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Technical Article

GPU-accelerated Double- 
stage Delay-multiply-and-sum 
Algorithm for Fast Photoacoustic 
Tomography Using LED  
Excitation and Linear Arrays

Seyyed Reza Miri Rostami1 , Moein Mozaffarzadeh2,  
Mohsen Ghaffari-Miab1 , Ali Hariri3,  
and Jesse Jokerst3,4,5

Abstract
Double-stage delay-multiply-and-sum (DS-DMAS) is an algorithm proposed for photoacoustic 
image reconstruction. The DS-DMAS algorithm offers a higher contrast than conventional delay-
and-sum and delay-multiply and-sum but at the expense of higher computational complexity. 
Here, we utilized a compute unified device architecture (CUDA) graphics processing unit 
(GPU) parallel computation approach to address the high complexity of the DS-DMAS for 
photoacoustic image reconstruction generated from a commercial light-emitting diode 
(LED)–based photoacoustic scanner. In comparison with a single-threaded central processing 
unit (CPU), the GPU approach increased speeds by nearly 140-fold for 1024 × 1024 pixel 
image; there was no decrease in accuracy. The proposed implementation makes it possible to 
reconstruct photoacoustic images with frame rates of 250, 125, and 83.3 when the images are 
64 × 64, 128 × 128, and 256 × 256, respectively. Thus, DS-DMAS can be efficiently used in 
clinical devices when coupled with CUDA GPU parallel computation.
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Introduction

Photoacoustic imaging (PAI) is a promising biomedical imaging modality that provides func-
tional, structural, and molecular information1-3 after a short laser pulse irradiates the tissue. 
The photoacoustic waves are generated based on thermoelastic expansion effects. Finally, 
wide-band ultrasound transducers detect the propagated photoacoustic waves.4-6 PAI usually 
has higher contrast than ultrasound imaging because it is based on differences in optical 
absorption rather than differences in physical impedance. PAI also usually offers higher reso-
lution than pure optical imaging because acoustic pressure waves are scattered 1000-fold less 
than optical waves.7 PAI has multiple applications such as tumor detection,8,9 cancer stag-
ing,10 ocular imaging,11,12 molecular imaging,13,14 functional imaging,15,16 oncology,17,18 oph-
thalmology,19 and cardiology.20

There are two methods of PAI: photoacoustic tomography (PAT)21 and photoacoustic 
microscopy.22 The focus of this paper is on the PAT. Ultrasound transducers in different types 
(circular, linear, and arc) detect photoacoustic waves. Optical absorption maps of the tissue 
can then be obtained via mathematical transformation.23-27 Circular detection of the photo-
acoustic waves is difficult to translate into clinical applications,28 and thus linear-array trans-
ducers are commonly used.29,30 However, image quality is lower with linear-array PAT 
because there are only a few angles (about 40°) available for detection. This leads to low-
quality image versus circular tomography.31-33 To address this problem, enhanced image 
formation algorithms should be used.34-39 Delay and sum (DAS) is usually used for image 
formation in linear-array scenario. However, it leads to a low-quality image because DAS 
considers all detected signals to be identical regardless of the source. While DAS is popular 
because of its simplicity, it suffers from poor spatial resolution. Thus, delay-multiply-and-
sum (DMAS) was introduced to improve the photoacoustic/ultrasound image quality in lin-
ear-array PAT.36,40

Previous work has improved image quality with higher computational complexity. The higher 
complexity of the algorithms degrades the temporal resolution and prevents real-time imaging. 
Multiple-core graphics processing units (GPUs) along with the central processing unit (CPU) can 
address this issue. Indeed, improvements in hardware, parallelism directives, and parallel pro-
cessing power41-44 have led GPUs to be used extensively in PAI systems.45-54 However, the 
advantages of double-stage delay-multiply-and-sum (DS-DMAS) have not yet been combined 
with the power of GPU processing.

