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Abstract—Effective Human-Machine Interaction (HMI) de-
pends on accurately capturing and interpreting information from
the human user. For systems relying on hand-based operation,
understanding the limits of human cognitive-motor abilities is
crucial to designing intuitive and efficient interfaces. This study
presents an experimental setup involving four analog buttons with
a minimally complex control, where human hand performance
is assessed through simultaneous multi-finger Fitts’ Law tasks.
Initially, task difficulty was assumed to be computed by summing
the individual indices of difficulty for each button, which resulted
in peak throughput performance with two fingers. However,
this approach did not align with Fitts’ Law. By applying a
weighted summation, with weights based on the variation of
distances within a task, the difficulty measure better conformed
to Fitts’ Law, and the highest throughput was achieved with
a single finger. These findings highlight the interdependence in
multi-finger movement complexity and emphasize the importance
of considering cognitive-motor limitations when designing HMI
interfaces to optimize user performance.

Index Terms—Human-Machine Interaction, multi-finger coor-
dination, cognitive-motor performance, Fitts’ law, throughput

I. INTRODUCTION

The human hand plays a crucial role in performing activities
of daily living (ADLs), enabling individuals to grasp objects,
manipulate tools, and interact with their environment. Loss
of hand function, whether due to amputation, neuromuscular
impairment from injury or disease, or congenital conditions,
can significantly affect a person’s independence and quality of
life [1]. Technological solutions, such as prosthetic hands and
active hand-assistive devices, aim to restore or support hand
function, thereby improving quality of life [2]. Additionally,
the concept of human augmentation has emerged, where
devices not only compensate for lost function but also extend
a person’s natural capabilities [3].

The success of such assistive and augmentative devices
relies heavily on the quality of interaction between the user
and the technology. This challenge is addressed within the
field of Human-Machine Interaction (HMI). While both hu-
mans and machines are capable of executing complex actions
independently, the effectiveness of HMI is determined by how
well the two can work together. Poor interaction design often
leads to limited usability, as demonstrated by the rejection of
prosthetic devices [4]

Fig. 1. Demonstration of the experiment using four fingers, showing both
the physical setup and the display. The setup consists of four 3D-printed
buttons, each operated by an individual finger, along with electronic circuitry
for capturing sensor data. The system is connected to a computer, which
provides power and translates the sensor data into cursor movements on the
display.

A fundamental aspect of HMI is the ability to accurately
extract and utilize information from the human user. This
process involves two primary components: sensing the user’s
input signals, such as muscle activity, force, or motion, and
applying appropriate control strategies to generate effective
output responses for the machine.

Various interfaces exist to facilitate the exchange of in-
formation between the user and the machine. These include
tangible interfaces, gesture-based interfaces, brain-computer
interfaces (BCIs), and gaze-based interfaces [5]. In the domain
of prosthetics, interface technology has evolved from body-
powered mechanisms, relying on muscle-driven cable systems,
to advanced myoelectric systems that detect muscle activity
through surface or intramuscular electromyography (sEMG
and iEMG) [6]. Similarly, active hand-assistive devices inte-
grate a variety of sensors to capture user intention, including
measurements of position, force, and bio-signals such as
EMG [7].



Translating these input signals into meaningful commands
for the machine requires robust control strategies. In tran-
sradial prostheses, for instance, myoelectric control methods
include simple on-off control, which activates the device based
on a threshold level of muscle contraction, and proportional
control, where force, velocity, or position is scaled according
to the amount of muscle contraction [8]. More recently, pattern
recognition and deep learning techniques have emerged in
HMI applications to enhance the extraction of information
from EMG signals and classify user intent more accurately [9].

At its core, the performance of any HMI device depends
on both the quality of the input signals and the effectiveness
of the control system. Given the complexity of human hand
movements, understanding how much information can be
reliably obtained for control is crucial. This understanding is
key to optimizing the functionality of devices that rely on hand
input. Striking the right balance between user cognitive-motor
capabilities and device interface complexity is essential for
ensuring effective performance and usability.

Previous research by Nizamis et al. explored human control
over finger movements using a setup with six digital buttons
to assess multi-finger movement performance [10] [11]. In
their experiment, inspired by the work of Klemmer et al.
[12], participants were required to press the correct buttons
in response to various visual stimuli. The study suggested
that using three fingers resulted in optimal cognitive-motor
performance. However, digital buttons provide only binary
input (on/off states), which does not fully capture the nuances
of human finger movement. In contrast, analog buttons allow
for continuous input variations, potentially enabling a richer
transfer of information and a more precise representation of
human motor control.

