
Practical Approaches towards Complete Real-
time Gaze Tracking

Xin Li

4721101

Practical Approaches towards Complete Real-time
Gaze Tracking

by

Xin Li

Practical Approaches
−−−−−→
towards Complete Real-time Gaze Tracking

Xin Li

Abstract

Visual context plays a key role in many computer vision
tasks, and performance of eye/gaze-tracking methods also
benefit from it. However, the size of contextual information
(e.g. full face image) is very large w.r.t the primary input i.e.
cropped image of the eye. This adds large computational
costs to the algorithm and makes it inefficient, severely lim-
iting its utility in real-time applications. In this paper, we
perform a (computational) cost vs benefit analysis of var-
ious input types that include context, leaning towards an
efficient gaze-tracking system. We further study the effect of
an alternate ranking loss based training strategy. Finally,
we demonstrate some practical calibration techniques that
can convert gaze-vectors into points-on-screen, an impor-
tant application that is often overlooked in literature. We
examine how data-efficient these techniques are in terms of
how well they utilise expensive calibration data.

1. Introduction
The task of gaze-tracking The task of camera based gaze
tracking involves estimating where a subject’s gaze is point-
ing based on the images captured. This is commonly in the
form of a gaze vector, which determines the pitch and yaw
of the gaze with respect to the camera [30]. A more com-
plete form of gaze tracking further extends this by also com-
puting at which specific point the subject is looking at on a
screen in front of the subject [14, 29]. This is achieved by
estimating the position of the said screen w.r.t. the camera
(a.k.a. calibration), which is not precisely known before-
hand. We present a study of core choices in the design of
such gaze tracking methods in combination with calibration
and training techniques, leaning towards an efficient real-
time camera-to-screen gaze-tracking system.

Gaze-tracking based on context With the help of power-
ful deep learning based computer vision methods, there has
been a significant improvement in the state-of-the-art accu-
racies in gaze tracking. A useful feature of deep learning
(for computer vision) is its ability to infer information from
large input image sizes to natively incorporate context from
the whole scene. For example, subjective tasks like object

classification are greatly benefited by the incorporation of
such contextual information in an image background (cars
are more likely to appear on roads, hence detecting roads
in the background helps in recognizing cars) [26, 3]. The
same effect is also seen to work for gaze estimation. The
existing CNNs-based methods use not just the image of the
eye(s) [18, 30], but also the whole eye region, the whole
face [29], and even the whole image captured by the cam-
era [14]. Such an improvement can be attributed to the cor-
relation between the face appearance and gaze vector (e.g.
a face facing left often also has its gaze towards the left).
Thus, gaze tracking can clearly benefit from context.

Drawbacks of context dependence Depending on such
contextual information has critical drawbacks for the task of
gaze prediction. Unlike object classification tasks, estimat-
ing gaze is an objective and absolute measurement task: it
is solely dependant on the elements that directly contribute
in its creation (namely, the eye and pupil centre locations
w.r.t. camera), and not on surrounding factors (like the state
of the mouth, the facial expression, etc.). Therefore, while
facial context can be helpful and correlated with a person’s
gaze, it is not the cause of the gaze itself and hence not vital
for predicting gaze. Over dependence on such contextual
factors can make generalizability harder to achieve and add
bias into the model. We study the impact of various input
types and sizes with varying amounts of facial contextual
information to determine their value.

In addition, incorporation of such contextual data makes
the overall system highly inefficient due to its computa-
tional load. This is because the relative size of the context
here is much larger than the core input itself (e.g., the full
face images are 20 times larger than image of eye crops).
While such context improves accuracy, they severely limit
the utility of such methods in real-time applications. For
such practical applications, a good balance has to be sought
between input size and computation speeds, and often heavy
and expensive dependence on context is not affordable. Our
computational cost vs benefit analysis can help practitioner
find a good balance.

Calibration: gaze-vector to gaze-point Another aspect
of gaze estimation that has received relatively little focus is

1

Normalized Face/Eye Crops

Input pre-processing

CNN 3D Gaze
Vector

2D gaze point
on screen

Calibration
Techniques

L2 Regression

Ranking Loss

User Calibration Input

Training
Techniques

Figure 1: An overview illustration of our camera-to-screen gaze tracking pipeline. (Left to right) Images captured by the
webcam are first pre-processed to create a normalized image of face and eyes. These images are used for training a convo-
lutional neural network to predict the 3D gaze vector. Such training can be aided by a ranking loss based training scheme.
With the cooperation of the user, the predicted gaze vectors can finally be projected on to the screen he/she is looking at using
calibration techniques.

the task of predicting a gaze-point, the point on a screen in
front of the subject where he/she is looking. In comparison
with a gaze-vector, this gaze-point on screen is a more intu-
itive and directly useful result for gaze tracking based tasks.
If the relative locations and pose of the camera w.r.t to the
screen were exactly known, projecting the gaze-vector to a
point on screen would be straightforward. However, this
transformation is often not known in real-world scenarios,
and hence must also be implicitly or explicitly estimated
through an additional calibration step.

Multiple types of methods maybe applied to perform
the 3D to 2D transformation. Geometry based mod-
elling methods have the advantage that maximum ex-
pert/geometrical knowledge can be embedded into the sys-
tem. One the other hand, such mathematical models are
rigid and based on strong assumptions, which may not al-
ways hold. In contrast, machine learning based methods
require no hand-crafted knowledge, although they may be
more data dependant to learn the underlying geometry. In
this paper, we present various calibration techniques includ-
ing a hybrid approach between machine learning and geo-
metric modelling. We examine the drawbacks and benefits
of each technique.

Contributions In our work, we make the following con-
tributions: (i) We shed light on the balance of gains from
context-rich inputs vs their drawbacks. We study their in-
dividual impact on the system’s accuracy w.r.t. their com-
putational load to determine their efficiency and help prac-
titioners find the right trade-off. (ii) We further study an al-
ternate training strategy; (iii) Finally, we demonstrate prac-
tical screen calibration techniques that can convert the pre-
dicted gaze-vectors to points-on-screen, thereby performing

the task of complete camera-to-screen gaze tracking.

2. Related Work

Appearance-based CNN gaze-tracking Appearance-
based methods take the related eye images as input and
make a mapping between images and gaze angles. As the
deep learning methods have shown their potentials in many
areas, some appearance-based CNN networks work effi-
ciently for the task of gaze prediction.

Zhang et al. [28, 30] proposed the first deep learning
model for appearance-based gaze prediction. This method
utilized minimal context by using the grayscale eye image
and head pose as input. Krafka et al. [14] presented a more
context-dependant multi-model CNN to extract information
from two single eye images, face image and face grid (a bi-
nary mask of the face area in an image). To investigate how
the different face region contributes to the gaze prediction,
a full-face appearance-based CNN with spatial weights was
proposed [29]. Our work investigates the contribution of
context in more detail by an in-depth ablation study.

Park et al. [18] proposed an hourglass [15] and
DenseNet [10] combined network to take the advantage of
auxiliary supervision based on the gaze-map, which is two
2D projection binary mask of the iris and eyeball. Cheng
et al. introduced ARE-Net [5], which can be divided into
two smaller modules. One is to find directions from each
eye individually, and the other is to generates probability
for the reliability of each eye. Deng and Zhu et al. [6]
defines two CNN to generate head angle and gaze angle,
which are aggregated by a geometrically constrained trans-
form layer. Ranjan et al. [19] clustered the head pose into
different groups and used branching structure for different

2

groups. Chen et al. proposed Dilated-Nets [4] to extract
high level features by adding dilated convolution. We build
upon these foundations and join the body of recent work to
obtain a better understand of gaze-tracking techniques and
improve upon them.

Recently, a GPU based real-time gaze tracking
method [7] for the natural environments was implemented
using model ensemble fashion, taking two eye patches and
head pose vector. This method achieves state-of-the-art in
several datasets [7, 25, 30] for person-independent condi-
tion. In addition, [4, 16] have included some results about
the improvements that can be obtained from different in-
puts. In our work, we perform a more in-detail evaluation
add the dimension of computation load of each input type.
Our insight in the cost vs benefit trade-off may help design
efficient gaze tracking software that can run real-time on
regular CPUs and not just GPUs.

Alternate regression training strategy For head pose es-
timation, alternate loss functions have shown potential to
make more accurate predictions [9, 21]. Based on the ob-
servation that face patterns change significantly with the ex-
treme head pose, Ruiz et al. [21] proposed a pipeline using
the expectation of predicted bin as the final angle prediction,
using both L2 and cross-entropy losses during training. Re-
sults from Hsu et al. [9] have also benefited from the bin
label and an alternate loss. Unlike [21], QuatNet [9] has
two separate networks following the CNN, one for regres-
sion and the other for ranking. By predicting the ordinal
bin labels, the ranking net helps the model provide better
feature for regression. In our work, we evaluate the appli-
cability of this ranking aided training technique for the task
of gaze-vector prediction.

Calibration: gaze-vector to gaze-point In a classical
geometry-based model, projecting any gaze-vector to a
point on a screen requires a fully-calibrated system. Ex-
cept for the camera matrix, the screen pose and the 3D
eye location in the camera coordinate system should be
known. Using a mirror-based calibration technique [20],
the corresponding position of camera and screen can be at-
tained. This method needs to be re-applied for different
computer and camera setting, which is non-trivial and time-
consuming. During human computer interaction, informa-
tion like mouse click may also provide useful information
for calibration[17].

Several machine learning models are free of rigid geo-
metric modelling while showing good performance. Meth-
ods like second order polynomial regression [12] and Gaus-
sian process regression [27] have been applied to predict
gaze more universally. The WebGazer [17] trains regres-
sion models to map pupil positions and eye features to 2D
screen locations directly without any explicit 3D geometry.

This is, however, strongly based on the assumption that peo-
ple are always looking at the mouse cursor during the click.

As deep learning has shown its potential in different ar-
eas, other inputs can be mixed with CNN-based feature for
implicit calibration[14, 29]. CNN features from the eyes,
face are used as inputs to a support vector regressor to es-
timate gaze-point coordinates. These methods take advan-
tage of being free of rigid modelling and show good perfor-
mance. On the other hand, training directly on CNN fea-
tures makes this calibration system non-modular since it is
specific to one gaze-prediction system. In our work, we
explore and evaluate some modular calibration techniques
that convert gaze-vectors to gaze-points based on geometric
modelling, machine learning, and a mix of both.