We have recently introduced DS-DMAS, providing a higher contrast compared with 
DMAS.37,38 It should be noticed that the higher image quality has been obtained at the 
expense of a higher computational complexity. On the other hand, nowadays, real-time PAI 
systems are being used in different applications.29,33,55-61 Thus, this work improves the tem-
poral resolution and computational time of the DS-DMAS algorithm via a GPU implementa-
tion. To the best of our knowledge, this is the first use of GPU acceleration to minimize the 
processing time of photoacoustic data acquired from a light-emitting diode (LED)–based 
scanner. While this has been shown several times for laser-based systems, there is an increas-
ingly large body of work utilizing LEDs that have not yet completely harnessed the utility of 
GPU acceleration.

Materials and Methods

In this section, we briefly review the concept of beamforming and describe GPU implementation 
in the DS-DMAS algorithm.
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Image Formation

DAS is a non-adaptive beamformer and considers all of the calculated samples to be the same. Its 
formula is as follows:

y k x k
i
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i iDAS ( ) −( )∑=
=1

∆ ,  (1)

where y kDAS ( ) is the output of the beamformer in which k  is the time index, M  is the number of 
the array elements, and x ki ( ) and ∆i are the detected signals and the corresponding time delay for 
detector i , respectively. DAS has low resolution and contrast, and thus DMAS was introduced to 
address these issues40:
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The following improvements are suggested in the literature40 to overcome the dimensionally 
squared problem2:

x k

x k x k x k x k

i

ij

i i j j i i j j

 ( )

−( ) −( )



 −( ) −( )

=

| |

1

sign

for

∆ ∆ ∆ ∆ ,

jj M .

 (3)

y k x k
i

M

j i

M

ijDMAS ( ) ( )
−

+
∑ ∑=

=1

1

= 1

 .  (4)

DMAS utilizes a correlation process to form a high-quality photoacoustic image.36,62 However, 
the performance of the DMAS is degraded at the presence of a high level of imaging noise.37,38 
To address this problem, we have recently introduced the DS-DMAS algorithm:
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where x kid ( )  and x kjd ( ) are the delayed detected signals for element i  and j, respectively. The 
formula of the DS-DMAS can be written as follows:
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where xit  and x jt  are the ith and jth terms shown in Jokerst et al.5

Experimental Setup for PAI

All the experiments in this study were performed using a commercially available LED-based PAI 
system from PreXion Corporation (Tokyo, Japan) described previously.63 LED arrays were used 
as the excitation source and attached to both sides of the ultrasound transducer. The wavelength 
was 690 nm, the repetition rate was 4 kHz, and the pulse width of the LEDs was 100 ns. A 
128-element linear-array transducer with a central frequency of 10 MHz and bandwidth of 80.9% 
was used to detect the photoacoustic signal. The data acquisition unit has a dynamic range of 16 
bits with 1024 samples per element. The sampling rates of the photoacoustic and ultrasound 
modalities are 40 and 20 MHz, respectively.

To evaluate this implementation, pencil (graphite) lead (0.5 mm HB, Newell Rubbermaid, 
Inc., Illinois) served as the optical absorber. These were placed at different depths with an inter-
val distance of 0.5 mm. The samples are scanned at different depths from 20 to 24 mm. These 
were in 2% intralipid (20%, emulsion, Sigma–Aldrich Co., Missouri) mixed with agar as the 
scattering media. The B-mode frame rate was 6 Hz.

GPU Implementation

The hardware used for the DS-DMAS algorithm includes an Intel core-i7 4790 consisting of 
eight logical cores and four physical cores. These include NVIDIA GTX 760 with 1152 com-
pute unified device architecture (CUDA) cores and NVIDIA GTX 1070 GPU consisting of 
1920 CUDA cores. The characteristics of the hardware are given in Table 1. To have a fair 
comparison between the processing times, the CPU and GPU are chosen based on a nearly 
identical price. The CUDA was first described by NVIDIA in 2006 for scientific general-
purpose calculations and implementation on GPUs. CUDA makes different cache memories 
such as pinned memory, texture memory, and shared memory controllable for users due to their 
low-level programming language. CUDA lets users employ the massive potential of many-
core GPUs for parallel programming. Here, the DS-DMAS algorithm is implemented on GPU 
via a double precision CUDA.

