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Water Desalination using Graphene Nanopores: Influ-
ence of Water Models used in Simulations†

Vishnu Prasad K,∗a Sridhar Kumar Kannam,b, Remco Hartkampc, and Sarith P
Sathian∗a

Molecular dynamics simulations are widely employed to analyze water and ion permeation
through nanoporous membranes for reverse osmosis applications. In such simulations, water
models play an important role in accurately reproducing the properties of water. We investigated
the water and ion transport across hydroxyl (OH) functionalized graphene nanopore using six wa-
ter models: SPC, SPC/E, SPC/Fw, TIP3P, TIP4P, and TIP4P/2005. The water flux thus obtained
varied up to 84% between the models. The water and ion flux showed a correlation with the bulk
transport properties of the models such as the diffusion coefficient and shear viscosity. We found
that the hydrogen-bond lifetime, resulting from the partial charges of the model, influenced the
flux. Our results are useful in the selection of a water model for computer simulations of desalina-
tion using nanomembranes. Our findings also suggest that lowering the hydrogen-bond lifetime
and enhancing the rate of diffusion of water would lead to enhanced water/ion flux.

1 Introduction
Reverse osmosis (RO), a membrane based separation technique,
is a promising solution to the rising global demand for potable
water. RO has a low energy requirement and low cost compared
to other separation techniques such as multistage flash distilla-
tion, multi-effect distillation, membrane distillation etc.1 Hence,
it finds wide applications in wastewater treatment, pH neutral-
ization, food and beverage processing, and separation of organic
mixtures.2 The performance of an RO process depends on the wa-
ter permeation rate and the ion filtration efficiency of the mem-
brane.3 Commercial RO plants employ metallic, ceramic, and
polymer based materials as membranes whose performance is far
from ideal.

Carbon-based nanomaterials, such as carbon nanotubes
(CNTs),4 graphene oxide membranes, and graphene nanopores,5

show unparalleled water permeation rates owing to their inherent
hydrophobicity.6 Studies have indicated that graphene nanopores
possess the potential to become a super membrane for RO desali-
nation.5,7–10 For example, Surwade et al11 have reported a water
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permeation of 5.96 L/cm2/day/MPa through graphene nanopores
with an ion selectivity of nearly 100%. Numerous studies have
been conducted on desalination across nanopores using compu-
tational techniques such as molecular dynamics (MD). Cohen-
Tanugi and Grossman reported two orders of magnitude higher
water permeation through functionalized graphene nanopores
compared to commercially used RO membranes, while main-
taining the salt rejection efficiency.12–14 Konatham et al15 stud-
ied interactions between pore, water, and ions in functionalized
graphene nanopores and elucidated the mechanisms involved in
desalination. The authors reported a hydroxyl (OH) functional-
ized graphene nanopore as a suitable choice since this showed a
low potential energy barrier for water and a high energy barrier
for ions. Theoretical investigations using computer simulations
on graphene nanopores have focused on water permeation,16,17

ion transport,18–20 effect of pore geometry,21,22 and functional-
ization,23,24 aiming at maximum membrane performance.

The above studies, carried out using MD simulations, are based
on inter-atomic interaction potentials and parameters (force-
field), optimized to reproduce certain fluid or solid material prop-
erties. The properties of water are particularly interesting and
challenging to reproduce, due to its numerous anomalous prop-
erties largely caused by its affinity to form hydrogen bonds. Vari-
ous force fields, known as water models, have been developed in
an attempt to accurately reproduce specific properties of water at
various thermodynamic conditions.25 However, quantities deter-
mined using different water models differ from each other since
each model become successful in evaluating only a few proper-



ties of water accurately.26 Hence, ambiguity exists in the results
obtained from similar studies that used different water models.
For example, a flux of 9 L/cm2/day/MPa was found for hydrogen

passivated pore of 47 Å
2

using SPC/E model,23 while for a sim-
ilar pore size 51 L/cm2/day/MPa, a much larger flux was found
using TIP4P model.12 The latter studies are in line with another
study, in which a flux of 40 L/cm2/day/MPa was found for a pore

of area 38.5 Å
2

using TIP4P/2005.17 The above results do not
confirm whether the pore size or the water model primarily influ-
ences the water flux. However, Liu and Patey27 reported a con-
siderable difference in the flux through CNTs (diameters 10.98 Å
and 12.35 Å) using TIP3P, TIP4P/2005, and SPC/E models, at-
tributed to the difference in radial structures water form inside
the CNTs with different models. In a later study, the same au-
thors reported similar observations on CNTs of 8.23 Å diameter
with single-file flow.28 The authors attributed the flux difference
that resulted from different water models with single file flow
through the CNTs to the activation energy of entry and the bulk
transport properties of the models. Moreover, their recent study
reported a dependence of ion transport across CNTs on the wa-
ter model used.29 These findings strongly indicate the apparent
influence of water model on the water and ion transport across
nanopores. Hence, selection of a suitable water model for inves-
tigating water desalination across nanopores would be an impor-
tant step towards achieving consistent and reliable results.

