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Abstract

Many robotic systems rely on laser ranging sensors to navigate and map their environ-
ment. As robots are getting more advanced, smaller and cheaper, their sensors need to
decrease in size and cost, while increasing their reliability and accuracy. Current laser-
based sensors have difficulty to meet these properties. They are either large, expensive,
contain moving parts or provide insufficient amounts of information.

This thesis introduces an integrated approach for the development of an eye-safe,
low-cost, solid-state, wide-angle line-laser distance sensor, tackling these challenges. A
prototype is derived by constructing a generic, camera independent, triangulation model.
The model, combined with a set of pre-defined requirements, is used to select hardware
components and predict the sensor limits. A unified calibration step is proposed to
estimate both camera intrinsics as well as misalignment errors with the same set of
data. Additionally, a microsecond-accurate open loop synchronization system for laser
activation and imager exposure is presented.

Tests show that the prototyped sensor is able to measure distances up to 3 meters
with an error of 4%. At 2 meter, the error is just under 2%. Additionally, the solid-state
prototype has a field-of-view of 105 degrees, an angular resolution of 0.8 degrees, an
update rate of 10Hz and an estimated cost of just below $35.
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Chapter 1

Introduction

The market for consumer robotics is increasing at a fast pace with new drones, vacuum
cleaners or other autonomous systems popping up in rapid succession. Advances in tech-
nology allow the miniaturization of components, decreasing its costs while increasing the
computational power and performance. As consumers get accustomed to these improve-
ments, they also start to expect a more genuine understanding and interaction between
the robot and the environment [39], putting additional pressure on the development of
robots.

One of the key tasks for autonomous mobile robots is navigation and (self-)localization.
To enable a robot to navigate itself in an environment, it needs to be able to get inform-
ation on where objects are located. If the robot also needs to localize itself, the retrieved
information has to be detailed enough so that the robot is able to deduce key-points
or landmarks from its observations. Combined, these constraints produce the following
properties of appropriate distance sensors:

A sensor suitable for navigation and localization needs to be able to observe a wide area
of space or large field-of-view in which it can describe the position of several obstacles.
In other words, the sensor needs to be able to estimate the distance towards objects.
Additionally, a suitable sensor needs to be compact and low-cost to allow a decrease in
size and cost of the robot. Most preferably such a sensor also lacks moving parts and
hence is solid-state, minimising (mis)alignment errors or inaccuracies, as there are no
gears or movings components which can wear down.

Table 1.1 shows a high-level comparison of different kind of distance estimation sensors.
One of the most basic sensors is the ultrasound sensor. It works on the principle of
echo-location of sound waves. While low-cost and compact, they tend to have low
resolution and cannot deliver the required details for localization. Radar works on the
same principle, except it utilizes radio waves instead of sound. Stereo Vision sensors
(consisting of multiple cameras facing the same direction) may provide the appropriate
resolution for an autonomous robot, but they generally require complicated and intensive
computations and image processing, increases its cost. Laser-based systems, on the other
hand, have high resolution, large field-of-view, are relatively compact, but may lack a
solid-state design or ignore the low-cost property. Because of their effectiveness, many
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Ultrasound Radar Stereo Vision Laser

Field of View - + + +
Compact and Low-cost + - - +/-
Solid-State + + + +/-
Resolution - - + +

Table 1.1: High level comparison of common used distance estimation sensors.

attempts have been made to solve these last two properties [5, 6, 37, 44, 33, 29, 29, 17,
38]. Nonetheless, none of these have sufficiently succeeded in creating a generic model,
fulfilling the previously stated properties. This thesis is focussed on the development
and prototyping of such a model, following an integrated approach.

The general idea of the construction of a low-cost laser distance sensor is to use a
triangulation setup as shown in Figure 1.1:left. It utilizes a camera and laser, placed
at known distance and angle from each other. In this setup, the laser sends a pulse
of light, which is reflected by an object and then captured by the pixels of the imager
in the camera. Depending on the distance of the object, the reflection of the laser is
observed at a different pixel position. Using the known triangulation configuration, this
pixel position eventually can be translated into a distance estimation.

As a single laser pulse results in a very small field-of-view, additional steps have to be
taken to ensure the observability of a larger area. Typically, the laser-camera system is
mounted on a rotating disk. By controlling the rotation of the disk, precise estimates
can be made at different angles, resulting in an increased field-of-view. This approach,
however, violates the solid-state property. To hold this property, a line laser can be
utilized. A line-laser is a laser pointer which is extended with a lens. The added lens
diffracts the laser light such that the laser projects a line instead of a point. By observing
the full width of the line with a camera, distance estimations across the field-of-view of
the camera can be made. Figure 1.1:right shows a rendering of the, in this thesis deduced,
prototype.

In addition to the low-cost and solid-state properties, the presented prototype should
meet the following requirements:

1. Solid-state with a cost of < $30 each, when producing 1000 pieces.

2. Dimension should be within 10x3x4cm.

3. > 2 meter detection range with a resolution < 1%.

4. Planer, horizontal field-of-view of 120 degrees with a resolution of < 1 degree.

5. > 10Hz update rate. That is, 10 times a full 120-degree scan per second.

6. Eye-safe, Class 1 Laser product according to the NEN IEC 60825-1:2014 [24]

7. Fully embedded processing.

2



Figure 1.1: Left: General idea of a triangulation laser-distance sensor. A laser (top)
sends a pulse and depending on the position of an object, the reflection is observed at
different pixel location in the camera. At the bottom a cross-section of a camera is
shown, containing the lens and imager. Right: Rendering of the prototype presented in
this thesis, utilising a line laser (bottom) and camera (top).

To ensure that the requirements are met as closely as possible, an integrated approach
is taken for the development of the prototype. That is, models, parts, and settings are
developed, derived and selected in such a way that the combined performance ensures
minimal performance-loss. As a result, the requirements have resulted in several contri-
butions. Most notably are:

1. Extension on the current laser-triangulation models, allowing the use of wide-angle
(high distortion) lenses and line-lasers.

2. Development of tooling allowing (theorized) limit estimation of a prototype and
selecting optimal triangulation parameters.

3. Integrated calibration process to estimate both the intrinsic camera and the trian-
gulation parameters.

4. Open-loop synchronization of the camera exposure and laser activation.

5. A prototyped and verified, low-cost, solid-state, line-laser distance sensor.

These contributions are presented in the next chapters. The first chapter (Chapter 2)
introduces a comparison of existing state-of-the-art systems, their performance, models,
and limitations. These models are then extended to work with high-distortion lenses
and line-lasers in Chapter 3. Additionally, Chapter 3 provides the computations and
derivations to estimate the (theorized) limitations of a given setup. This assumes a
general knowledge of lens distortion, projection and imager properties, for which a re-
fresher is provided in Chapter A. Using the presented model, Chapter 4 presents the

3



constructed prototype and its limitations. Details on the hardware selection are given in
Chapter B. This thesis moves from the hardware to the software domain in Chapter 5,
which presents the laser-camera synchronization. Finally, the image processing and dis-
tance estimation results are provided in Chapter 6. The conclusion and future research
are presented in Chapter 7. Additional remarks, proofs and derivations are given the
remaining appendices: Chapter A-Chapter D.
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Chapter 2

Existing Systems

A wide variety of laser distance sensing systems exists. This chapter provides an analysis
and comparison of the physical limits and properties of the state-of-the-art production-
and research- sensors. Additionally, the theory and limitations of existing triangulation
models are presented.

2.1 State of the art performance

By utilizing the focused beam of light of a laser, precise distance estimates can be made
over large distances. For example, the Velodyne HDL-64E [7] is able to measure distances
up to 120 meters and the Luminar LiDAR is claimed to be able to make distance
estimates up to 250 meters [32]. Unfortunately, as these sensors are high-performance
systems, their prices are in the range of several tens-of-thousands of dollars. Therefore
such sensors are not very friendly to the consumer robotics market. Existing middle-class
systems such as the Sick LMS111 [8] and Hokuyo UTM-30LX [13] are compact and able
to measure distances up to 30-50 meters with several millimeters of accuracy, yet have
still price tags of several thousands of dollars. The current available low-end sensors
come in at hundreds of dollars. Among these sensors are the RPLidar [5] and Sweep [6],
costing around 350-450 dollar each. The first is claimed to be able to measure distances
up to 6m with < 1.5% accuracy whereas the latter can measure up to 40 meters, but
with high error (> 5%) at short distances.

All these sensors use rotating parts for measurement and therefore may be prone to
errors due to movement, stutter or wear down of gears. Moving parts also increase the
mechanical complexity of a sensor, hence research is moving towards the development of
solid-state systems. MIT is, for example, working with DARPA to produce a small (0.5x6
millimeter) single-chip solution [37]. It contains both sending and receiving drivers and
is claimed to be able to scan an area of 51 degrees wide with a distance up to 2 meters
with < 2% resolution. Another system is being developed by Quanergy [44]. They hope
to start the production of their solid-state S3 3D sensor early 2018. The S3 is claimed
to measure distances up to 100 meters with 0.1% accuracy and a horizontal and vertical
field-of-view of 120 degrees. Unfortunately, as these solid-state approaches depend on
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the use of specialized directional antennas and phased arrays, they currently have high
hardware costs. With the technology still being developed, low-cost consumer friendly
variants are not to be expected anytime soon and may take several years to come into
existence.

Low-cost solid-state systems, have been constructed by configuring (line) lasers and
light sensitive parts in a triangulation setup [19, 33, 35, 38]. In such a setup both laser
and light-sensitive part face the same direction in a known configuration. A comparison
of these systems with current low-end rotating sensors is given in Table 2.1

When comparing these setups, a wide variation in distances and resolutions can be
observed. Not one sensor is close to the claimed properties of the solid-state directional
antenna approaches, yet the results and price of the triangulations setups are well suited
for many robotic applications. Interestingly, none of the triangulation setups are able
to properly detect a signal further than 6 meters: a limit as a result of the maximum
allowable laser output for eye-safety and the amount of background irradiance produced
by the sun.

If it is assumed that all requirements for our prototype will be met, the presented
prototype would exhibit the following properties:

• Price: < $30 (when constructing 1000 units)

• Field-of-view: 120 degrees

• Angular Resolution: < 0.9 degrees

• Max distance: > 2meter

• Resolution @ 2m < 1%

• Speed > 10Hz

• Samples > 1333/s

• Dimensions 100 x 30 x 40 mm

2.2 Triangulation

The presented triangulation systems all use slightly different setups, yet they can be
generalized in the setup shown in Figure 2.1.

The generalised model is an adaption of the model presented by Konolige et al [29],
which states that the distance towards an object can be computed by:

q =
s ∗ f
x

(2.1)

In this equation, q and s are the distance-to-object and distance-between-laser-camera
respectively. The variables f and x represent the focal point of the lens (the distance
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Figure 2.1: Generalised triangulation setup based.

imager-optical center) and the difference between the pixel position of the reflected laser
and the ray through the optical center, parallel to the laser.

While it can be used to compute an object-distance from a pixel coordinate, the model
relies on several important assumptions.

Foremost, is assumes that the angle α equals 90 degrees, ensuring that s is perpen-
dicular to the optical axis. Releasing this assumption can be done by generalising (2.1)
as shown in Chapter D.1. The generalised formula reads:

q = s ∗ sin(β)sin(α)− yn ∗ sin(β)cos(α)

sin(θ) + yn ∗ cos(θ)
. (2.2)

With yn = r
f .

Secondly, the simplified model (and its generalized version) both have a direct link
between the focal point of the lens and the estimated distance. Therefore, neither of
these equations allow high amounts of (nonlinear) lens distortion, hence they cannot be
used with wide-angle or fisheye lenses.1

Lastly, when a line laser is used, both models assume that the same triangulation
parameters hold across all pixels in the image. This, however, is not the case when there
are slight rotational or translational misalignments. When not accounted for, these small
misalignments can result in significant errors at larger distances.

In the next chapter a new model is presented, able to handle such misalignments and
nonlinear distorted lenses.

1It should, however, be noted that yn in the generalised equation (2.2) describes the projection of an
undistorted lens (Chapter A). When the distortion model of Heikkila [21] is used, the vertical projection
of an undistorted, normalized pixel can directly be connected with yn, allowing Equation (2.2) to be
used with a wide variety of lenses.
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Chapter 3

Sensor Model

As shown in Chapter 2, existing models are not able to properly combine wide-angle
lenses, (line) lasers and misalignment errors in a triangulation setup. This chapter
introduces a new and generic model, which is able to handle such cases.

First, a description of a lens distortion model is given, able to handle wide-angle
lenses [22, 28, 12]. This is followed by the introduction of the newly derived triangulation
model. Additionally, the math and models from the IEC 60825 standard [24] for eye-
safety are introduced, together with background irradiance estimations from the Spectra
1.5 standard [10]. The chapter is concluded with an overview of all parameters in the
full model.

3.1 Image projection and distortion

Large amounts of literature have been dedicated to describing the translation from 3D
world coordinates to 2D pixel positions and vice versa [28, 34, 41, 22, 43, 16]. For this
thesis the projection and distortion models presented by Heikkila [22] and Kannala [28]
are used. These models are also used in well-known tools such as the OpenCV vision
library [42] and the Caltech Camera Calibration Toolbox for Matlab [12]. As their details
have been extensively covered by different papers, this thesis will only present the models
as a set of equations without deeper analysis of correctness.

3.1.1 Forward projection: 3D to 2D

The most simple transformation from a 3D world coordinate, p = [x y z]T , to a 2D pixel
position, pp = [xp yp]

T , is by using the Pinhole Camera model [41]. This model assumes
no lens, hence the projection transformation is written as:

pp =
1

z

xy
z

 =

xpyp
1

 (3.1)
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Where p equals the 3D world coordinate of an object, and pp the corresponding 2D pixel
position. As pp in this case equals p, normalised over the z-axis (depth), pp also equals
the normalised 3D world coordinates, pp = pn = [xn yn 1]T .

When a lens is added, the computation to determine the pixel position is extended by
including the Camera Matrix, KK [41]:

pp = KK ∗ pn ⇒

xpyp
1

 =

fx s cx
0 fy cy
0 0 1

xnyn
1

 (3.2)

Where fx and fy are the focal distances, s the skew in the imager (that is: when pixels
are not perpendicular aligned) and (cx, cy) the pixel position of the optical centre. This
extension assumes that a perfect lens is used: that is, no distortion is introduced and
the imager and lens are aligned perpendicular to each other.

To handle distortion, an additional step needs to be added. By computing pp via pn,
we can handle distortion, δd, as follow [28]:

pp = KK ∗ (pn + δd) = KK ∗ pd (3.3)

Where the distorted 2D position, pd, is computed as:xdyd
1

 =

xnyn
1

+

r2xn r4xn r6xn
r2yn r4yn r6yn

0 0 0

k1k2
k3

+

 2xnyn r2 + 2x2n
r2 + 2y2n 2xnyn

0 0

[p1
p2

]
(3.4)

With r =
√
x2n + y2n, [k1 k2 k3]

T representing the lens distortion parameters and [p1 p2]
T

the tangential distortion1.

3.1.2 Backward projection: 2D to 3D

As the laser distance sensor does not need to compute the 3D to 2D pixel transformation,
but rather requires the inverse computation, the backward projection of the model is of
more importance. Due too the usage of a non-linear distortion model, this computation
cannot derive an exact projection. Additionally, as the forward projection eliminates a
dimension, only the normalized position, pn, can be estimated from pp.

To compute pn from pp, the inverse of the non-linear distortion model needs to be
computed. Heikkila [21] proposed an iterative process, which is adapted in this thesis.
The proposed approach starts by inverting the computation of the Camera Matrix, KK:

yp = fy ∗ yd + cy ⇒ yd =
1

fy
∗ (yp − cy) (3.5)

xp = fx ∗ xd + s ∗ yd + cx ⇒ xd =
1

fx
∗ (xp − cx − s ∗ yd) (3.6)

1The latter is the induced error when the imager and lens are not perfectly perpendicular to each
other.
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Description

s Distance between the laser and the optical centre of the camera.
q Object-sensor distance, measured perpendicular to s.
α Rotation of the camera with respect to s.
β Rotation of the laser with respect to s.
θ Subtended angle of the central axis of the laser with the optical axis of the lens.
ψ Rotation of the laser over its central axis. This rotation is also called the laser-roll.

Table 3.1: Triangulation parameters and their description, used in the proposed model.

Next, an approximation of pn, called p̃n, is computed by repeated executing of the
following steps:

p̃n =

[
x̃n
ỹn

]
=

[
xd
yd

]
Initialisation (3.7)

r̃ =
√
x̃2n ∗ ỹ2n step 1 (3.8)

dr = 1 + r̃2k1 + r̃4k2 + r̃6k3 step 2: radial distortion (3.9)

dt =

[
2x̃nỹn r̃2 + 2x̃2n
r̃2 + 2ỹ2n 2x̃nỹn

] [
p1
p2

]
step 3: tangential distortion (3.10)

p̃n =
1

dr

([
xd
yd

]
− dt

)
step 4: correction, continue step 1 (3.11)

Increasing the number of iterations improves the projection results. The OpenCV
library uses 20 iterations, whereas the Caltech Toolbox only 5. In this thesis, 5 iterations
will be used.

3.2 Triangulation

Using the backward-camera projection, presented in the previous section, a pixel position
can be translated to a normalised 2D coordinate, pn = [xn yn]T . This section shows how
these 2D coordinates can be used to compute the corresponding 3D position, and hence
estimate a distance, by using a known triangulation configuration.

3.2.1 An ideal setup

A schematic 3D triangulation setup is shown in Figure 3.1. For this setup the same
naming conventions as used by Konolige et. al [29] are used with the addition of several
other parameters. An overview of all parameters is displayed in Table 3.1.

Using these definitions and the normalised, undistorted pixel coordinates, the z-
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Figure 3.1: The 3D line-laser triangulation model used in this thesis. This image is a
side view of the setup, displaying the ZY-plane, with the X-axis pointing outwards. Note
that the line laser is aligned in the same direction, with ψ, representing the roll of the
laser in its central axis. In an ideal setup, ψ equals 90 degrees, aligning the projected
laser line horizontally with the imager of the camera. The purpose of a triangulation
setup is to derive the distance q towards a point p, using pn (the normalised version of
p) and a known triangulation configuration (α, β, θ, ψ, s).
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position in the camera reference frame can be computed with:

z = s ∗ sin(β)

sin(θ) + yn ∗ cos(θ) + xn
tan(ψ)

(3.12)

Which allows the estimation of the 3D position, p:

p = z ∗ pn = z ∗

xnyn
1

 (3.13)

The distance towards an object, q, is then computed with:

q = z ∗
√

(sin(α)− yn ∗ cos(α))2 + x2n (3.14)

A full derivation of these equations is shown in Chapter D.1.

While the presented model allows the estimation of the 3D coordinate of a pixel
position, its computations are based on an ideal and perfectly aligned setup. It assumes
that the exact (relative) positions and orientations of both laser and camera are known.
Physical systems commonly exhibit small misalignments, hence the shown computations
can only be used as a theoretic model for designing a triangulation system.

3.2.2 Handling misalignments

To address misalignments in the presented model, a more practical approach needs to
be taken. When looking at the setup shown in Figure 3.1, it can be reasoned that the
projected laser line can be described as a 3D plane. As each point in this plane correlates
with a possible observable 3D position, it can be used to translate pn to p.