CUDA Implementation

CUDA is a flexible and scalable programming language for parallel computation on GPU. In 
CUDA, GPU and CPU simultaneously work together with separate memory spaces. The host 
code is run on the CPU and it manages data transfer for both the GPU and CPU. In addition, it 
launches kernels (functions or subroutines performed on the GPU). Figure 1 shows that the GPU 
and CPU have diverse hardware architectures and communicate with each other via a PCI-
Express bus.64 GPUs have several autonomous computational units called streaming multipro-
cessors (SMs) along with several memories. The main memory is accessible via all threads 
implemented on the CUDA SMs. It is comparatively large (1 GB) and much faster than the CPU 
memory. Each SM has an on-chip shared memory that is local to an SM and quite small (16 KB 
per SM). The shared memory is very fast compared with the main (global) GPU memory. In addi-
tion, GPU has some additional memories, including constant and texture memory. Figure 1 
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Table 1. Hardware Details.

CPU Intel Core i7-4790 CPU
 Number of cores 4
 Number of threads 8
GPU NVIDIA GTX 760
 CUDA cores 1152
 Base core clock 980 MHz
 Memory speed 6.0 Gbps
 GPU memory 2.048 GB
 Memory interface GDDR5
 Memory bandwidth 192.2 GB/s
 Compute capability 3.0
 Number of SMs 6
GPU NVIDIA GTX 1070
 CUDA cores 1920
 Base core clock 1506 MHz
 Memory speed 8.0 Gbps
 GPU memory 8.192 GB
 Memory interface GDDR5
 Memory bandwidth 256.3 GB/s
 Compute capability 3.0
 Number of SMs 15

CPU = central processing unit; GPU = graphics processing unit; CUDA = compute unified device architecture;  
SMs = streaming multiprocessors.

Figure 1. GPU and CPU hardware architectures.64 GPU = graphics processing unit; CPU = central 
processing unit.
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presents separate memories of CPU and GPU. The user manages the data transfer in both memo-
ries to achieve valid results. As the data transferring between GPU and CPU is time-consuming, 
inessential data transfer should be avoided as much as possible.

Figure 2 shows that the CUDA implementation of the DS-DMAS algorithm contains the fol-
lowing four levels:

Allocating memory on CPU and GPU to configure the desired system,
Transferring required data from CPU to GPU,
Kernel execution for image reconstruction,
Transferring final image (reconstructed by DS-DMAS) from GPU to CPU.

Figure 2. Flowchart of the proposed algorithm (DS-DMAS). CPU = central processing unit; GPU = 
graphics processing unit; DAS = delay and sum; DMAS = delay-multiply-and-sum; DS-DMAS = double-
stage delay-multiply-and-sum.
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In the CUDA implementation, each thread calculates the value of a specific pixel brightness 
determined by the programmer. Threads are grouped into a three-level hierarchy: thread, block, 
and grid. Each block contains some threads, and the blocks are mapped into grids. The GPU has 
some limitations on the number of blocks and grids, resulting from its specifications. In CUDA, 
the warp is contained in a group of 32 threads that are executed simultaneously. In GPU, each 
thread has an identity number, where the CUDA user can map it into the GPU using the kernels. 
A kernel is actually a directive routine that is performed on the GPU. Launching a kernel is 
executed by subroutine or function call added by the <<>>  syntax.65,66

Results and Discussion

In this section, the results of the DS-DMAS implementation on GPU are evaluated, and the 
effects of the key parameters are extracted. Finally, we present the reconstructed photoacoustic 
image created via the proposed implementation to highlight the superiority of the DS-DMAS 
algorithm for PAI.