Rigid 3-point water models

SPC, SPC/E, TIP3P

Rigid 4-point 
water models

TIP4P, TIP4P/2005

Flexible 3-point
 water model

SPC/Fw

O O O

HHHHHH M

Fig. 1 Illustration of water models used in the present study.

Here, we determine the water and ion flux across graphene
nanopore using SPC30, SPC/E31, SPC/Fw32, TIP3P33, TIP4P34,
and TIP4P/200535 models using non-equilibrium molecular dy-
namics (NEMD). Figure 1 illustrates the water models used in this
study. The models considered here are all rigid, with the excep-
tion of SPC/Fw. TIP4P and TIP4P/2005 are four-point models and
all the others are three-point models. From the transport proper-
ties of water obtained using different water models, we explain
the observed difference in the flux. Furthermore, utilizing equilib-
rium molecular dynamics (EMD), we analyze the hydrogen-bond
dynamics and the potential energy barrier across the nanopore for
water molecules. From the results obtained, we describe how the
flux obtained is related to the bulk transport properties of water.

2 Methodology
We have simulated a graphene nanopore with six alternate hy-
droxyl (OH) and hydrogen (H) functionals with a pore area of

28 Å
2
,12 as shown in figure 2. Graphene sheets of dimensions

24.5×24.5 Å
2

were used. The feed reservoir was 60 Å long
and filled with water (877 molecules) and ions corresponding to
0.5 M concentration (8 Na+ and 8 Cl-). The permeate reservoir
was 30 Å long containing only water (395 molecules). Graphene

sheets served as pistons at both ends of the reservoirs to main-
tain a pressure difference between both sides of the membrane
as water permeates through the pore. Additional empty space
was present beyond the pistons to prevent atoms from interacting
across the periodic boundary.

Fig. 2 (a) Snapshot of the simulated system. The graphene nanopore
is represented by the central cyan sheet. The functional groups on the
pore are shown by the red and white spheres representing oxygen and
hydrogen. The water molecules are represented smaller for visibility. The
sodium and chloride ions dispersed in the feed reservoir (0.5 M) are rep-
resented by the yellow and blue spheres. The ends of the feed reservoir
(left) and the permeate reservoir (right) are provided with two graphene
pistons represented by the silver sheets at the ends. Three regions,
namely the pore, the interface (within 4.8 Å from the nanopore), and the
bulk are illustrated using orange, blue, and green colors on the permeate
side. The arrows indicate the direction in which a distributed force acted
on the piston. (b) The front view of the nanopore.

Interaction parameters for ions, carbon and the functional
groups from Cohen-Tanugi and Grossman12 were used. Wa-
ter was modeled using the parameters of the respective water
models. We used a cut-off of 12.0 Å for the Lennard-Jones
(LJ)36 potentials and the short-range electrostatic interactions.
The coulombic forces were corrected to account for long-range
interactions using the Particle-Particle-Particle Mesh (PPPM)37

method, with a relative root mean square error in per-atom force
calculations below 1× 10−6. Periodic boundary conditions were
applied in all directions. Both the pistons and the pore graphene
sheet were kept rigid. Except for SPC/Fw, the O-H bonds and
H-O-H angles were kept rigid using SHAKE38 algorithm. Simu-
lations were carried out using the Large Atomic/Molecular Mas-
sively Parallel Simulator (LAMMPS)39 package. A timestep of 1 fs
was used for the simulations.