In order to make this translation, we start with the geometrical description of a 3D
plane:

a ∗ x+ b ∗ y + c ∗ z + d (3.15)

Which, after rewriting, results in:

z =
a ∗ x+ b ∗ y + d

−c
= ac ∗ x+ bc ∗ y + cc (3.16)

Where (ac, bc, cc) are the plane parameters. Mapping these parameters to Figure 3.1,
we can state that they describe the laser-plane with respect to the optical centre of
the camera. In an ideal setup, these plane-parameters can be used to compute the
triangulation parameters:

θ = tan−1

(
1

bc

)
α = π − (β + θ)

ψ = 0.5 ∗ π − tan−1(−ac ∗ cos(θ))

s =
sin(θ) ∗ cc
sin(β)
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These parameters can also be used to compute the z-position of a normalised point:

z =
cc

1− (ac ∗ xn + bc ∗ yn)
(3.17)

Which eventually allows the computation of the 3D world position as shown by (3.13).
It should also be noted that this equation can be used as a substitute for (3.12), which
was presented in the previous section.

As the laser-plane parameters can be estimated with the capturing of several frames
(which will be shown in Chapter 4), it bypasses the requirement of determining the exact
values of the triangulation configuration and hence allows handling of misalignment
errors.

All derivations proofs for the presented equations can be found in Chapter D.

3.3 Laser safety

Each system including a laser is required to be validated and labeled to ensure that
a user can take the proper precautions to use the product safely. Labelling of a laser
product is done by classifying it into a specific class, using the equations and rules set
by the IEC 60825 [24] standard. A brief summary of the available laser-product classes
is shown in Table 3.2.

The IEC 60825 states that if the outputted energy of a system, able to reach the
eye or skin, is below a specified Accessible Emission Limit (AEL), the system can be
labeled as a Class 1 laser product. In the next sections, the AEL computation for a
laser system utilizing a laser with a wavelength in the 600-1050nm range is shown. In
this range the laser light is more dangerous to the eye then skin, therefore, only the
ocular limits are presented. In addition to the AEL, the computations to determine
the maximum allowable laser power and Class 1 safety operating area (Nominal Ocular
Hazard Distance, NOHD) are given.

3.3.1 Accessible Emission Limit

The AEL is depending on several factors, but, assuming a single laser source with a
wavelength between 600 and 1050 nm, producing pulses with a length between 5 ∗ 10−6

and 1/15 seconds, the following equation holds:

AEL = 7 ∗ 10−4 ∗ t0.75C4C6 (3.18)

In which the AEL is the maximum allowable energy in Joule and C4 and C6 are
correction-factors to include the effect of different wavelengths or thermal damage re-
spectively.
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Class Description

1 Eye-safe under all operating conditions. The produced illumina-
tion can be both visible and invisible.

1M Eye-safe under all operating conditions, unless it is observed with
optical instruments. The produced illumination can be both vis-
ible and invisible.

2 Eye-safe unless more than 0.25s (natural aversion response) is
stared into the beam. The produced illumination is solely visible
but might include invisible light under certain conditions.

2M Eye-safe unless more than 0.25s (natural aversion response) is
stared into the beam or when it is observed with optical instru-
ments. The produced illumination is solely visible but might in-
clude invisible light under certain conditions.

3A Potentially hazardous. The limits of this class are five times the
limits of class 1 and 2.

3B Likely to be hazardous for eye or skin, but the diffuse reflection is
safe. A continuous source may not exceed a maximum output of
500mW.

4 Hazardous to eye or skin when using direct light and potentially
hazardous when using indirect light. Might set materials on fire.

Table 3.2: Laser safety classes as defined by the IEC 60825 [24] standard
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C4 and C6 are determined by:

C4 =

{
1 for 600 ≤ λ < 700nm

100.002(λ−700) for 700 ≤ λ < 1050nm
(3.19)

C6 =


1 for α ≤ αmin
α/αmin for αmin < α ≤ αmax
αmax/αmin for α > αmax

(3.20)

Where λ represents the wavelength in nanometers and α a correction factor based on
the angle of acceptance of the setup. The angle of acceptance is the subtended angle at a
point in space from which the laser source is observed. It is computed in milliradians and
depends on the diameter of the laser source, d (in mm), and the distance, r >= 100mm,
at which the laser is observed. The maximum angle can therefore be computed as:

α = 2000 ∗ tan−1

(
0.5d

r

)
⇒ 2000 ∗ tan−1

(
0.5d

100

)
(3.21)

In addition to α, C6 also depends on a minimum, αmin, and maximum, αmax, subtense.
Both are expressed in milliradians and only depend on the duration time, t, of a pulse:

αmin = 1.5 (3.22)

αmax =


5 for t < 625µs

200 ∗ t0.5 for 625µs ≤ t ≤ 0.25s

100 for t > 0.25s

(3.23)

The above equations compute in essence the maximum amount of allowable energy
in a single pulse. When a system produces several pulses, additional checks need to be
performed. For a pulsing Class 1 system, the following conditions should hold:

1. The exposure of a single pulse, AELsingle, should be below the AEL.

2. The average power of all pulses in a time window T , AELavg.T , should be below
the corresponding power of the AEL of a single pulse of a duration T , AELT .

3. For thermal safety, the energy per pulse, AELs.p.train, should be below the energy
of a single pulse, AELsingle, multiplied with a parameter C5.

Or, in other words, the maximum allowable amount of energy of a single pulse for
Class 1 classification is determined with:

min (AELsingle, AELT , AELs.p.train) (3.24)

The following paragraphs describe each condition in more detail.
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Condition 1 Typically a laser is stated to have a certain amount of output power,
Plaser in Watts (J/s). Multiplying with the pulse duration, t, provides the total amount
of energy (J) in a pulse. Assuming that all energy reaches the eye, we get:

AELsingle = Plaser ∗ t (3.25)

Hence, the limit of a single pulse can be expressed as:

AELsingle < AEL (3.26)

AELsingle < 7 ∗ 10−4 ∗ t0.75C4C6 (3.27)

Condition 2 Different wavelengths require different time-windows to analyze. The
IEC 60825 specifies that in case of a Class 1 system with λ > 400nm and no intentional
long-term viewing into the laser source, a window of T = 100 seconds should be sufficient.

For determining AELavg.T , the number of pulses, N , within the window T needs to
be computed, giving:

AELavg.T = AELsingle ∗N (3.28)

For determining AELT , the same parameters as for the computation of AEL should
be used, except t = T . Hence the full condition can be expressed as:

AELavg.T < AELT (3.29)

AELsingle ∗N < 7 ∗ 10−4 ∗ T 0.75C4C6 (3.30)

AELsingle <
7 ∗ 10−4 ∗ T 0.75C4C6

N
(3.31)

Condition 3 In essence, this condition states that a single pulse multiplied with a
thermal parameter should be below the computed AEL:

AELs.p.train < AEL (3.32)

AELsingle ∗ C5 < 7 ∗ 10−4 ∗ t0.75C4C6 (3.33)

AELsingle <
7 ∗ 10−4 ∗ t0.75C4C6

C5
(3.34)

In which C5 is determined by:

C5 =



1 for α ≤ 5 OR α > 100

N−0.25 for 5 < α ≤ αmax AND N ≤ 40

0.4 for 5 < α ≤ αmax AND N > 40

N−0.25 for α > αmax AND N ≤ 625

0.2 for α > αmax AND N > 625

(3.35)
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Where N is the number of pulses within a time window of T2 seconds:

T2 =


10 for α ≤ αmin
10 ∗ 10(

α−αmin
98.5

) for αmin < α ≤ 100

100 for α > 100

(3.36)

This computation requires the additional note that if multiple pulses occur within
a window of Ti seconds, they are counted as a single pulse. For λ ∈ [400, 1050], this
window is defined as:

Ti = 5 ∗ 10−6 (3.37)

3.3.2 Nominal Ocular Hazard Distance

While the AEL computes the classification and the maximum allowable amount of energy
to reach the eye, it does not mention safety distances nor includes computations regarding
the shape of a laser beam. To this extent, the Nominal Ocular Hazard Distance (NOHD)
and Maximum Permissible Energy (MPE) have been introduced.

In essence, the MPE of a laser system equals the AEL, only rewritten to J/m2 (or
J/cm2) by including the surface of the pupil of an eye (Aeye). The IEC 60825 assumes
an average diameter of 0.7 cm for the pupil, hence the MPE (J/cm2) of a Class 1 system,
under previously defined constraints is given by:

Aeye = π ∗ (0.5 ∗ deye)2 = π ∗ 0.352 ∼ 0.385 (3.38)

Hmpe =
AEL

Aeye
=

7 ∗ 10−4 ∗ t0.75C4C6

0.385
= 18 ∗ 10−4 ∗ t0.75C4C6 (3.39)

The NOHD of a system is the distance towards the laser source at which the average
energy per surface-units equals the MPE. If the user cannot view the laser source from
within the NOHD, the system is classified as safe and labeled as a Class 1 product.

Depending on the shape of the laser beam different computations need to be per-
formed. The next two paragraphs show the steps to compute the NOHD given the
known output power of a laser and the AEL. They also show the steps to determine the
maximum allowable output power of a laser, max(Plaser) given an NOHD and the AEL
respectively. Both assume a simplified model of a line laser as the horizontal divergence
of the beam is commonly several orders larger as the vertical divergence (radians vs
milliradians). In addition, the assumption is made that the projected line has a uniform
intensity.

NOHD from Plaser and AEL Computing the NOHD is done in two steps. First, the
area of the projection of the laser, Alaser, is computed at the point where the average
intensity equals the MPE :

Alaser = Hmpe ∗ Plaser ∗ t (3.40)

18



Where Plaser is the output power of the laser in Watts (J/s) and t the pulse duration.
Assuming a rectangular projection with height y (cm) and a width determined by a

horizontal divergence φ (radians), the NOHD (cm) is determined by:

nohd =
Alaser

2 ∗ tan(0.5φ) ∗ y
(3.41)

=
Hmpe ∗ Plaser ∗ t
2 ∗ tan(0.5φ) ∗ y

(3.42)

max(Plaser) from known NOHD and AEL When the NOHD is the limiting factor
instead of the output power of the laser, a different approach needs to be taken. In such
a case, the restricting NOHD is first used to compute the area of the laser projection at
the given distance:

Alaser = 2 ∗ nohd ∗ tan(0.5φ) ∗ y (3.43)

Which in turn can be used to compute the maximum allowable output power:

Plaser =
Alaser ∗Hmpe

t
(3.44)

= 2 ∗ nohd ∗ tan(0.5φ) ∗ y ∗ Hmpe

t
(3.45)

3.4 Background irradiance

Using the laser safety rules, the maximum output power of the laser can be determined.
In order to make some estimations of the limitations of the prototyped sensor, we also
need to know the amount of background irradiance produced by the sun. To this extent
the Spectra 1.5 tables [10] are used. The Spectra tabels model the solar irradiance at
different atmospheric conditions. It specifies the background irradiance in W/m2/nm
per wavelength.

Limiting the amount of background irradiance will result in better detection of the
laser reflection. As a laser only emits irradiance at a fixed wavelength, an optical band-
pass filter is commonly used to block unwanted irradiance from the imager. Using the
Spectra 1.5 tables and the width of the bandpass filter, an estimate of the total amount
of background irradiance, Psun in W/nm2, can be made.

Assuming the simplified line-laser model of the previous section and a laser output,
Plaser, the distance, x, at which the laser reflection is pp percent of the background
irradiance, is computed with:

x =
Plaser

pp ∗ Psun ∗ 2 ∗ tan(0.5φ) ∗ y
(3.46)

Where pp ∈ (0, 1] with pp = 1 equalling 100 percent and y representing the height of the
laser reflection.

19



3.5 Combined model

Combining all equations presented in the previous sections, result in a full model, able
to estimate the distance sensor limitations and optimal configurations. In Table 3.3 a
list with names and descriptions of all input-parameters of the complete model is shown.

Using this list of parameters, the model is able to estimate the sensor limitations, by
executing the following steps sequentially:

1. The model starts by computing a vector of 2D pixel positions, pp = [px py]
T , using

the defined imager dimensions.

2. These pixel positions are then transformed into undistorted, normalised positions:
pn = [xn yn 1]T with the camera backward projection

3. Next, the triangulation parameters (α, β, ψ, s) are transformed into the laser-plane
parameters (ac, bc, cc).

4. Combining the laser-plane parameters and normalized positions, a distance estim-
ation, q, is computed for each pixel position.

5. Having computed the distance for all pixels, limitations can be derived:

• Per pixel the resolution of q can be estimated by computing the difference
between consecutive pixels.

• Per column of the imager, the maximum and minimum distance can be found.

6. Finally, the set of laser-parameters is used to determine the NOHD, maximum
allowable laser power and detection distance with respect to the background irra-
diance.

The presented equations and steps have resulted in the build of a Matlab-tool to find
the optimal triangulation values and determine the limitations of the prototype, as will
be shown in the next chapters.
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Description

[Ix Iy] Number of pixels in the imager: width and height
KK Camera matrix, consisting of (fx, fy), (cx, cy) and skew

[k1 k2 k3] Lens distortion parameters
[p1 p2] Tangential distortion paramaters
s Distance between the laser and the optical centre of the camera.
α Rotation of the camera with respect to s.
β Rotation of the laser with respect to s.
ψ Rotation of the laser over its central axis.
d Laser diameter
f Pulse frequency of laser
t Pulse duration
λ Wavelength of laser
φ Horizontal divergence of the laser
y Height of laser projection

nohd Maximum allowable safety distance
τ Width of the optical bandpass filter

Table 3.3: Input parameters and their description of the proposed model.
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Chapter 4

Prototype

Using the requirements and the previously presented sensor model, a prototype can
be deduced. In the next sections, we first derive the set of sensor parameters which
best match the requirements. Additionally, the theorized limitations are presented after
which a physical prototype is built. This prototype (dubbed LaserPi) is calibrated in
the remainder of this chapter, followed by a final list of parameters and limit estimations
based on the calibrated values.

4.1 Design

Before we present the list of selected sensor parameters, we first revisit the requirements
in the section. Next, the camera matrix, triangulation parameters, and eye-safety limits
are derived. Finally, the theorized, estimated limits are computed.

4.1.1 Requirements and parameter overview

Recalling the Introduction (Chapter 1, the full set of requirements for the prototype are:

1. Solid-state with a cost of < $30 each, when producing 1000 pieces.

2. Dimension should be within 10x3x4cm.

3. > 2 meter detection range with a resolution < 1%.

4. Planer, horizontal field-of-view of 120 degrees with a resolution of < 1 degree.

5. > 10Hz update rate. That is, 10 times a full 120-degree scan per second.

6. Eye-safe, Class 1 Laser product according to the NEN IEC 60825-1:2014 [24]

7. Fully embedded processing.

In Chapter B, these requirements have been used to derive a set of hardware compon-
ents, summarised in Table 4.1. Table 4.2 shows an overview of all input-parameters for
the model and the parameters which are defined by the hardware selection.
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Component Description

Camera Board IMX219, mode 5, 1640x922 pixels, 0-60Hz
Processing Unit Raspberry Pi Zero Wireless
Lens LS50125, ∼ 133o field-of-view
Laser 25mW, 808nm, 120o field-of-view
Bandpass filter 808± 25nm

Table 4.1: Short list of selected components. For more detailed information on the
selection and component properties, see Chapter B.

Value Description

[Ix Iy] [1664, 928] Imager dimension in pixels
KK tbd Camera matrix

[k1 k2 k3] tbd Lens distortion parameters
[p1 p2] tbd Tangential distortion parameters
s tbd Distance between the laser and camera.
α tbd Rotation of the camera with respect to s.
β tbd Rotation of the laser with respect to s.
ψ tbd Rotation of the laser over its central axis.
d 1 mm Laser diameter
f tbd Pulse frequency of laser
t 17.4 ms Pulse duration
λ 808 nm Wavelength of laser
φ 120o Horizontal divergence of the laser
y 4 mm Height of laser projection

nohd tbd Maximum allowable safety distance
τ 50 nm Width of the optical bandpass filter

Table 4.2: Updated list of input parameters, after selecting the used hardware compon-
ents. Values which are defined as ‘tbd’ are yet to be selected, derived or estimated.
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Figure 4.1: Thumbnails of all 25 images used to estimate the Camera Matrix.

4.1.2 Camera matrix estimation

To estimate the Camera Matrix, KK, the Caltech Camera Calibration Toolbox for
Matlab [12] is used. For the calibration process, 25 different frames have been captured,
depicted in Figure 4.1. These frames show a utilized checkerboard pattern of 7x10
squares with sides of 2.45cm. The estimated camera parameters are shown in Table 4.3.
As the toolbox suggests to ignore parameters when their variance is larger than their
error, several computations have been made. For each table, the first two columns
indicate which parameters are ignored (‘0’) or used (‘1’).

The final estimations provide the following camera and distortion values:

KK =

729.586 0 787.533
0 726.684 576.404
0 0 1


[k1 k2 k3] = [0 − 0.07085 0.02052]

[p1 p2] = [0 0]
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skew k1k2k3p1p2 fx fy cx cy skew

1 [1 1 1 1 1]T 732.6± 8.0 729.4± 8.0 788.4± 6.8 582.4± 6.8 0.001± 0.003
0 [1 1 1 1 1]T 731.7± 7.7 728.5± 7.6 789.3± 6.4 581.7± 6.5 0± 0
0 [0 1 1 1 1]T 731.0± 7.0 727.8± 6.9 789.5± 6.3 581.7± 6.5 0± 0
0 [0 1 1 0 0]T 729.6± 6.9 726.7± 6.8 787.5± 4.9 576.4± 4.4 0± 0

(a) Estimates for the Camera Matrix. Note that all these values are in pixels. As Mode 4 is used,
the values need to be multiplied by 2 ∗ 1.12µm to get metric values, which yield an estimated
focal point of 1.63mm for the last row, in line with the stated focal length in the datasheet of
the lens.

skew k1k2k3p1p2 k1 k2 k3
1 [1 1 1 1 1]T 0.004± 0.012 −0.076± 0.014 0.022± 0.005
0 [1 1 1 1 1]T 0.002± 0.012 −0.075± 0.013 0.022± 0.005
0 [0 1 1 1 1]T 0± 0 −0.072± 0.003 0.021± 0.002
0 [0 1 1 0 0]T 0± 0 −0.071± 0.003 0.021± 0.002

(b) Estimates for Radial distortion.

skew k1k2k3p1p2 p1 p2
1 [1 1 1 1 1]T 0.002± 0.001 0.001± 0.001
0 [1 1 1 1 1]T 0.002± 0.001 0.001± 0.001
0 [0 1 1 1 1]T 0.002± 0.001 0.001± 0.001
0 [0 1 1 0 0]T 0± 0 0± 0

(c) Estimates for Tangential distortion.

skew k1k2k3p1p2 errorx errory
1 [1 1 1 1 1]T 1.06483 1.13392
0 [1 1 1 1 1]T 1.06563 1.13372
0 [0 1 1 1 1]T 1.06527 1.13421
0 [0 1 1 0 0]T 1.06867 1.13542

(d) Projection error in pixels.