3. Method

The proposed pipeline can be contains three parts (see
Figure 1). The first part performs initial input pre-
processing by finding and normalizing the facial images.
The second part is a CNN that takes these facial images as
input to predict the gaze vector. The last stage converts the
gaze-vectors to points on the screen. During calibration, the
system learns this mapping between the gaze vectors and
points with the cooperation of the user.

3.1. Input pre-processing

The input to the system is obtained from facial images of
subjects. Through a face finding and facial landmark detec-
tion algorithm [1], the face and its key parts are is localized
in the image. During training, these face location and land-
marks are obtained directly from the datasets. Following
the procedure described by Sugano et al. in [25], the de-
tected 2D landmarks are fitted onto a 3D model of the face.
By comparing the 3D face model and 2D landmarks, the
head rotation and translation matrix R, T and the 3D eye
locations e are obtained in CCS. A standardized view of the
face is now obtained by defining a fixed distance d between
the eye centres and the camera centre and using a scale ma-
trix S = diag(1, 1, d

||e||). The obtained conversion matrix
M = S ·R is used to apply perspective warping to obtain a
normalized image without roll (in-plane rotation). For train-
ing, the corresponding ground truth vector g can similarly
be transformed: M · g.

3.2. Implementation details: training and inference

The heart of this eye-tracking pipeline is a deep convo-
lutional neural network. This neural network is trained to
predict the pitch and yaw angles of the gaze vector with
respect to the camera from the normalized pre-processed
images faces/eyes. For this work, a VGG16 [23] network
architecture with BatchNorm [11] layers is chosen.

3

Training Following the prior work in[30], the network
was pre-trained on image from the ImageNet [22] dataset
(all classes). This was done in order to start with a good ini-
tialization of weights in the network and ensure faster con-
vergence. For all the experiments conducted in this work,
we set the following hyperparameters for the training of
the network for gaze-vector prediction: (i) Adam optimizer
with default settings [13]; (ii) A learning rate decay crite-
ria with a patience of 5 epochs; (iii) learning rate of 10−5,
decaying by 0.1 if validation error plateaus (up to 3 times);
(iv) Simple data augmentation with mirroring and gaussian
noise (σ = 0.01).

Inference This trained deep neural network can now
make prediction of the gaze vector. The predicted gaze-
vector (in the form of pitch and yaw angles) are with respect
to the ‘virtual’ camera corresponding to the normalized im-
ages. The predicted virtual gaze vectors can be transformed
back to the actual gaze vector with respect to the real camera
using the transformation parameters obtained during image
pre-processing. These vectors can then be projected onto a
point on screen after the calibration step.

3.3. Ranking aided deep network training

The prediction of gaze-vector involves estimating the
gaze pitch and yaw angles. Since pitch and yaw are both
continuous scalar quantities, this training of the model can
be performed via regression. Such a regression task can
be converted to a classification task via binning. This ap-
proach has shown promise for head pose estimation [9, 21],
which is a similar task. For this training, we follows the
same pipeline as Hsu et al. in [9], and apply an additional
ranking loss. To achieve this, the architecture of our deep
network is modified by parallelly connecting an additional
256-dimension fully connected layer to the last fully con-
nected hidden later of the network. This addition layer is
trained for bin classification via the ranking loss. This rank-
ing loss is defined as the sum of the cross entropy losses for
predicting the bins of pitch and yaw. That is, Lrank =

−1

N

N∑

i

[

Kpitch∑

k

m∑

j

hi,j,kpitch log(gi,j,kpitch) +

Kyaw∑

k

m∑

j

hi,j,kyaw log(gi,j,kyaw)],

(1)

where hpitch, hyaw denote the ordinal bin labels for the pitch
and yaw angles, gpitch, gyaw denote the ordinal bin predic-
tions for the pitch and yaw angles, and Kpitch, Kpitch denote
the total number of bins for pitch and yaw. N represents the
batch size. The final loss function is a sum of this ranking
loss weighted by a parameter α, and the typical L2 regres-
sion loss (mean squared error):

Ltotal = Lregression + α · Lrank. (2)

Eye

d eh

∠ρ

Origin: screen
coordinate system

SC
R

EEN

ZCCS

ZSCS

∠α

y – z plane
y

z

(a)

Eye

∠ γ

Origin: screen
coordinate system

ew

d

x – z plane
x

z

SC
R

EEN

(b)

Figure 2: A illustration of the geometric setup between the
eye and the screen. (a) the y − z plane between the eye
and the screen showing the pitch angles; (b) the x− z plan
between the eye and the screen showing the relevant yaw
angle.

3.4. Screen calibration to gaze-points

To project the predicted gaze vectors to gaze-points on a
screen, the geometric transformations between the camera
and the screen, the geometric transformation between im-
age and camera must be known. The geomtric transforma-
tion can be attain by using a chess board pattern and calibra-
tion toolbox of OpenCV[2]. However, the relative location
and pose of the camera w.r.t to the screen is not precisely
known in most real-world scenarios. Because we focus on
the task of webcam based eye-tracking, we may make some
assumptions: (i) the roll angles between the camera and the
screen is 0, and the yaw angles is 180 °/π rads, (ii) the
camera matrix parameters are known, and (iii) the 3D lo-
cation of the eyes is known w.r.t the camera (estimated by
face modelling step). With these assumptions in place, we
can design user-aided calibration techniques where the user
cooperates by looking at predefined positions on the screen.

Geometry-based Calibration The information required
to perfectly project a gaze-vector to a point on screen is
given by the rotation matrix R and the translation vector
T between the camera and the screen. With our assump-
tions in place, we only need two parameters to complete
the transformation matrix: the pitch angle ρ between the
camera and the screen norm, and the 3D eye location in
the screen coordinate system Based on this, we can build a
geometric model and estimate the transformation. This is
shown in Figure 2.

By asking the user to look perpendicular at the screen
plane and click on the point of gaze {xcalibscreen, y

calib
screen} on

the screen, the x and y value of 3D eye location {ew, eh} can
be roughly estimated. For calibration, the user is asked to sit
at a fixed preset distance from the screen during calibration,
so we can assume that the z value of 3D eye location is fixed
and known.

We can define the gaze vector in the camera coordinate

4

system (CCS) as

Vgaze =
[
Xgaze Ygaze Zgaze

]T
, (3)

The pitch ρ angle along the y-axis between the camera and
the screen can be determined by

ρ = arctan(
−eh + ycalibscreen

d
)− α (4)

where α is the pitch angle of the gaze in the camera coordi-
nate system given by

α = arctan(−Ygaze, Zgaze). (5)

Once ρ is known, we can compute the yaw gaze angle in
the camera coordinate system as:

γ = arctan(−Xgaze,−Zgaze). (6)

Using this, we can compute the gaze point in the 2D screen
coordinate system for static head poses as follows:

xscreen = d · tan(γ) + ew, (7)

yscreen = d · tan(α+ ρ) + eh (8)

For moving head poses, we need to transform the new
eye location from camera coordinate systems to screen co-
ordinate system. By filling ρ̂ = π − ρ, the rotation and
translation matrix can be represented as:

R =

−1 0 0
0 − cos(ρ̂) sin(ρ̂)
0 sin(ρ̂) cos(ρ̂)

 , T =

[
∆x ∆y ∆z

]T
.

(9)
The user is asked to select and look at a point ecalibCCS such
that his gaze becomes perpendicular to the screen plane.
With this, the translation matrix can be expressed as:

T =
[
ew eh d

]T −R · ecalibCCS . (10)

Thus, the new eye locations [ew, eh, d] can be computed by:
R · ecalibCCS + T .

Model-free Machine Learning (ML) based Calibration
Since the task of gaze vector to gaze point calibration re-
quires learning the mapping between two sets of coordi-
nates, we may treat this as a regression problem. In our
implementation, we use a linear ridge regression model for
this task. The input to this calibration model includes the
predicted gaze-vector angles and the 3D location of eye, all
in the camera coordinate system. The outputs are the 2D
coordinates of the gaze-point on the screen in the screen co-
ordinate system.

Hybrid ML based Geometric Calibration . With the
aim of combining the benefits of a geometric modelling as
well as ML based regression, a hybrid technique can be used
where ML function is used to directly infer the required
transformation parameters.

We assume the yaw angle between the camera and the
screen is π and the roll is 0. The only unknown between the
pose of the camera w.r.t the screen is the pitch angle ρ̂.

First, we transform both the eye location and the gaze
vector from the camera coordinate system (CCS) to the
screen coordinate system (SCS):

Xeye

SCS
Y eye

SCS
Zeye

SCS

 = R ·

Xeye

CCS
Y eye

CCS
Zeye

CCS

+T,

Xgaze

SCS
Y gaze

SCS
Zgaze

SCS

 = R ·

Xgaze

CCS
Y gaze

CCS
Zgaze

CCS

(11)
Based on the definition of screen coordinates, xscreen

and yscreen are equal to the x and y value of screen point
in millimetres , while zscreen is always consider as zero as
the screen is flat.

Finally, these transformation parameters ρ̂,∆x,∆y,∆z
can be learnt by minimizing the following non-linear regres-
sion functions:

argmin
∆x

N∑

i=1

(xiscreen−(Xeyei

SCS −Xgazei

SCS · Z
eyei

SCS

Zgazei

SCS

)2, (12)

argmin
∆y

N∑

i=1

(yiscreen − (Y eyei

SCS − Y gazei

SCS · Z
eyei

SCS

Zgazei

SCS

)2.

(13)
These minimization problems can be solved in multiple
ways including differential evolution [24], which is what
we use.

4. Experiments and Results
4.1. Datasets

We perform all our experiments on two publicly avail-
able gaze-tracking datasets: MPIIFaceGaze [29] and EYE-
DIAP [8].

MPIIFaceGaze This dataset is an extended version of
MPIIGaze [30] with available human face region. It con-
tains 37,667 images from 15 different participants. The
images have varieties in illumination, personal appearance,
head pose and camera-screen settings. The ground truth
gaze target on the screen is given as a 3D point in the camera
coordinate system.