Optimized CUDA Implementation for DS-DMAS

In the CUDA implementation, the GPU’s main memory is utilized to store the transferred data 
via the CPU. Here, the NVIDIA GTX 1070 GPU along with NVIDIA profiler software’s (nvprof) 
results is used for realizing optimum key parameters in the DS-DMAS implementation via the 
GPU. Figure 3 shows that the major running time of the DS-DMAS code is spent on executing 
the GPU kernels. The data communication and transfer time (between the CPU and GPU) can be 
ignored. Moreover, in our case, instructions and functions were executed sequentially in the 
GPU. The functions have zero overlap with each other due to the nature of the DS-DMAS algo-
rithm. This means that we have several dependent functions. Thus, the only parameter to show 
the performance of the GPU implementation is the occupancy (number of active warps per 
SM)—this is reported in the following sections.

Effects of using shared memory. To implement the DS-DMAS, active warps per SM are 
extracted for various shared memory usages. The maximum occupancy would be achieved via 
the NVIDIA occupancy calculator (Figure 4) without using the shared memory. In the DS-
DMAS algorithm, the loops do the exact same computation at each iteration and overwrite the 

Figure 3. The CUDA profiling result of the DS-DMAS algorithm implementation. The result shows 
that kernels’ execution time for image reconstruction is dominant in the total execution time.  
CUDA = compute unified device architecture; DS-DMAS = double-stage delay-multiply-and-sum; 
CPU = central processing unit; GPU = graphics processing unit; DMAS = delay-multiply-and-sum; 
DAS = delay-and-sum.
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result. Thus, shared memory is not needed because we are not using it to share data between 
threads or to optimize memory access order. Thus, these repetitive data fetching from global 
memory and data storage in shared memory spaces waste time. Each data point in each pixel 
is only used once in the implementation of each loop. Hence, storing data and using them in 
global memory is the best option.

Effects of different block sizes. The number of active warps per SM is also affected by the block 
size. Hence, changing the number of threads in each block could increase the occupancy without 
modifying the other parameters. The number of threads in each block is altered from 2 to 1024. 
The results are shown in Figure 5. The maximum performance is attained when the graph is in 
the highest value by a block size equal to 128 without using a shared memory.

Total GPU occupancy. Figure 6 shows the achieved occupancy for each SM. The reported values 
are the average across all the warp schedulers. The line across all the bars is the average—this is 
the number achieved in the implementation. A block size equal to 128 along with using the main 
memory led to an occupancy of 88.69% (Figure 6).

Number of used registers. The aim of the implementation is to attain 100% occupancy of multi-
processors. In other words, the application fully employs the available processing potentials. 
Unfortunately, the amount of shared memory utilized by each block and the number of employed 
registers bound the occupancy value. Figure 7 shows how the number of registers affects the 
theoretical occupancy leaving the other parameters constant. The circled point shows that in this 
implementation, 14 registers are utilized per thread. The current upper limit of the active warps 
is equal to 64. The results from the NVIDIA occupancy calculator demonstrate that the maximum 
occupancy could be obtained by a fewer number of employed registers. However, this leads to 
more usage of the cache memory, which is much slower to access.

Figure 4. Number of the active warps (GPU occupancy) for various sizes of the shared memory 
utilized per thread block. Without using the shared memory per thread block, 64 thread warps 
simultaneously work in GPU, which is the maximum amount. GPU = graphics processing unit; SM = 
streaming multiprocessor.
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Figure 5. Effect of the different block sizes on the GPU occupancy. The maximum performance 
and occupancy are attained at a block size of 128. GPU = graphics processing unit; SM = streaming 
multiprocessor.

Figure 6. Achieved occupancy with block size equal to 128, without using the shared memory 
with a DS-DMAS implementation. The overall occupancy of 88.69% is achieved with a GPU CUDA 
implementation. SM = streaming multiprocessor DS-DMAS = double-stage delay-multiply-and-sum; 
GPU = graphics processing unit; CUDA = compute unified device architecture.
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Speed-up evaluation. Table 2 shows the speed-up for a photoacoustic image having 1024 × 1024 
pixels. This was evaluated for optimized CUDA (described above) on the NVIDIA GTX 1070 
GPU and NVIDIA GTX 760 GPU. We note that the performance of the MATLAB code used for 
comparison is maximized by optimizing the memory access via a matrix operation rather than 
utilizing nested loops. The time reduction achieved by running optimized CUDA Fortran code is 
about 114.35-fold that of a single-threaded Fortran code and 133.34-fold that of the optimized 
MATLAB code with no loss of accuracy.