Table 4.3: Calibration results for the LS-50125 lens with mode 4 (1640x1232 pixels,
2-binning). The first 2 columns of each table indicate with a boolean which parameters
are estimated.

26



4.1.3 Triangulation deduction

Instead of testing different values for the triangulation parameters (α, β, ψ, s), some
initial simplifications can be made:

Effect of β: When the effect of β on q is evaluated, the following can be observed:
distance q is computed perpendicular to s, where s is assumed to be parallel to the
vertical dimension of the complete sensor. As q is computed based on the reflection
of the laser, only objects positioned in the laser-plane are detected. If the laser points
downwards (β < 0.5π), objects at a distance larger than tan(β) ∗ s, have to be located
below the sensor. So, when the sensor is placed close to the ground, this property limits
the maximum detection distance to ∼ tan(β) ∗ s. As it is likely that larger distances
need to be detected, we select β = 0.5π (or 90 degrees).

Effect of ψ: Ideally, the laser is horizontally aligned with the imager. As such, ψ can
be estimated to be 90 degrees.

Effect of s: To analyse the effect of s on the triangulation performance, we need to
recall the following equation from Chapter 3.2:

q = s ∗
sin(β) ∗

√
(sin(α)− yn ∗ cos(α))2 + x2n

sin(θ) + yn ∗ cos(θ) + xn
tan(ψ)

(4.1)

From this equation, it can be observed that the object distance q (and hence the
resolution) is linear dependent on s. Because s is independent of other triangulation
parameters, we can assume s = 1 for the sensor model, and select an appropriate value
after all other parameters have been derived. Moreover, as the sensor is allowed to have
a maximum height of 10cm (including the dimensions of the hardware components) the
maximum value for s is estimated to be 8cm. Given the requirement that the sensor
should be able to observe at least distances of 2 meter, the minimal q-value for s = 1
needs to be at least 200

8 = 25 cm.

At this point, all sensor-parameters, except for α have been selected. As such, analysis
can be done with different α values. Figure 4.2 shows the minimum and maximum
object-distance q, over the range α ∈ [50, 120] (x-axis, degrees), per imager-column (y-
axis, pixels) at which the resolution is < 1% and q > 25cm. Estimating the resolution is
done by assuming a sub-pixel accuracy of 1/5th of a pixel. That is, we assume that the
pixel position of the laser reflection can be estimated as accurately as 1/5th of a pixel.
Literature shows that values in the region of [1/2, 1/7.5] pixels are possible [29, 33, 19,
35, 17, 38], with some papers even claiming accuracies up to 1/50th [9, 26].

In Figure 4.2 a wide variety of q values can be observed. Interestingly, the figure shows
that the horizontal center of the frame produces lower q-values when compared to the
edges. An effect which is caused by the lens distortion. As low q values require large

27



Figure 4.2: Minimum and maximum q-values per α-imager position with the resolution
< 1%, q > 25 and s = 1, assuming a sub-pixel accuracy of 0.2 pixels.

s values to reach the minimal observable distance, it can be concluded from the image
that the center of the imager (x ∼ 830 pixels) is most limiting in terms of resolution.
In addition, it can be observed that α-values around 59 or 120 degrees produce the
highest q-values. Furthermore, Figure 4.2 shows that the minimal distance of α ∼ 59 is
lower when compared to higher α-values, hence providing the largest and most accurate
detection range. More detailed analysis showed that α = 58.9 degrees provided the
highest q-value (estimated to be 48.9cm) and is therefore selected as input-parameter.

With the selection of q = 48.9cm for s = 1cm and α = 58.9 degrees, the minimal
value for s to observe at least 2 meters is 200

48.9 ∼ 5cm. In Figure 4.3 the vertical imager
position and resolution per q-value are shown for different s-values.

4.1.4 Eye safety and background irradiance

To select the most appropriate s-value, the effect of background irradiance needs to be
considered. From Table 4.1 it can be observed that only the pulse frequency and NOHD
of the laser systems have to be analyzed. Assuming that a user is not able to get its eyes
closer than 1 cm to the laser source and that the laser pulses at the minimum required
frequency of 10Hz, the maximum allowable laser power is 30.43mW , with an NOHD of
0.8cm for the selected 25mW laser.

Using a 50nm bandpass filter, the background irradiance is estimated to be around
5.1mW/cm2. Figure 4.4 shows the laser intensity as a function of the background irra-
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Figure 4.3: Imager position (vertical) and resolution per measured distance of different
s-values, with α = 58.9 degrees. The dotted line represents the resolution at the stated
distances whereas the solid line shows the distance per pixel index. As camera mode 4 is
used for testing purposes, while mode 5 will be used in the prototype, the lowest index
is 155. For more details see Chapter B.

diance and detection distance. From this figure, it can be derived that at ∼ 350cm, the
laser reflection is less than 1%. Even if indoor irradiance is assumed, which is typically
less then 20% of the outdoor value [36], the laser intensity stays low at ∼ 5% of the
background irradiance.

4.1.5 Parameter selection and limit estimation

Combining all estimates, s is selected to be 5.5cm. The complete list of input parameters
is shown in Table 4.4. Using these values, the estimated maximum detection distance is
∼ 375cm. Depending on the sub-pixel accuracy, different resolutions can be achieved as
shown in Table 4.5. To meet the requirement for a maximum error of 1% at 2 meters,
the position of the laser reflection has to be detected within 0.5 pixels.

Using the selected parameters a prototype is designed as shown in Figure 4.5.

4.2 Calibration

Physical systems commonly need a calibration step in order to correct for misalignment
errors and other irregularities. This section presents the camera calibration setup of
the prototype, followed by the estimation of the laser plane. The latter is an extension
build on top of the earlier mentioned Caltech Toolbox (Chapter 4.1.2), allowing calib-
ration of both camera and triangulation with the same set of frames. This chapter is
concluded with an updated analysis of the expected limitations of the prototype, using
the calibration parameters.
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Figure 4.4: Reflection intensity of the 25mW, 120o line laser with respect to the back-
ground irradiance when using a 50nm bandpass filter. At 100cm, the laser reflection is
only ∼ 3.25% of the background irradiance. Distances larger then ∼ 350cm are unlikely
to be detected as the reflection drops below 1% of the background irradiance.

Value Description

[Ix Iy] [1664, 928] Imager dimension in pixels

KK

729.586 0 787.533
0 726.684 576.404
0 0 1

 Camera matrix

[k1 k2 k3] [0 − 0.07085 0.02052] Lens distortion parameters
[p1 p2] [0 0] Tangential distortion parameters
s 5.5cm Distance between the laser and camera.
α 58.9o Rotation of the camera with respect to s.
β 90o Rotation of the laser with respect to s.
ψ 90o Rotation of the laser over its central axis.
d 1 mm Laser diameter
f 10 Hz Pulse frequency of laser
t 17.4 ms Pulse duration
λ 808 nm Wavelength of laser
φ 120o Horizontal divergence of the laser
y 4 mm Height of laser projection

nohd 0.8 cm Maximum allowable safety distance
τ 50 nm Width of the optical bandpass filter

Table 4.4: Complete list of selected input parameters of the sensor model.
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sub-pixel accuracy min(q) 200cm max(q)

0.1 0.03% 0.39% 0.75%
0.2 0.05% 0.78% 1.49%
0.3 0.08% 1.17% 2.22%
0.4 0.10% 1.55% 2.94%
0.5 0.13% 1.91% 3.65%
0.6 0.16% 2.29% 4.35%
0.7 0.18% 2.67% 5.04%
0.8 0.21% 3.05% 5.72%
0.9 0.24% 3.41% 6.39%
1.0 0.26% 3.79% 7.05%

Table 4.5: Estimated resolution with with different sub-pixel accuracy laser localisation
values. The minimum and maximum distance which can be detected are limited to the
imager dimensions, and therefore do not change with the detection accuracy. These
limits are estimated to be 2.4cm and 375cm respectively.

Figure 4.5: 3D rendering of the prototyped setup. The optical centre is estimated to
be located at 2.4mm, measured from the back of the camera board. The laser is placed
such that its central axis is at a vertical offset of 55mm from this point.
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Figure 4.6: Overview of the calibration images, taken by the prototype. Due to the
usage of a bandpass filter, the images are darker when compared to the calibration
images presented in the previous chapter.

4.2.1 Camera

The camera calibration is done following the same steps as described in Chapter 4.1.2,
except, in order to get better estimates, more images have been captured and a larger
checkerboard pattern has been used. In total 48 frames have been used, depicted in
Figure 4.6. The checkerboard has been resized to squares with sides of 4.14cm, still con-
sisting of a pattern of 7x10 squares. Table 4.6 shows the estimated camera parameters.
When comparing these results with Table 4.3, it can be noted that the accuracy has
improved.

4.2.2 Triangulation

To compute the camera parameters, the Caltech Toolbox needs to compute and estim-
ate a different projection for each image. This projection provides the information to
compute the backward projection of a checkerboard-pixel to a 3D point, projected in the
camera reference frame. When a checkerboard intersects with the laser-plane, a laser
reflection is observed. Because a pixel coordinate of the laser reflection on the check-
erboard is essentially a checkerboard-pixel, we can transform this reflection into a 3D
point too. By collecting several 3D points of the laser reflection from different images
we essentially create a set of samples of the laser plane. By fitting a plane through the
set of samples, the laser-plane parameters, (ac, bc, cc), can be estimated. As this plane is
computed from the actual setup, it implicitly contains all corrections for misalignment.
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skew k1k2k3p1p2 fx fy cx cy skew

1 [1 1 1 1 1]T 592.2± 1.6 591.0± 1.6 802.3± 1.2 413.2± 1.5 ∼ 0± ∼ 0
0 [1 1 1 1 1]T 592.1± 1.6 591.0± 1.6 802.4± 1.1 413.2± 1.5 0± 0

(a) Estimates for the Camera Matrix. As Mode 5 is used, the values need to be multiplied by
2∗1.12µ to get metric values. This results in a focal point estimation of 1.3mm, differing slightly
from the datasheet which states 1.6mm. This error might be introduced due too the use of a
different lens and cameraboard, the addition of a bandpass filter or difference in focus distance.

skew k1k2k3p1p2 k1 k2 k3
1 [1 1 1 1 1]T −0.021± 0.002 −0.039± 0.002 0.009± ∼ 0
0 [1 1 1 1 1]T −0.021± 0.002 −0.039± 0.002 0.009± ∼ 0

(b) Estimates for Radial distortion.

skew k1k2k3p1p2 p1 p2
1 [1 1 1 1 1]T −0.003± ∼ 0 ∼ 0± ∼ 0
0 [1 1 1 1 1]T −0.003± ∼ 0 ∼ 0± ∼ 0

(c) Estimates for Tangential distortion.

skew k1k2k3p1p2 errorx errory
1 [1 1 1 1 1]T 0.56940 0.55007
0 [1 1 1 1 1]T 0.56968 0.54982

(d) Projection error in pixels.

Table 4.6: Camera calibration results of the prototype. The first 2 columns of each table
indicate with a boolean which parameters are estimated.
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Figure 4.7: Projection of the estimated laser plane (red). The green dots are the pro-
jected position of the laser reflection, computed by the laser plane. The red dots are the
same reflection, but projected by the per-image based projection of the Caltech Toolbox.
The estimated positions of the checkerboards are displayed in a wide variety of colors.
All points are displayed in the camera reference frame

From the triangulation parameters provided in Table 4.4, the (ideal) laser-plane para-
meters can be deduced:

(ai, bi, ci) = (0, 1.6, 106.5)

Using a least-square fit, the calibrated plane is estimated to be:

(ac, bc, cc) = (0.03068,−1.62396, 94.65943)

The least-square error of the estimated laser-plane is 6.26mm, translated into a dis-
placement error of ±2.8mm for all calibration frames. Figure 4.7 shows the estimated
3D positions of the checkerboard in the camera reference frame. Additionally, it shows
the projected 3D positions of the laser reflection, estimated by using the per-image based
projection of the Caltech Toolbox and the derived laser-plane parameters.

While the least-square error is relatively small there are large projection errors observ-
able between the Caltech and the laser-plane projections. Ideally, both should align, but
as the pixels for the laser reflection are manually selected, some local errors may be in-
troduced. Resolving these errors is done by iteratively computing the difference between
both projections and adjusting the selected pixel position vertically, with 10 percent of
the error. In each iteration, all images are processed after which a new laser-plane is
estimated. Table 4.7 shows the mean-square error of the difference of both projections
for each iteration.
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iteration mean(error2)

1 518.84081
2 206.57550
3 93.50105
4 46.17197
5 24.27914
6 13.39586
7 7.68133
8 4.54695
9 2.76469
10 1.71999
11 1.09152
12 0.70488
13 0.46232
14 0.30752
15 0.20721

Table 4.7: Mean-square error between the per-image based Caltech projection and the
globally fitted plane. Each iteration the pixel position of the projected point is linearly
corrected with the difference between the two projections.

After optimisation, the laser plane is estimated to be:

(ac, bc, cc) = (0.03099,−1.62720, 94.05262)

with a least-square error of only 00.01mm.
When comparing the calibrated plane parameters and the parameters derived directly

from the proposed model, a displacement over x (since ac 6= 0) and a significant estim-
ation error of the optical center position of the lens can be observed (ci 6= cc). The
former suggests that the laser has a roll of 1.49 degrees, whereas the latter shows that
the optical center is not located at 2.4mm, but at 13.6mm, measured from the back of
the Camera Board. A complete comparison of the triangulation parameters is shown in
Table 4.8.

4.2.3 Limit estimation

Since several input-parameters have changed due to the inclusion of misalignment error,
the originally predicted limitations of the sensor need to be updated. In Table 4.9 an
updated overview of all input parameters is given. Only the camera and triangulation
parameters are updated, as these are affected by the calibration procedure.

Using these values, the minimum value of q is estimated to be 1.4cm, while the max-
imum goes to infinity. However, due too the background irradiance only distances up to
∼ 3.50 might be observable. In Table 4.10 the estimated resolution for different sub-pixel
accuracies is shown.
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parameter original calibrated optimised

θ 31.10o 31.62o 31.57o

ψ 90.00o 91.63o 91.51o

α 58.90o 58.38o 58.43o

s 5.50 mm 49.63 mm 49.24 mm

Table 4.8: Comparison of the estimated triangulation parameters, defined originally,
after calibration and after optimisation of the laser plane. For all values it is assumed
that β = 90 degrees and that both camera and laser are perfectly aligned with no
unmodelled errors.

Value Description

[Ix Iy] [1644, 928] Imager dimension in pixels

KK

592.139 0 802.362
0 590.933 413.244
0 0 1

 Camera matrix

[k1 k2 k3] [−0.02077,−0.03930, 0.00889] Lens distortion parameters
[p1 p2] [−0.00259, 0.00025] Tangential distortion parameters
s 4.92cm Distance between the laser and camera.
α 58.43o Rotation of the camera with respect to s.
β 90.00o Rotation of the laser with respect to s.
ψ 91.51o Rotation of the laser over its central axis.
d 1 mm Laser diameter
f 10 Hz Pulse frequency of laser
t 17.4 ms Pulse duration
λ 808 nm Wavelength of laser
φ 120o Horizontal divergence of the laser
y 4 mm Height of laser projection

nohd 0.8 cm Maximum allowable safety distance
τ 50 nm Width of the optical bandpass filter

Table 4.9: List of input parameters for the sensor model, after calibrating the prototype.
It should be noted that the computed triangulation parameters assume the value of β
and that all possible misalignments are modelled in the sensor model.
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sub-pixel accuracy min(q) 200cm 250cm 350cm

0.1 0.04% 0.53% 0.65% 0.90%
0.2 0.08% 1.05% 1.30% 1.79%
0.3 0.12% 1.57% 1.92% 2.67%
0.4 0.16% 2.09% 2.56% 3.54%
0.5 0.21% 2.58% 3.21% 4.41%
0.6 0.25% 3.10% 3.81% 5.22%
0.7 0.29% 3.58% 4.41% 6.03%
0.8 0.33% 4.08% 5.01% 6.88%
0.9 0.37% 4.55% 5.61% 7.65%
1.0 0.41% 5.05% 6.19% 8.45%

Table 4.10: Estimated resolution for different sub-pixel accuracy localisation values for
the calibrated prototype. The minimum and maximum distance which can be detected
are limited to the imager dimensions and background irradiance and do not change with
the sub-pixel accuracy. These limits are estimated to be 1.4cm and 350cm respectively.
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Chapter 5

Laser-Camera Synchronisation

The proposed laser distance sensor operates by capturing the reflection of a laser source.
Naturally, this needs an excited laser while the light-sensitive part of the camera is
exposed. This chapter introduces and explains different methods of synchronization,
to synchronize the laser and camera exposure. After an introduction tests and limit
estimation of the selected mechanism is performed.

5.1 Synchronisation

Several synchronization mechanisms exist, ranging from hardware- to software- con-
trolled, or a combination of those. By including the limits of the Raspberry Pi processing
board and the selected IMX219 imager, this section shows potential techniques.

5.1.1 Continuous activation

A naive approach to synchronize the laser is to excite it continuously: regardless of
the exposure time or capture frequency of the camera, the laser will always be active
when the camera generates a frame. However, as stated in Chapter 3.3, the maximum
allowable energy output for a laser to meet its class restriction, is inversely related to
the duration it is active. Hence a continuous activated laser greatly limits the maximum
allowable power output of the laser which has a negative influence on the distance at
which a laser reflection can be detected.

5.1.2 PWM controlled

When the framerate of the camera is known, a slightly more intelligent solution can be
used, as described in [19]. As Gao et. al. did not have access to low-level camera control,
they opted to drive the laser with a PWM signal at half the frequency of camera, with
a 50% duty cycle. As a result, the laser is visible in every other frame. This approach
allows a higher energy output when compared to the naive approach and introduces an
extra dimension to detect the laser: the laser can be tracked by searching for pulsing
pixels.
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5.1.3 Low-level control

If low-level control is available, such as the ‘vsync’ signal [33] or ‘strobe’ line [4], even
better timing can be achieved. By synchronizing the exposure time at a hardware level,
the active period of the laser can be set close to the exposure time. Measuring or
estimating the delay between frame exposure and the ‘vsync’ signal allows the build
of a delayed controller which activates the laser upon the next frame exposure. This
mechanism requires a fixed framerate. Utilising the ‘strobe’ properties of an imager
provides even more control. CMOS imagers use the ‘strobe’ signal to activate a flash.
Precise timings are tuned with registers on the camera chip and are to a certain extent
framerate independent.

While the datasheet [4] of the selected IMX219 imager contains some information on
registers which affect the ‘strobe’ signal, actual functioning register settings are unknown.
Determining suitable register settings commonly requires a lot of time/effort and close
communication with the chip supplier. Since both are not available in this thesis, this
approach is out of scope. For utilizing the ‘vsync’ signal yields the same: as we are using
off-the-shelf components, using a hardware signal would require several modifications on
the PCB.

5.1.4 GPU controlled

Documentation of a Python library for the IMX219 shows that the GPU of the Raspberry
Pi is able to control a LED flash, synchronized with the exposure of the imager [27]. As
the GPU runs a real-time kernel, this approach is the closest in term of direct hardware
control as we can get with the current setup.

