

12

r 2 , (2.29)

and the additional sinusoidal force is generated

G =−E Jξsin(φb)r 2

c

����1
4

c2 − b2ω�4

(1− r 2

12 )2
. (2.30)

Hence, the equation for the resonator becomes

ẍ +Γm ẋ +ω2
m x = F �

mr
cos(ωd t )+ G

mr
sin(ωd t ). (2.31)

This equation has the same solutions as the driven harmonic oscillator given in Eq. (2.9)
with the modified amplitudes,

A → A� =− G
mrΓmωd

and D → D � = F �

mrΓmωd
. (2.32)

The shift in the oscillator’s amplitudes affects the quantities γ and β in the equation of
motion for the SQUID. It follows that the backaction is included for the amplitude of the
SQUID through the quantity

γ2 +β2

ω4
φ

=
�

ξ tan(φb)
2mrΓmωφωplω�

�2 �
F �2 +G2� . (2.33)

The equation for the amplitude becomes

(ω�2 −1+ r 2

8 )2

�
1
2 −

r 2

12

�2 +
�
bω��2

�
1
2 −

r 2

24

�2 = c2 + g 2r 4

ω�2 − 4g br 2

1− r 2

12

(2.34)
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where g = E Jξ
2 tan(φb)sin(φb)/(4mrωφωplΓm) is the strength of the backaction. Note

that this is still an algebraic equation though more sophisticated than the expansion of
Eq. (2.23).

Figure 2.4(a) displays the stable non-trivial solution for the phase oscillation ampli-
tude r to Eq. (2.34) as a function of the frequency ω� for different values g of backaction
and for the finite dissipation b = 0.01. One can see that there is still a bifurcation point,
and its position is not affected by the backaction. The effect of the backaction is to sup-
press the amplitude close to the bifurcation point. However, further from this point,
the amplitude r enhances. As the backaction gets stronger, it changes the monotonous
behavior of the amplitude. In the certain range of frequencies, the non-trivial solution
becomes multi-stable: at the same frequency, there might be two stable non-trivial so-
lutions in addition to the trivial solution r = 0.

Note, however, that our analytical treatment, based on the quartic expansion of the
cosine potential (the Duffing model), is only valid for r � 1. The non-trivial features that
we observe appear at r ∼ 0.5 and are, strictly speaking, outside the range of applicabil-
ity of our approximation. To check whether they really exist, we perform the numerical
analysis of the full Hamiltonian of the system, still assuming weak backaction (g � 1),
but without expanding the cosine. We solve numerically the system of Eqs. (2.9) and
(2.8). The solution is valid for any values of the amplitude r . The results are presented
in Figs. 2.4(b)–2.4(d). We take the initial conditions for solving the differential equations
to be our analytical solutions. The time evolved from 0 to 20000 and, after it reached the
steady-state, we measured the amplitude. For small enough amplitudes, the analytical
results coincide with the numerical ones. For higher amplitudes, there is certain devia-
tion; however, the pattern stays the same. In particular, the numerical solution confirms
the multistability.

2.5. CONCLUSIONS
In this chapter, we considered a SQUID coupled to a driven linear mechanical resonator.
We found that above the bifurcation point, the phase of the SQUID does not respond to
the parametric driving. The bifurcation point is located at the frequency slightly above
the point where the condition ωd = 2ωc is met. The precise location of the bifurca-
tion point depends on the dissipation and the driving force, but not on the backac-
tion strength. Below the bifurcation point, a non-trivial solution for the amplitude of
the SQUID oscillation arises. We found that the dissipation suppresses this non-trivial
solution whereas the driving strength enhances it. Furthermore, we discover that at
strong enough backaction, the non-trivial solution may become multistable, and thus
the physics of the systems goes beyond the Duffing oscillator. We have obtained the
multistability by analytical calculations within the Duffing oscillator approximation and
also by numerical solution of the full model.

One can experimentally control the strength of the backaction by changing the ge-
ometry of the resonator or parameters of the SQUID. In our model, the magnetic field
was applied perpendicular to the SQUID loop; instead one can use parallel orientation
of the magnetic field and tune flux Φext using, e.g., a stripline, which also changes the
backaction strength.

Currently, the most stringent condition in our theory which hinders the experimen-
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tal verification is that the frequencies of the SQUID and the mechanical resonator are
of the same order. In the existing experiments [13, 14, 20], the plasma frequency of the
SQUID was several orders of magnitude higher than the mechanical frequency. How-
ever, currently there is an interest to the fabrication of superconducting junctions with
suspended carbon nanotubes [29] and graphene sheet integrated into the microwave
cavities [30]. Whereas the frequency of mechanical motion in the existing devices is still
lower than the cavity frequency, the regime ωd ∼ 2ωc can be achieved. Another limita-
tion is that we assumed the two Josephson junctions to be identical. We do not expect,
however, that the asymmetry of the SQUID would qualitatively affect our results.

Finally, we emphasize that we have only made the first step towards exploring non-
linear cavity properties in cavity electrodynamics. We certainly expect more rich and
interesting physics in the situations which lie outside the scope of this chapter — strong
backaction (beyond the perturbation theory), dispersive coupling between the SQUID
and the resonator, as well as quantum effects in both the phase of the SQUID and the
mechanical motion of the resonator.
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FLUX-MEDIATED OPTOMECHANICS

O. Shevchuk, G. A. Steele, and Ya. M. Blanter

We investigate superconducting interference device (SQUID) with two asymmetric Joseph-
son junctions coupled to a mechanical resonator embedded in the loop of the SQUID. We
quantize this system in the case when the frequency of the mechanical resonator is much
lower than the cavity frequency of the SQUID and in the case when they are compara-
ble. In the first case, the radiation pressure and cross-Kerr type interactions arise and are
modified by asymmetry. Cross-Kerr type coupling is the leading term at the extremum
points where radiation pressure is zero. In the second case, the main interaction is single-
photon beam splitter, which exists only at finite asymmetry. Another interaction in this
regime is of cross-Kerr type, which exists at all asymmetries, but generally much weaker
than the beam splitter interaction. Increasing magnetic field can substantially enhance
optomechanical couplings strength with the potential for the radiation pressure coupling
to reach the single-photon strong coupling regime, even the ultrastrong coupling regime,
in which the single-photon coupling rate exceeds the mechanical frequency.
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3.1. INTRODUCTION
The progress in optomechanical systems, where an optical or microwave cavity is cou-
pled to a mechanical resonator, was impressive in recent years [1]. The accomplish-
ments in optomechanics include cooling mechanical resonator to its quantum ground
state[2, 3], prediction [4] and observation [5] of the optomechanically-induced trans-
parency, squeezing of the cavity[6, 7], and mechanical [8–10] modes, and coherent state
transfer [11, 12]. Many of these experiments have been realized using superconducting
circuits, which enables to consider microwave cavities coupled to mechanical motion as
possible building blocks for quantum information processing [13].

The coupling between cavity and mechanical resonator plays a central role in op-
tomechanics. In the published experiments, intrinsically weak radiation pressure cou-
pling was amplified by increasing drive power of the cavity, which linearizes the effective
optomechanical interaction of the system. Such linear interaction, for example, turns
Gaussian states of the cavity and mechanical resonator into Gaussian states. In order
to create more general states for quantum information applications and to achieve, for
instance, negative Wigner function one needs to use either single-photon sources and
photodetectors [14] or non-linear effects, of which non-linear optomechanical interac-
tion is the most common one. Therefore, having strong single-photon radiation pressure
coupling of the order or larger than the cavity decay rate is desirable as well as having
strong coupling of the cavity to the position squared of the mechanical resonator [15]. If
the single-photon radiation pressure coupling can be made of the order of the mechan-
ical frequency and larger than the cavity decay rate, the the system is in the ultra-strong
coupling regime and photon blockade can be observed [16].

Along with the ultracold atoms [17], superconducting circuits are promising candi-
dates to reach ultrastrong coupling. Recently, the idea of using Josephson effect to en-
hance optomechanical couplings has been researched theoretically [18–20] and experi-
mentally [21]. Many of those proposals involve using superconducting quantum inter-
ference device (SQUID) with two Josephson junctions, which makes cavity intrinsically
nonlinear due to the Josephson effect. SQUID is either embedded into the resonator it-
self or SQUID with embedded mechanical resonator is incorporated into a microwave
cavity.

In this Chapter, we consider a SQUID with two symmetric or asymmetric Josephson
junctions and an embedded mechanical resonator and show that it by itself can pro-
duce ultrastrong optomechanical coupling. Originally, a dc SQUID with embedded me-
chanical oscillator was studied as a sensitive displacement detector [22–26], however,
the asymmetry of the junsctions so far was not at the focus of attention, and theoretical
proposals are routinely assuming that two junctions of the SQUID are almost identical.
A certain asymmetry is always present in the experiment, and we show that it affects the
coupling strength. In addition, we express the couplings in such SQUID devices in the
language of optomechanics, perform numerical simulations of the coupling rates for re-
alistic experimental geometries. Doing so we find that this platform has the potential
to reach both the single-photon strong coupling, a regime of strong quadratic coupling
of the motion to the cavity, and potentially the ultrastrong coupling regime where the
single-photon coupling rate exceeds the mechanical frequency.

In the first part of this Chapter, we investigate in details the effect of asymmetry in
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the SQUID with two junctions and embedded mechanical resonator. As a first step we
look at the most common experimental case of the mechanical frequency being much
smaller than the cavity frequency [27]. We quantize the asymmetric system to get radia-
tion pressure interaction and cross-Kerr type interaction, where the cavity is coupled to
the position squared of the mechanical resonator. We show that for experimentally fea-
sible parameters radiation pressure coupling can reach single-photon strong coupling
regime and for stronger magnetic fields the ultrastrong coupling regime. The cross-Kerr
coupling is usually smaller than radiation pressure coupling but it is the leading coupling
at the extremum points of the flux where the radiation pressure is zero. Such strong cou-
pling would enable a quantum non-demolition measurement of a phonon number in
the mechanical resonator [28] or the cavity’s photon number.

As a second step, we study the case when the mechanical and cavity frequencies are
of the same order. Since the SQUID cavity frequency is measuring in GHz, the same order
would be required for the mechanical oscillator. Currently, carbon nanotube (CNT) res-
onator can reach GHz frequency [29] and, hence, the realizations of the SQUID with sus-
pended CNT junctions [30, 31] could reach this regime. In this case, there are two leading
interactions: cross-Kerr and single-photon beam splitter. The single-photon beam split-
ter exists only at the finite asymmetry. The radiation pressure term is oscillating too fast
and is, therefore, disregarded. The beam splitter is used in many exrimental setups, and
Hamiltonian with the beam splitter interaction is easily diagonalized and solved. When
single-photon beam splitter is in the range of the strong coupling, one can observe e.g.
optomechanical normal-mode splitting [1].

The remainder of the Chapter is organized as follows. In Sec. 3.2 we find current and
cavity frequency of the SQUID with asymmetric Josephson junctions and an embedded
mechanical resonator. In Sec. 3.3 we derive the effective Hamiltonian of this system for
two cases. In the first case, the cavity frequency of the SQUID is taken to be much larger
than the mechanical frequency, which results in the radiation pressure and cross-Kerr
interactions. In the second case, the cavity frequency is considered to be of the order of
the mechanical frequency providing single-photon beam splitter and cross-Kerr inter-
actions. In Sec. 3.4 we draw the potential map and discuss optomechanical couplings.
Finally, we conclude our results in Sec. 3.5.

3.2. CURRENT OF THE ASYMMETRIC SQUID
In this Section, we follow the standard textbook treatment of the current through an
asymmetric SQUID. We consider two Josephson junctions with different values of crit-
ical current I 0

1 and I 0
2 connected in a loop together with an embedded mechanical res-

onator, as shown in Fig. 3.1(a). The energy scales for such SQUID are described by av-
erage Josephson energy E J = ħ(I 0

1 + I 0
2 )/4e and charging energy Ec = (2e)2/2C � E J with

the shunting capacitance of each junction C . The SQUID has a loop area A with the sus-
pended arm of the length l . Oscillations of the mechanical resonator modulate the total
flux of the SQUID loop. Then, the SQUID with the embedded mechanical resonator can
be viewed as an LC circuit, in which the Josephson inductance of the SQUID L J , which
for symmetric junctions I 0

1 = I 0
2 = I0 is well-known to be Φ0/(4πI0 cos(πΦ/Φ0)), changes

with the total flux Φ threading though the loop and, consequently, the mechanical res-
onator couples inductively to the SQUID, see Fig. 3.1(b). For simplicity, we assume that
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Figure 3.1: (a) A schematic overview of the SQUID, which contains two Josephson junctions with different
critical currents. The mechanical resonator is embedded into the SQUID loop. The magnetic field B is applied
under certain angle to the loop, and the displacement of the mechanical resonator is x. (b) The mechanical
resonator inductively couples to the SQUID via the total fluxΦ.

mechanical resonator moves in its single mode. The dynamics of the mechanical res-
onator is described by the displacement x from the equilibrium position. The dynamics
of the SQUID itself is described by the sum of the gauge-invariant phases across each
junction (φ1 and φ2), ϕ+ = (φ1 +φ2)/2, which is referred as the overall phase of the
SQUID. Moreover, the difference of the phases is bound by the total flux threading the
loop,