Given the complexity of finger movement and the potential
of analog buttons to provide more detailed motor control
information, this study investigates multi-finger movement
performance using an experimental setup with four analog
buttons, each controlled by a separate finger. The goal is
to explore how performance varies with different numbers
of fingers responding to visual stimuli simultaneously, and
whether the results align with the previous findings suggest-
ing that cognitive-motor complexity becomes too high when
using more than three fingers to improve performance. While
Nizamis et al. relied on the Information Transfer Rate (ITR) to
assess discrete inputs in bits per second, this metric does not
apply to analog buttons due to their continuous nature [13]. In-
stead, this study employs Fitts’ Law to quantify performance,
as it is a well-established method for assessing human control
capabilities in an analog setting, as detailed in Appendix A.
A Fitts’ Law experiment will be conducted for each finger
individually, and the difficulty measures for each finger will
be combined to assess the overall difficulty of performing
multi-finger movements. Fitts’ throughput will then be used to
measure performance in bits per second, aiming to enhance the
understanding of cognitive-motor limitations. The focus will
be on healthy participants to establish baseline measurements.
Ultimately, these insights may inform the design of more

effective and customized HMI interfaces.

II. MATERIALS AND METHODS

In this chapter, the experimental setup and methodology
used to quantify multi-finger coordination are described. Par-
ticipants performed multiple trials using one to four analog
buttons on the setup. In each trial, Fitts’ Law tasks were
assigned to each active finger, and participants were required
to complete them simultaneously. Task difficulty levels and
movement times were recorded, and key performance metrics,
such as the average throughput, were calculated for each
trial. These calculations aim to provide insights into how
multi-finger performance varies as the number of fingers used
increases.

A. Participants

The experiment was conducted with 12 healthy adults (6
male, 6 female). All participants were right-handed and had
no hand-related impairments. Right-handed participants were
preferred due to the specific order in which the fingers were
recruited (see section II-C). Participants’ ages ranged from 22
to 25 years, with a mean age of 24.08 years (SD = 0.86).
None of the participants had prior experience with the exper-
imental setup, so a familiarization period was provided (see
section II-D). The study was approved by the Human Research
Ethics Committee of the TU Delft, and informed consent
was obtained from each participant before the experiment.
Participation was voluntary and uncompensated.

B. Experimental setup

The experimental setup (shown in Fig. 1) consisted of four
custom 3D-printed analog buttons, which participants operated
using their index and middle fingers. For both stability and
portability, the buttons were mounted on a wooden surface.
The two buttons on the left were assigned to the left index
and middle fingers, and the two on the right to the right index
and middle fingers. To ensure a comfortable wrist position
during the experiment, the buttons were positioned at a slight
angle on the board.

Each button featured a rotating lever with an integrated ball
bearing to facilitate smooth movement. Pressing the levers was
primarily achieved through the flexion of the metacarpopha-
langeal (MCP) joints in the hand. A small rubber band located
at the back of the lever acted as a spring mechanism, returning
the lever to its original position upon release. Participants
controlled the buttons by relying on both position and force
information. Position information was provided by propriocep-
tion, allowing participants to be aware of their finger positions
based on feedback from the muscles, tendons, and joints.
Force information was derived from tactile feedback, where
participants perceived the resistance exerted by the rubber
band when pressing the button. A light press required minimal
force, whereas a stronger press required overcoming greater
resistance from the rubber band, providing a clear distinction
in tactile feedback.
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Fig. 2. Display of a trial involving four fingers. The goal is to move the red cursors to the green targets simultaneously and as quickly as possible. During
the experiment, only the subscreens corresponding to the fingers used in the trial are shown. Additionally, timers and a progress bar are displayed.

To measure button rotation, a diametrically magnetized
magnet (6mm in diameter) was embedded in the lever along
its rotating axis, and its angular displacement was measured
by an AS5600 12-bit magnetic encoder sensor. For further
details, an exploded view of the button assembly is provided
in Appendix B.

All sensors were connected to an Arduino Uno via the I2C
bus. Since all sensors shared the same I2C address, an I2C
multiplexer (PCA9548A) was used to facilitate communica-
tion between the sensors and the Arduino. The system was
programmed in the Arduino IDE, utilizing libraries for the
AS5600 magnetic encoder and PCA9548A I2C multiplexer
[14]. The electronic circuit, operating at 3.3V, is depicted in
Appendix C.

The Arduino was connected to a computer for both power
supply and data transmission via a serial connection. Sensor
data was sampled at an intended rate of 1 kHz, transmitting
the angular positions of all four sensors every millisecond.
However, the actual sampling rate was found to be lower after
the experiment (see section IV-C). The received sensor data
was then used to move cursors on the computer monitor for
the Fitts’ Law experiment.

C. Experiment and display

During the experiment, participants completed multiple tri-
als, each involving a different number of buttons from the
setup. In the single-button trial, only the right index finger
was used. When two buttons were involved, the right middle
finger was added. Similarly, in the three-button trial, the left

index finger was incorporated, and in the four-button trial, the
left middle finger was also engaged.

This specific order of finger recruitment, starting with
fingers on one hand and then including the other hand, was
chosen to align more with the design of most hand-based
interface systems, which are often operated primarily with
a single hand. Since all participants were right-handed, their
dominant hand was used for the simpler trials involving one
and two fingers. This approach allowed for a better assessment
of the limits of human finger control when task complexity
was low. Introducing the non-dominant hand for trials with
three or four buttons reflected the added difficulty and co-
ordination demands of bimanual tasks and provided insights
into how increased complexity affects motor control and task
performance.