Tests with a GPU-controlled flash have been performed for both ‘capture’ and ‘video’
mode. The findings can be summarised as follows:

• capture-mode: the minimum delay between a CPU signal and the callback is
around 0.48s. As several CPU-calls cannot be pipelined, the maximum achievable
framerate is 2Hz.

• video-mode: in this mode, there is no support for a GPU controlled flash.

The requirements state that the minimum update frequency should be at least 10Hz.
Therefore, the GPU controlled flash is not an appropriate approach.
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Figure 5.1: Example of the output of a phase lock loop [18]

5.1.5 Software Phase Locked Loop

The GPU provides every frame with a presentation timestamp (PTS) [2, 27]: a PTS is a
timestamp in the GPU domain at which the GPU received the first line of a frame from
the imager. With the GPU running an RTOS and the imager set at a fixed framerate,
this timestamp can be used to estimate the time at which the next frame is generated
and hence it can be used to synchronize the laser.

While computations on the CPU might provide estimations for synchronization times,
due too the nature of not being an RTOS, the CPU is unable to directly control and
synchronize a laser stably. Documentation of the BCM2835 [1] shows that the SoC is
able to produce a hardware PWM signal. Such a PWM signal allows us to specify a
constant rate and pulse duration at which a laser is active, without jitter or overhead of
an operating system or any other software control. Having both the camera and laser
active at an equal and constant (hardware) frequency, we only need to synchronize the
periods, solvable by utilizing a Phase Lock Loop (PLL) [23].

A PLL consists of a fixed frequency signal (PWM/laser) to which an adjustable signal
(imager) is matched. By computing the offset between these signals, a controller adjusts
the frequency of the adjustable signal until the signals are in phase. In Figure 5.1 an
example is shown of two sinusoids.

For our prototype, this controlling update is done each time a frame is received. Details
on how this control is build is explained in the next section.
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Figure 5.2: Controller setup with annotation which blocks are operated in what domain:
hardware (no software interrupts), GPU (real time) or CPU. The blue lines are added
to provide a full overview of all processes. They might initialise, but do not influence
the control loop.

5.2 Setup

5.2.1 Overview

Several components need to cooperate in order to synchronise the laser with the imager.
In Figure 5.2 an overview is given of how these components are connected and in what
domain they operate.

With the selected hardware there are three identifiable domains: hardware, GPU and
CPU controlled:

• Hardware: blocks which operate without interrupts. Once initialized, they keep
running at a set frequency or speed.

– Imager, producing an image/frame.

– PWM, controlling the laser.

• GPU: blocks which can be interrupted by external processes. But as the GPU runs
an RTOS, timing is accurate.

– VPU (see Figure B.1), adding a timestamp to a frame.

• CPU: blocks which are interrupted by external processes.

– Controller, triggered when a new frame is available. Computes the phase dif-
ference (error) between the presentation time of the frame and the timestamp
of nearest PWM pulse. It computes a new frequency for the Imager based on
this error.
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5.2.2 Time-stamping and error estimation

While the GPU adds a GPU-domain timestamp to each timeframe, the PWM signal does
not has such a signal. The hardware PWM can be initialized with a certain duty cycle
and frequency, but no interrupts are triggered when the laser is activated. Therefore, a
PWM timestamp in the GPU-clock domain needs to be computed based on the (CPU)
timestamp at which the PWM signal is started. In Algorithm 1 the used process is
shown.

Algorithm 1 Starttime estimation of PWM in the GPU domain

1: function INIT PWM(interval max)
2: repeat
3: T1 ← TIME(cpu)
4: START PWM()
5: Tgpu ← TIME(gpu)
6: T2 ← TIME(cpu)
7: interval ← T2 − T1
8: until interval < interval max
9: Tpwm ← Tgpu − interval

10: return ( Tpwm, interval)

As the initialization code for the PWM runs on the CPU, the operating system might
interrupt the function calls which set and start the PWM mechanism. Therefore we can-
not determine the exact timestamp at which the PWM signal is started. In Algorithm 1
an approximation is computed by determining the interval (line 3 and 6) in which the
PWM signal is started. If the interval is larger then a predetermined maximum (line 8),
the PWM system is restarted. This process repeats until the estimation is within the
predetermined bound.

In the same interval, the current time of the GPU is clock is also requested (line 5).
Using the GPU time and the CPU interval the start-time of the PWM signal can be
estimated to be within [Tpwm, Tpwm+interval)µs in the GPU domain.

By combining this estimation, the presentation time of the frame and the frequency
of the PWM signal, the smallest error between a frame and pulse can be computed.

First we need to estimate the number of pulses after startup, given a PWM-timestamp,
Tpwm:

k =

⌊
Tpts − Tpwm

p

⌋
(5.1)

Where k represents the number of pulses, Tpts the presentation time of the frame, Tpwm
the start time of the laser and p the period of the frame capturing duration, all expressed
in microseconds.

Using the number of pulses the timestamp of the last pulse can be computed:

Tlast,pwm = Tpwm + k ∗ p (5.2)
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Allowing the error, e (in microseconds), to be estimated as:

e = Tpts − Tlast,pwm + δ − interval

2
(5.3)

Where δ is a user defined offset (allowing the inclusion of additional fixed timing delays)
and interval

2 ensures that we are synchronising the laser with the centre of the interval.
When the error is expressed as a percentage of frame-period (e% = e

p), we can distin-
guish between a frame being received too early or too late: if e% > 50%, the received
frame is closer to the next laser pulse and is therefore produced (100%− e%) ∗ p µs too
early. By including this factor, the error is expressed in the range of (−1

2p,
1
2p).

5.3 Experiments and results

After estimating the error, this section shows the experiments and results of the accuracy
of the synchronization. First, an analysis is done on the boundaries of the PWM-interval,
followed by an analysis of the control system to reduce the synchronization error.

5.3.1 PWM interval

Empirical analysis showed that interval max could be set as small as 300 µs. Source
code analysis additionally shows that this includes a delay of 111 µs before the PWM
signal is started, hence the accuracy can be increased to 189µs. In Table 5.1 test results
are displayed, showing an average interval of 184.1 ± 3.92 µs, reached in 5.85 ± 2.70
iterations. A larger test set (N=550) resulted in an interval of 185.0± 2.79 µs.

5.3.2 Tuning

To reduce the synchronization error, a PID controller [25, 20] is used. Such a controller
consists of three tuning parameters, which in short can be described as:

• P: proportional gain; corrects the signal with a value proportional to the error. A
large P-value means that the controlled value is more sensitive to the direct error.

• I: integrator; corrects the offset between the controlled value and a target value.

• D: derivative; decreases (damps) the oscillation of the controlled signal.

Before each of these parameters is determined the (step)response of the imager is
recorded by toggling the framerate between 30Hz and 32Hz. By logging the presentation
timestamp of the received frames, the actual framerate of the imager is computed. The
resulting response is shown in Figure 5.3.

As a request to change the framerate is started in the CPU domain and needs to travel
through the GPU to finally be processed at the imager, a (varying) delay in the response
can be observed. Additionally, as the framerate is a digital parameter, no overshoot, no
setup time and a small offset can be observed, which increases the complexity of algebraic
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# interval (µs) iterations

1 185 3
2 186 6
3 182 12
4 187 4
5 187 3
6 181 3
7 180 3
8 189 4
9 184 5
10 185 4
11 189 5
12 181 9
13 177 3
14 189 6
15 179 7
16 184 5
17 188 9
18 184 8
19 188 10
20 177 8

Table 5.1: Data from several runs of determining the interval in which the PWM is
started. Average interval is 184.1± 3.92 µs, reached in 5.85± 2.70 iterations.
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Figure 5.3: Imager response when switching back and forth between a 30Hz and 32Hz
framerate, using the imager in mode 5. Top graph shows the full response while the
bottom graph shows a more detailed view

tuning of the controller [45, 15]. When factoring in the system error (the estimation of
interval), manual tuning is assumed to provide sufficient synchronization accuracy.

Tuning the controller is done by varying the proportional gain while setting both the
integration and derivation to zero. The gain has been tested with values in the range
P ∈ [0, 9] with a step size of 1. As the initial error between the laser and the camera
varies with the startup time, each P-value has been tested for 50 startups, for which the
first five seconds of the response is recorded. The average response per gain is shown in
Figure 5.4 and Figure 5.5.

For a proportional gain, P > 4, the synchronization error is within the system error
within 30 frames. As the oscillation stays below the system error, additional tuning of
the integration and derivation parameter is not needed. From Figure 5.4 and Figure 5.5
it can also be observed that a larger gain results in a smaller error, but it also requires
more frames to become stable. Therefore a gain of P = 7 is selected: the data suggests
that the synchronization error is smaller than the system error within ∼ 22 frames, while
oscillating a minimum of 10 µs within the system error.

With the correction factor being updated every frame update and being linear de-
pendent on the error and hence the frequency, the gain of P = 7 (measured at 30Hz)
can be computed as a frequency-dependent gain of 7

30 ∼ 0.233 ∗ f .
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(5.4a) P=0, I=0, D=0

(5.4b) P=1, I=0, D=0

(5.4c) P=2, I=0, D=0

(5.4d) P=3, I=0, D=0

(5.4e) P=4, I=0, D=0

Figure 5.4: Average synchronisation error per gain (P ∈ [0, 4]) of the first 100 frames,
for 50 system start-ups. The grey area represents the standard deviation and the red
area the system error (interval). Left: full view of error. Right: detail, zoomed in on
the system error.
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(5.5a) P=5, I=0, D=0

(5.5b) P=6, I=0, D=0

(5.5c) P=7, I=0, D=0

(5.5d) P=8, I=0, D=0

(5.5e) P=9, I=0, D=0

Figure 5.5: Average synchronisation error per gain (P ∈ [5, 9]) of the first 100 frames,
for 50 system start-ups. The grey area represents the standard deviation and the red
area the system error (interval). Left: full view of error. Right: detail, zoomed in on
the system error.
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Chapter 6

Distance Estimation and
Performance

After modeling, calibrating and synchronizing the LaserPi, this chapter presents the de-
veloped software pipeline, image filters, corrections and the final distance measurements
with their (in)accuracies.

6.1 Image processing

Several processing steps are performed before a final estimation of the laser reflection is
given. In the next sections, we first introduce the full processing pipeline followed by a
more detailed explanation of the image processing step.

6.1.1 Pipeline

The prototype is built on top of a Raspberry Pi Zero (see Chapter B). At the heart
of this system is a BCM2835 SoC [1] containing a 32 bit, single core ARM1176JZFS
processor running at 1GHz and a VideoCore IV GPU running at 250MHz, capable of
24 GFLOPS.

When looking at the requirements, it can be noted that we want an update frequency
of at least 10Hz. If all processing would be done on the ARM, this would mean that each
frame should be processed within 100.000.000 clock pulses. The previous chapters show
that the IMX219 will be used in mode 5, producing 1664x928 pixels per frame. Basic
image processing operations such a blurring with a 5x5 window or pixel comparisons
might require a total of at least 30 operations/readouts per pixel, resulting in a CPU
utilization of 45 percent. Since this does not include any flow control, memory calls,
context switching or other (inter-)process controls, it strongly indicates that a pure-
CPU solution might not be sufficient. As such, a pipeline has been constructed, making
use of both the CPU and GPU. An overview is shown in Figure 6.1.

The designed pipeline is controlled by the LaserPi-process, running on the ARM. It
initiates the imager and Image Sensor Pipeline (ISP) via the MMAL interface [2]. After
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Figure 6.1: Schematic overview of the full processing pipeline. All CPU-GPU commu-
nication is handled by the VideoCore Host Interface (VCHI).

initialization, the imager produces raw Bayer-frames at a fixed interval. These frames
are received and timestamped by the GPU, which pushes the raw image through the
ISP, producing YUV formatted images. The result is stored in a GPU-located image-
pool, after which the CPU is notified via an MMAL callback. This callback initiates the
OpenGL processing stage on the GPU, which retrieves the ISP-processed image from
the pool, applies several filter operations, and stores the result in a second pool in the
CPU-GPU shared memory region (VCSM). A second notification is sent to the CPU,
which then retrieves the filtered frame from the VCSM, performs a laser-detection step
and computes the 3D coordinates of the laser reflection. By utilizing the CPU-GPU
shared memory, image buffers do not need to be copied between the GPU and CPU.
As such, both the ARM and OpenGL can perform operations on the same memory
structure, making more efficient processing possible.

In addition to activating the OpenGL processing, the MMAL callback also updates
the framerate of the imager and synchronization of the laser as explained in Chapter 5.

6.1.2 Filtering

The image filtering follows the same approach as Gao et. al [19]. In their setup, they
pulse the laser on alternate frames and track the per-pixel luminosity transition. When
a pixel has a minimum count of four transitions it is said to be part of the reflection.
The resulting binary image is then blurred, interpolated and finally used to do laser
localization and distance estimations.
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Our approach slightly deviates and is done in the following sequence:

1. After receiving a callback from the MMAL interface, only the luminance channel
(Y) of the captured image is pushed to an OpenGL structure. The other channels,
U and V, are discarded.

2. We then compute the absolute difference between two consecutive frames. To
enhance the detectability of the laser at longer distances this step additionally
multiplies the top 20 percent of the filtered image with a linear gain, ranging from
1 to 10.

3. Next, the image is blurred with a 5x5 normalised window, where the weight, w,
for each element in the window is represented by its inverse distance:

w = 1/
√
dx2 + dy2 + 1 (6.1)

with dx and dy representing the relative pixel position with respect to the centre
of the window. This step acts as a low-pass filter, reducing the effect of random
noise. For more reduction, blurred pixels with a value below 0.1 are set to 0.

4. In contrast to Gao et. al [19], we use a blend instead of a transition tracker. The
blend merges the newly filtered image and a running average, resulting in a new
average, by performing a pixel blend according to

b = a ∗ (1− blend) + b ∗ blend (6.2)

where blend is a blend factor of 0.75 and a and b the new and running average
pixel luminosity respectively.

5. The blend is then analyzed in the CPU domain. On the CPU, we first retrieve the
highest pixel index per image-column for the pixel which has the highest luminance
value. As pixels near each other are likely to have similar values, this process is
sped up by skipping every other column and row.

6. Computing the vertical center of the laser reflection is done by finding for each
column the boundaries of the uninterrupted blob, holding at least 70 percent of
the value of the previously found maximum, where the maximum has at least a
value of 10 (out of 255). The weighted average of this blob is then computed and
assumed to represent the center of the laser reflection. When the total weight of
the blob is below 25, the blob is discarded as noise.

7. Finally, for each column, the estimated laser-pixel is transformed in a distance
estimation, via the backward projection of the camera and the laser-plane estim-
ation. This step applies a final filtering, where only values between 1 and 10000
mm are assumed to be true.

The laser-finding process is explained in more detail in Algorithm 2.
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Algorithm 2 Distance computation for a filtered frame. The full algorithm runs on the
CPU. The provided parameters are the filtered frame (frame), the minimum luminance
for a pixel to be considered (minlum = 10), the minimum value a pixel should have
to be considered part of the blob (minblob = 70%), the minimum weight for a blob to
be considered (minweight = 25) and the minimum and maximum distance value for the
triangulation to be considered valid (mind = cc/1 and maxd = cc/10000).

1: function COMP DIST(frame,minlum,minblob,minweight,mind,maxd)
2: for all i ∈ COLUMNS do
3: maxidx = 0 . Detect maximum pixel
4: for all j ∈ ROWS do
5: if frame(i, j) > frame(i,maxidx) then
6: maxidx = j

7: if frame(i,maxidx) < minlum then . Noise threshold 1
8: return (−1,−1,−1)

9: blob = minblob ∗ frame(i,maxidx) . Determine Blobsize
10: m = n = maxidx
11: while (frame(i,m) > blob) & (m ∈ ROWS) do
12: m = m− 1

13: while (frame(i, n) > blob) & (n ∈ ROWS) do
14: n = n+ 1

15: avg = weight = 0 . Weighted Average
16: for all j ∈ [m,n] do
17: avg = avg + j ∗ frame(i, j)
18: weight = weight+ frame(i, j)

19: jlaser = avg/weight
20: if avg < minweight then . Noise threshold 2
21: return (−1,−1,−1)

22: (xn, yn) = CAM BACKWARDS(i, jlaser) . Camera projection
23: d = 1− (ac ∗ xn + bc ∗ yn) . Triangulation
24: if mind < d < maxd then
25: z = cc/d
26: return z ∗ (xn, yn, 1) . Distance estimation
27: else
28: return (−1,−1,−1)
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Figure 6.2: Picture of the testsetup. Left the prototyped sensor, right the Hokuyo
UTM-30LX , both mounted on a stroller

6.2 Setup

To validate the results of the prototype, its output is compared with the measurements
of the Hokuyo UTM-30LX [13]. Both sensors have been mounted on a rigid structure on
a stroller, as shown in Figure 6.2. As the measurements of both sensors are in different
coordinate frames, transformation matrices have to be estimated.

The reference point for both sensors is defined at the laser source of the prototype,
with the z-axis pointing forward and the y-axis upwards. Computing the transformation
is done by measuring and estimating the distances and angles manually. For the Hokuyo,
the resulting matrix is defined as:

Phokuyo =

 0.9999 0.0115 109.8701
−0.0115 0.9999 −6.8423

0 0 1

 (6.3)

And for the LaserPi:

Pcamera =


1 0 0 0
0 0.8520 0.5236 −49.244
0 −0.5236 0.8520 0
0 0 0 1

 (6.4)

As the prototype computes a 3D point cloud, a 4D projection matrix is used. After
projecting the 3D point cloud to the proper reference frame, the y-axis is eliminated. 1

1In an ideal setup, the laser is aligned perfectly with the camera, and hence all y-values should be
zero after the projection. Due too the roll of the laser and other small inaccuracies, this may not be the
case. But, as the transformation matrix is measured manually, the error in the projection is assumed to
be significantly larger than the induced error of disregarding the roll of the laser.
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6.3 Post processing

The presented models and computations are able to correct most of the distortions.
However, as parts of these models are approximations, there are remaining inaccuracies
and residuals. To reduce those inaccuracies, post-calibration is commonly performed [19,
29]. With post-calibration, the output of a prototype and a ground-truth are compared.
This difference is then used to make a generalization of the error, which eventually is used
to correct the output of the prototype. Both [19] and [29] show that a post-calibration
model of 1

x is able to correct the distance estimations. After applying the 1
x correction,

they correct the final residuals with interpolation of lookup tables: these tables state
the remaining offset at certain distances.

As the presented system allows the use of a line-laser and a high-distortion lens, a
more elaborated (higher dimension), post-calibration model has to be used as opposed
to the 1

x approximation. Experiments showed that a 2-4 order polynomial produced
acceptable results. The result of the post-calibration is shown in Figure 6.3, where
different measurements of a straight wall of both the Hokuyo and LaserPi are shown.

Estimation of the polynomial is done by aligning the Hokuyo and LaserPi with a
straight wall and recording a set of measurements at an increasing distance. In total 30
sets have been recording at 10cm increases, spanning a distance from 10 to 300cm. Each
set holds approximately 5 seconds of data, resulting in 150 measurements of the Hokuyo
and 25 of the LaserPi.