ϕ− = (φ1 −φ2)/2 =πΦ/Φ0 +πn , (3.1)

where n is an integer andΦ0 = h/2e is the flux quantum.
Assuming the magnetic field is applied under certain angle to the SQUID loop the

total flux can be separated to two contributions. The first contribution is a bias flux Φb ,
which is added to the SQUID loop. The second contribution comes from a flux threading
through the area described by the oscillations of mechanical resonator. Since it is more
convenient to work with the phase difference rather than the flux itself we define renor-
malized bias flux φb = πΦb/Φ0 and renormalized flux shift provided by the resonator
ξx = πβ0Bl x/Φ0 with the average geometric constant β0, which takes into account the
direction of the magnetic field and the geometry of the mechanical resonator. Then, the
phase difference is given by

ϕ− =φb +ξx +πn. (3.2)

Here, we study the situation when the circuit has a negligible self-inductance.
Now we write the total current going through the asymmetric SQUID. For this pur-

pose we introdice the average critical current I0 = (I 0
1 + I 0

2 )/2. The critical currents of the
first and the second junctions are defined as I 0

1 = I0(1−αI ) and I 0
1 = I0(1+αI ), respec-

tively, with the asymmetry parameter αI . Therefore, the total current I through both
junctions is separated to two terms: one is the same as in the case of equal critical cur-
rents and another term, which is responsible for the influence of asymmetry,

I = I 0
1 sin(φ1)+ I 0

2 sin(φ2) = 2I0 cos(ϕ−)sin(ϕ+)−2I0αI cos(ϕ+)sin(ϕ−). (3.3)

In order to find a critical current of the asymmetric SQUID, we shift the position of
the overall phase of the SQUID by the phase ϕ0 which satisfies the relation: tan(ϕ0) =
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αI tan(ϕ−). Then, the total current is simplified to the following

I = 2I0S(ϕ−)sin(ϕ+−ϕ0), (3.4)

where S(ϕ−) =
�

cos2(ϕ−)+α2
I sin2(ϕ−) is a flux dependent function, which turns to co-

sine at zero asymmetry, and the total current becomes the well-known current of the
symmetric SQUID. Then, when mechanical resonator is at rest, we can define the max-
imum current and, hence, the critical current of the asymmetric SQUID as well as the
cavity frequency

I (x = 0) = Ic = 2I0S(0) and ωc (0) =
�

2πIc

CΦ0
. (3.5)

Here we use S(0), which is the function of φb instead of ϕ− at zero displacement.
In Fig. 3.2(a) we show the behavior of the critical current for symmetric and 50%

asymmetry cases. For the identical junctions the current changes from 0 to 2I0, but in
the presence of the asymmetry the current never reaches zero value. Even at half flux
quantum when the critical current for the symmetric case is zero, the critical current of
the asymmetric SQUID is at minimum Ic (φb = π/2) = 2I0αI . Nevertheless, the maxi-
mum, which happens at the odd integer flux quantum, is not affected by the asymmetry.
The cavity frequency is proportional to

�
Ic and portrays the same behavior of the critical

current as shown in Fig. 3.2(b). For parameters of the critical current of the Josephson
junction I0 = 500 nA and capacitance C = 30 pF the maximum cavity frequency is 10
GHz. At half flux quantum and 50% asymmetry, the cavity frequency reaches its mini-
mum of 4.5 GHz.

3.3. QUANTIZATION
In the following, we quantize the system by starting with the classical Hamiltonian, which
consists of the simple harmonic oscillator, kinetic energy and the potential energy of the
SQUID,

H = mr ẋ2

2
+

mrω
2
m x2

2
+

CΦ2
0

2(2π)2 ϕ̇
2
++E(ϕ+, x), (3.6)

where mr andωm are the mass and frequency of the mechanical resonator. The potential
energy of the SQUID E is derived from the total current Φ0I /2π= ∂E/∂ϕ+ found in Sec.
3.2,

E(ϕ+, x) =−2E J S(ϕ−)cos
�
ϕ+−arctan(αI | tanϕ−|)

�
. (3.7)

The minimum of the potential is shifted by the flux dependent parameter, which
also depends on the displacement of the mechanical resonator. Depending on the dif-
ference between the cavity frequency and the mechanical frequency one can assume
quasi-static regime or has to take into account the displacement dependent shift.

3.3.1. DISPERSIVE REGIME
In the typical case when the mechanical frequency is much smaller than cavity frequency,
the shift by the flux can be assumed static on the timescales related to the SQUID. Then,
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Figure 3.2: (a) The critical current and (b) cavity frequency are plotted as a function of renormalized bias flux
of the symmetric and asymmetric SQUID. The cavity frequency of the symmetric SQUID is cut at realistic value
of 2.5 GHz.

we can write potential energy in terms of the shifted phase,ϕ=ϕ+−arctan(αI | tan(φb)|).
The kinetic energy of the SQUID is not affected by the constant shift, and thus the phase
ϕ+ can be replaced by ϕ.

In order to quantize the phase and the position, the potential energy is expanded
in terms of the phase up to the second order. This means that we consider SQUID as a
linear harmonic oscillator with the single-photon Kerr shift smaller than the linewidth
of the cavity and the cavity frequency. The term, which is independent of the phase,
shifts the equilibrium position of the mechanical resonator and modifies the mechanical
frequency

ω�
m =

�

ω2
m +

4E Jξ2(1−α2
I )(cos4(φb)−α2

I sin4(φb))

mr S(0)3 . (3.8)

For the phase dependent terms we introduce creation and annihilation operators

�
a†

a

�
= 1

�
2ħmϕωc

�
mϕωcϕ∓ i pϕ

�
. (3.9)

with the momentum coordinate pϕ = CΦ2
0/(2π)2ϕ̇ ≡ mϕϕ̇, where mϕ is the mass of the

phase, and the displacement dependent cavity frequency is

ωc (ϕ−) =
�

4πI0S(ϕ−)
CΦ0

. (3.10)
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This expression can also be retrieved from Eq. (3.5) for the mechanical resonator at rest
by changing φb to ϕ−. Therefore, the displacement dependent cavity frequency as a
function of ϕ− has the same behavior as shown in Fig. 3.2(c).

Now our Hamiltonian has a similar form to that of the Hamiltonian with symmetric
Josephson junctions except for the modified cavity frequency,

H = mr ẋ2

2
+

mrω
2
m x2

2
+ħωc (ϕ−)a†a. (3.11)

The position of the mechanical resonator is quantized by introducing the position oper-
ator, which is x = xZPF(b† +b), where b and b† are creation and annihilation operators
and xZPF =

�
ħ/2mrωm is the amplitude of zero point fluctuations of the displacement

x. Then, the uncoupled Hamiltonian of the mechanical resonator is ħωmb†b.
The interaction terms are obtained by expanding the displacement dependent cavity

frequency to the second order in displacement. Then, the interaction Hamiltonian after
applying the rotation-wave approximation becomes

Hi nt =ħg 1
RP a†a(b† +b)+ħg 2

Q a†ab†b, (3.12)

where the radiation pressure coupling and cross-Kerr coupling between cavity and me-
chanical resonator are, respectively,

g 1
RP = xZ PF

∂ωc

∂x

���
x=0

= xZ PF ξ
∂ωc

∂ϕ−

���
x=0

= xZ PF
(1−α2

I )ξsin(2φb)ωc (0)

4S(0)2 , (3.13)

g 2
Q = x2

Z PF
∂2ωc

∂x2

���
x=0

= x2
Z PF ξ

2 ∂
2ωc

∂ϕ2
−

���
x=0

= 2xZ PF ξg 1
RP cot(2φb)−

3(g 1
RP )2

ωc (0)
. (3.14)

Note even when g 1
RP = 0, the first term in Eq. (3.14) stays finite because sin(2φb) in the

radiation pressure coupling is multiplied with the infinite factor cot(2φb).
In order to visualize the resulting couplings, to the chosen capacitance C and critical

current I0 we add following set of parameters: ω�
m = 10 MHz, A = 200 µm× 150 µm,

l = 150 µm, and mr = 200 pg. The flux bias varies from φb = 2πn to φb = 2πn+π, where
n = 72534 corresponds to chosen value of magnetic field.

In Fig. 3.3(a), we plot the radiation pressure coupling. For the perfectly symmet-
ric Josephson junctions, the absolute value of the radiation pressure infinitely increases
while getting closer to the half-integer flux quantum. It suggests that if in the experiment
one can tune bias flux very close to half flux quantum the radiation pressure will be max-
imum. However, because of the asymmetry of the SQUID the maximum of the radiation
pressure coupling shifts to the value of the flux given be

tan(φb) =±
�

1−α2
I +

�
1+14α2

I +α
4
I /2αI . (3.15)

Behind this value, the radiation pressure monotonically decreases to zero at the half-
integer flux quantum. The maximum of the radiation pressure even at 50% asymmetry
and magnetic field of 10 mT can reach single-photon strong coupling regime, consider-
ing a typical cavity decay rate of 80 kHz.
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Figure 3.3: Light-matter couplings of symmetric and asymmetric SQUID for magnetic field B = 10 mT: (a)
radiation pressure, (b) cross-Kerr coupling. The maximum of radiation pressure for 50% asymmetry is g 1

RP = 77
kHz.The flux bias is shifted by πB A/Φ0 = 2π72534.
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Figure 3.4: The maximum of the (a) radiation pressure and (b) cross-Kerr coupling as a function of the magnetic
field at 50% asymmetry. The flux bias is fixed and corresponds to the sweat spot of each coupling.
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Since the radiation pressure can also be written in terms of the cavity frequency
derivative, we can analyze this coupling looking at Fig. 3.2(a) by changing φb to ϕ− as
mentioned above. For the asymmetric case the slope of the frequency increases and
then decreases while changing flux from 0 to π/2. After crossing π/2 to π it changes sign
of the slope, which leads to the negative radiation pressure. Also, for the asymmetric
junctions the slope at integer and half integer flux quantum is zero.

The cross-Kerr coupling is shown in Fig. 3.3(b). The coupling g 2
Q is overall much

weaker than radiation pressure except for the odd integer flux quantum, where g 1
RP is

zero and g 2
Q is the leading term. For the symmetric case the coupling is infinitely strong

approaching half-integer flux quantum, which is the same behavior found for the radi-
ation pressure, but in contrast to the latter it does not change the sign while crossing
π/2. Looking at the Fig. 3.2(b) we expect that for the asymmetric SQUID the cross-Kerr
coupling, which is the second derivative of frequency, changes the sign between 0 to π/2
and then from π/2 to π and this is indeed the result observed here. The maximum of the
coupling for the asymmetric case is achieved at the half-integer flux quantum. We can
also notice that even at integer flux quantum the value of the cross-Kerr coupling (for the
chosen parameters) is 0.66 Hz. In the experiment with the membrane inside the cavity
[15] the value of the second derivative of the cavity frequency was ω��

c (x)/2π = 108 kHz
nm−2. Then in order to improve this value multiple modes of the cavity were coupled to
the single mode of the mechanical resonator [32] to getω��

c (x)/2π= 8.7 MHz nm−2, which
is still smaller than our calculated value at integer flux quantum, which is ω��

c (x)/2π = 4
GHz nm−2.

The maximum of the asymmetric couplings increases with magnetic field, which is
captured in Fig. 3.4. Increasing magnetic field to 1 T is experimentally feasible [31] and
increases chances of getting higher couplings. The radiation pressure coupling is lin-
early dependent on B and the cross-Kerr coupling is quadratically dependent on B . At
50% asymmetry and magnetic field of 1 T the radiation pressure can reach an ulrastrong
coupling regime (g 1

RP ∼ωm), which also mean that at lower asymmetry the value on the
sweat spot can even be greater. The cross-Kerr coupling can reach values of 80kHz. It
can be stronger for the lower asymmetry, but the window to catch sweat spot becomes
more narrow for the lower asymmetry.

3.3.2. RESONANT FREQUENCIES

In the case of the resonant cavity frequency and mechanical frequency, the minimum of
the potential is shifted by the position dependent parameter. However, the displacement
is now one of the dynamical variables of the system, separate from the overall phase. If
we shift the phase by the displacement dependent parameter then the kinetic energy
acquires the shifted phase as well as extra terms in the form of ϕ̇+ẋ with the original
phase. Therefore, it is simpler to expand the arctangent in the potential energy to the first
order in x, which is sufficient since the amplitude of the mechanical resonator is usually
small in such devices. The expanded potential energy depends on both the displacement
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and the phase ϕ, which do not combine in a single variable,

E(ϕ, x) =−2E J S(ϕ−)cos
�
αIξ

S(0)2 x
�
−2E J S(ϕ−)sin

�
αIξ

S(0)2 x
�
ϕ

+E J S(ϕ−)cos
�
αIξ

S(0)2 x
�
ϕ2. (3.16)

Similarly to the previous case, the first term shifts the equilibrium position of the me-
chanical resonator and the mechanical frequency,

ω�
m =

����
ω2

m +
2E Jξ2

�
2(1+α2

I + (1−α2
I )cos(2φb))

mr
. (3.17)

Next, we quantize the phase introducing the operators a†, a. The momentum variable
pϕ = mϕϕ̇ stays the same as in the previous case and the displacement dependent cavity
frequency is different from Eq.(3.10),

ωc (x) =

����4πI0S(ϕ−)cos
�
αI ξ

S(0)2 x
�

CΦ0
. (3.18)

Then, the Hamiltonian in terms of the cavity operators has the following form

H = mr ẋ2

2
+

mrω
�
m

2x2

2
+ħωc (x)a†a − 2ħI0S(ϕ−)

�
2ħCωc (x)

sin
�
αIξ

S(0)2 x
�

(a† +a). (3.19)

We expand the full Hamiltonian to the second order in the displacement and use
the creation and annihilation operators b†, b of the mechanical resonator. It leads to
the uncoupled cavity Hamiltonian ħωc (0)a†a and the uncoupled mechanical resonator
Hamiltonian ħω�

mb†b. Applying the rotating-wave approximation results in the interac-
tion Hamiltonian of the following form