During each trial, participants were presented with a series
of tasks displayed on a 1920 × 1080 pixel computer monitor.
An example of the display during a four-finger trial is shown
in Fig. 2. The tasks were programmed in Python using
the Pygame library. For each active finger, a 750-pixel-high
subscreen was shown, containing a red cursor that moved
vertically in response to pressing the corresponding button. A
target was also displayed within each subscreen. In addition to
the subscreens, a timer in the upper-left corner displayed the
duration of the current task, while another timer in the upper-
right corner indicated the total elapsed time for the trial. A
progress bar at the bottom of the screen visualized the number
of completed tasks relative to the total number of tasks.

To accurately map the analog button input to the cursor
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movements, the physical displacement range of each button
was first determined and scaled to match the subscreen height.
Due to minor lateral slack in the 3D-printed buttons, small
unintended cursor movements occurred, occasionally prevent-
ing them from fully returning to the starting position after
release. To compensate for this, a 25-pixel margin was applied
at both ends of the sensor range before mapping it to the
cursor movement. This adjustment ensured that releasing the
buttons consistently returned the cursors to the bottom of their
respective subscreens.

Participants were instructed to simultaneously move all
active cursors to their respective targets as quickly as possible
by pressing the analog buttons. Each task presented a new
target configuration, and to complete a task, all cursors had
to reach their respective targets and remain within them for
500ms, known as the dwell time [15]. At the start of each
task, the targets turned green, signaling the participant to move
their cursors. Upon successful task completion, the targets
disappeared, indicating that the participant should release the
buttons and return the cursors to their starting positions.
During this time, new targets for the next task also appeared in
red, allowing participants to anticipate where the targets would
be before the task started. After another 500ms at the starting
position, the new targets turned green again, initiating the next
task. This sequence was repeated for all tasks within each trial
until the trial was completed. The step-by-step process for a
single subscreen is illustrated in Fig. 3.

For each task, targets could appear at one of three possible
distances from the bottom of the subscreens (150, 300, or 600
pixels) and with one of two possible widths (70 or 100 pixels).
This resulted in six unique target conditions. These distances
and widths were chosen to evenly distribute the values for the
index of difficulty (ID), calculated according to Fitt’s Law
(see Appendix A), resulting in a range from 1.32 to 3.26
bits. The easiest condition (lowest ID) corresponded to the
largest, closest target (100 pixels wide at 150 pixels distance),
while the most difficult condition (highest ID) was represented
by the smallest, farthest target (70 pixels wide at 600 pixels
distance).

For trials involving more than one finger, multiple targets
appeared simultaneously within a single task, resulting in
various possible combinations of the six target conditions. To
ensure a comprehensive set of task variations, target conditions
could be repeated within a task. However, since finger-specific
performance was not analyzed, targets were randomly assigned
to fingers, making the order of targets across fingers irrelevant.

Fig. 3. Step-by-step process for a task for a single subscreen. This sequence
repeats until all tasks in the trial are completed. Faster completion results in
higher performance.

Consequently, the total number of unique task configurations
per trial, denoted as T (n, k), is given by the binomial coeffi-
cient:

T (n, k) =

(
n+ k − 1

k

)
(1)

where n = 6 represents the number of possible target condi-
tions, and k denotes the number of fingers used in the trial.

However, as the number of fingers increases, the total num-
ber of unique tasks grows rapidly (see Table I). Moreover, to
minimize variability and improve accuracy, it is recommended
to repeat each ID condition multiple times within a trial [16].
As a result, the number of tasks per trial (particularly in the
four-finger trial) becomes excessive, making it impractical to
test all possible task configurations.

To address this, a subset of task combinations was selected
to reduce the total number of tasks. This selection was based
on the combined index of difficulty for each task (see section
II-E), ensuring that the chosen tasks were evenly distributed
across the difficulty range. To further limit the total number
of tasks, tasks were repeated only five times in the three-
and four-finger trials, compared to ten times in the one- and
two-finger trials. This approach helped maintain a manageable
number of tasks and kept trial durations reasonable.

Since participants were expected to require some time to
adjust to the number of fingers at the start of each trial,
five dummy tasks were presented first. These dummy tasks

TABLE I
OVERVIEW OF THE NUMBER OF TASKS DURING THE DIFFERENT TRIALS.

Number of fingers Number of
unique tasks

Number of tasks
in the subset Repetitions per task Added dummy tasks Total number of tasks

1 6 6 10 5 65
2 21 11 10 5 115
3 56 16 5 5 85
4 126 21 5 5 110

4



were excluded from data analysis but allowed participants to
refamiliarize themselves with the setup and task demands.

Taking all factors into account, the total number of tasks
presented in one-, two-, three-, and four-finger trials were 65,
115, 85, and 110, respectively. These values are summarized
in Table I.

D. Experimental procedure

Upon arrival, participants were seated in front of the ex-
perimental setup and computer monitor. The protocol was
explained to them, and they were asked to sign the consent
form. Fresh rubber bands were placed on the buttons to
prevent breakage during the experiment. To begin, participants
calibrated the sensor range by moving all four buttons through
their full range of motion for five seconds.