To compute the correction, all data points of a single sensor within a set are combined
to a superset. Of this superset, the top 5 percent outliers are removed. First, 5 percent
of the largest and smallest distance estimations are removed. Of the remaining 90
percent, 5 percent of measurements at each side of the lens boundary is removed as
these measurements are most affected by the distortion. In total 81% of a measurement
set is used to create a polynomial fit.

Fitting is done with a first-order polynomial for the Hokuyo, whereas the LaserPi is
fitted with a second-order polynomial. The difference between these two fits is assumed
to be the measurement error. By collecting all differences, a 2-4 order polynomial is
estimated, representing the projection error as shown in Figure 6.1.

The computed polynomials are shown in Table 6.1, used to correct the estimated
z-value of a measurement using the following equation:

z = z − (p00 + p10 ∗ x+ p01 ∗ z + p20 ∗ x2 + p11 ∗ x ∗ z + p02 ∗ z2 + p21 ∗ x2 ∗ z+
p12 ∗ x ∗ z2 + p03 ∗ z3 + p22 ∗ x2 ∗ z2 + p13 ∗ x ∗ z3 + p04 ∗ z4) (6.5)
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Figure 6.3: Comparison of several sets of measurements between the Hokuyo UTM-
30LX and the Prototype (LaserPi), before and after the post calibration step. The cyan
coloured lines in the first image indicate the estimated fit per measurement set. The
bottom image show the calibrated results, indicating that the performance of the LaserPi
is sufficient to use for distances up to 2 meters. Although the post calibration is able to
produce proper results, effects of lens distortion in the measurements are still visible in
the final projection.
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Figure 6.4: Computed error (white) and the 2-4 polynomial post-calibration fit.

p00 -14.2902751197414
p10 0.0050563731787
p01 0.1052658383751
p20 0.0000644780056
p11 0.0000182952860
p02 -0.0001576897638
p21 0.0000000306129
p12 0.0000000017341
p03 0.0000000365886
p22 -0.0000000000076
p13 -0.0000000000001
p04 -0.0000000000052

Table 6.1: Polynomials of the post-calibration fit
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Figure 6.5: Average angular resolution (black) and its standard deviation (grey) per
pixel, across the width of the imager. The displayed average contains the error of all
measurements. More detailed graphs are shown in Chapter C.

6.4 Results

After applying the post-calibration step, this section shows the final results and analysis
of the distance accuracy, (angular) resolution, field-of-view and computational perform-
ance. At the end of this section a reflection of the requirements is given.

6.4.1 Distance estimation

Evaluating the distance estimation capabilities of a laser distance sensor is typically
done with high- and low- reflectivity objects, in different light conditions. For our
setup, we used high and low reflectivity walls indoors and outdoors. The outdoor tests
have been performed on a bright and sunny day. Outdoors, the prototype failed to
produce any sensible distance estimation, regardless of the tested distance. Therefore,
only the test results for the indoor experiments are shown. These are listed in Figure 6.6
and Figure 6.7. More detailed results, including the individual results for each set of
measurements, can be found in Chapter C.

The graphs in Figure 6.6 and Figure 6.7 show unfiltered and filtered results. The first
shows the error based on all measurements in a set, whereas the latter removes 5 percent
of the measurements at the edges. Filtering is done to view the effect of the increasing
distortion at lens boundaries.

Results show that both setups have a remaining error: the accuracy is non-zero and
varies slightly with the distance, indicating that calibration did not remove all inac-
curacies. Additionally, the resolution increases with the distance: at longer distances,
it becomes more difficult to estimate the laser reflection, hence higher variance in the
measurements will occur. The low-reflectivity setup shows a decrease in resolution at
large distances. As the prototype starts failing to detect the low-reflectivity wall, fewer
measurements are received, eventually decreasing the field-of-view and therefore also
decreasing the variance.

In Figure 6.5 the average angular resolution per pixel position is shown. Due too the
distortion, projection, and correction in our setup, a slight variance can be observed.
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Figure 6.6: Summarised indoor testresults of a high reflective wall. The top image shows
the (average) remaining error with the computed ground truth. In the middle image the
error (standard deviation) of the measurements with respect to the measured distance
are displayed. The bottom image shows the observed field-of-view.

58



Figure 6.7: Summarised indoor test results of a low reflective wall. The top image shows
the (average) remaining error with the computed ground truth. In the middle image the
error (standard deviation) of the measurements with respect to the measured distance
are displayed. The bottom image shows the observed field-of-view.
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Average

CPU 50Mb
GPU 21Mb
Total 71Mb

(a) Measured memory usage (RAM) of the LaserPi. The Raspberry Pi has a maximum of 512Mb
available. In our prototype this memory is split 50/50 between the CPU and GPU.

Average Min Max

CPU 22.57 ± 5.45 15.81 103.58
GPU 66.87 ± 7.72 52.96 111.22
Total 89.42 ± 10.84 70.15 199.16

(b) Average processing time (ms) of a single frame, based on a period of 20 minutes. Estimates
are captured by retrieving the GPU time upon start and finish of the CPU image processing
part. The start time is determined by using the presentation timestamp of a frame, provided by
the GPU as described in Chapter 5.

Table 6.2: Performance measurements of the LaserPi

This variance is largest at the edges of the lens. The average angular resolution is
estimated to be around 0.8 degrees.

6.4.2 Performance

To provide some insight into the processing capabilities and limitations of the LaserPi,
several performance measurements have been performed. For all measurements, the
prototype was producing results at 10Hz. An overview of the memory usage and the
processing time is given in Table 6.2.

Viewing the Linux-provided running CPU statistics showed that the main script had
a utilization of around 35 percent, with the five- and fifteen- minute load showing an
average of 0.50 and 0.35 respectively2. It should be noted that the load-estimates include
the processing time to maintain a connection, display information, write statistics to file
and maintain the overall operating system.

Regarding the GPU, only an indication of the load of the dual-core Vector Processing
Unit (VPU) could be estimated, being idle >80 percent of the time. The 3D processing
pipeline used by OpenGL (using the 24GFLOPs quad-core QPU), does not allow bench-
marking. However, as the VPU controls the QPU, it is assumed that the QPU isn’t
running at full load either. Additionally, with the GPU spending on average only 67ms
on a frame, and the imager producing frames at 10Hz, the estimated GPU load is 0.67.
The discrepancy between the measured idle-time and the estimated load might be caused
by synchronization and waiting of threads and hardware-blocks.

2The final statistics have been captured after a 20 minute run of the prototype
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Description Required Measured RPLiDAR [5]

Mechanics Solid-State Solid-State Rotating
Cost @ 1pcs - $125.6 $450
Cost @ 1000pcs <$30 $35 + ($25) ∼ 200
Dimension (max) 10x4x3 cm 8.5x4.5x3.5 cm 7.6x7.6x4.1 cm
Resolution < 1% @ 2m ∼ 1.85% @ 2m ∼ 1% @ 2m
Field-of-view 120 deg 105 deg 360 deg
Angular Resolution <0.9 deg ∼ 0.8 deg ∼ 0.9 deg
Maximum distance > 2m ∼2.5m <6m
Update Rate >10 Hz 10 Hz <10 Hz
Samples > 1333/s 16640/s 4000/s
Eye Safe Class 1 Class 1 (>0.8cm) Class 1
Processing Fully Embedded Fully Embedded Fully Embedded

Table 6.3: Overview of the requirements and how the prototype matches. Details on
the cost-estimates are given in Chapter B. Comparing the results of the first proto-
type and the RPLiDAR shows competitive specification at a lower cost, while allowing
improvement of several properties.

6.4.3 Requirement evaluation

Table 6.3 shows how the prototype matches the requirements. While dimension, cost,
field-of-view, and resolution do not meet the minimum, performance analysis has shown
that there is still enough capability in the BCM2835 left to improve. Furthermore,
all of these (measured) values are an initial estimate. Cost can be reduced by more
investigation and negotiation with suppliers. The dimensions can be reduced by using
a different construction, with an estimate for a second prototype having a dimension of
around to 8x3.5x3 cm. Field-of-view can be increased by using a different laser, as the
used module turned out to have a physical limit of 115 degrees.

Reviewing the accuracy and the resolution estimates of Table 4.10, it is suggested that
the current image processing pipeline has a sub-pixel accuracy of just below 0.4 pixels:
at 2 meters, both experiments and theorised model show a resolution of ∼ 1.8 percent
and at 2.5 meters, both estimate a resolution of ∼ 2.4 percent.

61



62



Chapter 7

Conclusion and Future Research

7.1 Conclusion

This thesis questioned the possibility of improvement of laser distance sensors for con-
sumer robotics. It was shown that existing models and literature are not able the satisfy
requirements such as a solid-state design, low-cost and large field-of-view. To meet these
constraints, a generic triangulation model, independent of camera properties, has been
introduced.

The presented model works by assuming the normalized position of a laser reflection,
acquired from the backward projection of a camera model. With the normalized position
and a plane representation of the (line) laser projection, the triangulation model is able
to estimate a 3D position. The addition of a background irradiance model and laser
safety standards eventually allows prediction of the distance estimation limitations of a
prototyped sensor.

After theorized optimisation of the model parameters, a prototype has been proposed,
build and calibrated. Camera calibration was done using existing tools, with the addition
of capturing the laser reflection in the calibration images. This reflection has been used to
correct for misalignment errors between the camera and laser, resulting in an integrated
calibration process. That is, parameters and errors of both the camera and triangulation
models where estimated using the same data set.

To ensure eye-safety and maximum detection distance, a phase lock loop mechanism
has been designed for synchronizing the laser activation and the imager exposure. Using
the GPU clock, the phase lock loop was shown to be able to synchronize the periods of
the imager and laser with an accuracy of several tens of microseconds.

Benchmarking the sensor showed that accuracies similar to existing low-end systems
can be reached while having a fraction of the cost. Additional analysis showed that the
current implementation has a low processor load for both the CPU and GPU, allowing
improvements and more advanced processing steps in future setups.

In conclusion, this thesis showed that it is possible to reduce the cost of current
laser distance sensors, while maintaining or improving the performance, by developing
a prototype in an integrated approach.
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7.2 Future research

This section shows several shortcomings and ideas for improvement of the performance
of the prototyped sensor and the derived models.

7.2.1 Sensor model

Regardless of all theorized corrections, the prototype (and hence the proposed sensor
model) still produce slightly erroneous distances estimations. Even after post-calibration,
the results are not error-free. Part of this could be devoted to improper camera cal-
ibration or selecting an improper camera model: the results show a large amount of
uncorrected-distortion at the edges. Additionally, the post-calibration fit uses a 2-4
polynomial, whereas existing literature applies a 1

x correction. By collecting more data,
improved analysis and fitting of the post-calibration error could be done.

The selected plane estimation has some limitations too. It only works when the optical
axis of the camera and the laser are not are aligned parallel or perpendicular to each
other. The former would result in bc = 0, and hence the depth information from an
image (y-position of a pixel) is lost (see (3.17)). In the latter case, bc will be estimated
as ∞, which would also remove the depth information of an image.

The current model also does not include the scheimpflug condition [31, 30], commonly
used in triangulation setups to increase the depth-of-field. While the utilized camera
model can correct for tangential errors, it is only able to correct for small deviations.

It might also be noted that the Spectra-estimates are not correlated with the imager,
while definitions of for example the quantum efficiency of a pixel are explained. Although
it should be possible to correlate the background irradiance with the effect it has on the
digitized signal of a pixel, many conversions, specifications and deep knowledge of the
imager is needed. As such, this correlation is not included in the model, but it could
help improve the limit estimates of a hypothesized sensor.

Additionally, the Spectra-estimates have not been verified with measurements during
testing of the prototype. While the estimation results indicate proper limit estimations,
verifying the Spectra tables and the output of the sensor might improve the prediction.

In this thesis, laser specification and limitations where presented, yet, actual intensity-
measurements have not been performed. To guarantee eye-safety of the final prototype
and proper deduction of all safety regulations, measurements need to be taken

7.2.2 Calibration

With respect to calibration, there are several improvements possible. Foremost, the
used toolbox for camera calibration uses an optimization step to find the exact corner
of the squares in the checkerboard. With the laser pointing at the checkerboard, the
optimization sometimes optimises towards the laser reflection, as those pixels are much
brighter and hence assumed to be white pixels. As such, small errors in the camera
intrinsic estimates are introduced. Using larger checkerboard patterns, alternating the
laser projection or updating the optimization step might solve this challenge.
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Additionally, the laser-plane estimation requires a user to select the laser reflection
manually, which consumes time and is error-prone. Just as the camera calibration, this
step could also be automated. When automated, the linear optimization step, which
was proposed in this thesis, would not be needed anymore.

The linear optimization step in itself also introduces errors in the model: while op-
timising the global plane, it does so by updating the selected pixel coordinates of all
images, regardless of how well they represent the center of the laser reflection.

The utilized post-calibration corrects for errors in depth-estimation. Stated differently,
it only corrects for distortion in the vertical dimension of the imager. As the lens
distortion affects both the horizontal and vertical dimension, residual errors might exist
across the field-of-view. Additional research needs to be applied to determine the severity
of this limitation.

When the post-calibration step is updated to include the horizontal distortion of
the lens, the triangulation-estimation step could possibly be discarded. As the post-
calibration is used to correct both depth and field-of-view in a non-linear fashion, this
correction might be able to correct for misaligned triangulation parameters. Using the
theorized triangulation parameters and post-calibration fit, the full calibration process
could potentially be simplified.

7.2.3 Synchronisation

Currently, the phase lock loop does not correct for any timing between the exposure
of the imager and receiving the first pixels at the GPU. The presented mechanism just
assumes that this happens instantly. Measuring this offset might increase the accuracy
and hence increase the captured laser reflection intensity.

Another shortcoming of the taken approach is that the phase lock loop does not
account for any clock drift between the hardware PWM and the GPU clock. As such,
the provided solution is essentially an open loop system. Eventually, the laser and
imager might go out of sync. Accounting for clock drift could be done by allowing the
hardware PWM to produce interrupts at the GPU. These interrupts could also eliminate
the restart-sequence to estimate the start time of the PWM signal, possibly decreasing
the system error even more.

In the current implementation, the CPU controls the framerate at every frame update.
Ideally, after settling, the controller should be able to relax the number of corrections,
reducing any overhead on the GPU. To do such a thing, more appropriate controllers
might be available, as the presented regulator only consists of a P-gain.

7.2.4 Image processing

Our prototype uses a straightforward image filtering for which no thorough testing or
optimisations have been performed. As a result, the filters have difficulty in finding the
laser reflection at black objects or in bright environments. Additionally, the corrections
of the wall-measurements show curved projections, while these distance estimates ideally
should produce a fluent straight line.
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By testing different filter parameters, the sensitivity of the laser-dot localization can
be enhanced. Improved detection in bright environments could also be established by
using data produced by the ISP or imager such as the white balance of the taken frame:
bright environments typically have higher white-counts.

Tests also showed that estimates at small distances are affected by ghosting: that is,
at short distances the estimation is affected by the indirect reflection of the laser light.
More advanced filters could take this into account. For example, different filters could be
assigned to different pixel location: correcting for ghosting at short distance and filters
with enhanced sensitivity for the laser reflection at larger distances.

Besides filtering, the laser-pixel position estimation could be improved too. Currently,
a blob detection algorithm is used which assumes a uniform reflection across an object.
Since the blob boundaries are only determined by a threshold, patterns or nonuniform
reflections might result in improper boundary estimation. Existing literature shows that
precise laser-dot localization can be achieved by modeling the Gaussian shape of the
laser beam. Applying such a technique might improve the sub-pixel accuracy and hence
the distance estimation.

In our prototype, the laser detection is run at the CPU, whereas it was shown that the
GPU is not under full load yet. Pushing the dot detection to the GPU might decrease
the total processing time of a single frame, allowing a higher update rate.

7.2.5 General

The used imager (and the ISP) have the highest cost of the prototype ($40 at $64,
including licensing). Recently, direct communication with the CSI-2 peripheral became
available on the Raspberry Pi platform. As such, different imagers can now be used
from which the raw (Bayer) data can be retrieved, allowing the usage of monochrome or
global shutter imagers. Using a monochrome imager would increase sensitivity, as pixels
are not extended with color filters. A global shutter imager would result in a reduction of
the pulse width of the laser. This, in turn, would allow a more powerful laser and hence
result in an increase of the maximum detection distance. Selecting a different imager
would also allow a significant reduction in the cost of the setup. It should, however, be
noted that reading the raw data from the CSI-2 peripheral bypasses the ISP, so the pixel
correction and balancing operations of the ISP are not applied.

Throughout all experiments, the current mechanical setup showed to be prone to
movement. Further research could be dedicated to developing a more rigid construction,
resulting in more stable measurements.

To make the sensor suitable for, for example, the drone industry, tests, and estimates
of power consumption need to be made. With the current performance analysis showing
that the SoC only has a load of 0.35, frequency reduction or other power controlling
actions could be taken. This however also requires a mapping of the power consumption
under the current load.
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nalen der Physik, 362(23):541–567, 1918.

[41] Richard Szeliski. Computer Vision: Algortihms and Applications. Springer, 2011.
[42] OpenCV team. Open source computer vision library. Online, June 2017.

url:https://opencv.org/.
[43] Michel Thoby. About the various projections of

the photographic objective lenses. Online, 2012.
url:http://michel.thoby.free.fr/Fisheye history short/Projections/Various lens projection.html.

[44] S3 Solid State Lidar Sensor. Datasheet, Quanergy Systems, Inc., 2016.
[45] Yuan-Jay Wang Ying J. Huang. Robust pid controller design for non-minimum phase time

delays systems. ISA transactions, 40(1):31–39, 2001.

69



70



Appendix A

Camera: Projection, Distortion
and other Properties

The camera is a vital part of the triangulation setup. This chapter introduces the basic
principles of image projection and frame capturing of a camera system and yields as
background information and reference material for this thesis. The principles explained
here are assumed to be known and will be directly or indirectly used throughout this
thesis.

Before the inner details of a camera can be explained, we first need to provide some
used definitions. In this thesis, a camera is defined to be a mechanical device consisting
of a lens and an imager. The former bends and shapes passing light rays, such that a
projection with specific properties is created. The latter is an array of light-sensitive
elements, known as pixels, able to electronically encode the amount of light hitting a
discrete surface.

Using these definitions, we explain in the next sections how the properties of pixels,
imagers, and lenses affect a captured image.

A.1 Pixels

A pixel is a small light-sensitive element, which is able to transform an incoming light
ray (or photon) into an electric signal. A schematic overview of its components is shown
in Figure A.1.

At the top of the image, several photons hit the light-sensitive part (sensor) of the
pixel. The sensor converts the incoming photons into electrons which in turn are stored
in the pixel well. As the well gradually captures more electrons over time, its electrical
potential increases. This potential is eventually measured and represents the pixel signal.
The amount of time that a well collects electrons of which the pixel signal is generated is
called the exposure time. When the exposure time is such that the maximum capacity
of the well is reached, the pixel is said to be saturated and no more electrons can be
captured.
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Figure A.1: Schematic overview of the internals of a CMOS pixel. a) Incoming photons.
b) Sensor. c) Excited electrons. d) Pixel well. e) Saturation capacity (pixel height). f)
Pixel signal. g) Temporal dark noise. h) Length of pixel. i) Width of pixel.