Hi nt =ħg 2r
Q a†ab†b −ħg 1r

BS (a†b +b†a), (3.20)

where the cross-Kerr and the single-photon beam splitter couplings, respectively, are

g 2r
Q = x2

Z PF
∂2ωr

c

∂x2

���
x=0

= g 2
Q −

α2
I ξ

2

2S(0)4ωc (0), (3.21)

g 1r
BS = xZ PF

αIξ
�
ωc (0)E J

S(0)
�
ħS(0)

. (3.22)

To plot these couplings, we use set of parameters for the nanoSQUID with CNT junc-
tions [30]: I0 = 15 nA, C = 90pF, A = 800 nm× 800 nm, l = 200 nm, and mr = 5 ag.
The cavity frequency for this values is 1 GHz. The mechanical frequency is taken to be
ω�

m = 1 GHz, which is possible to reach with a suspended CNT. The flux bias varies from
φb = 2πn to φb = 2πn +π, where n = 18.
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Figure 3.5: Interaction couplings for symmetric and asymmetric SQUID in the case of ωc (0) ∼ ω�
m and mag-

netic field B = 10 mT: (a) cross-Kerr coupling, (b) single-photon beam splitter coupling. The flux bias is shifted
by 12πB A/Φ0 = 2π18.
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Figure 3.6: The maximum of (a) the cross-Kerr coupling and (b) the single-photon beam splitter coupling at
50% asymmetry, as a function of the magnetic field corresponding to Fig. 3.5. The flux bias is fixed to the sweet
spot of each coupling.
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In Fig. 3.5(a), we plot the cross-Kerr coupling. The coupling g 2
Q is overall weaker than

the one we found in Fig. 3.3(b). For the symmetric case, the behaviour is the same as
we have seen in the dispersive regime. However, for finite asymmetry the behavior is
qualitatively different since the coupling is negative and does not change the sign from
negative to positive. Also, there is a peak of the coupling close to π/2 and at exactly half
flux quantum there is a minimum. This happens because of the second term in Eq.(3.21),
which arise due to the modified cavity frequency. For lower asymmetry the minimum is
getting closer to zero while the maximum is increasing.

Fig. 3.5(b) shows the single-photon beam splitter coupling. Forωc (0) �ω�
m this cou-

pling is negligible, because the corresponding term in the Hamiltonian is a quickly os-
cillating function of time. It only exists at a finite asymmetry. The single-photon beam
splitter coupling is slowly increasing while flux rises from 0 to π/2 and reaches its max-
imum at the half flux quantum and then passing this point decreases again. For lower
asymmetry the peak is higher, but the window to reach higher value is narrower, since
the higher asymmetry corresponds to a higher value of the coupling except for close to
half-integer flux quantum.

In Fig. 3.6 we show the maximum of both couplings at the 50% asymmetry while in-
creasing magnetic field to 1 T. The cross-Kerr coupling reaches 1 kHz. The single-photon
beam splitter coupling has the value up to 10 MHz. In comparison with the mechani-
cal frequency it is not in the ultrastrong coupling regime, but depending on the cavity
decay rate it can be in the strong-coupling regime. While often radiation pressure is lin-
earized to produce the beam splitter term to solve specific systems and phenomenon,
g 2r

BS has intrinsically a beam splitter character even at the single-photon level. At very
small asymmetry and strong magnetic fields the cross-Kerr coupling can be larger than
beam-splitter interaction.

3.4. DISCUSSION
To gain the intuition about the couplings and to better understand the asymmetric sys-
tem we plot the potential energy as a function of flux (ϕ−) and phase (ϕ+) in Fig. 3.7. For
the symmetric junctions the potential is symmetric along dashed line. At the bottom of
the potential radiation pressure is zero and cross-Kerr coupling is finite. For the asym-
metric case the potential has an elliptical form and is asymmetric. One can further study
the figures on the bottom corresponding to the cross-section of the energy map for dif-
ferent flux. The cross-sections are chosen by moving the horisontal dashed line up. In
the symmetric case the minimum of the potential energy stays at the same position. In
contrast, for the asymmetric junctions the position of the minimum shifts, which is also
described by Eq.(3.7). In the case of dispersive frequencies, this shift it constant and
the minimum is redefined at each bias flux, which represents the same physics as for
the symmetric case. However, elliptical form alters the radiation pressure and cross-Kerr
couplings and changes its behavior as previously appeared in Fig. 3.3 around half-integer
flux quantum where there is a merge between elliptical forms.

For the case of resonant frequencies and asymmetric SQUID, the minimum of the
potential energy is shifted by the displacement dependent flux. The oscillations of the
mechanical resonator correspond to the motion from one curve to another one. The
force that triggers the motion between the minima is just like the Lorentz force, which
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Figure 3.7: Potential energy as a function of the phase and flux at 0% (on the left) and 50% asymmetry(on the
right). The minimum is shown in black and maximum in yellow. The corresponding cross section of energy
map for the different flux is displayed on the bottom.

explains the appearance of the single-photon beam splitter and the extra term picked up
by cross-Kerr coupling as compared to the dispersive regime.

We now discuss the mechanical frequency shifts due to the Josephson term in Eqs.(3.8)
and (3.17). In the parameter regime we have chosen this shift can be disregarded. How-
ever, for higher Josephson energy, which could depend on the magnetic field itself, or
larger parameters of the mechanical resonator increasing magnetic field to 1 T can cre-
ate a large shift, which should be taken into account. The mechanical zero-point fluc-
tuation in such situation becomes smaller, subsequently the values of the couplings de-
crease, but we do not expect the change in the overall behavior of the optomechanical
couplings.

Generally, the SQUID is an intrinsically nonlinear cavity and close to the half integer
flux quantum an extra nonlinear Kerr-type termΛa†aaa† appears in the Hamiltonian of
Eqs. (3.11) and (3.19), where the Kerr nonlinearity is Λ= ħπ2/(4CΦ2

0). This term results
from the expansion of the potential energy to the forth order in the overall phaseϕ. Thus,
a cavity can be considered linear as long asΛ is less than the cavity linewidth andωc (0) �
Λ, which gives a finite condition for the flux bias close to the half integer flux quantum.
Close to the half flux quantum the Kerr-type term and the cross-Kerr term are always
present in this system. From the fourth order expansion of the potential energy there
are also other nonlinear interaction terms such as a†a†aab†b in the dispersive case or
a†a†ab in the resonant case, which are always small.

3.5. CONCLUSIONS
We provided a quantum analysis of the SQUID with asymmetric Josephson junctions
and embedded mechanical resonator for two cases of the dispersive and resonant cav-
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ity and mechanical frequencies. Our findings are significant for the experimental setup
where asymmetry cannot be avoided. We found that the radiation pressure for the res-
onant frequencies has a sweet spot, which is located at an asymmetry dependent flux
point. Shifting this point towards the half-integer flux quantum results in a weaker cou-
pling. Even at 50% asymmetry and weak magnetic field the radiation pressure coupling
can be in the strong coupling regime. For high magnetic fields, the ultrastrong coupling
regime of the radiation pressure can be achieved. The cross-Kerr coupling is finite at the
odd integer flux quantum, in contrast to the radiation pressure coupling. For the sym-
metric case, it is always negative and infinitely strong very close to the half-integer flux
quantum. For the dispersive asymmetric case, the cross-Kerr coupling has maximum
at half-integer flux quantum and changes sign from negative to positive while reaching
maximum. For the resonant asymmetric case, the minimum sits at the half-integer flux
quantum and maximum is at the flux dependent point close to π/2. For the resonant
case, the radiation pressure is too weak since it oscillates at higher frequency and in-
stead single-photon beam splitter interaction is the main term in the Hamiltonian. It is
always finite and has its maximum at the half-integer flux quantum.

We explained the origin of different couplings using the potential energy map as well
as compared the maps for the symmetric and asymmetric cases. The biggest challenge
to experimentally work with single-photon beam splitter coupling is the condition on
the mechanical frequency, which should be comparable to the cavity frequency. Exper-
iments involved such setup previously [25–27] had mechanical frequency smaller than
cavity frequency. However, using carbon nanotubes as a mechanical resonator coupled
to the Josephson circuit can potentially solve the high mechanical frequency issue.
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4
QUANTUM ANALYSIS OF THE

NONLINEAR CAVITY WITH A

MECHANICAL RESONATOR

O. Shevchuk, R. Fazio, and Ya. M. Blanter

We investigate the effects of the nonlinearity on the cavity frequency and the dissipation
in the superconducting quantum interference device (SQUID) coupled to an embedded
mechanical resonator. The effective cavity frequency and dissipation are found using the
self-consistent harmonic approximation (SCHA).For the dissipationless case, the cavity
frequency shift is found for the high temperature limit and zero temperature. The case
including the dissipation is studied for low temperature and we obtained the shifts of the
dissipation and the cavity frequency.
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4.1. SELF-CONSISTENT HARMONIC APPROXIMATION
Feynman was the first who introduced the idea of effective potential, which meant to re-
duce quantum mechanical calculations to the classical equations but still portray the
quantum effects [1]. To find the effective potential, the so-called trial action is used
in a variational theorem for the path-integral expression of the partition function also
known as self-consistent harmonic approximation (SCHA) [2]. It states that the free en-
ergy obeys inequality F ≤ F0 + 1

ħβ 〈S − S0〉S0 , where S and F are the full action and the
free energy of the system under investigation, respectively. At the same time, S0 and F0
are any action and, corresponding to it, free energy. Using this approach one can take
into account the quantum dissipation in the effective potential formalism. By using the
SCHA method in this chapter, we find the effects of the nonlinearity on the cavity fre-
quency and dissipation for the discussed in Chapter 2 and 3 the nonlinear SQUID cavity
with an embedded mechanical resonator. We start with writing the full Hamiltonian for
the nonlinear SQUID with idential junctions in Sec. 4.2. Then in Sec.4.3 we focus on the
dissipationless case for the two regimes of the high temperature and zero temperature
and find the effective frequency. In the last Sec. 4.4, we look at the low temperature limit
and obtain effective dissipation and frequency.

4.2. KERR NONLINEARITY
The system we consider is the same as in previous two chapters. In Chapter 2, we fo-
cused on the classical backaction effects and here we perform quantum analysis of this
system. In Chapter 3, we did not address in full the intrinsic nonlinearity of the SQUID
and focused on the quantum details of the linear cavity and asymmetry of the Josephson
junctions while here the Josephson junctions are assumed to be almost identical. More-
over, the frequency of the mechanical resonator is considered to be much lower than the
cavity frequency and the dissipation is lower than the mechanical frequency. The full
Hamiltonian of the system is given by eq.(3.6) with αI = 0 and we expand potential en-
ergy E of the SQUID up to the fourth order in the dynamical variables resulting in the full
Hamiltonian

H = mr ẋ2

2
+

mrω
2
m x2

2
+

CΦ2
0

2(2π)2 ϕ̇
2
++E J cos(φb)

�
ϕ2
+−

ϕ4
+

12

�
−E J sin(φb)ξxϕ2

+. (4.1)

Following the previous chapter, the quantization can be performed by introducing cre-

ation and annihilation operators for the mechanical (b
†

) and cavity (a
†

) modes with the
flux dependent and, hence, the displacement dependent cavity frequency

ωc (x) =
�

4πI0 cos(φb +ξx)
CΦ0

. (4.2)

so that

b
†
= 1

�
2mrħωm

�
mrωm x ∓ i p

�
. (4.3)

a
†
= 1

�
2ħmϕωc (ϕ−)

�
mϕωc (ϕ−)ϕ+∓ i pϕ

�
, (4.4)
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After applying the rotation-wave approximation and eliminating all terms oscillating at
high frequency the Hamiltonian of the system is

H =ħωmb†b +ħωc a†a −ħΛa†aaa† −ħg0a†a(b† +b). (4.5)

The single-photon radiation pressure coupling for the identical junctions case and the
Kerr-type nonlinearity, which in the classical physics is referred to as the Duffing nonlin-
eairy is given by the identities

g0 = ξxZ PF tan(φb)
ωc (0)

2
, Λ= ħ

16mϕ
= ħπ2

4CΦ0
. (4.6)

This demonstrates that the Kerr nonlinearity is determined by the capacitance of the
SQUID. The further findings in this chapter can be represented in terms of the radiation
pressure coupling and the Kerr nonlinearity constant.