Following calibration, participants were given ten minutes to
familiarize themselves with the experiment and practice using
different numbers of fingers on the setup. This familiarization
period consisted of one minute of training with one finger,
followed by two minutes with two fingers, three minutes with
three fingers, and four minutes with four fingers. Participants
were instructed to place only the fingers involved in the
trial on the buttons while keeping the remaining fingers in
a relaxed position. Additionally, they were informed that it
was important to move their fingers simultaneously during the
multi-finger trials.

During the familiarization phase, targets appeared in the
subscreens at random distances from the starting position
(ranging from 150 to 600 pixels) and with randomized widths
(between 35 and 125 pixels). This variability was introduced
to prevent participants from memorizing the finger positions
and the force required to reach the six fixed target conditions
used in the actual experiment. After the familiarization period,
participants were given a five-minute break.

Participants then completed the four trials, each with a
different number of fingers. To mitigate potential learning
and fatigue-related effects, participants were divided into four
groups, with each group starting with a different trial. As a
result, each group consisted of three participants. Between
trials, a rest period equal in duration to the preceding trial
was provided, under the assumption that longer trials would
require longer recovery. A timeline of the full experiment is
shown in Fig. 4.

Before each trial, participants were reminded to move their
fingers simultaneously and reach the targets as quickly as
possible. They were also informed about the number of tasks
to be completed and the expected trial duration. Additionally,
they were encouraged to stay focused, as concentration was
emphasized as an important factor influencing performance.

E. Data analysis

During the experiment, data were collected for each task
presented to the participants. Specifically, this included the
target characteristics (distances and widths) and the movement
time. Movement time was defined as the duration taken by
a participant to move all visible cursors in a task to their
respective targets, excluding both dwell time and reaction time
[16]. Dwell time was omitted by stopping the timer as soon as
the cursors entered the targets, provided they remained within
them for the required 500ms dwell period. Reaction time was
minimized by displaying the upcoming targets in red before
the task began, allowing participants to anticipate the required
movements in advance.

Since each unique task was repeated multiple times, the
mean and standard deviation of the movement time were
calculated per task for each participant. Movement times
exceeding three standard deviations from the mean were
considered outliers and removed from the data, following the
recommendations of [16].

For each task, the Index of Difficulty (ID) was calculated.
This was achieved by first computing the individual ID for
each target using the Shannon formulation [17], based on Fitts’
Law (see Appendix A):

IDi,j = log2

(
Di,j

Wi,j
+ 1

)
[bits] (2)

where Di,j denotes the distance to target j in task i, and Wi,j

is the corresponding target width.
The combined index of difficulty for task i was then defined

as the sum of the individual ID values for all k targets (i.e.,
active fingers) involved in that task:

ID i =

k∑
j=1

ID i,j (3)

Fig. 4. Timeline of the experiment for each participant group. Trial durations are estimates, as they vary between participants depending on their performance.
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The Throughput (TP ) for each task was calculated by
dividing the combined index of difficulty by the corresponding
Movement Time (MT ):

TP i =
ID i

MT i
[bits/s] (4)

To enable comparison across trials involving different num-
bers of fingers, the mean throughput for each trial was com-
puted as:

TP =
1

Nk

Nk∑
i=1

TP i (5)

where Nk is the total number of tasks in a trial with k fingers.
Similarly, the mean movement time for each trial was

calculated as:

MT =
1

Nk

Nk∑
i=1

MT i (6)

These calculations were performed individually for each
participant. The resulting mean throughput and movement
time were then averaged across all participants to identify
performance trends and assess the impact of increasing the
number of fingers.

III. RESULTS

In this chapter, the experimental results are presented. First,
the effect of using multiple fingers on both average move-
ment time and throughput is analyzed. Next, the relationship
between movement time and the task index of difficulty is
examined to test whether Fitts’ Law holds, as it predicts a
linear relationship between these variables.

A. Average Movement Time vs Number of Fingers

In Fig. 5, the relationship between the number of fingers
used in the experiment and the average movement time (MT )
in seconds is illustrated. Boxplots show the distribution of
average movement times across all participants for each finger
configuration, while the gray lines represent the individual
trends for each participant across trials.

The general trend indicates that the average movement time
increases as the number of fingers used grows. The upward
trend in each participant’s individual line further suggests
that using more fingers results in longer movement times.
Additionally, variability in movement time also increases,
especially in the four-finger configuration, which exhibits the
widest spread.

B. Average Throughput vs Number of Fingers

Fig. 6 presents the average throughput (TP ) in bits per
second in relation to the number of fingers used in the exper-
iment. The boxplots illustrate the distribution of the average
throughput values, while the gray lines represent individual
participant trends.

The results indicate that the average throughput increases
with the addition of a second finger but decreases with three
and four fingers. This suggests that peak performance is
achieved with two fingers. For higher numbers of fingers, the

Fig. 5. Average movement times of all participants across different numbers
of fingers.

Fig. 6. Average original throughputs of all participants across different
numbers of fingers.

increase in index of difficulty was not sufficient to compensate
for the increase in movement time, resulting in a decline in
throughput.