Figure 8 shows the speed reduction versus the number of pixels. The time gain increases with 
increasing number of pixels with no loss of accuracy. The relative error for the computed pixels 
value in CUDA programming model versus the serial implementation on a CPU is about 10 13−  
when double precision parameters are exploited.

DS-DMAS Evaluation

The higher performance of the DS-DMAS algorithm has been extensively evaluated previ-
ously.37,38 We provided reconstructed images to briefly review the improvements offered by 
DS-DMAS. The reconstruction procedure is performed on a GPU along with a CPU, while 
the main computation of the reconstruction is performed on the GPU. For quantitative evalu-
ation, the lateral variations of the formed images are presented in Figure 9. DAS leads to 
high level of sidelobes, and the background noise affects the image. DMAS improves the 
image quality by higher noise suppression versus DAS, as seen in Figure 9. Figure 9 shows 

Figure 7. Effect of different numbers of registers per thread on the GPU occupancy. In this 
implementation, 14 registers are employed for each thread where the circled point is located at the 
highest amount of the active warps equal to 64. SM = streaming multiprocessor; GPU = graphics 
processing unit.



Miri Rostami et al. 311

Table 2. Performance Comparison of the CUDA Optimized DS-DMAS Algorithm Implementation.

Implementation Processing Time (s) Speed-Up

CPU MATLAB 20 1
CPU FORTRAN serial 12 1.166
Optimized CUDA NVIDIA 760 GPU 0.3 66.55
Optimized CUDA NVIDIA 1070 GPU 0.15 133.34

The size of image is 1024 × 1024. CUDA = compute unified device architecture; DS-DMAS = double-stage delay-
multiply-and-sum; CPU = central processing unit; GPU = graphics processing unit.

Figure 8. CUDA speed-up for several pixels in the image. CUDA = compute unified device 
architecture.

Figure 9. The lateral variations of the images are shown. The dotted circle shows the lower sidelobes 
of DS-DMAS (about 39 and 20 dB compared with DAS and DMAS, respectively). DS-DMAS = double-
stage delay-multiply-and-sum; DAS = delay-and-sum; DMAS = delay-multiply-and-sum.
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that DS-DMAS outperforms other methods in terms of noise suppression and sidelobe reduc-
tion. The DS-DMAS results in a 39- and 20-dB reduction in sidelobes versus DAS and 
DMAS, respectively.

Frame Rate

We have evaluated the performance of the GPU implementation when different numbers of 
pixels are used for the reconstruction. Figure 10 shows that the processing time would 
increase as the number of pixels is increased. Frame rates of 250, 125, and 83.3 are achieved 
when a size of 64 × 64, 128 × 128, and 256 × 256 are used chosen for the reconstructed 
photoacoustic image, respectively. A 512 × 512 images takes 0.07 s to be reconstructed 
using DS-DMAS.

Conclusion

In this paper, we implemented the DS-DMAS algorithm in a parallel approach on GPU for pho-
toacoustic image reconstruction. The implementation used a NVIDIA GTX 1070 and NVIDIA 
GTX 760 GPUs with the CUDA programming model. After optimization, the CUDA program-
ming model implemented on GPU offered a speed-up of nearly 133.34 × versus the CPU for a 
1024 × 1024 pixel image. In addition, a higher speed-up was attained for a larger number of 
pixels. Using the proposed GPU implementation, it is possible to reconstruct photoacoustic 
images that were 64 × 64, 128 × 128, and 256 × 256 with a frame rate of 250, 125, and 83.3, 
respectively.
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Figure 10. The processing time versus number of pixels. A higher time is needed to reconstruct the 
photoacoustic image with a larger number of pixels.
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