4.3. DISSIPATIONLESS ACTION
We consider Hamiltonian derived in the previous section and proceed with writing an
euclidean action of the system in order to use SCHA

Sxϕ+ =
�ħβ

0
dτ

�
mr ẋ2

2
+

mrω
2
m x2

2
+

mϕϕ̇
2
+

2
+E(ϕ+, x)

�

, (4.7)

where β = 1/(kB T ) with the temperature T and the Boltzmann constant kB . Since the
focus of this chapter is on the Kerr nonlinearity as well as effect of optomechanical cou-
pling on the cavity quantities we eliminate phonons by integrating them out of the path
integral

Z =
�

exp

�

− 1
ħ

�ħβ

0
dτ

�
mϕϕ̇

2
+

2
+

mϕω
2
cϕ

2
+

2
−

mϕω
2
cϕ

4
+

24

��

×

exp
�
− 1
ħ

�ħβ

0
dτ

�
mr ẋ2

2
+

mrω
2
m x2

2
−E J sin(φb)ξxϕ2

+

��
Dϕ+Dx,

where Z is the partition function.The mechanical resonator can be viewed as a simple
harmonic oscillator and the interaction with the SQUID cavity is parametrically driving
the mechanical resonator as an external force. The integration results in the effective
action in terms of the cavity modes [4]

S =
�ħβ

0
dτ

�
mϕϕ̇

2
+

2
+

mϕω
2
cϕ

2
+

2
−

mϕω
2
cϕ

4
+

24

�

−
E 2

J sin(φb)2ξ2

4mrωm

�ħβ

0

�ħβ

0

cosh(ωm |τ− s|− ħβωm
2 )

sinh ħβωm
2

ϕ2
+(τ)ϕ2

+(s)dτd s. (4.8)

Next we employ SCHA with the quadratic trial action

S0 =
�ħβ

0
dτ

�
mϕ(ϕ̇2

++ω2
effϕ

2
+)/2

�
, (4.9)
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where ωeff is the effective frequency, which corresponds to the shift of the cavity fre-
quency due to the optomechanical coupling and the Kerr nonlinearity. Considering typ-
ical experimental situation when the mechanical frequency is much lower than the cav-
ity frequency (ωm � ωc ) the difference between the full and trial action is free of the
term proportional to ϕ̇+. The average of the actions difference can then be found by
taking integral of the thermal correlation function 〈ϕ+(τ)ϕ+(τ)〉 [5] and using the fact
that 〈ϕ4

+〉 = 3〈ϕ+(τ)ϕ+(τ)〉. The constant in front of the double integral can be repre-
sented in terms of the radiation pressure coupling m2

ϕω
2
c g 2

0 /2ħ. Evaluating the double
integral of the mechanical correlation function together with the cavity correlation func-
tion 〈ϕ+(τ)2ϕ+(s)2〉= 〈ϕ+(τ)ϕ+(τ)〉+2〈ϕ+(τ)ϕ+(s)〉 leads to the final the expression for
the action difference

1
ħβ 〈S −S0〉= a2

ωeff

mϕ(ω2
c −ω2

eff)

2
−

mϕω
2
c

8
a4
ωeff

−2
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ϕω
2
c g 2

0

ħωm
a4
ωeff

+
ħg 2

0ω
2
c

4ω2
effωm

−
mϕω

2
c g 2

0 coth(ħβωm/2)

2ω2
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a2
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+
m2

ϕω
2
c g 2

0ωm

4ω2
eff

a4
ωeff

+
ħω2

c g 2
0ωm

16ω4
eff

. (4.10)

For the high temperature (ħβωc � 1) limit the integral value of the correlation function
〈ϕ+(τ)ϕ+(τ)〉 is given by a2

ωeff
=ħ/(mϕωeff)

� 1
2 + n̄

�
with the number of photons inside the

cavity n̄ = 1/(eβħωeff −1). In addition, the last four terms in eq. (4.10) can be disregarded
as being small in comparison with other terms, however in the low temperature limit
they are needed to be taken into account. Overall, it gives a simplified expression for the
action difference

1
ħβ 〈S −S0〉S0 ≈

ħ
2ωeff

(ω2
c −ω2

eff)(
1
2
+ n̄)− (

1
4
+ n̄ + n̄2)

�
2ħω2

cΛ

ω2
eff

+
2ħω2

c g 2
0

ωmω
2
eff

�

. (4.11)

The free energy of the trial action required for performing SCHA is the free energy of
the quantum simple harmonic oscillator F0 = ln

�
sinh(ħβωeff/2)

�
/β. We introduce the

dimensionless parameters: Λ̃ =Λ/ωc , g̃ = g0/ωc , ω̃m = ωm/ωc , ω̃eff = ωeff/ωc , and th =
ħβωc . Then the effective frequency ω̃eff, which minimizes the free energy F0 + 1

ħβ 〈S −
S0〉S0 , is the solution of the following equation

�
(1+4n̄ +4n̄2)

theth ω̃eff
+2

�
2n̄3 + n̄2�ω̃eff

��
Λ̃+ g̃ 2

ωm

�
+ n̄2 (ω̃2

eff −1)ω̃2
eff

2
= 0. (4.12)

The cavity frequency shift depends on the temperature, the nonlinearity and the ra-
diation pressure coupling, see Fig.4.1. We plot the effective frequency using values of the
mechanical frequency ωm = 10 MHz and the cavity frequency ωc = 1 GHz. The higher
temperature increases the shift of the cavity frequency by increasing the influence of the
nonlinearity and coupling.

Next, we look at zero temperature regime when ħβωm → ∞ with the derivative of
free energy ∂F0/∂ωeff =ħ/2. In this case the action difference has following expression

1
ħβ 〈S −S0〉S0 =

ħ
4ωeff

(ω2
c −ω2

eff)−
ħω2

cΛ

2ω2
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−
ħω2
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ωmω
2
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4
+ ωm

4ωeff
−

ω2
m

8ω2
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�

. (4.13)
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Figure 4.1: Radiation pressure coupling between mechanical oscillator and cavity vs. effective frequency of the
cavity for different temperature th and non-linearity Λ̃.

This results in the effective frequency shift ωeff =ωc −2Λ− g 2
0 /ωm − g 2

0 /ωc . This shift is
different from the one we obtain for the high temperature limit. The shift of the cavity
frequency by 2Λ+ g 2

0 /ωm can be also found by applying Lang-Firsov(polaron) canoni-
cal transformation [3] to the optomechanical Hamiltonian in eq. (4.5) H̄ = T HT † with
appropriate choice of transformation T = exp

�
−g /ωm(b† −b)a†a

�
.

4.4. ACTION WITH DISSIPATION
In this section, we include a dissipation of the SQUID assuming the dissipation in the
Josephson junctions is due to an Ohmic resistor. Then to the action derived in the previ-
ous section eq.(4.8) we add the dissipation action [6]

Sd (γ) =
γmϕ

4π

�ħβ

0

�ħβ

0

(ϕ+(τ)−ϕ+(s))2

(τ− s)2 dτd s, (4.14)

with γ being a dissipation coefficient. It leads to the full action S+Sd (γ). We again apply
SCHA with the trial action Str = S0 +Sd (γeff). The correlation functions are described by
the standard expression for the damped harmonic oscillator [7]

〈ϕ+(τ)ϕ+(s)〉= 1
mϕβ

+∞�

n=−∞

eiνn |τ−s|

ω2
eff +ν

2
n +γeff|νn |

, (4.15)

where νn = 2πn/ħβ are the Matsubara frequencies. Then, the correlation functions for
the phase in the equilibrium state is

〈ϕ2
+(τ)〉Str = q2 = 1

mϕβ

+∞�

n=−∞

1

ω2
eff +ν

2
n +γeff|νn |

. (4.16)

The next step in SCHA is to evaluate the average of the full and trial actions, which we
separate to two parts

〈S +Sd (γ)−Str 〉Str = 〈S −S0〉Str + 〈Sd (γ)−Sd (γeff)〉Str . (4.17)
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The full expression for the first term on the r.h.s. is given by

〈S −S0〉Str =
ħβmϕ(ω2

c −ω2
eff)q2

2
−
ħβmϕω

2
c q4

8
−
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ϕω
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2
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�
�

.

After evaluating the double integral, the difference in actions excluding the action re-
sponsible for the dissipation can be written as

1
ħβ 〈S −S0〉Str =

mϕ(ω2
c −ω2
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2
−
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 . (4.18)

The first sum can be written in terms of the digamma functions

+∞�

n=1

1
ω2

m+ν2
n

ω2
eff +ν

2
n +γeffνn

=
�ħβ

2π

�4 �
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2i tm
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+ 1
z+− z−
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(z2
++ t 2
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(z2
−+ t 2
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. (4.19)

with the arguments

z± = ħβωeff

2π

�
ζ± i

�
1−ζ2

�
, ζ= γeff

2ωeff
, tm = ħβωm

2π
. (4.20)

By expanding the digamma functions for the large argument in the low temperature
limit, it is easy to see that this term for zero temperature is zero. However, for the tem-
perature corrections this term is important.

To find the double sum, we represent the sum over n in terms of the digamma func-
tions, so that we left only with the sum over k

B =
+∞�

k=1

�

±

1
2i tm(z+− z−)

1
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1
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− 1
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��
. (4.21)
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For all the following calculations, we assume the condition for the parameters γeff �
ωm �ωeff, which are the most common in the experiment. At zero temperatureħβγeff �
1, we can asymptotically expand all the digamma functions to the logarithm. The de-
nominators containing z2

±+ t 2
m , (z+−z−)2+ t 2

m , and (z++z−)2+ t 2
m can be approximated

by z2
±, (z+− z−)2, and t 2

m , respectively. The logarithm ln(z± ± i tm) we expand to the first
order such as ln(z±)± i tm/z±. Then, by summing over k and using properties of the
digamma function the double sum of eq. (4.20) is

B ≈
4ω2

m
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. (4.22)

In order to take a derivative we rewrite B in terms of the original parameters using the
relation ln z+/z− = i (π−2arcsin(ζ)) ≈ i (π−2ζ).

B ≈ ħ2

2πm2
ϕω

3
eff

�
πωm

2
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γeffω

2
m

4ω2
eff

− γeffωm

2ωeff
+

2γ2
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πωeff
−

γ2
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2πωeff

�

. (4.23)

The expression for q2 at zero temperature can be found in the same way by approximat-
ing the digamma functions

q2
0 = ħ

2mϕωeff

�
1− 1

π

γeff

ωeff

�
. (4.24)

The second part of the action difference in eq. (4.17) has the double integral

〈Sd (γ)−Sd (γeff)〉Str =
(γ−γeff)mϕ

2π
×

�ħβ

0

�ħβ

0

〈ϕ2
+(τ)〉−〈ϕ+(τ)ϕ+(s)〉

(τ− s)2 dτd s. (4.25)

The integral is logarithmically divergent at high frequencies as a consequence of treat-
ing Markovian model with the frequency-independent damping, which results in the
unphysical assumption of a memoryless reservoir. In a physical system this problem
is solved by employing the Drude regularization with a frequency-dependent damping
γeff(ωeff) = γeffωD /(ωD − iωeff) and Drude frequency ωD entering the correlation func-
tions

〈Sd (γ)−Sd (γeff)〉Str =
2(γ−γeff)

βπ
×

�ħβ

0
d s

∞�
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2
n + γeffωDνn

ωD+νn

� (4.26)
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where C is the Euler-Mascheroni constant and we used the special functions [9]:
�z

0

sin(z)
z

= Si (z), (4.27)
�z

0

1−cos(z)
z

= ln(z)+C−Ci (z). (4.28)

The integral Ci (2π) ≈−0.022 for n = 1 is much smaller than the Euler-Mascheroni con-
stant. With increasing n, Ci (2πn) becomes even smaller and, hence, can be neglected.
The integral Si (2πn) with increasing n becomes close to π/2. Then the first term of the
sum containing Si (2πn) can be obtained following the method for obtaining the mean-
square of the momentum with the Drude regularization [7]. One can show that the next
two terms containing C and logarithm are well described by the purely Ohmic dissipa-
tion apart from the corrections of order ωeff/ωD , γeff/ωD and γ/ωD [8], which are being
disregarded in the following evaluation. The term containing logarithm can be approxi-
mated by the integral so that we arrive at the following expression

〈Sd (γ)−Sd (γeff)〉Str = (γ−γeff)
�ħ2β
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 .

Again for zero temperature, the last two terms are negligable after dividing difference by
ħβ. Then, the asymtotic expansion of the digamma functions results in the following
dissipation actions difference

1
ħβ 〈Sd (γ)−Sd (γeff)〉Str =ħ(γ−γeff)
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The free energy expansion of the trial action at zero temperature is given by
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Then, in order to minimize the free energy we take the derivative with respect to the
effective dissipation and effective frequency
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Solving this sytem of equations, we obtain the shifts of the dissipation and the cavity
frequency

γeff =
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Comparing the effective frequency shift to the dissipationless case, the result is approxi-
mately the same, since the coefficient in front of g 2

0 /ωc is approximately 2.18. The dissi-
pation is shifted only by the radiation pressure and in comparison to the effective cavity
frequency is free from the intrinsic nonlinearityΛ.
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5
OPTOMECHANICAL RESPONSE OF A

NONLINEAR MECHANICAL

RESONATOR

O. Shevchuk, V. Singh, G. A. Steele, and Ya. M. Blanter

We investigate theoretically in detail the nonlinear effects in the response of an optical/ mi-
crowave cavity coupled to a Duffing mechanical resonator. The cavity is driven by a laser
at a red or blue mechanical subband, and a probe laser measures the reflection close to the
cavity resonance. Under these conditions, we find that the cavity exhibits optomechani-
cally induced reflection (OMIR) or absorption (OMIA) and investigate the optomechanical
response in the limit of nonlinear driving of the mechanics. Similar to linear mechanical
drive, an overcoupled cavity the red-sideband drive may lead to both OMIA and OMIR de-
pending on the strength of the drive, whereas the blue-sideband drive only leads to OMIR.
The dynamics of the phase of the mechanical resonator leads to the difference between the
shapes of the response of the cavity and the amplitude response of the driven Duffing os-
cillator, for example, at weak red-sideband drive the OMIA dip has no inflection point. We
also verify that mechanical nonlinearities beyond Duffing model have little effect on the
size of the OMIA dip though they affect the width of the dip.