However, not all individual participant trends align with this
pattern. For instance, one participant achieved remarkably high
throughput in the one-finger configuration due to an exception-
ally low average movement time. Randomizing the trial order
across participants was, therefore, an appropriate decision, as
it helped account for such variations and minimized the impact
of potential learning and fatigue-related effects on the overall
results. As a result, the overall trend suggests that two fingers
yield the highest throughput on average, despite the individual
differences.

6



Fig. 7. Average movement times across different index of difficulty conditions for each finger configuration. The colors represent the number of unique
distances involved in the task: green for a single distance, yellow for two distances, and red for three distances.

Fig. 8. Linear regression fits for average movement times across different index of difficulty conditions for each finger configuration. The colors represent
the number of unique distances involved in the task: green for a single distance, yellow for two distances, and red for three distances.
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C. Average Movement Time vs Task Index of Difficulty

Fitts’ Law, as discussed in Appendix A, suggests a linear
relationship between Movement Time (MT ) and the Index of
Difficulty (ID), expressed by the equation:

MT = a+ b · ID (7)

To evaluate this relationship, the average movement times
were analyzed across different ID conditions for each number
of fingers used. The results are presented in Fig. 7, where
boxplots illustrate the distribution of movement times for each
ID condition.

In the one-finger configuration, a clear linear relationship
between MT and ID is observed. However, in the multi-
finger trials, MT decreases at certain increased ID values,
making the relationship nonlinear. This deviation from linear-
ity becomes more evident when a linear regression is applied
to MT as a function of ID , as shown in Fig. 8. While the
regression provides a strong fit for the one-finger configuration
(R2 = 0.956), the quality of the fit diminishes for the multi-
finger configurations.

A closer examination suggests that the drop in MT occurs
primarily in tasks with fewer unique target distances. In the
figures, tasks where all targets share the same distance are
marked in green, those with two distinct distances are in
yellow, and those with three different distances are in red.
Tasks involving multiple targets at the same distance appear

easier than expected, likely because the fingers move more
synchronously. This indicates that the original approach of
summing the individual ID values for each finger, as in
equation 3, does not accurately reflect the combined ID of
a task. Instead, a refined method is required for multi-finger
tasks to better represent the combined task difficulty and
improve the fit to Fitts’ Law.

D. Weighted Index of Difficulty

Fig. 7 and Fig. 8 suggest that the original index of difficulty
for tasks with targets at equal distances may be overestimated.
To obtain a more accurate representation of the combined
task difficulty, a weighted sum of the individual ID values
is considered:

IDi,weighted =

k∑
j=1

wi,jIDi,j (8)

This weighted sum aims to ensure a more linear relationship
between MT and ID . The most intuitive choice for the weight
function wi,j is to reduce the difficulty of an individual target
when other targets share the same distance. For example, this
can be achieved by:

wi,j(Di,j) =
1

ci,j(Di,j)
(9)

Here, ci,j represents the number of times distance Di,j appears
in task i. This means that adding an extra target at a distance

Fig. 9. Linear regression fits for average movement times across different weighted index of difficulty conditions for each finger configuration. The colors
represent the number of unique distances involved in the task: green for a single distance, yellow for two distances, and red for three distances.
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already present in the task does not significantly increase the
overall task difficulty. In other words, moving one finger to a
target with a particular ID is as difficult as moving multiple
fingers to targets with that same ID .

By using this weighted approach, the ID values are no
longer evenly distributed, but the linear relationship between
MT and ID is improved, as seen in Fig. 9.

This adjustment also affects the average throughput (TP ), as
throughput is directly related to ID . The average throughput
with different numbers of fingers used, employing the new
weighted index of difficulty, is shown in Fig. 10. The figure
demonstrates peak performance for one finger, followed by a
decline in TP as the number of fingers increases.

Fig. 10. Average weighted throughputs of all participants across different
number of fingers.

IV. DISCUSSION

A. Fitts’ Law analysis

Over the years, Fitts’ Law has been widely used in research
to evaluate human performance across various input devices,
such as computer mouses [16], touchscreens [18], and eye
trackers [19] [20]. However, comparing results across different
Fitts’ Law studies is challenging [21]. For example, Soukoreff
and MacKenzie observed significant variations in throughput
values across studies even when the same type of input
device, i.e., a computer mouse, was used [16]. They attributed
these discrepancies to inconsistencies in experimental design,
particularly in the formulation of the index of difficulty (ID)
and the range of ID values used. To address these issues,
they proposed a set of recommendations aimed at improving
consistency and comparability across studies. This study has
followed most of these recommendations, although a few
deviations were made.

One significant deviation concerns the lack of using the
adjustment for accuracy, as described in Appendix A, which
aims to better align with actual participant movements. How-
ever, applying this adjustment did not seem applicable to this
experiment, as no selection errors could occur due to the use

of dwell-based selection. In this setup, selection was triggered
only when the cursors were inside the targets, resulting in
a zero error rate. While introducing a time-out mechanism,
as used in [20], could have allowed for errors to occur,
determining an appropriate time-out threshold would have
been arbitrary. Moreover, in the multi-finger configurations,
this would require longer time-out durations to give partici-
pants enough time to complete the tasks, which would have
introduced additional complexity to the experiment.