EYEDIAP This dataset provides 94 video clips recorded
in different environment from 16 participants. It has two
kinds of gaze target: screen point and 3D floating target. It
also has two types of head movement conditions: static and

5

0 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 0,45
CPU Computation Time (s)

Single Eye [30×18]

Single Eye [60×36]

Eyes ROI [90×30]

Eyes ROI [180×60]

Face [112×112]

2

4

6

8

10

0 1 2 3 4 5

G
az

e
-v

ec
to

r
P

re
d

ic
ti

o
n

 E
rr

o
r

(°
)

Computation Load (×109 FLOPS)

Prediction Error vs Computation Load

MPII Dataset

EYEDIAP Dataset
C

P
U

 R
EA

L-
TI

M
E

Figure 3: A scatter plot of the performance of a VGG16
based gaze tracking network trained on different input types
vs their computation load/time in FLOPS/ms. While the
computation cost of these inputs vastly vary, they all per-
form in roughly the same range of accuracy. The blue
dashed line represents approximate real-time computation
at 15 fps.

0

1

2

3

4

Single Eye
[30×18]

Single Eye
[60×36]

Eyes ROI
[90×30]

Eyes ROI
[180×60]

Face
[112×112]

Face
[224×224]

In
ve

rs
e

Er
ro

r
p

er
 F

LO
P

(d
eg

re
es

-1
/F

LO
P

) ×
1

0
-1

0

I N P U T T Y P E

Efficiency Metric per Input Type

MPII Dataset

EYEDIAP Dataset

Figure 4: A comparison of the efficiency metric for vari-
ous input types. This efficiency metric summarizes perfor-
mance gains per unit computation. On both datasets, a vast
gap can be seen between smaller single eye and full face
image inputs. Higher is better.

moving. For our experiments, we choose the screen point
target with both the static and moving head poses, which
contains 218,812 images.

4.2. Experiments on Input types

Setup In order to assess the performance gains of differ-
ent input types vs their computational loads, we setup an ex-
periment where we vary the input training and testing data
to the neural network while keeping all other settings fixed.
The CPU setting is Intel Core i7-7700HQ CPU 2.80GHz *
8. Noticed that the network setting is slightly different for
the different input. We then measure the accuracy of the
system and compute their individual computational loads.

For this experiment, we individually train our deep net-
work on each of the multiple types and sizes of the pre-
processed inputs. There input types are shown in Figure

Figure 5: Examples of
three input types used
in the experiments:
(Bottom) face crop,
sized 224×224 and
112×112; (middle)
eyes RoI crop, sized
180×60 and 90×30;
(top) single eye crop,
sized 60×32 and
30×18.

5. In order to obtain a reliable error metric, we perform
5-fold cross-validation training on both datasets. This ex-
periment is repeated for both the MPIIFaceGaze and EYE-
DIAP datasets. This experiment is primarily on the MPI-
IFaceGaze dataset, and partly repeated on the EYEDIAP
datasets.

The results of this experiment can be seen in Figure 3.
As expected, we observed that the lowest error rates are ob-
tained by the largest size of input data with the maximum
amount of context: the full face image. We also observe
that using this input type results in the highest amount of
computation load.

As we reduce the input sizes, the accuracy only
slightly degrades while the computation load gets cut down
severely. In fact, even if we simply use a crop of the eye
region or just the crop of a single eye, we obtain accuracies
comparable to that from full face input albeit with a fraction
of the computation.

To make a more objective comparison, we devise an ef-
ficiency metric based on the the average error and the com-
putational load of each input type. This metric is obtained
by dividing the inverse of the average (absolute) error by
the computation load (in FLOPS). This gives us a measure
in units of degrees−1 per FLOP, which encapsulates per-
formance gains per unit computation. Figure 4 shows the
comparison of this metric for each input type. It can clearly
be seen the using single eyes as input gives the most effi-
cient performance, about an order of magnitude more than
using the full face as input.

These results support our hypothesis that for the abso-
lute measurement task of gaze-vector prediction, the gains
from context is quite limited w.r.t their computational load.
This could be due to the difference between correlation and
causation: the gaze-vector is caused only by the state of the
eyes, and not the rest of the face even if it may exhibit some
correlation. Similar but more more efficient performance
can be obtained by restricting the input to only the eye im-
ages.

6

Dataset L2 Loss Training Rank Loss Training Difference

MPIIFaceGaze 5.434 ± 0.70 5.339 ± 0.74 -1.73%

EYEDIAP [Static] 6.087 ± 1.15 6.024 ± 0.98 -1.04%

EYEDIAP [Moving] 6.888 ± 0.89 6.820 ± 0.53 -0.99%

Table 1: Performance of the system trained use two training
strategies. Ranking loss aided training outperforms stan-
dard L2 loss regression training on all datasets and condi-
tions. The numbers indicate mean absolute error of gaze
angles in degrees.

1.5 2 5 10 15

5.33

5.36

5.39

5.42

5.45

0 0.001 0.01 0.1 0.5

Bin Resolution (°/bin)

M
ea

n
 E

rr
o

r
(°

)

Weighing Factor α

10°/bin

α = 0.01

Figure 6: Effect of the weighting factor and bin resolution
for ranking loss aided training on accuracy. Although this
training strategy adds two hyperparameters, they are fairly
easy to tune. Legend: colour correspond to axes.

4.3. Experiments on ranking loss aided training

Setup In this experiment, we test the effectiveness of a
ranking loss aided training strategy for the task of gaze
tracking using single eye as input. We use the EulerNet
training setup as described in [9] with our ImageNet [22]
pretrained VGG16 [23] network. For this training, our train-
ing hyperparameters remain similar to the previous experi-
ment. By grid-search experimentation, we figured the best
performing setting for α to be 0.01 and for the bin resolution
to be 10°/bin.

Summarised results of this experiment can be seen in Ta-
ble 1. The results show that the ranking loss based alternate
training setup marginally improves the accuracy of the pre-
dicted gaze-vectors on both datasets and under all move-
ment conditions. It is unclear if the ranking really improves
the results or if the parameters set over fit to the data set.
These results do not support the conclusions made in [9]
for the aligned task of head-pose estimation strangly. One
potential reason maybe the difference between head motion
and eye motion. For head motion, the head pattern varies
a lot when the angle is in the interval of [40, 60], while the

Dataset Geometric M.L. Hybrid

MPIIFaceGaze [GT] N/A 9.27 1.23

MPIIFaceGaze [Pred] N/A 50.92 42.19

EYEDIAP [Static] [GT] 5.98 2.73 2.35

EYEDIAP [Moving] [GT] 22.45 8.55 2.39

Table 2: Results of calibration methods on different datasets
and conditions. Hybrid calibration technique significantly
outperforms both geometric and machine learning (ML)
based calibration methods. Note that MPIIFaceGaze re-
sults cannot be reported for the geometric method since it
does not have any static head poses for calibration. Legend:
[GT] denotes ground truth gaze vector calibration, [Pred]
denotes predicted gaze vector calibration; [Static] denotes
static head poses, [Moving] denotes moving head poses; All
numbers denote mean absolute error in mm.

pattern changes slowly and look similar within 20. For ex-
ample, the half of face may be invisible in a extreme head
pose. For eye motion, its pattern is not only about the eye
itself, the head motion also needs to be taken into consid-
eration. For the moving head pose, the change of eye pat-
tern would follow a certain law. For the static head pose,
especially for the frontal face, the pattern of eye changes
regularly if the gaze angle changes.

4.4. Experiments on Calibration Techniques

Setup To evaluate the calibration techniques with noise-
free data, we perform their training and testing on the
ground truth gaze-vectors instead of the ones predicted.
This is done in addition to similar experiments with pre-
dicted gaze-vectors in order the assess the accuracy of the
complete camera-to-screen eye-tracking pipeline. As train-
ing data, we obtain calibration data pairs of gaze-vectors
and points such that they are spread out evenly over the
screen area. This is done by dividing the screen in a grid
and extracting a roughly even number of points from each
grid region.

The results of these experiments can be seen in Table 2.
The hybrid method significantly outperforms both the geo-
metric method and the ML based method. The ML based
method is also able to outperform the geometric method in
all cases. In addition, on the static head pose image in the
EYEDIAP dataset, ML method matches the hybrid method
in performance. At the same time, the hybrid method is able
to perform equally well on moving and static head pose im-
age. This result affirms the strengths of the hybrid model
in handling various movement conditions over the overtly
rigid geometric model and the model-free ML approach.
Note that only the EYEDIAP dataset results are reported for
the geometric method, since this method can only be cali-

7

0

50

100

150

1 10 100

P
o

in
t

P
re

d
ic

ti
o

n
 E

rr
o

r
(m

m
)

of Calibration Points

M.L. [GT]
Hybrid [GT]
Geometric* [GT]
M.L. [Pred]
Hybrid [Pred]

Figure 7: Learning curves of the calibration techniques on
the MPIIFaceGaze dataset for both ground truth and pre-
dicted gaze vector calibration. Note that the results of
the geometric method is on the EYEDIAP moving head
pose dataset instead since it is not possible to calibrate
this method using the non-static head poses of the MPI-
IFaceGaze dataset. The geometric* method potentially
performs better than ML method when calibration data is
scarce, but does not improve when more data becomes
available. The hybrid method is able to perform best ir-
respective of the amount of calibration data available. Leg-
end: Solid line [GT] denotes ground truth vector calibra-
tion; Dashed line [Pred] denotes predicted vector calibra-
tion; * denotes testing done on EYEDIAP dataset with mov-
ing head poses.

brated on static head poses (MPIIFaceGaze does not have
any static head poses).

In order to assess the data-efficiency of these calibration
methods, we must measure what is the least amount of cali-
bration samples required to attain satisfactory performance.
To assess this, we plot the learning curves of these calibra-
tion methods in Figure 7. It be strongly seen that the hybrid
method is able to outperform both the other methods even
when a very low number of calibration points are available.
An interesting observation is that the geometric method ac-
tually performs a lot better than the ML method when the
number of calibration points is very low (around 5). This
can be due to the rigid and pre-defined nature of the geomet-
ric model, while the ML model requires more data points to
learn the underlying geometry. This is also seen in the re-
sults: As the number of points increase, the ML model’s
performance hugely improves while the geometric model
stagnates. Overall, the calibration methods we able to per-
form 6-30 times better on noise-free ground truth vectors
than on predicted vectors.