Using the EMVA1288 standard [14], a more concise and elaborate description can be
given, providing insight into how all these components work together.

Starting at the top of Figure A.1, six photons seem to reach to the sensor at the
same time. In reality, each photon might have a different time of arrival. If a pixel
needs to operate in a dark environment, has a small size or has to work with short
exposure times, these differences in arrival times introduce noise: some pixels might
receive photons, while others don’t. When analyzing the arrival time of photons in 1918
[40], it became apparent that the arrival time of photons could be described by a Poisson
process. The introduced noise was called Shot Noise, εN , and can be computed by the
square-root of the number of photons, N :

εN =
√
N (A.1)

It is however not very common to describe the shot noise of a pixel per photon. Instead,
the light intensity (number of photons per surface) is used. If the surface area of a pixel
is described with P and the light intensity as L, the shot noise can be expressed as:

εN =
√
P ∗ L (A.2)

From Figure A.1 it can also be deduced that not all received photons result in the
release of an electron, e−. The efficiency of conversion N

e− is called the quantum efficiency
(QE) and depends on manufacture properties as well as the color (wavelength) of the
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photon. For simplicity, we assume in this introduction that the QE for all wavelengths
is the same. Under that assumption, the efficiency of a pixel can be defined as:

η =
N

e−
(A.3)

Hence, the number of electrons, Ne, and the shot noise, εe, can be computed as:

Ne = N ∗ η = P ∗ L ∗ η

εe =
√
N ∗ η =

√
P ∗ L ∗ η

(A.4)

Since the maximum number of electrons in a well can be determined, the pixel signal,
s, becomes:

s = min(Ne, sc) = min(L ∗ P ∗ η, sc) (A.5)

where sc is the saturation capacity of the pixel.

Due too limitations in the process of manufacturing pixels, imperfections in the
readout mechanism are introduced. This reading error is called temporal dark noise
(TDN). Combining it with the shot noise, the total noise in a pixel signal can be de-
scribed with:

n =
√

(TDN)2 + (Ne)2 =
√

(TDN)2 + (L ∗ P ∗ η) (A.6)

From which we can determine the (linear) signal-to-noise ratio:

SNRL =
s

n
(A.7)

or in decibels:

SNR = 20log10
s

n
(A.8)

Using these equations, the effect of pixel size and dark environments on a pixel signal
and its noise can be analyzed. In Table A.1 the parameters of three imagers are shown.
With the previously introduced equations, Figure A.2 can be constructed, which shows
the signal and noise values of these imagers versus the light density.

Looking at Figure A.2 it can be observed that each sensor produces a line with a
different slope. This slope indicates the rate at which the number of electrons in a
well increases with respect to an increase in photons: the steeper the line, the faster
the pixel reaches its saturation point. In other words, the slope represents the pixel
sensitivity. The sensitivity of a pixel is commonly expressed as luminous exposure, or
mV/Lux ∗ second, which includes the QE of all receivable light colors (wavelengths).

The inset of Figure A.2 shows also the point at which a pixel produces a signal which
is higher as its noise (SNR ≥ 1) and hence can be differentiated. As can be observed,
there is no direct correlation with the sensitivity: while the ICX414 (green) is more
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Sensor Pixel Size (µm) η (%) TDN (e−) sc (e−)

ICX618 (CCD) 5.6x5.6 70 11.73 14508
ICX414 (CCD) 9.9 x9.9 39 19.43 25949
IMX249 (CMOS) 5.86x.586 80 7.11 33105

Table A.1: Overview of specifications of three different image sensors. This information
is copied from [14].

Figure A.2: Signal and Noise versus light density. The inset shows the point at which
the imager produces a signal which can be differentiated from the noise.
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sensitive than IMX249 (red), the ICX414 requires a higher pixel count, and therefore
more light, before a detectable signal is measured.

Comparing the point of signal detection with the moment at which the pixel satur-
ates provides the working area of the imager, or its dynamic range (DR). It provides
information when a pixel is said to be black (when SNR = 1) or white (fully saturated,
when the signal is at its maximum). The maximum SNR is determined by computing
the difference between the signal and noise value at the moment of saturation.

While the signal seems to be only dependent on the light density, it should be noted
that the exposure time has an effect too. In the Figure A.2 the number of photons
reaching the pixel is normalized over the pixel size (hence light density), independent of
the time at that a pixel it is exposed. By using longer exposure times, more photons
reach the pixel and hence, producing a ‘higher density’, resulting in an increased signal
as opposed to short exposure times. When the exposure time is really short additional
photons should be brought into the environment, commonly done by utilizing a flash.

A.2 Imager properties

Arranging pixels in a 2D grid produces an imager. As different applications might require
different functionalities of an imager, they commonly have a variety of settings. This
section shows the effects of relevant properties.

A.2.1 Monochrome and color

When identical pixels are arranged in a grid, a black (monochrome) image is produced.
In order to capture color images, Bayer [11] developed in 1975 the Bayer pattern. By
placing red, green and blue filters over the sensitive layer in a pixel, Bayer was able
to reconstruct color images. The used pattern is shown in Figure A.4. Utilising this
pattern, a (raw) color image from an imager might look like Figure A.4a:left, after
which Figure A.4a:right is produced by demosaicing. Demosaicing is the process of
interpolating (or averaging) the individual pixels in such a way that each pixel can be
described with an RGB value. Modern systems contain typically a specialized image
signal processing (ISP) to perform such a task. The ISP commonly also applies other
image correcting techniques such as color correction and noise reduction.

A.2.2 Cropping and binning

When an imager is built it has a fixed resolution: the physical amount of pixels in either
dimension cannot be changed. In some applications, the maximum resolution of an
image is not needed. To reduce the amount of processing (or load of the ISP) functions
such as cropping and binning have been developed. Figure A.4b and Figure A.4c show
the effect of these functions respectively.

Cropping allows selection of a subset of pixels from the imager. In Figure A.4b, for
example, the cropped image is half the size of the full image, while providing equivalent
details. Binning (Figure A.4c) works by averaging pixels. With a 2-binning process, the
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Figure A.3: The Bayer Pattern. Each pixel has a dedicated color filter. As the human
eye is more sensitive to the color green, twice as many pixels have a green filter. [11]

(A.4a) Captured image, raw and after processing.

(A.4b) Cropping from the center (A.4c) 2-Binning

Figure A.4: Raw and processed images. The bottom images show the effect of cropping
(left) and binning (right), which are both half of the original resolution.
Top images are courtesy of http://www.cambridgeincolour.com/tutorials/camera-sensors.htm
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value of a pixel in the final (raw) frame is based on the average of 2 pixels from the
imager. It allows utilization of a large area of the imager, decreases noise effect due too
the averaging and improving bandwidth usage at the cost of lesser details.

A.2.3 Exposure and shutters

Having specified the internals of a pixel and how pixels together form an image, the
mechanisms of reading all these pixels values can be discussed. More specific, this
section explains the effect of exposure time, framerate, shutter time and how all these
cooperate.

To start, all (CMOS)-imagers generally can be classified into two types of image
retrieval: they are either rolling-shutter or global-shutter. The first works by capturing
(or storing/buffering) individual rows from of the imager sequentially, whereas the latter
buffers all rows at the same time. While rolling shutter imagers tend to be cheaper,
their approach to image retrieval has several effects on timing of the exposure as well as
distortion. To give a better insight, Figure A.5 and A.6 show a schematic overview of
the image capturing process of both shutter types.

Each row of pixels contains a reset and store trigger. If the reset is active, the charge
(well) of each pixel in the row is cleared. When the store trigger is activated, the pixel
signal is read and stored in the buffer. At the top of both Figure A.5 and A.6 the time
schedule of the reset and store signal are shown for a duration of 35 ticks. In this period
two frames of 3x3 pixels are captured. Both imagers have a framerate (or in this case:
period) of 18 ticks: that is, every 18 ticks the imager is triggered to capture a new frame.
The shutter time (the time between reset and store) is 9 ticks and the time to read and
store a row of pixels takes 6 ticks. Below the timeline, at annotated ticks, the state of the
imager and its buffer (also 3x3 pixels) are shown. The number within a pixel represents
the photon/electron count (QE = 1). Grey pixels contain irrelevant data, whereas white
pixels are used in a final frame. The colored arrows indicate activity: a line is receiving
a reset or store signal, or a line is being read/transferred to the buffer. The small yellow
circle at the corner of the imager indicates the position of a light source. As can be
observed at tick 19, the light source changes position from the top left corner to the
bottom right. At the bottom of the image, the final captured frames are shown.

The examples in Figure A.5 and A.6 only mention the term shutter time and not the
commonly used term exposure time. This is because there is an important difference
between both:

• The shuttertime of an imager is the time between the reset and store triggers of a
pixel. In both figures, the shutter time equals 9 ticks.

• The exposuretime of an imager is the time between the start of the reset of the first
pixel and the time that the last pixel of the full imager is read. For Figure A.5 this
equals 27 ticks (3x6 ticks to read a line and 1x9 for the initial exposure, whereas
the exposure time for the global shutter equals 18 ticks (1x6 ticks to read, as all
lines are read at the same time, and 1x9 for the initial exposure).
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Figure A.5: Simplified schematic functioning of a rolling shutter imager. Notice that as
the light source changes position at tick 19, the bottom row of the imager is still being
exposed. As a result, the final green frame contains a ‘blurred’ last row due to the effect
of partial exposure. Also, note that the ‘final‘ blue frame is still missing a line after 35
ticks because at that moment the missing row is not yet pushed to the buffer.
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Figure A.6: Simplified schematic functioning of a global shutter imager. Notice that
while the light source change position at tick 19, no disturbances are captured in the
final frame.
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Rolling shutter Global shutter

exposure line by line full imager at once
exposuretime (#rows * readout ) + shuttertime readout + shuttertime
distortion severe by fast motion or flashing small
price low cost higher cost

Table A.2: Short summary of most notable differences between rolling- and global-
shutter imagers

A short summary of the difference between rolling- and global- shutter imagers is
shown in Table A.2

A.3 Optics

The second part of a camera is the optics or lens, used to manipulate reflected light rays
from the environment, such that a proper image can be recorded at the imager. This
section introduces the basic terminology and (simplified) mathematical relations of lens
properties using the thin lens approximation.

One of the most well known equation in optics is the Gaussian (thin) Lens Formula:

1

u
=

1

f
− 1

v
(A.9)

It describes the relation of the distance u between the lens and an object placed in
front of the lens, the focal point of the lens, f and the distance v at which the projection
of the object is in focus.

Objects which are not located at a distance u are strictly speaking out of focus, yet
objects close to u might appear in focus. The region [u− δn, u+ δf ] is called the Depth-
of-Field (DoF). Related to the DoF is the Circle-of-Confusion (CoC), which describes
the maximum allowed blur for a spot to appear as it is focused. Controlling the DoF
is straightforward: the focal point f determines the position of the DoF whereas the
aperture controls the CoC and therefore the size of the DoF. A schematic overview is
shown in Figure A.7.

The aperture is the diameter, d, of the lens opening through which light can pass.
A smaller aperture results in a more focused light beam and therefore a smaller CoC.
Using the f-number, f/# or N , the aperture can be expressed as a fraction of the focal
point:

f/# = N =
f

d
(A.10)

While a smaller aperture increases the DoF and hence the overall sharpness of the
image, it decreases the number of photons reaching the imager and therefore requires
a longer shutter time to create an image with equal pixel intensities. As described in
Chapter A.2.3, higher shutter times also increase the sensitiveness to motion blur.
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Figure A.7: Schematic overview of the relations of a simple lens between aperture (d),
Circle of Confusion, Depth of Field and the Gaussian Lens approximation. As the top
image has a smaller aperture, the depth of field is increasing, given the same geometrical
constrains and CoC.
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Figure A.8

In Figure A.7 a comparison is shown between two images with the same focal point f
and CoC, but different aperture and therefore a different DoF.

The DoF is described by uf and un, which describe the maximum and minimum (or
hyperfocal) distance at which an object is projected with a blur smaller than the CoC,
and is hence perceived as ‘sharp’. From Figure A.7, uf and un can be derived and
expressed as:

un =
vf

v +Nc− f
(A.11)

uf =
vf

v + f −Nc
(A.12)

(A.13)

Or, when v = f , that is, the imager is placed at the focal distance, un simplifies to
the following as uf =∞:

un,v=f =
f2

Nc
(A.14)

To conclude this section a notion has to be made on the Angular-Field-of-View (AFoV
or FoV) of the lens. This is the subtended angle of the camera lens of the maximum view
it can project on the imager. Figure A.8 shows a schematic overview. For the shown
lens, assuming that the lens and imager are centrally aligned along the optical axis, the
following equation for computing the FoV can be derived:

FoV = 2 ∗ tan−1

(
1
2d

v

)
= 2 ∗ tan−1

(
d

2v

)
(A.15)
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A.4 Image projection

While the previous chapters about pixels, imagers and thin lens approximations provide
a basic understanding of a camera internals, it is not suitable to model the inaccuracies,
distortions and complex interactions found in real-world setups. For this, more advanced
models are used, as will be explained in Chapter 3.1.

This section, however, introduces several commonly used projections. The best, and
perhaps widest, known projection is the rectilinear projection. All introduced math and
insights from the previous sections are applicable to this projection. It is a projection
in which straight lines from the real world appear as straight in the projection. The
resulting image can be viewed in the same way as humans observe the world.

There are however also different projections possible such as fish-eye or wide-angle.
Several attempts have been made to capture the complexities of the most common
projection in simplified approximations [16, 34, 28]. The result is a set of five generic
descriptions. Each assumes that a ray of light can be described with (θx, θy), representing
the angle towards the optical axis of the lens in 3D space, projected to a 2D pixel location,
described with the coordinate (x, y). For explaining the difference we assume that the
ray of light moves from a 2D word coordinate to a 1D pixel position:

y = v ∗ tan(θ) rectilinear projection (A.16)

y = 2v ∗ tan(θ/2) stereographic projection (A.17)

y = v ∗ θ equidistance projection (A.18)

y = 2v ∗ sin(θ/2) equisolid angle projection (A.19)

y = v ∗ sin(θ) orthogonal projection (A.20)

Where each projection produce a different result, as shown in Figure A.9.
In short, the difference between these projections are [43]:

• Rectilinear, Prect: straight lines appear straight on the projection.

• Stereographic, Pstereo: crossing lines cross at the same angle in the projection, areas
are however distorted (not ‘equal area’). FoV commonly limited to 181 degrees.

• Equidistance, Peqdist: angle of ray is linear to the distance from the center of image.
This projection is, in essence, the “ideal” fisheye. Widest recorded FoV is 220, but
the FoV is typically around 182-185 degrees.

• Equisolid, Peqsolid: ‘equal area’ version of equidistance. Regions which have the
same surface area in the real world appear to have the same surface area in the
projection. Unlimited FoV (360), however, above 190 degrees, the image is heavily
compressed and hence hard to use for image processing.

• Orthogonal, Portho: Limited FoV (180), above 165 degrees the image is heavily
compressed.
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(A.9a) rectilinear
y = v ∗ tan(θ)

(A.9b) stereographic
y = 2v ∗ tan(θ/2)

(A.9c) equidistance
y = v ∗ θ

(A.9d) equisolid
y = 2v ∗ sin(θ/2)

(A.9e) orthogonal
y = v ∗ sin(θ)

Figure A.9: The five most common used projection models for modelling the effect of
lenses and their effect on incoming light rays. Striped rays do not hit the imager.
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Appendix B

Hardware Selection :
Experiments and Results

This chapter shows the steps taken to select the hardware components for the prototype.
It builds upon the models and ideas explained in Chapter 3 and Chapter A. First,
an imager is selected, as it is the most limiting component. The imager is the least
interchangeable and its properties such as pixel size, sensitiveness, exposure time and
frame dimensions have all a large effect on projection, processing capabilities, and eye-
safety. After the imager is chosen, the processing unit is determined, followed by several
experiments to select the lens. Finally, a deduction is made on the safety of available
laser modules after which an overview is given of the total estimated cost.

Before selecting the components, lets first recite the requirements:

1. Solid-state with a cost of < $30 each, when producing 1000 pieces.

2. Dimension should be within 10x3x4cm.

3. > 2 meter detection range with a resolution < 1%.

4. Planer, horizontal field-of-view of 120 degrees with a resolution of < 1 degree.

5. > 10Hz update rate. That is, 10 times a full 120-degree scan per second.

6. Eye-safe, Class 1 Laser product according to the NEN IEC 60825-1:2014 [24]

7. Fully embedded processing.

B.1 Imager and processing unit

The imager and processing unit determines a large part of the limitations of the system.
This section analysis available components, their limitations and how they match with
the stated requirements. A selection is made after which tests are performed to determine
the throughput, which eventually will allow deduction of an eye-safe laser module.
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conrad.nl watterott.com nl.farnell.com

robotshop.com (eu/fr) digikey.com nl.mouser.com

arducam.com

Table B.1: Online stores from which the camera board is selected.

B.1.1 Imager

A vast amount of different imagers are nowadays on the market. For example, Mouser
Electronics (mouser.com) alone, has at the moment of writing more than 750 different
imagers available in its online catalog. As we are building a prototype, the complexity
of designing and building a PCB on which an imager needs to be aligned is removed by
only looking at off-the-shelve camera development boards. Since the finalized product
should be able to be produced below $30, the set of potential camera boards is reduced
by limiting the price to $70. Additionally, only boards with an M12 lens mount are
selected as these allow flexibility in terms of adjusting the focus distance and allow to
exchange or swap the lens. In Table B.1 the list of queried hardware stores is shown.

From these stores, a short list of potential boards has been selected, shown in Table B.2.
Included in the overview are previously discussed camera parameters (Chapter A) as well
as scaling and binning options, dynamic-range, and availability of a so-called strobe pin
for (potentially) laser-camera synchronization.

Viewing Table B.2, several notions can be made:

• None of four matching imagers are monochrome and all are rolling shutter imagers.

• Several properties are unknown or not clearly defined and hence difficult to com-
pare.

• The OV5642 and OV5647 have comparable properties, with the OV5642 lacking
the strobe, hence favouring the OV5647.

• The OV5647 and IMX219 boards have a strobe-pin. This pin is specially designed
to drive an external (LED) flash and therefore can be used to drive the laser.

• The OV7670 is used in [17, 38], which shows in Chapter 2.1 that it might meet
the minimal requirements.

• The IMX219 is more recent, has higher resolution, a strobe pin and is able to run
at higher speeds, hence is favored over the OV7670.

• Only the IMX219 is still in production. The others are End-Of-Line (EOL).