Another deviation concerns the range of ID values. Soukor-
eff and MacKenzie recommend using a broad range, typically
between 2 and 8 bits. In this study’s one-finger experiment,
however, the ID range was relatively narrow, from 1.32 to 3.26
bits. This limited range was intentionally chosen to prevent
excessively large ID values when combining multiple fingers,
based on the original formulation of combined difficulty.
However, with the proposed weighted formulation of ID , this
concern became less of a problem, and future experiments
could consider a broader range of ID values.

Although direct comparisons between the results of this
study and those adhering strictly to the full set of recom-
mendations may not be entirely valid, the one-finger exper-
iment closely resembles a conventional 1D Fitts’ Law task,
allowing for some level of comparison. The throughput value
obtained in this experiment falls within the typical range
reported for mouse-based pointing, between 3.7 and 4.9 bits
per second [16]. The observed throughput even exceeds the
values recorded for touchpad and isometric joystick inputs.
Similarly, the setup used in this study outperforms common
game controller inputs, achieving a higher throughput than
the gyrosensor, thumbstick, and touchpad found on controllers
[22]. All of these, including the device used in this study, are
considered indirect pointing devices, where input actions occur
on a separate device, and output responses are displayed on
the screen via a cursor.

In contrast, direct input devices, such as touchscreens, allow
users to interact with on-screen targets directly, eliminating the
need for a cursor. This typically results in higher throughput,
as seen with finger-based input on touchscreens, which tends
to outperform typical mouse-based input [23]. When compar-
ing the throughput of this study, which used the dominant
index finger on an indirect input device, with that from a
study using the same finger on a mobile touchscreen, the
touchscreen throughput indeed exceeds the throughput from
the current setup [24]. That study also found that the dominant
index finger achieved the highest throughput compared to the
dominant thumb, nondominant index finger, and nondominant
thumb. It would be interesting to investigate whether similar
performance differences between fingers emerge when using
an indirect input device, such as the one from this study.

It is important to remember that Fitts’ Law remains a theo-
retical framework, and interpreting throughput measurements
in the context of interface design can be challenging. Priya and
Joshi attempted to bridge this gap by performing 1D and 2D
tapping experiments on a smartphone, where they compared
Fitts’ throughput with an empirical throughput defined based
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on their realistic interface [25]. In the 1D condition, Fitts’
throughput was higher, but in the 2D experiment, the em-
pirical throughput surpassed Fitts’ throughput. These findings
highlight the complexity of translating theoretical throughput
measurements into practical insights for the design of hand-
operated devices.

B. Multi-finger performance

To the best of the author’s knowledge, no prior studies have
conducted multiple Fitts Law experiments simultaneously or
applied its principles to assess combined task complexity in
multi-finger movements. A fundamental assumption of Fitts’
Law is that it models rapid, aimed movement. However, in the
multi-finger trials of this study, the movement times spanned
several seconds, raising the question of whether the model
still applies. Despite this concern, a strong fit was achieved
for the multi-finger configurations by employing a relatively
straightforward weighted summation approach to calculate
combined task difficulty. This leads to the belief that Fitts’
Law can indeed apply in this context.

A closer examination of the average movement time across
trials with different numbers of fingers reveals an increase in
movement time as more fingers are used. This is expected,
as coordinating multiple fingers inherently increases task
complexity and demands greater motor control. Additionally,
variability across participants grows with the number of fin-
gers, emphasizing how individual differences in dexterity and
coordination abilities become more pronounced under more
complex configurations.

An important aspect of this research was evaluating how to
define a combined index of difficulty for multi-finger tasks.
Using the original definition of the combined ID , which
sums the individual indices of difficulty, a peak performance
was observed with two fingers. This pattern aligns with the
studies by Nizamis et al. [10] [11], who reported the highest
information transfer rate with three fingers. These results
suggest that increasing the amount of information in a task
improves performance up to a certain point. Beyond this
threshold, the cognitive-motor load may exceed what can be
effectively managed, highlighting the limitations of human
motor control and the importance of designing HMI interfaces
that remain within manageable levels of complexity.

However, when movement time was compared against the
original index of difficulty, the data did not follow the linearity
predicted by Fitts’ Law in the multi-finger trials. This suggests
that the complexity introduced by each finger movement is not
independent and cannot simply be summed to calculate the
overall task complexity.

To address this, an alternative version of task difficulty was
introduced, using a weighted summation. In this approach,
each target’s ID was weighted based on how frequently its
distance occurred throughout the task. This method provided
an intuitive way to handle the drop in movement time for
certain indices of difficulty and resulted in a strong linear fit
across all finger configurations. However, this method may
oversimplify the actual task difficulty, as it assumes that a

task with multiple identical targets is as difficult as one with
only a single occurrence of that target. In reality, coordinating
multiple fingers requires managing additional control signals
and dividing attention between multiple targets, which likely
increases the actual difficulty. A more refined model might
include a weighting factor that also accounts for the number of
active targets or fingers. Additionally, the effect of variability
in target width could provide further insights. If significant,
this factor could also be incorporated into the model.