First, an optimal configuration for the functional groups on the
pore rim was obtained using energy minimization keeping the
sheets, the water and the ions rigid. Then, keeping the func-
tional groups and the sheets rigid, the energy of the entire system
was minimized. Throughout the simulation, the pore sheet atoms
were kept rigid and an axial force was applied on the pistons after
removing the lateral forces on them to ensure their rigidity. The
water and ions were then equilibrated at 300 K temperature us-
ing a Nosé-Hoover thermostat40. After monitoring the potential
energy of the system, an equilibration time of 1 ns was used. An
external force (equal to the product of the requisite pressure and
the area of a piston sheet divided by the number of atoms con-
stituting the piston sheet) was imposed on atoms of both pistons
in opposite directions to create 0.101325 MPa (1 atm) pressure
in the feed and permeate reservoirs. After equilibration, during
the production run, the feed side piston was provided with an
additional force to generate a pressure of 200 MPa in the feed
reservoir, while maintaining 0.101325 MPa (1 atm) pressure in
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the permeate side. This applied pressure gradient is two orders
of magnitude higher than that of experiments, but was necessary
to achieve a measurable flux within the simulation run time. The
production run was carried out for 5 ns (until the feed side reser-
voir almost drained) for all the runs and the flux was monitored
every 100 fs to ensure sufficient statistics. Five independent sim-
ulations with different initial velocities were performed for each
model to gather sufficient statistics.

EMD simulations coupled with the Adaptive Biasing Forcing
(ABF) algorithm41,42 were used to determine the energy barrier
across the nanopore.

Here, the reaction coordinate (same as the pore axis or z-axis)
is divided into M equally sized bins of width δz. The mean force
on the water molecules in kth bin along z-axis is evaluated using
the equation.43

Fz(Nstep,k) =
1

Nk
step

Nk
step

∑
µ=1

Fk
µ (1)

Where Nstep indicates the current time step. This force is used
to continuously bias the simulation to sample all the bins. Also,
after acquiring sufficient statistics in each bin, the force is inte-
grated along the reaction coordinate to obtain the potential of
mean force (PMF).43

∆Az =−
M

∑
i=1

Fz(Nstep,k)δz (2)

A length of 10 Å along the pore axis, preceding the pore, was
sampled for 20 ns with a timestep of 1 fs. The colvars module
for LAMMPS44 was used for the PMF calculations. EMD simu-
lations were also carried out to investigate the hydrogen-bond
dynamics. The trajectories were recorded at every fs to evaluate
the hydrogen-bond time autocorrelation function which typically
decays within 10 ps. The analysis was carried out in three pre-
defined regions, namely pore, interface, and bulk (see figure 2).
The pore region is defined to calculate the hydrogen-bond dy-
namics between the water molecules and the functional groups
on the pore rim. The interface region spans from the nanopore to
the first minima after the first maxima in the density profile (see
figure 6), that is, within 4.8 Å from the graphene sheet. The re-
maining region is considered as bulk region. Furthermore, EMD
simulations were conducted using a periodic water box of 268
water molecules to calculate the diffusion coefficient. The system
was equilibrated at 300 K and 0.101325 MPa (1 atm) for 1 ns
and was then maintained at constant volume and temperature
for 1 ns, during which the trajectories were recorded every 10 fs.
The diffusion coefficient was then calculated from 5 sample sim-
ulations, each of length 200 ps, using the equation given below.

D =
1

2NDτ(tL − tF − τ)

t0=tL−τ

∑
t0=tF

1
N

i=N

∑
i=1

(ri(t0 + τ)− ri(t0))
2 (3)

Where, ND represents the number of dimensions of the system
(here, ND = 3), τ is the time interval, tF and tL are the time cor-
responding to first (0 ps) and last (200 ps) snapshots of the tra-

jectory respectively, N is the number of water molecules, ri(t) is
the position vector of ith water molecule at time t. The limiting
diffusion coefficient at τ = 50 ps obtained from sample simula-
tions were used to obtain the average diffusion coefficient and the
error estimates.

3 Results and Discussion
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Fig. 3 (a) The running average of velocity of water molecules along the
flow direction (along the z axis, which is same as the pore axis) with time.
(b) Flux is defined as the number of water molecules crossing the pore
with time. The results are averaged over five independent simulations
with a pressure difference of 200 MPa at 300 K temperature.

Figure 3(a) shows the running average of velocity (V ) of water
along the flow direction (z), with time (t). Figure 3(b) shows
the number of water molecules (Nw) crossing the membrane with
time (t). The slope of Nw in figure 3(b) is the water flux (Qw).