Based on these observations the IMX219 board has been selected as the most suitable
option.
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Imager price DR reso@fps scaling pixel Sensitivity Well sync13

release url SNR Bin. H/V Dark Cur.
EOL source (dB) fps (µm) ratio (e−)

OV5642 $32 68 2592x1944@15 full + crop 1.4x1.4 680 mV
lux∗sec ? (strobe)

09‘08 1 36 1920x1080@30 1-2/1-2 15

09‘1415 2,3 1280x960@45 ? 680
15 ∼ 45.3

1280x720@60
640x480@90
320x280@120

OV5647 $32 68 2592x1944@15 full + crop 1.4x1.4 680 mV
lux∗sec 4.3k strobe

02‘10 4,5 36 1920x1080@30 1-2/1-2 16mV@60C

07‘1516 6,7 1280x960@45 PLL
2048∗(v+24)∗tp

680
16 ∼ 42.5

1280x720@60
640x480@90
320x280@120

OV7670 6e ? 640x480@30 full + crop 3.6x3.6 1100 mV
lux∗sec 17k (strobe)

02‘06 8 38 320x240@30 ? 12mV@60C

01‘1417 9,10 160x120@30 PCLK
510∗784∗tp

1100
12 ∼ 91.6

352x288@30
176x144@30

IMX219 $25− $65 ? 3240x2464@15 full + crop 1.12x1.12 203 LSB 14 ? strobe

04‘14 11 ? 1920x1080@30 1-2-4/1-2-4 0.5 LSB@60C

- 12 1280x720@60 2∗PCLK
H∗V 203/0.5 ∼ 406

640x480@90

Table B.2: Overview of parameters and errors in comparable systems
1 http://www.robotshop.com/eu/en/arducam-5-mp-camera-module-ov5642-cs-mount-lens.html
2 http://www.uctronics.com/download/cam_module/OV5642DS.pdf
3 http://www.ovt.com/uploads/parts/OV5642_PB_v1_1_WEB.pdf
4 http://www.robotshop.com/eu/en/arducam-5mp-1080p-ov5647
5 http://www.watterott.com/de/Raspberry-Pi-Camera-Board-/w-CS-mount-Lens
6 http://www.ovt.com/uploads/parts/OV5647.pdf
7 http://cdn.sparkfun.com/datasheets/Dev/RaspberryPi/ov5647_full.pdf
8 http://www.robotshop.com/eu/en/arducam-cmos-ov7670-camera-module.html
9 http://www.voti.nl/docs/OV7670.pdf
10 http://aitendo3.sakura.ne.jp/aitendo_data/product_img/camera/OV7690/
11 Stated in email-exchange with http://arducam.com. Including a $25 fee for the Pi Foundation
12 Datasheet retrieved from sony after request [4]
13 Laser synchronisation options. ‘(. . . )’ indicate ‘datasheet only’.
14 Expressed by the resolution of the 10-bit ADC.
15 http://www.ovt.com/download_document.php?type=document&DID=97
16 http://www.ovt.com/download_document.php?type=document&DID=122
17 http://www.ovt.com/download_document.php?type=document&DID=95

http://www.robotshop.com/eu/en/arducam-5-mp-camera-module-ov5642-cs-mount-lens.html
http://www.uctronics.com/download/cam_module/OV5642DS.pdf
http://www.ovt.com/uploads/parts/OV5642_PB_v1_1_WEB.pdf
http://www.robotshop.com/eu/en/arducam-5mp-1080p-ov5647
http://www.watterott.com/de/Raspberry-Pi-Camera-Board-/w-CS-mount-Lens
http://www.ovt.com/uploads/parts/OV5647.pdf
http://cdn.sparkfun.com/datasheets/Dev/RaspberryPi/ov5647_full.pdf
http://www.robotshop.com/eu/en/arducam-cmos-ov7670-camera-module.html
http://www.voti.nl/docs/OV7670.pdf
http://aitendo3.sakura.ne.jp/aitendo_data/product_img/camera/OV7690/
http://arducam.com
http://www.ovt.com/download_document.php?type=document&DID=97
http://www.ovt.com/download_document.php?type=document&DID=122
http://www.ovt.com/download_document.php?type=document&DID=95


B.1.2 Processing unit

Just as with imagers, there exists a large variety of processing boards. Even the amount
of available boards below a $10 price point is enormous. However, when factoring in
the use of the IMX219, the Raspberry Pi Zero and its wireless variant the Raspberry Pi
Zero W show promising specifications. Their prices are EUR5 and EUR11 respectively
and there form factor is around 65x30x5mm, fitting our requirements. Furthermore,
the IMX219 is the official imager for the Raspberry Pi boards, hence from a develop-
ment point of view, there are already development tools and documentation available in
addition to a fully configured ISP.

The Raspberry Pi Zero (W) is built around the BCM2835 SoC [1] and holds the
following specifications:

• A Broadcom BCM2835 SoC

– 1GHz ARM11 (ARM1176JZF-S)

– VideoCore IV GPU running the Real-Time Operating System ThreadX and
including an ISP.

• 512MB of LPDDR2 SDRAM stacked ontop of the BCM2835.

• 1x A mini-HDMI socket for 1080p60 video output

• 2x Micro-USB sockets for data and power

• 40-pin GPIO header

• 65mm x 30mm x 5mm

It is suspected that when both CPU and GPU are used, the Raspberry Pi Zero should
be able to meet our requirements and is therefore selected.

B.1.3 Interfacing

Having selected both imager and processing unit, a closer look can be taken in how these
components are connected and how frames are captured. In Figure B.1 a schematic over-
view of some of the inner components of the BCM2835 are shown and their connection
with the imager. A better understanding will yield into better estimates of the limits of
the system.

To capture a frame, a user specifies several camera parameters (e.g. resolution, fram-
erate, etc) in the CPU domain. This is followed by the following (simplified) sequence
of steps:

1. The user-defined camera parameters values are pushed via several abstraction lay-
ers such as MMAL (MultiMedia Abstraction Layer [2]) and VCHI (VideoCore Host
Interface [3]) to the GPU.
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Figure B.1: Overview of how the CPU, GPU and camera communicate [27, 1, 3].

2. The GPU communicates the settings to the imager via a CSI-2 interface (also
called ‘Unicam’).

3. Depending on the settings, the imager either:

(a) produces a single frame (‘capture’ mode)

(b) produces a stream of frames at a given fps (‘video’ mode)

4. The GPU receives the raw-Bayer frames from the imager, adds a timestamp and
stores them in a buffer.

5. Frames are then retrieved from the buffer and pushed through a dedicated 14-
stage ISP [27] which applies operation such as demosaicing, image resizing, white
balancing and several others.

6. After being pushed through the ISP, the frames are via DMA copied to the CPU
domain for further (user-)processing. In addition, a callback is signaled which
notifies the CPU that a frame is ready.
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Mode Frame size Framesize Binning Crop1 Readout1 Capturing Framerate
(CSI-2) (effective) (pixels) (ns / line) (ms) (Hz)

0 automatic
1 1920x1080 1920x1080 - 680 / 692 18904 20.4 48.98
2 3280x2464 3280x2464 - - / - 18904 46.6 21.47
3 3280x2464 3280x2464 - - / - 18904 46.6 21.47
4 1640x1232 3280x2464 2x2 - / - 18904 23.3 42.94
5 1640x922 3280x1844 2x2 - / 310 18904 17.4 57.37
6 1280x720 2560x1440 2x2 360 / 512 19517 14.1 71.16
7 640x480 1280x480 2x2 1000 / 752 19517 9.36 106.74

Table B.3: Sensor modes of the Raspberry Pi firmware for the IMX219. The first
6 columns are documented limits, the final two are computed based on these values.
Column three states the effective resolution (or pixel area) which is used by the imager.
Cropping is written as ‘left&right / top&bottom’. The column ‘Readout’ states the
number of nanoseconds which the imager needs to read a single line from the photo-
sensitive area. Based on this value the capture time of a single frame is computed from
which the maximum theoretical framerate is deduced.

1 https://www.raspberrypi.org/forums/viewtopic.php?t=177046

B.1.4 Modi and throughput

Taking a look at the available user-settings for the camera shows that the Raspberry Pi
Foundation has predefined 8 different capture-modi in the GPU firmware. So instead
of tweaking and updating firmware and register settings of the imager, we can use pre-
defined resolutions and update rates, which will set the proper register automatically.
An overview of the specification for each mode is shown in Table B.3.

To validate the estimated specifications and throughput of the pipeline, stability-
experiments have been performed. These experiments try to force a framerate of 200Hz
and log the timestamp at which frames are received at the CPU. Results are displayed in
Table B.4. Note that mode 0 is not tested as this mode selects mode 1-7 automatically
based on the user settings.

When looking at Table B.4, most interestingly, not all measured framerates match
with the documented or the theorized limits. It is suspected that these values are due to
inaccuracies of the firmware. Unfortunately, the firmware is closed source, so the exact
cause cannot be determined.

In addition to the maximum framerate, the stability of the minimum required framer-
ate is tested. The same settings as for Table B.4 are applied, except the frequency is set
to 15Hz. Results are shown in Table B.5. A graphical overview of the computed duty
cycle of the total exposure time at the minimum framerate is shown in Figure B.2.

The maximum allowable power of the laser is inversely related to the time it is powered
on (Chapter 3.3), hence modes with a low duty cycle are preferable. Table B.3 - B.5
and Figure B.2 show that mode 5 and 7 have the lowest duty cycle, while matching the
requirements. In Table B.3 it is stated that mode 5 utilises the full imager width, while
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Docs Theory 640x480
Mode min max max µ± σ max Mpix/s

1 0.1 30 48.98 30.1 ± 0 30.1 62.4
2 0.1 15 21.47 18.7 ± 4.6 21.4 151.1
3 0.1 15 21.47 18.7 ± 4.6 21.4 151.1
4 0.1 40 42.94 60.0 ± 0 60.0 121.2
5 0.1 40 57.37 60.0 ± 0 60.0 90.7
6 40 90 71.16 109.9 ± 30.4 131.5 101.28
7 40 90 106.74 120.5 ± 0 120.6 37.0

Table B.4: Maximum framerate limits. Minimum and maximum frequency according to
the documentation, theory (Table B.3) and with the ISP set to resize to 640x480 pixels.
The last column shows the number of megapixels communicated per second via CSI-2.
It is based on the average fps and framesize of the produced frame from the imager.
Each mode is ran for 1000 frames. The theorised maximum1 throughput for the ISP is
stated to be 200Mpix/s, while it is typical between 150-150 Mpix/s
. 1 https://www.raspberrypi.org/forums/viewtopic.php?t=56503

Docs 640x480
Mode min max µ± σ min Mpix/s Dutycycle (%)

1 0.1 30 15.0 ± 0 15.0 31.1 30.6
2 0.1 15 15.0 ± 0 15.0 121.2 69.9
3 0.1 15 15.0 ± 0 15.0 121.2 69.9
4 0.1 40 15.0 ± 0 15.0 30.3 34.9
5 0.1 40 15.0 ± 0 15.0 22.7 26.1
6 40 90 40.2 ± 0 40.2 37.0 56,5
7 40 90 40.2 ± 0 40.2 12.3 37.7

Table B.5: Test results when the frameset is set to the required minimum of 15Hz. Each
mode is ran for 1000 frames. The column ‘Dutycycle’ represents percentage in which
the imager is exposing its pixels at the minimum measured frequency during 1 second,
which is determined by multiplying the framerate with the minimum capturetime of the
mode.
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Figure B.2: Dutycyle of the exposure versus the frame rate of differen modi. Com-
putations are based on the minimal required (measured) framerates and the theorised
capture time.

mode 7 is cropped. As more pixels result in an improved angular resolution, mode 5 is
selected for the prototype.

B.2 Lens

After determining the imager and processing unit, this section presents the selection
procedure of the lens.

B.2.1 Preselection

The requirements state that a minimal FoV of 120 degrees is required. In addition, the
lens should be suitable for at least 1/4” imagers (diameter of the IMX219) and should
have M12 threading (Chapter B.1). In Table B.6 an overview of available lenses is given.
This overview is constructed by filtering matching lenses from http://arducam.com,
which supplies the selected camera board.

Using the generalized projections presented in Chapter A.4, the maximum diameter
of a projected image at the focal distance was computed. The results are shown in
Table B.7. As can be observed, several models state that an image will be produced,
smaller than the diagonal of the IMX219 (4.59mm), resulting in black and unusable
edges (vignetting) of the captured frame. In order to select a proper lens, the inverse
computation is also made: computing the maximum FoV by using the diameter of the
IMX219. These results are shown in Table B.8.

By filtering out vignetted lenses and preferring larger apertures, a small set of potential
lenses can be selected. The resulting selection is shown in Table B.9. Experiments will
show which of these lenses is the most proper match.
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Lens AFoV (dia) Type f f/# Distortion Aperture

LS-36021 120o 1/4” 2.8 2.2 < −45% 1.27 mm
LS-40207 120o 1/4” 2.8 2 < −35% 1.4 mm
LS-1820 150o 1/4” 1.8 2.4 < −83% 0.75 mm
LS-50125 170o 1/4” 1.6 2 < −20% 0.80 mm
LS-40180 206o 1/4” 1.05 2 < −81% 0.53 mm
LS-40146 204o 1/3.2” 1.52 2.4 < −97% 0.63 mm
LS-30207 120o 1/3” 2.8 2 < −35% 1.4 mm
LS-27225 145o 1/3” 2.1 2 < −68% 1.05 mm
LS-30188 170o 1/3” 2.25 2.3 < −81% 0.98 mm
LS-4014 140o 1/2.5” 3 2 < −30% 1.5 mm
LS-20150 160o 1/2.5” 2.8 2.8 < 39% 1.00 mm
LS-20233 170o 1/2.5” 2.8 2.8 - 1.00 mm
LS-25180 185o 1/2.5” 1.6 2 < −5.7% 0.8 mm
LS-81600 155o 1/2.3” 2.8 2.8 < 55.6% 1.00 mm

Table B.6: Overview of potential suitable lenses from arducam.com

Lens Pstereo Peqdist Peqsolid Portho
LS-36021 6.47 5.86 5.60 4.85
LS-40207 6.47 5.86 5.60 4.85
LS-1820 5.52 4.71 4.38 ** 3.48 **
LS-50125 5.86 4.75 ** 4.32 ** 3.19 **
LS-40180 5.28 3.78 3.29 ** 2.05 **
LS-40146 7.51 5.41 4.73 2.97 **
LS-30207 6.47 5.86 5.60 4.85
LS-27225 6.16 5.31 4.97 4.01 **
LS-30188 8.25 6.68 6.08 4.48 **
LS-4014 8.40 7.33 6.88 5.64
LS-20150 9.40 7.82 7.20 5.51
LS-20233 10.26 8.31 7.57 5.58
LS-25180 6.69 5.17 4.62 3.20 **
LS-81600 8.99 7.57 7.01 5.47

Table B.7: Maximum diameter of image given de models and lens parameters, with
f = v. Values with ** indicate vignetting.
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Lens P−1
stereo P−1

eqdist P−1
eqsolid P−1

ortho

LS-36021 89.14 93.92 96.77 110.10
LS-40207 89.14 93.92 96.77 110.10
LS-1820 130.07 146.10 150 ** 150 **
LS-50125 142.59 164.37 170 ** 170 **
LS-40180 190.16 206 ** 206 ** 206 **
LS-40146 148.20 173.02 196.08 204 **
LS-30207 89.14 93.92 96.77 110.10
LS-27225 114.61 125.23 132.49 145 **
LS-30188 108.09 116.88 122.66 170 **
LS-4014 83.73 87.66 89.95 99.81
LS-20150 89.14 93.92 96.77 110.10
LS-20233 89.14 93.92 96.77 110.10
LS-25180 142.59 164.37 183.29 185 **
LS-81600 89.14 93.92 96.77 110.10

Table B.8: Maximum diagonal AFoV of IMX219 given de models and lens parameters,
with f = v. Values with ** indicate an FoV which matches the requirements.

Lens Pstereo Peqdist Peqsolid Portho f Aperture Price

LS-1820 130.07 146.10 150 150 1.8 0.75 mm $8
LS-50125 142.59 164.37 170 170 1.6 0.80 mm $8
LS-25180 142.59 164.37 183.29 185 1.6 0.8 mm $25

Table B.9: Remaining lenses with sufficient diameter and aperture
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Figure B.3: Picture of the setup to measure the FoV of the lenses in Table B.9. A
ruler measuring [−35cm, 35cm] has been drawn to a wall (left) and the camera (right)
is placed at a distance of ∼ 16.5cm.

(B.4a) LS-1820

(B.4b) LS-50125

(B.4c) LS-25180

Figure B.4: Captured frames with manually placed markers at each cm for the selected
lenses.

B.2.2 Experiments

Determining the FoV of the lenses is done with the setup shown in Figure B.3. The
camera is facing a ruler of [−35,+35]cm at a distance of 16 cm. After taking a snapshot
with the camera the maximum observable value of the ruler is determined manually.
The angular accuracy of the lens is estimated by including the resolution of the imager.
For these tests, mode 2 of the imager is used: this mode is the most generic and from
its frames, we can deduce the effects of mode 3-7, since these are cropped and binned
versions of this mode.

The captured frames for all lenses described in Table B.9 are shown in Figure B.4.

For each captured frame markers are placed at the image to identify each centimeter.
As the marker is placed within a frame, its horizontal position, mx, can be described
with:

mx ∈ [0, 3280] (B.1)
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Polynomial 2 3 4 5 6 7 8 9

LS-1820 41.4 41.2 40.9 40.9 41.0 40.9 40.8 40.8
LS-50125 56.4 56.7 56.4 56.4 55.9 55.8 56.0 55.9
LS-25180 89.6 89.1 76.2 76.2 76.5 76.5 76.1 76.1

Table B.10: Maximum observable distance (cm) per polynomial fit, as computed by
Equation (B.3). The selected mode is mode 2, utilising the full frame width.

Mode 1 2/3 /4/5 6 7

Crop [680, 2600] [0, 3280] [360, 2920] [1000, 2280]
LS-1820 17.1cm / 54.7o 41.0cm / 102.3o 25.4cm / 75.3o 10.6cm / 35.6o

LS-50125 27.5cm / 79.5o 55.9cm / 118.9o 39.2cm / 99.9o 17.7cm / 56.5o

LS-25180 25.0cm / 74.3o 76.5cm / 133.3o 40.1cm / 101.2o 14.9cm / 48.7o

Table B.11: Maximum observable distance (cm) for each mode and the resulting FoV
using a 6-th order polynomial fit.

To compare the selected lenses, the derivative of the set of markers for each lens is
computed:

∂m =
dmx

dx
(B.2)

As ∂m describes the horizontal number of pixels per cm per pixel position, its inverse
can be used to estimate the maximum observed horizontal distance, d, of the frame:

d =

e∑
x=s

1

∂mx
(B.3)

In this equation [s, e] is the boundary of the cropped values for the selected mode. In
case of mode 2, it equals [s, e] = [0, 3280].

Having determined the maximum observable distance, the FoV is determined by:

FoV =
180

π
∗ tan−1

(
.5d

16.5

)
(B.4)

By applying a polynomial fit to the captured set of marker positions, an estimate d
can be computed. An overview of the 2nd - 9th order polynomial fit for each lens is
shown in Table B.10. From the table it can be estimated that a 6th order polynomial is
sufficient to compute the estimations, which is in line with the estimates of the radial
distortions in the camera model (Chapter 3.1). Using the fit, estimations for ∂m, FoV
and angular resolution are computed. Results are displayed in Figure B.5, Table B.11
and Figure B.6 respectively.

The requirements state that a minimum resolution of 0.9 degrees should be achieved.
Looking at Figure B.6, the estimates for all lenses are below this value. Moreover,
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(B.5a) LS-1820 (B.5b) LS-50125

(B.5c) LS-25180

Figure B.5: 6th order polynomial fit for ∂m for each lens. Note that the sample data for
each lens is used in both normal and flipped direction (x = [0, 3280] and x = [3280, 0])
as the manual annotation is inaccurate and asymmetric while the lenses should result in
a symmetric projection.