When examining the average throughput (TP ) under the
weighted summation method, the previously observed pat-
tern with the original ID no longer held. Instead of peak
performance with two fingers, the highest throughput was
observed with one finger, and performance declined as more
fingers were added. This outcome is expected, as the weighted
summation approach reduces the index of difficulty for multi-
finger tasks, while the movement time remains unchanged.

It is important to note that applying the weighted sum causes
the selected subset of target combinations to become unevenly
distributed across the range of ID values. This imbalance di-
rectly affects the calculation of TP and could skew the result,
as certain difficulty ranges become over- or underrepresented.
This issue is especially problematic if the regression lines
cross, as this would imply that for certain parts of the range,
one line would show the highest throughput, while for other
parts, a different line would dominate. Fortunately, an analysis
of the fitted regression lines reveals that both the slope and
intercept increase with the number of fingers used. As a result,
the lines do not cross for positive ID values, indicating that
throughput consistently decreases with more fingers, provided
the ID conditions are roughly distributed across the range.
Therefore, the effects of this imbalance are limited and do not
undermine the observed trend.

C. Setup limitations

Several improvements could be made to the experimental
setup. First, the mechanical design introduced some lateral
slack in the levers, primarily due to the use of only a single ball
bearing for rotation. This slack allowed the magnet to deviate
from the central axis, which affected the accuracy of the angle
measurements. To ensure the cursor could reliably reach the
top of the subscreen and return fully to the initial position, a
margin was applied at both ends of the sensor range. While
this approach prevented issues at the extremes of the sensor
range, it did not eliminate cursor positioning errors caused
by small lateral finger movements during button presses. To
mitigate this issue, the buttons could be reinforced, and an
additional ball bearing could be incorporated to stabilize the
lever and minimize slack.

Second, the sampling frequency of sensor data transmis-
sion to the computer was lower than expected. Although
the intended rate was 1 kHz, the actual sampling frequency
was closer to 50Hz. This discrepancy was likely due to
the use of a multiplexer, which needed to switch between
sensors sharing the same I2C address for every data reading.
However, given that movement times in the experiment ranged
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from hundreds of milliseconds to several seconds, this lower
sampling frequency is unlikely to have significantly impacted
the accuracy of the measurements.

Lastly, the rubber bands used to return the buttons to their
initial position introduced unintended difficulty. Since they
applied force opposite to the direction of pressing, partici-
pants’ fingers could gradually drift away from their intended
positions. This effect was particularly noticeable during multi-
finger trials. While participants focused on aligning one target,
their other fingers, which were already correctly positioned,
slowly shifted away. As a result, movement time increased for
certain tasks. A potential solution would be to modify the setup
so that the fingers are fixed to the buttons, thereby preventing
this drift.

D. Experimental and display limitations

In designing the experiment, it was decided that each trial
would consist of a series of discrete tasks [16], requiring
participants to return to the starting position after completing
each task. To exclude reaction time from the movement time
measurements, the targets for the next task were displayed
in red while participants returned to the starting position.
Additionally, since the wait time for the targets to turn green
was always 500ms, participants could develop a sense of this
timing, allowing them to anticipate when and where to move.
However, this method may not fully eliminate reaction time,
as participants could feel compelled to wait until they see the
targets turning green before reacting. Moreover, participants
occasionally moved too early, attempting to complete the task
while the targets were still red, leading to frustration when
they realized their mistake. To reduce this issue, only the
borders of the targets were shown, which helped to decrease
the frequency of these errors, although they still occurred
occasionally for each participant.

A potential solution to these limitations would be to use
serial tasks instead [16], where participants tap back-and-forth
between targets. This design would naturally exclude reaction
time from the movement time, as participants would already be
aware of the next target’s location and would not need to wait.
Additionally, this method could reduce trial duration since
participants would not have to return to the starting position
after each task.

To limit the number of tasks in the trials, only a subset
of all possible target combinations was used. This subset was
selected to generate a set of evenly distributed ID values based
on the original definition of task difficulty. However, it may
be more validated to choose the subset for each number of
fingers such that the ID values become evenly distributed
after applying the weight function. Furthermore, the number
of repetitions was limited to 5 or 10 per target combination,
whereas 15-25 repetitions are typically recommended [16].
This could have reduced the accuracy of the results. However,
given the sufficient number of participants tested, the results
are still expected to be reliable.

Due to the already lengthy duration of the experiment,
participants were given limited training time with the setup.

However, as the number of fingers increases, more training
would likely be necessary. The lower performance observed
with multiple fingers could potentially be attributed to insuffi-
cient practice. One-finger performance may already be near the
human maximum, while performance with two or more fingers
may still have room for improvement. With additional practice,
multi-finger throughput could then potentially exceed that of
single-finger use. This suggests that the impact of training
should be considered in future studies exploring multi-finger
interaction.