The highest measured flux, shown by the TIP3P model,
was 84% greater than the lowest measured flux shown by
TIP4P/2005. In general, the use of three-point water models re-
sulted in higher fluxes compared to the four-point models, with
the exception of SPC/E which showed a flux close to that of TIP4P.
SPC/E31 reproduces properties of water with accuracy similar to
four-point water models. It also emulates the structural charac-
teristics of ice similar to TIP4P.26,45 This could be the reason for
the low flux shown by SPC/E. The succession of water models
according to their flux magnitudes agree with that reported for
CNTs.28

We found that the properties of water are strongly affected by
the partial charges on the atoms in the water model. For ex-
ample, SPC/E and SPC models showed a 34% difference in the
flux, even though they only differ in their partial charges. Also,
SPC/E has larger partial charge magnitudes than SPC resulting in
stronger electrostatic correlations between the molecules and sol-
vation of ions, explaining the lower flux of this model. Similarly,
TIP3P and TIP4P models differ in their partial charge distribution
and showed a 50% difference in the flux even though they had
the same geometry and similar LJ parameters. Furthermore, SPC
and TIP3P models, having similar partial charges, produced sim-
ilar fluxes. These observations indicate that the partial charges
grossly influences the water flux across the nanopore.

TIP4P and TIP4P/2005 models differ in their partial charges
and LJ parameters, but have the same bond length and angle.

Journal Name, [year], [vol.], 1–7 | 3



They showed a 20% difference in the flux. From the results
for three-point models, we assume this to have resulted from
their difference in partial charges. However, the SPC/Fw model
showed a lower flux than SPC, even when both have the same
charges. We assume this to have resulted from the difference in
bond and angle length of SPC/Fw and due to the model’s flexibil-
ity.

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

SPC
SPC/E

SPC/Fw

TIP3P
TIP4P

TIP4P/2005

Qw

D
1/η
1/to

Fig. 4 Correlation between the flux, diffusion coefficient, shear viscosity,
and orientational relaxation time. The values are normalized with respect
to SPC model values. The shear viscosity and orientational relaxation
time are inverted to illustrate the correlation better.

Figure 4 shows the flux (Qw) obtained and the bulk diffusion
coefficient (D) determined in the present study. The bulk prop-
erties of water such as shear viscosity (η) and orientational re-
laxation time (to), found using different water models are also
shown.26,32 All the values are normalized with respect to SPC
values for the ease of comparing data with different orders of
magnitudes. Table 1 shows the data corresponding to figure 4.
The results show a direct correlation between the diffusion coef-
ficient and the flux, indicating that the flux depends on the de-
gree of activity of the simulated water. Inverted shear viscosity
and orientational relaxation time also showed a similar trend.
The results agree with previous studies on CNTs.28,29 If we as-
sume continuum, the shear viscosity and diffusion coefficient are
inversely related, as per Stokes-Einstein relationship. Therefore,
the direct correlation of flux and diffusion coefficient implies their
inverse correlation with the shear viscosity. However, the corre-
lation shown by the flux and the property values are not strict.
For example, the flux shown by TIP4P is higher than SPC/E even
though TIP4P has a lower diffusion coefficient. Similar disparity
was also shown by SPC and TIP3P.

To further improve our understanding on the relation between
the transport properties and the flux obtained using the water
models, the hydrogen-bond dynamics was analyzed. Here, two
water molecules were considered to be hydrogen bonded, if the
oxygen atoms were within 3.5 Å from each other and the oxygen-
hydrogen-oxygen angle exceeded 140◦.46 The hydrogen-bond
lifetime of water, τ, was measured using the time autocorrelation
function,47,48 given as,

Cc(t) =
〈

Σhij(t0)hij(t0 + t)
Σhij(t0)2

〉
ij

(4)

Table 1 The flux (Qw, ns−1), diffusion coefficient (D, 10−5 cm2/s), shear
viscosity (η , mPas), and orientational relaxation time (to, ps) of water
models. The flux and diffusion coefficient are measured in the present
study. Values in parenthesis provide the standard error. Shear viscos-
ity and orientational relaxation time for SPC and SPC/Fw were taken
from Wu et al 32 (1.013 bar, 298.15 K). Values corresponding to the other
water models, and the experimental values were taken from Vega and
Abascal 26 (1 bar, 298 K).

water
model Qw D η to

SPC 102.72 (2.72) 4.05 (0.04) 0.40 1.15
SPC/E 67.72 (2.36) 2.55 (0.02) 0.72 1.90
SPC/Fw 91.80 (2.77) 3.23 (0.04) 0.75 2.01
TIP3P 106.36 (3.46) 4.02 (0.03) 0.32 0.80
TIP4P 69.52 (2.68) 2.33 (0.04) 0.49 1.40
TIP4P/2005 57.72 (2.87) 2.06 (0.03) 0.85 2.30
Experimental Value NA 2.30 0.89 2.36

Where "ij" represents any random pair of donor and acceptor.
hij(t) would either be 0 or 1 depending on whether the donor-
acceptor pair "i" and "j" are hydrogen bonded at time t. hij(t)
takes the value 1 if the hydrogen bond between "i" and "j" is in-
tact during time t, otherwise it is 0.48 The subscript "c" in Cc(t)
represents the continuous definition of the time autocorrelation
function, by which, a hydrogen bond once broken is considered
broken in all the succeeding instants.47,48 Equation 5 was fit to
the hydrogen-bond decay (see figure 5(a)).