Figure B.6: Angular resolution of the lenses for mode 2. It is computed by applying
the cosine-rule on the 6th-order polynomial fit. Note that when mode 4-7 is used, the
resolution doubles due too the 2-binning mechanism.
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when 2-binning is applied (mode 4-7) the lowest resolution is around 0.95o for LS-50125,
whereas LS-25180 and LS-1280 stay below 0.9o, showing that all lenses are within reason
of the angular-resolution requirement.

A different requirement is that the lens should have a 120o FoV. Table B.11 shows
that LS-1820 does not match this requirement. In mode 2/3/4/5 the LS-50125 has an
estimated FoV of 118.9o, which is only off by 1.1o and the LS-25180 has an estimated
FoV of 133o. By factoring in the price of the lenses LS-50125 and LS-25180 ($8 versus
$25), LS-50125 is favorable: while it approximates the minimum requirements, its cost
is a factor of 3 times lower when compared to LS-25180.

B.3 Laser

The final hardware component to be determined is the line-laser. It should have a field-
of-view (or fanning angle) of 120o, while having an output power just below the eye-safety
limit. From the IEC60825 safety standard [24], we can deduce that a higher wavelength,
λ, produces less damage to the human eye than a lower wavelength. Unfortunately,
using a CMOS imager, the QE of the pixels drop with an increase of λ. Therefore a
wavelength of 808nm is chosen.

In Figure B.7 the NOHD values are shown for a laser with λ = 808nm, with a FoV of
120 degrees and a pulse frequency of 5, 10, 15 or 30Hz at a given duty cycle.

As expected, with an increase of the duty cycle or power, the distance for safe operation
increases. The provided frequencies do not seem to have such a large effect.

To be a Class 1 product, we need to ensure that a user cannot view the laser within
the NOHD a limit of 10mm is selected. To determine the maximum laser power, we need
to determine the pulse width and hence duty cycle of the laser. As shown in the previous
sections, the imager has an exposure time of 17.4ms when mode 5 is used (Table B.3).
Assuming that the laser pulse equals the exposure time of the imager, we can deduce
that only a 25mW laser falls within the set NOHD.

B.4 Overview

Having selected all hardware components, an overview can be created of all costs in-
volved. The costs for the prototype (Chapter 4) and an estimation for producing 1000
units is shown in Table B.12.

While the cost of 1kpcs, is above the required amount ($65 versus $30), it should be
noted that this price includes licensing fees, is not based on hardware optimisations or
selection of parts with the lowest cost and does not contain any negotiations. Hence,
there is still a lot of room for reduction, indicating that the requirement eventually can
be met.
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(B.7a) f=5Hz

(B.7b) f=10Hz

(B.7c) f=15Hz

(B.7d) f=30Hz

Figure B.7: NOHD versus dutycyle at different frequencies. For each setup yields that:
λ = 808nm, d = 1mm, T = 100s, fov = 120 degrees and y = 0.4cm. The duration of a
pulse is limited to the domain [5 ∗ 10−6, 0.25]s
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Part price @ 1pcs est. price @ 1kpcs

Lens (LS 50125) $8 $5.00
Camera board (M12, IMX219) $65 $35.00
Bandpassfilter, 808nm ± 25nm $10 $5.00
Raspberry Pi Zero W $9.60 $9.60
Raspberry Pi Zero Camera Ribbon $4.00 $1.00
2x20 female header $1.50 -
16Gb Class 4 micro SDCard $9 $3.00
5V Power Supply $5 $1.00
25mW 808nm 120deg Lase Module $12.5 $5.00
Custom laser driver $5 $1.00
3D printed mount + screws $8 $2.00

Total $125.6 $63.00

Table B.12: Cost of a single module and estimated cost of 1kpcs. The price of the
camera board is including a $25 licensing fee for the Pi Foundation as a custom board
is used. Excluding the licensing fee, a single unit has a cost of ∼ $100 and an estimated
cost ∼ $38 when producing 1000 pieces. Using a Raspberry Pi Zero will decreases the
unit cost with an additional $5.
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Appendix C

Measurements, Results and Data

This chapter list several measurements and test results. Based on these results, deduc-
tions and approximations have been made, for which Chapter 6 will give some more
details.

In the first two sections, the measurement error per measurement-set in an indoor
setup with a 10% and 90% reflective wall is shown. The error is the difference between the
distance estimations of the Hokuyo UTM-30LX [13] and de prototype, dubbed LaserPi.
Computation of the average and the standard deviation is done by combining the meas-
urements into bins, where each bin is determined by dividing the x-axis into 50 equally
spaced areas.

Additionally, the angular resolution at different distances is shown, followed by several
GPU traces, measuring the load of the VPU.

C.1 Measurement error: indoor, 10% reflection

(C.1a) (C.1b)
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(C.1c) (C.1d)

(C.1e) (C.1f)

(C.1g) (C.1h)

(C.1i) (C.1j)

(C.1k) (C.1l)
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(C.1m) (C.1n)

(C.1o) (C.1p)

(C.1q) (C.1r)

(C.1s) (C.1t)

(C.1u) (C.1v)
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(C.1w) (C.1x)

C.2 Measurement error: indoor, 90% reflection

(C.2a) (C.2b)

(C.2c) (C.2d)

(C.2e) (C.2f)

(C.2g) (C.2h)
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(C.2i) (C.2j)

(C.2k) (C.2l)

(C.2m) (C.2n)

(C.2o) (C.2p)

(C.2q) (C.2r)
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(C.2s) (C.2t)

(C.2u) (C.2v)

(C.2w) (C.2x)

(C.2y) (C.2z)
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C.3 Angular resolution

Figure C.3: Angular resolution for all measurements in the indoor-dataset. Resolution
is averaged for all measurements in a set, aligned to the horizontal pixel position which
produced the projection.
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C.4 VideoCore IV load

Figure C.4: Several one-second traces of the VPU cores. From the traces, the regular
intervals of the fetching and processing of the captured frames can be observerd. The
framerate is set to 10Hz. While being idle most of the time, the largest amount of
processing power is dedicated to the image filtering (khrn*, v3d*, dispmanx*) and image
signal pipeline (isp*). The mmal*, vchi* and mbox* threads manage the CPU-VPU
communication.
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Appendix D

Derivations and Proofs

Several proofs and derivations have been made in this thesis. This chapter shows the
assumptions, schematics, and steps taken to get to the resulting set of formulas.

D.1 Triangulation

An important part of this thesis is the introduction of a generalized triangulation model,
which is able to use both line- and spot- lasers to estimate an object distance q. This
section shows the derivations of the introduced triangulation equations. First, the full
derivation of a line-laser setup is given. Following this setup, a simplification of a gener-
alized spot-laser system is given, with a concluding proof showing how the generalized
model compares with the model used by Konolige et. al [29].

D.1.1 Line laser

The line-laser problem is shown in Figure D.1a: a line laser is placed at an angle β in a
triangle with the optical center of a camera located at a distance s, tilted with an angle
α. The optical axis of the camera crosses the central axis of the laser at an angle θ.
The laser is tilted around its central axis at an angle ψ. When ψ = .5π, the laser-line is
projected horizontally. Within the camera reference frame, an object reflects the laser
at point p = [x y z]T , where the distance towards this point is represented by q. In
the camera, p is projected onto pixel position pp. Using a camera model as shown in
Chapter A, the position pp can be transformed into pn = [xn yn 1]T = [xz

y
z
z
z ]T , which

represents the normalized projection of p. Hence the problem can be stated as:

Using the triangulation parameters [α, β, θ, ψ, s], the distance q, from s towards p,
needs to be computed, using the normalised value pn.

Computing q is done in several steps. First, we derive an estimated value of z, followed
by determining qy and finally q.
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(D.1a) Problem: compute q from pn (D.1b) Step 1: Determine z

(D.1c) Step 2: Determine qy (D.1d) Step 3: Determine q

Figure D.1: Steps to determine q. All lines and points in Figure D.1b and D.1c lay
within the ZY-plane. The laser, q and the x-axis in Figure D.1a and D.1d are in depth.
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Determining z: Using Figure D.1b, the z position of a point p in the camera reference
frame can be computed. First, the length of yL needs to be determined, which is the
projection of y onto the central axis of the laser.

yL = y + dy (D.1)

= y +
dψ

cos(θ)
(D.2)

= y +

x
tan(ψ)

cos(θ)
effect of ψ on the x-axis (D.3)

= y +
x

tan(ψ) ∗ cos(θ)
(D.4)

= (yn ∗ z) +
xn ∗ z

tan(ψ) ∗ cos(θ)
(D.5)

= z ∗
(
yn +

xn
tan(ψ) ∗ cos(θ)

)
(D.6)

With yL, the angle towards the projection on the central axis of the laser can be
computed, which in turn allows determining zLy:

αL1 = tan−1
(yL
z

)
(D.7)

= tan−1

z ∗
(
yn + xn

tan(ψ)∗cos(θ)

)
z

 inserting (D.6) (D.8)

= tan−1

(
yn +

xn
tan(ψ) ∗ cos(θ)

)
(D.9)

(D.10)

zLy = sin(β) ∗ s

sin(π − β − αL2)
(D.11)

= sin(β) ∗ s

sin(π − β − (α− αL1))
(D.12)

= sin(β) ∗ s

sin(π − β − α+ αL1)
(D.13)

= s ∗ sin(β)

sin(θ + αL1)
(D.14)
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Finally, zLy is used to determine z:

z = cos(αL1) ∗ zLy (D.15)

= cos(αL1) ∗ s ∗
sin(β)

sin(θ + αL1)
inserting (D.14) (D.16)

= s ∗ sin(β)cos(αL1)

sin(θ + αL1)
(D.17)

= s ∗ sin(β)cos(tan−1(...))

sin(θ + tan−1(...))
inserting (D.6) (D.18)

= s ∗
sin(β) 1√

(...)2+1

sin(θ)+(...)cos(θ)√
(...)2+1

resolving tan−1 (D.19)

= s ∗ sin(β)

sin(θ) + (...)cos(θ)
(D.20)

= s ∗ sin(β)

sin(θ) +
(
yn + xn

tan(ψ)∗cos(θ)

)
cos(θ)

(D.21)

= s ∗ sin(β)

sin(θ) + yn ∗ cos(θ) + xn
tan(ψ)

(D.22)

Determining qy: Knowing z, the projection of q on the ZY-plane, qy, can be determ-
ined. For this derivation Figure D.1c is used.

zy =
z

cos(α1)
(D.23)

=
z

cos(tan−1(yz ))
(D.24)

=
z

cos(tan−1(yn))
normalisation of y (D.25)

=
z
1√
y2n+1

resolving cos ∗ tan−1 (D.26)

= z ∗
√
y2n + 1 (D.27)

qy = sin(α2) ∗ zy (D.28)

= sin(α2) ∗ (z ∗
√
y2n + 1) inserting (D.27) (D.29)

= sin(α− α1) ∗ (z ∗
√
y2n + 1) (D.30)

= sin(α− tan−1
(y
z

)
) ∗ (z ∗

√
y2n + 1) (D.31)
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= sin(α− tan−1(yn)) ∗ (z ∗
√
y2n + 1) normalisation of y (D.32)

=

(
sin(α)− yn ∗ cos(α)√

y2n + 1

)
∗ (z ∗

√
y2n + 1) resolving sin(tan−1) (D.33)

= z ∗ (sin(α)− yn ∗ cos(α)) (D.34)

Determining q As qy is a projection of q and as the the x-axis is perpendicular to
this projection, the distance towards p, q can be computed by:

q =
√
q2y + x2 (D.35)

=
√

(z ∗ (sin(α)− yn ∗ cos(α)))2 + (xn ∗ z)2 (D.36)

=
√
z2 ∗ (sin(α)− yn ∗ cos(α))2 + z2 ∗ x2n (D.37)

= z ∗
√

(sin(α)− yn ∗ cos(α))2 + x2n (D.38)

Eventually, (D.22) could be inserted, resulting in the computation of q as:

q = s ∗
sin(β) ∗

√
(sin(α)− yn ∗ cos(α))2 + x2n

sin(θ) + yn ∗ cos(θ) + xn
tan(ψ)

(D.39)

D.1.2 Spot laser

When a spot-laser is used, ψ does not has any effect: the projected spot stays a spot,
irregardless how much the laser is rotated around its axis. Additionally, when we assume
that the laser is aligned in the ZY plane of the setup, xn should have no effect at all on
the distance estimation. Therefore (D.39) can be rewritten as:

q = s ∗
sin(β) ∗

√
(sin(α)− yn ∗ cos(α))2 + x2n

sin(θ) + yn ∗ cos(θ) + xn
tan(ψ)

duplicate of (D.39) (D.40)

= s ∗
sin(β) ∗

√
(sin(α)− yn ∗ cos(α))2

sin(θ) + yn ∗ cos(θ)
(D.41)

= s ∗ sin(β) ∗ (sin(α)− yn ∗ cos(α))

sin(θ) + yn ∗ cos(θ)
(D.42)

= s ∗ sin(β)sin(α)− yn ∗ sin(β)cos(α))

sin(θ) + yn ∗ cos(θ)
(D.43)
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Figure D.2: Setup with α = .5π from [29].

D.1.3 Verification with the model of Konolige et al [29]

Konolige et al. describe in their paper the simplified model:

q =
s ∗ f
xp

(D.44)

Where q and s are the earlier defined parameters: distance-to-object and distance-
between-laser-camera. The other parameters, f , and xp are the focal point of the lens
(distance imager-optical center) and the difference between the pixel position of the
reflected laser and the ray through the optical center, parallel to the laser respectively.
An overview is shown in Figure D.2.

Their model does not correct for laser misalignment, hence (D.43) can be used to show
our generalized model can be simplified to (D.44).

The first simplification which can be made is the assumption of α = .5π, allowing to
rewrite (D.43) as:

q = s ∗ sin(β)sin(α)− yn ∗ sin(β)cos(α))

sin(θ) + yn ∗ cos(θ)
duplicate of (D.43) (D.45)

= s ∗ sin(β)sin(.5π)− yn ∗ sin(β)cos(.5π)

sin(θ) + yn ∗ cos(θ)
(D.46)

= s ∗ sin(β)

sin(θ) + yn ∗ cos(θ)
(D.47)

As yn is normalised over z and both z and f are in line with the optical axis, yn can
additionally be defined as:

yn =
r

f
(D.48)
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Inserting in (D.47) yields:

q = s ∗ sin(β)

sin(θ) + yn ∗ cos(θ)
duplicate of (D.47) (D.49)

= s ∗ sin(β)

sin(θ) + r
f ∗ cos(θ)

inserting (D.48) (D.50)

= s ∗ f ∗ sin(β)

f ∗ sin(θ) + r ∗ cos(θ)
(D.51)

= s ∗ f ∗ sin(β)
cos(θ)
cos(θ)f ∗ sin(θ) + r ∗ cos(θ)

(D.52)

= s ∗ f ∗ sin(β)

cos(θ) ∗ f ∗ sin(θ)cos(θ) + r ∗ cos(θ)
(D.53)

= s ∗ f ∗ sin(β)

cos(θ) ∗ f ∗ tan(θ) + r ∗ cos(θ)
(D.54)

= s ∗ f ∗ sin(β)

cos(θ) ∗ (xp − r) + r ∗ cos(θ)
(D.55)

= s ∗ f ∗ sin(β)

xp ∗ cos(θ)
cancellation of r (D.56)

= s ∗ f ∗ sin(β)

xp ∗ cos(π − α− β)
(D.57)

= s ∗ f ∗ sin(β)

xp ∗ cos(.5π − β)
(D.58)

= s ∗ f ∗ sin(β)

xp ∗ sin(β)
(D.59)

=
s ∗ f
xp

(D.60)

D.2 Laser-plane projection

In Chapter 3.2 we show that it is possible to transform the normalized 2D backward
projected pixel coordinates to a 3D position, by representing the laser as a plane in
the camera reference frame. This section shows the derivations for these equations.
Additionally, it shows how the triangulation parameters (α, β, θ, ψ, s) can be derived
from the laser-plane.

D.2.1 2D ⇒ 3D

As shown in Chapter 3.2, a plane in 3D space can be described as:

z = a ∗ x+ b ∗ y + c (D.61)
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Figure D.3: Computing s and α from the laser plane, assuming β is known and a = 0.

After calibration, we know the laser-plane parameters (ac, bc, cc) and from the back-
wards projection, we also know the normalised 2D position of the pixels, (xn, yn). This
allows us to express the computation of z as:

z = ac ∗ x+ bc ∗ y + cc (D.62)

= ac ∗ (xn ∗ z) + bc ∗ (yn ∗ z) + cc (D.63)

= z ∗ (ac ∗ xn + bc ∗ yn) + cc (D.64)

1 = ac ∗ xn + bc ∗ yn +
cc
z

(D.65)

cc
z

= 1− (ac ∗ xn + bc ∗ yn) (D.66)

z =
cc

1− (ac ∗ xn + bc ∗ yn)
(D.67)

(D.68)

D.2.2 Laser-plane ⇒ s, α, ψ

When we assume that β is known, the laser-plane parameters (ac, bc, cc) can be used to
make estimations of the triangulations setup. It should, however, be noted that such a
computation is only valid under the assumption that all possible errors are modeled in
the triangulation computation.

In our triangulation setup, s is defined as the distance from the optical centre of the
camera - (0, 0, 0) in the reference frame - to point (0, y, z) at which the laser plane is
crossed at an angle β. In Figure D.3 the YZ plane (with x = 0) is displayed. Using this
schematic overview, we can compute θ and s as follow:

θ = tan−1

(
1

bc

)
(D.69)
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Figure D.4: Computing ψ from ac. The black line is parallel to s. The grey-dotted
lines are perpendicular to each other, where ac is perpendicular to the optical axis of
the camera and ψp perpendicular to the optical axis of the laser.

s

sin(θ)
=

cc
sin(β)

(D.70)

s =
sin(θ) ∗ cc
sin(β)

(D.71)

Using the same YZ plane, α can also be estimated:

α = π − (β + θ) (D.72)

Computing the roll of the laser is a bit more challenging. Recalling Chapter D.1, ψ
is defined orthogonal to the optical axis of the laser, whereas ac from the fitted plane
is defined orthogonal to the x-axis in the reference plane. An overview is shown in
Figure D.4.

When assuming y = 0, the rotation of the plane around the x-axis is described with
z = ac ∗ x. Note that it is not depending on c as this only provides an offset.

Computing ψ is done by assuming an unit step in the x-direction: from the camera
reference frame the plane has changed by a factor ac and the laser rotation results in an
offset ψp as shown in Figure D.4. Using this step, ψp can be computed with:

ψp = sin(∠a) ∗ ac (D.73)

= sin(β − (0.5π − α)) ∗ ac (D.74)

= −ac ∗ cos(θ) (D.75)

As ψp is the unit-step result for ψ, we can compute:

ψ = 0.5 ∗ π − tan−1(ψp) (D.76)

= 0.5 ∗ π − tan−1(−ac ∗ cos(θ)) (D.77)
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