This chapter has been published in Phys. Rev. B 92, 195415 (2015).
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5.1. INTRODUCTION
In optomechanics, light and mechanical motion are coupled together by the radiation
pressure of photons trapped in an optical cavity. Optomechanics has the potential to
provide access to the quantum limit of mechanical motion, and in recent years, has been
a field that has been undergoing rapid development [1]. It already resulted in a num-
ber of ground-breaking experiments, including, for example, observation of radiation
pressure shot noise [2] or optomechanical squeezing of light [3, 4]. Following the first
observation of quantum nature of nanomechanical resonator [5], experiments in mi-
crowave [6] and cavity optomechanical [7, 8] architectures demonstrated that mechan-
ical resonators can be brought to the quantum regime. The next step will be to achieve
reliable quantum manipulation and to use mechanical resonators as quantum memory
elements and quantum transducers.

An important tool in optomechanics is an optomechanically induced transparency
(OMIT), an effect analogous to electromagnetically induced transparency in quantum
optics [9, 10]. In an OMIT experiment, the cavity is strongly driven by a drive (pump)
laser at the red sideband — the driving frequency is red-shifted from the cavity reso-
nance by the frequency of the mechanical resonator — and the transmission through
the cavity is measured by a probe laser close to the cavity resonance. Due to the inter-
ference, the transmission exhibits a narrow peak exactly at the cavity resonance. The
width of the peak is determined by the mechanical relaxation rate, and the OMIT peak
is typically much more narrow than the cavity resonance. The observation of the OMIT
peak serves as the signature of optomechanical coupling and can be used to qualitatively
determine the coupling in the experiment. OMIT was first observed in optomechanical
experiments in Ref. [12]. It has been heavily used for characterization of optomechani-
cal systems, in particular, for extraction of the value of optomechanical coupling, in both
optical [7, 12, 13] and microwave [14, 15] realizations. In single-port cavities, like the one
used in Ref. [15], one can only measure reflection. A peak/dip in the reflection coef-
ficient is referred to as optomechanically induced reflection/absorption (OMIR/OMIA)
[13].

In most optomechanical experiments, both cavity and mechanical resonator were
linear. However, nonlinear effects are conceptually important. In the classical regime,
a driven nonlinear oscillator exhibits bistable behavior, which may strongly affect the
properties of the system. Moreover, in the quantum regime, nonlinear effects are essen-
tial for creation of non-classical states of a nonlinear resonator. There are three sources
of nonlinear behavior in cavity and microwave optomechanics. First, the radiation pres-
sure interaction is inherently nonlinear, but typically a cavity is strongly driven by a laser,
and in this case the interaction can be linearized [1]. There were theoretical proposals
to use the radiation pressure interaction for quantum manipulation of mechanical res-
onators [16], which require strong coupling regime of operation. Second, a cavity can
be made nonlinear. Whereas it is difficult to achieve for optical cavities, microwave cav-
ities can be made nonlinear by adding Josephson junctions. Self-sustained oscillations
caused by nonlinear Lorentz force backaction [17] and cavity-induced Duffing behavior
of a mechanical resonator [18] were demonstrated in Josephson-based devices the dc
regime. Third, mechanical resonators are inherently nonlinear. This is best manifest in
low-dimensional resonators such as carbon nanotubes and graphene flakes [19]. In this
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Sd
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Figure 5.1: Schematic of an optomechanical cavity consisting of a static (left) and a movable (right) mirrors.
The movable mirror acts as a mechanical resonator. It is coupled to the cavity through the radiation pressure.

chapter, we concentrate on nonlinear effects in mechanical system.
Nonlinear mechanical effects in optomechanical architecture were experimentally

studied in Ref. [20] (see also Ref. [21]). These articles investigated OMIT in an undercou-
pled optical cavity and discovered that the OMIT feature is still in place, and the shape
of the OMIT peak repeats the shape of the frequency response of the driven nonlinear
(Duffing) oscillator and exhibits bistability resulting in a hysteretic behavior.

Recently, we performed experimental studies of nonlinear effects in OMIA [22] in
the same overcoupled microwave cavity as Ref. [15]. The results we found have a qual-
itatively different lineshape from that of Ref. [20] — the shape of the OMIA dip in the
reflection coefficient of the cavity was distorted by nonlinear effects, however, the shape
is different from the response of a driven Duffing oscillator, in particular, it does not have
an inflection point.

In this chapter, we provide a theoretical analysis of nonlinear effects on OMIR/OMIA
feature and explain the difference between Refs. [20] and [22]. We demonstrate that
whereas the OMIR/OMIA feature persists in all situations and exhibits the bistability at
strong enough probe powers, its shape is different depending on how the cavity is cou-
pled to an external circuit. We show that the non-Duffing shape of the OMIA response is
due to the effect of the phase of the mechanical resonator imprinted on the microwave
field. We also analyze the OMIR/OMIA for a blue-detuned drive.

The chapter is organized as follows. In Section 5.2, we develop a general theory of
nonlinear effects in OMIR/OMIA based on input-output relations — a standard tech-
nique in quantum optics, and derive the OMIA for a red sideband driven overcoupled
cavity. In Section 5.3 we generalize the results to the case when the drive is detuned from
the red sideband, and in Sec. 5.4 we demonstrate what happens for an undercoupled
cavity, connecting our results with Ref. [20], and for a blue sideband drive. In Section 5.5,
we consider nonlinear effects beyond the Duffing approximation: The quadratic term in
the force and the nonlinear dissipation. Section 5.6 presents the conclusions.

5.2. MODEL OF A DRIVEN NONLINEAR CAVITY
We consider a single-port cavity, which is coupled via the radiation pressure to a nonlin-
ear resonator as shown in Fig. 5.1. The Hamiltonian of the system is

Ĥ =ħωc â†â + p̂2

2mr
+

mrω
2
m x̂2

2
+α x̂4

4
+ħGx̂â†â + iħ�ηκ

�
si n(t )â† − s∗i n(t )â

�
. (5.1)
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Here â†(â) is the creation (annihilation) operator for the cavity mode with the cavity fre-
quencyωc . The resonator with the effective mass mr and the resonance frequencyωm is
described by the operators of mechanical displacement x̂ and momentum p̂ operators.
The mechanical nonlinearity is described by the Duffing term with the strength α. The
radiation pressure term contains the optomechanical coupling constant G = dωc /d x be-
tween the mechanical and cavity modes, which corresponds to the shift of the cavity fre-
quency due to the motion of the resonator. The last term describes the coupling of the in-
put signal to the cavity. The cavity coupling parameter is given by η= κe /(κ0+κe ) = κe /κ,
where κ0, κe and κ denote the intrinsic, the external, and the total dissipation rates, re-
spectively. The input signal si n(t ) = Sd e−iωd t +Sp e−iωp t consists of the strong drive field
with the normalized field amplitude Sd and drive frequency ωd and weak probe field
with the normalized amplitude Sp and probe frequency ωp . The amplitudes Sd and Sp
are square roots of the corresponding drive/probe power divided by ħωc and have di-
mensions of s−1/2. S2

p and S2
d have the meaning of the incident photon flux measured in

photons per second. In the remainder of the chapter we will refer to the amplitudes Sd
and Sp simply as drive and probe fields.

Writing the Heisenberg equations of motion in the rotating-wave frame of the drive
frequency[1, 12] and adding dissipation of the cavity and mechanical modes, we derive
the quantum Langevin equations for our system as follows,

d
d t

â(t ) =
�
i∆− κ

2

�
â(t )− iGx̂(t )â(t )+�

ηκsi n(t )eiωd t , (5.2)

mr

�
d 2

d t 2 x̂(t )+Γm
d

d t
x̂(t )+ω2

m x̂(t )
�
=−ħGâ†(t )â(t )−αx̂3(t ), (5.3)

where ∆=ωc −ωd is the detuning between the cavity field and drive field and Γm is the
damping rate of the resonator.

In the steady-state, disregarding the probe field, the time derivatives vanish, and the
static solutions for the intra-cavity field and mechanical displacement obey the follow-
ing algebraic equations,

a =
�
ηκ

−i∆+κ/2
Sd , (5.4)

mrω
2
m x +αx3 +ħGa2 = 0, (5.5)

where ∆ = ∆−Gx is an effective cavity detuning including the frequency shift due the
static mechanical displacement.

Since the probe field is much weaker than the drive field, following the standard
methods of quantum optics, we can rewrite each Heisenberg operator as the sum of its
steady-state mean value and a small fluctuation, which has zero mean value

â(t ) = a +δâ(t ) and δx̂(t ) = x +δx̂(t ). (5.6)

In this case, the steady-state values are governed by the drive power and the small fluctu-
ations by the probe power. Then, keeping only the linear terms of the fluctuation opera-
tors in the radiation pressure term (disregarding δâ†(t )δâ(t ) and δâ(t )δx̂(t )), we obtain
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the linearized quantum Langevin equations

d
d t

δâ(t ) = (i∆− κ

2
)δâ(t )− iGaδx̂(t )+�

ηκSp e−iΩt , (5.7)

mr

�
d 2

d t 2 δx̂(t )+Γm
d

d t
δx̂(t )+ω2

mδx̂(t )
�
=−ħGa(δâ(t )

+δâ†(t ))−α(δx̂3(t )+3x2δx̂(t )+3xδx̂2(t )), (5.8)

with Ω=ωp −ωd being the detuning of the probe field from the drive. In order to solve
this system of equations we introduce the following Ansatz: δâ(t ) = Ae−iΩt + A+e+iΩt .
We are interested here in the resolved sideband regime (κ� ωm) and close to the blue
(∆=ωm) or red (∆=−ωm) sideband of the drive field, meaning the lower sideband A+ is
far off-resonance and can be neglected. Upon substituting this Ansatz into Eq. (5.7) we
derive the amplitude A of the cavity field

A = −iGaeiΩtδx̂

−i (∆+Ω)+ κ
2

+
�
ηκSp

−i (∆+Ω)+ κ
2

. (5.9)

Next, we substitute this into Eq. (5.8). This is a nonlinear equation which can be
solved in the same way as one solves the forced Duffing oscillator [23]. We rewrite the
equation in terms of the dimensionless time τ=ωm t and frequency ω=Ω/ωm

d 2

dτ2 δx̂(τ)+ω2δx̂(τ) =−(ω2 −1)δx̂(τ)− Γm

ωm

d
dτ

δx̂(τ)− ħGa

mrω
2
m

(Aeiωτ+ A∗e−iωτ)

− α

mrω
2
m

(δx̂3(τ)+3x2δx̂(τ)+3xδx̂2(τ)). (5.10)

The term proportional to xδx̂2 is dropped since it creates a very small static force. To
facilitate analysis of this nonlinear equation, the small asymptotic parameter ε� 1 is
introduced. Then, assuming weak nonlinearity, weak damping, weak forcing with fre-
quency close to the natural frequency of the mechanical resonator, one can perform
transformations: α/mrω

2
m → εα/mrω

2
m , Γm/ωm → εΓm/ωm , ħGa A/mrω

2
m →

εħGa A/mrω
2
m and (ω2 −1) → ε(ω2 −1). This indicates that all parameters on the r.h.s.

of eq. (5.10) are small, and we can construct the solution as a power series using the
method of multiple scales

δx̂(τ) = x0(t0, t1)+εx1(t0, t1)+O (ε2), (5.11)

with the fast timescale t0 = τ and the slow timescale t1 = ετ. Applying two time scales
leads to the transformation of the first and second time derivative with respect to time τ

d
dτ

= ∂

∂t0
+ε ∂

∂t1
= D0 +εD1, (5.12)

d 2

dτ2 = D2
0 +2εD1D0 +O (ε2). (5.13)
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Using relations for the derivatives in the equation of motion for mechanical resonator
and collecting orders O (1) and O (ε) yield the pair of differential equations

D2
0x0 +ω2x0 = 0, (5.14)

D2
0x1 +ω2x1 =

�

ω2 −1+
iħG2a2/mrω

2
m

−i (∆+Ω)+ κ
2

�

x0

−2D1D0x0 −
Γm

ωm
D0x0 −

ħGa
�
ηκSp e−iωt0 /mrω

2
m

−i (∆+Ω)+ κ
2

− α

mrω
2
m

(x3
0 +3x2x0). (5.15)

The first equation is a simple harmonic oscillator with the general solution x0(t0, t1) =
X (t1)e−iωt0 + X ∗(t1)eiωt0 . Substituting x0 to the r.h.s. of eq. (5.15) and collecting terms
proportional to the e−iωt0 we obtain the force that drives the l.h.s. at its resonance fre-
quency. In order for the perturbation correction x1 to not diverge, the sum of all collected
terms must be zero. It gives rise to the condition for the slowly varying amplitude X (t1),

2iωẊ +
�

ω2 −1+
iħG2a2/mrω

2
m

−i (∆+Ω)+ κ
2

�

X

+iω
Γm

ωm
X −

ħGa
�
ηκSp /mrω

2
m

−i (∆+Ω)+ κ
2

−3
α

mrω
2
m

(X X ∗+x2)X = 0. (5.16)

This is our main result, which in the remainder of the chapter we will simplify looking
specifically at the blue or the red sideband of the cavity field.