Cfit(t)≈ A1et/τ1 +(1−A1)et/τ2 (5)

Where A1, τ1 and τ2, are fitting parameters. The average values
obtained for A1, τ1 and τ2 are provided in ESI (see table S1)†.
The hydrogen-bond lifetime, τ, for the pore, the interface, and
the bulk region were found by integrating equation 5.47

Hydrogen-bond lifetime, τ =
∫

∞

0
Cfit(t) (6)

Hydrogen-bond lifetime and the average number of hydrogen
bonds per water molecule were measured for the pore, the in-
terface, and the bulk regions (see methodology section).

Table 2 shows the number of hydrogen bonds per water
molecule and the hydrogen-bond lifetime for the three regions.
The hydrogen bonds per molecule obtained for the bulk region
are similar to previous study.49 Hydrogen bonds per molecule in
the interface region are less than that of the bulk region.46,50

Also, the pore region has the least number of hydrogen bonds
since the number of molecules involved here was the least. In
each region, the number of hydrogen bonds was similar for each
model.51 The results are confirmed by analyzing hydrogen bonds
per molecule along the pore axis (see figure S1 in ESI †).52 It has
been reported that the distribution of neighboring molecules in
water, simulated using different water models, vary minimally.53

As a result, the number of hydrogen bonds per molecule for dif-
ferent models in each region were similar. This indicates that the
flux is minimally influenced by the number of hydrogen bonds
that water makes per molecule.

Figure 5(a) shows the hydrogen-bond time autocorrelation
function, Cc(t) (equation 4), for the water in the bulk region.54

The dotted lines represent the fitting curves. Figure 5(b) shows
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Table 2 The average number of hydrogen bonds per water molecule and the hydrogen-bond lifetime. Three predefined regions namely pore, interface,
and bulk (see methodology section) were analyzed. Estimates from hydrogen bonding within water are labeled as W-W and that between water and
the pore functionals are labeled as W-P. The hydrogen-bond lifetime is expressed in ps. Values in parenthesis indicate the standard deviation.

water
model

number of hydrogen bonds per water hydrogen-bond lifetime

W-W
(bulk)

W-W
(interface)

W-P
(pore)

W-W
(bulk)
(τbulk)

W-W
(interface)
(τinterface)

W-P
(pore)
(τpore)

SPC 3.06 (0.03) 2.29 (0.09) 1.14 (0.35) 0.26 (0.00) 0.23 (0.02) 0.21 (0.08)
SPC/E 3.19 (0.03) 2.42 (0.09) 1.13 (0.34) 0.35 (0.00) 0.27 (0.03) 0.26 (0.11)
SPC/Fw 3.12 (0.03) 2.33 (0.09) 1.09 (0.29) 0.28 (0.00) 0.22 (0.02) 0.19 (0.08)
TIP3P 3.07 (0.03) 2.30 (0.09) 1.19 (0.40) 0.27 (0.01) 0.23 (0.02) 0.21 (0.08)
TIP4P 3.24 (0.03) 2.45 (0.08) 1.10 (0.30) 0.36 (0.01) 0.28 (0.03) 0.28 (0.14)
TIP4P/2005 3.29 (0.03) 2.43 (0.08) 1.08 (0.27) 0.40 (0.01) 0.30 (0.03) 0.36 (0.20)
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Fig. 5 (a) Hydrogen-bond time autocorrelation function (see equation 4)
for water in the bulk region. Dotted lines represent the fitting curves. (b)
Correlation between the hydrogen-bond lifetime and the flux. The values
are normalized with respect to SPC values. The hydrogen-bond lifetime
is inverted to illustrate the correlation better.

the correlation between hydrogen-bond lifetime (τbulk) and the
flux (Qw). As shown in figure 5(b), the flux and the hydrogen-
bond lifetime of water in the bulk region correlate inversely with
each other. Analogous to this, Liu and Patey27 have reported an
inverse relation between the percentage of water making hydro-
gen bonded structures inside the CNTs and the resulting flux. The
hydrogen-bond lifetime of water in the interface and the pore re-
gion also show correlation with the flux (see table 2), but are less
conforming than that of the bulk region. The above observations
were also found to be true for hydrogen passivated nanopores
and also for different LJ potential and electrostatic cutoff values
(see figures S2-S5 in ESI †).