5. Discussion

The experiments related to input types and sizes produce
some insightful and promising results. The comparison be-
tween them with respect to their performance vs their com-
putational cost point towards clear inefficiencies of larger
input types with contextual information. Roughly the same
accuracies can be obtained by a system that relies only on
eye image crops with no additional contextual information
as a system that relies on the full face image. In contrast, the
gap in the computational load between these two input type
systems is a factor of 20. This supports our idea that for an
objective measurement task like gaze-vector prediction, the
value of context is limited. These results can help in guid-
ing the design of eye tracking systems meant for real-time
applications where efficiency is key.

An additional way of improving the accuracy of the sys-
tem can be incorporating better training techniques. Bor-
rowing from literature in head pose estimation, we evaluate
such a technique where we treat the vector regression prob-
lem partly as a classification problem by applying a rank-
ing loss. This technique results in a marginal improvement
in accuracy on all datasets. However, this improvement is
‘free’: it does not introduce any additional inference-time
computation.

Finally, these gaze-vector results are not always readily
useful: they need to be projected onto the screen to actually
determine where the person is looking. This area has re-
ceived little attention in literature, and our experimental re-
sults provide some insight. Our comparison of three calibra-
tion techniques show that our hybrid method is successfully
able to take the best of geometric modelling based methods
and model-free machine learning based methods. Our re-
sults also showed geometric modelling is better suited when
calibration points are few, while ML models outperform
them when more points become available.

6. Conclusion
In this work, we explored the value of visual context in

input for the task of gaze tracking from camera images. Our
study gives an overview of the accuracy different types and
sizes of inputs can achieve, in relation to the amount of com-
putation their analysis requires. The results strongly showed
that the improvement obtained from large input sizes with
rich contextual information is limited while their computa-
tional cost is quite high. In addition, we tested a ranking
loss aided alternate training technique for gaze vector pre-
diction and showed that a performance gain can be achieved
by such ‘tricks’ at no extra computation cost. Finally, we
explored multiple calibration techniques that project gaze-
vectors onto screens without knowing the exact transforma-
tions. We showed that our hybrid method significantly out-
performs others. Our work is the first that investigates the
computational load vs accuracy trade off and introduces a

8

new calibration technique, and thus may be useful in guid-
ing practical real-time implementations.

References
[1] T. Baltrušaitis, P. Robinson, and L.-P. Morency. Continu-

ous conditional neural fields for structured regression. In
D. Fleet, T. Pajdla, B. Schiele, and T. Tuytelaars, editors,
Computer Vision – ECCV 2014, pages 593–608, Cham,
2014. Springer International Publishing.

[2] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of
Software Tools, 2000.

[3] Z. Chen, S. Huang, and D. Tao. Context refinement for object
detection. In Proceedings of the European Conference on
Computer Vision (ECCV), pages 71–86, 2018.

[4] Z. Chen and B. E. Shi. Appearance-based gaze estimation
using dilated-convolutions. In Asian Conference on Com-
puter Vision, pages 309–324. Springer, 2018.

[5] Y. Cheng, F. Lu, and X. Zhang. Appearance-based gaze esti-
mation via evaluation-guided asymmetric regression. In The
European Conference on Computer Vision (ECCV), Septem-
ber 2018.

[6] H. Deng and W. Zhu. Monocular free-head 3d gaze tracking
with deep learning and geometry constraints. In 2017 IEEE
International Conference on Computer Vision (ICCV), pages
3162–3171, Oct 2017.

[7] T. Fischer, H. Jin Chang, and Y. Demiris. Rt-gene: Real-
time eye gaze estimation in natural environments. In The
European Conference on Computer Vision (ECCV), Septem-
ber 2018.

[8] K. A. Funes Mora, F. Monay, and J.-M. Odobez. Eyediap: A
database for the development and evaluation of gaze estima-
tion algorithms from rgb and rgb-d cameras. In Proceedings
of the ACM Symposium on Eye Tracking Research and Ap-
plications. ACM, Mar. 2014.

[9] H. Hsu, T. Wu, S. Wan, W. H. Wong, and C. Lee. Quatnet:
Quaternion-based head pose estimation with multiregression
loss. IEEE Transactions on Multimedia, 21(4):1035–1046,
April 2019.

[10] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Wein-
berger. Densely connected convolutional networks. In Pro-
ceedings of the IEEE conference on computer vision and pat-
tern recognition, pages 4700–4708, 2017.

[11] S. Ioffe and C. Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift. In
International Conference on Machine Learning, pages 448–
456, 2015.

[12] P. Kasprowski, K. Harezlak, and M. Stasch. Guidelines
for the eye tracker calibration using points of regard. In
E. Pietka, J. Kawa, and W. Wieclawek, editors, Informa-
tion Technologies in Biomedicine, Volume 4, pages 225–236,
Cham, 2014. Springer International Publishing.

[13] D. P. Kingma and J. Ba. Adam: A method for stochastic
optimization. In International Conference on Learning Rep-
resentations, 2015.

[14] K. Krafka, A. Khosla, P. Kellnhofer, H. Kannan, S. Bhan-
darkar, W. Matusik, and A. Torralba. Eye tracking for every-

one. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016.

[15] A. Newell, K. Yang, and J. Deng. Stacked hourglass net-
works for human pose estimation. In European conference
on computer vision, pages 483–499. Springer, 2016.

[16] C. Palmero, J. Selva, M. A. Bagheri, and S. Escalera. Recur-
rent CNN for 3d gaze estimation using appearance and shape
cues. In British Machine Vision Conference (BMVC), 2018.

[17] A. Papoutsaki, P. Sangkloy, J. Laskey, N. Daskalova,
J. Huang, and J. Hays. Webgazer: Scalable webcam eye
tracking using user interactions. In Proceedings of the 25th
International Joint Conference on Artificial Intelligence (IJ-
CAI), pages 3839–3845. AAAI, 2016.

[18] S. Park, A. Spurr, and O. Hilliges. Deep pictorial gaze esti-
mation. In European conference on computer vision, 2018.

[19] R. Ranjan, S. De Mello, and J. Kautz. Light-weight head
pose invariant gaze tracking. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition
Workshops, pages 2156–2164, 2018.

[20] R. Rodrigues, J. P. Barreto, and U. Nunes. Camera pose
estimation using images of planar mirror reflections. In Eu-
ropean Conference on Computer Vision, 2010.

[21] N. Ruiz, E. Chong, and J. M. Rehg. Fine-grained head
pose estimation without keypoints. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion Workshops, pages 2074–2083, 2018.

[22] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,
S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,
A. C. Berg, and L. Fei-Fei. ImageNet Large Scale Visual
Recognition Challenge. International Journal of Computer
Vision (IJCV), 115(3):211–252, 2015.

[23] K. Simonyan and A. Zisserman. Very deep convolutional
networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014.

[24] R. Storn and K. Price. Differential evolution – a simple
and efficient heuristic for global optimization over continu-
ous spaces. Journal of Global Optimization, 11(4):341–359,
Dec 1997.

[25] Y. Sugano, Y. Matsushita, and Y. Sato. Learning-by-
synthesis for appearance-based 3d gaze estimation. In 2014
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 1821–1828, June 2014.

[26] A. Torralba, K. P. Murphy, W. T. Freeman, and M. A. Ru-
bin. Context-based vision system for place and object recog-
nition. In International Conference on Computer Vision
(ECCV), 2003.

[27] S. Tripathi and B. Guenter. A statistical approach to con-
tinuous self-calibrating eye gaze tracking for head-mounted
virtual reality systems. In 2017 IEEE Winter Conference on
Applications of Computer Vision (WACV), pages 862–870.
IEEE, 2017.

[28] X. Zhang, Y. Sugano, M. Fritz, and A. Bulling. Appearance-
based gaze estimation in the wild. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 4511–4520, 2015.

[29] X. Zhang, Y. Sugano, M. Fritz, and A. Bulling. Its written all
over your face: Full-face appearance-based gaze estimation.

9

In 2017 IEEE Conference on Computer Vision and Pattern
Recognition Workshops (CVPRW), pages 2299–2308, July
2017.

[30] X. Zhang, Y. Sugano, M. Fritz, and A. Bulling. Mpiigaze:
Real-world dataset and deep appearance-based gaze estima-
tion. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 41(1):162–175, 2017.

10

ii

Contents

1 Background about Machine Learning 1
1.1 Deep Learning . 1

1.1.1 Non-linear Activation Function . 2
1.1.2 Loss Function. 2
1.1.3 Optimizer . 3

1.2 Convolution Neural Networks . 4
1.2.1 Convolution Layer . 4
1.2.2 Pooling Layer . 4
1.2.3 Fully Connected Layer . 5
1.2.4 Batch Normalization . 5
1.2.5 Dropout . 5
1.2.6 VGG. 6

1.3 Regression . 6
1.3.1 Lasso Regression . 8
1.3.2 Ridge Regression . 8

2 EulerNet 9
2.1 Oridinal Label . 9
2.2 Loss . 10

3 Preprocess 11
3.1 Camera Calibration. 11

3.1.1 Zhang’s Calibration Method . 13
3.1.2 Pratical Use . 15

3.2 Head Pose Estimation . 15
3.2.1 EPnP . 16

3.3 Image Normalization . 16

Bibliography 18

iii

1
Background about Machine Learning

This chapter introduces some basic definitions about machine learning.

1.1. Deep Learning
As a branch of machine learning, deep learning[21] mainly focuses on simulating the neurons
of human brain. A typical sample of deep learning model is a very deep neural network.
Recently, deep learning has shown its potential in a broad domain, including computer vision
and natural language processing.

As shown in Figure.1.1, an single-vector input is transformed through a series of hidden
layers of a regular neural network. For each hidden layer, the neuron is fully-connected
with all the neurons in its previous layer. The output layer, which is the last hidden layer,
generates the final output. For the classification problem, the output is the class scores,
while for the regression problem, the output is a continuous value.