5.2.1. RED SIDEBAND

For the red sideband, the drive field is fixed close the lower motional sideband∆=−ωm+
δ, where δ is a small shift (detuning) from the mechanical frequency. The probe field is
slightly detuned from the cavity resonance frequency, Ω = ωm +∆� − δ, where ∆� is a
small detuning. We also define g 2 = ħG2a2/2mrωm and F = ħGa

�
ηκSp /mrωm . Then

Eq. (5.16) is approximated as follows

2i Ẋ +2
�
∆� −δ+ iΓm

2
+ i g 2

−i∆�+ κ
2

�
X − F

−i∆�+ κ
2
−3

α

mrωm
(X X ∗+x2)X = 0. (5.17)

Introducing a polar form of the complex amplitude X (t1) = 1
2 b(t1)e−iφ(t1) and separat-

ing real and imaginary part (2i Ẋ = i ḃ +bφ̇) gives a system of two first-order differential
equations for the real amplitude b and phase φ. These equations describe a slow time
evolution of the amplitude and phase. To find the equilibrium points of this slow flow
we look at the solution with constant amplitude(ḃ = 0) and phase(φ̇= 0)

F∆� sin(φ)− κ

2
F cos(φ) = g 2b∆�+

�
κ2

4
+∆�2

��
3α

2mrωm
(b2/4+x2)−∆�+δ

�
b, (5.18)

F
κ

2
sin(φ)+F∆� cos(φ) =

��
κ2

4
+∆�2

�
Γm

2
+ g 2κ

2

�
b. (5.19)
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Figure 5.2: The amplitude of the mechanical resonator rescaled by the probe field Sp = 104s−1/2(red) and
Sp = 3×106s−1/2(blue) as a function of the frequency ∆�/κ driven exactly at the red sideband. For the nonlin-
ear frequency response (blue) the hysteresis occurs. The blue arrow up shows the direction of the jump in the
amplitude for decreasing frequency and the blue arrow down shows the direction of the jump for increasing
frequency. Most parameters are taken from the experimental paper by Singh et. al.[15] with the cavity cou-
pling parameter η= 0.777, except for the intra-cavity number of photons a2 = 7.6×106, mechanical damping
Γm /2π= 200 H z, and nonlinearity strength α= 2×1014 kg m−2s−2.

The results for the amplitude of the mechanical resonator are shown on Fig. 5.2
at zero detuning of the drive (δ = 0) and α > 0 as a function of the probe frequency
for two probe powers. We see that the behavior is exactly the same as for the Duffing
oscillator[23]. At low driving (low probe power) the response of the amplitude is the same
as for a linear oscillator and results in a Lorentzian peak. If the probe power increases,
the resonant curve becomes asymmetric and develops instability, shown as hysteresis.

The amplitude of the cavity field can now be found using real amplitude and phase
of the mechanical oscillator,

A = −iGabe−iφ/2

−i (∆+Ω)+ κ
2

+
�
ηκSp

−i (∆+Ω)+ κ
2

. (5.20)

5.2.2. BLUE SIDEBAND

For the blue sideband, we follow the same steps as for the red sideband by taking the
frequencies Ω=ωp −ωd =−ωm +∆� −δ and ∆=ωd −ωc −Gx =ωm +δ. Consequently,
the equations for the amplitude (5.18) and phase (5.19) can be adapted by changing sign

in the term on the r.h.s. of Eq. (5.18) by −
�
κ2

4 +∆�2
�

b∆� → +
�
κ2

4 +∆�2
�

b∆� and in Eq.

(5.19) by
�
κ2

4 +∆�2
�
Γmb/2 →−

�
κ2

4 +∆�2
�
Γmb/2.

5.2.3. REFLECTION COEFFICIENT

In order to study OMIA or OMIR, we need to look at the cavity reflection of the probe
field. It is defined by the ratio of the output and input field amplitudes at the probe
frequency. The output field of a single port cavity can be found using the input-output
relationship

sout (t ) = si n(t )+�
ηκa(t ). (5.21)
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Figure 5.3: Optomechanically induced absorption window found from the cavity reflection coefficient |S11|,
which corresponds to the mechanical amplitude shown in Fig. 5.2.

Hence, the reflection coefficient of the probe field is given by

|S11| =
����1−

�
ηκA

Sp

���� . (5.22)

For a linear mechanical resonator, the amplitude A is linear with the probe field Sp , be-
cause the fluctuations of the mechanical resonator δx̂ are linear with Sp . Hence, the
reflection coefficient is independent of the probe field. For a nonlinear resonator the
relation is more complex.

At zero detuning δ= 0 and for a linear resonator, the shape of OMIT as the function
of the detuning between drive and probe exactly repeats the shape of the response of the
amplitude of the mechanical resonator. We see from Eqs. (5.18), (5.19) that this is not the
case for a nonlinear resonator. The main reason is that OMIT is not only determined by
the dynamics of the amplitude b, but also by the dynamics of the phase shift φ, which in
turn depends on the frequency. This dependence is essentially an effect of back-action
of the cavity on the resonator.

The non-trivial shape of reflection is illustrated in Fig. 5.3 for the same parameters
as Fig. 5.2. Note that in the remainder of the chapter we will continue to use the same
parameters to visualize the analysis unless mentioned otherwise. Only stable parts of
the curve are shown; the bistability results in jumps between different branches of the
reflection. It is seen that the reflection close to the cavity resonance is suppressed, in-
dicating OMIA for a single-port cavity. The shape of the OMIA dip for stronger probe
(Duffing oscillator) is bistable, however, it does not correspond to the shape of the res-
onator response (Fig. 5.2), for instance, it does not have an inflection point.

Fig. 5.4 illustrates the dependence of the OMIA dip on the probe field Sp for the same
parameters as in Fig. 5.2. The red curve corresponds to the field Sp = 104s−1/2, when the
dynamics of the mechanical resonator is linear, and is the same as the red curve in Fig.
5.3. The blue curves, from left to right, correspond to increasing probe power, and the
resonator shows nonlinear behavior. We see that upon increasing the probe frequency,
the width of the OMIA dip increases and the depth slightly decreases with the probe
power. It does not correspond to the Duffing oscillator feature, where the peak height
stays unaffected by the drive power.
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Figure 5.4: OMIA response for different probe fields. The first red curve shows linear response at the probe field
Sp = 104s−1/2. The dashed grey line represents the peak height of the linear response, in order to compare it
with other probe fields. The blue curves start on the left from the probe field Sp = 1× 106s−1/2 and equally
increase the probe field by Sp = 0.5× 106s−1/2 step up to the last curve on the right, which corresponds to
Sp = 6×106s−1/2.

In the rest of the chapter, we investigate the effect of different parameters at the re-
sponse of the cavity.

5.3. OMIA DETUNING
In this Section, we look at the effect of the detuning of the drive δ. The results are shown
in Fig. 5.5 for the same parameters as Fig. 5.2 and various values of δ.

Fig. 5.5 (a) and (b) give the general picture of the cavity response in a broad frequency
window for positive (a) and negative (b) detunings at weak probe field, Sp = 104s−1/2.
The detuning breaks the symmetry of the response with respect to the center of the cav-
ity resonance even in the linear case, shifting the OMIA dip. We see indeed that the drive
detuning shifts the narrow OMIA dip away from the minimum of the broad cavity reso-
nance. This can be also seen from Eq. (5.18): Indeed, δ enters there in the combination
δ+3αb2/(8mrωm). We have seen already that increasing the probe power (increasing b)
shifts the OMIA minimum to the right, therefore positive δ must shift it to the right as
well, and the negative detuning must shift the peak to the left.

Fig. 5.5 (c) and (d) show the structure of the dip for the same parameters as (a) and
(b), respectively. The shape is clearly asymmetric and is different from the Lorentzian
shown in Fig. 5.3. The flank which is closer to the center of the cavity resonance (the
right/left one for negative/positive detuning δ) is sharper than the opposite flank. The
OMIA dip at the detuning δ is a mirror reflection of the OMIA dip at the opposite detun-
ing −δ.

Fig. 5.5 (e), (f) and (g), (h) show the cavity response at a stronger probe fields, Sp =
3×106s−1/2 and Sp = 5×106s−1/2, when the nonlinear nature of the response is well pro-
nounced. First, OMIA dips at δ and −δ are no more mirror images of each other. For
the forward sweep in (e) and (f), if the nonlinear term is positive, α > 0, the OMIA dip
at negative detuning −δ is less pronounced than the dip for positive detuning δ. On the
contrary, for the backward sweep in (g) and (h), the increase in the probe power results
in the decrease of the depth for both, positive and negative, detunings. For a linear sys-
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Figure 5.5: OMIA at non-zero detuning. All panels on the left show OMIA for the negative detuning δ=−0.2κ;
all panels on the right are for the same parameters but the positive detuning δ = 0.2κ. (a), (b) The full cavity
reflection coefficient in the broad frequency range for the low probe field Sp = 104s−1/2, when the cavity can
be considered to be linear. (c), (d) Zoom of the linear OMIA peak. (e), (f) Nonlinear OMIA window of the
forward frequency sweep for the two probe fields: Sp = 3×106s−1/2 (dashed blue line) and Sp = 5×106s−1/2

(solid green line). (g), (h) Nonlinear OMIA of the backward frequency sweep for the same probe fields as in (e)
and (f).
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Figure 5.6: Nonlinear response map schematically shows the position and the shape of the OMIA/OMIR fea-
tures for the undercoupled(η = 0.223), in the first row, and overcoupled(η = 0.777), in the second row, cavity.
The two columns represent red and blue sideband. When the intra-cavity number of photons nd = a2 ( in
the plots (a), (b), (d), and (f) ) the reflection coefficient is shown for the probe field Sp = 104s−1/2 with the
solid(red) line, Sp = 3×106s−1/2 with the dashed(blue) line and Sp = 5×106s−1/2 with the dash-dotted(green)
line. For the larger intra-cavity number of photons nd = 25a2 (in the plots (c) and (e) ) there is a switch between
OMIA and OMIR , then the reflection coefficient is plotted for the following probe fields Sp = 104s−1/2 with the
solid(red) line, Sp = 3×107s−1/2 with the dashed(blue) line and Sp = 5×107s−1/2 with the dash-dotted(green)
line. Each plot corresponds to the different value of the Duffing nonlinearity strength α = (a),(d)2 (b),(f)0.5
(c),(e)0.08 ×1014 kg m−2s−2.

tem, we would expect a symmetry of the signal S11(ωp−ωc ;δ) = S11(−ωp+ωc ;−δ), which
would make left and right panels of Fig. 5.5 mirror reflections of each other. In the pres-
ence of nonlinearity, the curves are pulled in the same direction. Thus, the symmetry is
broken, and therefore the OMIA dip is pronounced for the negative detuning.

5.4. NONLINEAR RESPONSE MAP
So far, we concentrated on red sideband drive and overcoupled cavity, η > 1/2, and a
moderate drive power. In this situation there is an OMIA dip which is again shown in
the left curve of the left bottom cell of Fig. 5.6. If the drive power increases, the cav-
ity response S11 instead of a minimum shows a maximum. This is an OMIR peak, as
demonstrated in the right panel of the same cell of Fig. 5.6. Similarly for OMIA, at weak
probe powers the OMIR peak is Lorentzian, and if we increase the probe power, the peak
shifts to the right and broadens. Note that whereas the shape of the OMIA dip for weaker
drive is different from the response of the mechanical resonator (no inflection point), the
shape of the OMIR peak for stronger drive repeats the shape of the resonator response.
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In the bottom right cell of Fig. 5.6 we show the results for the same overcoupled cavity
driven at the blue sideband. We see that the OMIR peak develops at any drive power. For
low probe powers the peak is Lorentzian, and for higher probe powers it shifts to the
left and broadens. The shape of the peak is related to the shape of the response of the
mechanical resonator, Fig. 5.2.

The qualitative difference between red and blue shifted drive for OMIR/OMIA has
already been analyzed in Ref. [15] for the linear dynamics of the mechanical resonator.
Indeed, the minimum value of the reflection coefficient is a non-monotonous function
of the coupling parameter η: It decreases with η for an undercoupled cavity, reaches
zero for an optimally coupled cavity η = 1/2, and increases with η for an overcoupled
cavity. The red/blue sideband drive modifies the cavity linewidth κ0 such that it be-
comes κ0 ± 4g 2/Γm , where the upper/lower sign corresponds to the red/blue detuned
drive. Thus, for an overcoupled cavity increasing the drive intensity (proportional to the
number of photons in the cavity) for the red sideband drive takes the cavity towards the
undercoupled limit, and the behavior changes dramatically when the effective coupling
crosses the point η = 1/2, crossing over from OMIA to OMIR. In contrast, the blue side-
band drive only takes the cavity to even stronger overcoupled regime, and there are no
qualitative changes. For an undercoupled cavity, the roles of red and blue sideband driv-
ing are swapped.

Now we turn to the nonlinear dynamics. From Eq. (5.18) we see that the signs of b2

and ∆� are opposite for the red sideband drive and the same for the blue sideband drive.
This means that since the OMIR peak shifts to the right from the cavity resonance for the
red sideband, it shifts to the left for the blue sideband, in full accordance with Fig. 5.6.

The top row of Fig. 5.6 shows OMIA/OMIT for an undercoupled cavity, η< 1/2. The
red sideband drive (top left corner) was previously studied in the experiments [20]. For
any drive powers, there is an OMIR peak, and the shape of the peak corresponds to the
shape of the Duffing resonator response. The top right corner shows the cavity response
for the blue sideband drive. It is similar to what happens in an overcoupled cavity for
the red sideband drive: At low probe powers, one has an OMIA dip with the line shape
different from the Duffing response of the resonator (no inflection point), whereas for
stronger driving, an OMIR peak develops with the Duffing-like shape. The position of
the peak is shifted to the left of the cavity resonance with increasing the probe power.

5.5. BEYOND DUFFING
To complete our results, we consider two more nonlinear effects not included in the
Duffing model (5.1) — the quadratic term in the displacement and the nonlinear damp-
ing. Both can be included in the treatment of Section 5.2.