From the above results, we deduce that the partial charges of
the models grossly influence the hydrogen-bond dynamics, which
in turn determines the rate of diffusion of water: the longer the
hydrogen-bond lifetime,the lower the rate of diffusion. The dif-
ference in diffusion rates translate into the different flux values of
different models during desalination. This signifies the important
relationship between the partial charges and the flux mentioned
earlier. Also, the above explanation reveals the relation between
the hydrogen-bond lifetime, the diffusion coefficient, and the flux.
However, the exact mechanism through which the partial charges
of water influence it’s transport properties and the resultant flux
is beyond the scope of this paper.

As a corollary, we infer that the water should have a low
hydrogen-bond lifetime29 for a higher flux across the nanopore.
Hence, breaking the hydrogen bonds more often55,56 and en-
hancing the diffusion coefficient57,58 would enhance the flux
across nanopores.
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Fig. 6 (a) Potential of mean force of water molecules along the pore axis.
(b) Density distribution of the water adjacent to the nanopore. The pore
is located at z=0.

We determined the potential energy landscape for water
molecules across the nanopore for different models, shown in fig-
ure 6(a). The PMF was evaluated along the flow direction (z-axis)
using EMD simulations coupled to ABF algorithm (see methodol-
ogy section). The PMF profiles agree qualitatively with previous
study.15 Except for SPC/Fw and SPC/E models, the energy bar-
rier showed an inverse relationship with respect to the measured
flux. However, the PMF profile differed less than 0.4 kcal/mol
between the water models, which could be a consequence of the
similar number of hydrogen bonds per molecule shown by the
models. As PMF represents the molecular energy arising form
the hydrogen bond formation and the distribution of neighbor-
ing molecules, similar number of hydrogen bonds per molecule
resulted in similar PMF profiles for each model considered.

Furthermore, figure 6(b) provides the density profile of water
(ρw) along the pore axis (z-axis). There was minimal variation in
the density profile among different models, in agreement with the
PMF profile. Also, locations of maxima and minima in the density
profile were inverse with respect to those in the PMF profile.15

Figure 6(b) shows two maxima within 10 Å from the nanopore,
beyond which, the density approximates to the bulk density (∼
1000 kg/m3). These results agree with previous studies.16,46,50

Also, the magnitude of maxima and minima varied with the water
model: lower the flux shown by the model, higher the maxima
and lower the minima.

Figure 7(a) shows the correlation between the ion flux (Qi) and
the water flux (Qw) across the nanopore. The results are again in
good agreement with a recent study on CNTs.29 Both water per-
meation and ion exclusion are equally important for desalination.
However, the results indicate that enhancement in water flux by
improving the diffusion coefficient would also result in an en-
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Fig. 7 (a) Comparison between the ion flux and the water flux. The ion
flux comprises both anion and cation flux. The values are normalized with
respect to SPC values. (b) The ion concentration in the feed reservoir
with time.

hanced ion seepage. Hence, whenever there is an improvement
in the diffusion coefficient, the same should go together with ap-
propriate ion exclusion methods for effective desalination.

Figure 7(b) shows the feed side ion concentration (C) with time
(t). The feed side ion concentration increased at varying rates
depending on the model’s flux: the higher the flux, the more rapid
the concentration increase. In models with high water flux, the
ion flux was also higher (from figure 7(a)). However, such models
showed a very rapid increase in the feed side ion concentration.
The result indicate the strong dependence of ion concentration
on the water model used in desalination studies.

4 Conclusions
We investigated the dependence of the simulated water and ion
flux across hydroxyl functionalized graphene nanopore on the
water model used. We considered SPC, SPC/E, SPC/Fw, TIP3P,
TIP4P, and TIP4P/2005 model for the study. The water flux varied
up to 84% among the models. The partial charges, the hydrogen-
bond dynamics, and the diffusion coefficient of the model are
found to influence the flux. The flux was found to be directly
proportional to the bulk properties of the simulated water such as
the diffusion coefficient and the shear viscosity, and inversely pro-
portional to the hydrogen-bond lifetime. We explained a possible
mechanism that relates the partial charges, the diffusion coeffi-
cient and the flux obtained. The models showed similar number
of hydrogen bonds per molecule and similar free energy profile
for water along the pore axis. Furthermore, we observed a direct
correlation between the ion flux and the water flux.