Figure 1.1: A regular 3-layer Neural Network[5]

In Figure.1.1, each circle representing for one basic computational unit of neural network
is a simulation of the human brain neuron. For each neuron, a multi-dimensional input
𝑋 = 𝑥 , 𝑥 , ..., 𝑥 will be passed into a linear function ∑ 𝑤 𝑥 , 𝑤 and 𝑏 represent the weight and
bias, respectively. Later, the linear function is followed by the activation function 𝑓 to add
more non-linearity to the model.

Figure 1.2: Illustration of neuron model from[5]

1

2 1. Background about Machine Learning

1.1.1. Non-linear Activation Function
If there is only convolution and pooling layer in a neural network, despite having extra layers,
the final output would be merely represented as weighted sum of input with no difference to
the traditional perceptron. Hence, we introduce the linearity by adding non-linear activation
function at the end or between the layers.

Figure 1.3: Illustration of ReLU function and Sigmoid function from[25]

ReLU
ReLU(Rectified Linear Unit) function is the most commonly used activation function around
the world. Considering ReLU’s function is just to find the maximum between original input
value and zero, its computation effort is quite low and its speed is quite fast. For the negative
input value, the output will always be zero, which may lead to the dead neuron situation.
where the gradient will be always zero and make it impossible to perform back-propagation.
And ReLU is very sensitive to the parameter initialization and learning rate.

𝑓(𝑥) =max(0, 𝑥) (1.1)

Sigmoid
Sigmoid function can map a real number into (0, 1) interval. It has larger gain for signal
in the central district compared to other region. Considering exponential operation is quite
complicated, the Sigmoid would be time-consuming.

𝑓(𝑥) = 1
1 + 𝑒 (1.2)

Softmax
For Softmax, it can be applied to the neuron that has more than one dimensional output. For
classification task, the outputs of fully-connected layer are logits, real value in the interval
of [−∞,∞] Using Softmax function, the logits can be transformed into the probabilities of
different classes{1, .., 𝐽}, which ensures the sum of probabilities is equals to one.

𝑓(�̂�) = 𝑒
∑ 𝑒

(1.3)

for i = {1,..,J}.

1.1.2. Loss Function
Loss functions usually decide how to penalize the difference between the predicted output
and the ground-truth during training process. With the aid of optimization function, the
model learns to reduce the output of loss function.

𝐿2 Loss
For the regression problem, 𝐿2 loss is one of the most used loss function. 𝐿2 loss is the sum
of squared distance between the predicted output and ground-truth label.

𝐿 = 1
𝑁 ∑(𝑙𝑎𝑏𝑒𝑙 − 𝑜𝑢𝑡𝑝𝑢𝑡) (1.4)

1.1. Deep Learning 3

Cross-entropy Loss
Cross-entropy loss, or log loss, is often used as the performance measurement for a classifi-
cation model whose output is the probability in the interval [0, 1].

𝐿 = −(𝑙𝑎𝑏𝑒𝑙 log(𝑜𝑢𝑡𝑝𝑢𝑡) + (1 − 𝑙𝑎𝑏𝑒𝑙) log(1 − 𝑜𝑢𝑡𝑝𝑢𝑡)) (1.5)

1.1.3. Optimizer
Deep learning is an optimization problem to minimize the loss function 𝐽(𝜃), 𝜃 is the param-
eter of deep learning model. The algorithm that applied to the optimization process is called
optimizer.

Gradient Descent
Gradient Δ 𝐽(𝜃) is the derivative of a multi-variable function.

Δ 𝐽(𝜃) = 𝑑𝐽(𝜃)
𝑑𝜃 (1.6)

Based on the fact that the value of 𝑓(𝑥) decreases in the fastest speed along the direction
of negative gradient −Δ 𝐽(𝜃) in the point 𝑎 if 𝐽(𝜃) is differentiable and defined in the point 𝑎,
the parameter 𝜃 is updated as follows:

𝜃 = 𝜃 − 𝜂 ∗ Δ 𝐽(𝜃) (1.7)

𝜂 is the learning rate.
The main drawback for gradient descent is its speed and memory consumption. For one

update, the gradient of whole dataset needs to be computed, which also makes it impossible
for the situations with new examples on-the-fly.

Stochastic Gradient Descent
Compared to gradient descent, stochastic gradient descent(SGD)[9] updates the parameter
for each training sample 𝑥 and label 𝑦 . Therefore, stochastic gradient descent is much faster
and able to update online. For the i-th sample,

𝜃 = 𝜃 − 𝜂 ∗ Δ 𝐽(𝜃; 𝑥 , 𝑦) (1.8)

Stochastic gradient introduces fluctuation for the value of loss function by updating with
high variance.

Mini-batch Gradient Descent
Using every mini-batch of n training sample for update, mini-batch gradient descent gains a
balance between fluctuation and speed.

𝜃 = 𝜃 − 𝜂 ∗ Δ 𝐽(𝜃; 𝑥(∶), 𝑦(∶)) (1.9)

Adam
Adaptive Moment Estimation (Adam)[17] is an optimization algorithm that computes adaptive
learning rates. It is one of the most popular optimizer that has good performance on a wide
range of fields.

Firstly, the exponentially weighted averages of past and past squared gradients 𝑚 and 𝑣
are computed follows:

𝑚 = 𝛽 𝑚 + (1 − 𝛽)𝑔 (1.10)

𝑣 = 𝛽 𝑣 + (1 − 𝛽)𝑔 (1.11)

𝑔 stands for the gradients. 𝛽 , 𝛽 are two hyper-parameters to be tuned.
Secondly, bias correction is applied to 𝑚 and 𝑣 .

�̂� = 𝑚
1 − 𝛽 (1.12)

4 1. Background about Machine Learning

̂𝑣 = 𝑣
1 − 𝛽 (1.13)

Finally, the parameters are updated in a direction based on the combination of previous
information.

𝜃 = 𝜃 − 𝜂
√ ̂𝑣 + 𝜖

�̂� (1.14)

1.2. Convolution Neural Networks
Convolution Neural Networks(CNN)[19] is a deep learning model, usually used for image anal-
ysis. For the efficiency of CNNmodel in the computer vision task, one potential reasonmay be
the combination of information and structure from data on the semantic level. The semantics
of the whole image is consist of local abstract features. Thus, the hierarchical representa-
tion structure of deep neural network can assemble simple feature to complicated feature
successively[20].

Figure 1.4: The first CNN structure: LeNet[19]

1.2.1. Convolution Layer
Convolution layers aim to learn image features using small squares of input data, named
kernel or filter. By sliding different convolution filters on the input image, the output would
be computed as the sum of product between the filter and the corresponding area on the
input image as Figure.1.5 shows. All the elements from the same feature map use the same
convolution kernel. The parameter of convolution kernel is learnable.

Figure 1.5: The illustration of convolution layer from [7]

1.2.2. Pooling Layer
Pooling layer[10] is a function that down-sample the feature map by max or average operation
as Figure.1.6. After down-sampling, the model can focus more on the existence of feature
rather than its specific location and reduce over-fitting. Each element in the output corre-
sponds to a sub-region of the input, which means a spatially dimension reduction is done.
With the summary of pooling layer, the model can make use of a larger range of feature with
less parameters and computation load.

1.2. Convolution Neural Networks 5

Figure 1.6: The effect of pooling layer[5]

For the max-pooling layer, which is the most commonly used one, it provides some ro-
bustness for the model by ignoring the small change of non-maximum values.

1.2.3. Fully Connected Layer
In fully connected layer, neurons are connected to every neurons in the previous layer as Fig-
ure.1.7. The core of fully connected layer is matrix multiplication, transforming one feature
space linearly to another feature space. By using fully connected layer in the CNN model,
the feature extracted by the previous convolution layers can be combined and mapped into
the label representation space.

Figure 1.7: The illustration of fully-connected layer from [6]

1.2.4. Batch Normalization
Internal covariate is a concept that is similar to the covariate shift, which occurs among
layers of neural network. For a particular layer in the neural network, its parameters are
always changing during the gradient descent, which results in the change of its output’s
distribution. Thus, for the next layer, its input’s distribution also varies, makes it hard to
learn good weights. Meanwhile, due to the internal covariate, the parameters need more time
to tune and the speed of gradient descent will be slower.

A common problem that deep neural network needs to face is the gradient vanish and
explosion problem. For deep structure, the effect of distribution change would accumulate,
which may lead to the saturation of the activation function and gradient vanish. To fix the
problem of internal covariate, batch normalization is introduced in [16].

For batch normalization module, it is often applied before the activation function.

1.2.5. Dropout
Dropout[27] is a regularization method that training networks with different architectures in
parallel by ignoring a number of layer outputs. For every training batch, the hidden neurons
would be ignored with probability 𝑝 while the input and output neuron stay unchanged.

6 1. Background about Machine Learning

Algorithm 1 Batch Normalization[16]
Input: Values of over a mini-batch: { ,.., };
Parameters to be learned: ,
Output: { BN , ()}
← ∑ // mini-batch mean
← ∑ () // mini-batch variance

̂ ←
√

// normalize

← ̂ ≡ BN , ()// scale and shift

Figure 1.8: Illustrations of dropout from [27]

Thus, the weights of the ignored neurons would keep the same while the other neurons
would be updated. This update schedule can make the model rely less on local feature
which increases its ability of generalization.
Dropout can be considered as a similar way of bagging. During training process, each

different sub-networks are trained. During testing process, the final result is produced as
the ensemble of all the sub-networks.
Thus, the dropout method can reduce the effect of over-fitting, means that the model can only
fit well in the training data and lose the generalization ability to unseen data, to a certain
extent.

1.2.6. VGG
VGG[26] model is a deep neural network structure that uses small convolution kernel(3 ∗
3). It became the championship in the 2014 ImageNet LSVRC competition. It proves that
increasing the depth of neural network can improve the final performance of network by
pushing the total hidden layers of the whole model to 16 or 19. Compared to the previous
winner like AlexNet[18], VGG uses multiple 3 ∗ 3 convolutional filters to attain the same size
receptive field as the large convolutional filters(11*11, 7*7, 5*5) with less parameters.