One phenomenon is the additional term βx3/3 in the energy of the mechanical res-
onator. It produces the force proportional to the coordinate x breaking the symmetry of
the oscillator potential and shifting the equilibrium point. Here, we restrict ourselves to
the case β> 0. Fig. 5.7 shows the results for the overcoupled cavity driven exactly at the
red sideband, δ= 0. The curve for β= 0 corresponds to the OMIA dip shown in Fig. 5.3.
We see that the only effect of finite β is to shift the position of the OMIA dip to the left
of the cavity resonance — in the direction opposite to the shift due to increasing probe
power. The shape and the depth of the dip are almost unaffected.
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Figure 5.7: Evaluating the contribution of βx2 to the energy of the mechanical resonator on the OMIA dip. The
quadratic nonlinearity β = 0 is shown by solid(red) line, β = 3× 1011 kg m−1s−2 by dashed(blue) line, and
β= 6×1011 kg m−1s−2 by dash-dotted(green) line for the fixed probe field Sp = 3×106s−1/2. The βx2 term
induces a force-dependent shift of the equilibrium frequency, but otherwise does not change the nonlinear
dynamics or optomechanical response.

Next, we consider the effect of nonlinear damping, adding the term −µx2ẋ to the
equations of motion for the resonator. Without the nonlinear term, α= 0, this would be
the van der Pol resonator [23], obeying the equation of motion

mr

�
d 2

d t 2 x + (Γm −µx2)
d

d t
x +ω2

m x
�
= F (t ) ,

where F is an external force. For sufficiently large oscillation amplitudes the system
would become unstable far from the equilibrium point (µx2 > Γm), however, here we are
interested in the situation when the nonlinear term in the damping is a small correction.

Fig. 5.8 shows the effect of the nonlinear damping on the OMIA dip in the same
situation as Fig. 5.3. There is an enhancement of the dip for the increasing probe power
and positive µ. Correspondingly, for negative µ the dip becomes deeper with increasing
probe power.

In general, for specific parameters of the system one can find other nonlinearities,
e.g. dissipative [24] or cross-Kerr [25] couplings, which go beyond the scope of our chap-
ter.

5.6. CONCLUSIONS
In this chapter, we systematically investigated the effect of nonlinearities in a mechani-
cal resonator on the OMIR/OMIA feature of a one-port optomechanical cavity. The main
result is summarized in Fig. 5.6. We see that depending on whether the cavity is over-
coupled or undercoupled, whether it is red or blue sideband driven, and whether the
drive power is sufficiently strong, the nonlinear effects either result in OMIR with the
shape repeating that of a driven Duffing oscillator (an analog of Ref. [20]), or OMIA with
a different shape, as observed in Ref. [22]. The higher is the probe power, the wider is
the feature and the more pronounced is the effect of nonlinearity, including the width
of the hysteresis range. The depth of the OMIA feature is not significally affected. Fur-
thermore, we investigated the effect of other factors on the OMIA feature and found that
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Figure 5.8: OMIA response including negative nonlinear damping for different probe field. The red curve
shows the linear response with zero negative nonlinear damping (−µx2 ẋ) for the probe field Sp = 104s−1/2.
The dashed grey line represents the peak height of the linear response. The next blue curves include negative
nonlinear damping µ= 3×1019m−2s−1. They start with the probe field Sp = 1×106s−1/2 and end with Sp =
4 × 106s−1/2 having an equally spaced step in the probe field of 0.5 × 106s−1/2. The effect of the negative
nonlinear damping term considered here is to increase the depth of the OMIA dip in the optomechanical
response with increasing driving force on the mechanical resonator.

the detuning of the drive shifts the OMIA dip and makes it significantly asymmetric, the
quadratic term in the oscillator force shifts the position of the dip without considerably
affecting its shape, whereas the nonlinear dissipation enhances the dip. These conclu-
sions will help to interpret the results of the cavity response in optomechanical cavities
with a nonlinear mechanical component.

Let us now discuss the limitations of our theoretical model. First, our theory is valid
in the weak coupling regime, g � κ. Whereas this seems to be sufficient for existing ex-
periments with nonlinear resonators [20, 22], multi-photon strong coupling has already
been achieved in the linear mechanical limit [14]. We linearize radiation-pressure in-
teraction, and thus we can also describe multi-photon strong coupling regime using a
similar framework. Generalization to the single-photon strong coupling regime is how-
ever difficult. Furthermore, we only considered the situation when the probe power is
much weaker than the drive power. It would be relatively easy to consider a comple-
mentary situation when the probe is much stronger than the drive, however, we have
used the method of scale separation, and it fails when the drive and the probe power are
comparable. Equations still could be solved numerically in this case.
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6
NEGATIVE NONLINEAR DAMPING IN

THE GRAPHENE RESONATOR

V. Singh, O. Shevchuk, Ya. M. Blanter, and G. A. Steele

We investigate the nonlinear response of a multilayer graphene resonator coupled to a
superconducting microwave cavity by theoretically fitting the experimental data. The ra-
diation pressure force drives the mechanical resonator in an optomechanically induced
transparency configuration. By varying the amplitudes of drive and probe tones, the me-
chanical resonator can be brought into a nonlinear limit. Using the calibration of the op-
tomechanical coupling, we quantify the mechanical Duffing nonlinearity. By increasing
the drive force, we observe a decrease in the mechanical dissipation rate at large ampli-
tudes, suggesting a negative nonlinear damping mechanism in the graphene resonator.
Increasing the optomechanical backaction further, we observe new instabilities in the me-
chanical response.

Part of this chapter has been published in Phys. Rev. B 93, 245407 (2016).
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6.1. INTRODUCTION
The unique properties of graphene such as atomic thickness, low mass density, and high
modulus of rigidity make it very attractive material for nanoscale electromechanical sys-
tems (NEMS) for several technological applications. After the first demonstration of a
few layers thick graphene NEMS [1], there have been extensive studies on graphene na-
noelectromechanical systems ranging from electromechanical resonators [2, 3], oscilla-
tors [4] and optomechanical systems aiming to probe the quantum regime of graphene
motion [5–8]. In this pursuit, large mechanical quality factors of the order of 10 22×104

in graphene based NEMS have been demonstrated as well [5, 9]. Due to its atomic thick-
ness, graphene based NEMS also exhibit rich nonlinearity such as onset of Duffing non-
linearity and nonlinear damping at realativly small mechanical amplitudes [9, 10]. These
properties further make graphene an attractive candidate for developing optomechan-
ical systems to reach the quantum regime of graphene motion [11], to store microwave
photons [12], and could possibly be useful to understand dissipation in graphene NEMS
for improved device performance [13].

The coupling between mechanical resonator and optical/superconducting microwave
cavities has enabled the detection of mechanical motion with excellent sensitivities [14–
16], offering an attractive platform to characterize the nonlinear response of mechani-
cal resonators. In this chapter, we study nonlinear dynamics of a multilayer graphene
resonator, which is coupled to a superconducting microwave cavity. We use theoreti-
cal model from previous chapter to explain and fit the experimental results in [17]. The
graphene resonator is driven by injecting two microwave tones in the cavity, which are
detuned by the mechanical resonant frequency leading to an oscillating radiation pres-
sure force which drives the mechanical resonator. By changing the amplitude of these
tones, one can independently control the driving force and dissipation due to the op-
tomechanical backaction forces. We investigate the case when the mechanical resonator
can be brought into the Duffing regime and characterize the nonlinearity. With increase
in the driving force, we observe a reduction in linear dissipation rate, large hysteresis
with sweep direction, and an instability in the mechanical amplitude.

The chapter is structured as follows. In Section 6.2, we describe a device and pa-
rameters essential for the theoretical fitting. In Section 6.3 we compare the experimen-
tal results and theoreticallly obtained fits with linear dissipation rates and mechanical
amplitudes for different probe and drive powers. We also discuss the origin of the ex-
tra arrised instabilities and show that such instabilities can not be due to the fifth order
nonlinearity. With Section 6.4 we conclude this chapter.

6.2. DEVICE
The device consists of a graphene resonator coupled to a superconducting microwave
cavity as studied previously in Ref. [5]. Fig. 6.1(a) shows a scanning electron microscope
image of a suspended mechanical resonator coupled to a superconducting microwave
cavity. The Hamiltonian of our device is given in eq. (5.1). The superconducting cav-
ity has a resonance frequency of ωc = 2π× 5.90054 GHz, with an internal dissipation
rate κi = 2π×54 kHz and an external coupling rate κe = 2π×188 kHz (coupling fraction
η = κe

κ(=κe+κi ) = 0.78). The graphene resonator forms a mechanically compliant capac-
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Figure 6.1: (a) A scanning electron micrograph of a multilayer graphene drum-shape resonator coupled to a su-
perconducting microwave cavity (not shown here). Graphene resonator is suspended. (b) Schematic diagram
of the device: graphene resonator couples external microwave radiation to the cavity by forming a coupling
capacitor.

itor to the microwave feedline as shown schematically in Fig. 6.1(b). The motion of
the graphene resonator modulates the capacitance and hence the cavity frequency. The
graphene resonator has a resonance frequency of ωm = 2π×36.233 MHz. The optome-
chanical coupling is 2π× 0.83 Hz [5], defined as g0 = dωc

d x xXPF = GxXPF, where xXPF are
the quantum zero-point fluctuations of the mechanical resonator.

6.3. EXPERIMENT VS THEORY
In order to probe the mechanical response, we take advantage of the optomechanical
coupling and sideband-resolved limit (ωm � κ) in an optomechanically induced trans-
parency (OMIT) setup. In Fig. 6.2, we show experimental OMIA response in comparison
with theoretical one. The nonlinear response can be primarily captured by including a
Duffing term αx3 in the restoring force of the mechanical resonator. We vary the num-
ber of intracavity probe photons np , hence the driving force, while keeping the number
of drive photons fixed at nd = 2.5× 107 (C ∼ 0.40) and 1.0× 108 (C ∼ 1.24), respec-
tively. At low number of probe photons, the OMIA feature is determined by the linear
response of the mechanical resonator. As np is increased further, the nonlinearity in the
OMIA response becomes evident with a stiffening of the mechanical resonator (positive
shift in the resonance frequency) and the shark-fin like Duffing response accompanied
by hysteresis with respect to frequency sweep-direction.

In addition to the clear Duffing response, with the exception of the bottom two curves,
it can also be seen that the OMIA dip on the non-linear regime becomes deeper. Quali-
tatively, the observation of a deeper OMIA dip when np is increased can be understood
from a reduction of the mechanical damping rate as the resonator is driven to larger
amplitudes. Such a decreased mechanical damping rate would give a larger cooperativ-
ity and thus a deeper OMIA dip. In the last two curves, the cooperativity is continuing
to increase, but the OMIA dip becomes less deep as the cavity has now crossed over to
an effective undercoupled regime as also observed for linear mechanical resonator in
Ref.[5]. Comparing figures 6.2(a),(b) and (c),(d), smaller and larger nd respectively, the
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Figure 6.2: Forward (red) and reverse (cyan) frequency sweep (a),(c) measurement and (b),(d) theory of OMIA
feature showing mechanical response at various probe and drive powers. The probe photons are swept from
np = 2.5×105 to 3.14×106 in 1 dB steps (top to bottom). Number of drive photons nd is fixed at 2.5×107

(C ∼ 0.40) for panels (a),(b) and 1.0×108 (C ∼ 1.24) photons for panels (c),(d). The evolution of nonlinear
response accompanied by the hysteresis can be clearly seen as probe power is increased (top to bottom). Panel
(c) shows instability points as sharp dips appearing at large probe power. For clarity, measurements in (a),(b)
and (c),(d) are plotted with offsets of -30 dB and -9 dB, respectively.

mechanical linewidth in Fig. 6.2(c),(d) is significantly larger. This is a consequence of
increased optomechanical damping, which also explains the absence of hysteresis and
shows only a transition to a Duffing response at higher powers [18]. Finally, in panels (c)
and (d), at the highest drive forces, we also observe an instability in the response in the
form of a spike in reverse frequency sweep.

To further show that the theory is comparible with the experiment one of the numer-
ical fitted curve overlaid on top of the experimentally measured data in Fig. 6.3(a). Fol-
lowing theory from Chapter 5, the Duffing parameter is α= 2.3×1015 kg m−2s−2, which
is given by the gray curve. Using the analytical expression for the onset of the Duffing bi-
furcation pointωup =ωm +3αX 2

up /(8me f f ωm), we getα= 2.5×1015 kg m−2s−2, which is
close to the results we get by performing numerical fits. Furthermore, in Fig. 6.3(b, c), we
perform numerical fits of the experimental data to extract the linear mechanical dissipa-
tion rate (Γm), and mechanical amplitude (x0). It should be noted that in the expression
of the Duffing parameter for a given driving force, the mechanical quality factor enters
through the amplitude of the resonator at the bifurcation point. At low amplitude, we
observe mechanical damping rates Γm of 2π×700 Hz (Qm = 51760) for nd = 2.5×107,
while for higher amplitude, the damping rate drops to 2π× 410 Hz (Qm = 88373). At
large number of probe photons, the nonlinear dynamics of the OMIA becomes far more
complex. Apart from the nonlinear Duffing response accompanied by the hysteresis, in
the experiment there is extra instabilities (sharp absorption features) in the reverse fre-
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Figure 6.3: (a) Measurement of |S11| showing strong nonlinear response (red curve) together with numerically
fitted curve (gray) for nd == 2.5×107. (b), (c) Extracted linear dissipation rate Γm plotted against mechanical
amplitude for nd = 2.5×107 and for 1.0×108, respectively.

quency sweep shown in Fig. 6.2 (c). Although, instabilities in mechanical response are
known for blue-sideband driving, we do not expect them to arise from optomechanical
interaction as we drive the system at red- sideband. The model with Duffing term in the
restoring force still captures the response except these instabilities.