Our results indicate that water models that reproduce the trans-
port properties and the hydrogen-bond dynamics of water to the
best accuracy should be used for simulating desalination across
nanopores. Among rigid four-point models, TIP4P/2005 repro-
duces the diffusion coefficient and the shear viscosity of water
that are close to the experimental values.26,59 Hence, we sug-
gest the use of TIP4P/2005 model for computational studies on
desalination across nanoporous membranes. Also, among rigid
three-point water models, SPC/E reproduces the hydrogen-bond
dynamics to the best accuracy under confinement.54 However,
diffusion coefficient and shear viscosity produced by SPC/E are
less accurate than TIP4P/2005.26 These results can be extended
to the study of permeability in other systems such as lipid mem-
branes.60 The results also indicate that a faster breakage of the
hydrogen bonds and enhancement of the diffusion coefficient en-

hances the flux. However, this would also lead to a higher ion
seepage, which needs to be checked using appropriate methods
for effective desalination.

Conflicts of interest
There are no conflicts to declare.

Acknowledgements
We thank the financial support received from Department
of Science and Technology (DST), Government of In-
dia, under Water Technology Initiative (Project Number:
DST/TM/WTI/2K15/84(G)). We thank David Cohen-Tanugi,
EMBR labs, Cambridge, USA, for sharing with us the nanopore
geometry and other details for this study.

Notes and references
1 M. W. Shahzad, M. Burhan, L. Ang and K. C. Ng, Desalination,

2017, 413, 52–64.
2 I. Wenten and Khoiruddin, Desalination, 2016, 391, 112–125.
3 J. R. Werber, A. Deshmukh and M. Elimelech, Environ. Sci.

Technol. Lett., 2016, 3, 112–120.
4 R. Das, M. E. Ali, S. B. A. Hamid, S. Ramakrishna and Z. Z.

Chowdhury, Desalination, 2014, 336, 97–109.
5 K. A. Mahmoud, B. Mansoor, A. Mansour and M. Khraisheh,

Desalination, 2015, 356, 208–225.
6 M. Hu, S. Zheng and B. Mi, Environ. Sci. Technol., 2016, 50,

685–693.
7 P. Goh and A. Ismail, Desalination, 2015, 356, 115–128.
8 H. Ebro, Y. M. Kim and J. H. Kim, J. Membr. Sci., 2013, 438,

112–125.
9 D. Cohen-Tanugi and J. C. Grossman, Desalination, 2015,

366, 59–70.
10 E. A. Müller, Current Opinion in Chemical Engineering, 2013,

2, 223–228.
11 S. P. Surwade, S. N. Smirnov, I. V. Vlassiouk, R. R. Unocic,

G. M. Veith, S. Dai and S. M. Mahurin, Nat. Nanotechnol.,
2015, 10, 459–464.

12 D. Cohen-Tanugi and J. C. Grossman, Nano Lett., 2012, 12,
3602–3608.

13 D. Cohen-Tanugi and J. C. Grossman, J. Chem. Phys., 2014,
141, 074704.

14 D. Cohen-Tanugi, R. K. McGovern, S. H. Dave, J. H. Lienhard
and J. C. Grossman, Energy Environ. Sci., 2014, 7, 1134–1141.

15 D. Konatham, J. Yu, T. A. Ho and A. Striolo, Langmuir, 2013,
29, 11884–11897.

16 M. E. Suk and N. R. Aluru, RSC Adv., 2013, 3, 9365.
17 L. Garnier, A. Szymczyk, P. Malfreyt and A. Ghoufi, J. Phy.

Chem. Lett., 2016, 7, 3371–3376.
18 K. Sint, B. Wang and P. Král, J. Am. Chem. Soc., 2008, 130,

16448–16449.
19 M. E. Suk and N. R. Aluru, J. Chem. Phys., 2014, 140, 084707.
20 G. Hu, M. Mao and S. Ghosal, Nanotechnology, 2012, 23,

395501.
21 M. Shahbabaei, D. Tang and D. Kim, Comput. Mater. Sci.,

6 | 1–7Journal Name, [year], [vol.],



2017, 128, 87–97.
22 S. Gravelle, L. Joly, F. Detcheverry, C. Ybert, C. Cottin-Bizonne

and L. Bocquet, Proc. Natl. Acad. Sci. U.S.A., 2013, 110,
16367–16372.

23 Q. Chen and X. Yang, J. Membr. Sci., 2015, 496, 108–117.
24 Y. Wang, Z. He, K. M. Gupta, Q. Shi and R. Lu, Carbon, 2017,

116, 120–127.
25 S. Chakraborty, H. Kumar, C. Dasgupta and P. K. Maiti, Acc.