1.3. Regression
Regression analysis is a statistical analysis method to determine the quantitative relationship
between two or more variables. Based on the number of variables, linear regression analysis
can be divided as simple linear regression and multiple regression.

For linear regression,
ŷ = 𝑊𝑋 (1.15)

The input 𝑋:

𝑋 =
⎡
⎢
⎢
⎣

xT1
xT2
⋮
xTm

⎤
⎥
⎥
⎦

=
⎡
⎢
⎢
⎣

𝑥 𝑥 ⋯ 𝑥 1
𝑥 𝑥 ⋯ 𝑥 1
⋮ ⋮ ⋱ ⋮ ⋮
𝑥 𝑥 ⋯ 𝑥 1

⎤
⎥
⎥
⎦

(1.16)

The weight 𝑊:

𝑊 = [
𝑤
⋮
𝑤
] (1.17)

1.3. Regression 7

Figure 1.9: The VGG Network Structure[26]

The output y:

ŷ = [
̂𝑦
⋮
̂𝑦
] (1.18)

The model tries to learn the value of weight 𝑊 to fit the output ŷ to the label y.
For the ordinary least squares, the goal is to minimize the mean square loss 𝐽(𝑊):

𝐽(𝑊) = 1
2𝑚∑(̂yi − yi) (1.19)

𝜃 = {𝑊,b}
To find the optimal value of 𝑊 and b,

(𝑊∗) = argmin
()

1
2 ∑(̂yi − yi) = argmin

(
1
2 ∑(𝑊xi − yi) (1.20)

The optimization of 𝑊 can be represented in a matrix form:

�̂�∗ = argmin
̂
(y− 𝑋�̂�) (y− 𝑋�̂�) (1.21)

𝐽(�̂�) = (y− 𝑋�̂�) (y− 𝑋�̂�) (1.22)

8 1. Background about Machine Learning

Only when 𝑋 𝑋 is a full-rank matrix and positive definite matrix, the optimal value of weight
𝑊 can be computed as:

�̂�∗ = (𝑋 𝑋) 𝑋 y (1.23)

Thus, ordinary linear regression is very sensitive to the outliers in the dataset.

1.3.1. Lasso Regression
Lasso regression[29] is the least squares regression with L1-norm regularization.

𝐽(𝑊) = 1
2𝑚∑(̂yi − yi) + 𝜆∑||𝑤 || (1.24)

1.3.2. Ridge Regression
Ridge regression[14] can be considered as least squares regression with L2-norm regulariza-
tion. For the ordinary linear regression, when facing multiple data that suffer from multi-
collinearity, it would be impossible to solve since 𝑋 𝑋 is irreversible. To introduce a 𝐿2 regu-
larization part, the problem of multi-collinearity can be solved.

𝐽(𝑊) = 1
2𝑚∑(̂yi − yi) + 𝜆∑𝑤 (1.25)

�̂�∗ = (𝑋 𝑋 + 𝜆𝐼) 𝑋 y (1.26)

With 𝐼 as identity matrix, 𝜆 as a hyper-parameter to be tuned.

2
EulerNet

Figure 2.1: The EulerNet Network Structure

Following the work of EulerNet[15], a multi-regression function that combines L2 regres-
sion loss and ordinal cross-entropy loss is applied for gaze estimation task as Figure.2.1
shows. During training, EulerNet is optimized by minimizing both 𝐿2 regression loss and
ordinal cross-entropy loss with a weight parameter 𝜆. During testing, the output angle is
produced solely by the regression net. The ranking net acts as auxiliary gaze-range classifi-
cation task which hopes to be helpful for training a better feature extractor.

2.1. Oridinal Label
Given a bin number 𝐵 and a gaze range [𝑔min, 𝑔max], the rank value 𝑟 is computed as follows:

𝑟 = 𝑔min +
𝑔max − 𝑔min

𝐵 ∗ 𝑘, 𝑘 = 0,… , 𝐵 (2.1)

The number of binary sub classification task 𝐾 is defined as 𝐵 + 1.

9

10 2. EulerNet

Figure 2.2: The detailed structure of regression net and ranking net from [15]

The ordinal bin labels are generated using one-hot vector. For the 𝑘-th task of the ℎpitch,
its bin label will be assigned as [0, 1] if 𝑙 > 𝑟 and [1, 0] otherwise.

ℎ ,pitch = {
[0, 1] if ℓpitch > 𝑟pitch
[1, 0] otherwise

(2.2)

ℎ ,yaw = {
[0, 1] if ℓyaw > 𝑟yaw
[1, 0] otherwise

(2.3)

where 𝑟 , 𝑟 are the rank value for the pitch and yaw, ℎpitch, ℎyaw denote the ordinal
bin labels for the pitch and yaw angles, and 𝐾pitch, 𝐾pitch denote the total number of bins for
pitch and yaw.

2.2. Loss
For the ranking net, the ranking loss is defined as:

𝐿rank =
−1
𝑁 ∑[

pitch

∑ ∑ℎ , ,pitch𝑙𝑜𝑔(𝑔
, ,
pitch) +

yaw

∑∑ℎ , ,yaw𝑙𝑜𝑔(𝑔 , ,
yaw)], (2.4)

where 𝑔 , , , 𝑔 , , are the predicted output for pitch and yaw, ℎpitch, ℎyaw denote the ordinal
bin labels for the pitch and yaw angles, and 𝐾pitch, 𝐾pitch denote the total number of bins for
pitch and yaw. 𝑁 represents the batch size. 𝑚 = 2 denotes the binary output of the final
fully-connected layer of ranking net.

For the regression net, the 𝐿2 loss is defined as:

𝐿reg =
1
𝑁 ∑[(𝑙pitch − 𝑜pitch) + (𝑙yaw − 𝑜yaw)] (2.5)

where 𝑙 , 𝑙 denote the ground-truth label of pitch and yaw separately, and 𝑜 , 𝑜
are the predicted output of the last fully-connected layer of regression net. 𝑁 represents the
batch size.

The overall loss function 𝐿 is defined as:

𝐿 = 𝐿reg + 𝜆𝐿rank (2.6)

where 𝜆 is a hyper-parameter to be tuned.

3
Preprocess

For gaze estimation task, to remove the effect of roll in 3D space and cancel the variation
of eye appearance as much as possible, the input image of CNN needs to be normalized by
perspective transformation[28]. Before the normalization, some parameters are necessary
to be known, including intrinsic camera matrix and head pose. This chapter is divided into
three different part to introduce the procedure of obtaining necessary parameters and image
pre-processing for gaze estimation.

3.1. Camera Calibration
To obtain the intrinsic matrix of camera, each different camera needs to be calibrated first.

Figure 3.1: The relationship between 3D and 2D world[2]

As Figure.3.4 shows, the relationship between 3D and 2D world is defined as:

𝑠𝑥 = 𝑃𝑋 = 𝐾[𝑅|𝑡]𝑋 (3.1)

If we take distortion into consideration:

𝑠𝑥 = 𝑃𝑋 = 𝐽(𝑘 , 𝑘 , 𝑘 , 𝑝 , 𝑝)𝐾[𝑅|𝑡]𝑋 (3.2)

where 𝑋 stands for the coordinates of a 3D point in the world coordinate space. 𝑥 is the pixel
coordinates of the corresponding projection point in the image coordinates, 𝑃 stands for the
camera matrix. 𝑠 is the scale factor. 𝐽(𝑘 , 𝑘 , 𝑘 , 𝑝 , 𝑝) is the transformation between distorted
image and undistorted image.

The relationship can be further extended as a matrix form:

𝑠 [
𝑢
𝑣
1
] = 𝐽(𝑘 , 𝑘 , 𝑘 , 𝑝 , 𝑝) [

𝑓 0 𝑐
0 𝑓 𝑐
0 0 1

] [
𝑟 𝑟 𝑟 𝑡
𝑟 𝑟 𝑟 𝑟
𝑟 𝑟 𝑟 𝑟

]
⎡
⎢
⎢
⎣

𝑋
𝑌
𝑍
1

⎤
⎥
⎥
⎦

(3.3)

11

12 3. Preprocess

where (𝑋, 𝑌, 𝑍) stands for the coordinates of a 3D point in the world coordinate space. (𝑢, 𝑣) are
the pixel coordinates of the corresponding projection point in the image coordinates. 𝑟 and
𝑡 stands for the elements in the rotation matrix and translation matrix respectively. (𝑐 , 𝑐)
stands for the principle point, which is always in the image center. 𝑓 , 𝑓 are the focal length
for 𝑥-axis and 𝑦-axis. 𝑠 is the scale factor. 𝐽(𝑘 , 𝑘 , 𝑘 , 𝑝 , 𝑝) is the transformation between
distorted image and undistorted image.

Intrinsic Matrix

𝐾 = [
𝑓 0 𝑐
0 𝑓 𝑐
0 0 1

] (3.4)

Rotation & Translation Matrix

Figure 3.2: The camera angle roll , pitch and yaw [1]

For angle roll 𝛼, pitch 𝛽 and yaw 𝛾 show as Figure.3.2, the rotation matrix 𝑅 can be
computed as:

𝑅 (𝛼) = [
1 0 0
0 cos𝛼 − sin𝛼
0 sin𝛼 cos𝛼

] (3.5)

𝑅 (𝛽) = [
cos𝛽 0 sin𝛽
0 1 0

− sin𝛽 0 cos𝛽
] (3.6)

𝑅 (𝛾) = [
cos 𝛾 − sin 𝛾 0
sin 𝛾 cos 𝛾 0
0 0 1

] (3.7)

𝑅 = 𝑅 (𝛾)𝑅 (𝛽)𝑅 (𝛼) (3.8)

The translation matrix 𝑡:

𝑡 = [
𝑡
𝑡
𝑡
] (3.9)

Distortion
If we take the radial and tangential distortion into consideration, the transformation between
the distorted coordinate (𝑥 , 𝑦) and undistorted coordinate (𝑥 , 𝑦) shows as follow:

[𝑥𝑦] = (1 + 𝑘 𝑟 + 𝑘 𝑟 + 𝑘 𝑟) [𝑥𝑦] + [
2𝑝 𝑥 𝑦 + 𝑝 (𝑟 + 2𝑥)
𝑝 (𝑟 + 2𝑦) + 2𝑝 𝑥 𝑦] (3.10)

where 𝐷𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛 = [𝑘 , 𝑘 , 𝑝 , 𝑝 , 𝑘].