V. CONCLUSION

This paper investigated human cognitive-motor performance
in finger movements during the simultaneous completion of
multiple Fitts’ Law tasks. A series of finger movement tasks
were conducted using a multi-button setup. The results reveal
that the combined difficulty of multi-finger movements does
not align with Fitts’ Law when approximated by simply sum-
ming the individual finger difficulties of each finger. Instead, a
weighted sum of the individual target difficulties is proposed,
with weights determined by the frequency of target distance
repetition. This adjustment provides a more accurate represen-
tation of task difficulty, aligning more closely with Fitts’ Law.
Future work could build upon these findings by conducting
more validated Fitts’ Law multi-finger experiments.

While directly translating throughput in bits per second
to real information transfer through hand-operated devices
remains complex, comparing the performance across different
finger configurations is feasible. The results underscore the
importance of minimizing interface complexity in HMI device
design, as peak cognitive-motor performance is achieved when
fewer fingers are engaged. However, it should be noted that
training effects were not considered in this study. Future
research should explore this factor to capture a more accurate
representation of real cognitive-motor limits.
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APPENDIX A
FITTS’ LAW

Fitts’ Law is a predictive model of human motor behavior
introduced by Paul Fitts in 1954 [26]. It describes the time
required to move rapidly to a target as a linear function of the
task’s difficulty, expressed by the equation:

MT = a+ b · ID (10)

where MT is the movement time, a and b are empirically
determined constants, and ID represents the Index of Diffi-
culty, which quantifies the difficulty of the movement task.
The index of difficulty depends on the spatial characteristics
of the task, specifically the distance to the target and the size
of the target.

Fitts originally defined the index of difficulty (ID) as:

ID = log2

(
2D

W

)
(11)

where D is the distance to the center of the target, and W is
the target width. This formulation was inspired by Shannon’s
information theory [27], interpreting motor movements as
information transmissions, with task difficulty measured in
bits. To achieve a higher empirical fit and to better align with
the theorem Fitts’ index of difficulty was based on, MacKenzie
proposed a refined version, often referred to as the Shannon
formulation [17]:

ID = log2

(
D

W
+ 1

)
(12)

This version ensures that ID remains positive and has since
become standard in experimental research, particularly in
human-computer interaction [16].

In addition to modeling movement time, Fitts introduced
the idea of an Index of Performance (IP) to quantify the rate
at which the human motor system can process and execute
aimed movements. This metric is now commonly referred to
as Throughput (TP ):

TP =
ID

MT
(13)

Throughput is expressed in bits per second (bps) and provides
a useful metric for comparing performance across different
tasks, users, or input devices. However, this definition of
throughput does not account for the accuracy of the move-
ment. A user may produce fast movements that frequently
miss the target, resulting in high throughput but low actual
performance.

To incorporate accuracy into the analysis, an adjustment
is made to the nominal target width W by considering the
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actual distribution of movement endpoints. The effective target
width We is defined as the width that encompasses 96% of the
movement endpoints, assuming that the variability in endpoints
follows a normal distribution. This leads to the following
equation:

We =
√
2πe · σ = 4.133 · σ (14)

where e is Euler’s number, and σ represents the standard
deviation of the position error, measured as the deviation
between the final cursor coordinates and the target coordinates
across all successful trials.

Similarly, the distance parameter D can also be adjusted
for accuracy. The effective distance De is then defined as the
distance to the mean of the endpoints.

Using these adjustments, the effective index of difficulty
(IDe ) is computed as:

IDe = log2

(
De

We
+ 1

)
(15)

and the effective throughput (TPe ) is:

TPe =
IDe

MT
(16)

This method ensures that both speed and accuracy are
integrated into the throughput, providing a more realistic
assessment of user behavior in pointing tasks.

APPENDIX B
3D-PRINTED BUTTONS

The buttons in the experimental setup were custom-designed
using Autodesk Fusion and 3D-printed. The design consists
of three components that are bolted together. The lever is
connected to the base via a ball bearing, allowing for smooth
rotation. A diametrically magnetized magnet is placed on the
rotating axis of the lever. The third component houses the
AS5600 sensor, which detects the rotation of the magnet. An
exploded view of the components is shown in Fig. 11, and
Fig. 12. Additionally, a back view of the setup can be seen
in Fig. 13, which shows the rubber bands used to return the
buttons to their original position.

Fig. 11. Exploded view of the 3D-printed buttons from the front.

Fig. 12. Exploded view of the 3D-printed buttons from the back.

Fig. 13. Back view of the experimental setup, showing the rubber bands that
return the buttons to their original position after release.
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APPENDIX C
ELECTRONIC CIRCUIT

The electronic circuit of the experimental setup consist of
four AS5600 magnetic rotary sensors connected to an Arduino
Uno via the I2C communication bus. Since all AS5600 sensors
share the same I2C address, a PCA9548A I2C multiplexer is
used to enable communication with each sensor individually.
The DIR pin of each AS5600 is connected to ground, setting
the sensors to hardware clockwise mode. To accommodate
different button orientation, the rotation direction for two of
the buttons is reversed using the AS5600 software library. A
full overview of the circuit is shown in Fig. 14. Finally, the
Arduino Uno collects the sensor readings and transmits it to
the computer for further processing.

Fig. 14. Electronic circuit design for the interaction device, created using
Cirkit Designer.
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