Chem. Res., 2017, 50, 2139–2146.
26 C. Vega and J. L. F. Abascal, Phys. Chem. Chem. Phys., 2011,

13, 19663.
27 L. Liu and G. N. Patey, J. Chem. Phys., 2014, 141, 18C518.
28 L. Liu and G. N. Patey, J. Chem. Phys., 2016, 144, 184502.
29 L. Liu and G. N. Patey, J. Chem. Phys., 2017, 146, 074502.
30 H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren and

J. Hermans, in The Jerusalem Symposia on Quantum Chemistry
and Biochemistry, Springer Nature, 1981, pp. 331–342.

31 H. J. C. Berendsen, J. R. Grigera and T. P. Straatsma, J. Phys.
Chem., 1987, 91, 6269–6271.

32 Y. Wu, H. L. Tepper and G. A. Voth, J. Chem. Phys., 2006, 124,
024503.

33 D. J. Price and C. L. Brooks, J. Chem. Phys., 2004, 121,
10096–10103.

34 W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey
and M. L. Klein, J. Chem. Phys., 1983, 79, 926–935.

35 J. L. F. Abascal and C. Vega, J. Chem. Phys., 2005, 123,
234505.

36 J. E. Lennard-Jones, Proc. Phys. Soc., 1931, 43, 461.
37 R. W. Hockney and J. W. Eastwood, Computer simulation using

particles, crc Press, 1988.
38 J.-P. Ryckaert, G. Ciccotti and H. J. Berendsen, J. Comp. Phys.,

1977, 23, 327–341.
39 S. Plimpton, J. Comput. Phys., 1995, 117, 1–19.
40 D. J. Evans and B. L. Holian, J. Chem. Phys., 1985, 83,

4069–4074.
41 E. Darve, D. Rodríguez-Gómez and A. Pohorille, J. Chem.

Phys., 2008, 128, 144120.
42 J. Hénin, G. Fiorin, C. Chipot and M. L. Klein, J. Chem. Theory

Comput., 2010, 6, 35–47.
43 J. Comer, J. C. Gumbart, J. Hénin, T. Lelièvre, A. Pohorille

and C. Chipot, J. Phys. Chem. B, 2015, 119, 1129–1151.
44 G. Fiorin, M. L. Klein and J. Hénin, J. Mol. Phys., 2013, 111,

3345–3362.
45 C. Vega, C. McBride, E. Sanz and J. L. F. Abascal, Phys. Chem.

Chem. Phys., 2005, 7, 1450.
46 G. Cicero, J. C. Grossman, E. Schwegler, F. Gygi and G. Galli,

J. Am. Chem. Soc., 2008, 130, 1871–1878.
47 R. J. Gowers and P. Carbone, J. Chem. Phys., 2015, 142,

224907.
48 D. Rapaport, Mol. Phys., 1983, 50, 1151–1162.
49 R. Hartkamp and B. Coasne, J. Chem. Phys., 2014, 141,

124508.
50 T. A. Ho and A. Striolo, Mol. Simul., 2014, 40, 1190–1200.

51 J. Zielkiewicz, J. Chem. Phys., 2005, 123, 104501.
52 A. M. Prpich, Y. Sheng, W. Wang, M. E. Biswas and P. Chen,

PLoS ONE, 2009, 4, e8281.
53 P. Mark and L. Nilsson, J. Phys. Chem. A, 2001, 105,

9954–9960.
54 H. Kumar, C. Dasgupta and P. K. Maiti, RSC Adv., 2015, 5,

1893–1901.
55 Z. Wang, Y. Pang and D. D. Dlott, J. Phys. Chem. A, 2007, 111,

3196–3208.
56 H. Ohtaki, J.Mol. Liq., 2003, 103, 3–13.
57 K. Krynicki, C. D. Green and D. W. Sawyer, Faraday Discuss.

Chem. Soc., 1978, 66, 199–208.
58 K. R. Harris and L. A. Woolf, J. Chem. Soc. Faraday Trans. 1,

1980, 76, 377.
59 A. P. Markesteijn, R. Hartkamp, S. Luding and J. Westerweel,

J. Chem. Phys., 2012, 136, 134104.
60 R. Hartkamp, T. C. Moore, C. R. Iacovella, M. A. Thompson,

P. A. Bulsara, D. J. Moore and C. McCabe, J. Phys. Chem. B,
2018, 122, 3113–3123.

Journal Name, [year], [vol.], 1–7 | 7


	Introduction
	Methodology
	Results and Discussion
	Conclusions