3.1. Camera Calibration 13

3.1.1. Zhang’s Calibration Method
To find the transformation relationship, Zhang’s calibration method[31] is one of the most
used option. It uses traditional calibration point-based techniques to find the correspondence
between the same calibration point in the different locations.

Figure 3.3: An example snapshoot of chess board[3]

Homography is the transformation relationship between two different plane. For the world
coordinate to the image coordinate, the homography matrix shows as follow:

𝐻 = 𝐾[𝑅|𝑡] (3.11)

𝑠 [
𝑢
𝑣
1
] = 𝐻

⎡
⎢
⎢
⎣

𝑋
𝑌
𝑍
1

⎤
⎥
⎥
⎦
= 𝐾 [𝑟 𝑟 𝑟 𝑡]

⎡
⎢
⎢
⎣

𝑋
𝑌
0
1

⎤
⎥
⎥
⎦
= 𝐾 [𝑟 𝑟 𝑡] [

𝑋
𝑌
1
] (3.12)

If we set 𝐻 = [ℎ ℎ ℎ], the equation can be composed as:

ℎ = 𝜆𝐾𝑟 , 𝑖 = 1, 2, 3 (3.13)

with 𝜆 as an arbitrary scalar. Based on the theory that the rotation vectors are orthogonal to
each other, two constraints can be obtained:

𝑟 ⋅ 𝑟 = 0 (3.14)

𝑟 ⋅ 𝑟 = 𝑟 ⋅ 𝑟 = 0 (3.15)

Thus,
ℎ 𝐾 𝐾 ℎ = 0 (3.16)

ℎ 𝐾 𝐾 ℎ = ℎ 𝐾 𝐾 ℎ (3.17)

For distortion, Zhang only focuses on the radial distortion that has the largest impact and
ignore the fourth-order or more variables. The definition of intrinsic matrix:

𝐾 = [
𝑓 𝜌 𝑐
0 𝑓 𝑐
0 0 1

] (3.18)

14 3. Preprocess

with 𝜌 as the skew coefficient.
To find the optimal value of homography matrix 𝐻, the re-projection error||𝑥−�̂�𝑋|| needs

to be minimize. To solve the re-projection error minimization problem, Zhang introduced a
close-form solution.

𝐵 = 𝐾 𝐾 =
⎡
⎢
⎢
⎢
⎣

− + − () −

− () − () + + 1

⎤
⎥
⎥
⎥
⎦

= [
𝐵 𝐵 𝐵
𝐵 𝐵 𝐵
𝐵 𝐵 𝐵

] (3.19)

The two constraints from Equation.3.14 and 3.15 can be changed as:

ℎ 𝐵ℎ = 0 (3.20)

ℎ 𝐵ℎ = ℎ 𝐵ℎ (3.21)

Since B is a symmetric matrix,

ℎ 𝐵ℎ = 𝑣 𝐵 =

⎡
⎢
⎢
⎢
⎢
⎣

ℎ ℎ
ℎ ℎ + ℎ ℎ

ℎ ℎ
ℎ ℎ + ℎ ℎ
ℎ ℎ + ℎ ℎ

ℎ ℎ

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

𝐵
𝐵
𝐵
𝐵
𝐵
𝐵

⎤
⎥
⎥
⎥
⎥
⎦

(3.22)

The two constraints from Equation.3.14 and 3.15 can be rewrited as:

[𝑣
(𝑣 − 𝑣)] 𝑏 = 0 (3.23)

𝑉𝑏 = 0 (3.24)

where 𝑉 is a 2𝑛 × 6 matrix. The solution of 𝑏 is the eigenvector of 𝑉 𝑉 with the smallest
eigenvalue. And the extrinsic parameter can be estimated:

𝑟 = 𝜆𝐾 ℎ (3.25)

𝑟 = 𝜆𝐾 ℎ (3.26)

𝑟 = 𝑟 × 𝑟 (3.27)

𝑡 = 𝜆𝐾 ℎ (3.28)

with = || || .
Due to the distorted characteristic of lens, we want to find the function that maps the

pinhole pixel (𝑢, 𝑣) to the real pixel coordinates (�̂�, �̂�). To simplify the camera model, only
first order and second order radial distortion are taken into consideration.

𝐷𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛 = [𝑘 𝑘] (3.29)

The mapping between undistorted image coordinates (𝑥 , 𝑦) and distorted image coordi-
nates (𝑥 , 𝑦) is defined as follows:

𝑥 = 𝑥 [1 + 𝑘 (𝑥 + 𝑦) + 𝑘 (𝑥 + 𝑦)] (3.30)

𝑦 = 𝑦 [1 + 𝑘 (𝑥 + 𝑦) + 𝑘 (𝑥 + 𝑦)] (3.31)

3.2. Head Pose Estimation 15

In the image pixel coordinates, the central point of radial distortion(𝑢 , 𝑣) is set at the
same position of the principle point.

�̂� = 𝑢 + (𝑢 − 𝑢)[𝑘 (𝑥 + 𝑦) + 𝑘 (𝑥 + 𝑦)] (3.32)

�̂� = 𝑣 + (𝑣 − 𝑣)[𝑘 (𝑥 + 𝑦) + 𝑘 (𝑥 + 𝑦)] (3.33)

[(𝑢 − 𝑢)(𝑥 + 𝑦) (𝑢 − 𝑢)(𝑥 + 𝑦)
(𝑣 − 𝑣)(𝑥 + 𝑦) (𝑣 − 𝑣)(𝑥 + 𝑦)] [𝑘 𝑘] = [�̂� − 𝑢�̂� − 𝑣] (3.34)

For 𝑚 points in 𝑛 images, we get 2𝑚𝑛 equations and stack them as 𝐷𝑘 = 𝑑. The linear
least-squares solution is given by:

𝑘 = (𝐷 𝐷) 𝐷 𝑑 (3.35)

with 𝑘 = [𝑘 , 𝑘] .
The parameter of camera matrix can be refined by maximum likelihood inference. Given

𝑛 images of different model plane and 𝑚 points, the optimization problem is defined as:

arg min
, , , ,

∑∑||𝑚 − �̂�(𝐾, 𝑅 , 𝑡 , 𝑘 , 𝑘 ,𝑀)|| (3.36)

where �̂�(𝐾, 𝑅 , 𝑡 , 𝑘 , 𝑘 𝑀) is the estimated projection point of point 𝑀 in image 𝑖, 𝐾 is the
intrinsic matrix, 𝑅 is the rotation matrix, 𝑡 is the translation matrix, 𝑘 and 𝑘 are the dis-
tortion coefficient. The nonlinear camera matrix optimization problem from Equation.3.1.1
can be solved by Levenberg-Marquardt algorithm[24].

3.1.2. Pratical Use
For pratical use, the camera matrix can be obtain by using the calibration toolbox from
OpenCV[11]. The user is asked to first print the chess board pattern and attach it with a
planar object. Using the pattern, the user should take a certain number of 10 good snapshots
of the pattern in different positions. The toolbox would find the corresponding feature point
in the current input automatically. Based on these feature points, the distortion matrix,
intrinsic matrix and extrinsic matrix can be estimated.

3.2. Head Pose Estimation
In computer vision task, the pose of a rigid object is its relative orientation and position in
respect of camera, in other word, the rotation matrix 𝑅 and translation matrix 𝑡. Perspective-
n-Point(PnP)[13] is a problem of pose estimation for a calibrated camera knowing a group of n
3D points in the world coordinates and the corresponding 2D points in the image coordinates.
The head pose estimation can be referred as a PnP problem for the facial landmark and 3D
face model. There are different ways to build the 3D face model, including a stereo camera
calibration and deep learning methods[12]. And the 2D facial landmark can be attained by
[23][8].

The relationship between 2𝐷 landmark(𝑢, 𝑣) and 3𝐷 face model(𝑋 , 𝑌 , 𝑍) shows as fol-
lows:

𝑠 [
𝑢
𝑣
1
] = 𝐽(𝑘 , 𝑘 , 𝑘 , 𝑝 , 𝑝)𝐾

⎡
⎢
⎢
⎣

𝑋
𝑌
𝑍
1

⎤
⎥
⎥
⎦
= 𝐽(𝑘 , 𝑘 , 𝑘 , 𝑝 , 𝑝)𝐾[𝑅|𝑡]

⎡
⎢
⎢
⎣

𝑋
𝑌
𝑍
1

⎤
⎥
⎥
⎦

(3.37)

The subscript 𝑐 and 𝑤 represent for the camera coordinate and world coordinate respectively.
𝐾 is the known intrinsic matrix and 𝐽(𝑘 , 𝑘 , 𝑘 , 𝑝 , 𝑝) is the known distortion function obtain
by previous camera calibration.

The parameter of rotationmatrix 𝑅 and translationmatrix 𝑡 can be estimated by algorithms
like EPnP[22] .

16 3. Preprocess

Figure 3.4: Illustration of PnP problem[4]

3.2.1. EPnP
Efficient Perspective-n-Point(EPnP)[22] algorithm is developed on the notion that the 3D point
in the world coordinates𝑝 can be represented as the weighted average sum of several virtual
control points 𝑐 . Normally, the number of the virtual control points is four, and they are not
allowed to be co-planar. By calculating the location of four control points, the pose can be
defined.

3.3. Image Normalization
Following the work in [28], a right-hand head coordinate is defined using the 6 facial land-
marks of both eyes and mouth. The origin point of this coordinate is the mid-point of the
line between the two landmarks of left eye. The x-axis over-goes the mid-points of both eyes’
landmark and has a direction from left eye to right eye. The x-y plane is co-plane that the
three mid-points of three facial landmark pairs cross over. And the y-axis has a direction
from the eye to the mouth. Being perpendicular to the x-y plane, the z-axis points backward
to the face.