6.3.1. EXTRA INSTABILITIES
The decrease in observed damping rate at higher amplitudes suggests possible pres-
ence of nonlinear damping terms with negative coefficients (such as ρ|x|ẋ, µ x2ẋ) in
the equation of motion of the mechanical resonator. It should be noted that the total
damping however remains positive. The fact that the extracted effective driving linear
damping shown in Fig. 6.2 does not follow a quadratic dependence on the driving am-
plitude as expected for a term proportional to µx2ẋ implies that a nonlinear damping
of the form more similar to ρ|x|ẋ applies in this range of driving amplitudes. As this
negative nonlinear damping occurs also at low cooperativities, and as it is not seen in
the theoretical calculations treating the optomechanical nonlinear response, we do not



6

78 6. NEGATIVE NONLINEAR DAMPING IN THE GRAPHENE RESONATOR

believe that it is an optomechanical effect, but instead intrinsic to the mechanical res-
onator. The amplitude-dependent negative damping could further give rise to the ob-
served instabilities seen in Fig. 6.2(c). There have been also observations of nonlinear
damping in nanomechanical resonators [19] and carbon-based resonators [9]. One pos-
sible source of negative nonlinear damping is the saturation of two-level systems cou-
pled to the mechanical resonator [20, 21]. At low drive powers, these two-level systems
can absorb energy from the mechanical resonator, increasing the mechanical damping
rate. At higher powers, the two-level systems (TLSs) become saturated, and the damping
rate goes down. Such a process was suggested as an explanation of power-dependent
attenuation losses in glasses [22–24], and also was used to describe power-dependent
dielectric losses in superconducting electrical resonators [25]. For such a saturation re-
sult in nonlinear damping effects, the level spacing of the TLSs should be larger than
the bath temperature. In order for TLSs to describe the negative nonlinear damping ob-
served here, the coupling between the TLSs and the mechanical resonator would have
to be nonresonant, mediated by strong higher order processes.

We also note that resonators driven in the bifurcated regime can be very sensitive
to environment noise that can induce premature switching from the high- to the low-
amplitude branch [26], something not captured by our theoretical model. We note, how-
ever, that in the experimental measurements, such switching would make the OMIA dips
appear less shallow, and lead to an underestimation of the coefficient of the negative
nonlinear damping rate, and therefore the measurements represent a lower bound on
the magnitude of the negative nonlinear damping.

6.3.2. FIFTH ORDER NONLINEARITY
In what follows we argue that our observed behavior of negative nonlinear damping can
not be explained by including higher order conservative nonlinearities in the equation
of motion. By including a fifth order term, the equation of motion can be written as,

ẍ +Γ�m ẋ +ω2
m x2 +α�x3 +ζ�x5 = F � cos(ωt ). (6.1)

To solve this equation the same technique can be used as in the chapters 2 and 3 for the
forced Duffing oscillator to give the following implicit relation between frequency and
mechanical amplitude X:

F �2 = Γ2
mω

2X 2 +
�

3
4
α�X 2 + 5

8
ζ�X 4 − (ω2 −ω2

m)
�2

X 2. (6.2)

In order to understand the dependence of the amplitude on the force and frequency,
the parameters are normalized by the mechanical resonance frequency : F = F �/mrω

2
m ,

α = α�/ω2
m , ζ = ζ�/ω2

m , and Γm = Γ�m/ωm . The numerical solutions of this equation are
plotted in Fig. 6.4. For these plots, we have used the linear damping rate Γm = 6×10−3,
Duffing parameterα= 2×10−5, and fifth order conservative nonlinearity ζ=±2.3×10−9.
The results with positive and negative fifth order term are shown in Fig. 6.4(a) and (b),
respectively, while the normalized force is set to 0.08, 0.28 and 0.48. The curves in blue
are solutions with Duffing term alone and are obtained by setting ζ= 0.

It is clear from these plots that under the higher order conservative nonlinearity the
on-resonance responsivity does not change. It only results in the force dependent fre-
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Figure 6.4: Plots of responsivity defined as the ratio of mechanical amplitude to the driving force.(a) Mechani-
cal amplitude including positive fifth order conservative nonlinearity (ζ= 2.3×10−9) in red and excluding fifth
order term (ζ = 0) in blue. (b) Mechanical amplitude including negative fifth order conservative nonlinearity
(ζ=−2.3×10−9) in red and excluding fifth order term (ζ= 0) in blue. The sequence of curves from left to right
denotes amplitude with increasing driving force: F = 0.08, 0.028, 0.48.

quency shift. For small frequency shifts, depth of the optomechanically induced ab-
sorption (OMIA) feature depends on the responsivity. Therefore, the observed behavior
of the change in the OMIA feature depth can not be explained by including higher order
conservative nonlinearity.

6.4. CONCLUSIONS
We examined the nonlinear dynamics of a graphene resonator coupled to a supercon-
ducting microwave cavity. In the linear response limit, optomechanically-induced trans-
parency measurements easily allow us to extract the linear damping rate and peak am-
plitude. At moderate driving force when the response becomes nonlinear, we perform
numerical fits by including a Duffing term in the mechanical restoring force and find
α ≈ 2.3× 1015 kg m−2s−2. Increasing the driving force further, the OMIA response be-
comes complex and it is no longer captured by the Duffing term. At these large am-
plitudes, the nonlinearities start becoming relevant and make the mechanical damping
rate appear low at larger amplitudes, where we observe the phenomenon of negative
nonlinear damping in a mechanical resonator.
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SUMMARY

This thesis presents a study of nonlinear effects in microwave optomechanical systems.
The nonlinearity is essential for creation of non-classical states of the cavity or mechan-
ical resonator such as squeezed or cat states. A microwave cavity can be made nonlinear
by, for instance, adding Josephson junctions. The mechanical resonator is inherently
nonlinear. The radiation pressure interaction between cavity and mechanical resonator
is also inherently nonlinear but typically under strong drive of the cavity interaction can
be linearized. However, if the optomechanical system is in the strong coupling regime
nonlinear quantum effects become observable. These three cases provide the motiva-
tion for our studies.

First, we start with analyzes of the classical regime of a dc SQUID with an embedded
mechanical resonator. The SQUID is an intrinsically nonlinear cavity due to the presence
of Josephson junctions. A driven mechanical resonator can via optomechanical coupling
strongly affect the dynamics of the SQUID. In this way SQUID can be used as a detector of
the mechanical motion. Also, there is a backaction mechanism when the detector itself
affects the properties of the mechanical resonator. In the regime of the equal mechanical
and cavity frequencies the displacement detector has bistable or multistable behavior
depending on the backaction strength.

In Chapter 3, we perform quantum analysis of the SQUID coupled to the mechanical
resonator. In most microwave optomechanical setups the radiation pressure coupling
is obtained by capacitively coupling cavity to the mechanical resonator. In our work,
the motion of the mechanical resonator is coupled through the Josephson inductance to
the cavity. The main goal is to understand how the asymmetry of two Josephson junc-
tions influences the coupling strength of optomechanical interactions and to achieve
ultrastrong coupling regime for the radiation pressure. We investigated two regimes of
the dispersive frequencies, when the mechanical frequency much smaller than cavity
frequency, and when these two frequencies are resonant. In the first regime, the radia-
tion pressure coupling and the cross-Kerr coupling arise. The asymmetry reduces both
couplings and shifts the location of the coupling’s maximum value as a function of flux.
However, by increasing magnetic field the regime of ultrastrong coupling for the radi-
ation pressure can be reached as well as high values of the cross-Kerr coupling. In the
second regime, the main coupling is coming from the single-photon beam splitter inter-
action and only exists at finite asymmetry.

To investigate the effect of the Kerr-type nonlineairity due to Josephson junctions in
this system, in Chapter 4, we study the shifts of the cavity frequency and dissipation.
Using variational method and self-consistent harmonic approximation we estimate the
influence of the optomechanical coupling and Kerr nonlinearity first for the cavity in the
dissipationless situation and then for the more general case including dissipation.

The second part of this thesis focuses on the nonlinearity of the mechanical res-
onator coupled to the optical/microwave cavity. In Chapter 5, we study in details the
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nonlinear optomechanical response. We find that for the Duffing mechanical resonator
the OMIA dip has no inflection point and shark-fin like shape in contrast to the OMIR
peak, which repeats the Duffing response. The detuning of the drive frequency from the
red or blue sideband shifts the OMIA dip and makes it asymmetric. We draw the re-
sponse map to summarize all results of the overcoupled and undercoupled cavity for the
red and blue sidebands additionally to the weak and strong drive powers.

We confirm the developed theory by using it to numerically fit the experimental re-
sults of a multilayer graphene resonator coupled to a superconducting microwave cavity
in Chapter 6. From the fit, we can extract Duffing nonlinearity parameter. The extracted
mechanical dissipation rate at higher mechanical amplitudes suggests that the resonator
has negative nonlinear damping.

Olga Shevchuk
February 2017



SAMENVATTING

Dit proefschrift presenteert een studie van niet-lineaire effecten in optomechanische
microgolfsystemen. De niet-lineariteit is essentieel voor het maken van niet-klassieke
toestanden van de holte of de mechanische resonator. Een microgolfholte kan niet-
lineair gemaakt worden door bijvoorbeeld het toevoegen van Josephson juncties. De
mechanische resonator is intrinsiek niet-lineair. Ook de stralingsdrukinteractie tussen
de holte en de mechanische resonator is intrinsiek niet-lineair, maar kan lineair gemaakt
worden door sterke aandrijving van de holte-interactie. Als het optomechanische sys-
teem daarentegen in het sterke koppelingsregime is, kunnen niet-lineaire quantumef-
fecten zichtbaar worden. Deze drie gevallen vormen de motivatie voor onze studies.

Eerst beginnen we met de analyse van het klassieke regime van een dc SQUID met
een ingebouwde mechanische resonator. De SQUID is een intrinsieke niet-lineaire holte
door de aanwezigheid van Josephson juncties. Een aangedreven mechanische resona-
tor kan, via optomechanische koppeling, de dynamica van de SQUID sterk beïnvloe-
den. Op deze manier kan de SQUID worden gebruikt als een detector van de mecha-
nische beweging. Bovendien is er een terugkoppelingsmechanisme als de detector zelf
de eigenschappen van de mechanische resonator beïnvloedt. In het regime van gelijke
mechanische- en holtefrequencies vertoont de verplaatsingsdetector bi-stabiel of mul-
tistabiel gedrag, afhankelijk van de terugkoppelingssterkte.

In Hoofdstuk 3 voeren we een quantumanalyse uit op de SQUID gekoppeld aan de
mechanische resonator. In de meeste optomechanische microgolfopstellingen wordt
de stralingsdrukkoppeling gevonden door de holte capacitief te koppelen aan de me-
chanische resonator. In ons werk is de beweging van de mechanische resonator ge-
koppeld door de Josephson-inductie met de holte. Het hoofddoel is te begrijpen hoe
de asymmetrie van de twee Josephson juncties de koppelingssterkte van de optome-
chanische interacties beïnvloedt, en het bereiken van het ultrasterke koppelingsregime
voor de stralingsdruk. We onderzochten twee regimes van de dispersieve frequenties:
wanneer de mechanische frequentie veel kleiner is dan de holtefrequentie, en wanneer
deze twee frequenties in resonantie zijn. In het eerste regime ontstaan de stralings-
drukkoppeling en de kruis-Kerrkoppeling. De asymmetrie vermindert beide koppelin-
gen en verschuift de locatie van de maximale waarde van de koppeling als een functie
van de flux. Het regime van ultrasterke koppeling voor de stralingsdruk en grote waar-
den van de kruis-Kerrkoppeling kunnen echter ook bereikt worden door het magne-
tisch veld te verhogen. In het tweede regime ontstaat de hoofdkoppeling door de enkel-
fotonstraalsplitterinteractie en bestaat alleen voor eindige asymmetrie.

Om het effect te onderzoeken van de Kerr-type niet-lineariteit veroorzaakt door de
Josephson juncties in dit systeem bestuderen we in Hoofdstuk 4 de verschuivingen van
de holtefrequency en de dissipatie. Gebruikmakend van de variatonele methode en de
zelf-consistente harmonische benadering schatten we eerst de invloed van de optome-
chanische koppeling en de Kerr niet-lineariteit voor de holte in de dissipatieloze situatie
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en daarna voor het meer algemene geval waarbij dissipatie wordt inbegrepen.
Het tweede deel van dit proefschrift focust op de niet-lineariteit van de mechani-

sche resonator gekoppeld aan de optische/microgolfholte. In Hoofdstuk 5 bestuderen
we in detail de niet-lineaire optomechanische respons. Hier vinden we dat voor de Duf-
fing mechanische resonator het OMIA-dal geen buigpunt heeft en een haaienvinachtige
vorm, in tegenstelling tot de OMIR-piek die de Duffingrespons herhaalt. Het wegschui-
ven van de aandrijffrequentie van de rode of blauwe zijband verschuift het OMIA-dal en
maakt het asymmetrisch. We schetsen een grafiek van de respons om alle resultaten sa-
men te vatten van de overgekoppelde en ondergekoppelde holte voor de rode en blauwe
zijbanden in toevoeging tot de zwakke en sterke aandrijfkrachten.

We bevestigen de ontwikkelde theorie door het te gebruiken om experimentele re-
sultaten van een multilaags grafeenresonator gekoppeld aan een supergeleidende mi-
crogolfholte numeriek te fitten in Hoofdstuk 6. Uit deze fit kunnen we de Duffing niet-
lineariteitsparameter afleiden. De afgeleide mechanische dissipatieverhouding voor gro-
tere mechanische amplitudes suggereert dat de resonator een negatieve niet-lineaire
demping heeft.

Olga Shevchuk
Februari 2017
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