Figure 3.5: The head coordination[30]

After defining the head coordinate, the camera coordinate needs to be transformed so that
it can align with the head coordinate. Following the procedure of [28], the camera coordinate
will be rotated and scaled in the following steps as Figure.3.6 shows.

For the rotation part, the first step is to compare the detected facial landmark with the
standard 3D facemodel and obtain the head rotationmatrix 𝑅 and the eye position 𝑒 = 𝑡 +𝑒
in camera coordinate system, where 𝑒 is the 3D location of the mid-point of eye in the head
coordinate, 𝑡 is the head translation matrix. Secondly, the z-axis of camera coordinate
is rotated to be 𝑒 so that its direction points to the origin point of the head coordinate
in Figure.3.5, which is the mid-point of eye landmarks. Thirdly, the x-axis of the camera
coordinate would be on the same plane as the x-axis of head coordinate, so the y-axis of
camera coordinate is perpendicular to the plane defined by 𝑒 and 𝑥 .

3.3. Image Normalization 17

Furthermore, if we want to get the normalized face image, we can change the eye center
location 𝑒 to the face center location 𝑓 .

The rotation matrix 𝑅 = [𝑅(𝑟𝑖𝑔ℎ𝑡), 𝑅(𝑑𝑜𝑤𝑛), 𝑅(𝑓𝑜𝑟𝑤𝑎𝑟𝑑)] of camera can be computed as
follows:

𝑅(𝑓𝑜𝑟𝑤𝑎𝑟𝑑) = 𝑒
||𝑒 || (3.38)

𝑅(𝑑𝑜𝑤𝑛) = 𝑅(𝑓𝑜𝑟𝑤𝑎𝑟𝑑) × 𝑅 𝑥
||𝑅(𝑓𝑜𝑟𝑤𝑎𝑟𝑑) × 𝑅 𝑥|| (3.39)

𝑅(𝑟𝑖𝑔ℎ𝑡) = 𝑅(𝑑𝑜𝑤𝑛) × 𝑅(𝑓𝑜𝑟𝑤𝑎𝑟𝑑)
||𝑅(𝑑𝑜𝑤𝑛) × 𝑅(𝑓𝑜𝑟𝑤𝑎𝑟𝑑)|| (3.40)

where 𝑅 𝑥 stands for the x-axis component of head rotation matrix 𝑅 .

Figure 3.6: The image normalization process[30]

For the scale part, the scaling matrix 𝑆 is set to let the eye position 𝑒 stays at a certain
distance 𝑑 from the origin point of the camera coordinate after rotation. In this case, 𝑑 =
600.

𝑆 = [
1 0 0
0 1 0
0 0 || ||

] (3.41)

Thus, the conversion matrix 𝑀 = 𝑆𝑅 can be computed.
To run the perspective warping, two camera projection matrix need to be known. The

original intrinsic matrix of the camera 𝐶 shows as follows:

𝐶 = [
𝑓 0 𝑐
0 𝑓 𝑐
0 0 1

] (3.42)

where 𝑐 and 𝑐 represents for the principal point of the original camera, 𝑓 and 𝑓 denote
the focal length of the camera for x-axis and y-axis, respectively.

For the predefined camera projection matrix 𝐶 as show in 3.43, the focal length 𝑓 = 𝑓 =
960, and the the principal point of the normalized camera 𝑐 and 𝑐 are set as the output
image center.

𝐶 = [
𝑓 0 𝑐
0 𝑓 𝑐
0 0 1

] (3.43)

Finally, the image transformation matrix for perspective warping can be computed as follow:

𝑊 = 𝐶 ∗ 𝑀 ∗ 𝐶 (3.44)

After image normalization, the gaze angle vector 𝑔 also needs to be normalized by multiplying
the conversion matrix 𝑀:

𝑔 = 𝑀𝑔 (3.45)

Bibliography
[1] The rotation for roll, pitch, and yaw, . URL https://sites.google.com/site/

projectsmartgimbal/home/TechnicalDetail.

[2] What is camera calibration, . URL https://nl.mathworks.com/help/vision/ug/
camera-calibration.html.

[3] Camera calibration with opencv. URL https://docs.opencv.org/2.4/doc/
tutorials/calib3d/camera_calibration/camera_calibration.html.

[4] Camera calibration and 3d reconstruction. URL https://docs.opencv.org/master/
d9/d0c/group__calib3d.html#ga549c2075fac14829ff4a58bc931c033d.

[5] Cs231n: Convolutional neural networks for visual recognition., 2019. URL ’http://
cs231n.github.io/convolutional-networks/’.

[6] Convolutional neural networks cheatsheet, 2019. URL https://stanford.edu/
~shervine/teaching/cs-230/cheatsheet-convolutional-neural-networks.

[7] Alexandros Agapitos, Michael O’Neill, Miguel Nicolau, David Fagan, Ahmed Kattan, An-
thony Brabazon, and Kathleen Curran. Deep evolution of image representations for
handwritten digit recognition. pages 2452–2459, 05 2015. doi: 10.1109/CEC.2015.
7257189.

[8] Tadas Baltrusaitis, Peter Robinson, and Louis-Philippe Morency. Continuous condi-
tional neural fields for structured regression. In ECCV, 2014.

[9] Léon Bottou. Large-scale machine learning with stochastic gradient descent. In Yves
Lechevallier and Gilbert Saporta, editors, Proceedings of COMPSTAT’2010, pages 177–
186, Heidelberg, 2010. Physica-Verlag HD. ISBN 978-3-7908-2604-3.

[10] Y-Lan Boureau, Jean Ponce, and Yann LeCun. A theoretical analysis of feature pooling
in visual recognition. In Proceedings of the 27th International Conference on International
Conference onMachine Learning, ICML’10, pages 111–118, USA, 2010. Omnipress. ISBN
978-1-60558-907-7. URL http://dl.acm.org/citation.cfm?id=3104322.3104338.

[11] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of Software Tools, 2000.

[12] Yao Feng, Fan Wu, Xiaohu Shao, Yanfeng Wang, and Xi Zhou. Joint 3d face re-
construction and dense alignment with position map regression network. CoRR,
abs/1803.07835, 2018. URL http://arxiv.org/abs/1803.07835.

[13] Martin A. Fischler and Robert C. Bolles. Random sample consensus: A paradigm for
model fitting with applications to image analysis and automated cartography. Commun.
ACM, 24(6):381–395, June 1981. ISSN 0001-0782. doi: 10.1145/358669.358692. URL
http://doi.acm.org/10.1145/358669.358692.

[14] Arthur E. Hoerl and Robert W. Kennard. Ridge regression: Biased estimation
for nonorthogonal problems. Technometrics, 12(1):55–67, 1970. doi: 10.1080/
00401706.1970.10488634. URL https://amstat.tandfonline.com/doi/abs/10.
1080/00401706.1970.10488634.

[15] H. Hsu, T. Wu, S. Wan, W. H. Wong, and C. Lee. Quatnet: Quaternion-based head
pose estimation withmultiregression loss. IEEE Transactions onMultimedia, 21(4):1035–
1046, April 2019. ISSN 1520-9210. doi: 10.1109/TMM.2018.2866770.

18

Bibliography 19

[16] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network
training by reducing internal covariate shift. CoRR, abs/1502.03167, 2015. URL http:
//arxiv.org/abs/1502.03167.

[17] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. 2014.

[18] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with
deep convolutional neural networks. Neural Information Processing Systems, 25, 01
2012. doi: 10.1145/3065386.

[19] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, Nov 1998. ISSN
0018-9219. doi: 10.1109/5.726791.

[20] Yann LeCun. Yann lecun: Learning world models – the next step towards ai. URL
https://www.youtube.com/watch?v=Wb3cnG0o7b8.

[21] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521(7553):
436–444, 5 2015. ISSN 0028-0836. doi: 10.1038/nature14539.

[22] Vincent Lepetit, Francesc Moreno-Noguer, and Pascal Fua. Epnp: An accurate o(n)
solution to the pnp problem. International Journal of Computer Vision, 81(2):155, Jul
2008. ISSN 1573-1405. doi: 10.1007/s11263-008-0152-6. URL https://doi.org/
10.1007/s11263-008-0152-6.

[23] Jianguo Li and Yimin Zhang. Learning surf cascade for fast and accurate object de-
tection. In Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern
Recognition, CVPR ’13, pages 3468–3475, Washington, DC, USA, 2013. IEEE Com-
puter Society. ISBN 978-0-7695-4989-7. doi: 10.1109/CVPR.2013.445. URL https:
//doi.org/10.1109/CVPR.2013.445.

[24] Jorge J. Moré. The levenberg-marquardt algorithm: Implementation and theory. In G. A.
Watson, editor, Numerical Analysis, pages 105–116, Berlin, Heidelberg, 1978. Springer
Berlin Heidelberg. ISBN 978-3-540-35972-2.

[25] SAGAR SHARMA, 2019. URL https://towardsdatascience.com/
activation-functions-neural-networks-1cbd9f8d91d6.

[26] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-
scale image recognition. arXiv 1409.1556, 09 2014.

[27] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: A simple way to prevent neural networks from overfitting.
Journal of Machine Learning Research, 15:1929–1958, 2014. URL http://jmlr.org/
papers/v15/srivastava14a.html.

[28] Y. Sugano, Y. Matsushita, and Y. Sato. Learning-by-synthesis for appearance-based 3d
gaze estimation. In 2014 IEEE Conference on Computer Vision and Pattern Recognition,
pages 1821–1828, June 2014. doi: 10.1109/CVPR.2014.235.

[29] Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the
Royal Statistical Society: Series B (Methodological), 58(1):267–288, 1996. doi: 10.
1111/j.2517-6161.1996.tb02080.x. URL https://rss.onlinelibrary.wiley.com/
doi/abs/10.1111/j.2517-6161.1996.tb02080.x.

[30] Xucong Zhang, Yusuke Sugano, Mario Fritz, and Andreas Bulling. Mpiigaze: Real-world
dataset and deep appearance-based gaze estimation. CoRR, abs/1711.09017, 2017.
URL http://arxiv.org/abs/1711.09017.

[31] Z. Zhang. A flexible new technique for camera calibration. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 22(11):1330–1334, Nov 2000. ISSN 0162-8828. doi:
10.1109/34.888718.

